1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 #include <linux/hung_task.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/lock.h> 36 37 #ifndef CONFIG_PREEMPT_RT 38 #include "mutex.h" 39 40 #ifdef CONFIG_DEBUG_MUTEXES 41 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 42 #else 43 # define MUTEX_WARN_ON(cond) 44 #endif 45 46 static void __mutex_init_generic(struct mutex *lock) 47 { 48 atomic_long_set(&lock->owner, 0); 49 raw_spin_lock_init(&lock->wait_lock); 50 INIT_LIST_HEAD(&lock->wait_list); 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 52 osq_lock_init(&lock->osq); 53 #endif 54 debug_mutex_init(lock); 55 } 56 57 static inline struct task_struct *__owner_task(unsigned long owner) 58 { 59 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 60 } 61 62 bool mutex_is_locked(struct mutex *lock) 63 { 64 return __mutex_owner(lock) != NULL; 65 } 66 EXPORT_SYMBOL(mutex_is_locked); 67 68 static inline unsigned long __owner_flags(unsigned long owner) 69 { 70 return owner & MUTEX_FLAGS; 71 } 72 73 /* Do not use the return value as a pointer directly. */ 74 unsigned long mutex_get_owner(struct mutex *lock) 75 { 76 unsigned long owner = atomic_long_read(&lock->owner); 77 78 return (unsigned long)__owner_task(owner); 79 } 80 81 /* 82 * Returns: __mutex_owner(lock) on failure or NULL on success. 83 */ 84 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 85 { 86 unsigned long owner, curr = (unsigned long)current; 87 88 owner = atomic_long_read(&lock->owner); 89 for (;;) { /* must loop, can race against a flag */ 90 unsigned long flags = __owner_flags(owner); 91 unsigned long task = owner & ~MUTEX_FLAGS; 92 93 if (task) { 94 if (flags & MUTEX_FLAG_PICKUP) { 95 if (task != curr) 96 break; 97 flags &= ~MUTEX_FLAG_PICKUP; 98 } else if (handoff) { 99 if (flags & MUTEX_FLAG_HANDOFF) 100 break; 101 flags |= MUTEX_FLAG_HANDOFF; 102 } else { 103 break; 104 } 105 } else { 106 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 107 task = curr; 108 } 109 110 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 111 if (task == curr) 112 return NULL; 113 break; 114 } 115 } 116 117 return __owner_task(owner); 118 } 119 120 /* 121 * Trylock or set HANDOFF 122 */ 123 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 124 { 125 return !__mutex_trylock_common(lock, handoff); 126 } 127 128 /* 129 * Actual trylock that will work on any unlocked state. 130 */ 131 static inline bool __mutex_trylock(struct mutex *lock) 132 { 133 return !__mutex_trylock_common(lock, false); 134 } 135 136 #ifndef CONFIG_DEBUG_LOCK_ALLOC 137 /* 138 * Lockdep annotations are contained to the slow paths for simplicity. 139 * There is nothing that would stop spreading the lockdep annotations outwards 140 * except more code. 141 */ 142 void mutex_init_generic(struct mutex *lock) 143 { 144 __mutex_init_generic(lock); 145 } 146 EXPORT_SYMBOL(mutex_init_generic); 147 148 /* 149 * Optimistic trylock that only works in the uncontended case. Make sure to 150 * follow with a __mutex_trylock() before failing. 151 */ 152 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 153 { 154 unsigned long curr = (unsigned long)current; 155 unsigned long zero = 0UL; 156 157 MUTEX_WARN_ON(lock->magic != lock); 158 159 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 160 return true; 161 162 return false; 163 } 164 165 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 166 { 167 unsigned long curr = (unsigned long)current; 168 169 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 170 } 171 172 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 173 174 void mutex_init_lockep(struct mutex *lock, const char *name, struct lock_class_key *key) 175 { 176 __mutex_init_generic(lock); 177 178 /* 179 * Make sure we are not reinitializing a held lock: 180 */ 181 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 182 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); 183 } 184 EXPORT_SYMBOL(mutex_init_lockep); 185 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 186 187 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 188 { 189 atomic_long_or(flag, &lock->owner); 190 } 191 192 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 193 { 194 atomic_long_andnot(flag, &lock->owner); 195 } 196 197 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 198 { 199 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 200 } 201 202 /* 203 * Add @waiter to a given location in the lock wait_list and set the 204 * FLAG_WAITERS flag if it's the first waiter. 