xref: /linux/kernel/locking/mutex.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/lock.h>
35 
36 #ifndef CONFIG_PREEMPT_RT
37 #include "mutex.h"
38 
39 #ifdef CONFIG_DEBUG_MUTEXES
40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
41 #else
42 # define MUTEX_WARN_ON(cond)
43 #endif
44 
45 void
46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
47 {
48 	atomic_long_set(&lock->owner, 0);
49 	raw_spin_lock_init(&lock->wait_lock);
50 	INIT_LIST_HEAD(&lock->wait_list);
51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52 	osq_lock_init(&lock->osq);
53 #endif
54 
55 	debug_mutex_init(lock, name, key);
56 }
57 EXPORT_SYMBOL(__mutex_init);
58 
59 static inline struct task_struct *__owner_task(unsigned long owner)
60 {
61 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
62 }
63 
64 bool mutex_is_locked(struct mutex *lock)
65 {
66 	return __mutex_owner(lock) != NULL;
67 }
68 EXPORT_SYMBOL(mutex_is_locked);
69 
70 static inline unsigned long __owner_flags(unsigned long owner)
71 {
72 	return owner & MUTEX_FLAGS;
73 }
74 
75 /*
76  * Returns: __mutex_owner(lock) on failure or NULL on success.
77  */
78 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
79 {
80 	unsigned long owner, curr = (unsigned long)current;
81 
82 	owner = atomic_long_read(&lock->owner);
83 	for (;;) { /* must loop, can race against a flag */
84 		unsigned long flags = __owner_flags(owner);
85 		unsigned long task = owner & ~MUTEX_FLAGS;
86 
87 		if (task) {
88 			if (flags & MUTEX_FLAG_PICKUP) {
89 				if (task != curr)
90 					break;
91 				flags &= ~MUTEX_FLAG_PICKUP;
92 			} else if (handoff) {
93 				if (flags & MUTEX_FLAG_HANDOFF)
94 					break;
95 				flags |= MUTEX_FLAG_HANDOFF;
96 			} else {
97 				break;
98 			}
99 		} else {
100 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
101 			task = curr;
102 		}
103 
104 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
105 			if (task == curr)
106 				return NULL;
107 			break;
108 		}
109 	}
110 
111 	return __owner_task(owner);
112 }
113 
114 /*
115  * Trylock or set HANDOFF
116  */
117 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
118 {
119 	return !__mutex_trylock_common(lock, handoff);
120 }
121 
122 /*
123  * Actual trylock that will work on any unlocked state.
124  */
125 static inline bool __mutex_trylock(struct mutex *lock)
126 {
127 	return !__mutex_trylock_common(lock, false);
128 }
129 
130 #ifndef CONFIG_DEBUG_LOCK_ALLOC
131 /*
132  * Lockdep annotations are contained to the slow paths for simplicity.
133  * There is nothing that would stop spreading the lockdep annotations outwards
134  * except more code.
135  */
136 
137 /*
138  * Optimistic trylock that only works in the uncontended case. Make sure to
139  * follow with a __mutex_trylock() before failing.
140  */
141 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
142 {
143 	unsigned long curr = (unsigned long)current;
144 	unsigned long zero = 0UL;
145 
146 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
147 		return true;
148 
149 	return false;
150 }
151 
152 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
153 {
154 	unsigned long curr = (unsigned long)current;
155 
156 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
157 }
158 #endif
159 
160 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
161 {
162 	atomic_long_or(flag, &lock->owner);
163 }
164 
165 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
166 {
167 	atomic_long_andnot(flag, &lock->owner);
168 }
169 
170 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
171 {
172 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
173 }
174 
175 /*
176  * Add @waiter to a given location in the lock wait_list and set the
177  * FLAG_WAITERS flag if it's the first waiter.
