xref: /linux/kernel/locking/rtmutex.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	if (!rt_mutex_has_waiters(lock))
69 		clear_rt_mutex_waiters(lock);
70 }
71 
72 /*
73  * We can speed up the acquire/release, if there's no debugging state to be
74  * set up.
75  */
76 #ifndef CONFIG_DEBUG_RT_MUTEXES
77 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
78 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
79 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
80 
81 /*
82  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
83  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
84  * relaxed semantics suffice.
85  */
86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87 {
88 	unsigned long owner, *p = (unsigned long *) &lock->owner;
89 
90 	do {
91 		owner = *p;
92 	} while (cmpxchg_relaxed(p, owner,
93 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
94 }
95 
96 /*
97  * Safe fastpath aware unlock:
98  * 1) Clear the waiters bit
99  * 2) Drop lock->wait_lock
100  * 3) Try to unlock the lock with cmpxchg
101  */
102 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
103 					unsigned long flags)
104 	__releases(lock->wait_lock)
105 {
106 	struct task_struct *owner = rt_mutex_owner(lock);
107 
108 	clear_rt_mutex_waiters(lock);
109 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
110 	/*
111 	 * If a new waiter comes in between the unlock and the cmpxchg
112 	 * we have two situations:
113 	 *
114 	 * unlock(wait_lock);
115 	 *					lock(wait_lock);
116 	 * cmpxchg(p, owner, 0) == owner
117 	 *					mark_rt_mutex_waiters(lock);
118 	 *					acquire(lock);
119 	 * or:
120 	 *
121 	 * unlock(wait_lock);
122 	 *					lock(wait_lock);
123 	 *					mark_rt_mutex_waiters(lock);
124 	 *
125 	 * cmpxchg(p, owner, 0) != owner
126 	 *					enqueue_waiter();
127 	 *					unlock(wait_lock);
128 	 * lock(wait_lock);
129 	 * wake waiter();
130 	 * unlock(wait_lock);
131 	 *					lock(wait_lock);
132 	 *					acquire(lock);
133 	 */
134 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
135 }
136 
137 #else
138 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
139 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
140 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
141 
142 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
143 {
144 	lock->owner = (struct task_struct *)
145 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
146 }
147 
148 /*
149  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
150  */
151 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
152 					unsigned long flags)
153 	__releases(lock->wait_lock)
154 {
155 	lock->owner = NULL;
156 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
157 	return true;
158 }
159 #endif
160 
161 static inline int
162 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
163 		     struct rt_mutex_waiter *right)
164 {
165 	if (left->prio < right->prio)
166 		return 1;
167 
168 	/*
169 	 * If both waiters have dl_prio(), we check the deadlines of the
170 	 * associated tasks.
171 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
172 	 * then right waiter has a dl_prio() too.
173 	 */
174 	if (dl_prio(left->prio))
175 		return dl_time_before(left->task->dl.deadline,
176 				      right->task->dl.deadline);
177 
178 	return 0;
179 }
180 
181 static void
182 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
183 {
184 	struct rb_node **link = &lock->waiters.rb_node;
185 	struct rb_node *parent = NULL;
186 	struct rt_mutex_waiter *entry;
187 	int leftmost = 1;
188 
189 	while (*link) {
190 		parent = *link;
191 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
192 		if (rt_mutex_waiter_less(waiter, entry)) {
193 			link = &parent->rb_left;
194 		} else {
195 			link = &parent->rb_right;
196 			leftmost = 0;
197 		}
198 	}
199 
200 	if (leftmost)
201 		lock->waiters_leftmost = &waiter->tree_entry;
202 
203 	rb_link_node(&waiter->tree_entry, parent, link);
204 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
205 }
206 
207 static void
208 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
209 {
210 	if (RB_EMPTY_NODE(&waiter->tree_entry))
211 		return;
212 
213 	if (lock->waiters_leftmost == &waiter->tree_entry)
214 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
215 
216 	rb_erase(&waiter->tree_entry, &lock->waiters);
217 	RB_CLEAR_NODE(&waiter->tree_entry);
218 }
219 
220 static void
221 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
222 {
223 	struct rb_node **link = &task->pi_waiters.rb_node;
224 	struct rb_node *parent = NULL;
225 	struct rt_mutex_waiter *entry;
226 	int leftmost = 1;
227 
228 	while (*link) {
229 		parent = *link;
230 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
231 		if (rt_mutex_waiter_less(waiter, entry)) {
232 			link = &parent->rb_left;
233 		} else {
234 			link = &parent->rb_right;
235 			leftmost = 0;
236 		}
237 	}
238 
239 	if (leftmost)
240 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
241 
242 	rb_link_node(&waiter->pi_tree_entry, parent, link);
243 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
244 }
245 
246 static void
247 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
248 {
249 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
250 		return;
251 
252 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
253 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
254 
255 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
256 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
257 }
258 
259 /*
260  * Calculate task priority from the waiter tree priority
261  *
262  * Return task->normal_prio when the waiter tree is empty or when
263  * the waiter is not allowed to do priority boosting
264  */
265 int rt_mutex_getprio(struct task_struct *task)
266 {
267 	if (likely(!task_has_pi_waiters(task)))
268 		return task->normal_prio;
269 
270 	return min(task_top_pi_waiter(task)->prio,
271 		   task->normal_prio);
272 }
273 
274 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
275 {
276 	if (likely(!task_has_pi_waiters(task)))
277 		return NULL;
278 
279 	return task_top_pi_waiter(task)->task;
280 }
281 
282 /*
283  * Called by sched_setscheduler() to get the priority which will be
284  * effective after the change.
285  */
286 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
287 {
288 	if (!task_has_pi_waiters(task))
289 		return newprio;
290 
291 	if (task_top_pi_waiter(task)->task->prio <= newprio)
292 		return task_top_pi_waiter(task)->task->prio;
293 	return newprio;
294 }
295 
296 /*
297  * Adjust the priority of a task, after its pi_waiters got modified.
298  *
299  * This can be both boosting and unboosting. task->pi_lock must be held.
300  */
301 static void __rt_mutex_adjust_prio(struct task_struct *task)
302 {
303 	int prio = rt_mutex_getprio(task);
304 
305 	if (task->prio != prio || dl_prio(prio))
306 		rt_mutex_setprio(task, prio);
307 }
308 
309 /*
310  * Adjust task priority (undo boosting). Called from the exit path of
311  * rt_mutex_slowunlock() and rt_mutex_slowlock().
