xref: /linux/kernel/locking/percpu-rwsem.c (revision 0ff9848067b7b950a4ed70de7f5028600a2157e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/atomic.h>
3 #include <linux/rwsem.h>
4 #include <linux/percpu.h>
5 #include <linux/lockdep.h>
6 #include <linux/percpu-rwsem.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 
11 #include "rwsem.h"
12 
13 int __percpu_init_rwsem(struct percpu_rw_semaphore *sem,
14 			const char *name, struct lock_class_key *rwsem_key)
15 {
16 	sem->read_count = alloc_percpu(int);
17 	if (unlikely(!sem->read_count))
18 		return -ENOMEM;
19 
20 	/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */
21 	rcu_sync_init(&sem->rss, RCU_SCHED_SYNC);
22 	__init_rwsem(&sem->rw_sem, name, rwsem_key);
23 	rcuwait_init(&sem->writer);
24 	sem->readers_block = 0;
25 	return 0;
26 }
27 EXPORT_SYMBOL_GPL(__percpu_init_rwsem);
28 
29 void percpu_free_rwsem(struct percpu_rw_semaphore *sem)
30 {
31 	/*
32 	 * XXX: temporary kludge. The error path in alloc_super()
33 	 * assumes that percpu_free_rwsem() is safe after kzalloc().
34 	 */
35 	if (!sem->read_count)
36 		return;
37 
38 	rcu_sync_dtor(&sem->rss);
39 	free_percpu(sem->read_count);
40 	sem->read_count = NULL; /* catch use after free bugs */
41 }
42 EXPORT_SYMBOL_GPL(percpu_free_rwsem);
43 
44 int __percpu_down_read(struct percpu_rw_semaphore *sem, int try)
45 {
46 	/*
47 	 * Due to having preemption disabled the decrement happens on
48 	 * the same CPU as the increment, avoiding the
49 	 * increment-on-one-CPU-and-decrement-on-another problem.
50 	 *
51 	 * If the reader misses the writer's assignment of readers_block, then
52 	 * the writer is guaranteed to see the reader's increment.
53 	 *
54 	 * Conversely, any readers that increment their sem->read_count after
55 	 * the writer looks are guaranteed to see the readers_block value,
56 	 * which in turn means that they are guaranteed to immediately
57 	 * decrement their sem->read_count, so that it doesn't matter that the
58 	 * writer missed them.
59 	 */
60 
61 	smp_mb(); /* A matches D */
62 
63 	/*
64 	 * If !readers_block the critical section starts here, matched by the
65 	 * release in percpu_up_write().
66 	 */
67 	if (likely(!smp_load_acquire(&sem->readers_block)))
68 		return 1;
69 
70 	/*
71 	 * Per the above comment; we still have preemption disabled and
72 	 * will thus decrement on the same CPU as we incremented.
73 	 */
74 	__percpu_up_read(sem);
75 
76 	if (try)
77 		return 0;
78 
79 	/*
80 	 * We either call schedule() in the wait, or we'll fall through
81 	 * and reschedule on the preempt_enable() in percpu_down_read().
82 	 */
83 	preempt_enable_no_resched();
84 
85 	/*
86 	 * Avoid lockdep for the down/up_read() we already have them.
87 	 */
88 	__down_read(&sem->rw_sem);
89 	this_cpu_inc(*sem->read_count);
90 	__up_read(&sem->rw_sem);
91 
92 	preempt_disable();
93 	return 1;
94 }
95 EXPORT_SYMBOL_GPL(__percpu_down_read);
96 
97 void __percpu_up_read(struct percpu_rw_semaphore *sem)
98 {
99 	smp_mb(); /* B matches C */
100 	/*
101 	 * In other words, if they see our decrement (presumably to aggregate
102 	 * zero, as that is the only time it matters) they will also see our
103 	 * critical section.
104 	 */
105 	__this_cpu_dec(*sem->read_count);
106 
107 	/* Prod writer to recheck readers_active */
108 	rcuwait_wake_up(&sem->writer);
109 }
110 EXPORT_SYMBOL_GPL(__percpu_up_read);
111 
112 #define per_cpu_sum(var)						\
113 ({									\
114 	typeof(var) __sum = 0;						\
115 	int cpu;							\
116 	compiletime_assert_atomic_type(__sum);				\
117 	for_each_possible_cpu(cpu)					\
118 		__sum += per_cpu(var, cpu);				\
119 	__sum;								\
120 })
121 
122 /*
123  * Return true if the modular sum of the sem->read_count per-CPU variable is
124  * zero.  If this sum is zero, then it is stable due to the fact that if any
125  * newly arriving readers increment a given counter, they will immediately
126  * decrement that same counter.
127  */
128 static bool readers_active_check(struct percpu_rw_semaphore *sem)
129 {
130 	if (per_cpu_sum(*sem->read_count) != 0)
131 		return false;
132 
133 	/*
134 	 * If we observed the decrement; ensure we see the entire critical
135 	 * section.
136 	 */
137 
138 	smp_mb(); /* C matches B */
139 
140 	return true;
141 }
142 
143 void percpu_down_write(struct percpu_rw_semaphore *sem)
144 {
145 	/* Notify readers to take the slow path. */
146 	rcu_sync_enter(&sem->rss);
147 
148 	down_write(&sem->rw_sem);
149 
150 	/*
151 	 * Notify new readers to block; up until now, and thus throughout the
152 	 * longish rcu_sync_enter() above, new readers could still come in.
153 	 */
154 	WRITE_ONCE(sem->readers_block, 1);
155 
156 	smp_mb(); /* D matches A */
157 
158 	/*
159 	 * If they don't see our writer of readers_block, then we are
160 	 * guaranteed to see their sem->read_count increment, and therefore
161 	 * will wait for them.
162 	 */
163 
164 	/* Wait for all now active readers to complete. */
165 	rcuwait_wait_event(&sem->writer, readers_active_check(sem));
166 }
167 EXPORT_SYMBOL_GPL(percpu_down_write);
168 
169 void percpu_up_write(struct percpu_rw_semaphore *sem)
170 {
171 	/*
172 	 * Signal the writer is done, no fast path yet.
173 	 *
174 	 * One reason that we cannot just immediately flip to readers_fast is
175 	 * that new readers might fail to see the results of this writer's
176 	 * critical section.
177 	 *
178 	 * Therefore we force it through the slow path which guarantees an
179 	 * acquire and thereby guarantees the critical section's consistency.
180 	 */
181 	smp_store_release(&sem->readers_block, 0);
182 
183 	/*
184 	 * Release the write lock, this will allow readers back in the game.
185 	 */
186 	up_write(&sem->rw_sem);
187 
188 	/*
189 	 * Once this completes (at least one RCU-sched grace period hence) the
190 	 * reader fast path will be available again. Safe to use outside the
191 	 * exclusive write lock because its counting.
192 	 */
193 	rcu_sync_exit(&sem->rss);
194 }
195 EXPORT_SYMBOL_GPL(percpu_up_write);
196