1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/lock.h> 35 36 #ifndef CONFIG_PREEMPT_RT 37 #include "mutex.h" 38 39 #ifdef CONFIG_DEBUG_MUTEXES 40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 41 #else 42 # define MUTEX_WARN_ON(cond) 43 #endif 44 45 void 46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 47 { 48 atomic_long_set(&lock->owner, 0); 49 raw_spin_lock_init(&lock->wait_lock); 50 INIT_LIST_HEAD(&lock->wait_list); 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 52 osq_lock_init(&lock->osq); 53 #endif 54 55 debug_mutex_init(lock, name, key); 56 } 57 EXPORT_SYMBOL(__mutex_init); 58 59 static inline struct task_struct *__owner_task(unsigned long owner) 60 { 61 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 62 } 63 64 bool mutex_is_locked(struct mutex *lock) 65 { 66 return __mutex_owner(lock) != NULL; 67 } 68 EXPORT_SYMBOL(mutex_is_locked); 69 70 static inline unsigned long __owner_flags(unsigned long owner) 71 { 72 return owner & MUTEX_FLAGS; 73 } 74 75 /* 76 * Returns: __mutex_owner(lock) on failure or NULL on success. 77 */ 78 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 79 { 80 unsigned long owner, curr = (unsigned long)current; 81 82 owner = atomic_long_read(&lock->owner); 83 for (;;) { /* must loop, can race against a flag */ 84 unsigned long flags = __owner_flags(owner); 85 unsigned long task = owner & ~MUTEX_FLAGS; 86 87 if (task) { 88 if (flags & MUTEX_FLAG_PICKUP) { 89 if (task != curr) 90 break; 91 flags &= ~MUTEX_FLAG_PICKUP; 92 } else if (handoff) { 93 if (flags & MUTEX_FLAG_HANDOFF) 94 break; 95 flags |= MUTEX_FLAG_HANDOFF; 96 } else { 97 break; 98 } 99 } else { 100 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 101 task = curr; 102 } 103 104 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 105 if (task == curr) 106 return NULL; 107 break; 108 } 109 } 110 111 return __owner_task(owner); 112 } 113 114 /* 115 * Trylock or set HANDOFF 116 */ 117 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 118 { 119 return !__mutex_trylock_common(lock, handoff); 120 } 121 122 /* 123 * Actual trylock that will work on any unlocked state. 124 */ 125 static inline bool __mutex_trylock(struct mutex *lock) 126 { 127 return !__mutex_trylock_common(lock, false); 128 } 129 130 #ifndef CONFIG_DEBUG_LOCK_ALLOC 131 /* 132 * Lockdep annotations are contained to the slow paths for simplicity. 133 * There is nothing that would stop spreading the lockdep annotations outwards 134 * except more code. 135 */ 136 137 /* 138 * Optimistic trylock that only works in the uncontended case. Make sure to 139 * follow with a __mutex_trylock() before failing. 140 */ 141 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 142 { 143 unsigned long curr = (unsigned long)current; 144 unsigned long zero = 0UL; 145 146 MUTEX_WARN_ON(lock->magic != lock); 147 148 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 149 return true; 150 151 return false; 152 } 153 154 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 155 { 156 unsigned long curr = (unsigned long)current; 157 158 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 159 } 160 #endif 161 162 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 163 { 164 atomic_long_or(flag, &lock->owner); 165 } 166 167 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 168 { 169 atomic_long_andnot(flag, &lock->owner); 170 } 171 172 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 173 { 174 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 175 } 176 177 /* 178 * Add @waiter to a given location in the lock wait_list and set the 179 * FLAG_WAITERS flag if it's the first waiter. 180 */ 181 static void 182 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 183 struct list_head *list) 184 { 185 debug_mutex_add_waiter(lock, waiter, current); 186 187 list_add_tail(&waiter->list, list); 188 if (__mutex_waiter_is_first(lock, waiter)) 189 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 190 } 191 192 static void 193 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 194 { 195 list_del(&waiter->list); 196 if (likely(list_empty(&lock->wait_list))) 197 __mutex_clear_flag(lock, MUTEX_FLAGS); 198 199 debug_mutex_remove_waiter(lock, waiter, current); 200 } 201 202 /* 203 * Give up ownership to a specific task, when @task = NULL, this is equivalent 204 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 205 * WAITERS. Provides RELEASE