1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #ifndef CONFIG_PREEMPT_RT 34 #include "mutex.h" 35 36 #ifdef CONFIG_DEBUG_MUTEXES 37 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 38 #else 39 # define MUTEX_WARN_ON(cond) 40 #endif 41 42 void 43 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 44 { 45 atomic_long_set(&lock->owner, 0); 46 raw_spin_lock_init(&lock->wait_lock); 47 INIT_LIST_HEAD(&lock->wait_list); 48 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 49 osq_lock_init(&lock->osq); 50 #endif 51 52 debug_mutex_init(lock, name, key); 53 } 54 EXPORT_SYMBOL(__mutex_init); 55 56 /* 57 * @owner: contains: 'struct task_struct *' to the current lock owner, 58 * NULL means not owned. Since task_struct pointers are aligned at 59 * at least L1_CACHE_BYTES, we have low bits to store extra state. 60 * 61 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 62 * Bit1 indicates unlock needs to hand the lock to the top-waiter 63 * Bit2 indicates handoff has been done and we're waiting for pickup. 64 */ 65 #define MUTEX_FLAG_WAITERS 0x01 66 #define MUTEX_FLAG_HANDOFF 0x02 67 #define MUTEX_FLAG_PICKUP 0x04 68 69 #define MUTEX_FLAGS 0x07 70 71 /* 72 * Internal helper function; C doesn't allow us to hide it :/ 73 * 74 * DO NOT USE (outside of mutex code). 75 */ 76 static inline struct task_struct *__mutex_owner(struct mutex *lock) 77 { 78 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 79 } 80 81 static inline struct task_struct *__owner_task(unsigned long owner) 82 { 83 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 84 } 85 86 bool mutex_is_locked(struct mutex *lock) 87 { 88 return __mutex_owner(lock) != NULL; 89 } 90 EXPORT_SYMBOL(mutex_is_locked); 91 92 static inline unsigned long __owner_flags(unsigned long owner) 93 { 94 return owner & MUTEX_FLAGS; 95 } 96 97 /* 98 * Returns: __mutex_owner(lock) on failure or NULL on success. 99 */ 100 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 101 { 102 unsigned long owner, curr = (unsigned long)current; 103 104 owner = atomic_long_read(&lock->owner); 105 for (;;) { /* must loop, can race against a flag */ 106 unsigned long flags = __owner_flags(owner); 107 unsigned long task = owner & ~MUTEX_FLAGS; 108 109 if (task) { 110 if (flags & MUTEX_FLAG_PICKUP) { 111 if (task != curr) 112 break; 113 flags &= ~MUTEX_FLAG_PICKUP; 114 } else if (handoff) { 115 if (flags & MUTEX_FLAG_HANDOFF) 116 break; 117 flags |= MUTEX_FLAG_HANDOFF; 118 } else { 119 break; 120 } 121 } else { 122 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 123 task = curr; 124 } 125 126 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 127 if (task == curr) 128 return NULL; 129 break; 130 } 131 } 132 133 return __owner_task(owner); 134 } 135 136 /* 137 * Trylock or set HANDOFF 138 */ 139 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 140 { 141 return !__mutex_trylock_common(lock, handoff); 142 } 143 144 /* 145 * Actual trylock that will work on any unlocked state. 146 */ 147 static inline bool __mutex_trylock(struct mutex *lock) 148 { 149 return !__mutex_trylock_common(lock, false); 150 } 151 152 #ifndef CONFIG_DEBUG_LOCK_ALLOC 153 /* 154 * Lockdep annotations are contained to the slow paths for simplicity. 155 * There is nothing that would stop spreading the lockdep annotations outwards 156 * except more code. 157 */ 158 159 /* 160 * Optimistic trylock that only works in the uncontended case. Make sure to 161 * follow with a __mutex_trylock() before failing. 162 */ 163 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 164 { 165 unsigned long curr = (unsigned long)current; 166 unsigned long zero = 0UL; 167 168 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 169 return true; 170 171 return false; 172 } 173 174 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 175 { 176 unsigned long curr = (unsigned long)current; 177 178 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 179 } 180 #endif 181 182 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 183 { 184 atomic_long_or(flag, &lock->owner); 185 } 186 187 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 188 { 189 atomic_long_andnot(flag, &lock->owner); 190 } 191 192 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 193 { 194 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 195 } 196 197 /* 198 * Add @waiter to a given location in the lock wait_list and set the 199 * FLAG_WAITERS flag if it's the first waiter. 