xref: /linux/kernel/locking/rtmutex.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	if (!rt_mutex_has_waiters(lock))
69 		clear_rt_mutex_waiters(lock);
70 }
71 
72 /*
73  * We can speed up the acquire/release, if the architecture
74  * supports cmpxchg and if there's no debugging state to be set up
75  */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 	unsigned long owner, *p = (unsigned long *) &lock->owner;
81 
82 	do {
83 		owner = *p;
84 	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 
87 /*
88  * Safe fastpath aware unlock:
89  * 1) Clear the waiters bit
90  * 2) Drop lock->wait_lock
91  * 3) Try to unlock the lock with cmpxchg
92  */
93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 	__releases(lock->wait_lock)
95 {
96 	struct task_struct *owner = rt_mutex_owner(lock);
97 
98 	clear_rt_mutex_waiters(lock);
99 	raw_spin_unlock(&lock->wait_lock);
100 	/*
101 	 * If a new waiter comes in between the unlock and the cmpxchg
102 	 * we have two situations:
103 	 *
104 	 * unlock(wait_lock);
105 	 *					lock(wait_lock);
106 	 * cmpxchg(p, owner, 0) == owner
107 	 *					mark_rt_mutex_waiters(lock);
108 	 *					acquire(lock);
109 	 * or:
110 	 *
111 	 * unlock(wait_lock);
112 	 *					lock(wait_lock);
113 	 *					mark_rt_mutex_waiters(lock);
114 	 *
115 	 * cmpxchg(p, owner, 0) != owner
116 	 *					enqueue_waiter();
117 	 *					unlock(wait_lock);
118 	 * lock(wait_lock);
119 	 * wake waiter();
120 	 * unlock(wait_lock);
121 	 *					lock(wait_lock);
122 	 *					acquire(lock);
123 	 */
124 	return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126 
127 #else
128 # define rt_mutex_cmpxchg(l,c,n)	(0)
129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131 	lock->owner = (struct task_struct *)
132 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134 
135 /*
136  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137  */
138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 	__releases(lock->wait_lock)
140 {
141 	lock->owner = NULL;
142 	raw_spin_unlock(&lock->wait_lock);
143 	return true;
144 }
145 #endif
146 
147 static inline int
148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 		     struct rt_mutex_waiter *right)
150 {
151 	if (left->prio < right->prio)
152 		return 1;
153 
154 	/*
155 	 * If both waiters have dl_prio(), we check the deadlines of the
156 	 * associated tasks.
157 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 	 * then right waiter has a dl_prio() too.
159 	 */
160 	if (dl_prio(left->prio))
161 		return (left->task->dl.deadline < right->task->dl.deadline);
162 
163 	return 0;
164 }
165 
166 static void
167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169 	struct rb_node **link = &lock->waiters.rb_node;
170 	struct rb_node *parent = NULL;
171 	struct rt_mutex_waiter *entry;
172 	int leftmost = 1;
173 
174 	while (*link) {
175 		parent = *link;
176 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 		if (rt_mutex_waiter_less(waiter, entry)) {
178 			link = &parent->rb_left;
179 		} else {
180 			link = &parent->rb_right;
181 			leftmost = 0;
182 		}
183 	}
184 
185 	if (leftmost)
186 		lock->waiters_leftmost = &waiter->tree_entry;
187 
188 	rb_link_node(&waiter->tree_entry, parent, link);
189 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191 
192 static void
193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195 	if (RB_EMPTY_NODE(&waiter->tree_entry))
196 		return;
197 
198 	if (lock->waiters_leftmost == &waiter->tree_entry)
199 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200 
201 	rb_erase(&waiter->tree_entry, &lock->waiters);
202 	RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204 
205 static void
206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208 	struct rb_node **link = &task->pi_waiters.rb_node;
209 	struct rb_node *parent = NULL;
210 	struct rt_mutex_waiter *entry;
211 	int leftmost = 1;
212 
213 	while (*link) {
214 		parent = *link;
215 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 		if (rt_mutex_waiter_less(waiter, entry)) {
217 			link = &parent->rb_left;
218 		} else {
219 			link = &parent->rb_right;
220 			leftmost = 0;
221 		}
222 	}
223 
224 	if (leftmost)
225 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226 
227 	rb_link_node(&waiter->pi_tree_entry, parent, link);
228 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230 
231 static void
232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 		return;
236 
237 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239 
240 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243 
244 /*
245  * Calculate task priority from the waiter tree priority
246  *
247  * Return task->normal_prio when the waiter tree is empty or when
248  * the waiter is not allowed to do priority boosting
249  */
250 int rt_mutex_getprio(struct task_struct *task)
251 {
252 	if (likely(!task_has_pi_waiters(task)))
253 		return task->normal_prio;
254 
255 	return min(task_top_pi_waiter(task)->prio,
256 		   task->normal_prio);
257 }
258 
259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261 	if (likely(!task_has_pi_waiters(task)))
262 		return NULL;
263 
264 	return task_top_pi_waiter(task)->task;
265 }
266 
267 /*
268  * Called by sched_setscheduler() to check whether the priority change
269  * is overruled by a possible priority boosting.
270  */
271 int rt_mutex_check_prio(struct task_struct *task, int newprio)
272 {
273 	if (!task_has_pi_waiters(task))
274 		return 0;
275 
276 	return task_top_pi_waiter(task)->task->prio <= newprio;
277 }
278 
279 /*
280  * Adjust the priority of a task, after its pi_waiters got modified.
281  *
282  * This can be both boosting and unboosting. task->pi_lock must be held.
283  */
284 static void __rt_mutex_adjust_prio(struct task_struct *task)
285 {
286 	int prio = rt_mutex_getprio(task);
287 
288 	if (task->prio != prio || dl_prio(prio))
289 		rt_mutex_setprio(task, prio);
290 }
291 
292 /*
293  * Adjust task priority (undo boosting). Called from the exit path of
294  * rt_mutex_slowunlock() and rt_mutex_slowlock().
295  *
296  * (Note: We do this outside of the protection of lock->wait_lock to
297  * allow the lock to be taken while or before we readjust the priority
298  * of task. We do not use the spin_xx_mutex() variants here as we are
299  * outside of the debug path.)