312  *
313  * (Note: We do this outside of the protection of lock->wait_lock to
314  * allow the lock to be taken while or before we readjust the priority
315  * of task. We do not use the spin_xx_mutex() variants here as we are
316  * outside of the debug path.)
317  */
318 void rt_mutex_adjust_prio(struct task_struct *task)
319 {
320 	unsigned long flags;
321 
322 	raw_spin_lock_irqsave(&task->pi_lock, flags);
323 	__rt_mutex_adjust_prio(task);
324 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
325 }
326 
327 /*
328  * Deadlock detection is conditional:
329  *
330  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
331  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
332  *
333  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
334  * conducted independent of the detect argument.
335  *
336  * If the waiter argument is NULL this indicates the deboost path and
337  * deadlock detection is disabled independent of the detect argument
338  * and the config settings.
339  */
340 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
341 					  enum rtmutex_chainwalk chwalk)
342 {
343 	/*
344 	 * This is just a wrapper function for the following call,
345 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
346 	 * debug feature and I wanted to keep the cond function in the
347 	 * main source file along with the comments instead of having
348 	 * two of the same in the headers.
349 	 */
350 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
351 }
352 
353 /*
354  * Max number of times we'll walk the boosting chain:
355  */
356 int max_lock_depth = 1024;
357 
358 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
359 {
360 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
361 }
362 
363 /*
364  * Adjust the priority chain. Also used for deadlock detection.
365  * Decreases task's usage by one - may thus free the task.
366  *
367  * @task:	the task owning the mutex (owner) for which a chain walk is
368  *		probably needed
369  * @chwalk:	do we have to carry out deadlock detection?
370  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
371  *		things for a task that has just got its priority adjusted, and
372  *		is waiting on a mutex)
373  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
374  *		we dropped its pi_lock. Is never dereferenced, only used for
375  *		comparison to detect lock chain changes.
376  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
377  *		its priority to the mutex owner (can be NULL in the case
378  *		depicted above or if the top waiter is gone away and we are
379  *		actually deboosting the owner)
380  * @top_task:	the current top waiter
381  *
382  * Returns 0 or -EDEADLK.
383  *
384  * Chain walk basics and protection scope
385  *
386  * [R] refcount on task
387  * [P] task->pi_lock held
388  * [L] rtmutex->wait_lock held
389  *
390  * Step	Description				Protected by
391  *	function arguments:
392  *	@task					[R]
393  *	@orig_lock if != NULL			@top_task is blocked on it
394  *	@next_lock				Unprotected. Cannot be
395  *						dereferenced. Only used for
396  *						comparison.
397  *	@orig_waiter if != NULL			@top_task is blocked on it
398  *	@top_task				current, or in case of proxy
399  *						locking protected by calling
400  *						code
401  *	again:
402  *	  loop_sanity_check();
403  *	retry:
404  * [1]	  lock(task->pi_lock);			[R] acquire [P]
405  * [2]	  waiter = task->pi_blocked_on;		[P]
406  * [3]	  check_exit_conditions_1();		[P]
407  * [4]	  lock = waiter->lock;			[P]
408  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
409  *	    unlock(task->pi_lock);		release [P]
410  *	    goto retry;
411  *	  }
412  * [6]	  check_exit_conditions_2();		[P] + [L]
413  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
414  * [8]	  unlock(task->pi_lock);		release [P]
415  *	  put_task_struct(task);		release [R]
416  * [9]	  check_exit_conditions_3();		[L]
417  * [10]	  task = owner(lock);			[L]
418  *	  get_task_struct(task);		[L] acquire [R]
419  *	  lock(task->pi_lock);			[L] acquire [P]
420  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
421  * [12]	  check_exit_conditions_4();		[P] + [L]
422  * [13]	  unlock(task->pi_lock);		release [P]
423  *	  unlock(lock->wait_lock);		release [L]
424  *	  goto again;
425  */
426 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
427 				      enum rtmutex_chainwalk chwalk,
428 				      struct rt_mutex *orig_lock,
429 				      struct rt_mutex *next_lock,
430 				      struct rt_mutex_waiter *orig_waiter,
431 				      struct task_struct *top_task)
432 {
433 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
434 	struct rt_mutex_waiter *prerequeue_top_waiter;
435 	int ret = 0, depth = 0;
436 	struct rt_mutex *lock;
437 	bool detect_deadlock;
438 	bool requeue = true;
439 
440 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
441 
442 	/*
443 	 * The (de)boosting is a step by step approach with a lot of
444 	 * pitfalls. We want this to be preemptible and we want hold a
445 	 * maximum of two locks per step. So we have to check
446 	 * carefully whether things change under us.
447 	 */
448  again:
449 	/*
450 	 * We limit the lock chain length for each invocation.
451 	 */
452 	if (++depth > max_lock_depth) {
453 		static int prev_max;
454 
455 		/*
456 		 * Print this only once. If the admin changes the limit,
457 		 * print a new message when reaching the limit again.
458 		 */
459 		if (prev_max != max_lock_depth) {
460 			prev_max = max_lock_depth;
461 			printk(KERN_WARNING "Maximum lock depth %d reached "
462 			       "task: %s (%d)\n", max_lock_depth,
463 			       top_task->comm, task_pid_nr(top_task));
464 		}
465 		put_task_struct(task);
466 
467 		return -EDEADLK;
468 	}
469 
470 	/*
471 	 * We are fully preemptible here and only hold the refcount on
472 	 * @task. So everything can have changed under us since the
473 	 * caller or our own code below (goto retry/again) dropped all
474 	 * locks.
475 	 */
476  retry:
477 	/*
478 	 * [1] Task cannot go away as we did a get_task() before !
479 	 */
480 	raw_spin_lock_irq(&task->pi_lock);
481 
482 	/*
483 	 * [2] Get the waiter on which @task is blocked on.
484 	 */
485 	waiter = task->pi_blocked_on;
486 
487 	/*
488 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
489 	 */
490 
491 	/*
492 	 * Check whether the end of the boosting chain has been
493 	 * reached or the state of the chain has changed while we
494 	 * dropped the locks.
495 	 */
496 	if (!waiter)
497 		goto out_unlock_pi;
498 
499 	/*
500 	 * Check the orig_waiter state. After we dropped the locks,
501 	 * the previous owner of the lock might have released the lock.
