1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #ifndef CONFIG_PREEMPT_RT 34 #include "mutex.h" 35 36 #ifdef CONFIG_DEBUG_MUTEXES 37 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 38 #else 39 # define MUTEX_WARN_ON(cond) 40 #endif 41 42 void 43 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 44 { 45 atomic_long_set(&lock->owner, 0); 46 raw_spin_lock_init(&lock->wait_lock); 47 INIT_LIST_HEAD(&lock->wait_list); 48 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 49 osq_lock_init(&lock->osq); 50 #endif 51 52 debug_mutex_init(lock, name, key); 53 } 54 EXPORT_SYMBOL(__mutex_init); 55 56 /* 57 * @owner: contains: 'struct task_struct *' to the current lock owner, 58 * NULL means not owned. Since task_struct pointers are aligned at 59 * at least L1_CACHE_BYTES, we have low bits to store extra state. 60 * 61 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 62 * Bit1 indicates unlock needs to hand the lock to the top-waiter 63 * Bit2 indicates handoff has been done and we're waiting for pickup. 64 */ 65 #define MUTEX_FLAG_WAITERS 0x01 66 #define MUTEX_FLAG_HANDOFF 0x02 67 #define MUTEX_FLAG_PICKUP 0x04 68 69 #define MUTEX_FLAGS 0x07 70 71 /* 72 * Internal helper function; C doesn't allow us to hide it :/ 73 * 74 * DO NOT USE (outside of mutex code). 75 */ 76 static inline struct task_struct *__mutex_owner(struct mutex *lock) 77 { 78 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 79 } 80 81 static inline struct task_struct *__owner_task(unsigned long owner) 82 { 83 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 84 } 85 86 bool mutex_is_locked(struct mutex *lock) 87 { 88 return __mutex_owner(lock) != NULL; 89 } 90 EXPORT_SYMBOL(mutex_is_locked); 91 92 static inline unsigned long __owner_flags(unsigned long owner) 93 { 94 return owner & MUTEX_FLAGS; 95 } 96 97 /* 98 * Returns: __mutex_owner(lock) on failure or NULL on success. 99 */ 100 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 101 { 102 unsigned long owner, curr = (unsigned long)current; 103 104 owner = atomic_long_read(&lock->owner); 105 for (;;) { /* must loop, can race against a flag */ 106 unsigned long flags = __owner_flags(owner); 107 unsigned long task = owner & ~MUTEX_FLAGS; 108 109 if (task) { 110 if (flags & MUTEX_FLAG_PICKUP) { 111 if (task != curr) 112 break; 113 flags &= ~MUTEX_FLAG_PICKUP; 114 } else if (handoff) { 115 if (flags & MUTEX_FLAG_HANDOFF) 116 break; 117 flags |= MUTEX_FLAG_HANDOFF; 118 } else { 119 break; 120 } 121 } else { 122 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 123 task = curr; 124 } 125 126 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 127 if (task == curr) 128 return NULL; 129 break; 130 } 131 } 132 133 return __owner_task(owner); 134 } 135 136 /* 137 * Trylock or set HANDOFF 138 */ 139 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 140 { 141 return !__mutex_trylock_common(lock, handoff); 142 } 143 144 /* 145 * Actual trylock that will work on any unlocked state. 146 */ 147 static inline bool __mutex_trylock(struct mutex *lock) 148 { 149 return !__mutex_trylock_common(lock, false); 150 } 151 152 #ifndef CONFIG_DEBUG_LOCK_ALLOC 153 /* 154 * Lockdep annotations are contained to the slow paths for simplicity. 155 * There is nothing that would stop spreading the lockdep annotations outwards 156 * except more code. 157 */ 158 159 /* 160 * Optimistic trylock that only works in the uncontended case. Make sure to 161 * follow with a __mutex_trylock() before failing. 162 */ 163 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 164 { 165 unsigned long curr = (unsigned long)current; 166 unsigned long zero = 0UL; 167 168 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 169 return true; 170 171 return false; 172 } 173 174 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 175 { 176 unsigned long curr = (unsigned long)current; 177 178 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 179 } 180 #endif 181 182 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 183 { 184 atomic_long_or(flag, &lock->owner); 185 } 186 187 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 188 { 189 atomic_long_andnot(flag, &lock->owner); 190 } 191 192 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 193 { 194 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 195 } 196 197 /* 198 * Add @waiter to a given location in the lock wait_list and set the 199 * FLAG_WAITERS flag if it's the first waiter. 