semantics like a regular unlock, the 206 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 207 */ 208 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 209 { 210 unsigned long owner = atomic_long_read(&lock->owner); 211 212 for (;;) { 213 unsigned long new; 214 215 MUTEX_WARN_ON(__owner_task(owner) != current); 216 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 217 218 new = (owner & MUTEX_FLAG_WAITERS); 219 new |= (unsigned long)task; 220 if (task) 221 new |= MUTEX_FLAG_PICKUP; 222 223 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 224 break; 225 } 226 } 227 228 #ifndef CONFIG_DEBUG_LOCK_ALLOC 229 /* 230 * We split the mutex lock/unlock logic into separate fastpath and 231 * slowpath functions, to reduce the register pressure on the fastpath. 232 * We also put the fastpath first in the kernel image, to make sure the 233 * branch is predicted by the CPU as default-untaken. 234 */ 235 static void __sched __mutex_lock_slowpath(struct mutex *lock); 236 237 /** 238 * mutex_lock - acquire the mutex 239 * @lock: the mutex to be acquired 240 * 241 * Lock the mutex exclusively for this task. If the mutex is not 242 * available right now, it will sleep until it can get it. 243 * 244 * The mutex must later on be released by the same task that 245 * acquired it. Recursive locking is not allowed. The task 246 * may not exit without first unlocking the mutex. Also, kernel 247 * memory where the mutex resides must not be freed with 248 * the mutex still locked. The mutex must first be initialized 249 * (or statically defined) before it can be locked. memset()-ing 250 * the mutex to 0 is not allowed. 251 * 252 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 253 * checks that will enforce the restrictions and will also do 254 * deadlock debugging) 255 * 256 * This function is similar to (but not equivalent to) down(). 257 */ 258 void __sched mutex_lock(struct mutex *lock) 259 { 260 might_sleep(); 261 262 if (!__mutex_trylock_fast(lock)) 263 __mutex_lock_slowpath(lock); 264 } 265 EXPORT_SYMBOL(mutex_lock); 266 #endif 267 268 #include "ww_mutex.h" 269 270 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 271 272 /* 273 * Trylock variant that returns the owning task on failure. 274 */ 275 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 276 { 277 return __mutex_trylock_common(lock, false); 278 } 279 280 static inline 281 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 282 struct mutex_waiter *waiter) 283 { 284 struct ww_mutex *ww; 285 286 ww = container_of(lock, struct ww_mutex, base); 287 288 /* 289 * If ww->ctx is set the contents are undefined, only 290 * by acquiring wait_lock there is a guarantee that 291 * they are not invalid when reading. 292 * 293 * As such, when deadlock detection needs to be 294 * performed the optimistic spinning cannot be done. 295 * 296 * Check this in every inner iteration because we may 297 * be racing against another thread's ww_mutex_lock. 298 */ 299 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 300 return false; 301 302 /* 303 * If we aren't on the wait list yet, cancel the spin 304 * if there are waiters. We want to avoid stealing the 305 * lock from a waiter with an earlier stamp, since the 306 * other thread may already own a lock that we also 307 * need. 308 */ 309 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 310 return false; 311 312 /* 313 * Similarly, stop spinning if we are no longer the 314 * first waiter. 315 */ 316 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 317 return false; 318 319 return true; 320 } 321 322 /* 323 * Look out! "owner" is an entirely speculative pointer access and not 324 * reliable. 325 * 326 * "noinline" so that this function shows up on perf profiles. 327 */ 328 static noinline 329 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 330 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 331 { 332 bool ret = true; 333 334 lockdep_assert_preemption_disabled(); 335 336 while (__mutex_owner(lock) == owner) { 337 /* 338 * Ensure we emit the owner->on_cpu, dereference _after_ 339 * checking lock->owner still matches owner. And we already 340 * disabled preemption which is equal to the RCU read-side 341 * crital section in optimistic spinning code. Thus the 342 * task_strcut structure won't go away during the spinning 343 * period 344 */ 345 barrier(); 346 347 /* 348 * Use vcpu_is_preempted to detect lock holder preemption issue. 