xref: /linux/kernel/locking/qspinlock_paravirt.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
4 
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
7 #include <linux/debug_locks.h>
8 
9 /*
10  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11  * of spinning them.
12  *
13  * This relies on the architecture to provide two paravirt hypercalls:
14  *
15  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16  *   pv_kick(cpu)             -- wakes a suspended vcpu
17  *
18  * Using these we implement __pv_queued_spin_lock_slowpath() and
19  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20  * native_queued_spin_unlock().
21  */
22 
23 #define _Q_SLOW_VAL	(3U << _Q_LOCKED_OFFSET)
24 
25 /*
26  * Queue Node Adaptive Spinning
27  *
28  * A queue node vCPU will stop spinning if the vCPU in the previous node is
29  * not running. The one lock stealing attempt allowed at slowpath entry
30  * mitigates the slight slowdown for non-overcommitted guest with this
31  * aggressive wait-early mechanism.
32  *
33  * The status of the previous node will be checked at fixed interval
34  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
35  * pound on the cacheline of the previous node too heavily.
36  */
37 #define PV_PREV_CHECK_MASK	0xff
38 
39 /*
40  * Queue node uses: vcpu_running & vcpu_halted.
41  * Queue head uses: vcpu_running & vcpu_hashed.
42  */
43 enum vcpu_state {
44 	vcpu_running = 0,
45 	vcpu_halted,		/* Used only in pv_wait_node */
46 	vcpu_hashed,		/* = pv_hash'ed + vcpu_halted */
47 };
48 
49 struct pv_node {
50 	struct mcs_spinlock	mcs;
51 	struct mcs_spinlock	__res[3];
52 
53 	int			cpu;
54 	u8			state;
55 };
56 
57 /*
58  * Include queued spinlock statistics code
59  */
60 #include "qspinlock_stat.h"
61 
62 /*
63  * By replacing the regular queued_spin_trylock() with the function below,
64  * it will be called once when a lock waiter enter the PV slowpath before
65  * being queued. By allowing one lock stealing attempt here when the pending
66  * bit is off, it helps to reduce the performance impact of lock waiter
67  * preemption without the drawback of lock starvation.
68  */
69 #define queued_spin_trylock(l)	pv_queued_spin_steal_lock(l)
70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
71 {
72 	struct __qspinlock *l = (void *)lock;
73 	int ret = !(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
74 		   (cmpxchg(&l->locked, 0, _Q_LOCKED_VAL) == 0);
75 
76 	qstat_inc(qstat_pv_lock_stealing, ret);
77 	return ret;
78 }
79 
80 /*
81  * The pending bit is used by the queue head vCPU to indicate that it
82  * is actively spinning on the lock and no lock stealing is allowed.
83  */
84 #if _Q_PENDING_BITS == 8
85 static __always_inline void set_pending(struct qspinlock *lock)
86 {
87 	struct __qspinlock *l = (void *)lock;
88 
89 	WRITE_ONCE(l->pending, 1);
90 }
91 
92 static __always_inline void clear_pending(struct qspinlock *lock)
93 {
94 	struct __qspinlock *l = (void *)lock;
95 
96 	WRITE_ONCE(l->pending, 0);
97 }
98 
99 /*
100  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
101  * barrier. Therefore, an atomic cmpxchg() is used to acquire the lock
102  * just to be sure that it will get it.
103  */
104 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
105 {
106 	struct __qspinlock *l = (void *)lock;
107 
108 	return !READ_ONCE(l->locked) &&
109 	       (cmpxchg(&l->locked_pending, _Q_PENDING_VAL, _Q_LOCKED_VAL)
110 			== _Q_PENDING_VAL);
111 }
112 #else /* _Q_PENDING_BITS == 8 */
113 static __always_inline void set_pending(struct qspinlock *lock)
114 {
115 	atomic_set_mask(_Q_PENDING_VAL, &lock->val);
116 }
117 
118 static __always_inline void clear_pending(struct qspinlock *lock)
119 {
120 	atomic_clear_mask(_Q_PENDING_VAL, &lock->val);
121 }
122 
123 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
124 {
125 	int val = atomic_read(&lock->val);
126 
127 	for (;;) {
128 		int old, new;
129 
130 		if (val  & _Q_LOCKED_MASK)
131 			break;
132 
133 		/*
134 		 * Try to clear pending bit & set locked bit
135 		 */
136 		old = val;
137 		new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
138 		val = atomic_cmpxchg(&lock->val, old, new);
139 
140 		if (val == old)
141 			return 1;
142 	}
143 	return 0;
144 }
145 #endif /* _Q_PENDING_BITS == 8 */
146 
147 /*
148  * Lock and MCS node addresses hash table for fast lookup
149  *
150  * Hashing is done on a per-cacheline basis to minimize the need to access
151  * more than one cacheline.