200 */ 201 static void 202 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 203 struct list_head *list) 204 { 205 debug_mutex_add_waiter(lock, waiter, current); 206 207 list_add_tail(&waiter->list, list); 208 if (__mutex_waiter_is_first(lock, waiter)) 209 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 210 } 211 212 static void 213 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 214 { 215 list_del(&waiter->list); 216 if (likely(list_empty(&lock->wait_list))) 217 __mutex_clear_flag(lock, MUTEX_FLAGS); 218 219 debug_mutex_remove_waiter(lock, waiter, current); 220 } 221 222 /* 223 * Give up ownership to a specific task, when @task = NULL, this is equivalent 224 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 225 * WAITERS. Provides RELEASE semantics like a regular unlock, the 226 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 227 */ 228 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 229 { 230 unsigned long owner = atomic_long_read(&lock->owner); 231 232 for (;;) { 233 unsigned long new; 234 235 MUTEX_WARN_ON(__owner_task(owner) != current); 236 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 237 238 new = (owner & MUTEX_FLAG_WAITERS); 239 new |= (unsigned long)task; 240 if (task) 241 new |= MUTEX_FLAG_PICKUP; 242 243 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 244 break; 245 } 246 } 247 248 #ifndef CONFIG_DEBUG_LOCK_ALLOC 249 /* 250 * We split the mutex lock/unlock logic into separate fastpath and 251 * slowpath functions, to reduce the register pressure on the fastpath. 252 * We also put the fastpath first in the kernel image, to make sure the 253 * branch is predicted by the CPU as default-untaken. 254 */ 255 static void __sched __mutex_lock_slowpath(struct mutex *lock); 256 257 /** 258 * mutex_lock - acquire the mutex 259 * @lock: the mutex to be acquired 260 * 261 * Lock the mutex exclusively for this task. If the mutex is not 262 * available right now, it will sleep until it can get it. 263 * 264 * The mutex must later on be released by the same task that 265 * acquired it. Recursive locking is not allowed. The task 266 * may not exit without first unlocking the mutex. Also, kernel 267 * memory where the mutex resides must not be freed with 268 * the mutex still locked. The mutex must first be initialized 269 * (or statically defined) before it can be locked. memset()-ing 270 * the mutex to 0 is not allowed. 271 * 272 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 273 * checks that will enforce the restrictions and will also do 274 * deadlock debugging) 275 * 276 * This function is similar to (but not equivalent to) down(). 277 */ 278 void __sched mutex_lock(struct mutex *lock) 279 { 280 might_sleep(); 281 282 if (!__mutex_trylock_fast(lock)) 283 __mutex_lock_slowpath(lock); 284 } 285 EXPORT_SYMBOL(mutex_lock); 286 #endif 287 288 #include "ww_mutex.h" 289 290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 291 292 /* 293 * Trylock variant that returns the owning task on failure. 294 */ 295 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 296 { 297 return __mutex_trylock_common(lock, false); 298 } 299 300 static inline 301 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 302 struct mutex_waiter *waiter) 303 { 304 struct ww_mutex *ww; 305 306 ww = container_of(lock, struct ww_mutex, base); 307 308 /* 309 * If ww->ctx is set the contents are undefined, only 310 * by acquiring wait_lock there is a guarantee that 311 * they are not invalid when reading. 312 * 313 * As such, when deadlock detection needs to be 314 * performed the optimistic spinning cannot be done. 315 * 316 * Check this in every inner iteration because we may 317 * be racing against another thread's ww_mutex_lock. 318 */ 319 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 320 return false; 321 322 /* 323 * If we aren't on the wait list yet, cancel the spin 324 * if there are waiters. We want to avoid stealing the 325 * lock from a waiter with an earlier stamp, since the 326 * other thread may already own a lock that we also 327 * need. 328 */ 329 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 330 return false; 331 332 /* 333 * Similarly, stop spinning if we are no longer the 334 * first waiter. 