200 */ 201 static void 202 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 203 struct list_head *list) 204 { 205 debug_mutex_add_waiter(lock, waiter, current); 206 207 list_add_tail(&waiter->list, list); 208 if (__mutex_waiter_is_first(lock, waiter)) 209 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 210 } 211 212 static void 213 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 214 { 215 list_del(&waiter->list); 216 if (likely(list_empty(&lock->wait_list))) 217 __mutex_clear_flag(lock, MUTEX_FLAGS); 218 219 debug_mutex_remove_waiter(lock, waiter, current); 220 } 221 222 /* 223 * Give up ownership to a specific task, when @task = NULL, this is equivalent 224 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 225 * WAITERS. Provides RELEASE semantics like a regular unlock, the 226 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 227 */ 228 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 229 { 230 unsigned long owner = atomic_long_read(&lock->owner); 231 232 for (;;) { 233 unsigned long new; 234 235 MUTEX_WARN_ON(__owner_task(owner) != current); 236 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 237 238 new = (owner & MUTEX_FLAG_WAITERS); 239 new |= (unsigned long)task; 240 if (task) 241 new |= MUTEX_FLAG_PICKUP; 242 243 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 244 break; 245 } 246 } 247 248 #ifndef CONFIG_DEBUG_LOCK_ALLOC 249 /* 250 * We split the mutex lock/unlock logic into separate fastpath and 251 * slowpath functions, to reduce the register pressure on the fastpath. 252 * We also put the fastpath first in the kernel image, to make sure the 253 * branch is predicted by the CPU as default-untaken. 254 */ 255 static void __sched __mutex_lock_slowpath(struct mutex *lock); 256 257 /** 258 * mutex_lock - acquire the mutex 259 * @lock: the mutex to be acquired 260 * 261 * Lock the mutex exclusively for this task. If the mutex is not 262 * available right now, it will sleep until it can get it. 263 * 264 * The mutex must later on be released by the same task that 265 * acquired it. Recursive locking is not allowed. The task 266 * may not exit without first unlocking the mutex. Also, kernel 267 * memory where the mutex resides must not be freed with 268 * the mutex still locked. The mutex must first be initialized 269 * (or statically defined) before it can be locked. memset()-ing 270 * the mutex to 0 is not allowed. 271 * 272 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 273 * checks that will enforce the restrictions and will also do 274 * deadlock debugging) 275 * 276 * This function is similar to (but not equivalent to) down(). 277 */ 278 void __sched mutex_lock(struct mutex *lock) 279 { 280 might_sleep(); 281 282 if (!__mutex_trylock_fast(lock)) 283 __mutex_lock_slowpath(lock); 284 } 285 EXPORT_SYMBOL(mutex_lock); 286 #endif 287 288 #include "ww_mutex.h" 289 290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 291 292 /* 293 * Trylock variant that returns the owning task on failure. 294 */ 295 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 296 { 297 return __mutex_trylock_common(lock, false); 298 } 299 300 static inline 301 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 302 struct mutex_waiter *waiter) 303 { 304 struct ww_mutex *ww; 305 306 ww = container_of(lock, struct ww_mutex, base); 307 308 /* 309 * If ww->ctx is set the contents are undefined, only 310 * by acquiring wait_lock there is a guarantee that 311 * they are not invalid when reading. 312 * 313 * As such, when deadlock detection needs to be 314 * performed the optimistic spinning cannot be done. 315 * 316 * Check this in every inner iteration because we may 317 * be racing against another thread's ww_mutex_lock. 318 */ 319 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 320 return false; 321 322 /* 323 * If we aren't on the wait list yet, cancel the spin 324 * if there are waiters. We want to avoid stealing the 325 * lock from a waiter with an earlier stamp, since the 326 * other thread may already own a lock that we also 327 * need. 328 */ 329 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 330 return false; 331 332 /* 333 * Similarly, stop spinning if we are no longer the 334 * first waiter. 