300  */
301 static void rt_mutex_adjust_prio(struct task_struct *task)
302 {
303 	unsigned long flags;
304 
305 	raw_spin_lock_irqsave(&task->pi_lock, flags);
306 	__rt_mutex_adjust_prio(task);
307 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
308 }
309 
310 /*
311  * Deadlock detection is conditional:
312  *
313  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
314  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
315  *
316  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
317  * conducted independent of the detect argument.
318  *
319  * If the waiter argument is NULL this indicates the deboost path and
320  * deadlock detection is disabled independent of the detect argument
321  * and the config settings.
322  */
323 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
324 					  enum rtmutex_chainwalk chwalk)
325 {
326 	/*
327 	 * This is just a wrapper function for the following call,
328 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
329 	 * debug feature and I wanted to keep the cond function in the
330 	 * main source file along with the comments instead of having
331 	 * two of the same in the headers.
332 	 */
333 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
334 }
335 
336 /*
337  * Max number of times we'll walk the boosting chain:
338  */
339 int max_lock_depth = 1024;
340 
341 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
342 {
343 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
344 }
345 
346 /*
347  * Adjust the priority chain. Also used for deadlock detection.
348  * Decreases task's usage by one - may thus free the task.
349  *
350  * @task:	the task owning the mutex (owner) for which a chain walk is
351  *		probably needed
352  * @deadlock_detect: do we have to carry out deadlock detection?
353  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
354  *		things for a task that has just got its priority adjusted, and
355  *		is waiting on a mutex)
356  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
357  *		we dropped its pi_lock. Is never dereferenced, only used for
358  *		comparison to detect lock chain changes.
359  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
360  *		its priority to the mutex owner (can be NULL in the case
361  *		depicted above or if the top waiter is gone away and we are
362  *		actually deboosting the owner)
363  * @top_task:	the current top waiter
364  *
365  * Returns 0 or -EDEADLK.
366  *
367  * Chain walk basics and protection scope
368  *
369  * [R] refcount on task
370  * [P] task->pi_lock held
371  * [L] rtmutex->wait_lock held
372  *
373  * Step	Description				Protected by
374  *	function arguments:
375  *	@task					[R]
376  *	@orig_lock if != NULL			@top_task is blocked on it
377  *	@next_lock				Unprotected. Cannot be
378  *						dereferenced. Only used for
379  *						comparison.
380  *	@orig_waiter if != NULL			@top_task is blocked on it
381  *	@top_task				current, or in case of proxy
382  *						locking protected by calling
383  *						code
384  *	again:
385  *	  loop_sanity_check();
386  *	retry:
387  * [1]	  lock(task->pi_lock);			[R] acquire [P]
388  * [2]	  waiter = task->pi_blocked_on;		[P]
389  * [3]	  check_exit_conditions_1();		[P]
390  * [4]	  lock = waiter->lock;			[P]
391  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
392  *	    unlock(task->pi_lock);		release [P]
393  *	    goto retry;
394  *	  }
395  * [6]	  check_exit_conditions_2();		[P] + [L]
396  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
397  * [8]	  unlock(task->pi_lock);		release [P]
398  *	  put_task_struct(task);		release [R]
399  * [9]	  check_exit_conditions_3();		[L]
400  * [10]	  task = owner(lock);			[L]
401  *	  get_task_struct(task);		[L] acquire [R]
402  *	  lock(task->pi_lock);			[L] acquire [P]
403  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
404  * [12]	  check_exit_conditions_4();		[P] + [L]
405  * [13]	  unlock(task->pi_lock);		release [P]
406  *	  unlock(lock->wait_lock);		release [L]
407  *	  goto again;
408  */
409 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
410 				      enum rtmutex_chainwalk chwalk,
411 				      struct rt_mutex *orig_lock,
412 				      struct rt_mutex *next_lock,
413 				      struct rt_mutex_waiter *orig_waiter,
414 				      struct task_struct *top_task)
415 {
416 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
417 	struct rt_mutex_waiter *prerequeue_top_waiter;
418 	int ret = 0, depth = 0;
419 	struct rt_mutex *lock;
420 	bool detect_deadlock;
421 	unsigned long flags;
422 	bool requeue = true;
423 
424 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
425 
426 	/*
427 	 * The (de)boosting is a step by step approach with a lot of
428 	 * pitfalls. We want this to be preemptible and we want hold a
429 	 * maximum of two locks per step. So we have to check
430 	 * carefully whether things change under us.
431 	 */
432  again:
433 	/*
434 	 * We limit the lock chain length for each invocation.
435 	 */
436 	if (++depth > max_lock_depth) {
437 		static int prev_max;
438 
439 		/*
440 		 * Print this only once. If the admin changes the limit,
441 		 * print a new message when reaching the limit again.
442 		 */
443 		if (prev_max != max_lock_depth) {
444 			prev_max = max_lock_depth;
445 			printk(KERN_WARNING "Maximum lock depth %d reached "
446 			       "task: %s (%d)\n", max_lock_depth,
447 			       top_task->comm, task_pid_nr(top_task));
448 		}
449 		put_task_struct(task);
450 
451 		return -EDEADLK;
452 	}
453 
454 	/*
455 	 * We are fully preemptible here and only hold the refcount on
456 	 * @task. So everything can have changed under us since the
457 	 * caller or our own code below (goto retry/again) dropped all
458 	 * locks.
459 	 */
460  retry:
461 	/*
462 	 * [1] Task cannot go away as we did a get_task() before !
463 	 */
464 	raw_spin_lock_irqsave(&task->pi_lock, flags);
465 
466 	/*
467 	 * [2] Get the waiter on which @task is blocked on.
468 	 */
469 	waiter = task->pi_blocked_on;
470 
471 	/*
472 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
473 	 */
474 
475 	/*
476 	 * Check whether the end of the boosting chain has been
477 	 * reached or the state of the chain has changed while we
478 	 * dropped the locks.