152  *
153  * Dynamically allocate a hash table big enough to hold at least 4X the
154  * number of possible cpus in the system. Allocation is done on page
155  * granularity. So the minimum number of hash buckets should be at least
156  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
157  *
158  * Since we should not be holding locks from NMI context (very rare indeed) the
159  * max load factor is 0.75, which is around the point where open addressing
160  * breaks down.
161  *
162  */
163 struct pv_hash_entry {
164 	struct qspinlock *lock;
165 	struct pv_node   *node;
166 };
167 
168 #define PV_HE_PER_LINE	(SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
169 #define PV_HE_MIN	(PAGE_SIZE / sizeof(struct pv_hash_entry))
170 
171 static struct pv_hash_entry *pv_lock_hash;
172 static unsigned int pv_lock_hash_bits __read_mostly;
173 
174 /*
175  * Allocate memory for the PV qspinlock hash buckets
176  *
177  * This function should be called from the paravirt spinlock initialization
178  * routine.
179  */
180 void __init __pv_init_lock_hash(void)
181 {
182 	int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
183 
184 	if (pv_hash_size < PV_HE_MIN)
185 		pv_hash_size = PV_HE_MIN;
186 
187 	/*
188 	 * Allocate space from bootmem which should be page-size aligned
189 	 * and hence cacheline aligned.
190 	 */
191 	pv_lock_hash = alloc_large_system_hash("PV qspinlock",
192 					       sizeof(struct pv_hash_entry),
193 					       pv_hash_size, 0, HASH_EARLY,
194 					       &pv_lock_hash_bits, NULL,
195 					       pv_hash_size, pv_hash_size);
196 }
197 
198 #define for_each_hash_entry(he, offset, hash)						\
199 	for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;	\
200 	     offset < (1 << pv_lock_hash_bits);						\
201 	     offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
202 
203 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
204 {
205 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
206 	struct pv_hash_entry *he;
207 	int hopcnt = 0;
208 
209 	for_each_hash_entry(he, offset, hash) {
210 		hopcnt++;
211 		if (!cmpxchg(&he->lock, NULL, lock)) {
212 			WRITE_ONCE(he->node, node);
213 			qstat_hop(hopcnt);
214 			return &he->lock;
215 		}
216 	}
217 	/*
218 	 * Hard assume there is a free entry for us.
219 	 *
220 	 * This is guaranteed by ensuring every blocked lock only ever consumes
221 	 * a single entry, and since we only have 4 nesting levels per CPU
222 	 * and allocated 4*nr_possible_cpus(), this must be so.
223 	 *
224 	 * The single entry is guaranteed by having the lock owner unhash
225 	 * before it releases.
226 	 */
227 	BUG();
228 }
229 
230 static struct pv_node *pv_unhash(struct qspinlock *lock)
231 {
232 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
233 	struct pv_hash_entry *he;
234 	struct pv_node *node;
235 
236 	for_each_hash_entry(he, offset, hash) {
237 		if (READ_ONCE(he->lock) == lock) {
238 			node = READ_ONCE(he->node);
239 			WRITE_ONCE(he->lock, NULL);
240 			return node;
241 		}
242 	}
243 	/*
244 	 * Hard assume we'll find an entry.
245 	 *
246 	 * This guarantees a limited lookup time and is itself guaranteed by
247 	 * having the lock owner do the unhash -- IFF the unlock sees the
248 	 * SLOW flag, there MUST be a hash entry.
249 	 */
250 	BUG();
251 }
252 
253 /*
254  * Return true if when it is time to check the previous node which is not
255  * in a running state.
256  */
257 static inline bool
258 pv_wait_early(struct pv_node *prev, int loop)
259 {
260 
261 	if ((loop & PV_PREV_CHECK_MASK) != 0)
262 		return false;
263 
264 	return READ_ONCE(prev->state) != vcpu_running;
265 }
266 
267 /*
268  * Initialize the PV part of the mcs_spinlock node.
269  */
270 static void pv_init_node(struct mcs_spinlock *node)
271 {
272 	struct pv_node *pn = (struct pv_node *)node;
273 
274 	BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
275 
276 	pn->cpu = smp_processor_id();
277 	pn->state = vcpu_running;
278 }
279 
280 /*
281  * Wait for node->locked to become true, halt the vcpu after a short spin.
282  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
283  * behalf.
