xref: /linux/kernel/locking/mutex.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 #include <linux/hung_task.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/lock.h>
36 
37 #ifndef CONFIG_PREEMPT_RT
38 #include "mutex.h"
39 
40 #ifdef CONFIG_DEBUG_MUTEXES
41 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
42 #else
43 # define MUTEX_WARN_ON(cond)
44 #endif
45 
46 static void __mutex_init_generic(struct mutex *lock)
47 {
48 	atomic_long_set(&lock->owner, 0);
49 	raw_spin_lock_init(&lock->wait_lock);
50 	INIT_LIST_HEAD(&lock->wait_list);
51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52 	osq_lock_init(&lock->osq);
53 #endif
54 	debug_mutex_init(lock);
55 }
56 
57 static inline struct task_struct *__owner_task(unsigned long owner)
58 {
59 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
60 }
61 
62 bool mutex_is_locked(struct mutex *lock)
63 {
64 	return __mutex_owner(lock) != NULL;
65 }
66 EXPORT_SYMBOL(mutex_is_locked);
67 
68 static inline unsigned long __owner_flags(unsigned long owner)
69 {
70 	return owner & MUTEX_FLAGS;
71 }
72 
73 /* Do not use the return value as a pointer directly. */
74 unsigned long mutex_get_owner(struct mutex *lock)
75 {
76 	unsigned long owner = atomic_long_read(&lock->owner);
77 
78 	return (unsigned long)__owner_task(owner);
79 }
80 
81 /*
82  * Returns: __mutex_owner(lock) on failure or NULL on success.
83  */
84 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
85 {
86 	unsigned long owner, curr = (unsigned long)current;
87 
88 	owner = atomic_long_read(&lock->owner);
89 	for (;;) { /* must loop, can race against a flag */
90 		unsigned long flags = __owner_flags(owner);
91 		unsigned long task = owner & ~MUTEX_FLAGS;
92 
93 		if (task) {
94 			if (flags & MUTEX_FLAG_PICKUP) {
95 				if (task != curr)
96 					break;
97 				flags &= ~MUTEX_FLAG_PICKUP;
98 			} else if (handoff) {
99 				if (flags & MUTEX_FLAG_HANDOFF)
100 					break;
101 				flags |= MUTEX_FLAG_HANDOFF;
102 			} else {
103 				break;
104 			}
105 		} else {
106 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
107 			task = curr;
108 		}
109 
110 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
111 			if (task == curr)
112 				return NULL;
113 			break;
114 		}
115 	}
116 
117 	return __owner_task(owner);
118 }
119 
120 /*
121  * Trylock or set HANDOFF
122  */
123 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
124 {
125 	return !__mutex_trylock_common(lock, handoff);
126 }
127 
128 /*
129  * Actual trylock that will work on any unlocked state.
130  */
131 static inline bool __mutex_trylock(struct mutex *lock)
132 {
133 	return !__mutex_trylock_common(lock, false);
134 }
135 
136 #ifndef CONFIG_DEBUG_LOCK_ALLOC
137 /*
138  * Lockdep annotations are contained to the slow paths for simplicity.
139  * There is nothing that would stop spreading the lockdep annotations outwards
140  * except more code.
141  */
142 void mutex_init_generic(struct mutex *lock)
143 {
144 	__mutex_init_generic(lock);
145 }
146 EXPORT_SYMBOL(mutex_init_generic);
147 
148 /*
149  * Optimistic trylock that only works in the uncontended case. Make sure to
150  * follow with a __mutex_trylock() before failing.
151  */
152 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
153 {
154 	unsigned long curr = (unsigned long)current;
155 	unsigned long zero = 0UL;
156 
157 	MUTEX_WARN_ON(lock->magic != lock);
158 
159 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
160 		return true;
161 
162 	return false;
163 }
164 
165 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
166 {
167 	unsigned long curr = (unsigned long)current;
168 
169 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
170 }
171 
172 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
173 
174 void mutex_init_lockep(struct mutex *lock, const char *name, struct lock_class_key *key)
175 {
176 	__mutex_init_generic(lock);
177 
178 	/*
179 	 * Make sure we are not reinitializing a held lock:
180 	 */
181 	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
182 	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
183 }
184 EXPORT_SYMBOL(mutex_init_lockep);
185 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
186 
187 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
188 {
189 	atomic_long_or(flag, &lock->owner);
190 }
191 
192 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
193 {
194 	atomic_long_andnot(flag, &lock->owner);
195 }
196 
197 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
198 {
199 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
200 }
201 
202 /*
203  * Add @waiter to a given location in the lock wait_list and set the
204  * FLAG_WAITERS flag if it's the first waiter.