479 	 */
480 	if (!waiter)
481 		goto out_unlock_pi;
482 
483 	/*
484 	 * Check the orig_waiter state. After we dropped the locks,
485 	 * the previous owner of the lock might have released the lock.
486 	 */
487 	if (orig_waiter && !rt_mutex_owner(orig_lock))
488 		goto out_unlock_pi;
489 
490 	/*
491 	 * We dropped all locks after taking a refcount on @task, so
492 	 * the task might have moved on in the lock chain or even left
493 	 * the chain completely and blocks now on an unrelated lock or
494 	 * on @orig_lock.
495 	 *
496 	 * We stored the lock on which @task was blocked in @next_lock,
497 	 * so we can detect the chain change.
498 	 */
499 	if (next_lock != waiter->lock)
500 		goto out_unlock_pi;
501 
502 	/*
503 	 * Drop out, when the task has no waiters. Note,
504 	 * top_waiter can be NULL, when we are in the deboosting
505 	 * mode!
506 	 */
507 	if (top_waiter) {
508 		if (!task_has_pi_waiters(task))
509 			goto out_unlock_pi;
510 		/*
511 		 * If deadlock detection is off, we stop here if we
512 		 * are not the top pi waiter of the task. If deadlock
513 		 * detection is enabled we continue, but stop the
514 		 * requeueing in the chain walk.
515 		 */
516 		if (top_waiter != task_top_pi_waiter(task)) {
517 			if (!detect_deadlock)
518 				goto out_unlock_pi;
519 			else
520 				requeue = false;
521 		}
522 	}
523 
524 	/*
525 	 * If the waiter priority is the same as the task priority
526 	 * then there is no further priority adjustment necessary.  If
527 	 * deadlock detection is off, we stop the chain walk. If its
528 	 * enabled we continue, but stop the requeueing in the chain
529 	 * walk.
530 	 */
531 	if (waiter->prio == task->prio) {
532 		if (!detect_deadlock)
533 			goto out_unlock_pi;
534 		else
535 			requeue = false;
536 	}
537 
538 	/*
539 	 * [4] Get the next lock
540 	 */
541 	lock = waiter->lock;
542 	/*
543 	 * [5] We need to trylock here as we are holding task->pi_lock,
544 	 * which is the reverse lock order versus the other rtmutex
545 	 * operations.
546 	 */
547 	if (!raw_spin_trylock(&lock->wait_lock)) {
548 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
549 		cpu_relax();
550 		goto retry;
551 	}
552 
553 	/*
554 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
555 	 * lock->wait_lock.
556 	 *
557 	 * Deadlock detection. If the lock is the same as the original
558 	 * lock which caused us to walk the lock chain or if the
559 	 * current lock is owned by the task which initiated the chain
560 	 * walk, we detected a deadlock.
561 	 */
562 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
563 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
564 		raw_spin_unlock(&lock->wait_lock);
565 		ret = -EDEADLK;
566 		goto out_unlock_pi;
567 	}
568 
569 	/*
570 	 * If we just follow the lock chain for deadlock detection, no
571 	 * need to do all the requeue operations. To avoid a truckload
572 	 * of conditionals around the various places below, just do the
573 	 * minimum chain walk checks.
574 	 */
575 	if (!requeue) {
576 		/*
577 		 * No requeue[7] here. Just release @task [8]
578 		 */
579 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
580 		put_task_struct(task);
581 
582 		/*
583 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
584 		 * If there is no owner of the lock, end of chain.
585 		 */
586 		if (!rt_mutex_owner(lock)) {
587 			raw_spin_unlock(&lock->wait_lock);
588 			return 0;
589 		}
590 
591 		/* [10] Grab the next task, i.e. owner of @lock */
592 		task = rt_mutex_owner(lock);
593 		get_task_struct(task);
594 		raw_spin_lock_irqsave(&task->pi_lock, flags);
595 
596 		/*
597 		 * No requeue [11] here. We just do deadlock detection.
598 		 *
599 		 * [12] Store whether owner is blocked
600 		 * itself. Decision is made after dropping the locks
601 		 */
602 		next_lock = task_blocked_on_lock(task);
603 		/*
604 		 * Get the top waiter for the next iteration
605 		 */
606 		top_waiter = rt_mutex_top_waiter(lock);
607 
608 		/* [13] Drop locks */
609 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
610 		raw_spin_unlock(&lock->wait_lock);
611 
612 		/* If owner is not blocked, end of chain. */
613 		if (!next_lock)
614 			goto out_put_task;
615 		goto again;
616 	}
617 
618 	/*
619 	 * Store the current top waiter before doing the requeue
620 	 * operation on @lock. We need it for the boost/deboost
621 	 * decision below.
622 	 */
623 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
624 
625 	/* [7] Requeue the waiter in the lock waiter list. */
626 	rt_mutex_dequeue(lock, waiter);
627 	waiter->prio = task->prio;
628 	rt_mutex_enqueue(lock, waiter);
629 
630 	/* [8] Release the task */
631 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
632 	put_task_struct(task);
633 
634 	/*
635 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
636 	 *
637 	 * We must abort the chain walk if there is no lock owner even
638 	 * in the dead lock detection case, as we have nothing to
639 	 * follow here. This is the end of the chain we are walking.
640 	 */
641 	if (!rt_mutex_owner(lock)) {
642 		/*
643 		 * If the requeue [7] above changed the top waiter,
644 		 * then we need to wake the new top waiter up to try
645 		 * to get the lock.
646 		 */
647 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
648 			wake_up_process(rt_mutex_top_waiter(lock)->task);
649 		raw_spin_unlock(&lock->wait_lock);
650 		return 0;
651 	}
652 
653 	/* [10] Grab the next task, i.e. the owner of @lock */
654 	task = rt_mutex_owner(lock);
655 	get_task_struct(task);
656 	raw_spin_lock_irqsave(&task->pi_lock, flags);
657 
658 	/* [11] requeue the pi waiters if necessary */
659 	if (waiter == rt_mutex_top_waiter(lock)) {
660 		/*
661 		 * The waiter became the new top (highest priority)
662 		 * waiter on the lock. Replace the previous top waiter
663 		 * in the owner tasks pi waiters list with this waiter
664 		 * and adjust the priority of the owner.