205 */ 206 static void 207 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 208 struct list_head *list) 209 { 210 hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX); 211 debug_mutex_add_waiter(lock, waiter, current); 212 213 list_add_tail(&waiter->list, list); 214 if (__mutex_waiter_is_first(lock, waiter)) 215 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 216 } 217 218 static void 219 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 220 { 221 list_del(&waiter->list); 222 if (likely(list_empty(&lock->wait_list))) 223 __mutex_clear_flag(lock, MUTEX_FLAGS); 224 225 debug_mutex_remove_waiter(lock, waiter, current); 226 hung_task_clear_blocker(); 227 } 228 229 /* 230 * Give up ownership to a specific task, when @task = NULL, this is equivalent 231 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 232 * WAITERS. Provides RELEASE semantics like a regular unlock, the 233 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 234 */ 235 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 236 { 237 unsigned long owner = atomic_long_read(&lock->owner); 238 239 for (;;) { 240 unsigned long new; 241 242 MUTEX_WARN_ON(__owner_task(owner) != current); 243 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 244 245 new = (owner & MUTEX_FLAG_WAITERS); 246 new |= (unsigned long)task; 247 if (task) 248 new |= MUTEX_FLAG_PICKUP; 249 250 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 251 break; 252 } 253 } 254 255 #ifndef CONFIG_DEBUG_LOCK_ALLOC 256 /* 257 * We split the mutex lock/unlock logic into separate fastpath and 258 * slowpath functions, to reduce the register pressure on the fastpath. 259 * We also put the fastpath first in the kernel image, to make sure the 260 * branch is predicted by the CPU as default-untaken. 261 */ 262 static void __sched __mutex_lock_slowpath(struct mutex *lock); 263 264 /** 265 * mutex_lock - acquire the mutex 266 * @lock: the mutex to be acquired 267 * 268 * Lock the mutex exclusively for this task. If the mutex is not 269 * available right now, it will sleep until it can get it. 270 * 271 * The mutex must later on be released by the same task that 272 * acquired it. Recursive locking is not allowed. The task 273 * may not exit without first unlocking the mutex. Also, kernel 274 * memory where the mutex resides must not be freed with 275 * the mutex still locked. The mutex must first be initialized 276 * (or statically defined) before it can be locked. memset()-ing 277 * the mutex to 0 is not allowed. 278 * 279 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 280 * checks that will enforce the restrictions and will also do 281 * deadlock debugging) 282 * 283 * This function is similar to (but not equivalent to) down(). 284 */ 285 void __sched mutex_lock(struct mutex *lock) 286 { 287 might_sleep(); 288 289 if (!__mutex_trylock_fast(lock)) 290 __mutex_lock_slowpath(lock); 291 } 292 EXPORT_SYMBOL(mutex_lock); 293 #endif 294 295 #include "ww_mutex.h" 296 297 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 298 299 /* 300 * Trylock variant that returns the owning task on failure. 301 */ 302 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 303 { 304 return __mutex_trylock_common(lock, false); 305 } 306 307 static inline 308 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 309 struct mutex_waiter *waiter) 310 { 311 struct ww_mutex *ww; 312 313 ww = container_of(lock, struct ww_mutex, base); 314 315 /* 316 * If ww->ctx is set the contents are undefined, only 317 * by acquiring wait_lock there is a guarantee that 318 * they are not invalid when reading. 