1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Queued spinlock 4 * 5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 6 * (C) Copyright 2013-2014,2018 Red Hat, Inc. 7 * (C) Copyright 2015 Intel Corp. 8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 9 * 10 * Authors: Waiman Long <longman@redhat.com> 11 * Peter Zijlstra <peterz@infradead.org> 12 */ 13 14 #ifndef _GEN_PV_LOCK_SLOWPATH 15 16 #include <linux/smp.h> 17 #include <linux/bug.h> 18 #include <linux/cpumask.h> 19 #include <linux/percpu.h> 20 #include <linux/hardirq.h> 21 #include <linux/mutex.h> 22 #include <linux/prefetch.h> 23 #include <asm/byteorder.h> 24 #include <asm/qspinlock.h> 25 #include <trace/events/lock.h> 26 27 /* 28 * Include queued spinlock statistics code 29 */ 30 #include "qspinlock_stat.h" 31 32 /* 33 * The basic principle of a queue-based spinlock can best be understood 34 * by studying a classic queue-based spinlock implementation called the 35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable 36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and 37 * Scott") is available at 38 * 39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115 40 * 41 * This queued spinlock implementation is based on the MCS lock, however to 42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its 43 * existing API, we must modify it somehow. 44 * 45 * In particular; where the traditional MCS lock consists of a tail pointer 46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 47 * unlock the next pending (next->locked), we compress both these: {tail, 48 * next->locked} into a single u32 value. 49 * 50 * Since a spinlock disables recursion of its own context and there is a limit 51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 53 * we can encode the tail by combining the 2-bit nesting level with the cpu 54 * number. With one byte for the lock value and 3 bytes for the tail, only a 55 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 56 * we extend it to a full byte to achieve better performance for architectures 57 * that support atomic byte write. 58 * 59 * We also change the first spinner to spin on the lock bit instead of its 60 * node; whereby avoiding the need to carry a node from lock to unlock, and 61 * preserving existing lock API. This also makes the unlock code simpler and 62 * faster. 63 * 64 * N.B. The current implementation only supports architectures that allow 65 * atomic operations on smaller 8-bit and 16-bit data types. 66 * 67 */ 68 69 #include "mcs_spinlock.h" 70 #define MAX_NODES 4 71 72 /* 73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in 74 * size and four of them will fit nicely in one 64-byte cacheline. For 75 * pvqspinlock, however, we need more space for extra data. To accommodate 76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only 77 * two of them can fit in a cacheline in this case. That is OK as it is rare 78 * to have more than 2 levels of slowpath nesting in actual use. We don't 79 * want to penalize pvqspinlocks to optimize for a rare case in native 80 * qspinlocks. 81 */ 82 struct qnode { 83 struct mcs_spinlock mcs; 84 #ifdef CONFIG_PARAVIRT_SPINLOCKS 85 long reserved[2]; 86 #endif 87 }; 88 89 /* 90 * The pending bit spinning loop count. 91 * This heuristic is used to limit the number of lockword accesses 92 * made by atomic_cond_read_relaxed when waiting for the lock to 93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin 94 * indefinitely because there's no guarantee that we'll make forward 95 * progress. 96 */ 97 #ifndef _Q_PENDING_LOOPS 98 #define _Q_PENDING_LOOPS 1 99 #endif 100 101 /* 102 * Per-CPU queue node structures; we can never have more than 4 nested 103 * contexts: task, softirq, hardirq, nmi. 104 * 105 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 106 * 107 * PV doubles the storage and uses the second cacheline for PV state. 