665 		 */
666 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
667 		rt_mutex_enqueue_pi(task, waiter);
668 		__rt_mutex_adjust_prio(task);
669 
670 	} else if (prerequeue_top_waiter == waiter) {
671 		/*
672 		 * The waiter was the top waiter on the lock, but is
673 		 * no longer the top prority waiter. Replace waiter in
674 		 * the owner tasks pi waiters list with the new top
675 		 * (highest priority) waiter and adjust the priority
676 		 * of the owner.
677 		 * The new top waiter is stored in @waiter so that
678 		 * @waiter == @top_waiter evaluates to true below and
679 		 * we continue to deboost the rest of the chain.
680 		 */
681 		rt_mutex_dequeue_pi(task, waiter);
682 		waiter = rt_mutex_top_waiter(lock);
683 		rt_mutex_enqueue_pi(task, waiter);
684 		__rt_mutex_adjust_prio(task);
685 	} else {
686 		/*
687 		 * Nothing changed. No need to do any priority
688 		 * adjustment.
689 		 */
690 	}
691 
692 	/*
693 	 * [12] check_exit_conditions_4() protected by task->pi_lock
694 	 * and lock->wait_lock. The actual decisions are made after we
695 	 * dropped the locks.
696 	 *
697 	 * Check whether the task which owns the current lock is pi
698 	 * blocked itself. If yes we store a pointer to the lock for
699 	 * the lock chain change detection above. After we dropped
700 	 * task->pi_lock next_lock cannot be dereferenced anymore.
701 	 */
702 	next_lock = task_blocked_on_lock(task);
703 	/*
704 	 * Store the top waiter of @lock for the end of chain walk
705 	 * decision below.
706 	 */
707 	top_waiter = rt_mutex_top_waiter(lock);
708 
709 	/* [13] Drop the locks */
710 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
711 	raw_spin_unlock(&lock->wait_lock);
712 
713 	/*
714 	 * Make the actual exit decisions [12], based on the stored
715 	 * values.
716 	 *
717 	 * We reached the end of the lock chain. Stop right here. No
718 	 * point to go back just to figure that out.
719 	 */
720 	if (!next_lock)
721 		goto out_put_task;
722 
723 	/*
724 	 * If the current waiter is not the top waiter on the lock,
725 	 * then we can stop the chain walk here if we are not in full
726 	 * deadlock detection mode.
727 	 */
728 	if (!detect_deadlock && waiter != top_waiter)
729 		goto out_put_task;
730 
731 	goto again;
732 
733  out_unlock_pi:
734 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
735  out_put_task:
736 	put_task_struct(task);
737 
738 	return ret;
739 }
740 
741 /*
742  * Try to take an rt-mutex
743  *
744  * Must be called with lock->wait_lock held.
745  *
746  * @lock:   The lock to be acquired.
747  * @task:   The task which wants to acquire the lock
748  * @waiter: The waiter that is queued to the lock's wait list if the
749  *	    callsite called task_blocked_on_lock(), otherwise NULL
750  */
751 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
752 				struct rt_mutex_waiter *waiter)
753 {
754 	unsigned long flags;
755 
756 	/*
757 	 * Before testing whether we can acquire @lock, we set the
758 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
759 	 * other tasks which try to modify @lock into the slow path
760 	 * and they serialize on @lock->wait_lock.
761 	 *
762 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
763 	 * as explained at the top of this file if and only if:
764 	 *
765 	 * - There is a lock owner. The caller must fixup the
766 	 *   transient state if it does a trylock or leaves the lock
767 	 *   function due to a signal or timeout.
768 	 *
769 	 * - @task acquires the lock and there are no other
770 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
771 	 *   the end of this function.
772 	 */
773 	mark_rt_mutex_waiters(lock);
774 
775 	/*
776 	 * If @lock has an owner, give up.
777 	 */
778 	if (rt_mutex_owner(lock))
779 		return 0;
780 
781 	/*
782 	 * If @waiter != NULL, @task has already enqueued the waiter
783 	 * into @lock waiter list. If @waiter == NULL then this is a
784 	 * trylock attempt.
785 	 */
786 	if (waiter) {
787 		/*
788 		 * If waiter is not the highest priority waiter of
789 		 * @lock, give up.
790 		 */
791 		if (waiter != rt_mutex_top_waiter(lock))
792 			return 0;
793 
794 		/*
795 		 * We can acquire the lock. Remove the waiter from the
796 		 * lock waiters list.
797 		 */
798 		rt_mutex_dequeue(lock, waiter);
799 
800 	} else {
801 		/*
802 		 * If the lock has waiters already we check whether @task is
803 		 * eligible to take over the lock.
804 		 *
805 		 * If there are no other waiters, @task can acquire
806 		 * the lock.  @task->pi_blocked_on is NULL, so it does
807 		 * not need to be dequeued.
808 		 */
809 		if (rt_mutex_has_waiters(lock)) {
810 			/*
811 			 * If @task->prio is greater than or equal to
812 			 * the top waiter priority (kernel view),
813 			 * @task lost.
814 			 */
815 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
816 				return 0;
817 
818 			/*
819 			 * The current top waiter stays enqueued. We
820 			 * don't have to change anything in the lock
821 			 * waiters order.
822 			 */
823 		} else {
824 			/*
825 			 * No waiters. Take the lock without the
826 			 * pi_lock dance.@task->pi_blocked_on is NULL
827 			 * and we have no waiters to enqueue in @task
828 			 * pi waiters list.
829 			 */
830 			goto takeit;
831 		}
832 	}
833 
834 	/*
835 	 * Clear @task->pi_blocked_on. Requires protection by
836 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
837 	 * case, but conditionals are more expensive than a redundant
838 	 * store.
839 	 */
840 	raw_spin_lock_irqsave(&task->pi_lock, flags);
841 	task->pi_blocked_on = NULL;
842 	/*
843 	 * Finish the lock acquisition. @task is the new owner. If
844 	 * other waiters exist we have to insert the highest priority
845 	 * waiter into @task->pi_waiters list.
