xref: /linux/kernel/locking/qspinlock_paravirt.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _GEN_PV_LOCK_SLOWPATH
3 #error "do not include this file"
4 #endif
5 
6 #include <linux/hash.h>
7 #include <linux/memblock.h>
8 #include <linux/debug_locks.h>
9 
10 /*
11  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
12  * of spinning them.
13  *
14  * This relies on the architecture to provide two paravirt hypercalls:
15  *
16  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
17  *   pv_kick(cpu)             -- wakes a suspended vcpu
18  *
19  * Using these we implement __pv_queued_spin_lock_slowpath() and
20  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
21  * native_queued_spin_unlock().
22  */
23 
24 #define _Q_SLOW_VAL	(3U << _Q_LOCKED_OFFSET)
25 
26 /*
27  * Queue Node Adaptive Spinning
28  *
29  * A queue node vCPU will stop spinning if the vCPU in the previous node is
30  * not running. The one lock stealing attempt allowed at slowpath entry
31  * mitigates the slight slowdown for non-overcommitted guest with this
32  * aggressive wait-early mechanism.
33  *
34  * The status of the previous node will be checked at fixed interval
35  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
36  * pound on the cacheline of the previous node too heavily.
37  */
38 #define PV_PREV_CHECK_MASK	0xff
39 
40 /*
41  * Queue node uses: vcpu_running & vcpu_halted.
42  * Queue head uses: vcpu_running & vcpu_hashed.
43  */
44 enum vcpu_state {
45 	vcpu_running = 0,
46 	vcpu_halted,		/* Used only in pv_wait_node */
47 	vcpu_hashed,		/* = pv_hash'ed + vcpu_halted */
48 };
49 
50 struct pv_node {
51 	struct mcs_spinlock	mcs;
52 	int			cpu;
53 	u8			state;
54 };
55 
56 /*
57  * Hybrid PV queued/unfair lock
58  *
59  * By replacing the regular queued_spin_trylock() with the function below,
60  * it will be called once when a lock waiter enter the PV slowpath before
61  * being queued.
62  *
63  * The pending bit is set by the queue head vCPU of the MCS wait queue in
64  * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
65  * When that bit becomes visible to the incoming waiters, no lock stealing
66  * is allowed. The function will return immediately to make the waiters
67  * enter the MCS wait queue. So lock starvation shouldn't happen as long
68  * as the queued mode vCPUs are actively running to set the pending bit
69  * and hence disabling lock stealing.
70  *
71  * When the pending bit isn't set, the lock waiters will stay in the unfair
72  * mode spinning on the lock unless the MCS wait queue is empty. In this
73  * case, the lock waiters will enter the queued mode slowpath trying to
74  * become the queue head and set the pending bit.
75  *
76  * This hybrid PV queued/unfair lock combines the best attributes of a
77  * queued lock (no lock starvation) and an unfair lock (good performance
78  * on not heavily contended locks).
79  */
80 #define queued_spin_trylock(l)	pv_hybrid_queued_unfair_trylock(l)
81 static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
82 {
83 	/*
84 	 * Stay in unfair lock mode as long as queued mode waiters are
85 	 * present in the MCS wait queue but the pending bit isn't set.
86 	 */
87 	for (;;) {
88 		int val = atomic_read(&lock->val);
89 		u8 old = 0;
90 
91 		if (!(val & _Q_LOCKED_PENDING_MASK) &&
92 		    try_cmpxchg_acquire(&lock->locked, &old, _Q_LOCKED_VAL)) {
93 			lockevent_inc(pv_lock_stealing);
94 			return true;
95 		}
96 		if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
97 			break;
98 
99 		cpu_relax();
100 	}
101 
102 	return false;
103 }
104 
105 /*
106  * The pending bit is used by the queue head vCPU to indicate that it
107  * is actively spinning on the lock and no lock stealing is allowed.
108  */
109 #if _Q_PENDING_BITS == 8
110 static __always_inline void set_pending(struct qspinlock *lock)
111 {
112 	WRITE_ONCE(lock->pending, 1);
113 }
114 
115 /*
116  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
117  * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
118  * lock just to be sure that it will get it.