335 */ 336 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 337 return false; 338 339 return true; 340 } 341 342 /* 343 * Look out! "owner" is an entirely speculative pointer access and not 344 * reliable. 345 * 346 * "noinline" so that this function shows up on perf profiles. 347 */ 348 static noinline 349 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 350 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 351 { 352 bool ret = true; 353 354 lockdep_assert_preemption_disabled(); 355 356 while (__mutex_owner(lock) == owner) { 357 /* 358 * Ensure we emit the owner->on_cpu, dereference _after_ 359 * checking lock->owner still matches owner. And we already 360 * disabled preemption which is equal to the RCU read-side 361 * crital section in optimistic spinning code. Thus the 362 * task_strcut structure won't go away during the spinning 363 * period 364 */ 365 barrier(); 366 367 /* 368 * Use vcpu_is_preempted to detect lock holder preemption issue. 369 */ 370 if (!owner_on_cpu(owner) || need_resched()) { 371 ret = false; 372 break; 373 } 374 375 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 376 ret = false; 377 break; 378 } 379 380 cpu_relax(); 381 } 382 383 return ret; 384 } 385 386 /* 387 * Initial check for entering the mutex spinning loop 388 */ 389 static inline int mutex_can_spin_on_owner(struct mutex *lock) 390 { 391 struct task_struct *owner; 392 int retval = 1; 393 394 lockdep_assert_preemption_disabled(); 395 396 if (need_resched()) 397 return 0; 398 399 /* 400 * We already disabled preemption which is equal to the RCU read-side 401 * crital section in optimistic spinning code. Thus the task_strcut 402 * structure won't go away during the spinning period. 403 */ 404 owner = __mutex_owner(lock); 405 if (owner) 406 retval = owner_on_cpu(owner); 407 408 /* 409 * If lock->owner is not set, the mutex has been released. Return true 410 * such that we'll trylock in the spin path, which is a faster option 411 * than the blocking slow path. 412 */ 413 return retval; 414 } 415 416 /* 417 * Optimistic spinning. 418 * 419 * We try to spin for acquisition when we find that the lock owner 420 * is currently running on a (different) CPU and while we don't 421 * need to reschedule. The rationale is that if the lock owner is 422 * running, it is likely to release the lock soon. 423 * 424 * The mutex spinners are queued up using MCS lock so that only one 425 * spinner can compete for the mutex. However, if mutex spinning isn't 426 * going to happen, there is no point in going through the lock/unlock 427 * overhead. 428 * 429 * Returns true when the lock was taken, otherwise false, indicating 430 * that we need to jump to the slowpath and sleep. 431 * 432 * The waiter flag is set to true if the spinner is a waiter in the wait 433 * queue. The waiter-spinner will spin on the lock directly and concurrently 434 * with the spinner at the head of the OSQ, if present, until the owner is 435 * changed to itself. 436 */ 437 static __always_inline bool 438 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 439 struct mutex_waiter *waiter) 440 { 441 if (!waiter) { 442 /* 443 * The purpose of the mutex_can_spin_on_owner() function is 444 * to eliminate the overhead of osq_lock() and osq_unlock() 445 * in case spinning isn't possible. As a waiter-spinner 446 * is not going to take OSQ lock anyway, there is no need 447 * to call mutex_can_spin_on_owner(). 448 */ 449 if (!mutex_can_spin_on_owner(lock)) 450 goto fail; 451 452 /* 453 * In order to avoid a stampede of mutex spinners trying to 454 * acquire the mutex all at once, the spinners need to take a 455 * MCS (queued) lock first before spinning on the owner field. 456 */ 457 if (!osq_lock(&lock->osq)) 458 goto fail; 459 } 460 461 for (;;) { 462 struct task_struct *owner; 463 464 /* Try to acquire the mutex... */ 465 owner = __mutex_trylock_or_owner(lock); 466 if (!owner) 467 break; 468 469 /* 470 * There's an owner, wait for it to either 471 * release the lock or go to sleep. 472 */ 473 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 474 goto fail_unlock; 475 476 /* 477 * The cpu_relax() call is a compiler barrier which forces 478 * everything in this loop to be re-loaded. We don't need 479 * memory barriers as we'll eventually observe the right 480 * values at the cost of a few extra spins. 