108 */ 109 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]); 110 111 /* 112 * We must be able to distinguish between no-tail and the tail at 0:0, 113 * therefore increment the cpu number by one. 114 */ 115 116 static inline __pure u32 encode_tail(int cpu, int idx) 117 { 118 u32 tail; 119 120 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 121 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 122 123 return tail; 124 } 125 126 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 127 { 128 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 129 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 130 131 return per_cpu_ptr(&qnodes[idx].mcs, cpu); 132 } 133 134 static inline __pure 135 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) 136 { 137 return &((struct qnode *)base + idx)->mcs; 138 } 139 140 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 141 142 #if _Q_PENDING_BITS == 8 143 /** 144 * clear_pending - clear the pending bit. 145 * @lock: Pointer to queued spinlock structure 146 * 147 * *,1,* -> *,0,* 148 */ 149 static __always_inline void clear_pending(struct qspinlock *lock) 150 { 151 WRITE_ONCE(lock->pending, 0); 152 } 153 154 /** 155 * clear_pending_set_locked - take ownership and clear the pending bit. 156 * @lock: Pointer to queued spinlock structure 157 * 158 * *,1,0 -> *,0,1 159 * 160 * Lock stealing is not allowed if this function is used. 161 */ 162 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 163 { 164 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); 165 } 166 167 /* 168 * xchg_tail - Put in the new queue tail code word & retrieve previous one 169 * @lock : Pointer to queued spinlock structure 170 * @tail : The new queue tail code word 171 * Return: The previous queue tail code word 172 * 173 * xchg(lock, tail), which heads an address dependency 174 * 175 * p,*,* -> n,*,* ; prev = xchg(lock, node) 176 */ 177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 178 { 179 /* 180 * We can use relaxed semantics since the caller ensures that the 181 * MCS node is properly initialized before updating the tail. 182 */ 183 return (u32)xchg_relaxed(&lock->tail, 184 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 185 } 186 187 #else /* _Q_PENDING_BITS == 8 */ 188 189 /** 190 * clear_pending - clear the pending bit. 191 * @lock: Pointer to queued spinlock structure 192 * 193 * *,1,* -> *,0,* 194 */ 195 static __always_inline void clear_pending(struct qspinlock *lock) 196 { 197 atomic_andnot(_Q_PENDING_VAL, &lock->val); 198 } 199 200 /** 201 * clear_pending_set_locked - take ownership and clear the pending bit. 202 * @lock: Pointer to queued spinlock structure 203 * 204 * *,1,0 -> *,0,1 205 */ 206 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 207 { 208 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 209 } 210 211 /** 212 * xchg_tail - Put in the new queue tail code word & retrieve previous one 213 * @lock : Pointer to queued spinlock structure 214 * @tail : The new queue tail code word 215 * Return: The previous queue tail code word 216 * 217 * xchg(lock, tail) 218 * 219 * p,*,* -> n,*,* ; prev = xchg(lock, node) 220 */ 221 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 222 { 223 u32 old, new; 224 225 old = atomic_read(&lock->val); 226 do { 227 new = (old & _Q_LOCKED_PENDING_MASK) | tail; 228 /* 229 * We can use relaxed semantics since the caller ensures that 230 * the MCS node is properly initialized before updating the 231 * tail. 232 */ 233 } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new)); 234 235 return old; 236 } 237 #endif /* _Q_PENDING_BITS == 8 */ 238 239 /** 240 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending 241 * @lock : Pointer to queued spinlock structure 242 * Return: The previous lock value 243 * 244 * *,*,* -> *,1,* 245 */ 246 #ifndef queued_fetch_set_pending_acquire 247 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) 248 { 249 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); 250 } 251 #endif 252 253 /** 254 * set_locked - Set the lock bit and own the lock 255 * @lock: Pointer to queued spinlock structure 256 * 257 * *,*,0 -> *,0,1 258 */ 259 static __always_inline void set_locked(struct qspinlock *lock) 260 { 261 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 262 } 263 264 265 /* 266 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 267 * all the PV callbacks. 