335 */ 336 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 337 return false; 338 339 return true; 340 } 341 342 /* 343 * Look out! "owner" is an entirely speculative pointer access and not 344 * reliable. 345 * 346 * "noinline" so that this function shows up on perf profiles. 347 */ 348 static noinline 349 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 350 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 351 { 352 bool ret = true; 353 354 rcu_read_lock(); 355 while (__mutex_owner(lock) == owner) { 356 /* 357 * Ensure we emit the owner->on_cpu, dereference _after_ 358 * checking lock->owner still matches owner. If that fails, 359 * owner might point to freed memory. If it still matches, 360 * the rcu_read_lock() ensures the memory stays valid. 361 */ 362 barrier(); 363 364 /* 365 * Use vcpu_is_preempted to detect lock holder preemption issue. 366 */ 367 if (!owner->on_cpu || need_resched() || 368 vcpu_is_preempted(task_cpu(owner))) { 369 ret = false; 370 break; 371 } 372 373 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 374 ret = false; 375 break; 376 } 377 378 cpu_relax(); 379 } 380 rcu_read_unlock(); 381 382 return ret; 383 } 384 385 /* 386 * Initial check for entering the mutex spinning loop 387 */ 388 static inline int mutex_can_spin_on_owner(struct mutex *lock) 389 { 390 struct task_struct *owner; 391 int retval = 1; 392 393 if (need_resched()) 394 return 0; 395 396 rcu_read_lock(); 397 owner = __mutex_owner(lock); 398 399 /* 400 * As lock holder preemption issue, we both skip spinning if task is not 401 * on cpu or its cpu is preempted 402 */ 403 if (owner) 404 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 405 rcu_read_unlock(); 406 407 /* 408 * If lock->owner is not set, the mutex has been released. Return true 409 * such that we'll trylock in the spin path, which is a faster option 410 * than the blocking slow path. 411 */ 412 return retval; 413 } 414 415 /* 416 * Optimistic spinning. 417 * 418 * We try to spin for acquisition when we find that the lock owner 419 * is currently running on a (different) CPU and while we don't 420 * need to reschedule. The rationale is that if the lock owner is 421 * running, it is likely to release the lock soon. 422 * 423 * The mutex spinners are queued up using MCS lock so that only one 424 * spinner can compete for the mutex. However, if mutex spinning isn't 425 * going to happen, there is no point in going through the lock/unlock 426 * overhead. 427 * 428 * Returns true when the lock was taken, otherwise false, indicating 429 * that we need to jump to the slowpath and sleep. 430 * 431 * The waiter flag is set to true if the spinner is a waiter in the wait 432 * queue. The waiter-spinner will spin on the lock directly and concurrently 433 * with the spinner at the head of the OSQ, if present, until the owner is 434 * changed to itself. 435 */ 436 static __always_inline bool 437 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 438 struct mutex_waiter *waiter) 439 { 440 if (!waiter) { 441 /* 442 * The purpose of the mutex_can_spin_on_owner() function is 443 * to eliminate the overhead of osq_lock() and osq_unlock() 444 * in case spinning isn't possible. As a waiter-spinner 445 * is not going to take OSQ lock anyway, there is no need 446 * to call mutex_can_spin_on_owner(). 447 */ 448 if (!mutex_can_spin_on_owner(lock)) 449 goto fail; 450 451 /* 452 * In order to avoid a stampede of mutex spinners trying to 453 * acquire the mutex all at once, the spinners need to take a 454 * MCS (queued) lock first before spinning on the owner field. 455 */ 456 if (!osq_lock(&lock->osq)) 457 goto fail; 458 } 459 460 for (;;) { 461 struct task_struct *owner; 462 463 /* Try to acquire the mutex... */ 464 owner = __mutex_trylock_or_owner(lock); 465 if (!owner) 466 break; 467 468 /* 469 * There's an owner, wait for it to either 470 * release the lock or go to sleep. 471 */ 472 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 473 goto fail_unlock; 474 475 /* 476 * The cpu_relax() call is a compiler barrier which forces 477 * everything in this loop to be re-loaded. We don't need 478 * memory barriers as we'll eventually observe the right 479 * values at the cost of a few extra spins. 480 */ 481 cpu_relax(); 482 } 483 484 if (!waiter) 485 osq_unlock(&lock->osq); 486 487 return true; 488 489 490 fail_unlock: 491 if (!waiter) 492 osq_unlock(&lock->osq); 493 494 fail: 495 /* 496 * If we fell out of the spin path because of need_resched(), 497 * reschedule now, before we try-lock the mutex. This avoids getting 498 * scheduled out right after we obtained the mutex. 