178  */
179 static void
180 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
181 		   struct list_head *list)
182 {
183 	debug_mutex_add_waiter(lock, waiter, current);
184 
185 	list_add_tail(&waiter->list, list);
186 	if (__mutex_waiter_is_first(lock, waiter))
187 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
188 }
189 
190 static void
191 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
192 {
193 	list_del(&waiter->list);
194 	if (likely(list_empty(&lock->wait_list)))
195 		__mutex_clear_flag(lock, MUTEX_FLAGS);
196 
197 	debug_mutex_remove_waiter(lock, waiter, current);
198 }
199 
200 /*
201  * Give up ownership to a specific task, when @task = NULL, this is equivalent
202  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
203  * WAITERS. Provides RELEASE semantics like a regular unlock, the
204  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
205  */
206 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
207 {
208 	unsigned long owner = atomic_long_read(&lock->owner);
209 
210 	for (;;) {
211 		unsigned long new;
212 
213 		MUTEX_WARN_ON(__owner_task(owner) != current);
214 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
215 
216 		new = (owner & MUTEX_FLAG_WAITERS);
217 		new |= (unsigned long)task;
218 		if (task)
219 			new |= MUTEX_FLAG_PICKUP;
220 
221 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
222 			break;
223 	}
224 }
225 
226 #ifndef CONFIG_DEBUG_LOCK_ALLOC
227 /*
228  * We split the mutex lock/unlock logic into separate fastpath and
229  * slowpath functions, to reduce the register pressure on the fastpath.
230  * We also put the fastpath first in the kernel image, to make sure the
231  * branch is predicted by the CPU as default-untaken.
232  */
233 static void __sched __mutex_lock_slowpath(struct mutex *lock);
234 
235 /**
236  * mutex_lock - acquire the mutex
237  * @lock: the mutex to be acquired
238  *
239  * Lock the mutex exclusively for this task. If the mutex is not
240  * available right now, it will sleep until it can get it.
241  *
242  * The mutex must later on be released by the same task that
243  * acquired it. Recursive locking is not allowed. The task
244  * may not exit without first unlocking the mutex. Also, kernel
245  * memory where the mutex resides must not be freed with
246  * the mutex still locked. The mutex must first be initialized
247  * (or statically defined) before it can be locked. memset()-ing
248  * the mutex to 0 is not allowed.
249  *
250  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
251  * checks that will enforce the restrictions and will also do
252  * deadlock debugging)
253  *
254  * This function is similar to (but not equivalent to) down().
255  */
256 void __sched mutex_lock(struct mutex *lock)
257 {
258 	might_sleep();
259 
260 	if (!__mutex_trylock_fast(lock))
261 		__mutex_lock_slowpath(lock);
262 }
263 EXPORT_SYMBOL(mutex_lock);
264 #endif
265 
266 #include "ww_mutex.h"
267 
268 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
269 
270 /*
271  * Trylock variant that returns the owning task on failure.
272  */
273 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
274 {
275 	return __mutex_trylock_common(lock, false);
276 }
277 
278 static inline
279 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
280 			    struct mutex_waiter *waiter)
281 {
282 	struct ww_mutex *ww;
283 
284 	ww = container_of(lock, struct ww_mutex, base);
285 
286 	/*
287 	 * If ww->ctx is set the contents are undefined, only
288 	 * by acquiring wait_lock there is a guarantee that
289 	 * they are not invalid when reading.
290 	 *
291 	 * As such, when deadlock detection needs to be
292 	 * performed the optimistic spinning cannot be done.
293 	 *
294 	 * Check this in every inner iteration because we may
295 	 * be racing against another thread's ww_mutex_lock.
296 	 */
297 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
298 		return false;
299 
300 	/*
301 	 * If we aren't on the wait list yet, cancel the spin
302 	 * if there are waiters. We want  to avoid stealing the
303 	 * lock from a waiter with an earlier stamp, since the
304 	 * other thread may already own a lock that we also
305 	 * need.