481 */ 482 cpu_relax(); 483 } 484 485 if (!waiter) 486 osq_unlock(&lock->osq); 487 488 return true; 489 490 491 fail_unlock: 492 if (!waiter) 493 osq_unlock(&lock->osq); 494 495 fail: 496 /* 497 * If we fell out of the spin path because of need_resched(), 498 * reschedule now, before we try-lock the mutex. This avoids getting 499 * scheduled out right after we obtained the mutex. 500 */ 501 if (need_resched()) { 502 /* 503 * We _should_ have TASK_RUNNING here, but just in case 504 * we do not, make it so, otherwise we might get stuck. 505 */ 506 __set_current_state(TASK_RUNNING); 507 schedule_preempt_disabled(); 508 } 509 510 return false; 511 } 512 #else 513 static __always_inline bool 514 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 515 struct mutex_waiter *waiter) 516 { 517 return false; 518 } 519 #endif 520 521 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 522 523 /** 524 * mutex_unlock - release the mutex 525 * @lock: the mutex to be released 526 * 527 * Unlock a mutex that has been locked by this task previously. 528 * 529 * This function must not be used in interrupt context. Unlocking 530 * of a not locked mutex is not allowed. 531 * 532 * This function is similar to (but not equivalent to) up(). 533 */ 534 void __sched mutex_unlock(struct mutex *lock) 535 { 536 #ifndef CONFIG_DEBUG_LOCK_ALLOC 537 if (__mutex_unlock_fast(lock)) 538 return; 539 #endif 540 __mutex_unlock_slowpath(lock, _RET_IP_); 541 } 542 EXPORT_SYMBOL(mutex_unlock); 543 544 /** 545 * ww_mutex_unlock - release the w/w mutex 546 * @lock: the mutex to be released 547 * 548 * Unlock a mutex that has been locked by this task previously with any of the 549 * ww_mutex_lock* functions (with or without an acquire context). It is 550 * forbidden to release the locks after releasing the acquire context. 551 * 552 * This function must not be used in interrupt context. Unlocking 553 * of a unlocked mutex is not allowed. 554 */ 555 void __sched ww_mutex_unlock(struct ww_mutex *lock) 556 { 557 __ww_mutex_unlock(lock); 558 mutex_unlock(&lock->base); 559 } 560 EXPORT_SYMBOL(ww_mutex_unlock); 561 562 /* 563 * Lock a mutex (possibly interruptible), slowpath: 564 */ 565 static __always_inline int __sched 566 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 567 struct lockdep_map *nest_lock, unsigned long ip, 568 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 569 { 570 struct mutex_waiter waiter; 571 struct ww_mutex *ww; 572 int ret; 573 574 if (!use_ww_ctx) 575 ww_ctx = NULL; 576 577 might_sleep(); 578 579 MUTEX_WARN_ON(lock->magic != lock); 580 581 ww = container_of(lock, struct ww_mutex, base); 582 if (ww_ctx) { 583 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 584 return -EALREADY; 585 586 /* 587 * Reset the wounded flag after a kill. No other process can 588 * race and wound us here since they can't have a valid owner 589 * pointer if we don't have any locks held. 590 */ 591 if (ww_ctx->acquired == 0) 592 ww_ctx->wounded = 0; 593 594 #ifdef CONFIG_DEBUG_LOCK_ALLOC 595 nest_lock = &ww_ctx->dep_map; 596 #endif 597 } 598 599 preempt_disable(); 600 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 601 602 if (__mutex_trylock(lock) || 603 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 604 /* got the lock, yay! */ 605 lock_acquired(&lock->dep_map, ip); 606 if (ww_ctx) 607 ww_mutex_set_context_fastpath(ww, ww_ctx); 608 preempt_enable(); 609 return 0; 610 } 611 612 raw_spin_lock(&lock->wait_lock); 613 /* 614 * After waiting to acquire the wait_lock, try again. 615 */ 616 if (__mutex_trylock(lock)) { 617 if (ww_ctx) 618 __ww_mutex_check_waiters(lock, ww_ctx); 619 620 goto skip_wait; 621 } 622 623 debug_mutex_lock_common(lock, &waiter); 624 waiter.task = current; 625 if (use_ww_ctx) 626 waiter.ww_ctx = ww_ctx; 627 628 lock_contended(&lock->dep_map, ip); 629 630 if (!use_ww_ctx) { 631 /* add waiting tasks to the end of the waitqueue (FIFO): */ 632 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 633 } else { 634 /* 635 * Add in stamp order, waking up waiters that must kill 636 * themselves. 637 */ 638 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 639 if (ret) 640 goto err_early_kill; 641 } 642 643 set_current_state(state); 644 for (;;) { 645 bool first; 646 647 /* 648 * Once we hold wait_lock, we're serialized against 649 * mutex_unlock() handing the lock off to us, do a trylock 650 * before testing the error conditions to make sure we pick up 651 * the handoff. 