502 	 */
503 	if (orig_waiter && !rt_mutex_owner(orig_lock))
504 		goto out_unlock_pi;
505 
506 	/*
507 	 * We dropped all locks after taking a refcount on @task, so
508 	 * the task might have moved on in the lock chain or even left
509 	 * the chain completely and blocks now on an unrelated lock or
510 	 * on @orig_lock.
511 	 *
512 	 * We stored the lock on which @task was blocked in @next_lock,
513 	 * so we can detect the chain change.
514 	 */
515 	if (next_lock != waiter->lock)
516 		goto out_unlock_pi;
517 
518 	/*
519 	 * Drop out, when the task has no waiters. Note,
520 	 * top_waiter can be NULL, when we are in the deboosting
521 	 * mode!
522 	 */
523 	if (top_waiter) {
524 		if (!task_has_pi_waiters(task))
525 			goto out_unlock_pi;
526 		/*
527 		 * If deadlock detection is off, we stop here if we
528 		 * are not the top pi waiter of the task. If deadlock
529 		 * detection is enabled we continue, but stop the
530 		 * requeueing in the chain walk.
531 		 */
532 		if (top_waiter != task_top_pi_waiter(task)) {
533 			if (!detect_deadlock)
534 				goto out_unlock_pi;
535 			else
536 				requeue = false;
537 		}
538 	}
539 
540 	/*
541 	 * If the waiter priority is the same as the task priority
542 	 * then there is no further priority adjustment necessary.  If
543 	 * deadlock detection is off, we stop the chain walk. If its
544 	 * enabled we continue, but stop the requeueing in the chain
545 	 * walk.
546 	 */
547 	if (waiter->prio == task->prio) {
548 		if (!detect_deadlock)
549 			goto out_unlock_pi;
550 		else
551 			requeue = false;
552 	}
553 
554 	/*
555 	 * [4] Get the next lock
556 	 */
557 	lock = waiter->lock;
558 	/*
559 	 * [5] We need to trylock here as we are holding task->pi_lock,
560 	 * which is the reverse lock order versus the other rtmutex
561 	 * operations.
562 	 */
563 	if (!raw_spin_trylock(&lock->wait_lock)) {
564 		raw_spin_unlock_irq(&task->pi_lock);
565 		cpu_relax();
566 		goto retry;
567 	}
568 
569 	/*
570 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
571 	 * lock->wait_lock.
572 	 *
573 	 * Deadlock detection. If the lock is the same as the original
574 	 * lock which caused us to walk the lock chain or if the
575 	 * current lock is owned by the task which initiated the chain
576 	 * walk, we detected a deadlock.
577 	 */
578 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
579 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
580 		raw_spin_unlock(&lock->wait_lock);
581 		ret = -EDEADLK;
582 		goto out_unlock_pi;
583 	}
584 
585 	/*
586 	 * If we just follow the lock chain for deadlock detection, no
587 	 * need to do all the requeue operations. To avoid a truckload
588 	 * of conditionals around the various places below, just do the
589 	 * minimum chain walk checks.
590 	 */
591 	if (!requeue) {
592 		/*
593 		 * No requeue[7] here. Just release @task [8]
594 		 */
595 		raw_spin_unlock(&task->pi_lock);
596 		put_task_struct(task);
597 
598 		/*
599 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
600 		 * If there is no owner of the lock, end of chain.
601 		 */
602 		if (!rt_mutex_owner(lock)) {
603 			raw_spin_unlock_irq(&lock->wait_lock);
604 			return 0;
605 		}
606 
607 		/* [10] Grab the next task, i.e. owner of @lock */
608 		task = rt_mutex_owner(lock);
609 		get_task_struct(task);
610 		raw_spin_lock(&task->pi_lock);
611 
612 		/*
613 		 * No requeue [11] here. We just do deadlock detection.
614 		 *
615 		 * [12] Store whether owner is blocked
616 		 * itself. Decision is made after dropping the locks
617 		 */
618 		next_lock = task_blocked_on_lock(task);
619 		/*
620 		 * Get the top waiter for the next iteration
621 		 */
622 		top_waiter = rt_mutex_top_waiter(lock);
623 
624 		/* [13] Drop locks */
625 		raw_spin_unlock(&task->pi_lock);
626 		raw_spin_unlock_irq(&lock->wait_lock);
627 
628 		/* If owner is not blocked, end of chain. */
629 		if (!next_lock)
630 			goto out_put_task;
631 		goto again;
632 	}
633 
634 	/*
635 	 * Store the current top waiter before doing the requeue
636 	 * operation on @lock. We need it for the boost/deboost
637 	 * decision below.
638 	 */
639 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
640 
641 	/* [7] Requeue the waiter in the lock waiter tree. */
642 	rt_mutex_dequeue(lock, waiter);
643 	waiter->prio = task->prio;
644 	rt_mutex_enqueue(lock, waiter);
645 
646 	/* [8] Release the task */
647 	raw_spin_unlock(&task->pi_lock);
648 	put_task_struct(task);
649 
650 	/*
651 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
652 	 *
653 	 * We must abort the chain walk if there is no lock owner even
654 	 * in the dead lock detection case, as we have nothing to
655 	 * follow here. This is the end of the chain we are walking.
656 	 */
657 	if (!rt_mutex_owner(lock)) {
658 		/*
659 		 * If the requeue [7] above changed the top waiter,
660 		 * then we need to wake the new top waiter up to try
661 		 * to get the lock.
662 		 */
663 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
664 			wake_up_process(rt_mutex_top_waiter(lock)->task);
665 		raw_spin_unlock_irq(&lock->wait_lock);
666 		return 0;
667 	}
668 
669 	/* [10] Grab the next task, i.e. the owner of @lock */
670 	task = rt_mutex_owner(lock);
671 	get_task_struct(task);
672 	raw_spin_lock(&task->pi_lock);
673 
674 	/* [11] requeue the pi waiters if necessary */
675 	if (waiter == rt_mutex_top_waiter(lock)) {
676 		/*
677 		 * The waiter became the new top (highest priority)
678 		 * waiter on the lock. Replace the previous top waiter
679 		 * in the owner tasks pi waiters tree with this waiter
680 		 * and adjust the priority of the owner.