268 */ 269 270 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 271 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 272 struct mcs_spinlock *prev) { } 273 static __always_inline void __pv_kick_node(struct qspinlock *lock, 274 struct mcs_spinlock *node) { } 275 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 276 struct mcs_spinlock *node) 277 { return 0; } 278 279 #define pv_enabled() false 280 281 #define pv_init_node __pv_init_node 282 #define pv_wait_node __pv_wait_node 283 #define pv_kick_node __pv_kick_node 284 #define pv_wait_head_or_lock __pv_wait_head_or_lock 285 286 #ifdef CONFIG_PARAVIRT_SPINLOCKS 287 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 288 #endif 289 290 #endif /* _GEN_PV_LOCK_SLOWPATH */ 291 292 /** 293 * queued_spin_lock_slowpath - acquire the queued spinlock 294 * @lock: Pointer to queued spinlock structure 295 * @val: Current value of the queued spinlock 32-bit word 296 * 297 * (queue tail, pending bit, lock value) 298 * 299 * fast : slow : unlock 300 * : : 301 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 302 * : | ^--------.------. / : 303 * : v \ \ | : 304 * pending : (0,1,1) +--> (0,1,0) \ | : 305 * : | ^--' | | : 306 * : v | | : 307 * uncontended : (n,x,y) +--> (n,0,0) --' | : 308 * queue : | ^--' | : 309 * : v | : 310 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 311 * queue : ^--' : 312 */ 313 void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 314 { 315 struct mcs_spinlock *prev, *next, *node; 316 u32 old, tail; 317 int idx; 318 319 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 320 321 if (pv_enabled()) 322 goto pv_queue; 323 324 if (virt_spin_lock(lock)) 325 return; 326 327 /* 328 * Wait for in-progress pending->locked hand-overs with a bounded 329 * number of spins so that we guarantee forward progress. 330 * 331 * 0,1,0 -> 0,0,1 332 */ 333 if (val == _Q_PENDING_VAL) { 334 int cnt = _Q_PENDING_LOOPS; 335 val = atomic_cond_read_relaxed(&lock->val, 336 (VAL != _Q_PENDING_VAL) || !cnt--); 337 } 338 339 /* 340 * If we observe any contention; queue. 341 */ 342 if (val & ~_Q_LOCKED_MASK) 343 goto queue; 344 345 /* 346 * trylock || pending 347 * 348 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock 349 */ 350 val = queued_fetch_set_pending_acquire(lock); 351 352 /* 353 * If we observe contention, there is a concurrent locker. 354 * 355 * Undo and queue; our setting of PENDING might have made the 356 * n,0,0 -> 0,0,0 transition fail and it will now be waiting 357 * on @next to become !NULL. 358 */ 359 if (unlikely(val & ~_Q_LOCKED_MASK)) { 360 361 /* Undo PENDING if we set it. */ 362 if (!(val & _Q_PENDING_MASK)) 363 clear_pending(lock); 364 365 goto queue; 366 } 367 368 /* 369 * We're pending, wait for the owner to go away. 370 * 371 * 0,1,1 -> *,1,0 372 * 373 * this wait loop must be a load-acquire such that we match the 374 * store-release that clears the locked bit and create lock 375 * sequentiality; this is because not all 376 * clear_pending_set_locked() implementations imply full 377 * barriers. 378 */ 379 if (val & _Q_LOCKED_MASK) 380 smp_cond_load_acquire(&lock->locked, !VAL); 381 382 /* 383 * take ownership and clear the pending bit. 384 * 385 * 0,1,0 -> 0,0,1 386 */ 387 clear_pending_set_locked(lock); 388 lockevent_inc(lock_pending); 389 return; 390 391 /* 392 * End of pending bit optimistic spinning and beginning of MCS 393 * queuing. 394 */ 395 queue: 396 lockevent_inc(lock_slowpath); 397 pv_queue: 398 node = this_cpu_ptr(&qnodes[0].mcs); 399 idx = node->count++; 400 tail = encode_tail(smp_processor_id(), idx); 401 402 trace_contention_begin(lock, LCB_F_SPIN); 403 404 /* 405 * 4 nodes are allocated based on the assumption that there will 406 * not be nested NMIs taking spinlocks. That may not be true in 407 * some architectures even though the chance of needing more than 408 * 4 nodes will still be extremely unlikely. When that happens, 409 * we fall back to spinning on the lock directly without using 410 * any MCS node. This is not the most elegant solution, but is 411 * simple enough. 412 */ 413 if (unlikely(idx >= MAX_NODES)) { 414 lockevent_inc(lock_no_node); 415 while (!queued_spin_trylock(lock)) 416 cpu_relax(); 417 goto release; 418 } 419 420 node = grab_mcs_node(node, idx); 421 422 /* 423 * Keep counts of non-zero index values: 424 */ 425 lockevent_cond_inc(lock_use_node2 + idx - 1, idx); 426 427 /* 428 * Ensure that we increment the head node->count before initialising 429 * the actual node. If the compiler is kind enough to reorder these 430 * stores, then an IRQ could overwrite our assignments. 431 */ 432 barrier(); 433 434 node->locked = 0; 435 node->next = NULL; 436 pv_init_node(node); 437 438 /* 439 * We touched a (possibly) cold cacheline in the per-cpu queue node; 440 * attempt the trylock once more in the hope someone let go while we 441 * weren't watching. 