652 */ 653 if (__mutex_trylock(lock)) 654 goto acquired; 655 656 /* 657 * Check for signals and kill conditions while holding 658 * wait_lock. This ensures the lock cancellation is ordered 659 * against mutex_unlock() and wake-ups do not go missing. 660 */ 661 if (signal_pending_state(state, current)) { 662 ret = -EINTR; 663 goto err; 664 } 665 666 if (ww_ctx) { 667 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 668 if (ret) 669 goto err; 670 } 671 672 raw_spin_unlock(&lock->wait_lock); 673 schedule_preempt_disabled(); 674 675 first = __mutex_waiter_is_first(lock, &waiter); 676 677 set_current_state(state); 678 /* 679 * Here we order against unlock; we must either see it change 680 * state back to RUNNING and fall through the next schedule(), 681 * or we must see its unlock and acquire. 682 */ 683 if (__mutex_trylock_or_handoff(lock, first) || 684 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 685 break; 686 687 raw_spin_lock(&lock->wait_lock); 688 } 689 raw_spin_lock(&lock->wait_lock); 690 acquired: 691 __set_current_state(TASK_RUNNING); 692 693 if (ww_ctx) { 694 /* 695 * Wound-Wait; we stole the lock (!first_waiter), check the 696 * waiters as anyone might want to wound us. 697 */ 698 if (!ww_ctx->is_wait_die && 699 !__mutex_waiter_is_first(lock, &waiter)) 700 __ww_mutex_check_waiters(lock, ww_ctx); 701 } 702 703 __mutex_remove_waiter(lock, &waiter); 704 705 debug_mutex_free_waiter(&waiter); 706 707 skip_wait: 708 /* got the lock - cleanup and rejoice! */ 709 lock_acquired(&lock->dep_map, ip); 710 711 if (ww_ctx) 712 ww_mutex_lock_acquired(ww, ww_ctx); 713 714 raw_spin_unlock(&lock->wait_lock); 715 preempt_enable(); 716 return 0; 717 718 err: 719 __set_current_state(TASK_RUNNING); 720 __mutex_remove_waiter(lock, &waiter); 721 err_early_kill: 722 raw_spin_unlock(&lock->wait_lock); 723 debug_mutex_free_waiter(&waiter); 724 mutex_release(&lock->dep_map, ip); 725 preempt_enable(); 726 return ret; 727 } 728 729 static int __sched 730 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 731 struct lockdep_map *nest_lock, unsigned long ip) 732 { 733 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 734 } 735 736 static int __sched 737 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 738 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 739 { 740 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 741 } 742 743 /** 744 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 745 * @ww: mutex to lock 746 * @ww_ctx: optional w/w acquire context 747 * 748 * Trylocks a mutex with the optional acquire context; no deadlock detection is 749 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 750 * 751 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 752 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 753 * 754 * A mutex acquired with this function must be released with ww_mutex_unlock. 755 */ 756 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 757 { 758 if (!ww_ctx) 759 return mutex_trylock(&ww->base); 760 761 MUTEX_WARN_ON(ww->base.magic != &ww->base); 762 763 /* 764 * Reset the wounded flag after a kill. No other process can 765 * race and wound us here, since they can't have a valid owner 766 * pointer if we don't have any locks held. 767 */ 768 if (ww_ctx->acquired == 0) 769 ww_ctx->wounded = 0; 770 771 if (__mutex_trylock(&ww->base)) { 772 ww_mutex_set_context_fastpath(ww, ww_ctx); 773 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 774 return 1; 775 } 776 777 return 0; 778 } 779 EXPORT_SYMBOL(ww_mutex_trylock); 780 781 #ifdef CONFIG_DEBUG_LOCK_ALLOC 782 void __sched 783 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 784 { 785 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 786 } 787 788 EXPORT_SYMBOL_GPL(mutex_lock_nested); 789 790 void __sched 791 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 792 { 793 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 794 } 795 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 796 797 int __sched 798 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 799 { 800 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 801 } 802 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 803 804 int __sched 805 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 806 { 807 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 808 } 809 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 810 811 void __sched 812 