846 	 */
847 	if (rt_mutex_has_waiters(lock))
848 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
849 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
850 
851 takeit:
852 	/* We got the lock. */
853 	debug_rt_mutex_lock(lock);
854 
855 	/*
856 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
857 	 * are still waiters or clears it.
858 	 */
859 	rt_mutex_set_owner(lock, task);
860 
861 	rt_mutex_deadlock_account_lock(lock, task);
862 
863 	return 1;
864 }
865 
866 /*
867  * Task blocks on lock.
868  *
869  * Prepare waiter and propagate pi chain
870  *
871  * This must be called with lock->wait_lock held.
872  */
873 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
874 				   struct rt_mutex_waiter *waiter,
875 				   struct task_struct *task,
876 				   enum rtmutex_chainwalk chwalk)
877 {
878 	struct task_struct *owner = rt_mutex_owner(lock);
879 	struct rt_mutex_waiter *top_waiter = waiter;
880 	struct rt_mutex *next_lock;
881 	int chain_walk = 0, res;
882 	unsigned long flags;
883 
884 	/*
885 	 * Early deadlock detection. We really don't want the task to
886 	 * enqueue on itself just to untangle the mess later. It's not
887 	 * only an optimization. We drop the locks, so another waiter
888 	 * can come in before the chain walk detects the deadlock. So
889 	 * the other will detect the deadlock and return -EDEADLOCK,
890 	 * which is wrong, as the other waiter is not in a deadlock
891 	 * situation.
892 	 */
893 	if (owner == task)
894 		return -EDEADLK;
895 
896 	raw_spin_lock_irqsave(&task->pi_lock, flags);
897 	__rt_mutex_adjust_prio(task);
898 	waiter->task = task;
899 	waiter->lock = lock;
900 	waiter->prio = task->prio;
901 
902 	/* Get the top priority waiter on the lock */
903 	if (rt_mutex_has_waiters(lock))
904 		top_waiter = rt_mutex_top_waiter(lock);
905 	rt_mutex_enqueue(lock, waiter);
906 
907 	task->pi_blocked_on = waiter;
908 
909 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
910 
911 	if (!owner)
912 		return 0;
913 
914 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
915 	if (waiter == rt_mutex_top_waiter(lock)) {
916 		rt_mutex_dequeue_pi(owner, top_waiter);
917 		rt_mutex_enqueue_pi(owner, waiter);
918 
919 		__rt_mutex_adjust_prio(owner);
920 		if (owner->pi_blocked_on)
921 			chain_walk = 1;
922 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
923 		chain_walk = 1;
924 	}
925 
926 	/* Store the lock on which owner is blocked or NULL */
927 	next_lock = task_blocked_on_lock(owner);
928 
929 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
930 	/*
931 	 * Even if full deadlock detection is on, if the owner is not
932 	 * blocked itself, we can avoid finding this out in the chain
933 	 * walk.
934 	 */
935 	if (!chain_walk || !next_lock)
936 		return 0;
937 
938 	/*
939 	 * The owner can't disappear while holding a lock,
940 	 * so the owner struct is protected by wait_lock.
941 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
942 	 */
943 	get_task_struct(owner);
944 
945 	raw_spin_unlock(&lock->wait_lock);
946 
947 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
948 					 next_lock, waiter, task);
949 
950 	raw_spin_lock(&lock->wait_lock);
951 
952 	return res;
953 }
954 
955 /*
956  * Wake up the next waiter on the lock.
957  *
958  * Remove the top waiter from the current tasks pi waiter list and
959  * wake it up.
960  *
961  * Called with lock->wait_lock held.
962  */
963 static void wakeup_next_waiter(struct rt_mutex *lock)
964 {
965 	struct rt_mutex_waiter *waiter;
966 	unsigned long flags;
967 
968 	raw_spin_lock_irqsave(&current->pi_lock, flags);
969 
970 	waiter = rt_mutex_top_waiter(lock);
971 
972 	/*
973 	 * Remove it from current->pi_waiters. We do not adjust a
974 	 * possible priority boost right now. We execute wakeup in the
975 	 * boosted mode and go back to normal after releasing
976 	 * lock->wait_lock.
977 	 */
978 	rt_mutex_dequeue_pi(current, waiter);
979 
980 	/*
981 	 * As we are waking up the top waiter, and the waiter stays
982 	 * queued on the lock until it gets the lock, this lock
983 	 * obviously has waiters. Just set the bit here and this has
984 	 * the added benefit of forcing all new tasks into the
985 	 * slow path making sure no task of lower priority than
986 	 * the top waiter can steal this lock.
987 	 */
988 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
989 
990 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
991 
992 	/*
993 	 * It's safe to dereference waiter as it cannot go away as
994 	 * long as we hold lock->wait_lock. The waiter task needs to
995 	 * acquire it in order to dequeue the waiter.
996 	 */
997 	wake_up_process(waiter->task);
998 }
999 
1000 /*
1001  * Remove a waiter from a lock and give up
1002  *
1003  * Must be called with lock->wait_lock held and
1004  * have just failed to try_to_take_rt_mutex().
1005  */
1006 static void remove_waiter(struct rt_mutex *lock,
1007 			  struct rt_mutex_waiter *waiter)
1008 {
1009 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1010 	struct task_struct *owner = rt_mutex_owner(lock);
1011 	struct rt_mutex *next_lock;
1012 	unsigned long flags;
1013 
1014 	raw_spin_lock_irqsave(&current->pi_lock, flags);
1015 	rt_mutex_dequeue(lock, waiter);
1016 	current->pi_blocked_on = NULL;
1017 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1018 
1019 	/*
1020 	 * Only update priority if the waiter was the highest priority
1021 	 * waiter of the lock and there is an owner to update.
1022 	 */
1023 	if (!owner || !is_top_waiter)
1024 		return;
1025 
1026 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
1027 
1028 	rt_mutex_dequeue_pi(owner, waiter);
1029 
1030 	if (rt_mutex_has_waiters(lock))
1031 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1032 
1033 	__rt_mutex_adjust_prio(owner);
1034 
1035 	/* Store the lock on which owner is blocked or NULL */
1036 	next_lock = task_blocked_on_lock(owner);
1037 
1038 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1039 
1040 	/*
1041 	 * Don't walk the chain, if the owner task is not blocked
1042 	 * itself.