205  */
206 static void
207 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
208 		   struct list_head *list)
209 {
210 	hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX);
211 	debug_mutex_add_waiter(lock, waiter, current);
212 
213 	list_add_tail(&waiter->list, list);
214 	if (__mutex_waiter_is_first(lock, waiter))
215 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
216 }
217 
218 static void
219 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
220 {
221 	list_del(&waiter->list);
222 	if (likely(list_empty(&lock->wait_list)))
223 		__mutex_clear_flag(lock, MUTEX_FLAGS);
224 
225 	debug_mutex_remove_waiter(lock, waiter, current);
226 	hung_task_clear_blocker();
227 }
228 
229 /*
230  * Give up ownership to a specific task, when @task = NULL, this is equivalent
231  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
232  * WAITERS. Provides RELEASE semantics like a regular unlock, the
233  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
234  */
235 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
236 {
237 	unsigned long owner = atomic_long_read(&lock->owner);
238 
239 	for (;;) {
240 		unsigned long new;
241 
242 		MUTEX_WARN_ON(__owner_task(owner) != current);
243 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
244 
245 		new = (owner & MUTEX_FLAG_WAITERS);
246 		new |= (unsigned long)task;
247 		if (task)
248 			new |= MUTEX_FLAG_PICKUP;
249 
250 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
251 			break;
252 	}
253 }
254 
255 #ifndef CONFIG_DEBUG_LOCK_ALLOC
256 /*
257  * We split the mutex lock/unlock logic into separate fastpath and
258  * slowpath functions, to reduce the register pressure on the fastpath.
259  * We also put the fastpath first in the kernel image, to make sure the
260  * branch is predicted by the CPU as default-untaken.
261  */
262 static void __sched __mutex_lock_slowpath(struct mutex *lock);
263 
264 /**
265  * mutex_lock - acquire the mutex
266  * @lock: the mutex to be acquired
267  *
268  * Lock the mutex exclusively for this task. If the mutex is not
269  * available right now, it will sleep until it can get it.
270  *
271  * The mutex must later on be released by the same task that
272  * acquired it. Recursive locking is not allowed. The task
273  * may not exit without first unlocking the mutex. Also, kernel
274  * memory where the mutex resides must not be freed with
275  * the mutex still locked. The mutex must first be initialized
276  * (or statically defined) before it can be locked. memset()-ing
277  * the mutex to 0 is not allowed.
278  *
279  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
280  * checks that will enforce the restrictions and will also do
281  * deadlock debugging)
282  *
283  * This function is similar to (but not equivalent to) down().
284  */
285 void __sched mutex_lock(struct mutex *lock)
286 {
287 	might_sleep();
288 
289 	if (!__mutex_trylock_fast(lock))
290 		__mutex_lock_slowpath(lock);
291 }
292 EXPORT_SYMBOL(mutex_lock);
293 #endif
294 
295 #include "ww_mutex.h"
296 
297 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
298 
299 /*
300  * Trylock variant that returns the owning task on failure.
301  */
302 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
303 {
304 	return __mutex_trylock_common(lock, false);
305 }
306 
307 static inline
308 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
309 			    struct mutex_waiter *waiter)
310 {
311 	struct ww_mutex *ww;
312 
313 	ww = container_of(lock, struct ww_mutex, base);
314 
315 	/*
316 	 * If ww->ctx is set the contents are undefined, only
317 	 * by acquiring wait_lock there is a guarantee that
318 	 * they are not invalid when reading.
319 	 *
320 	 * As such, when deadlock detection needs to be
321 	 * performed the optimistic spinning cannot be done.
322 	 *
323 	 * Check this in every inner iteration because we may
324 	 * be racing against another thread's ww_mutex_lock.
325 	 */
326 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
327 		return false;
328 
329 	/*
330 	 * If we aren't on the wait list yet, cancel the spin
331 	 * if there are waiters. We want  to avoid stealing the
332 	 * lock from a waiter with an earlier stamp, since the
333 	 * other thread may already own a lock that we also
334 	 * need.
335 	 */
336 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
337 		return false;
338 
339 	/*
340 	 * Similarly, stop spinning if we are no longer the
341 	 * first waiter.
342 	 */
343 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
344 		return false;
345 
346 	return true;
347 }
348 
349 /*
350  * Look out! "owner" is an entirely speculative pointer access and not
351  * reliable.
352  *
353  * "noinline" so that this function shows up on perf profiles.