319 * 320 * As such, when deadlock detection needs to be 321 * performed the optimistic spinning cannot be done. 322 * 323 * Check this in every inner iteration because we may 324 * be racing against another thread's ww_mutex_lock. 325 */ 326 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 327 return false; 328 329 /* 330 * If we aren't on the wait list yet, cancel the spin 331 * if there are waiters. We want to avoid stealing the 332 * lock from a waiter with an earlier stamp, since the 333 * other thread may already own a lock that we also 334 * need. 335 */ 336 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 337 return false; 338 339 /* 340 * Similarly, stop spinning if we are no longer the 341 * first waiter. 342 */ 343 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 344 return false; 345 346 return true; 347 } 348 349 /* 350 * Look out! "owner" is an entirely speculative pointer access and not 351 * reliable. 352 * 353 * "noinline" so that this function shows up on perf profiles. 354 */ 355 static noinline 356 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 357 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 358 { 359 bool ret = true; 360 361 lockdep_assert_preemption_disabled(); 362 363 while (__mutex_owner(lock) == owner) { 364 /* 365 * Ensure we emit the owner->on_cpu, dereference _after_ 366 * checking lock->owner still matches owner. And we already 367 * disabled preemption which is equal to the RCU read-side 368 * crital section in optimistic spinning code. Thus the 369 * task_strcut structure won't go away during the spinning 370 * period 371 */ 372 barrier(); 373 374 /* 375 * Use vcpu_is_preempted to detect lock holder preemption issue. 376 */ 377 if (!owner_on_cpu(owner) || need_resched()) { 378 ret = false; 379 break; 380 } 381 382 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 383 ret = false; 384 break; 385 } 386 387 cpu_relax(); 388 } 389 390 return ret; 391 } 392 393 /* 394 * Initial check for entering the mutex spinning loop 395 */ 396 static inline int mutex_can_spin_on_owner(struct mutex *lock) 397 { 398 struct task_struct *owner; 399 int retval = 1; 400 401 lockdep_assert_preemption_disabled(); 402 403 if (need_resched()) 404 return 0; 405 406 /* 407 * We already disabled preemption which is equal to the RCU read-side 408 * crital section in optimistic spinning code. Thus the task_strcut 409 * structure won't go away during the spinning period. 410 */ 411 owner = __mutex_owner(lock); 412 if (owner) 413 retval = owner_on_cpu(owner); 414 415 /* 416 * If lock->owner is not set, the mutex has been released. Return true 417 * such that we'll trylock in the spin path, which is a faster option 418 * than the blocking slow path. 419 */ 420 return retval; 421 } 422 423 /* 424 * Optimistic spinning. 425 * 426 * We try to spin for acquisition when we find that the lock owner 427 * is currently running on a (different) CPU and while we don't 428 * need to reschedule. The rationale is that if the lock owner is 429 * running, it is likely to release the lock soon. 430 * 431 * The mutex spinners are queued up using MCS lock so that only one 432 * spinner can compete for the mutex. However, if mutex spinning isn't 433 * going to happen, there is no point in going through the lock/unlock 434 * overhead. 435 * 436 * Returns true when the lock was taken, otherwise false, indicating 437 * that we need to jump to the slowpath and sleep. 438 * 439 * The waiter flag is set to true if the spinner is a waiter in the wait 440 * queue. The waiter-spinner will spin on the lock directly and concurrently 441 * with the spinner at the head of the OSQ, if present, until the owner is 442 * changed to itself. 443 */ 444 static __always_inline bool 445 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 446 struct mutex_waiter *waiter) 447 { 448 if (!waiter) { 449 /* 450 * The purpose of the mutex_can_spin_on_owner() function is 451 * to eliminate the overhead of osq_lock() and osq_unlock() 452 * in case spinning isn't possible. As a waiter-spinner 453 * is not going to take OSQ lock anyway, there is no need 454 * to call mutex_can_spin_on_owner(). 