442 */ 443 if (queued_spin_trylock(lock)) 444 goto release; 445 446 /* 447 * Ensure that the initialisation of @node is complete before we 448 * publish the updated tail via xchg_tail() and potentially link 449 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. 450 */ 451 smp_wmb(); 452 453 /* 454 * Publish the updated tail. 455 * We have already touched the queueing cacheline; don't bother with 456 * pending stuff. 457 * 458 * p,*,* -> n,*,* 459 */ 460 old = xchg_tail(lock, tail); 461 next = NULL; 462 463 /* 464 * if there was a previous node; link it and wait until reaching the 465 * head of the waitqueue. 466 */ 467 if (old & _Q_TAIL_MASK) { 468 prev = decode_tail(old); 469 470 /* Link @node into the waitqueue. */ 471 WRITE_ONCE(prev->next, node); 472 473 pv_wait_node(node, prev); 474 arch_mcs_spin_lock_contended(&node->locked); 475 476 /* 477 * While waiting for the MCS lock, the next pointer may have 478 * been set by another lock waiter. We optimistically load 479 * the next pointer & prefetch the cacheline for writing 480 * to reduce latency in the upcoming MCS unlock operation. 481 */ 482 next = READ_ONCE(node->next); 483 if (next) 484 prefetchw(next); 485 } 486 487 /* 488 * we're at the head of the waitqueue, wait for the owner & pending to 489 * go away. 490 * 491 * *,x,y -> *,0,0 492 * 493 * this wait loop must use a load-acquire such that we match the 494 * store-release that clears the locked bit and create lock 495 * sequentiality; this is because the set_locked() function below 496 * does not imply a full barrier. 497 * 498 * The PV pv_wait_head_or_lock function, if active, will acquire 499 * the lock and return a non-zero value. So we have to skip the 500 * atomic_cond_read_acquire() call. As the next PV queue head hasn't 501 * been designated yet, there is no way for the locked value to become 502 * _Q_SLOW_VAL. So both the set_locked() and the 503 * atomic_cmpxchg_relaxed() calls will be safe. 504 * 505 * If PV isn't active, 0 will be returned instead. 506 * 507 */ 508 if ((val = pv_wait_head_or_lock(lock, node))) 509 goto locked; 510 511 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); 512 513 locked: 514 /* 515 * claim the lock: 516 * 517 * n,0,0 -> 0,0,1 : lock, uncontended 518 * *,*,0 -> *,*,1 : lock, contended 519 * 520 * If the queue head is the only one in the queue (lock value == tail) 521 * and nobody is pending, clear the tail code and grab the lock. 522 * Otherwise, we only need to grab the lock. 523 */ 524 525 /* 526 * In the PV case we might already have _Q_LOCKED_VAL set, because 527 * of lock stealing; therefore we must also allow: 528 * 529 * n,0,1 -> 0,0,1 530 * 531 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the 532 * above wait condition, therefore any concurrent setting of 533 * PENDING will make the uncontended transition fail. 534 */ 535 if ((val & _Q_TAIL_MASK) == tail) { 536 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) 537 goto release; /* No contention */ 538 } 539 540 /* 541 * Either somebody is queued behind us or _Q_PENDING_VAL got set 542 * which will then detect the remaining tail and queue behind us 543 * ensuring we'll see a @next. 544 */ 545 set_locked(lock); 546 547 /* 548 * contended path; wait for next if not observed yet, release. 549 */ 550 if (!next) 551 next = smp_cond_load_relaxed(&node->next, (VAL)); 552 553 arch_mcs_spin_unlock_contended(&next->locked); 554 pv_kick_node(lock, next); 555 556 release: 557 trace_contention_end(lock, 0); 558 559 /* 560 * release the node 561 */ 562 __this_cpu_dec(qnodes[0].mcs.count); 563 } 564 EXPORT_SYMBOL(queued_spin_lock_slowpath); 565 566 /* 567 * Generate the paravirt code for queued_spin_unlock_slowpath(). 568 */ 569 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 570 #define _GEN_PV_LOCK_SLOWPATH 571 572 #undef pv_enabled 573 #define pv_enabled() true 574 575 #undef pv_init_node 576 #undef pv_wait_node 577 #undef pv_kick_node 578 #undef pv_wait_head_or_lock 579 580 #undef queued_spin_lock_slowpath 581 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 582 583 #include "qspinlock_paravirt.h" 584 #include "qspinlock.c" 585 586 bool nopvspin; 587 static __init int parse_nopvspin(char *arg) 588 { 589 nopvspin = true; 590 return 0; 591 } 592 early_param("nopvspin", parse_nopvspin); 593 #endif 594