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 813 { 814 int token; 815 816 might_sleep(); 817 818 token = io_schedule_prepare(); 819 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 820 subclass, NULL, _RET_IP_, NULL, 0); 821 io_schedule_finish(token); 822 } 823 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 824 825 static inline int 826 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 827 { 828 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 829 unsigned tmp; 830 831 if (ctx->deadlock_inject_countdown-- == 0) { 832 tmp = ctx->deadlock_inject_interval; 833 if (tmp > UINT_MAX/4) 834 tmp = UINT_MAX; 835 else 836 tmp = tmp*2 + tmp + tmp/2; 837 838 ctx->deadlock_inject_interval = tmp; 839 ctx->deadlock_inject_countdown = tmp; 840 ctx->contending_lock = lock; 841 842 ww_mutex_unlock(lock); 843 844 return -EDEADLK; 845 } 846 #endif 847 848 return 0; 849 } 850 851 int __sched 852 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 853 { 854 int ret; 855 856 might_sleep(); 857 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 858 0, _RET_IP_, ctx); 859 if (!ret && ctx && ctx->acquired > 1) 860 return ww_mutex_deadlock_injection(lock, ctx); 861 862 return ret; 863 } 864 EXPORT_SYMBOL_GPL(ww_mutex_lock); 865 866 int __sched 867 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 868 { 869 int ret; 870 871 might_sleep(); 872 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 873 0, _RET_IP_, ctx); 874 875 if (!ret && ctx && ctx->acquired > 1) 876 return ww_mutex_deadlock_injection(lock, ctx); 877 878 return ret; 879 } 880 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 881 882 #endif 883 884 /* 885 * Release the lock, slowpath: 886 */ 887 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 888 { 889 struct task_struct *next = NULL; 890 DEFINE_WAKE_Q(wake_q); 891 unsigned long owner; 892 893 mutex_release(&lock->dep_map, ip); 894 895 /* 896 * Release the lock before (potentially) taking the spinlock such that 897 * other contenders can get on with things ASAP. 898 * 899 * Except when HANDOFF, in that case we must not clear the owner field, 900 * but instead set it to the top waiter. 901 */ 902 owner = atomic_long_read(&lock->owner); 903 for (;;) { 904 MUTEX_WARN_ON(__owner_task(owner) != current); 905 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 906 907 if (owner & MUTEX_FLAG_HANDOFF) 908 break; 909 910 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 911 if (owner & MUTEX_FLAG_WAITERS) 912 break; 913 914 return; 915 } 916 } 917 918 raw_spin_lock(&lock->wait_lock); 919 debug_mutex_unlock(lock); 920 if (!list_empty(&lock->wait_list)) { 921 /* get the first entry from the wait-list: */ 922 struct mutex_waiter *waiter = 923 list_first_entry(&lock->wait_list, 924 struct mutex_waiter, list); 925 926 next = waiter->task; 927 928 debug_mutex_wake_waiter(lock, waiter); 929 wake_q_add(&wake_q, next); 930 } 931 932 if (owner & MUTEX_FLAG_HANDOFF) 933 __mutex_handoff(lock, next); 934 935 raw_spin_unlock(&lock->wait_lock); 936 937 wake_up_q(&wake_q); 938 } 939 940 #ifndef CONFIG_DEBUG_LOCK_ALLOC 941 /* 942 * Here come the less common (and hence less performance-critical) APIs: 943 * mutex_lock_interruptible() and mutex_trylock(). 944 */ 945 static noinline int __sched 946 __mutex_lock_killable_slowpath(struct mutex *lock); 947 948 static noinline int __sched 949 __mutex_lock_interruptible_slowpath(struct mutex *lock); 950 951 /** 952 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 953 * @lock: The mutex to be acquired. 954 * 955 * Lock the mutex like mutex_lock(). If a signal is delivered while the 956 * process is sleeping, this function will return without acquiring the 957 * mutex. 958 * 959 * Context: Process context. 960 * Return: 0 if the lock was successfully acquired or %-EINTR if a 961 * signal arrived. 962 */ 963 int __sched mutex_lock_interruptible(struct mutex *lock) 964 { 965 might_sleep(); 966 967 if (__mutex_trylock_fast(lock)) 968 return 0; 969 970 return __mutex_lock_interruptible_slowpath(lock); 971 } 972 973 EXPORT_SYMBOL(mutex_lock_interruptible); 974 975 /** 976 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 977 * @lock: The mutex to be acquired. 978 * 979 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 980 * the current process is delivered while the process is sleeping, this 981 * function will return without acquiring the mutex. 