455 */ 456 if (!mutex_can_spin_on_owner(lock)) 457 goto fail; 458 459 /* 460 * In order to avoid a stampede of mutex spinners trying to 461 * acquire the mutex all at once, the spinners need to take a 462 * MCS (queued) lock first before spinning on the owner field. 463 */ 464 if (!osq_lock(&lock->osq)) 465 goto fail; 466 } 467 468 for (;;) { 469 struct task_struct *owner; 470 471 /* Try to acquire the mutex... */ 472 owner = __mutex_trylock_or_owner(lock); 473 if (!owner) 474 break; 475 476 /* 477 * There's an owner, wait for it to either 478 * release the lock or go to sleep. 479 */ 480 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 481 goto fail_unlock; 482 483 /* 484 * The cpu_relax() call is a compiler barrier which forces 485 * everything in this loop to be re-loaded. We don't need 486 * memory barriers as we'll eventually observe the right 487 * values at the cost of a few extra spins. 488 */ 489 cpu_relax(); 490 } 491 492 if (!waiter) 493 osq_unlock(&lock->osq); 494 495 return true; 496 497 498 fail_unlock: 499 if (!waiter) 500 osq_unlock(&lock->osq); 501 502 fail: 503 /* 504 * If we fell out of the spin path because of need_resched(), 505 * reschedule now, before we try-lock the mutex. This avoids getting 506 * scheduled out right after we obtained the mutex. 507 */ 508 if (need_resched()) { 509 /* 510 * We _should_ have TASK_RUNNING here, but just in case 511 * we do not, make it so, otherwise we might get stuck. 512 */ 513 __set_current_state(TASK_RUNNING); 514 schedule_preempt_disabled(); 515 } 516 517 return false; 518 } 519 #else 520 static __always_inline bool 521 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 522 struct mutex_waiter *waiter) 523 { 524 return false; 525 } 526 #endif 527 528 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 529 530 /** 531 * mutex_unlock - release the mutex 532 * @lock: the mutex to be released 533 * 534 * Unlock a mutex that has been locked by this task previously. 535 * 536 * This function must not be used in interrupt context. Unlocking 537 * of a not locked mutex is not allowed. 538 * 539 * The caller must ensure that the mutex stays alive until this function has 540 * returned - mutex_unlock() can NOT directly be used to release an object such 541 * that another concurrent task can free it. 542 * Mutexes are different from spinlocks & refcounts in this aspect. 543 * 544 * This function is similar to (but not equivalent to) up(). 545 */ 546 void __sched mutex_unlock(struct mutex *lock) 547 { 548 #ifndef CONFIG_DEBUG_LOCK_ALLOC 549 if (__mutex_unlock_fast(lock)) 550 return; 551 #endif 552 __mutex_unlock_slowpath(lock, _RET_IP_); 553 } 554 EXPORT_SYMBOL(mutex_unlock); 555 556 /** 557 * ww_mutex_unlock - release the w/w mutex 558 * @lock: the mutex to be released 559 * 560 * Unlock a mutex that has been locked by this task previously with any of the 561 * ww_mutex_lock* functions (with or without an acquire context). It is 562 * forbidden to release the locks after releasing the acquire context. 563 * 564 * This function must not be used in interrupt context. Unlocking 565 * of a unlocked mutex is not allowed. 566 */ 567 void __sched ww_mutex_unlock(struct ww_mutex *lock) 568 { 569 __ww_mutex_unlock(lock); 570 mutex_unlock(&lock->base); 571 } 572 EXPORT_SYMBOL(ww_mutex_unlock); 573 574 /* 575 * Lock a mutex (possibly interruptible), slowpath: 576 */ 577 static __always_inline int __sched 578 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 579 struct lockdep_map *nest_lock, unsigned long ip, 580 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 581 { 582 DEFINE_WAKE_Q(wake_q); 583 struct mutex_waiter waiter; 584 struct ww_mutex *ww; 585 unsigned long flags; 586 int ret; 587 588 if (!use_ww_ctx) 589 ww_ctx = NULL; 590 591 might_sleep(); 592 593 MUTEX_WARN_ON(lock->magic != lock); 594 595 ww = container_of(lock, struct ww_mutex, base); 596 if (ww_ctx) { 597 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 598 return -EALREADY; 599 600 /* 601 * Reset the wounded flag after a kill. No other process can 602 * race and wound us here since they can't have a valid