349 */ 350 if (!owner_on_cpu(owner) || need_resched()) { 351 ret = false; 352 break; 353 } 354 355 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 356 ret = false; 357 break; 358 } 359 360 cpu_relax(); 361 } 362 363 return ret; 364 } 365 366 /* 367 * Initial check for entering the mutex spinning loop 368 */ 369 static inline int mutex_can_spin_on_owner(struct mutex *lock) 370 { 371 struct task_struct *owner; 372 int retval = 1; 373 374 lockdep_assert_preemption_disabled(); 375 376 if (need_resched()) 377 return 0; 378 379 /* 380 * We already disabled preemption which is equal to the RCU read-side 381 * crital section in optimistic spinning code. Thus the task_strcut 382 * structure won't go away during the spinning period. 383 */ 384 owner = __mutex_owner(lock); 385 if (owner) 386 retval = owner_on_cpu(owner); 387 388 /* 389 * If lock->owner is not set, the mutex has been released. Return true 390 * such that we'll trylock in the spin path, which is a faster option 391 * than the blocking slow path. 392 */ 393 return retval; 394 } 395 396 /* 397 * Optimistic spinning. 398 * 399 * We try to spin for acquisition when we find that the lock owner 400 * is currently running on a (different) CPU and while we don't 401 * need to reschedule. The rationale is that if the lock owner is 402 * running, it is likely to release the lock soon. 403 * 404 * The mutex spinners are queued up using MCS lock so that only one 405 * spinner can compete for the mutex. However, if mutex spinning isn't 406 * going to happen, there is no point in going through the lock/unlock 407 * overhead. 408 * 409 * Returns true when the lock was taken, otherwise false, indicating 410 * that we need to jump to the slowpath and sleep. 411 * 412 * The waiter flag is set to true if the spinner is a waiter in the wait 413 * queue. The waiter-spinner will spin on the lock directly and concurrently 414 * with the spinner at the head of the OSQ, if present, until the owner is 415 * changed to itself. 416 */ 417 static __always_inline bool 418 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 419 struct mutex_waiter *waiter) 420 { 421 if (!waiter) { 422 /* 423 * The purpose of the mutex_can_spin_on_owner() function is 424 * to eliminate the overhead of osq_lock() and osq_unlock() 425 * in case spinning isn't possible. As a waiter-spinner 426 * is not going to take OSQ lock anyway, there is no need 427 * to call mutex_can_spin_on_owner(). 428 */ 429 if (!mutex_can_spin_on_owner(lock)) 430 goto fail; 431 432 /* 433 * In order to avoid a stampede of mutex spinners trying to 434 * acquire the mutex all at once, the spinners need to take a 435 * MCS (queued) lock first before spinning on the owner field. 436 */ 437 if (!osq_lock(&lock->osq)) 438 goto fail; 439 } 440 441 for (;;) { 442 struct task_struct *owner; 443 444 /* Try to acquire the mutex... */ 445 owner = __mutex_trylock_or_owner(lock); 446 if (!owner) 447 break; 448 449 /* 450 * There's an owner, wait for it to either 451 * release the lock or go to sleep. 452 */ 453 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 454 goto fail_unlock; 455 456 /* 457 * The cpu_relax() call is a compiler barrier which forces 458 * everything in this loop to be re-loaded. We don't need 459 * memory barriers as we'll eventually observe the right 460 * values at the cost of a few extra spins. 461 */ 462 cpu_relax(); 463 } 464 465 if (!waiter) 466 osq_unlock(&lock->osq); 467 468 return true; 469 470 471 fail_unlock: 472 if (!waiter) 473 osq_unlock(&lock->osq); 474 475 fail: 476 /* 477 * If we fell out of the spin path because of need_resched(), 478 * reschedule now, before we try-lock the mutex. This avoids getting 479 * scheduled out right after we obtained the mutex. 480 */ 481 if (need_resched()) { 482 /* 483 * We _should_ have TASK_RUNNING here, but just in case 484 * we do not, make it so, otherwise we might get stuck. 485 */ 486 __set_current_state(TASK_RUNNING); 487 schedule_preempt_disabled(); 488 } 489 490 return false; 491 } 492 #else 493 static __always_inline bool 494 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 495 struct mutex_waiter *waiter) 496 { 497 return false; 498 } 499 #endif 500 501 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 502 503 /** 504 * mutex_unlock - release the mutex 505 * @lock: the mutex to be released 506 * 507 * Unlock a mutex that has been locked by this task previously. 