982 * 983 * Context: Process context. 984 * Return: 0 if the lock was successfully acquired or %-EINTR if a 985 * fatal signal arrived. 986 */ 987 int __sched mutex_lock_killable(struct mutex *lock) 988 { 989 might_sleep(); 990 991 if (__mutex_trylock_fast(lock)) 992 return 0; 993 994 return __mutex_lock_killable_slowpath(lock); 995 } 996 EXPORT_SYMBOL(mutex_lock_killable); 997 998 /** 999 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1000 * @lock: The mutex to be acquired. 1001 * 1002 * Lock the mutex like mutex_lock(). While the task is waiting for this 1003 * mutex, it will be accounted as being in the IO wait state by the 1004 * scheduler. 1005 * 1006 * Context: Process context. 1007 */ 1008 void __sched mutex_lock_io(struct mutex *lock) 1009 { 1010 int token; 1011 1012 token = io_schedule_prepare(); 1013 mutex_lock(lock); 1014 io_schedule_finish(token); 1015 } 1016 EXPORT_SYMBOL_GPL(mutex_lock_io); 1017 1018 static noinline void __sched 1019 __mutex_lock_slowpath(struct mutex *lock) 1020 { 1021 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1022 } 1023 1024 static noinline int __sched 1025 __mutex_lock_killable_slowpath(struct mutex *lock) 1026 { 1027 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1028 } 1029 1030 static noinline int __sched 1031 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1032 { 1033 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1034 } 1035 1036 static noinline int __sched 1037 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1038 { 1039 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1040 _RET_IP_, ctx); 1041 } 1042 1043 static noinline int __sched 1044 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1045 struct ww_acquire_ctx *ctx) 1046 { 1047 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1048 _RET_IP_, ctx); 1049 } 1050 1051 #endif 1052 1053 /** 1054 * mutex_trylock - try to acquire the mutex, without waiting 1055 * @lock: the mutex to be acquired 1056 * 1057 * Try to acquire the mutex atomically. Returns 1 if the mutex 1058 * has been acquired successfully, and 0 on contention. 1059 * 1060 * NOTE: this function follows the spin_trylock() convention, so 1061 * it is negated from the down_trylock() return values! Be careful 1062 * about this when converting semaphore users to mutexes. 1063 * 1064 * This function must not be used in interrupt context. The 1065 * mutex must be released by the same task that acquired it. 1066 */ 1067 int __sched mutex_trylock(struct mutex *lock) 1068 { 1069 bool locked; 1070 1071 MUTEX_WARN_ON(lock->magic != lock); 1072 1073 locked = __mutex_trylock(lock); 1074 if (locked) 1075 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1076 1077 return locked; 1078 } 1079 EXPORT_SYMBOL(mutex_trylock); 1080 1081 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1082 int __sched 1083 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1084 { 1085 might_sleep(); 1086 1087 if (__mutex_trylock_fast(&lock->base)) { 1088 if (ctx) 1089 ww_mutex_set_context_fastpath(lock, ctx); 1090 return 0; 1091 } 1092 1093 return __ww_mutex_lock_slowpath(lock, ctx); 1094 } 1095 EXPORT_SYMBOL(ww_mutex_lock); 1096 1097 int __sched 1098 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1099 { 1100 might_sleep(); 1101 1102 if (__mutex_trylock_fast(&lock->base)) { 1103 if (ctx) 1104 ww_mutex_set_context_fastpath(lock, ctx); 1105 return 0; 1106 } 1107 1108 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1109 } 1110 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1111 1112 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1113 #endif /* !CONFIG_PREEMPT_RT */ 1114 1115 /** 1116 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1117 * @cnt: the atomic which we are to dec 1118 * @lock: the mutex to return holding if we dec to 0 1119 * 1120 * return true and hold lock if we dec to 0, return false otherwise 1121 */ 1122 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1123 { 1124 /* dec if we can't possibly hit 0 */ 1125 if (atomic_add_unless(cnt, -1, 1)) 1126 return 0; 1127 /* we might hit 0, so take the lock */ 1128 mutex_lock(lock); 1129 if (!atomic_dec_and_test(cnt)) { 1130 /* when we actually did the dec, we didn't hit 0 */ 1131 mutex_unlock(lock); 1132 return 0; 1133 } 1134 /* we hit 0, and we hold the lock */ 1135 return 1; 1136 } 1137 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1138