681 		 */
682 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
683 		rt_mutex_enqueue_pi(task, waiter);
684 		__rt_mutex_adjust_prio(task);
685 
686 	} else if (prerequeue_top_waiter == waiter) {
687 		/*
688 		 * The waiter was the top waiter on the lock, but is
689 		 * no longer the top prority waiter. Replace waiter in
690 		 * the owner tasks pi waiters tree with the new top
691 		 * (highest priority) waiter and adjust the priority
692 		 * of the owner.
693 		 * The new top waiter is stored in @waiter so that
694 		 * @waiter == @top_waiter evaluates to true below and
695 		 * we continue to deboost the rest of the chain.
696 		 */
697 		rt_mutex_dequeue_pi(task, waiter);
698 		waiter = rt_mutex_top_waiter(lock);
699 		rt_mutex_enqueue_pi(task, waiter);
700 		__rt_mutex_adjust_prio(task);
701 	} else {
702 		/*
703 		 * Nothing changed. No need to do any priority
704 		 * adjustment.
705 		 */
706 	}
707 
708 	/*
709 	 * [12] check_exit_conditions_4() protected by task->pi_lock
710 	 * and lock->wait_lock. The actual decisions are made after we
711 	 * dropped the locks.
712 	 *
713 	 * Check whether the task which owns the current lock is pi
714 	 * blocked itself. If yes we store a pointer to the lock for
715 	 * the lock chain change detection above. After we dropped
716 	 * task->pi_lock next_lock cannot be dereferenced anymore.
717 	 */
718 	next_lock = task_blocked_on_lock(task);
719 	/*
720 	 * Store the top waiter of @lock for the end of chain walk
721 	 * decision below.
722 	 */
723 	top_waiter = rt_mutex_top_waiter(lock);
724 
725 	/* [13] Drop the locks */
726 	raw_spin_unlock(&task->pi_lock);
727 	raw_spin_unlock_irq(&lock->wait_lock);
728 
729 	/*
730 	 * Make the actual exit decisions [12], based on the stored
731 	 * values.
732 	 *
733 	 * We reached the end of the lock chain. Stop right here. No
734 	 * point to go back just to figure that out.
735 	 */
736 	if (!next_lock)
737 		goto out_put_task;
738 
739 	/*
740 	 * If the current waiter is not the top waiter on the lock,
741 	 * then we can stop the chain walk here if we are not in full
742 	 * deadlock detection mode.
743 	 */
744 	if (!detect_deadlock && waiter != top_waiter)
745 		goto out_put_task;
746 
747 	goto again;
748 
749  out_unlock_pi:
750 	raw_spin_unlock_irq(&task->pi_lock);
751  out_put_task:
752 	put_task_struct(task);
753 
754 	return ret;
755 }
756 
757 /*
758  * Try to take an rt-mutex
759  *
760  * Must be called with lock->wait_lock held and interrupts disabled
761  *
762  * @lock:   The lock to be acquired.
763  * @task:   The task which wants to acquire the lock
764  * @waiter: The waiter that is queued to the lock's wait tree if the
765  *	    callsite called task_blocked_on_lock(), otherwise NULL
766  */
767 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
768 				struct rt_mutex_waiter *waiter)
769 {
770 	/*
771 	 * Before testing whether we can acquire @lock, we set the
772 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
773 	 * other tasks which try to modify @lock into the slow path
774 	 * and they serialize on @lock->wait_lock.
775 	 *
776 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
777 	 * as explained at the top of this file if and only if:
778 	 *
779 	 * - There is a lock owner. The caller must fixup the
780 	 *   transient state if it does a trylock or leaves the lock
781 	 *   function due to a signal or timeout.
782 	 *
783 	 * - @task acquires the lock and there are no other
784 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
785 	 *   the end of this function.
786 	 */
787 	mark_rt_mutex_waiters(lock);
788 
789 	/*
790 	 * If @lock has an owner, give up.
791 	 */
792 	if (rt_mutex_owner(lock))
793 		return 0;
794 
795 	/*
796 	 * If @waiter != NULL, @task has already enqueued the waiter
797 	 * into @lock waiter tree. If @waiter == NULL then this is a
798 	 * trylock attempt.
799 	 */
800 	if (waiter) {
801 		/*
802 		 * If waiter is not the highest priority waiter of
803 		 * @lock, give up.
804 		 */
805 		if (waiter != rt_mutex_top_waiter(lock))
806 			return 0;
807 
808 		/*
809 		 * We can acquire the lock. Remove the waiter from the
810 		 * lock waiters tree.
811 		 */
812 		rt_mutex_dequeue(lock, waiter);
813 
814 	} else {
815 		/*
816 		 * If the lock has waiters already we check whether @task is
817 		 * eligible to take over the lock.
818 		 *
819 		 * If there are no other waiters, @task can acquire
820 		 * the lock.  @task->pi_blocked_on is NULL, so it does
821 		 * not need to be dequeued.
822 		 */
823 		if (rt_mutex_has_waiters(lock)) {
824 			/*
825 			 * If @task->prio is greater than or equal to
826 			 * the top waiter priority (kernel view),
827 			 * @task lost.
828 			 */
829 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
830 				return 0;
831 
832 			/*
833 			 * The current top waiter stays enqueued. We
834 			 * don't have to change anything in the lock
835 			 * waiters order.
836 			 */
837 		} else {
838 			/*
839 			 * No waiters. Take the lock without the
840 			 * pi_lock dance.@task->pi_blocked_on is NULL
841 			 * and we have no waiters to enqueue in @task
842 			 * pi waiters tree.
843 			 */
844 			goto takeit;
845 		}
846 	}
847 
848 	/*
849 	 * Clear @task->pi_blocked_on. Requires protection by
850 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
851 	 * case, but conditionals are more expensive than a redundant
852 	 * store.
853 	 */
854 	raw_spin_lock(&task->pi_lock);
855 	task->pi_blocked_on = NULL;
856 	/*
857 	 * Finish the lock acquisition. @task is the new owner. If
858 	 * other waiters exist we have to insert the highest priority
859 	 * waiter into @task->pi_waiters tree.
860 	 */
861 	if (rt_mutex_has_waiters(lock))
862 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
863 	raw_spin_unlock(&task->pi_lock);
864 
865 takeit:
866 	/* We got the lock. */
867 	debug_rt_mutex_lock(lock);
868 
869 	/*
870 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
871 	 * are still waiters or clears it.