306 	 */
307 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
308 		return false;
309 
310 	/*
311 	 * Similarly, stop spinning if we are no longer the
312 	 * first waiter.
313 	 */
314 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
315 		return false;
316 
317 	return true;
318 }
319 
320 /*
321  * Look out! "owner" is an entirely speculative pointer access and not
322  * reliable.
323  *
324  * "noinline" so that this function shows up on perf profiles.
325  */
326 static noinline
327 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
328 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
329 {
330 	bool ret = true;
331 
332 	lockdep_assert_preemption_disabled();
333 
334 	while (__mutex_owner(lock) == owner) {
335 		/*
336 		 * Ensure we emit the owner->on_cpu, dereference _after_
337 		 * checking lock->owner still matches owner. And we already
338 		 * disabled preemption which is equal to the RCU read-side
339 		 * crital section in optimistic spinning code. Thus the
340 		 * task_strcut structure won't go away during the spinning
341 		 * period
342 		 */
343 		barrier();
344 
345 		/*
346 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
347 		 */
348 		if (!owner_on_cpu(owner) || need_resched()) {
349 			ret = false;
350 			break;
351 		}
352 
353 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
354 			ret = false;
355 			break;
356 		}
357 
358 		cpu_relax();
359 	}
360 
361 	return ret;
362 }
363 
364 /*
365  * Initial check for entering the mutex spinning loop
366  */
367 static inline int mutex_can_spin_on_owner(struct mutex *lock)
368 {
369 	struct task_struct *owner;
370 	int retval = 1;
371 
372 	lockdep_assert_preemption_disabled();
373 
374 	if (need_resched())
375 		return 0;
376 
377 	/*
378 	 * We already disabled preemption which is equal to the RCU read-side
379 	 * crital section in optimistic spinning code. Thus the task_strcut
380 	 * structure won't go away during the spinning period.
381 	 */
382 	owner = __mutex_owner(lock);
383 	if (owner)
384 		retval = owner_on_cpu(owner);
385 
386 	/*
387 	 * If lock->owner is not set, the mutex has been released. Return true
388 	 * such that we'll trylock in the spin path, which is a faster option
389 	 * than the blocking slow path.
390 	 */
391 	return retval;
392 }
393 
394 /*
395  * Optimistic spinning.
396  *
397  * We try to spin for acquisition when we find that the lock owner
398  * is currently running on a (different) CPU and while we don't
399  * need to reschedule. The rationale is that if the lock owner is
400  * running, it is likely to release the lock soon.
401  *
402  * The mutex spinners are queued up using MCS lock so that only one
403  * spinner can compete for the mutex. However, if mutex spinning isn't
404  * going to happen, there is no point in going through the lock/unlock
405  * overhead.
406  *
407  * Returns true when the lock was taken, otherwise false, indicating
408  * that we need to jump to the slowpath and sleep.
409  *
410  * The waiter flag is set to true if the spinner is a waiter in the wait
411  * queue. The waiter-spinner will spin on the lock directly and concurrently
412  * with the spinner at the head of the OSQ, if present, until the owner is
413  * changed to itself.
414  */
415 static __always_inline bool
416 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
417 		      struct mutex_waiter *waiter)
418 {
419 	if (!waiter) {
420 		/*
421 		 * The purpose of the mutex_can_spin_on_owner() function is
422 		 * to eliminate the overhead of osq_lock() and osq_unlock()
423 		 * in case spinning isn't possible. As a waiter-spinner
424 		 * is not going to take OSQ lock anyway, there is no need
425 		 * to call mutex_can_spin_on_owner().
426 		 */
427 		if (!mutex_can_spin_on_owner(lock))
428 			goto fail;
429 
430 		/*
431 		 * In order to avoid a stampede of mutex spinners trying to
432 		 * acquire the mutex all at once, the spinners need to take a
433 		 * MCS (queued) lock first before spinning on the owner field.