508 * 509 * This function must not be used in interrupt context. Unlocking 510 * of a not locked mutex is not allowed. 511 * 512 * The caller must ensure that the mutex stays alive until this function has 513 * returned - mutex_unlock() can NOT directly be used to release an object such 514 * that another concurrent task can free it. 515 * Mutexes are different from spinlocks & refcounts in this aspect. 516 * 517 * This function is similar to (but not equivalent to) up(). 518 */ 519 void __sched mutex_unlock(struct mutex *lock) 520 { 521 #ifndef CONFIG_DEBUG_LOCK_ALLOC 522 if (__mutex_unlock_fast(lock)) 523 return; 524 #endif 525 __mutex_unlock_slowpath(lock, _RET_IP_); 526 } 527 EXPORT_SYMBOL(mutex_unlock); 528 529 /** 530 * ww_mutex_unlock - release the w/w mutex 531 * @lock: the mutex to be released 532 * 533 * Unlock a mutex that has been locked by this task previously with any of the 534 * ww_mutex_lock* functions (with or without an acquire context). It is 535 * forbidden to release the locks after releasing the acquire context. 536 * 537 * This function must not be used in interrupt context. Unlocking 538 * of a unlocked mutex is not allowed. 539 */ 540 void __sched ww_mutex_unlock(struct ww_mutex *lock) 541 { 542 __ww_mutex_unlock(lock); 543 mutex_unlock(&lock->base); 544 } 545 EXPORT_SYMBOL(ww_mutex_unlock); 546 547 /* 548 * Lock a mutex (possibly interruptible), slowpath: 549 */ 550 static __always_inline int __sched 551 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 552 struct lockdep_map *nest_lock, unsigned long ip, 553 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 554 { 555 DEFINE_WAKE_Q(wake_q); 556 struct mutex_waiter waiter; 557 struct ww_mutex *ww; 558 unsigned long flags; 559 int ret; 560 561 if (!use_ww_ctx) 562 ww_ctx = NULL; 563 564 might_sleep(); 565 566 MUTEX_WARN_ON(lock->magic != lock); 567 568 ww = container_of(lock, struct ww_mutex, base); 569 if (ww_ctx) { 570 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 571 return -EALREADY; 572 573 /* 574 * Reset the wounded flag after a kill. No other process can 575 * race and wound us here since they can't have a valid owner 576 * pointer if we don't have any locks held. 577 */ 578 if (ww_ctx->acquired == 0) 579 ww_ctx->wounded = 0; 580 581 #ifdef CONFIG_DEBUG_LOCK_ALLOC 582 nest_lock = &ww_ctx->dep_map; 583 #endif 584 } 585 586 preempt_disable(); 587 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 588 589 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 590 if (__mutex_trylock(lock) || 591 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 592 /* got the lock, yay! */ 593 lock_acquired(&lock->dep_map, ip); 594 if (ww_ctx) 595 ww_mutex_set_context_fastpath(ww, ww_ctx); 596 trace_contention_end(lock, 0); 597 preempt_enable(); 598 return 0; 599 } 600 601 raw_spin_lock_irqsave(&lock->wait_lock, flags); 602 /* 603 * After waiting to acquire the wait_lock, try again. 604 */ 605 if (__mutex_trylock(lock)) { 606 if (ww_ctx) 607 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 608 609 goto skip_wait; 610 } 611 612 debug_mutex_lock_common(lock, &waiter); 613 waiter.task = current; 614 if (use_ww_ctx) 615 waiter.ww_ctx = ww_ctx; 616 617 lock_contended(&lock->dep_map, ip); 618 619 if (!use_ww_ctx) { 620 /* add waiting tasks to the end of the waitqueue (FIFO): */ 621 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 622 } else { 623 /* 624 * Add in stamp order, waking up waiters that must kill 625 * themselves. 626 */ 627 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); 628 if (ret) 629 goto err_early_kill; 630 } 631 632 set_current_state(state); 633 trace_contention_begin(lock, LCB_F_MUTEX); 634 for (;;) { 635 bool first; 636 637 /* 638 * Once we hold wait_lock, we're serialized against 639 * mutex_unlock() handing the lock off to us, do a trylock 640 * before testing the error conditions to make sure we pick up 641 * the handoff. 642 */ 643 if (__mutex_trylock(lock)) 644 goto acquired; 645 646 /* 647 * Check for signals and kill conditions while holding 648 * wait_lock. This ensures the lock cancellation is ordered 649 * against mutex_unlock() and wake-ups do not go missing. 