872 	 */
873 	rt_mutex_set_owner(lock, task);
874 
875 	rt_mutex_deadlock_account_lock(lock, task);
876 
877 	return 1;
878 }
879 
880 /*
881  * Task blocks on lock.
882  *
883  * Prepare waiter and propagate pi chain
884  *
885  * This must be called with lock->wait_lock held and interrupts disabled
886  */
887 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
888 				   struct rt_mutex_waiter *waiter,
889 				   struct task_struct *task,
890 				   enum rtmutex_chainwalk chwalk)
891 {
892 	struct task_struct *owner = rt_mutex_owner(lock);
893 	struct rt_mutex_waiter *top_waiter = waiter;
894 	struct rt_mutex *next_lock;
895 	int chain_walk = 0, res;
896 
897 	/*
898 	 * Early deadlock detection. We really don't want the task to
899 	 * enqueue on itself just to untangle the mess later. It's not
900 	 * only an optimization. We drop the locks, so another waiter
901 	 * can come in before the chain walk detects the deadlock. So
902 	 * the other will detect the deadlock and return -EDEADLOCK,
903 	 * which is wrong, as the other waiter is not in a deadlock
904 	 * situation.
905 	 */
906 	if (owner == task)
907 		return -EDEADLK;
908 
909 	raw_spin_lock(&task->pi_lock);
910 	__rt_mutex_adjust_prio(task);
911 	waiter->task = task;
912 	waiter->lock = lock;
913 	waiter->prio = task->prio;
914 
915 	/* Get the top priority waiter on the lock */
916 	if (rt_mutex_has_waiters(lock))
917 		top_waiter = rt_mutex_top_waiter(lock);
918 	rt_mutex_enqueue(lock, waiter);
919 
920 	task->pi_blocked_on = waiter;
921 
922 	raw_spin_unlock(&task->pi_lock);
923 
924 	if (!owner)
925 		return 0;
926 
927 	raw_spin_lock(&owner->pi_lock);
928 	if (waiter == rt_mutex_top_waiter(lock)) {
929 		rt_mutex_dequeue_pi(owner, top_waiter);
930 		rt_mutex_enqueue_pi(owner, waiter);
931 
932 		__rt_mutex_adjust_prio(owner);
933 		if (owner->pi_blocked_on)
934 			chain_walk = 1;
935 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
936 		chain_walk = 1;
937 	}
938 
939 	/* Store the lock on which owner is blocked or NULL */
940 	next_lock = task_blocked_on_lock(owner);
941 
942 	raw_spin_unlock(&owner->pi_lock);
943 	/*
944 	 * Even if full deadlock detection is on, if the owner is not
945 	 * blocked itself, we can avoid finding this out in the chain
946 	 * walk.
947 	 */
948 	if (!chain_walk || !next_lock)
949 		return 0;
950 
951 	/*
952 	 * The owner can't disappear while holding a lock,
953 	 * so the owner struct is protected by wait_lock.
954 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
955 	 */
956 	get_task_struct(owner);
957 
958 	raw_spin_unlock_irq(&lock->wait_lock);
959 
960 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
961 					 next_lock, waiter, task);
962 
963 	raw_spin_lock_irq(&lock->wait_lock);
964 
965 	return res;
966 }
967 
968 /*
969  * Remove the top waiter from the current tasks pi waiter tree and
970  * queue it up.
971  *
972  * Called with lock->wait_lock held and interrupts disabled.
973  */
974 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
975 				    struct rt_mutex *lock)
976 {
977 	struct rt_mutex_waiter *waiter;
978 
979 	raw_spin_lock(&current->pi_lock);
980 
981 	waiter = rt_mutex_top_waiter(lock);
982 
983 	/*
984 	 * Remove it from current->pi_waiters. We do not adjust a
985 	 * possible priority boost right now. We execute wakeup in the
986 	 * boosted mode and go back to normal after releasing
987 	 * lock->wait_lock.
988 	 */
989 	rt_mutex_dequeue_pi(current, waiter);
990 
991 	/*
992 	 * As we are waking up the top waiter, and the waiter stays
993 	 * queued on the lock until it gets the lock, this lock
994 	 * obviously has waiters. Just set the bit here and this has
995 	 * the added benefit of forcing all new tasks into the
996 	 * slow path making sure no task of lower priority than
997 	 * the top waiter can steal this lock.
998 	 */
999 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1000 
1001 	raw_spin_unlock(&current->pi_lock);
1002 
1003 	wake_q_add(wake_q, waiter->task);
1004 }
1005 
1006 /*
1007  * Remove a waiter from a lock and give up
1008  *
1009  * Must be called with lock->wait_lock held and interrupts disabled. I must
1010  * have just failed to try_to_take_rt_mutex().
1011  */
1012 static void remove_waiter(struct rt_mutex *lock,
1013 			  struct rt_mutex_waiter *waiter)
1014 {
1015 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1016 	struct task_struct *owner = rt_mutex_owner(lock);
1017 	struct rt_mutex *next_lock;
1018 
1019 	raw_spin_lock(&current->pi_lock);
1020 	rt_mutex_dequeue(lock, waiter);
1021 	current->pi_blocked_on = NULL;
1022 	raw_spin_unlock(&current->pi_lock);
1023 
1024 	/*
1025 	 * Only update priority if the waiter was the highest priority
1026 	 * waiter of the lock and there is an owner to update.
1027 	 */
1028 	if (!owner || !is_top_waiter)
1029 		return;
1030 
1031 	raw_spin_lock(&owner->pi_lock);
1032 
1033 	rt_mutex_dequeue_pi(owner, waiter);
1034 
1035 	if (rt_mutex_has_waiters(lock))
1036 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1037 
1038 	__rt_mutex_adjust_prio(owner);
1039 
1040 	/* Store the lock on which owner is blocked or NULL */
1041 	next_lock = task_blocked_on_lock(owner);
1042 
1043 	raw_spin_unlock(&owner->pi_lock);
1044 
1045 	/*
1046 	 * Don't walk the chain, if the owner task is not blocked
1047 	 * itself.