119  */
120 static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
121 {
122 	u16 old = _Q_PENDING_VAL;
123 
124 	return !READ_ONCE(lock->locked) &&
125 	       try_cmpxchg_acquire(&lock->locked_pending, &old, _Q_LOCKED_VAL);
126 }
127 #else /* _Q_PENDING_BITS == 8 */
128 static __always_inline void set_pending(struct qspinlock *lock)
129 {
130 	atomic_or(_Q_PENDING_VAL, &lock->val);
131 }
132 
133 static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
134 {
135 	int old, new;
136 
137 	old = atomic_read(&lock->val);
138 	do {
139 		if (old & _Q_LOCKED_MASK)
140 			return false;
141 		/*
142 		 * Try to clear pending bit & set locked bit
143 		 */
144 		new = (old & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
145 	} while (!atomic_try_cmpxchg_acquire (&lock->val, &old, new));
146 
147 	return true;
148 }
149 #endif /* _Q_PENDING_BITS == 8 */
150 
151 /*
152  * Lock and MCS node addresses hash table for fast lookup
153  *
154  * Hashing is done on a per-cacheline basis to minimize the need to access
155  * more than one cacheline.
156  *
157  * Dynamically allocate a hash table big enough to hold at least 4X the
158  * number of possible cpus in the system. Allocation is done on page
159  * granularity. So the minimum number of hash buckets should be at least
160  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
161  *
162  * Since we should not be holding locks from NMI context (very rare indeed) the
163  * max load factor is 0.75, which is around the point where open addressing
164  * breaks down.
165  *
166  */
167 struct pv_hash_entry {
168 	struct qspinlock *lock;
169 	struct pv_node   *node;
170 };
171 
172 #define PV_HE_PER_LINE	(SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
173 #define PV_HE_MIN	(PAGE_SIZE / sizeof(struct pv_hash_entry))
174 
175 static struct pv_hash_entry *pv_lock_hash;
176 static unsigned int pv_lock_hash_bits __read_mostly;
177 
178 /*
179  * Allocate memory for the PV qspinlock hash buckets
180  *
181  * This function should be called from the paravirt spinlock initialization
182  * routine.
183  */
184 void __init __pv_init_lock_hash(void)
185 {
186 	int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
187 
188 	if (pv_hash_size < PV_HE_MIN)
189 		pv_hash_size = PV_HE_MIN;
190 
191 	/*
192 	 * Allocate space from bootmem which should be page-size aligned
193 	 * and hence cacheline aligned.
194 	 */
195 	pv_lock_hash = alloc_large_system_hash("PV qspinlock",
196 					       sizeof(struct pv_hash_entry),
197 					       pv_hash_size, 0,
198 					       HASH_EARLY | HASH_ZERO,
199 					       &pv_lock_hash_bits, NULL,
200 					       pv_hash_size, pv_hash_size);
201 }
202 
203 #define for_each_hash_entry(he, offset, hash)						\
204 	for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;	\
205 	     offset < (1 << pv_lock_hash_bits);						\
206 	     offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
207 
208 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
209 {
210 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
211 	struct pv_hash_entry *he;
212 	int hopcnt = 0;
213 
214 	for_each_hash_entry(he, offset, hash) {
215 		struct qspinlock *old = NULL;
216 		hopcnt++;
217 		if (try_cmpxchg(&he->lock, &old, lock)) {
218 			WRITE_ONCE(he->node, node);
219 			lockevent_pv_hop(hopcnt);
220 			return &he->lock;
221 		}
222 	}
223 	/*
224 	 * Hard assume there is a free entry for us.
225 	 *
226 	 * This is guaranteed by ensuring every blocked lock only ever consumes
227 	 * a single entry, and since we only have 4 nesting levels per CPU
228 	 * and allocated 4*nr_possible_cpus(), this must be so.
229 	 *
230 	 * The single entry is guaranteed by having the lock owner unhash
231 	 * before it releases.
232 	 */
233 	BUG();
234 }
235 
236 static struct pv_node *pv_unhash(struct qspinlock *lock)
237 {
238 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
239 	struct pv_hash_entry *he;
240 	struct pv_node *node;
241 
242 	for_each_hash_entry(he, offset, hash) {
243 		if (READ_ONCE(he->lock) == lock) {
244 			node = READ_ONCE(he->node);
245 			WRITE_ONCE(he->lock, NULL);
246 			return node;
247 		}
248 	}
249 	/*
250 	 * Hard assume we'll find an entry.
251 	 *
252 	 * This guarantees a limited lookup time and is itself guaranteed by
253 	 * having the lock owner do the unhash -- IFF the unlock sees the
254 	 * SLOW flag, there MUST be a hash entry.
255 	 */
256 	BUG();
257 }
258 
259 /*
260  * Return true if when it is time to check the previous node which is not
261  * in a running state.
262  */
263 static inline bool
264 pv_wait_early(struct pv_node *prev, int loop)
265 {
266 	if ((loop & PV_PREV_CHECK_MASK) != 0)
267 		return false;
268 
269 	return READ_ONCE(prev->state) != vcpu_running;
270 }
271 
272 /*
273  * Initialize the PV part of the mcs_spinlock node.