499 */ 500 if (need_resched()) { 501 /* 502 * We _should_ have TASK_RUNNING here, but just in case 503 * we do not, make it so, otherwise we might get stuck. 504 */ 505 __set_current_state(TASK_RUNNING); 506 schedule_preempt_disabled(); 507 } 508 509 return false; 510 } 511 #else 512 static __always_inline bool 513 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 514 struct mutex_waiter *waiter) 515 { 516 return false; 517 } 518 #endif 519 520 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 521 522 /** 523 * mutex_unlock - release the mutex 524 * @lock: the mutex to be released 525 * 526 * Unlock a mutex that has been locked by this task previously. 527 * 528 * This function must not be used in interrupt context. Unlocking 529 * of a not locked mutex is not allowed. 530 * 531 * This function is similar to (but not equivalent to) up(). 532 */ 533 void __sched mutex_unlock(struct mutex *lock) 534 { 535 #ifndef CONFIG_DEBUG_LOCK_ALLOC 536 if (__mutex_unlock_fast(lock)) 537 return; 538 #endif 539 __mutex_unlock_slowpath(lock, _RET_IP_); 540 } 541 EXPORT_SYMBOL(mutex_unlock); 542 543 /** 544 * ww_mutex_unlock - release the w/w mutex 545 * @lock: the mutex to be released 546 * 547 * Unlock a mutex that has been locked by this task previously with any of the 548 * ww_mutex_lock* functions (with or without an acquire context). It is 549 * forbidden to release the locks after releasing the acquire context. 550 * 551 * This function must not be used in interrupt context. Unlocking 552 * of a unlocked mutex is not allowed. 553 */ 554 void __sched ww_mutex_unlock(struct ww_mutex *lock) 555 { 556 __ww_mutex_unlock(lock); 557 mutex_unlock(&lock->base); 558 } 559 EXPORT_SYMBOL(ww_mutex_unlock); 560 561 /* 562 * Lock a mutex (possibly interruptible), slowpath: 563 */ 564 static __always_inline int __sched 565 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 566 struct lockdep_map *nest_lock, unsigned long ip, 567 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 568 { 569 struct mutex_waiter waiter; 570 struct ww_mutex *ww; 571 int ret; 572 573 if (!use_ww_ctx) 574 ww_ctx = NULL; 575 576 might_sleep(); 577 578 MUTEX_WARN_ON(lock->magic != lock); 579 580 ww = container_of(lock, struct ww_mutex, base); 581 if (ww_ctx) { 582 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 583 return -EALREADY; 584 585 /* 586 * Reset the wounded flag after a kill. No other process can 587 * race and wound us here since they can't have a valid owner 588 * pointer if we don't have any locks held. 589 */ 590 if (ww_ctx->acquired == 0) 591 ww_ctx->wounded = 0; 592 593 #ifdef CONFIG_DEBUG_LOCK_ALLOC 594 nest_lock = &ww_ctx->dep_map; 595 #endif 596 } 597 598 preempt_disable(); 599 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 600 601 if (__mutex_trylock(lock) || 602 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 603 /* got the lock, yay! */ 604 lock_acquired(&lock->dep_map, ip); 605 if (ww_ctx) 606 ww_mutex_set_context_fastpath(ww, ww_ctx); 607 preempt_enable(); 608 return 0; 609 } 610 611 raw_spin_lock(&lock->wait_lock); 612 /* 613 * After waiting to acquire the wait_lock, try again. 614 */ 615 if (__mutex_trylock(lock)) { 616 if (ww_ctx) 617 __ww_mutex_check_waiters(lock, ww_ctx); 618 619 goto skip_wait; 620 } 621 622 debug_mutex_lock_common(lock, &waiter); 623 waiter.task = current; 624 if (use_ww_ctx) 625 waiter.ww_ctx = ww_ctx; 626 627 lock_contended(&lock->dep_map, ip); 628 629 if (!use_ww_ctx) { 630 /* add waiting tasks to the end of the waitqueue (FIFO): */ 631 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 632 } else { 633 /* 634 * Add in stamp order, waking up waiters that must kill 635 * themselves. 636 */ 637 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 638 if (ret) 639 goto err_early_kill; 640 } 641 642 set_current_state(state); 643 for (;;) { 644 bool first; 645 646 /* 647 * Once we hold wait_lock, we're serialized against 648 * mutex_unlock() handing the lock off to us, do a trylock 649 * before testing the error conditions to make sure we pick up 650 * the handoff. 