650 */ 651 if (signal_pending_state(state, current)) { 652 ret = -EINTR; 653 goto err; 654 } 655 656 if (ww_ctx) { 657 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 658 if (ret) 659 goto err; 660 } 661 662 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 663 664 schedule_preempt_disabled(); 665 666 first = __mutex_waiter_is_first(lock, &waiter); 667 668 set_current_state(state); 669 /* 670 * Here we order against unlock; we must either see it change 671 * state back to RUNNING and fall through the next schedule(), 672 * or we must see its unlock and acquire. 673 */ 674 if (__mutex_trylock_or_handoff(lock, first)) 675 break; 676 677 if (first) { 678 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 679 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 680 break; 681 trace_contention_begin(lock, LCB_F_MUTEX); 682 } 683 684 raw_spin_lock_irqsave(&lock->wait_lock, flags); 685 } 686 raw_spin_lock_irqsave(&lock->wait_lock, flags); 687 acquired: 688 __set_current_state(TASK_RUNNING); 689 690 if (ww_ctx) { 691 /* 692 * Wound-Wait; we stole the lock (!first_waiter), check the 693 * waiters as anyone might want to wound us. 694 */ 695 if (!ww_ctx->is_wait_die && 696 !__mutex_waiter_is_first(lock, &waiter)) 697 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 698 } 699 700 __mutex_remove_waiter(lock, &waiter); 701 702 debug_mutex_free_waiter(&waiter); 703 704 skip_wait: 705 /* got the lock - cleanup and rejoice! */ 706 lock_acquired(&lock->dep_map, ip); 707 trace_contention_end(lock, 0); 708 709 if (ww_ctx) 710 ww_mutex_lock_acquired(ww, ww_ctx); 711 712 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 713 preempt_enable(); 714 return 0; 715 716 err: 717 __set_current_state(TASK_RUNNING); 718 __mutex_remove_waiter(lock, &waiter); 719 err_early_kill: 720 trace_contention_end(lock, ret); 721 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 722 debug_mutex_free_waiter(&waiter); 723 mutex_release(&lock->dep_map, ip); 724 preempt_enable(); 725 return ret; 726 } 727 728 static int __sched 729 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 730 struct lockdep_map *nest_lock, unsigned long ip) 731 { 732 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 733 } 734 735 static int __sched 736 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 737 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 738 { 739 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 740 } 741 742 /** 743 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 744 * @ww: mutex to lock 745 * @ww_ctx: optional w/w acquire context 746 * 747 * Trylocks a mutex with the optional acquire context; no deadlock detection is 748 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 749 * 750 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 751 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 752 * 753 * A mutex acquired with this function must be released with ww_mutex_unlock. 754 */ 755 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 756 { 757 if (!ww_ctx) 758 return mutex_trylock(&ww->base); 759 760 MUTEX_WARN_ON(ww->base.magic != &ww->base); 761 762 /* 763 * Reset the wounded flag after a kill. No other process can 764 * race and wound us here, since they can't have a valid owner 765 * pointer if we don't have any locks held. 766 */ 767 if (ww_ctx->acquired == 0) 768 ww_ctx->wounded = 0; 769 770 if (__mutex_trylock(&ww->base)) { 771 ww_mutex_set_context_fastpath(ww, ww_ctx); 772 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 773 return 1; 774 } 775 776 return 0; 777 } 778 EXPORT_SYMBOL(ww_mutex_trylock); 779 780 #ifdef CONFIG_DEBUG_LOCK_ALLOC 781 void __sched 782 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 783 { 784 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 785 } 786 787 EXPORT_SYMBOL_GPL(mutex_lock_nested); 788 789 void __sched 790 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 791 { 792 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 793 } 794 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 795 796 int __sched 797 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 798 { 799 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 800 } 801 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 802 803 int __sched 804 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 805 { 806 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 807 } 808 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 809 810 void __sched 811 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 812 { 813 int token; 814 815 might_sleep(); 816 817 token = io_schedule_prepare(); 