owner 603 * pointer if we don't have any locks held. 604 */ 605 if (ww_ctx->acquired == 0) 606 ww_ctx->wounded = 0; 607 608 #ifdef CONFIG_DEBUG_LOCK_ALLOC 609 nest_lock = &ww_ctx->dep_map; 610 #endif 611 } 612 613 preempt_disable(); 614 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 615 616 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 617 if (__mutex_trylock(lock) || 618 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 619 /* got the lock, yay! */ 620 lock_acquired(&lock->dep_map, ip); 621 if (ww_ctx) 622 ww_mutex_set_context_fastpath(ww, ww_ctx); 623 trace_contention_end(lock, 0); 624 preempt_enable(); 625 return 0; 626 } 627 628 raw_spin_lock_irqsave(&lock->wait_lock, flags); 629 /* 630 * After waiting to acquire the wait_lock, try again. 631 */ 632 if (__mutex_trylock(lock)) { 633 if (ww_ctx) 634 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 635 636 goto skip_wait; 637 } 638 639 debug_mutex_lock_common(lock, &waiter); 640 waiter.task = current; 641 if (use_ww_ctx) 642 waiter.ww_ctx = ww_ctx; 643 644 lock_contended(&lock->dep_map, ip); 645 646 if (!use_ww_ctx) { 647 /* add waiting tasks to the end of the waitqueue (FIFO): */ 648 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 649 } else { 650 /* 651 * Add in stamp order, waking up waiters that must kill 652 * themselves. 653 */ 654 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); 655 if (ret) 656 goto err_early_kill; 657 } 658 659 __set_task_blocked_on(current, lock); 660 set_current_state(state); 661 trace_contention_begin(lock, LCB_F_MUTEX); 662 for (;;) { 663 bool first; 664 665 /* 666 * Once we hold wait_lock, we're serialized against 667 * mutex_unlock() handing the lock off to us, do a trylock 668 * before testing the error conditions to make sure we pick up 669 * the handoff. 670 */ 671 if (__mutex_trylock(lock)) 672 goto acquired; 673 674 /* 675 * Check for signals and kill conditions while holding 676 * wait_lock. This ensures the lock cancellation is ordered 677 * against mutex_unlock() and wake-ups do not go missing. 678 */ 679 if (signal_pending_state(state, current)) { 680 ret = -EINTR; 681 goto err; 682 } 683 684 if (ww_ctx) { 685 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 686 if (ret) 687 goto err; 688 } 689 690 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 691 692 schedule_preempt_disabled(); 693 694 first = __mutex_waiter_is_first(lock, &waiter); 695 696 /* 697 * As we likely have been woken up by task 698 * that has cleared our blocked_on state, re-set 699 * it to the lock we are trying to acquire. 700 */ 701 set_task_blocked_on(current, lock); 702 set_current_state(state); 703 /* 704 * Here we order against unlock; we must either see it change 705 * state back to RUNNING and fall through the next schedule(), 706 * or we must see its unlock and acquire. 707 */ 708 if (__mutex_trylock_or_handoff(lock, first)) 709 break; 710 711 if (first) { 712 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 713 /* 714 * mutex_optimistic_spin() can call schedule(), so 715 * clear blocked on so we don't become unselectable 716 * to run. 717 */ 718 clear_task_blocked_on(current, lock); 719 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 720 break; 721 set_task_blocked_on(current, lock); 722 trace_contention_begin(lock, LCB_F_MUTEX); 723 } 724 725 raw_spin_lock_irqsave(&lock->wait_lock, flags); 726 } 727 raw_spin_lock_irqsave(&lock->wait_lock, flags); 728 acquired: 729 __clear_task_blocked_on(current, lock); 730 __set_current_state(TASK_RUNNING); 731 732 if (ww_ctx) { 733 /* 734 * Wound-Wait; we stole the lock (!first_waiter), check the 735 * waiters as anyone might want to wound us. 736 */ 737 if (!ww_ctx->is_wait_die && 738 !