1048 	 */
1049 	if (!next_lock)
1050 		return;
1051 
1052 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1053 	get_task_struct(owner);
1054 
1055 	raw_spin_unlock_irq(&lock->wait_lock);
1056 
1057 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1058 				   next_lock, NULL, current);
1059 
1060 	raw_spin_lock_irq(&lock->wait_lock);
1061 }
1062 
1063 /*
1064  * Recheck the pi chain, in case we got a priority setting
1065  *
1066  * Called from sched_setscheduler
1067  */
1068 void rt_mutex_adjust_pi(struct task_struct *task)
1069 {
1070 	struct rt_mutex_waiter *waiter;
1071 	struct rt_mutex *next_lock;
1072 	unsigned long flags;
1073 
1074 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1075 
1076 	waiter = task->pi_blocked_on;
1077 	if (!waiter || (waiter->prio == task->prio &&
1078 			!dl_prio(task->prio))) {
1079 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1080 		return;
1081 	}
1082 	next_lock = waiter->lock;
1083 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1084 
1085 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1086 	get_task_struct(task);
1087 
1088 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1089 				   next_lock, NULL, task);
1090 }
1091 
1092 /**
1093  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1094  * @lock:		 the rt_mutex to take
1095  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1096  *			 or TASK_UNINTERRUPTIBLE)
1097  * @timeout:		 the pre-initialized and started timer, or NULL for none
1098  * @waiter:		 the pre-initialized rt_mutex_waiter
1099  *
1100  * Must be called with lock->wait_lock held and interrupts disabled
1101  */
1102 static int __sched
1103 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1104 		    struct hrtimer_sleeper *timeout,
1105 		    struct rt_mutex_waiter *waiter)
1106 {
1107 	int ret = 0;
1108 
1109 	for (;;) {
1110 		/* Try to acquire the lock: */
1111 		if (try_to_take_rt_mutex(lock, current, waiter))
1112 			break;
1113 
1114 		/*
1115 		 * TASK_INTERRUPTIBLE checks for signals and
1116 		 * timeout. Ignored otherwise.
1117 		 */
1118 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1119 			/* Signal pending? */
1120 			if (signal_pending(current))
1121 				ret = -EINTR;
1122 			if (timeout && !timeout->task)
1123 				ret = -ETIMEDOUT;
1124 			if (ret)
1125 				break;
1126 		}
1127 
1128 		raw_spin_unlock_irq(&lock->wait_lock);
1129 
1130 		debug_rt_mutex_print_deadlock(waiter);
1131 
1132 		schedule();
1133 
1134 		raw_spin_lock_irq(&lock->wait_lock);
1135 		set_current_state(state);
1136 	}
1137 
1138 	__set_current_state(TASK_RUNNING);
1139 	return ret;
1140 }
1141 
1142 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1143 				     struct rt_mutex_waiter *w)
1144 {
1145 	/*
1146 	 * If the result is not -EDEADLOCK or the caller requested
1147 	 * deadlock detection, nothing to do here.
1148 	 */
1149 	if (res != -EDEADLOCK || detect_deadlock)
1150 		return;
1151 
1152 	/*
1153 	 * Yell lowdly and stop the task right here.
1154 	 */
1155 	rt_mutex_print_deadlock(w);
1156 	while (1) {
1157 		set_current_state(TASK_INTERRUPTIBLE);
1158 		schedule();
1159 	}
1160 }
1161 
1162 /*
1163  * Slow path lock function:
1164  */
1165 static int __sched
1166 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1167 		  struct hrtimer_sleeper *timeout,
1168 		  enum rtmutex_chainwalk chwalk)
1169 {
1170 	struct rt_mutex_waiter waiter;
1171 	unsigned long flags;
1172 	int ret = 0;
1173 
1174 	debug_rt_mutex_init_waiter(&waiter);
1175 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1176 	RB_CLEAR_NODE(&waiter.tree_entry);
1177 
1178 	/*
1179 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1180 	 * be called in early boot if the cmpxchg() fast path is disabled
1181 	 * (debug, no architecture support). In this case we will acquire the
1182 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1183 	 * enable interrupts in that early boot case. So we need to use the
1184 	 * irqsave/restore variants.
1185 	 */
1186 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1187 
1188 	/* Try to acquire the lock again: */
1189 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1190 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1191 		return 0;
1192 	}
1193 
1194 	set_current_state(state);
1195 
1196 	/* Setup the timer, when timeout != NULL */
1197 	if (unlikely(timeout))
1198 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1199 
1200 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1201 
1202 	if (likely(!ret))
1203 		/* sleep on the mutex */
1204 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1205 
1206 	if (unlikely(ret)) {
1207 		__set_current_state(TASK_RUNNING);
1208 		if (rt_mutex_has_waiters(lock))
1209 			remove_waiter(lock, &waiter);
1210 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1211 	}
1212 
1213 	/*
1214 	 * try_to_take_rt_mutex() sets the waiter bit
1215 	 * unconditionally. We might have to fix that up.
1216 	 */
1217 	fixup_rt_mutex_waiters(lock);
1218 
1219 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1220 
1221 	/* Remove pending timer: */
1222 	if (unlikely(timeout))
1223 		hrtimer_cancel(&timeout->timer);
1224 
1225 	debug_rt_mutex_free_waiter(&waiter);
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * Slow path try-lock function:
1232  */
1233 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1234 {
1235 	unsigned long flags;
1236 	int ret;
1237 
1238 	/*
1239 	 * If the lock already has an owner we fail to get the lock.
1240 	 * This can be done without taking the @lock->wait_lock as
1241 	 * it is only being read, and this is a trylock anyway.
1242 	 */
1243 	if (rt_mutex_owner(lock))
1244 		return 0;
1245 
1246 	/*
1247 	 * The mutex has currently no owner. Lock the wait lock and try to
1248 	 * acquire the lock. We use irqsave here to support early boot calls.
1249 	 */
1250 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251 
1252 	ret = try_to_take_rt_mutex(lock, current, NULL);
1253 
1254 	/*
1255 	 * try_to_take_rt_mutex() sets the lock waiters bit
1256 	 * unconditionally. Clean this up.
1257 	 */
1258 	fixup_rt_mutex_waiters(lock);
1259 
1260 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261 
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Slow path to release a rt-mutex.
1267  * Return whether the current task needs to undo a potential priority boosting.