274  */
275 static void pv_init_node(struct mcs_spinlock *node)
276 {
277 	struct pv_node *pn = (struct pv_node *)node;
278 
279 	BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
280 
281 	pn->cpu = smp_processor_id();
282 	pn->state = vcpu_running;
283 }
284 
285 /*
286  * Wait for node->locked to become true, halt the vcpu after a short spin.
287  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
288  * behalf.
289  */
290 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
291 {
292 	struct pv_node *pn = (struct pv_node *)node;
293 	struct pv_node *pp = (struct pv_node *)prev;
294 	bool wait_early;
295 	int loop;
296 
297 	for (;;) {
298 		for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
299 			if (READ_ONCE(node->locked))
300 				return;
301 			if (pv_wait_early(pp, loop)) {
302 				wait_early = true;
303 				break;
304 			}
305 			cpu_relax();
306 		}
307 
308 		/*
309 		 * Order pn->state vs pn->locked thusly:
310 		 *
311 		 * [S] pn->state = vcpu_halted	  [S] next->locked = 1
312 		 *     MB			      MB
313 		 * [L] pn->locked		[RmW] pn->state = vcpu_hashed
314 		 *
315 		 * Matches the cmpxchg() from pv_kick_node().
316 		 */
317 		smp_store_mb(pn->state, vcpu_halted);
318 
319 		if (!READ_ONCE(node->locked)) {
320 			lockevent_inc(pv_wait_node);
321 			lockevent_cond_inc(pv_wait_early, wait_early);
322 			pv_wait(&pn->state, vcpu_halted);
323 		}
324 
325 		/*
326 		 * If pv_kick_node() changed us to vcpu_hashed, retain that
327 		 * value so that pv_wait_head_or_lock() knows to not also try
328 		 * to hash this lock.
329 		 */
330 		cmpxchg(&pn->state, vcpu_halted, vcpu_running);
331 
332 		/*
333 		 * If the locked flag is still not set after wakeup, it is a
334 		 * spurious wakeup and the vCPU should wait again. However,
335 		 * there is a pretty high overhead for CPU halting and kicking.
336 		 * So it is better to spin for a while in the hope that the
337 		 * MCS lock will be released soon.
338 		 */
339 		lockevent_cond_inc(pv_spurious_wakeup,
340 				  !READ_ONCE(node->locked));
341 	}
342 
343 	/*
344 	 * By now our node->locked should be 1 and our caller will not actually
345 	 * spin-wait for it. We do however rely on our caller to do a
346 	 * load-acquire for us.
347 	 */
348 }
349 
350 /*
351  * Called after setting next->locked = 1 when we're the lock owner.
352  *
353  * Instead of waking the waiters stuck in pv_wait_node() advance their state
354  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
355  * wake/sleep cycle.
356  */
357 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
358 {
359 	struct pv_node *pn = (struct pv_node *)node;
360 	enum vcpu_state old = vcpu_halted;
361 	/*
362 	 * If the vCPU is indeed halted, advance its state to match that of
363 	 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
364 	 * observe its next->locked value and advance itself.
365 	 *
366 	 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
367 	 *
368 	 * The write to next->locked in arch_mcs_spin_unlock_contended()
369 	 * must be ordered before the read of pn->state in the cmpxchg()
370 	 * below for the code to work correctly. To guarantee full ordering
371 	 * irrespective of the success or failure of the cmpxchg(),
372 	 * a relaxed version with explicit barrier is used. The control
373 	 * dependency will order the reading of pn->state before any
374 	 * subsequent writes.
375 	 */
376 	smp_mb__before_atomic();
377 	if (!try_cmpxchg_relaxed(&pn->state, &old, vcpu_hashed))
378 		return;
379 
380 	/*
381 	 * Put the lock into the hash table and set the _Q_SLOW_VAL.
382 	 *
383 	 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
384 	 * the hash table later on at unlock time, no atomic instruction is
385 	 * needed.
386 	 */
387 	WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
388 	(void)pv_hash(lock, pn);
389 }
390 
391 /*
392  * Wait for l->locked to become clear and acquire the lock;
393  * halt the vcpu after a short spin.
394  * __pv_queued_spin_unlock() will wake us.
395  *
396  * The current value of the lock will be returned for additional processing.
397  */
398 static u32
399 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
400 {
401 	struct pv_node *pn = (struct pv_node *)node;
402 	struct qspinlock **lp = NULL;
403 	int waitcnt = 0;
404 	int loop;
405 
406 	/*
407 	 * If pv_kick_node() already advanced our state, we don't need to
408 	 * insert ourselves into the hash table anymore.