1043 	 */
1044 	if (!next_lock)
1045 		return;
1046 
1047 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1048 	get_task_struct(owner);
1049 
1050 	raw_spin_unlock(&lock->wait_lock);
1051 
1052 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1053 				   next_lock, NULL, current);
1054 
1055 	raw_spin_lock(&lock->wait_lock);
1056 }
1057 
1058 /*
1059  * Recheck the pi chain, in case we got a priority setting
1060  *
1061  * Called from sched_setscheduler
1062  */
1063 void rt_mutex_adjust_pi(struct task_struct *task)
1064 {
1065 	struct rt_mutex_waiter *waiter;
1066 	struct rt_mutex *next_lock;
1067 	unsigned long flags;
1068 
1069 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1070 
1071 	waiter = task->pi_blocked_on;
1072 	if (!waiter || (waiter->prio == task->prio &&
1073 			!dl_prio(task->prio))) {
1074 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075 		return;
1076 	}
1077 	next_lock = waiter->lock;
1078 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1079 
1080 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1081 	get_task_struct(task);
1082 
1083 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1084 				   next_lock, NULL, task);
1085 }
1086 
1087 /**
1088  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1089  * @lock:		 the rt_mutex to take
1090  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1091  * 			 or TASK_UNINTERRUPTIBLE)
1092  * @timeout:		 the pre-initialized and started timer, or NULL for none
1093  * @waiter:		 the pre-initialized rt_mutex_waiter
1094  *
1095  * lock->wait_lock must be held by the caller.
1096  */
1097 static int __sched
1098 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1099 		    struct hrtimer_sleeper *timeout,
1100 		    struct rt_mutex_waiter *waiter)
1101 {
1102 	int ret = 0;
1103 
1104 	for (;;) {
1105 		/* Try to acquire the lock: */
1106 		if (try_to_take_rt_mutex(lock, current, waiter))
1107 			break;
1108 
1109 		/*
1110 		 * TASK_INTERRUPTIBLE checks for signals and
1111 		 * timeout. Ignored otherwise.
1112 		 */
1113 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1114 			/* Signal pending? */
1115 			if (signal_pending(current))
1116 				ret = -EINTR;
1117 			if (timeout && !timeout->task)
1118 				ret = -ETIMEDOUT;
1119 			if (ret)
1120 				break;
1121 		}
1122 
1123 		raw_spin_unlock(&lock->wait_lock);
1124 
1125 		debug_rt_mutex_print_deadlock(waiter);
1126 
1127 		schedule_rt_mutex(lock);
1128 
1129 		raw_spin_lock(&lock->wait_lock);
1130 		set_current_state(state);
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1137 				     struct rt_mutex_waiter *w)
1138 {
1139 	/*
1140 	 * If the result is not -EDEADLOCK or the caller requested
1141 	 * deadlock detection, nothing to do here.
1142 	 */
1143 	if (res != -EDEADLOCK || detect_deadlock)
1144 		return;
1145 
1146 	/*
1147 	 * Yell lowdly and stop the task right here.
1148 	 */
1149 	rt_mutex_print_deadlock(w);
1150 	while (1) {
1151 		set_current_state(TASK_INTERRUPTIBLE);
1152 		schedule();
1153 	}
1154 }
1155 
1156 /*
1157  * Slow path lock function:
1158  */
1159 static int __sched
1160 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1161 		  struct hrtimer_sleeper *timeout,
1162 		  enum rtmutex_chainwalk chwalk)
1163 {
1164 	struct rt_mutex_waiter waiter;
1165 	int ret = 0;
1166 
1167 	debug_rt_mutex_init_waiter(&waiter);
1168 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1169 	RB_CLEAR_NODE(&waiter.tree_entry);
1170 
1171 	raw_spin_lock(&lock->wait_lock);
1172 
1173 	/* Try to acquire the lock again: */
1174 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1175 		raw_spin_unlock(&lock->wait_lock);
1176 		return 0;
1177 	}
1178 
1179 	set_current_state(state);
1180 
1181 	/* Setup the timer, when timeout != NULL */
1182 	if (unlikely(timeout)) {
1183 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1184 		if (!hrtimer_active(&timeout->timer))
1185 			timeout->task = NULL;
1186 	}
1187 
1188 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1189 
1190 	if (likely(!ret))
1191 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1192 
1193 	set_current_state(TASK_RUNNING);
1194 
1195 	if (unlikely(ret)) {
1196 		remove_waiter(lock, &waiter);
1197 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1198 	}
1199 
1200 	/*
1201 	 * try_to_take_rt_mutex() sets the waiter bit
1202 	 * unconditionally. We might have to fix that up.
1203 	 */
1204 	fixup_rt_mutex_waiters(lock);
1205 
1206 	raw_spin_unlock(&lock->wait_lock);
1207 
1208 	/* Remove pending timer: */
1209 	if (unlikely(timeout))
1210 		hrtimer_cancel(&timeout->timer);
1211 
1212 	debug_rt_mutex_free_waiter(&waiter);
1213 
1214 	return ret;
1215 }
1216 
1217 /*
1218  * Slow path try-lock function:
1219  */
1220 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1221 {
1222 	int ret;
1223 
1224 	/*
1225 	 * If the lock already has an owner we fail to get the lock.
1226 	 * This can be done without taking the @lock->wait_lock as
1227 	 * it is only being read, and this is a trylock anyway.
1228 	 */
1229 	if (rt_mutex_owner(lock))
1230 		return 0;
1231 
1232 	/*
1233 	 * The mutex has currently no owner. Lock the wait lock and
1234 	 * try to acquire the lock.
1235 	 */
1236 	raw_spin_lock(&lock->wait_lock);
1237 
1238 	ret = try_to_take_rt_mutex(lock, current, NULL);
1239 
1240 	/*
1241 	 * try_to_take_rt_mutex() sets the lock waiters bit
1242 	 * unconditionally. Clean this up.