434 		 */
435 		if (!osq_lock(&lock->osq))
436 			goto fail;
437 	}
438 
439 	for (;;) {
440 		struct task_struct *owner;
441 
442 		/* Try to acquire the mutex... */
443 		owner = __mutex_trylock_or_owner(lock);
444 		if (!owner)
445 			break;
446 
447 		/*
448 		 * There's an owner, wait for it to either
449 		 * release the lock or go to sleep.
450 		 */
451 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
452 			goto fail_unlock;
453 
454 		/*
455 		 * The cpu_relax() call is a compiler barrier which forces
456 		 * everything in this loop to be re-loaded. We don't need
457 		 * memory barriers as we'll eventually observe the right
458 		 * values at the cost of a few extra spins.
459 		 */
460 		cpu_relax();
461 	}
462 
463 	if (!waiter)
464 		osq_unlock(&lock->osq);
465 
466 	return true;
467 
468 
469 fail_unlock:
470 	if (!waiter)
471 		osq_unlock(&lock->osq);
472 
473 fail:
474 	/*
475 	 * If we fell out of the spin path because of need_resched(),
476 	 * reschedule now, before we try-lock the mutex. This avoids getting
477 	 * scheduled out right after we obtained the mutex.
478 	 */
479 	if (need_resched()) {
480 		/*
481 		 * We _should_ have TASK_RUNNING here, but just in case
482 		 * we do not, make it so, otherwise we might get stuck.
483 		 */
484 		__set_current_state(TASK_RUNNING);
485 		schedule_preempt_disabled();
486 	}
487 
488 	return false;
489 }
490 #else
491 static __always_inline bool
492 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
493 		      struct mutex_waiter *waiter)
494 {
495 	return false;
496 }
497 #endif
498 
499 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
500 
501 /**
502  * mutex_unlock - release the mutex
503  * @lock: the mutex to be released
504  *
505  * Unlock a mutex that has been locked by this task previously.
506  *
507  * This function must not be used in interrupt context. Unlocking
508  * of a not locked mutex is not allowed.
509  *
510  * The caller must ensure that the mutex stays alive until this function has
511  * returned - mutex_unlock() can NOT directly be used to release an object such
512  * that another concurrent task can free it.
513  * Mutexes are different from spinlocks & refcounts in this aspect.
514  *
515  * This function is similar to (but not equivalent to) up().
516  */
517 void __sched mutex_unlock(struct mutex *lock)
518 {
519 #ifndef CONFIG_DEBUG_LOCK_ALLOC
520 	if (__mutex_unlock_fast(lock))
521 		return;
522 #endif
523 	__mutex_unlock_slowpath(lock, _RET_IP_);
524 }
525 EXPORT_SYMBOL(mutex_unlock);
526 
527 /**
528  * ww_mutex_unlock - release the w/w mutex
529  * @lock: the mutex to be released
530  *
531  * Unlock a mutex that has been locked by this task previously with any of the
532  * ww_mutex_lock* functions (with or without an acquire context). It is
533  * forbidden to release the locks after releasing the acquire context.
534  *
535  * This function must not be used in interrupt context. Unlocking
536  * of a unlocked mutex is not allowed.
537  */
538 void __sched ww_mutex_unlock(struct ww_mutex *lock)
539 {
540 	__ww_mutex_unlock(lock);
541 	mutex_unlock(&lock->base);
542 }
543 EXPORT_SYMBOL(ww_mutex_unlock);
544 
545 /*
546  * Lock a mutex (possibly interruptible), slowpath:
547  */
548 static __always_inline int __sched
549 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
550 		    struct lockdep_map *nest_lock, unsigned long ip,
551 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
552 {
553 	DEFINE_WAKE_Q(wake_q);
554 	struct mutex_waiter waiter;
555 	struct ww_mutex *ww;
556 	unsigned long flags;
557 	int ret;
558 
559 	if (!use_ww_ctx)
560 		ww_ctx = NULL;
561 
562 	might_sleep();
563 
564 	MUTEX_WARN_ON(lock->magic != lock);
565 
566 	ww = container_of(lock, struct ww_mutex, base);
567 	if (ww_ctx) {
568 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
569 			return -EALREADY;
570 
571 		/*
572 		 * Reset the wounded flag after a kill. No other process can
573 		 * race and wound us here since they can't have a valid owner
574 		 * pointer if we don't have any locks held.