818 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 819 subclass, NULL, _RET_IP_, NULL, 0); 820 io_schedule_finish(token); 821 } 822 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 823 824 static inline int 825 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 826 { 827 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 828 unsigned tmp; 829 830 if (ctx->deadlock_inject_countdown-- == 0) { 831 tmp = ctx->deadlock_inject_interval; 832 if (tmp > UINT_MAX/4) 833 tmp = UINT_MAX; 834 else 835 tmp = tmp*2 + tmp + tmp/2; 836 837 ctx->deadlock_inject_interval = tmp; 838 ctx->deadlock_inject_countdown = tmp; 839 ctx->contending_lock = lock; 840 841 ww_mutex_unlock(lock); 842 843 return -EDEADLK; 844 } 845 #endif 846 847 return 0; 848 } 849 850 int __sched 851 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 852 { 853 int ret; 854 855 might_sleep(); 856 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 857 0, _RET_IP_, ctx); 858 if (!ret && ctx && ctx->acquired > 1) 859 return ww_mutex_deadlock_injection(lock, ctx); 860 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(ww_mutex_lock); 864 865 int __sched 866 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 867 { 868 int ret; 869 870 might_sleep(); 871 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 872 0, _RET_IP_, ctx); 873 874 if (!ret && ctx && ctx->acquired > 1) 875 return ww_mutex_deadlock_injection(lock, ctx); 876 877 return ret; 878 } 879 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 880 881 #endif 882 883 /* 884 * Release the lock, slowpath: 885 */ 886 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 887 { 888 struct task_struct *next = NULL; 889 DEFINE_WAKE_Q(wake_q); 890 unsigned long owner; 891 unsigned long flags; 892 893 mutex_release(&lock->dep_map, ip); 894 895 /* 896 * Release the lock before (potentially) taking the spinlock such that 897 * other contenders can get on with things ASAP. 898 * 899 * Except when HANDOFF, in that case we must not clear the owner field, 900 * but instead set it to the top waiter. 901 */ 902 owner = atomic_long_read(&lock->owner); 903 for (;;) { 904 MUTEX_WARN_ON(__owner_task(owner) != current); 905 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 906 907 if (owner & MUTEX_FLAG_HANDOFF) 908 break; 909 910 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 911 if (owner & MUTEX_FLAG_WAITERS) 912 break; 913 914 return; 915 } 916 } 917 918 raw_spin_lock_irqsave(&lock->wait_lock, flags); 919 debug_mutex_unlock(lock); 920 if (!list_empty(&lock->wait_list)) { 921 /* get the first entry from the wait-list: */ 922 struct mutex_waiter *waiter = 923 list_first_entry(&lock->wait_list, 924 struct mutex_waiter, list); 925 926 next = waiter->task; 927 928 debug_mutex_wake_waiter(lock, waiter); 929 wake_q_add(&wake_q, next); 930 } 931 932 if (owner & MUTEX_FLAG_HANDOFF) 933 __mutex_handoff(lock, next); 934 935 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 936 } 937 938 #ifndef CONFIG_DEBUG_LOCK_ALLOC 939 /* 940 * Here come the less common (and hence less performance-critical) APIs: 941 * mutex_lock_interruptible() and mutex_trylock(). 942 */ 943 static noinline int __sched 944 __mutex_lock_killable_slowpath(struct mutex *lock); 945 946 static noinline int __sched 947 __mutex_lock_interruptible_slowpath(struct mutex *lock); 948 949 /** 950 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 951 * @lock: The mutex to be acquired. 952 * 953 * Lock the mutex like mutex_lock(). If a signal is delivered while the 954 * process is sleeping, this function will return without acquiring the 955 * mutex. 956 * 957 * Context: Process context. 958 * Return: 0 if the lock was successfully acquired or %-EINTR if a 959 * signal arrived. 960 */ 961 int __sched mutex_lock_interruptible(struct mutex *lock) 962 { 963 might_sleep(); 964 965 if (__mutex_trylock_fast(lock)) 966 return 0; 967 968 return __mutex_lock_interruptible_slowpath(lock); 969 } 970 971 EXPORT_SYMBOL(mutex_lock_interruptible); 972 973 /** 974 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 975 * @lock: The mutex to be acquired. 976 * 977 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 978 * the current process is delivered while the process is sleeping, this 979 * function will return without acquiring the mutex. 980 * 981 * Context: Process context. 982 * Return: 0 if the lock was successfully acquired or %-EINTR if a 983 * fatal signal arrived. 