651 */ 652 if (__mutex_trylock(lock)) 653 goto acquired; 654 655 /* 656 * Check for signals and kill conditions while holding 657 * wait_lock. This ensures the lock cancellation is ordered 658 * against mutex_unlock() and wake-ups do not go missing. 659 */ 660 if (signal_pending_state(state, current)) { 661 ret = -EINTR; 662 goto err; 663 } 664 665 if (ww_ctx) { 666 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 667 if (ret) 668 goto err; 669 } 670 671 raw_spin_unlock(&lock->wait_lock); 672 schedule_preempt_disabled(); 673 674 first = __mutex_waiter_is_first(lock, &waiter); 675 676 set_current_state(state); 677 /* 678 * Here we order against unlock; we must either see it change 679 * state back to RUNNING and fall through the next schedule(), 680 * or we must see its unlock and acquire. 681 */ 682 if (__mutex_trylock_or_handoff(lock, first) || 683 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 684 break; 685 686 raw_spin_lock(&lock->wait_lock); 687 } 688 raw_spin_lock(&lock->wait_lock); 689 acquired: 690 __set_current_state(TASK_RUNNING); 691 692 if (ww_ctx) { 693 /* 694 * Wound-Wait; we stole the lock (!first_waiter), check the 695 * waiters as anyone might want to wound us. 696 */ 697 if (!ww_ctx->is_wait_die && 698 !__mutex_waiter_is_first(lock, &waiter)) 699 __ww_mutex_check_waiters(lock, ww_ctx); 700 } 701 702 __mutex_remove_waiter(lock, &waiter); 703 704 debug_mutex_free_waiter(&waiter); 705 706 skip_wait: 707 /* got the lock - cleanup and rejoice! */ 708 lock_acquired(&lock->dep_map, ip); 709 710 if (ww_ctx) 711 ww_mutex_lock_acquired(ww, ww_ctx); 712 713 raw_spin_unlock(&lock->wait_lock); 714 preempt_enable(); 715 return 0; 716 717 err: 718 __set_current_state(TASK_RUNNING); 719 __mutex_remove_waiter(lock, &waiter); 720 err_early_kill: 721 raw_spin_unlock(&lock->wait_lock); 722 debug_mutex_free_waiter(&waiter); 723 mutex_release(&lock->dep_map, ip); 724 preempt_enable(); 725 return ret; 726 } 727 728 static int __sched 729 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 730 struct lockdep_map *nest_lock, unsigned long ip) 731 { 732 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 733 } 734 735 static int __sched 736 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 737 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 738 { 739 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 740 } 741 742 /** 743 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 744 * @ww: mutex to lock 745 * @ww_ctx: optional w/w acquire context 746 * 747 * Trylocks a mutex with the optional acquire context; no deadlock detection is 748 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 749 * 750 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 751 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 752 * 753 * A mutex acquired with this function must be released with ww_mutex_unlock. 754 */ 755 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 756 { 757 if (!ww_ctx) 758 return mutex_trylock(&ww->base); 759 760 MUTEX_WARN_ON(ww->base.magic != &ww->base); 761 762 /* 763 * Reset the wounded flag after a kill. No other process can 764 * race and wound us here, since they can't have a valid owner 765 * pointer if we don't have any locks held. 766 */ 767 if (ww_ctx->acquired == 0) 768 ww_ctx->wounded = 0; 769 770 if (__mutex_trylock(&ww->base)) { 771 ww_mutex_set_context_fastpath(ww, ww_ctx); 772 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 773 return 1; 774 } 775 776 return 0; 777 } 778 EXPORT_SYMBOL(ww_mutex_trylock); 779 780 #ifdef CONFIG_DEBUG_LOCK_ALLOC 781 void __sched 782 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 783 { 784 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 785 } 786 787 EXPORT_SYMBOL_GPL(mutex_lock_nested); 788 789 void __sched 790 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 791 { 792 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 793 } 794 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 795 796 int __sched 797 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 798 { 799 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 800 } 801 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 802 803 int __sched 804 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 805 { 806 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 807 } 808 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 809 810 void __sched 811 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 812 { 813 