1268  */
1269 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1270 					struct wake_q_head *wake_q)
1271 {
1272 	unsigned long flags;
1273 
1274 	/* irqsave required to support early boot calls */
1275 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1276 
1277 	debug_rt_mutex_unlock(lock);
1278 
1279 	rt_mutex_deadlock_account_unlock(current);
1280 
1281 	/*
1282 	 * We must be careful here if the fast path is enabled. If we
1283 	 * have no waiters queued we cannot set owner to NULL here
1284 	 * because of:
1285 	 *
1286 	 * foo->lock->owner = NULL;
1287 	 *			rtmutex_lock(foo->lock);   <- fast path
1288 	 *			free = atomic_dec_and_test(foo->refcnt);
1289 	 *			rtmutex_unlock(foo->lock); <- fast path
1290 	 *			if (free)
1291 	 *				kfree(foo);
1292 	 * raw_spin_unlock(foo->lock->wait_lock);
1293 	 *
1294 	 * So for the fastpath enabled kernel:
1295 	 *
1296 	 * Nothing can set the waiters bit as long as we hold
1297 	 * lock->wait_lock. So we do the following sequence:
1298 	 *
1299 	 *	owner = rt_mutex_owner(lock);
1300 	 *	clear_rt_mutex_waiters(lock);
1301 	 *	raw_spin_unlock(&lock->wait_lock);
1302 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1303 	 *		return;
1304 	 *	goto retry;
1305 	 *
1306 	 * The fastpath disabled variant is simple as all access to
1307 	 * lock->owner is serialized by lock->wait_lock:
1308 	 *
1309 	 *	lock->owner = NULL;
1310 	 *	raw_spin_unlock(&lock->wait_lock);
1311 	 */
1312 	while (!rt_mutex_has_waiters(lock)) {
1313 		/* Drops lock->wait_lock ! */
1314 		if (unlock_rt_mutex_safe(lock, flags) == true)
1315 			return false;
1316 		/* Relock the rtmutex and try again */
1317 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1318 	}
1319 
1320 	/*
1321 	 * The wakeup next waiter path does not suffer from the above
1322 	 * race. See the comments there.
1323 	 *
1324 	 * Queue the next waiter for wakeup once we release the wait_lock.
1325 	 */
1326 	mark_wakeup_next_waiter(wake_q, lock);
1327 
1328 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1329 
1330 	/* check PI boosting */
1331 	return true;
1332 }
1333 
1334 /*
1335  * debug aware fast / slowpath lock,trylock,unlock
1336  *
1337  * The atomic acquire/release ops are compiled away, when either the
1338  * architecture does not support cmpxchg or when debugging is enabled.
1339  */
1340 static inline int
1341 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1342 		  int (*slowfn)(struct rt_mutex *lock, int state,
1343 				struct hrtimer_sleeper *timeout,
1344 				enum rtmutex_chainwalk chwalk))
1345 {
1346 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1347 		rt_mutex_deadlock_account_lock(lock, current);
1348 		return 0;
1349 	} else
1350 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1351 }
1352 
1353 static inline int
1354 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1355 			struct hrtimer_sleeper *timeout,
1356 			enum rtmutex_chainwalk chwalk,
1357 			int (*slowfn)(struct rt_mutex *lock, int state,
1358 				      struct hrtimer_sleeper *timeout,
1359 				      enum rtmutex_chainwalk chwalk))
1360 {
1361 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1362 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1363 		rt_mutex_deadlock_account_lock(lock, current);
1364 		return 0;
1365 	} else
1366 		return slowfn(lock, state, timeout, chwalk);
1367 }
1368 
1369 static inline int
1370 rt_mutex_fasttrylock(struct rt_mutex *lock,
1371 		     int (*slowfn)(struct rt_mutex *lock))
1372 {
1373 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1374 		rt_mutex_deadlock_account_lock(lock, current);
1375 		return 1;
1376 	}
1377 	return slowfn(lock);
1378 }
1379 
1380 static inline void
1381 rt_mutex_fastunlock(struct rt_mutex *lock,
1382 		    bool (*slowfn)(struct rt_mutex *lock,
1383 				   struct wake_q_head *wqh))
1384 {
1385 	WAKE_Q(wake_q);
1386 
1387 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1388 		rt_mutex_deadlock_account_unlock(current);
1389 
1390 	} else {
1391 		bool deboost = slowfn(lock, &wake_q);
1392 
1393 		wake_up_q(&wake_q);
1394 
1395 		/* Undo pi boosting if necessary: */
1396 		if (deboost)
1397 			rt_mutex_adjust_prio(current);
1398 	}
1399 }
1400 
1401 /**
1402  * rt_mutex_lock - lock a rt_mutex
1403  *
1404  * @lock: the rt_mutex to be locked
1405  */
1406 void __sched rt_mutex_lock(struct rt_mutex *lock)
1407 {
1408 	might_sleep();
1409 
1410 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1411 }
1412 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1413 
1414 /**
1415  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1416  *
1417  * @lock:		the rt_mutex to be locked
1418  *
1419  * Returns:
1420  *  0		on success
1421  * -EINTR	when interrupted by a signal
1422  */
1423 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1424 {
1425 	might_sleep();
1426 
1427 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1428 }
1429 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1430 
1431 /*
1432  * Futex variant with full deadlock detection.
1433  */
1434 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1435 			      struct hrtimer_sleeper *timeout)
1436 {
1437 	might_sleep();
1438 
1439 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1440 				       RT_MUTEX_FULL_CHAINWALK,
1441 				       rt_mutex_slowlock);
1442 }
1443 
1444 /**
1445  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1446  *			the timeout structure is provided
1447  *			by the caller
1448  *
1449  * @lock:		the rt_mutex to be locked
1450  * @timeout:		timeout structure or NULL (no timeout)
1451  *
1452  * Returns:
1453  *  0		on success
1454  * -EINTR	when interrupted by a signal
1455  * -ETIMEDOUT	when the timeout expired
1456  */
1457 int
1458 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1459 {
1460 	might_sleep();
1461 
1462 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1463 				       RT_MUTEX_MIN_CHAINWALK,
1464 				       rt_mutex_slowlock);
1465 }
1466 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1467 
1468 /**
1469  * rt_mutex_trylock - try to lock a rt_mutex
1470  *
1471  * @lock:	the rt_mutex to be locked
1472  *
1473  * This function can only be called in thread context. It's safe to
1474  * call it from atomic regions, but not from hard interrupt or soft
1475  * interrupt context.