284  */
285 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
286 {
287 	struct pv_node *pn = (struct pv_node *)node;
288 	struct pv_node *pp = (struct pv_node *)prev;
289 	int waitcnt = 0;
290 	int loop;
291 	bool wait_early;
292 
293 	/* waitcnt processing will be compiled out if !QUEUED_LOCK_STAT */
294 	for (;; waitcnt++) {
295 		for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
296 			if (READ_ONCE(node->locked))
297 				return;
298 			if (pv_wait_early(pp, loop)) {
299 				wait_early = true;
300 				break;
301 			}
302 			cpu_relax();
303 		}
304 
305 		/*
306 		 * Order pn->state vs pn->locked thusly:
307 		 *
308 		 * [S] pn->state = vcpu_halted	  [S] next->locked = 1
309 		 *     MB			      MB
310 		 * [L] pn->locked		[RmW] pn->state = vcpu_hashed
311 		 *
312 		 * Matches the cmpxchg() from pv_kick_node().
313 		 */
314 		smp_store_mb(pn->state, vcpu_halted);
315 
316 		if (!READ_ONCE(node->locked)) {
317 			qstat_inc(qstat_pv_wait_node, true);
318 			qstat_inc(qstat_pv_wait_again, waitcnt);
319 			qstat_inc(qstat_pv_wait_early, wait_early);
320 			pv_wait(&pn->state, vcpu_halted);
321 		}
322 
323 		/*
324 		 * If pv_kick_node() changed us to vcpu_hashed, retain that
325 		 * value so that pv_wait_head_or_lock() knows to not also try
326 		 * to hash this lock.
327 		 */
328 		cmpxchg(&pn->state, vcpu_halted, vcpu_running);
329 
330 		/*
331 		 * If the locked flag is still not set after wakeup, it is a
332 		 * spurious wakeup and the vCPU should wait again. However,
333 		 * there is a pretty high overhead for CPU halting and kicking.
334 		 * So it is better to spin for a while in the hope that the
335 		 * MCS lock will be released soon.
336 		 */
337 		qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
338 	}
339 
340 	/*
341 	 * By now our node->locked should be 1 and our caller will not actually
342 	 * spin-wait for it. We do however rely on our caller to do a
343 	 * load-acquire for us.
344 	 */
345 }
346 
347 /*
348  * Called after setting next->locked = 1 when we're the lock owner.
349  *
350  * Instead of waking the waiters stuck in pv_wait_node() advance their state
351  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
352  * wake/sleep cycle.
353  */
354 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
355 {
356 	struct pv_node *pn = (struct pv_node *)node;
357 	struct __qspinlock *l = (void *)lock;
358 
359 	/*
360 	 * If the vCPU is indeed halted, advance its state to match that of
361 	 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
362 	 * observe its next->locked value and advance itself.
363 	 *
364 	 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
365 	 */
366 	if (cmpxchg(&pn->state, vcpu_halted, vcpu_hashed) != vcpu_halted)
367 		return;
368 
369 	/*
370 	 * Put the lock into the hash table and set the _Q_SLOW_VAL.
371 	 *
372 	 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
373 	 * the hash table later on at unlock time, no atomic instruction is
374 	 * needed.
375 	 */
376 	WRITE_ONCE(l->locked, _Q_SLOW_VAL);
377 	(void)pv_hash(lock, pn);
378 }
379 
380 /*
381  * Wait for l->locked to become clear and acquire the lock;
382  * halt the vcpu after a short spin.
383  * __pv_queued_spin_unlock() will wake us.
384  *
385  * The current value of the lock will be returned for additional processing.
386  */
387 static u32
388 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
389 {
390 	struct pv_node *pn = (struct pv_node *)node;
391 	struct __qspinlock *l = (void *)lock;
392 	struct qspinlock **lp = NULL;
393 	int waitcnt = 0;
394 	int loop;
395 
396 	/*
397 	 * If pv_kick_node() already advanced our state, we don't need to
398 	 * insert ourselves into the hash table anymore.
399 	 */
400 	if (READ_ONCE(pn->state) == vcpu_hashed)
401 		lp = (struct qspinlock **)1;
402 
403 	/*
404 	 * Tracking # of slowpath locking operations
405 	 */
406 	qstat_inc(qstat_pv_lock_slowpath, true);
407 
408 	for (;; waitcnt++) {
409 		/*
410 		 * Set correct vCPU state to be used by queue node wait-early
411 		 * mechanism.
412 		 */
413 		WRITE_ONCE(pn->state, vcpu_running);
414 
415 		/*
416 		 * Set the pending bit in the active lock spinning loop to
417 		 * disable lock stealing before attempting to acquire the lock.