int token; 814 815 might_sleep(); 816 817 token = io_schedule_prepare(); 818 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 819 subclass, NULL, _RET_IP_, NULL, 0); 820 io_schedule_finish(token); 821 } 822 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 823 824 static inline int 825 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 826 { 827 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 828 unsigned tmp; 829 830 if (ctx->deadlock_inject_countdown-- == 0) { 831 tmp = ctx->deadlock_inject_interval; 832 if (tmp > UINT_MAX/4) 833 tmp = UINT_MAX; 834 else 835 tmp = tmp*2 + tmp + tmp/2; 836 837 ctx->deadlock_inject_interval = tmp; 838 ctx->deadlock_inject_countdown = tmp; 839 ctx->contending_lock = lock; 840 841 ww_mutex_unlock(lock); 842 843 return -EDEADLK; 844 } 845 #endif 846 847 return 0; 848 } 849 850 int __sched 851 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 852 { 853 int ret; 854 855 might_sleep(); 856 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 857 0, _RET_IP_, ctx); 858 if (!ret && ctx && ctx->acquired > 1) 859 return ww_mutex_deadlock_injection(lock, ctx); 860 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(ww_mutex_lock); 864 865 int __sched 866 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 867 { 868 int ret; 869 870 might_sleep(); 871 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 872 0, _RET_IP_, ctx); 873 874 if (!ret && ctx && ctx->acquired > 1) 875 return ww_mutex_deadlock_injection(lock, ctx); 876 877 return ret; 878 } 879 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 880 881 #endif 882 883 /* 884 * Release the lock, slowpath: 885 */ 886 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 887 { 888 struct task_struct *next = NULL; 889 DEFINE_WAKE_Q(wake_q); 890 unsigned long owner; 891 892 mutex_release(&lock->dep_map, ip); 893 894 /* 895 * Release the lock before (potentially) taking the spinlock such that 896 * other contenders can get on with things ASAP. 897 * 898 * Except when HANDOFF, in that case we must not clear the owner field, 899 * but instead set it to the top waiter. 900 */ 901 owner = atomic_long_read(&lock->owner); 902 for (;;) { 903 MUTEX_WARN_ON(__owner_task(owner) != current); 904 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 905 906 if (owner & MUTEX_FLAG_HANDOFF) 907 break; 908 909 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 910 if (owner & MUTEX_FLAG_WAITERS) 911 break; 912 913 return; 914 } 915 } 916 917 raw_spin_lock(&lock->wait_lock); 918 debug_mutex_unlock(lock); 919 if (!list_empty(&lock->wait_list)) { 920 /* get the first entry from the wait-list: */ 921 struct mutex_waiter *waiter = 922 list_first_entry(&lock->wait_list, 923 struct mutex_waiter, list); 924 925 next = waiter->task; 926 927 debug_mutex_wake_waiter(lock, waiter); 928 wake_q_add(&wake_q, next); 929 } 930 931 if (owner & MUTEX_FLAG_HANDOFF) 932 __mutex_handoff(lock, next); 933 934 raw_spin_unlock(&lock->wait_lock); 935 936 wake_up_q(&wake_q); 937 } 938 939 #ifndef CONFIG_DEBUG_LOCK_ALLOC 940 /* 941 * Here come the less common (and hence less performance-critical) APIs: 942 * mutex_lock_interruptible() and mutex_trylock(). 943 */ 944 static noinline int __sched 945 __mutex_lock_killable_slowpath(struct mutex *lock); 946 947 static noinline int __sched 948 __mutex_lock_interruptible_slowpath(struct mutex *lock); 949 950 /** 951 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 952 * @lock: The mutex to be acquired. 953 * 954 * Lock the mutex like mutex_lock(). If a signal is delivered while the 955 * process is sleeping, this function will return without acquiring the 956 * mutex. 957 * 958 * Context: Process context. 959 * Return: 0 if the lock was successfully acquired or %-EINTR if a 960 * signal arrived. 961 */ 962 int __sched mutex_lock_interruptible(struct mutex *lock) 963 { 964 might_sleep(); 965 966 if (__mutex_trylock_fast(lock)) 967 return 0; 968 969 return __mutex_lock_interruptible_slowpath(lock); 970 } 971 972 EXPORT_SYMBOL(mutex_lock_interruptible); 973 974 /** 975 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 976 * @lock: The mutex to be acquired. 977 * 978 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 979 * the current process is delivered while the process is sleeping, this 980 * function will return without acquiring the mutex. 