1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Queued spinlock 4 * 5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 6 * (C) Copyright 2013-2014,2018 Red Hat, Inc. 7 * (C) Copyright 2015 Intel Corp. 8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 9 * 10 * Authors: Waiman Long <longman@redhat.com> 11 * Peter Zijlstra <peterz@infradead.org> 12 */ 13 14 #ifndef _GEN_PV_LOCK_SLOWPATH 15 16 #include <linux/smp.h> 17 #include <linux/bug.h> 18 #include <linux/cpumask.h> 19 #include <linux/percpu.h> 20 #include <linux/hardirq.h> 21 #include <linux/mutex.h> 22 #include <linux/prefetch.h> 23 #include <asm/byteorder.h> 24 #include <asm/qspinlock.h> 25 #include <trace/events/lock.h> 26 27 /* 28 * Include queued spinlock statistics code 29 */ 30 #include "qspinlock_stat.h" 31 32 /* 33 * The basic principle of a queue-based spinlock can best be understood 34 * by studying a classic queue-based spinlock implementation called the 35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable 36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and 37 * Scott") is available at 38 * 39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115 40 * 41 * This queued spinlock implementation is based on the MCS lock, however to 42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its 43 * existing API, we must modify it somehow. 44 * 45 * In particular; where the traditional MCS lock consists of a tail pointer 46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 47 * unlock the next pending (next->locked), we compress both these: {tail, 48 * next->locked} into a single u32 value. 49 * 50 * Since a spinlock disables recursion of its own context and there is a limit 51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 53 * we can encode the tail by combining the 2-bit nesting level with the cpu 54 * number. With one byte for the lock value and 3 bytes for the tail, only a 55 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 56 * we extend it to a full byte to achieve better performance for architectures 57 * that support atomic byte write. 58 * 59 * We also change the first spinner to spin on the lock bit instead of its 60 * node; whereby avoiding the need to carry a node from lock to unlock, and 61 * preserving existing lock API. This also makes the unlock code simpler and 62 * faster. 63 * 64 * N.B. The current implementation only supports architectures that allow 65 * atomic operations on smaller 8-bit and 16-bit data types. 66 * 67 */ 68 69 #include "mcs_spinlock.h" 70 #define MAX_NODES 4 71 72 /* 73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in 74 * size and four of them will fit nicely in one 64-byte cacheline. For 75 * pvqspinlock, however, we need more space for extra data. To accommodate 76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only 77 * two of them can fit in a cacheline in this case. That is OK as it is rare 78 * to have more than 2 levels of slowpath nesting in actual use. We don't 79 * want to penalize pvqspinlocks to optimize for a rare case in native 80 * qspinlocks. 81 */ 82 struct qnode { 83 struct mcs_spinlock mcs; 84 #ifdef CONFIG_PARAVIRT_SPINLOCKS 85 long reserved[2]; 86 #endif 87 }; 88 89 /* 90 * The pending bit spinning loop count. 91 * This heuristic is used to limit the number of lockword accesses 92 * made by atomic_cond_read_relaxed when waiting for the lock to 93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin 94 * indefinitely because there's no guarantee that we'll make forward 95 * progress. 96 */ 97 #ifndef _Q_PENDING_LOOPS 98 #define _Q_PENDING_LOOPS 1 99 #endif 100 101 /* 102 * Per-CPU queue node structures; we can never have more than 4 nested 103 * contexts: task, softirq, hardirq, nmi. 104 * 105 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 106 * 107 * PV doubles the storage and uses the second cacheline for PV state. 