__mutex_waiter_is_first(lock, &waiter)) 739 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 740 } 741 742 __mutex_remove_waiter(lock, &waiter); 743 744 debug_mutex_free_waiter(&waiter); 745 746 skip_wait: 747 /* got the lock - cleanup and rejoice! */ 748 lock_acquired(&lock->dep_map, ip); 749 trace_contention_end(lock, 0); 750 751 if (ww_ctx) 752 ww_mutex_lock_acquired(ww, ww_ctx); 753 754 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 755 preempt_enable(); 756 return 0; 757 758 err: 759 __clear_task_blocked_on(current, lock); 760 __set_current_state(TASK_RUNNING); 761 __mutex_remove_waiter(lock, &waiter); 762 err_early_kill: 763 WARN_ON(__get_task_blocked_on(current)); 764 trace_contention_end(lock, ret); 765 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 766 debug_mutex_free_waiter(&waiter); 767 mutex_release(&lock->dep_map, ip); 768 preempt_enable(); 769 return ret; 770 } 771 772 static int __sched 773 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 774 struct lockdep_map *nest_lock, unsigned long ip) 775 { 776 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 777 } 778 779 static int __sched 780 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 781 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 782 { 783 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 784 } 785 786 /** 787 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 788 * @ww: mutex to lock 789 * @ww_ctx: optional w/w acquire context 790 * 791 * Trylocks a mutex with the optional acquire context; no deadlock detection is 792 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 793 * 794 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 795 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 796 * 797 * A mutex acquired with this function must be released with ww_mutex_unlock. 798 */ 799 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 800 { 801 if (!ww_ctx) 802 return mutex_trylock(&ww->base); 803 804 MUTEX_WARN_ON(ww->base.magic != &ww->base); 805 806 /* 807 * Reset the wounded flag after a kill. No other process can 808 * race and wound us here, since they can't have a valid owner 809 * pointer if we don't have any locks held. 810 */ 811 if (ww_ctx->acquired == 0) 812 ww_ctx->wounded = 0; 813 814 if (__mutex_trylock(&ww->base)) { 815 ww_mutex_set_context_fastpath(ww, ww_ctx); 816 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 817 return 1; 818 } 819 820 return 0; 821 } 822 EXPORT_SYMBOL(ww_mutex_trylock); 823 824 #ifdef CONFIG_DEBUG_LOCK_ALLOC 825 void __sched 826 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 827 { 828 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 829 } 830 831 EXPORT_SYMBOL_GPL(mutex_lock_nested); 832 833 void __sched 834 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 835 { 836 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 837 } 838 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 839 840 int __sched 841 _mutex_lock_killable(struct mutex *lock, unsigned int subclass, 842 struct lockdep_map *nest) 843 { 844 return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_); 845 } 846 EXPORT_SYMBOL_GPL(_mutex_lock_killable); 847 848 int __sched 849 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 850 { 851 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 852 } 853 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 854 855 void __sched 856 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 857 { 858 int token; 859 860 might_sleep(); 861 862 token = io_schedule_prepare(); 863 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 864 subclass, NULL, _RET_IP_, NULL, 0); 865 io_schedule_finish(token); 866 } 867 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 868 869 static inline int 870 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 871 { 872 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 873 unsigned tmp; 874 875 if (ctx->deadlock_inject_countdown-- == 0) { 876 tmp = ctx->deadlock_inject_interval; 877 if (tmp > UINT_MAX/4) 878 tmp = UINT_MAX; 879 else 880 tmp = tmp*2 + tmp + tmp/2; 881 882 ctx->deadlock_inject_interval = tmp; 883 ctx->deadlock_inject_countdown = tmp; 884 ctx->contending_lock = lock; 885 886 ww_mutex_unlock(lock); 887 888 return -EDEADLK; 889 } 890 #endif 891 892 return 0; 893 } 894 895 int __sched 896 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 897 { 898 int ret; 899 900 might_sleep(); 901 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 902 