1243 	 */
1244 	fixup_rt_mutex_waiters(lock);
1245 
1246 	raw_spin_unlock(&lock->wait_lock);
1247 
1248 	return ret;
1249 }
1250 
1251 /*
1252  * Slow path to release a rt-mutex:
1253  */
1254 static void __sched
1255 rt_mutex_slowunlock(struct rt_mutex *lock)
1256 {
1257 	raw_spin_lock(&lock->wait_lock);
1258 
1259 	debug_rt_mutex_unlock(lock);
1260 
1261 	rt_mutex_deadlock_account_unlock(current);
1262 
1263 	/*
1264 	 * We must be careful here if the fast path is enabled. If we
1265 	 * have no waiters queued we cannot set owner to NULL here
1266 	 * because of:
1267 	 *
1268 	 * foo->lock->owner = NULL;
1269 	 *			rtmutex_lock(foo->lock);   <- fast path
1270 	 *			free = atomic_dec_and_test(foo->refcnt);
1271 	 *			rtmutex_unlock(foo->lock); <- fast path
1272 	 *			if (free)
1273 	 *				kfree(foo);
1274 	 * raw_spin_unlock(foo->lock->wait_lock);
1275 	 *
1276 	 * So for the fastpath enabled kernel:
1277 	 *
1278 	 * Nothing can set the waiters bit as long as we hold
1279 	 * lock->wait_lock. So we do the following sequence:
1280 	 *
1281 	 *	owner = rt_mutex_owner(lock);
1282 	 *	clear_rt_mutex_waiters(lock);
1283 	 *	raw_spin_unlock(&lock->wait_lock);
1284 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1285 	 *		return;
1286 	 *	goto retry;
1287 	 *
1288 	 * The fastpath disabled variant is simple as all access to
1289 	 * lock->owner is serialized by lock->wait_lock:
1290 	 *
1291 	 *	lock->owner = NULL;
1292 	 *	raw_spin_unlock(&lock->wait_lock);
1293 	 */
1294 	while (!rt_mutex_has_waiters(lock)) {
1295 		/* Drops lock->wait_lock ! */
1296 		if (unlock_rt_mutex_safe(lock) == true)
1297 			return;
1298 		/* Relock the rtmutex and try again */
1299 		raw_spin_lock(&lock->wait_lock);
1300 	}
1301 
1302 	/*
1303 	 * The wakeup next waiter path does not suffer from the above
1304 	 * race. See the comments there.
1305 	 */
1306 	wakeup_next_waiter(lock);
1307 
1308 	raw_spin_unlock(&lock->wait_lock);
1309 
1310 	/* Undo pi boosting if necessary: */
1311 	rt_mutex_adjust_prio(current);
1312 }
1313 
1314 /*
1315  * debug aware fast / slowpath lock,trylock,unlock
1316  *
1317  * The atomic acquire/release ops are compiled away, when either the
1318  * architecture does not support cmpxchg or when debugging is enabled.
1319  */
1320 static inline int
1321 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1322 		  int (*slowfn)(struct rt_mutex *lock, int state,
1323 				struct hrtimer_sleeper *timeout,
1324 				enum rtmutex_chainwalk chwalk))
1325 {
1326 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1327 		rt_mutex_deadlock_account_lock(lock, current);
1328 		return 0;
1329 	} else
1330 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1331 }
1332 
1333 static inline int
1334 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1335 			struct hrtimer_sleeper *timeout,
1336 			enum rtmutex_chainwalk chwalk,
1337 			int (*slowfn)(struct rt_mutex *lock, int state,
1338 				      struct hrtimer_sleeper *timeout,
1339 				      enum rtmutex_chainwalk chwalk))
1340 {
1341 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1342 	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1343 		rt_mutex_deadlock_account_lock(lock, current);
1344 		return 0;
1345 	} else
1346 		return slowfn(lock, state, timeout, chwalk);
1347 }
1348 
1349 static inline int
1350 rt_mutex_fasttrylock(struct rt_mutex *lock,
1351 		     int (*slowfn)(struct rt_mutex *lock))
1352 {
1353 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1354 		rt_mutex_deadlock_account_lock(lock, current);
1355 		return 1;
1356 	}
1357 	return slowfn(lock);
1358 }
1359 
1360 static inline void
1361 rt_mutex_fastunlock(struct rt_mutex *lock,
1362 		    void (*slowfn)(struct rt_mutex *lock))
1363 {
1364 	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1365 		rt_mutex_deadlock_account_unlock(current);
1366 	else
1367 		slowfn(lock);
1368 }
1369 
1370 /**
1371  * rt_mutex_lock - lock a rt_mutex
1372  *
1373  * @lock: the rt_mutex to be locked
1374  */
1375 void __sched rt_mutex_lock(struct rt_mutex *lock)
1376 {
1377 	might_sleep();
1378 
1379 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1380 }
1381 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1382 
1383 /**
1384  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1385  *
1386  * @lock:		the rt_mutex to be locked
1387  *
1388  * Returns:
1389  *  0		on success
1390  * -EINTR	when interrupted by a signal
1391  */
1392 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1393 {
1394 	might_sleep();
1395 
1396 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1397 }
1398 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1399 
1400 /*
1401  * Futex variant with full deadlock detection.
1402  */
1403 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1404 			      struct hrtimer_sleeper *timeout)
1405 {
1406 	might_sleep();
1407 
1408 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1409 				       RT_MUTEX_FULL_CHAINWALK,
1410 				       rt_mutex_slowlock);
1411 }
1412 
1413 /**
1414  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1415  *			the timeout structure is provided
1416  *			by the caller
1417  *
1418  * @lock:		the rt_mutex to be locked
1419  * @timeout:		timeout structure or NULL (no timeout)
1420  *
1421  * Returns:
1422  *  0		on success
1423  * -EINTR	when interrupted by a signal
1424  * -ETIMEDOUT	when the timeout expired
1425  */
1426 int
1427 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1428 {
1429 	might_sleep();
1430 
1431 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1432 				       RT_MUTEX_MIN_CHAINWALK,
1433 				       rt_mutex_slowlock);
1434 }
1435 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1436 
1437 /**
1438  * rt_mutex_trylock - try to lock a rt_mutex
1439  *
1440  * @lock:	the rt_mutex to be locked
1441  *
1442  * Returns 1 on success and 0 on contention
1443  */
1444 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1445 {
1446 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1447 }
1448 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1449 
1450 /**
1451  * rt_mutex_unlock - unlock a rt_mutex
1452  *
1453  * @lock: the rt_mutex to be unlocked
1454  */
1455 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1456 {
1457 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1458 }
1459 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1460 
1461 /**
1462  * rt_mutex_destroy - mark a mutex unusable
1463  * @lock: the mutex to be destroyed
1464  *
1465  * This function marks the mutex uninitialized, and any subsequent
1466  * use of the mutex is forbidden. The mutex must not be locked when
1467  * this function is called.