981 * 982 * Context: Process context. 983 * Return: 0 if the lock was successfully acquired or %-EINTR if a 984 * fatal signal arrived. 985 */ 986 int __sched mutex_lock_killable(struct mutex *lock) 987 { 988 might_sleep(); 989 990 if (__mutex_trylock_fast(lock)) 991 return 0; 992 993 return __mutex_lock_killable_slowpath(lock); 994 } 995 EXPORT_SYMBOL(mutex_lock_killable); 996 997 /** 998 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 999 * @lock: The mutex to be acquired. 1000 * 1001 * Lock the mutex like mutex_lock(). While the task is waiting for this 1002 * mutex, it will be accounted as being in the IO wait state by the 1003 * scheduler. 1004 * 1005 * Context: Process context. 1006 */ 1007 void __sched mutex_lock_io(struct mutex *lock) 1008 { 1009 int token; 1010 1011 token = io_schedule_prepare(); 1012 mutex_lock(lock); 1013 io_schedule_finish(token); 1014 } 1015 EXPORT_SYMBOL_GPL(mutex_lock_io); 1016 1017 static noinline void __sched 1018 __mutex_lock_slowpath(struct mutex *lock) 1019 { 1020 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1021 } 1022 1023 static noinline int __sched 1024 __mutex_lock_killable_slowpath(struct mutex *lock) 1025 { 1026 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1027 } 1028 1029 static noinline int __sched 1030 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1031 { 1032 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1033 } 1034 1035 static noinline int __sched 1036 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1037 { 1038 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1039 _RET_IP_, ctx); 1040 } 1041 1042 static noinline int __sched 1043 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1044 struct ww_acquire_ctx *ctx) 1045 { 1046 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1047 _RET_IP_, ctx); 1048 } 1049 1050 #endif 1051 1052 /** 1053 * mutex_trylock - try to acquire the mutex, without waiting 1054 * @lock: the mutex to be acquired 1055 * 1056 * Try to acquire the mutex atomically. Returns 1 if the mutex 1057 * has been acquired successfully, and 0 on contention. 1058 * 1059 * NOTE: this function follows the spin_trylock() convention, so 1060 * it is negated from the down_trylock() return values! Be careful 1061 * about this when converting semaphore users to mutexes. 1062 * 1063 * This function must not be used in interrupt context. The 1064 * mutex must be released by the same task that acquired it. 1065 */ 1066 int __sched mutex_trylock(struct mutex *lock) 1067 { 1068 bool locked; 1069 1070 MUTEX_WARN_ON(lock->magic != lock); 1071 1072 locked = __mutex_trylock(lock); 1073 if (locked) 1074 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1075 1076 return locked; 1077 } 1078 EXPORT_SYMBOL(mutex_trylock); 1079 1080 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1081 int __sched 1082 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1083 { 1084 might_sleep(); 1085 1086 if (__mutex_trylock_fast(&lock->base)) { 1087 if (ctx) 1088 ww_mutex_set_context_fastpath(lock, ctx); 1089 return 0; 1090 } 1091 1092 return __ww_mutex_lock_slowpath(lock, ctx); 1093 } 1094 EXPORT_SYMBOL(ww_mutex_lock); 1095 1096 int __sched 1097 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1098 { 1099 might_sleep(); 1100 1101 if (__mutex_trylock_fast(&lock->base)) { 1102 if (ctx) 1103 ww_mutex_set_context_fastpath(lock, ctx); 1104 return 0; 1105 } 1106 1107 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1108 } 1109 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1110 1111 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1112 #endif /* !CONFIG_PREEMPT_RT */ 1113 1114 /** 1115 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1116 * @cnt: the atomic which we are to dec 1117 * @lock: the mutex to return holding if we dec to 0 1118 * 1119 * return true and hold lock if we dec to 0, return false otherwise 1120 */ 1121 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1122 { 1123 /* dec if we can't possibly hit 0 */ 1124 if (atomic_add_unless(cnt, -1, 1)) 1125 return 0; 1126 /* we might hit 0, so take the lock */ 1127 mutex_lock(lock); 1128 if (!atomic_dec_and_test(cnt)) { 1129 /* when we actually did the dec, we didn't hit 0 */ 1130 mutex_unlock(lock); 1131 return 0; 1132 } 1133 /* we hit 0, and we hold the lock */ 1134 return 1; 1135 } 1136 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1137