0, _RET_IP_, ctx); 903 if (!ret && ctx && ctx->acquired > 1) 904 return ww_mutex_deadlock_injection(lock, ctx); 905 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(ww_mutex_lock); 909 910 int __sched 911 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 912 { 913 int ret; 914 915 might_sleep(); 916 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 917 0, _RET_IP_, ctx); 918 919 if (!ret && ctx && ctx->acquired > 1) 920 return ww_mutex_deadlock_injection(lock, ctx); 921 922 return ret; 923 } 924 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 925 926 #endif 927 928 /* 929 * Release the lock, slowpath: 930 */ 931 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 932 { 933 struct task_struct *next = NULL; 934 DEFINE_WAKE_Q(wake_q); 935 unsigned long owner; 936 unsigned long flags; 937 938 mutex_release(&lock->dep_map, ip); 939 940 /* 941 * Release the lock before (potentially) taking the spinlock such that 942 * other contenders can get on with things ASAP. 943 * 944 * Except when HANDOFF, in that case we must not clear the owner field, 945 * but instead set it to the top waiter. 946 */ 947 owner = atomic_long_read(&lock->owner); 948 for (;;) { 949 MUTEX_WARN_ON(__owner_task(owner) != current); 950 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 951 952 if (owner & MUTEX_FLAG_HANDOFF) 953 break; 954 955 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 956 if (owner & MUTEX_FLAG_WAITERS) 957 break; 958 959 return; 960 } 961 } 962 963 raw_spin_lock_irqsave(&lock->wait_lock, flags); 964 debug_mutex_unlock(lock); 965 if (!list_empty(&lock->wait_list)) { 966 /* get the first entry from the wait-list: */ 967 struct mutex_waiter *waiter = 968 list_first_entry(&lock->wait_list, 969 struct mutex_waiter, list); 970 971 next = waiter->task; 972 973 debug_mutex_wake_waiter(lock, waiter); 974 __clear_task_blocked_on(next, lock); 975 wake_q_add(&wake_q, next); 976 } 977 978 if (owner & MUTEX_FLAG_HANDOFF) 979 __mutex_handoff(lock, next); 980 981 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 982 } 983 984 #ifndef CONFIG_DEBUG_LOCK_ALLOC 985 /* 986 * Here come the less common (and hence less performance-critical) APIs: 987 * mutex_lock_interruptible() and mutex_trylock(). 988 */ 989 static noinline int __sched 990 __mutex_lock_killable_slowpath(struct mutex *lock); 991 992 static noinline int __sched 993 __mutex_lock_interruptible_slowpath(struct mutex *lock); 994 995 /** 996 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 997 * @lock: The mutex to be acquired. 998 * 999 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1000 * process is sleeping, this function will return without acquiring the 1001 * mutex. 1002 * 1003 * Context: Process context. 1004 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1005 * signal arrived. 1006 */ 1007 int __sched mutex_lock_interruptible(struct mutex *lock) 1008 { 1009 might_sleep(); 1010 1011 if (__mutex_trylock_fast(lock)) 1012 return 0; 1013 1014 return __mutex_lock_interruptible_slowpath(lock); 1015 } 1016 1017 EXPORT_SYMBOL(mutex_lock_interruptible); 1018 1019 /** 1020 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1021 * @lock: The mutex to be acquired. 1022 * 1023 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1024 * the current process is delivered while the process is sleeping, this 1025 * function will return without acquiring the mutex. 1026 * 1027 * Context: Process context. 1028 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1029 * fatal signal arrived. 1030 */ 1031 int __sched mutex_lock_killable(struct mutex *lock) 1032 { 1033 might_sleep(); 1034 1035 if (__mutex_trylock_fast(lock)) 1036 return 0; 1037 1038 return __mutex_lock_killable_slowpath(lock); 1039 } 1040 EXPORT_SYMBOL(mutex_lock_killable); 1041 1042 /** 1043 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1044 * @lock: The mutex to be acquired. 1045 * 1046 * Lock the mutex like mutex_lock(). While the task is waiting for this 1047 * mutex, it will be accounted as being in the IO wait state by the 1048 * scheduler. 1049 * 1050 * Context: Process context. 