575 		 */
576 		if (ww_ctx->acquired == 0)
577 			ww_ctx->wounded = 0;
578 
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 		nest_lock = &ww_ctx->dep_map;
581 #endif
582 	}
583 
584 	preempt_disable();
585 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
586 
587 	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
588 	if (__mutex_trylock(lock) ||
589 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
590 		/* got the lock, yay! */
591 		lock_acquired(&lock->dep_map, ip);
592 		if (ww_ctx)
593 			ww_mutex_set_context_fastpath(ww, ww_ctx);
594 		trace_contention_end(lock, 0);
595 		preempt_enable();
596 		return 0;
597 	}
598 
599 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
600 	/*
601 	 * After waiting to acquire the wait_lock, try again.
602 	 */
603 	if (__mutex_trylock(lock)) {
604 		if (ww_ctx)
605 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
606 
607 		goto skip_wait;
608 	}
609 
610 	debug_mutex_lock_common(lock, &waiter);
611 	waiter.task = current;
612 	if (use_ww_ctx)
613 		waiter.ww_ctx = ww_ctx;
614 
615 	lock_contended(&lock->dep_map, ip);
616 
617 	if (!use_ww_ctx) {
618 		/* add waiting tasks to the end of the waitqueue (FIFO): */
619 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
620 	} else {
621 		/*
622 		 * Add in stamp order, waking up waiters that must kill
623 		 * themselves.
624 		 */
625 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
626 		if (ret)
627 			goto err_early_kill;
628 	}
629 
630 	set_current_state(state);
631 	trace_contention_begin(lock, LCB_F_MUTEX);
632 	for (;;) {
633 		bool first;
634 
635 		/*
636 		 * Once we hold wait_lock, we're serialized against
637 		 * mutex_unlock() handing the lock off to us, do a trylock
638 		 * before testing the error conditions to make sure we pick up
639 		 * the handoff.
640 		 */
641 		if (__mutex_trylock(lock))
642 			goto acquired;
643 
644 		/*
645 		 * Check for signals and kill conditions while holding
646 		 * wait_lock. This ensures the lock cancellation is ordered
647 		 * against mutex_unlock() and wake-ups do not go missing.
648 		 */
649 		if (signal_pending_state(state, current)) {
650 			ret = -EINTR;
651 			goto err;
652 		}
653 
654 		if (ww_ctx) {
655 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
656 			if (ret)
657 				goto err;
658 		}
659 
660 		raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
661 
662 		schedule_preempt_disabled();
663 
664 		first = __mutex_waiter_is_first(lock, &waiter);
665 
666 		set_current_state(state);
667 		/*
668 		 * Here we order against unlock; we must either see it change
669 		 * state back to RUNNING and fall through the next schedule(),
670 		 * or we must see its unlock and acquire.
671 		 */
672 		if (__mutex_trylock_or_handoff(lock, first))
673 			break;
674 
675 		if (first) {
676 			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
677 			if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
678 				break;
679 			trace_contention_begin(lock, LCB_F_MUTEX);
680 		}
681 
682 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
683 	}
684 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
685 acquired:
686 	__set_current_state(TASK_RUNNING);
687 
688 	if (ww_ctx) {
689 		/*
690 		 * Wound-Wait; we stole the lock (!first_waiter), check the
691 		 * waiters as anyone might want to wound us.