354  */
355 static noinline
356 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
357 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
358 {
359 	bool ret = true;
360 
361 	lockdep_assert_preemption_disabled();
362 
363 	while (__mutex_owner(lock) == owner) {
364 		/*
365 		 * Ensure we emit the owner->on_cpu, dereference _after_
366 		 * checking lock->owner still matches owner. And we already
367 		 * disabled preemption which is equal to the RCU read-side
368 		 * crital section in optimistic spinning code. Thus the
369 		 * task_strcut structure won't go away during the spinning
370 		 * period
371 		 */
372 		barrier();
373 
374 		/*
375 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
376 		 */
377 		if (!owner_on_cpu(owner) || need_resched()) {
378 			ret = false;
379 			break;
380 		}
381 
382 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
383 			ret = false;
384 			break;
385 		}
386 
387 		cpu_relax();
388 	}
389 
390 	return ret;
391 }
392 
393 /*
394  * Initial check for entering the mutex spinning loop
395  */
396 static inline int mutex_can_spin_on_owner(struct mutex *lock)
397 {
398 	struct task_struct *owner;
399 	int retval = 1;
400 
401 	lockdep_assert_preemption_disabled();
402 
403 	if (need_resched())
404 		return 0;
405 
406 	/*
407 	 * We already disabled preemption which is equal to the RCU read-side
408 	 * crital section in optimistic spinning code. Thus the task_strcut
409 	 * structure won't go away during the spinning period.
410 	 */
411 	owner = __mutex_owner(lock);
412 	if (owner)
413 		retval = owner_on_cpu(owner);
414 
415 	/*
416 	 * If lock->owner is not set, the mutex has been released. Return true
417 	 * such that we'll trylock in the spin path, which is a faster option
418 	 * than the blocking slow path.
419 	 */
420 	return retval;
421 }
422 
423 /*
424  * Optimistic spinning.
425  *
426  * We try to spin for acquisition when we find that the lock owner
427  * is currently running on a (different) CPU and while we don't
428  * need to reschedule. The rationale is that if the lock owner is
429  * running, it is likely to release the lock soon.
430  *
431  * The mutex spinners are queued up using MCS lock so that only one
432  * spinner can compete for the mutex. However, if mutex spinning isn't
433  * going to happen, there is no point in going through the lock/unlock
434  * overhead.
435  *
436  * Returns true when the lock was taken, otherwise false, indicating
437  * that we need to jump to the slowpath and sleep.
438  *
439  * The waiter flag is set to true if the spinner is a waiter in the wait
440  * queue. The waiter-spinner will spin on the lock directly and concurrently
441  * with the spinner at the head of the OSQ, if present, until the owner is
442  * changed to itself.
443  */
444 static __always_inline bool
445 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
446 		      struct mutex_waiter *waiter)
447 {
448 	if (!waiter) {
449 		/*
450 		 * The purpose of the mutex_can_spin_on_owner() function is
451 		 * to eliminate the overhead of osq_lock() and osq_unlock()
452 		 * in case spinning isn't possible. As a waiter-spinner
453 		 * is not going to take OSQ lock anyway, there is no need
454 		 * to call mutex_can_spin_on_owner().
455 		 */
456 		if (!mutex_can_spin_on_owner(lock))
457 			goto fail;
458 
459 		/*
460 		 * In order to avoid a stampede of mutex spinners trying to
461 		 * acquire the mutex all at once, the spinners need to take a
462 		 * MCS (queued) lock first before spinning on the owner field.
463 		 */
464 		if (!osq_lock(&lock->osq))
465 			goto fail;
466 	}
467 
468 	for (;;) {
469 		struct task_struct *owner;
470 
471 		/* Try to acquire the mutex... */
472 		owner = __mutex_trylock_or_owner(lock);
473 		if (!owner)
474 			break;
475 
476 		/*
477 		 * There's an owner, wait for it to either
478 		 * release the lock or go to sleep.
479 		 */
480 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
481 			goto fail_unlock;
482 
483 		/*
484 		 * The cpu_relax() call is a compiler barrier which forces
485 		 * everything in this loop to be re-loaded. We don't need
486 		 * memory barriers as we'll eventually observe the right
487 		 * values at the cost of a few extra spins.
488 		 */
489 		cpu_relax();
490 	}
491 
492 	if (!waiter)
493 		osq_unlock(&lock->osq);
494 
495 	return true;
496 
497 
498 fail_unlock:
499 	if (!waiter)
500 		osq_unlock(&lock->osq);
501 
502 fail:
503 	/*
504 	 * If we fell out of the spin path because of need_resched(),
505 	 * reschedule now, before we try-lock the mutex. This avoids getting
506 	 * scheduled out right after we obtained the mutex.
507 	 */
508 	if (need_resched()) {
509 		/*
510 		 * We _should_ have TASK_RUNNING here, but just in case
511 		 * we do not, make it so, otherwise we might get stuck.
512 		 */
513 		__set_current_state(TASK_RUNNING);
514 		schedule_preempt_disabled();
515 	}
516 
517 	return false;
518 }
519 #else
520 static __always_inline bool
521 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
522 		      struct mutex_waiter *waiter)
523 {
524 	return false;
525 }
526 #endif
527 
528 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
529 
530 /**
531  * mutex_unlock - release the mutex
532  * @lock: the mutex to be released
533  *
534  * Unlock a mutex that has been locked by this task previously.