1468  */
1469 void rt_mutex_destroy(struct rt_mutex *lock)
1470 {
1471 	WARN_ON(rt_mutex_is_locked(lock));
1472 #ifdef CONFIG_DEBUG_RT_MUTEXES
1473 	lock->magic = NULL;
1474 #endif
1475 }
1476 
1477 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1478 
1479 /**
1480  * __rt_mutex_init - initialize the rt lock
1481  *
1482  * @lock: the rt lock to be initialized
1483  *
1484  * Initialize the rt lock to unlocked state.
1485  *
1486  * Initializing of a locked rt lock is not allowed
1487  */
1488 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1489 {
1490 	lock->owner = NULL;
1491 	raw_spin_lock_init(&lock->wait_lock);
1492 	lock->waiters = RB_ROOT;
1493 	lock->waiters_leftmost = NULL;
1494 
1495 	debug_rt_mutex_init(lock, name);
1496 }
1497 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1498 
1499 /**
1500  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1501  *				proxy owner
1502  *
1503  * @lock: 	the rt_mutex to be locked
1504  * @proxy_owner:the task to set as owner
1505  *
1506  * No locking. Caller has to do serializing itself
1507  * Special API call for PI-futex support
1508  */
1509 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1510 				struct task_struct *proxy_owner)
1511 {
1512 	__rt_mutex_init(lock, NULL);
1513 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1514 	rt_mutex_set_owner(lock, proxy_owner);
1515 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1516 }
1517 
1518 /**
1519  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1520  *
1521  * @lock: 	the rt_mutex to be locked
1522  *
1523  * No locking. Caller has to do serializing itself
1524  * Special API call for PI-futex support
1525  */
1526 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1527 			   struct task_struct *proxy_owner)
1528 {
1529 	debug_rt_mutex_proxy_unlock(lock);
1530 	rt_mutex_set_owner(lock, NULL);
1531 	rt_mutex_deadlock_account_unlock(proxy_owner);
1532 }
1533 
1534 /**
1535  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1536  * @lock:		the rt_mutex to take
1537  * @waiter:		the pre-initialized rt_mutex_waiter
1538  * @task:		the task to prepare
1539  *
1540  * Returns:
1541  *  0 - task blocked on lock
1542  *  1 - acquired the lock for task, caller should wake it up
1543  * <0 - error
1544  *
1545  * Special API call for FUTEX_REQUEUE_PI support.
1546  */
1547 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1548 			      struct rt_mutex_waiter *waiter,
1549 			      struct task_struct *task)
1550 {
1551 	int ret;
1552 
1553 	raw_spin_lock(&lock->wait_lock);
1554 
1555 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1556 		raw_spin_unlock(&lock->wait_lock);
1557 		return 1;
1558 	}
1559 
1560 	/* We enforce deadlock detection for futexes */
1561 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1562 				      RT_MUTEX_FULL_CHAINWALK);
1563 
1564 	if (ret && !rt_mutex_owner(lock)) {
1565 		/*
1566 		 * Reset the return value. We might have
1567 		 * returned with -EDEADLK and the owner
1568 		 * released the lock while we were walking the
1569 		 * pi chain.  Let the waiter sort it out.
1570 		 */
1571 		ret = 0;
1572 	}
1573 
1574 	if (unlikely(ret))
1575 		remove_waiter(lock, waiter);
1576 
1577 	raw_spin_unlock(&lock->wait_lock);
1578 
1579 	debug_rt_mutex_print_deadlock(waiter);
1580 
1581 	return ret;
1582 }
1583 
1584 /**
1585  * rt_mutex_next_owner - return the next owner of the lock
1586  *
1587  * @lock: the rt lock query
1588  *
1589  * Returns the next owner of the lock or NULL
1590  *
1591  * Caller has to serialize against other accessors to the lock
1592  * itself.
1593  *
1594  * Special API call for PI-futex support
1595  */
1596 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1597 {
1598 	if (!rt_mutex_has_waiters(lock))
1599 		return NULL;
1600 
1601 	return rt_mutex_top_waiter(lock)->task;
1602 }
1603 
1604 /**
1605  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1606  * @lock:		the rt_mutex we were woken on
1607  * @to:			the timeout, null if none. hrtimer should already have
1608  *			been started.
1609  * @waiter:		the pre-initialized rt_mutex_waiter
1610  *
1611  * Complete the lock acquisition started our behalf by another thread.
1612  *
1613  * Returns:
1614  *  0 - success
1615  * <0 - error, one of -EINTR, -ETIMEDOUT
1616  *
1617  * Special API call for PI-futex requeue support
1618  */
1619 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1620 			       struct hrtimer_sleeper *to,
1621 			       struct rt_mutex_waiter *waiter)
1622 {
1623 	int ret;
1624 
1625 	raw_spin_lock(&lock->wait_lock);
1626 
1627 	set_current_state(TASK_INTERRUPTIBLE);
1628 
1629 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1630 
1631 	set_current_state(TASK_RUNNING);
1632 
1633 	if (unlikely(ret))
1634 		remove_waiter(lock, waiter);
1635 
1636 	/*
1637 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1638 	 * have to fix that up.
1639 	 */
1640 	fixup_rt_mutex_waiters(lock);
1641 
1642 	raw_spin_unlock(&lock->wait_lock);
1643 
1644 	return ret;
1645 }
1646