418 		 */
419 		set_pending(lock);
420 		for (loop = SPIN_THRESHOLD; loop; loop--) {
421 			if (trylock_clear_pending(lock))
422 				goto gotlock;
423 			cpu_relax();
424 		}
425 		clear_pending(lock);
426 
427 
428 		if (!lp) { /* ONCE */
429 			lp = pv_hash(lock, pn);
430 
431 			/*
432 			 * We must hash before setting _Q_SLOW_VAL, such that
433 			 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
434 			 * we'll be sure to be able to observe our hash entry.
435 			 *
436 			 *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
437 			 *       MB                           RMB
438 			 * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
439 			 *
440 			 * Matches the smp_rmb() in __pv_queued_spin_unlock().
441 			 */
442 			if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
443 				/*
444 				 * The lock was free and now we own the lock.
445 				 * Change the lock value back to _Q_LOCKED_VAL
446 				 * and unhash the table.
447 				 */
448 				WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
449 				WRITE_ONCE(*lp, NULL);
450 				goto gotlock;
451 			}
452 		}
453 		WRITE_ONCE(pn->state, vcpu_halted);
454 		qstat_inc(qstat_pv_wait_head, true);
455 		qstat_inc(qstat_pv_wait_again, waitcnt);
456 		pv_wait(&l->locked, _Q_SLOW_VAL);
457 
458 		/*
459 		 * The unlocker should have freed the lock before kicking the
460 		 * CPU. So if the lock is still not free, it is a spurious
461 		 * wakeup or another vCPU has stolen the lock. The current
462 		 * vCPU should spin again.
463 		 */
464 		qstat_inc(qstat_pv_spurious_wakeup, READ_ONCE(l->locked));
465 	}
466 
467 	/*
468 	 * The cmpxchg() or xchg() call before coming here provides the
469 	 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
470 	 * here is to indicate to the compiler that the value will always
471 	 * be nozero to enable better code optimization.
472 	 */
473 gotlock:
474 	return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
475 }
476 
477 /*
478  * PV versions of the unlock fastpath and slowpath functions to be used
479  * instead of queued_spin_unlock().
480  */
481 __visible void
482 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
483 {
484 	struct __qspinlock *l = (void *)lock;
485 	struct pv_node *node;
486 
487 	if (unlikely(locked != _Q_SLOW_VAL)) {
488 		WARN(!debug_locks_silent,
489 		     "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
490 		     (unsigned long)lock, atomic_read(&lock->val));
491 		return;
492 	}
493 
494 	/*
495 	 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
496 	 * so we need a barrier to order the read of the node data in
497 	 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
498 	 *
499 	 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
500 	 */
501 	smp_rmb();
502 
503 	/*
504 	 * Since the above failed to release, this must be the SLOW path.
505 	 * Therefore start by looking up the blocked node and unhashing it.
506 	 */
507 	node = pv_unhash(lock);
508 
509 	/*
510 	 * Now that we have a reference to the (likely) blocked pv_node,
511 	 * release the lock.
512 	 */
513 	smp_store_release(&l->locked, 0);
514 
515 	/*
516 	 * At this point the memory pointed at by lock can be freed/reused,
517 	 * however we can still use the pv_node to kick the CPU.
518 	 * The other vCPU may not really be halted, but kicking an active
519 	 * vCPU is harmless other than the additional latency in completing
520 	 * the unlock.
521 	 */
522 	qstat_inc(qstat_pv_kick_unlock, true);
523 	pv_kick(node->cpu);
524 }
525 
526 /*
527  * Include the architecture specific callee-save thunk of the
528  * __pv_queued_spin_unlock(). This thunk is put together with
529  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
530  * function close to each other sharing consecutive instruction cachelines.
531  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
532  * can be defined.
533  */
534 #include <asm/qspinlock_paravirt.h>
535 
536 #ifndef __pv_queued_spin_unlock
537 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
538 {
539 	struct __qspinlock *l = (void *)lock;
540 	u8 locked;
541 
542 	/*
543 	 * We must not unlock if SLOW, because in that case we must first
544 	 * unhash. Otherwise it would be possible to have multiple @lock
545 	 * entries, which would be BAD.
546 	 */
547 	locked = cmpxchg(&l->locked, _Q_LOCKED_VAL, 0);
548 	if (likely(locked == _Q_LOCKED_VAL))
549 		return;
550 
551 	__pv_queued_spin_unlock_slowpath(lock, locked);
552 }
553 #endif /* __pv_queued_spin_unlock */
554