692 		 */
693 		if (!ww_ctx->is_wait_die &&
694 		    !__mutex_waiter_is_first(lock, &waiter))
695 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
696 	}
697 
698 	__mutex_remove_waiter(lock, &waiter);
699 
700 	debug_mutex_free_waiter(&waiter);
701 
702 skip_wait:
703 	/* got the lock - cleanup and rejoice! */
704 	lock_acquired(&lock->dep_map, ip);
705 	trace_contention_end(lock, 0);
706 
707 	if (ww_ctx)
708 		ww_mutex_lock_acquired(ww, ww_ctx);
709 
710 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
711 	preempt_enable();
712 	return 0;
713 
714 err:
715 	__set_current_state(TASK_RUNNING);
716 	__mutex_remove_waiter(lock, &waiter);
717 err_early_kill:
718 	trace_contention_end(lock, ret);
719 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
720 	debug_mutex_free_waiter(&waiter);
721 	mutex_release(&lock->dep_map, ip);
722 	preempt_enable();
723 	return ret;
724 }
725 
726 static int __sched
727 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
728 	     struct lockdep_map *nest_lock, unsigned long ip)
729 {
730 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
731 }
732 
733 static int __sched
734 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
735 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
736 {
737 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
738 }
739 
740 /**
741  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
742  * @ww: mutex to lock
743  * @ww_ctx: optional w/w acquire context
744  *
745  * Trylocks a mutex with the optional acquire context; no deadlock detection is
746  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
747  *
748  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
749  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
750  *
751  * A mutex acquired with this function must be released with ww_mutex_unlock.
752  */
753 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
754 {
755 	if (!ww_ctx)
756 		return mutex_trylock(&ww->base);
757 
758 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
759 
760 	/*
761 	 * Reset the wounded flag after a kill. No other process can
762 	 * race and wound us here, since they can't have a valid owner
763 	 * pointer if we don't have any locks held.
764 	 */
765 	if (ww_ctx->acquired == 0)
766 		ww_ctx->wounded = 0;
767 
768 	if (__mutex_trylock(&ww->base)) {
769 		ww_mutex_set_context_fastpath(ww, ww_ctx);
770 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
771 		return 1;
772 	}
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL(ww_mutex_trylock);
777 
778 #ifdef CONFIG_DEBUG_LOCK_ALLOC
779 void __sched
780 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
781 {
782 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
783 }
784 
785 EXPORT_SYMBOL_GPL(mutex_lock_nested);
786 
787 void __sched
788 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
789 {
790 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
791 }
792 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
793 
794 int __sched
795 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
796 {
797 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
798 }
799 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
800 
801 int __sched
802 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
803 {
804 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
805 }
806 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
807 
808 void __sched
809 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
810 {
811 	int token;
812 
813 	might_sleep();
814 
815 	token = io_schedule_prepare();
816 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
817 			    subclass, NULL, _RET_IP_, NULL, 0);
818 	io_schedule_finish(token);
819 }
820 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
821 
822 static inline int
823 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
824 {
825 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
826 	unsigned tmp;
827 
828 	if (ctx->deadlock_inject_countdown-- == 0) {
829 		tmp = ctx->deadlock_inject_interval;
830 		if (tmp > UINT_MAX/4)
831 			tmp = UINT_MAX;
832 		else
833 			tmp = tmp*2 + tmp + tmp/2;
834 
835 		ctx->deadlock_inject_interval = tmp;
836 		ctx->deadlock_inject_countdown = tmp;
837 		ctx->contending_lock = lock;
838 
839 		ww_mutex_unlock(lock);
840 
841 		return -EDEADLK;
842 	}
843 #endif
844 
845 	return 0;
846 }
847 
848 int __sched
849 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
850 {
851 	int ret;
852 
853 	might_sleep();
854 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
855 			       0, _RET_IP_, ctx);
856 	if (!ret && ctx && ctx->acquired > 1)
857 		return ww_mutex_deadlock_injection(lock, ctx);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(ww_mutex_lock);
862 
863 int __sched
864 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
865 {
866 	int ret;
867 
868 	might_sleep();
869 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
870 			      0, _RET_IP_, ctx);
871 
872 	if (!ret && ctx && ctx->acquired > 1)
873 		return ww_mutex_deadlock_injection(lock, ctx);
874 
875 	return ret;
876 }
877 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
878 
879 #endif
880 
881 /*
882  * Release the lock, slowpath:
883  */
884 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
885 {
886 	struct task_struct *next = NULL;
887 	DEFINE_WAKE_Q(wake_q);
888 	unsigned long owner;
889 	unsigned long flags;
890 
891 	mutex_release(&lock->dep_map, ip);
892 
893 	/*
894 	 * Release the lock before (potentially) taking the spinlock such that
895 	 * other contenders can get on with things ASAP.