1051 */ 1052 void __sched mutex_lock_io(struct mutex *lock) 1053 { 1054 int token; 1055 1056 token = io_schedule_prepare(); 1057 mutex_lock(lock); 1058 io_schedule_finish(token); 1059 } 1060 EXPORT_SYMBOL_GPL(mutex_lock_io); 1061 1062 static noinline void __sched 1063 __mutex_lock_slowpath(struct mutex *lock) 1064 { 1065 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1066 } 1067 1068 static noinline int __sched 1069 __mutex_lock_killable_slowpath(struct mutex *lock) 1070 { 1071 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1072 } 1073 1074 static noinline int __sched 1075 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1076 { 1077 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1078 } 1079 1080 static noinline int __sched 1081 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1082 { 1083 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1084 _RET_IP_, ctx); 1085 } 1086 1087 static noinline int __sched 1088 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1089 struct ww_acquire_ctx *ctx) 1090 { 1091 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1092 _RET_IP_, ctx); 1093 } 1094 1095 #endif 1096 1097 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1098 /** 1099 * mutex_trylock - try to acquire the mutex, without waiting 1100 * @lock: the mutex to be acquired 1101 * 1102 * Try to acquire the mutex atomically. Returns 1 if the mutex 1103 * has been acquired successfully, and 0 on contention. 1104 * 1105 * NOTE: this function follows the spin_trylock() convention, so 1106 * it is negated from the down_trylock() return values! Be careful 1107 * about this when converting semaphore users to mutexes. 1108 * 1109 * This function must not be used in interrupt context. The 1110 * mutex must be released by the same task that acquired it. 1111 */ 1112 int __sched mutex_trylock(struct mutex *lock) 1113 { 1114 MUTEX_WARN_ON(lock->magic != lock); 1115 return __mutex_trylock(lock); 1116 } 1117 EXPORT_SYMBOL(mutex_trylock); 1118 #else 1119 int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock) 1120 { 1121 bool locked; 1122 1123 MUTEX_WARN_ON(lock->magic != lock); 1124 locked = __mutex_trylock(lock); 1125 if (locked) 1126 mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_); 1127 1128 return locked; 1129 } 1130 EXPORT_SYMBOL(_mutex_trylock_nest_lock); 1131 #endif 1132 1133 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1134 int __sched 1135 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1136 { 1137 might_sleep(); 1138 1139 if (__mutex_trylock_fast(&lock->base)) { 1140 if (ctx) 1141 ww_mutex_set_context_fastpath(lock, ctx); 1142 return 0; 1143 } 1144 1145 return __ww_mutex_lock_slowpath(lock, ctx); 1146 } 1147 EXPORT_SYMBOL(ww_mutex_lock); 1148 1149 int __sched 1150 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1151 { 1152 might_sleep(); 1153 1154 if (__mutex_trylock_fast(&lock->base)) { 1155 if (ctx) 1156 ww_mutex_set_context_fastpath(lock, ctx); 1157 return 0; 1158 } 1159 1160 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1161 } 1162 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1163 1164 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1165 #endif /* !CONFIG_PREEMPT_RT */ 1166 1167 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1168 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1169 1170 /** 1171 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1172 * @cnt: the atomic which we are to dec 1173 * @lock: the mutex to return holding if we dec to 0 1174 * 1175 * return true and hold lock if we dec to 0, return false otherwise 1176 */ 1177 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1178 { 1179 /* dec if we can't possibly hit 0 */ 1180 if (atomic_add_unless(cnt, -1, 1)) 1181 return 0; 1182 /* we might hit 0, so take the lock */ 1183 mutex_lock(lock); 1184 if (!atomic_dec_and_test(cnt)) { 1185 /* when we actually did the dec, we didn't hit 0 */ 1186 mutex_unlock(lock); 1187 return 0; 1188 } 1189 /* we hit 0, and we hold the lock */ 1190 return 1; 1191 } 1192 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1193