409 	 */
410 	if (READ_ONCE(pn->state) == vcpu_hashed)
411 		lp = (struct qspinlock **)1;
412 
413 	/*
414 	 * Tracking # of slowpath locking operations
415 	 */
416 	lockevent_inc(lock_slowpath);
417 
418 	for (;; waitcnt++) {
419 		/*
420 		 * Set correct vCPU state to be used by queue node wait-early
421 		 * mechanism.
422 		 */
423 		WRITE_ONCE(pn->state, vcpu_running);
424 
425 		/*
426 		 * Set the pending bit in the active lock spinning loop to
427 		 * disable lock stealing before attempting to acquire the lock.
428 		 */
429 		set_pending(lock);
430 		for (loop = SPIN_THRESHOLD; loop; loop--) {
431 			if (trylock_clear_pending(lock))
432 				goto gotlock;
433 			cpu_relax();
434 		}
435 		clear_pending(lock);
436 
437 
438 		if (!lp) { /* ONCE */
439 			lp = pv_hash(lock, pn);
440 
441 			/*
442 			 * We must hash before setting _Q_SLOW_VAL, such that
443 			 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
444 			 * we'll be sure to be able to observe our hash entry.
445 			 *
446 			 *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
447 			 *       MB                           RMB
448 			 * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
449 			 *
450 			 * Matches the smp_rmb() in __pv_queued_spin_unlock().
451 			 */
452 			if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
453 				/*
454 				 * The lock was free and now we own the lock.
455 				 * Change the lock value back to _Q_LOCKED_VAL
456 				 * and unhash the table.
457 				 */
458 				WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
459 				WRITE_ONCE(*lp, NULL);
460 				goto gotlock;
461 			}
462 		}
463 		WRITE_ONCE(pn->state, vcpu_hashed);
464 		lockevent_inc(pv_wait_head);
465 		lockevent_cond_inc(pv_wait_again, waitcnt);
466 		pv_wait(&lock->locked, _Q_SLOW_VAL);
467 
468 		/*
469 		 * Because of lock stealing, the queue head vCPU may not be
470 		 * able to acquire the lock before it has to wait again.
471 		 */
472 	}
473 
474 	/*
475 	 * The cmpxchg() or xchg() call before coming here provides the
476 	 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
477 	 * here is to indicate to the compiler that the value will always
478 	 * be nozero to enable better code optimization.
479 	 */
480 gotlock:
481 	return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
482 }
483 
484 /*
485  * Include the architecture specific callee-save thunk of the
486  * __pv_queued_spin_unlock(). This thunk is put together with
487  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
488  * function close to each other sharing consecutive instruction cachelines.
489  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
490  * can be defined.
491  */
492 #include <asm/qspinlock_paravirt.h>
493 
494 /*
495  * PV versions of the unlock fastpath and slowpath functions to be used
496  * instead of queued_spin_unlock().
497  */
498 __visible __lockfunc void
499 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
500 {
501 	struct pv_node *node;
502 
503 	if (unlikely(locked != _Q_SLOW_VAL)) {
504 		WARN(!debug_locks_silent,
505 		     "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
506 		     (unsigned long)lock, atomic_read(&lock->val));
507 		return;
508 	}
509 
510 	/*
511 	 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
512 	 * so we need a barrier to order the read of the node data in
513 	 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
514 	 *
515 	 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
516 	 */
517 	smp_rmb();
518 
519 	/*
520 	 * Since the above failed to release, this must be the SLOW path.
521 	 * Therefore start by looking up the blocked node and unhashing it.
522 	 */
523 	node = pv_unhash(lock);
524 
525 	/*
526 	 * Now that we have a reference to the (likely) blocked pv_node,
527 	 * release the lock.
528 	 */
529 	smp_store_release(&lock->locked, 0);
530 
531 	/*
532 	 * At this point the memory pointed at by lock can be freed/reused,
533 	 * however we can still use the pv_node to kick the CPU.
534 	 * The other vCPU may not really be halted, but kicking an active
535 	 * vCPU is harmless other than the additional latency in completing
536 	 * the unlock.
537 	 */
538 	lockevent_inc(pv_kick_unlock);
539 	pv_kick(node->cpu);
540 }
541 
542 #ifndef __pv_queued_spin_unlock
543 __visible __lockfunc void __pv_queued_spin_unlock(struct qspinlock *lock)
544 {
545 	u8 locked = _Q_LOCKED_VAL;
546 
547 	/*
548 	 * We must not unlock if SLOW, because in that case we must first
549 	 * unhash. Otherwise it would be possible to have multiple @lock
550 	 * entries, which would be BAD.
551 	 */
552 	if (try_cmpxchg_release(&lock->locked, &locked, 0))
553 		return;
554 
555 	__pv_queued_spin_unlock_slowpath(lock, locked);
556 }
557 #endif /* __pv_queued_spin_unlock */
558