896 	 *
897 	 * Except when HANDOFF, in that case we must not clear the owner field,
898 	 * but instead set it to the top waiter.
899 	 */
900 	owner = atomic_long_read(&lock->owner);
901 	for (;;) {
902 		MUTEX_WARN_ON(__owner_task(owner) != current);
903 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
904 
905 		if (owner & MUTEX_FLAG_HANDOFF)
906 			break;
907 
908 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
909 			if (owner & MUTEX_FLAG_WAITERS)
910 				break;
911 
912 			return;
913 		}
914 	}
915 
916 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
917 	debug_mutex_unlock(lock);
918 	if (!list_empty(&lock->wait_list)) {
919 		/* get the first entry from the wait-list: */
920 		struct mutex_waiter *waiter =
921 			list_first_entry(&lock->wait_list,
922 					 struct mutex_waiter, list);
923 
924 		next = waiter->task;
925 
926 		debug_mutex_wake_waiter(lock, waiter);
927 		wake_q_add(&wake_q, next);
928 	}
929 
930 	if (owner & MUTEX_FLAG_HANDOFF)
931 		__mutex_handoff(lock, next);
932 
933 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
934 }
935 
936 #ifndef CONFIG_DEBUG_LOCK_ALLOC
937 /*
938  * Here come the less common (and hence less performance-critical) APIs:
939  * mutex_lock_interruptible() and mutex_trylock().
940  */
941 static noinline int __sched
942 __mutex_lock_killable_slowpath(struct mutex *lock);
943 
944 static noinline int __sched
945 __mutex_lock_interruptible_slowpath(struct mutex *lock);
946 
947 /**
948  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
949  * @lock: The mutex to be acquired.
950  *
951  * Lock the mutex like mutex_lock().  If a signal is delivered while the
952  * process is sleeping, this function will return without acquiring the
953  * mutex.
954  *
955  * Context: Process context.
956  * Return: 0 if the lock was successfully acquired or %-EINTR if a
957  * signal arrived.
958  */
959 int __sched mutex_lock_interruptible(struct mutex *lock)
960 {
961 	might_sleep();
962 
963 	if (__mutex_trylock_fast(lock))
964 		return 0;
965 
966 	return __mutex_lock_interruptible_slowpath(lock);
967 }
968 
969 EXPORT_SYMBOL(mutex_lock_interruptible);
970 
971 /**
972  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
973  * @lock: The mutex to be acquired.
974  *
975  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
976  * the current process is delivered while the process is sleeping, this
977  * function will return without acquiring the mutex.
978  *
979  * Context: Process context.
980  * Return: 0 if the lock was successfully acquired or %-EINTR if a
981  * fatal signal arrived.
982  */
983 int __sched mutex_lock_killable(struct mutex *lock)
984 {
985 	might_sleep();
986 
987 	if (__mutex_trylock_fast(lock))
988 		return 0;
989 
990 	return __mutex_lock_killable_slowpath(lock);
991 }
992 EXPORT_SYMBOL(mutex_lock_killable);
993 
994 /**
995  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
996  * @lock: The mutex to be acquired.