1476  *
1477  * Returns 1 on success and 0 on contention
1478  */
1479 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1480 {
1481 	if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1482 		return 0;
1483 
1484 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1485 }
1486 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1487 
1488 /**
1489  * rt_mutex_unlock - unlock a rt_mutex
1490  *
1491  * @lock: the rt_mutex to be unlocked
1492  */
1493 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1494 {
1495 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1496 }
1497 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1498 
1499 /**
1500  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1501  * @lock: the rt_mutex to be unlocked
1502  *
1503  * Returns: true/false indicating whether priority adjustment is
1504  * required or not.
1505  */
1506 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1507 				   struct wake_q_head *wqh)
1508 {
1509 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1510 		rt_mutex_deadlock_account_unlock(current);
1511 		return false;
1512 	}
1513 	return rt_mutex_slowunlock(lock, wqh);
1514 }
1515 
1516 /**
1517  * rt_mutex_destroy - mark a mutex unusable
1518  * @lock: the mutex to be destroyed
1519  *
1520  * This function marks the mutex uninitialized, and any subsequent
1521  * use of the mutex is forbidden. The mutex must not be locked when
1522  * this function is called.
1523  */
1524 void rt_mutex_destroy(struct rt_mutex *lock)
1525 {
1526 	WARN_ON(rt_mutex_is_locked(lock));
1527 #ifdef CONFIG_DEBUG_RT_MUTEXES
1528 	lock->magic = NULL;
1529 #endif
1530 }
1531 
1532 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1533 
1534 /**
1535  * __rt_mutex_init - initialize the rt lock
1536  *
1537  * @lock: the rt lock to be initialized
1538  *
1539  * Initialize the rt lock to unlocked state.
1540  *
1541  * Initializing of a locked rt lock is not allowed
1542  */
1543 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1544 {
1545 	lock->owner = NULL;
1546 	raw_spin_lock_init(&lock->wait_lock);
1547 	lock->waiters = RB_ROOT;
1548 	lock->waiters_leftmost = NULL;
1549 
1550 	debug_rt_mutex_init(lock, name);
1551 }
1552 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1553 
1554 /**
1555  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1556  *				proxy owner
1557  *
1558  * @lock: 	the rt_mutex to be locked
1559  * @proxy_owner:the task to set as owner
1560  *
1561  * No locking. Caller has to do serializing itself
1562  * Special API call for PI-futex support
1563  */
1564 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1565 				struct task_struct *proxy_owner)
1566 {
1567 	__rt_mutex_init(lock, NULL);
1568 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1569 	rt_mutex_set_owner(lock, proxy_owner);
1570 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1571 }
1572 
1573 /**
1574  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1575  *
1576  * @lock: 	the rt_mutex to be locked
1577  *
1578  * No locking. Caller has to do serializing itself
1579  * Special API call for PI-futex support
1580  */
1581 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1582 			   struct task_struct *proxy_owner)
1583 {
1584 	debug_rt_mutex_proxy_unlock(lock);
1585 	rt_mutex_set_owner(lock, NULL);
1586 	rt_mutex_deadlock_account_unlock(proxy_owner);
1587 }
1588 
1589 /**
1590  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1591  * @lock:		the rt_mutex to take
1592  * @waiter:		the pre-initialized rt_mutex_waiter
1593  * @task:		the task to prepare
1594  *
1595  * Returns:
1596  *  0 - task blocked on lock
1597  *  1 - acquired the lock for task, caller should wake it up
1598  * <0 - error
1599  *
1600  * Special API call for FUTEX_REQUEUE_PI support.
1601  */
1602 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1603 			      struct rt_mutex_waiter *waiter,
1604 			      struct task_struct *task)
1605 {
1606 	int ret;
1607 
1608 	raw_spin_lock_irq(&lock->wait_lock);
1609 
1610 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1611 		raw_spin_unlock_irq(&lock->wait_lock);
1612 		return 1;
1613 	}
1614 
1615 	/* We enforce deadlock detection for futexes */
1616 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1617 				      RT_MUTEX_FULL_CHAINWALK);
1618 
1619 	if (ret && !rt_mutex_owner(lock)) {
1620 		/*
1621 		 * Reset the return value. We might have
1622 		 * returned with -EDEADLK and the owner
1623 		 * released the lock while we were walking the
1624 		 * pi chain.  Let the waiter sort it out.
1625 		 */
1626 		ret = 0;
1627 	}
1628 
1629 	if (unlikely(ret))
1630 		remove_waiter(lock, waiter);
1631 
1632 	raw_spin_unlock_irq(&lock->wait_lock);
1633 
1634 	debug_rt_mutex_print_deadlock(waiter);
1635 
1636 	return ret;
1637 }
1638 
1639 /**
1640  * rt_mutex_next_owner - return the next owner of the lock
1641  *
1642  * @lock: the rt lock query
1643  *
1644  * Returns the next owner of the lock or NULL
1645  *
1646  * Caller has to serialize against other accessors to the lock
1647  * itself.
1648  *
1649  * Special API call for PI-futex support
1650  */
1651 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1652 {
1653 	if (!rt_mutex_has_waiters(lock))
1654 		return NULL;
1655 
1656 	return rt_mutex_top_waiter(lock)->task;
1657 }
1658 
1659 /**
1660  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1661  * @lock:		the rt_mutex we were woken on
1662  * @to:			the timeout, null if none. hrtimer should already have
1663  *			been started.
1664  * @waiter:		the pre-initialized rt_mutex_waiter
1665  *
1666  * Complete the lock acquisition started our behalf by another thread.
1667  *
1668  * Returns:
1669  *  0 - success
1670  * <0 - error, one of -EINTR, -ETIMEDOUT
1671  *
1672  * Special API call for PI-futex requeue support
1673  */
1674 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1675 			       struct hrtimer_sleeper *to,
1676 			       struct rt_mutex_waiter *waiter)
1677 {
1678 	int ret;
1679 
1680 	raw_spin_lock_irq(&lock->wait_lock);
1681 
1682 	set_current_state(TASK_INTERRUPTIBLE);
1683 
1684 	/* sleep on the mutex */
1685 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1686 
1687 	if (unlikely(ret))
1688 		remove_waiter(lock, waiter);
1689 
1690 	/*
1691 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1692 	 * have to fix that up.
1693 	 */
1694 	fixup_rt_mutex_waiters(lock);
1695 
1696 	raw_spin_unlock_irq(&lock->wait_lock);
1697 
1698 	return ret;
1699 }
1700