108 */ 109 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]); 110 111 /* 112 * We must be able to distinguish between no-tail and the tail at 0:0, 113 * therefore increment the cpu number by one. 114 */ 115 116 static inline __pure u32 encode_tail(int cpu, int idx) 117 { 118 u32 tail; 119 120 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 121 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 122 123 return tail; 124 } 125 126 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 127 { 128 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 129 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 130 131 return per_cpu_ptr(&qnodes[idx].mcs, cpu); 132 } 133 134 static inline __pure 135 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) 136 { 137 return &((struct qnode *)base + idx)->mcs; 138 } 139 140 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 141 142 #if _Q_PENDING_BITS == 8 143 /** 144 * clear_pending - clear the pending bit. 145 * @lock: Pointer to queued spinlock structure 146 * 147 * *,1,* -> *,0,* 148 */ 149 static __always_inline void clear_pending(struct qspinlock *lock) 150 { 151 WRITE_ONCE(lock->pending, 0); 152 } 153 154 /** 155 * clear_pending_set_locked - take ownership and clear the pending bit. 156 * @lock: Pointer to queued spinlock structure 157 * 158 * *,1,0 -> *,0,1 159 * 160 * Lock stealing is not allowed if this function is used. 161 */ 162 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 163 { 164 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); 165 } 166 167 /* 168 * xchg_tail - Put in the new queue tail code word & retrieve previous one 169 * @lock : Pointer to queued spinlock structure 170 * @tail : The new queue tail code word 171 * Return: The previous queue tail code word 172 * 173 * xchg(lock, tail), which heads an address dependency 174 * 175 * p,*,* -> n,*,* ; prev = xchg(lock, node) 176 */ 177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 178 { 179 /* 180 * We can use relaxed semantics since the caller ensures that the 181 * MCS node is properly initialized before updating the tail. 182 */ 183 return (u32)xchg_relaxed(&lock->tail, 184 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 185 } 186 187 #else /* _Q_PENDING_BITS == 8 */ 188 189 /** 190 * clear_pending - clear the pending bit. 191 * @lock: Pointer to queued spinlock structure 192 * 193 * *,1,* -> *,0,* 194 */ 195 static __always_inline void clear_pending(struct qspinlock *lock) 196 { 197 atomic_andnot(_Q_PENDING_VAL, &lock->val); 198 } 199 200 /** 201 * clear_pending_set_locked - take ownership and clear the pending bit. 202 * @lock: Pointer to queued spinlock structure 203 * 204 * *,1,0 -> *,0,1 205 */ 206 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 207 { 208 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 209 } 210 211 /** 212 * xchg_tail - Put in the new queue tail code word & retrieve previous one 213 * @lock : Pointer to queued spinlock structure 214 * @tail : The new queue tail code word 215 * Return: The previous queue tail code word 216 * 217 * xchg(lock, tail) 218 * 219 * p,*,* -> n,*,* ; prev = xchg(lock, node) 220 */ 221 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 222 { 223 u32 old, new, val = atomic_read(&lock->val); 224 225 for (;;) { 226 new = (val & _Q_LOCKED_PENDING_MASK) | tail; 227 /* 228 * We can use relaxed semantics since the caller ensures that 229 * the MCS node is properly initialized before updating the 230 * tail. 231 */ 232 old = atomic_cmpxchg_relaxed(&lock->val, val, new); 233 if (old == val) 234 break; 235 236 val = old; 237 } 238 return old; 239 } 240 #endif /* _Q_PENDING_BITS == 8 */ 241 242 /** 243 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending 244 * @lock : Pointer to queued spinlock structure 245 * Return: The previous lock value 246 * 247 * *,*,* -> *,1,* 248 */ 249 #ifndef queued_fetch_set_pending_acquire 250 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) 251 { 252 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); 253 } 254 #endif 255 256 /** 257 * set_locked - Set the lock bit and own the lock 258 * @lock: Pointer to queued spinlock structure 259 * 260 * *,*,0 -> *,0,1 261 */ 262 static __always_inline void set_locked(struct qspinlock *lock) 263 { 264 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 265 } 266 267 268 /* 269 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 270 * all the PV callbacks. 