997  *
998  * Lock the mutex like mutex_lock().  While the task is waiting for this
999  * mutex, it will be accounted as being in the IO wait state by the
1000  * scheduler.
1001  *
1002  * Context: Process context.
1003  */
1004 void __sched mutex_lock_io(struct mutex *lock)
1005 {
1006 	int token;
1007 
1008 	token = io_schedule_prepare();
1009 	mutex_lock(lock);
1010 	io_schedule_finish(token);
1011 }
1012 EXPORT_SYMBOL_GPL(mutex_lock_io);
1013 
1014 static noinline void __sched
1015 __mutex_lock_slowpath(struct mutex *lock)
1016 {
1017 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1018 }
1019 
1020 static noinline int __sched
1021 __mutex_lock_killable_slowpath(struct mutex *lock)
1022 {
1023 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1024 }
1025 
1026 static noinline int __sched
1027 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1028 {
1029 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1030 }
1031 
1032 static noinline int __sched
1033 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1034 {
1035 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1036 			       _RET_IP_, ctx);
1037 }
1038 
1039 static noinline int __sched
1040 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1041 					    struct ww_acquire_ctx *ctx)
1042 {
1043 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1044 			       _RET_IP_, ctx);
1045 }
1046 
1047 #endif
1048 
1049 /**
1050  * mutex_trylock - try to acquire the mutex, without waiting
1051  * @lock: the mutex to be acquired
1052  *
1053  * Try to acquire the mutex atomically. Returns 1 if the mutex
1054  * has been acquired successfully, and 0 on contention.
1055  *
1056  * NOTE: this function follows the spin_trylock() convention, so
1057  * it is negated from the down_trylock() return values! Be careful
1058  * about this when converting semaphore users to mutexes.
1059  *
1060  * This function must not be used in interrupt context. The
1061  * mutex must be released by the same task that acquired it.
1062  */
1063 int __sched mutex_trylock(struct mutex *lock)
1064 {
1065 	bool locked;
1066 
1067 	MUTEX_WARN_ON(lock->magic != lock);
1068 
1069 	locked = __mutex_trylock(lock);
1070 	if (locked)
1071 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1072 
1073 	return locked;
1074 }
1075 EXPORT_SYMBOL(mutex_trylock);
1076 
1077 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1078 int __sched
1079 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1080 {
1081 	might_sleep();
1082 
1083 	if (__mutex_trylock_fast(&lock->base)) {
1084 		if (ctx)
1085 			ww_mutex_set_context_fastpath(lock, ctx);
1086 		return 0;
1087 	}
1088 
1089 	return __ww_mutex_lock_slowpath(lock, ctx);
1090 }
1091 EXPORT_SYMBOL(ww_mutex_lock);
1092 
1093 int __sched
1094 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1095 {
1096 	might_sleep();
1097 
1098 	if (__mutex_trylock_fast(&lock->base)) {
1099 		if (ctx)
1100 			ww_mutex_set_context_fastpath(lock, ctx);
1101 		return 0;
1102 	}
1103 
1104 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1105 }
1106 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1107 
1108 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1109 #endif /* !CONFIG_PREEMPT_RT */
1110 
1111 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1112 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1113 
1114 /**
1115  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1116  * @cnt: the atomic which we are to dec
1117  * @lock: the mutex to return holding if we dec to 0
1118  *
1119  * return true and hold lock if we dec to 0, return false otherwise
1120  */
1121 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1122 {
1123 	/* dec if we can't possibly hit 0 */
1124 	if (atomic_add_unless(cnt, -1, 1))
1125 		return 0;
1126 	/* we might hit 0, so take the lock */
1127 	mutex_lock(lock);
1128 	if (!atomic_dec_and_test(cnt)) {
1129 		/* when we actually did the dec, we didn't hit 0 */
1130 		mutex_unlock(lock);
1131 		return 0;
1132 	}
1133 	/* we hit 0, and we hold the lock */
1134 	return 1;
1135 }
1136 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1137