984 */ 985 int __sched mutex_lock_killable(struct mutex *lock) 986 { 987 might_sleep(); 988 989 if (__mutex_trylock_fast(lock)) 990 return 0; 991 992 return __mutex_lock_killable_slowpath(lock); 993 } 994 EXPORT_SYMBOL(mutex_lock_killable); 995 996 /** 997 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 998 * @lock: The mutex to be acquired. 999 * 1000 * Lock the mutex like mutex_lock(). While the task is waiting for this 1001 * mutex, it will be accounted as being in the IO wait state by the 1002 * scheduler. 1003 * 1004 * Context: Process context. 1005 */ 1006 void __sched mutex_lock_io(struct mutex *lock) 1007 { 1008 int token; 1009 1010 token = io_schedule_prepare(); 1011 mutex_lock(lock); 1012 io_schedule_finish(token); 1013 } 1014 EXPORT_SYMBOL_GPL(mutex_lock_io); 1015 1016 static noinline void __sched 1017 __mutex_lock_slowpath(struct mutex *lock) 1018 { 1019 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1020 } 1021 1022 static noinline int __sched 1023 __mutex_lock_killable_slowpath(struct mutex *lock) 1024 { 1025 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1026 } 1027 1028 static noinline int __sched 1029 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1030 { 1031 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1032 } 1033 1034 static noinline int __sched 1035 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1036 { 1037 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1038 _RET_IP_, ctx); 1039 } 1040 1041 static noinline int __sched 1042 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1043 struct ww_acquire_ctx *ctx) 1044 { 1045 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1046 _RET_IP_, ctx); 1047 } 1048 1049 #endif 1050 1051 /** 1052 * mutex_trylock - try to acquire the mutex, without waiting 1053 * @lock: the mutex to be acquired 1054 * 1055 * Try to acquire the mutex atomically. Returns 1 if the mutex 1056 * has been acquired successfully, and 0 on contention. 1057 * 1058 * NOTE: this function follows the spin_trylock() convention, so 1059 * it is negated from the down_trylock() return values! Be careful 1060 * about this when converting semaphore users to mutexes. 1061 * 1062 * This function must not be used in interrupt context. The 1063 * mutex must be released by the same task that acquired it. 1064 */ 1065 int __sched mutex_trylock(struct mutex *lock) 1066 { 1067 bool locked; 1068 1069 MUTEX_WARN_ON(lock->magic != lock); 1070 1071 locked = __mutex_trylock(lock); 1072 if (locked) 1073 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1074 1075 return locked; 1076 } 1077 EXPORT_SYMBOL(mutex_trylock); 1078 1079 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1080 int __sched 1081 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1082 { 1083 might_sleep(); 1084 1085 if (__mutex_trylock_fast(&lock->base)) { 1086 if (ctx) 1087 ww_mutex_set_context_fastpath(lock, ctx); 1088 return 0; 1089 } 1090 1091 return __ww_mutex_lock_slowpath(lock, ctx); 1092 } 1093 EXPORT_SYMBOL(ww_mutex_lock); 1094 1095 int __sched 1096 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1097 { 1098 might_sleep(); 1099 1100 if (__mutex_trylock_fast(&lock->base)) { 1101 if (ctx) 1102 ww_mutex_set_context_fastpath(lock, ctx); 1103 return 0; 1104 } 1105 1106 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1107 } 1108 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1109 1110 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1111 #endif /* !CONFIG_PREEMPT_RT */ 1112 1113 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1114 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1115 1116 /** 1117 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1118 * @cnt: the atomic which we are to dec 1119 * @lock: the mutex to return holding if we dec to 0 1120 * 1121 * return true and hold lock if we dec to 0, return false otherwise 1122 */ 1123 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1124 { 1125 /* dec if we can't possibly hit 0 */ 1126 if (atomic_add_unless(cnt, -1, 1)) 1127 return 0; 1128 /* we might hit 0, so take the lock */ 1129 mutex_lock(lock); 1130 if (!atomic_dec_and_test(cnt)) { 1131 /* when we actually did the dec, we didn't hit 0 */ 1132 mutex_unlock(lock); 1133 return 0; 1134 } 1135 /* we hit 0, and we hold the lock */ 1136 return 1; 1137 } 1138 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1139