271 */ 272 273 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 274 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 275 struct mcs_spinlock *prev) { } 276 static __always_inline void __pv_kick_node(struct qspinlock *lock, 277 struct mcs_spinlock *node) { } 278 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 279 struct mcs_spinlock *node) 280 { return 0; } 281 282 #define pv_enabled() false 283 284 #define pv_init_node __pv_init_node 285 #define pv_wait_node __pv_wait_node 286 #define pv_kick_node __pv_kick_node 287 #define pv_wait_head_or_lock __pv_wait_head_or_lock 288 289 #ifdef CONFIG_PARAVIRT_SPINLOCKS 290 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 291 #endif 292 293 #endif /* _GEN_PV_LOCK_SLOWPATH */ 294 295 /** 296 * queued_spin_lock_slowpath - acquire the queued spinlock 297 * @lock: Pointer to queued spinlock structure 298 * @val: Current value of the queued spinlock 32-bit word 299 * 300 * (queue tail, pending bit, lock value) 301 * 302 * fast : slow : unlock 303 * : : 304 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 305 * : | ^--------.------. / : 306 * : v \ \ | : 307 * pending : (0,1,1) +--> (0,1,0) \ | : 308 * : | ^--' | | : 309 * : v | | : 310 * uncontended : (n,x,y) +--> (n,0,0) --' | : 311 * queue : | ^--' | : 312 * : v | : 313 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 314 * queue : ^--' : 315 */ 316 void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 317 { 318 struct mcs_spinlock *prev, *next, *node; 319 u32 old, tail; 320 int idx; 321 322 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 323 324 if (pv_enabled()) 325 goto pv_queue; 326 327 if (virt_spin_lock(lock)) 328 return; 329 330 /* 331 * Wait for in-progress pending->locked hand-overs with a bounded 332 * number of spins so that we guarantee forward progress. 333 * 334 * 0,1,0 -> 0,0,1 335 */ 336 if (val == _Q_PENDING_VAL) { 337 int cnt = _Q_PENDING_LOOPS; 338 val = atomic_cond_read_relaxed(&lock->val, 339 (VAL != _Q_PENDING_VAL) || !cnt--); 340 } 341 342 /* 343 * If we observe any contention; queue. 344 */ 345 if (val & ~_Q_LOCKED_MASK) 346 goto queue; 347 348 /* 349 * trylock || pending 350 * 351 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock 352 */ 353 val = queued_fetch_set_pending_acquire(lock); 354 355 /* 356 * If we observe contention, there is a concurrent locker. 357 * 358 * Undo and queue; our setting of PENDING might have made the 359 * n,0,0 -> 0,0,0 transition fail and it will now be waiting 360 * on @next to become !NULL. 361 */ 362 if (unlikely(val & ~_Q_LOCKED_MASK)) { 363 364 /* Undo PENDING if we set it. */ 365 if (!(val & _Q_PENDING_MASK)) 366 clear_pending(lock); 367 368 goto queue; 369 } 370 371 /* 372 * We're pending, wait for the owner to go away. 373 * 374 * 0,1,1 -> 0,1,0 375 * 376 * this wait loop must be a load-acquire such that we match the 377 * store-release that clears the locked bit and create lock 378 * sequentiality; this is because not all 379 * clear_pending_set_locked() implementations imply full 380 * barriers. 381 */ 382 if (val & _Q_LOCKED_MASK) 383 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK)); 384 385 /* 386 * take ownership and clear the pending bit. 387 * 388 * 0,1,0 -> 0,0,1 389 */ 390 clear_pending_set_locked(lock); 391 lockevent_inc(lock_pending); 392 return; 393 394 /* 395 * End of pending bit optimistic spinning and beginning of MCS 396 * queuing. 397 */ 398 queue: 399 lockevent_inc(lock_slowpath); 400 pv_queue: 401 node = this_cpu_ptr(&qnodes[0].mcs); 402 idx = node->count++; 403 tail = encode_tail(smp_processor_id(), idx); 404 405 trace_contention_begin(lock, LCB_F_SPIN); 406 407 /* 408 * 4 nodes are allocated based on the assumption that there will 409 * not be nested NMIs taking spinlocks. That may not be true in 410 * some architectures even though the chance of needing more than 411 * 4 nodes will still be extremely unlikely. When that happens, 412 * we fall back to spinning on the lock directly without using 413 * any MCS node. This is not the most elegant solution, but is 414 * simple enough. 415 */ 416 if (unlikely(idx >= MAX_NODES)) { 417 lockevent_inc(lock_no_node); 418 while (!queued_spin_trylock(lock)) 419 cpu_relax(); 420 goto release; 421 } 422 423 node = grab_mcs_node(node, idx); 424 425 /* 426 * Keep counts of non-zero index values: 427 */ 428 lockevent_cond_inc(lock_use_node2 + idx - 1, idx); 429 430 /* 431 * Ensure that we increment the head node->count before initialising 432 * the actual node. If the compiler is kind enough to reorder these 433 * stores, then an IRQ could overwrite our assignments. 434 */ 435 barrier(); 436 437 node->locked = 0; 438 node->next = NULL; 439 pv_init_node(node); 440 441 /* 442 * We touched a (possibly) cold cacheline in the per-cpu queue node; 443 * attempt the trylock once more in the hope someone let go while we 444 * weren't watching. 445 */ 446 if (queued_spin_trylock(lock)) 447 goto release; 448 449 /* 450 * Ensure that the initialisation of @node is complete before we 451 * publish the updated tail via xchg_tail() and potentially link 452 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. 453 */ 454 smp_wmb(); 455 456 /* 457 * Publish the updated tail. 458 * We have already touched the queueing cacheline; don't bother with 459 * pending stuff. 460 * 461 * p,*,* -> n,*,* 462 */ 463 old = xchg_tail(lock, tail); 464 next = NULL; 465 466 /* 467 * if there was a previous node; link it and wait until reaching the 468 * head of the waitqueue. 469 */ 470 if (old & _Q_TAIL_MASK) { 471 prev = decode_tail(old); 472 473 /* Link @node into the waitqueue. */ 474 WRITE_ONCE(prev->next, node); 475 476 pv_wait_node(node, prev); 477 arch_mcs_spin_lock_contended(&node->locked); 478 479 /* 480 * While waiting for the MCS lock, the next pointer may have 481 * been set by another lock waiter. We optimistically load 482 * the next pointer & prefetch the cacheline for writing 483 * to reduce latency in the upcoming MCS unlock operation. 484 */ 485 next = READ_ONCE(node->next); 486 if (next) 487 prefetchw(next); 488 } 489 490 /* 491 * we're at the head of the waitqueue, wait for the owner & pending to 492 * go away. 493 * 494 * *,x,y -> *,0,0 495 * 496 * this wait loop must use a load-acquire such that we match the 497 * store-release that clears the locked bit and create lock 498 * sequentiality; this is because the set_locked() function below 499 * does not imply a full barrier. 500 * 501 * The PV pv_wait_head_or_lock function, if active, will acquire 502 * the lock and return a non-zero value. So we have to skip the 503 * atomic_cond_read_acquire() call. As the next PV queue head hasn't 504 * been designated yet, there is no way for the locked value to become 505 * _Q_SLOW_VAL. So both the set_locked() and the 506 * atomic_cmpxchg_relaxed() calls will be safe. 507 * 508 * If PV isn't active, 0 will be returned instead. 509 * 510 */ 511 if ((val = pv_wait_head_or_lock(lock, node))) 512 goto locked; 513 514 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); 515 516 locked: 517 /* 518 * claim the lock: 519 * 520 * n,0,0 -> 0,0,1 : lock, uncontended 521 * *,*,0 -> *,*,1 : lock, contended 522 * 523 * If the queue head is the only one in the queue (lock value == tail) 524 * and nobody is pending, clear the tail code and grab the lock. 525 * Otherwise, we only need to grab the lock. 526 */ 527 528 /* 529 * In the PV case we might already have _Q_LOCKED_VAL set, because 530 * of lock stealing; therefore we must also allow: 531 * 532 * n,0,1 -> 0,0,1 533 * 534 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the 535 * above wait condition, therefore any concurrent setting of 536 * PENDING will make the uncontended transition fail. 537 */ 538 if ((val & _Q_TAIL_MASK) == tail) { 539 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) 540 goto release; /* No contention */ 541 } 542 543 /* 544 * Either somebody is queued behind us or _Q_PENDING_VAL got set 545 * which will then detect the remaining tail and queue behind us 546 * ensuring we'll see a @next. 547 */ 548 set_locked(lock); 549 550 /* 551 * contended path; wait for next if not observed yet, release. 552 */ 553 if (!next) 554 next = smp_cond_load_relaxed(&node->next, (VAL)); 555 556 arch_mcs_spin_unlock_contended(&next->locked); 557 pv_kick_node(lock, next); 558 559 release: 560 trace_contention_end(lock, 0); 561 562 /* 563 * release the node 564 */ 565 __this_cpu_dec(qnodes[0].mcs.count); 566 } 567 EXPORT_SYMBOL(queued_spin_lock_slowpath); 568 569 /* 570 * Generate the paravirt code for queued_spin_unlock_slowpath(). 571 */ 572 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 573 #define _GEN_PV_LOCK_SLOWPATH 574 575 #undef pv_enabled 576 #define pv_enabled() true 577 578 #undef pv_init_node 579 #undef pv_wait_node 580 #undef pv_kick_node 581 #undef pv_wait_head_or_lock 582 583 #undef queued_spin_lock_slowpath 584 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 585 586 #include "qspinlock_paravirt.h" 587 #include "qspinlock.c" 588 589 bool nopvspin __initdata; 590 static __init int parse_nopvspin(char *arg) 591 { 592 nopvspin = true; 593 return 0; 594 } 595 early_param("nopvspin", parse_nopvspin); 596 #endif 597