535  *
536  * This function must not be used in interrupt context. Unlocking
537  * of a not locked mutex is not allowed.
538  *
539  * The caller must ensure that the mutex stays alive until this function has
540  * returned - mutex_unlock() can NOT directly be used to release an object such
541  * that another concurrent task can free it.
542  * Mutexes are different from spinlocks & refcounts in this aspect.
543  *
544  * This function is similar to (but not equivalent to) up().
545  */
546 void __sched mutex_unlock(struct mutex *lock)
547 {
548 #ifndef CONFIG_DEBUG_LOCK_ALLOC
549 	if (__mutex_unlock_fast(lock))
550 		return;
551 #endif
552 	__mutex_unlock_slowpath(lock, _RET_IP_);
553 }
554 EXPORT_SYMBOL(mutex_unlock);
555 
556 /**
557  * ww_mutex_unlock - release the w/w mutex
558  * @lock: the mutex to be released
559  *
560  * Unlock a mutex that has been locked by this task previously with any of the
561  * ww_mutex_lock* functions (with or without an acquire context). It is
562  * forbidden to release the locks after releasing the acquire context.
563  *
564  * This function must not be used in interrupt context. Unlocking
565  * of a unlocked mutex is not allowed.
566  */
567 void __sched ww_mutex_unlock(struct ww_mutex *lock)
568 {
569 	__ww_mutex_unlock(lock);
570 	mutex_unlock(&lock->base);
571 }
572 EXPORT_SYMBOL(ww_mutex_unlock);
573 
574 /*
575  * Lock a mutex (possibly interruptible), slowpath:
576  */
577 static __always_inline int __sched
578 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
579 		    struct lockdep_map *nest_lock, unsigned long ip,
580 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
581 {
582 	DEFINE_WAKE_Q(wake_q);
583 	struct mutex_waiter waiter;
584 	struct ww_mutex *ww;
585 	unsigned long flags;
586 	int ret;
587 
588 	if (!use_ww_ctx)
589 		ww_ctx = NULL;
590 
591 	might_sleep();
592 
593 	MUTEX_WARN_ON(lock->magic != lock);
594 
595 	ww = container_of(lock, struct ww_mutex, base);
596 	if (ww_ctx) {
597 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
598 			return -EALREADY;
599 
600 		/*
601 		 * Reset the wounded flag after a kill. No other process can
602 		 * race and wound us here since they can't have a valid owner
603 		 * pointer if we don't have any locks held.
604 		 */
605 		if (ww_ctx->acquired == 0)
606 			ww_ctx->wounded = 0;
607 
608 #ifdef CONFIG_DEBUG_LOCK_ALLOC
609 		nest_lock = &ww_ctx->dep_map;
610 #endif
611 	}
612 
613 	preempt_disable();
614 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
615 
616 	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
617 	if (__mutex_trylock(lock) ||
618 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
619 		/* got the lock, yay! */
620 		lock_acquired(&lock->dep_map, ip);
621 		if (ww_ctx)
622 			ww_mutex_set_context_fastpath(ww, ww_ctx);
623 		trace_contention_end(lock, 0);
624 		preempt_enable();
625 		return 0;
626 	}
627 
628 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
629 	/*
630 	 * After waiting to acquire the wait_lock, try again.
631 	 */
632 	if (__mutex_trylock(lock)) {
633 		if (ww_ctx)
634 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
635 
636 		goto skip_wait;
637 	}
638 
639 	debug_mutex_lock_common(lock, &waiter);
640 	waiter.task = current;
641 	if (use_ww_ctx)
642 		waiter.ww_ctx = ww_ctx;
643 
644 	lock_contended(&lock->dep_map, ip);
645 
646 	if (!use_ww_ctx) {
647 		/* add waiting tasks to the end of the waitqueue (FIFO): */
648 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
649 	} else {
650 		/*
651 		 * Add in stamp order, waking up waiters that must kill
652 		 * themselves.
653 		 */
654 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
655 		if (ret)
656 			goto err_early_kill;
657 	}
658 
659 	__set_task_blocked_on(current, lock);
660 	set_current_state(state);
661 	trace_contention_begin(lock, LCB_F_MUTEX);
662 	for (;;) {
663 		bool first;
664 
665 		/*
666 		 * Once we hold wait_lock, we're serialized against
667 		 * mutex_unlock() handing the lock off to us, do a trylock
668 		 * before testing the error conditions to make sure we pick up
669 		 * the handoff.
670 		 */
671 		if (__mutex_trylock(lock))
672 			goto acquired;
673 
674 		/*
675 		 * Check for signals and kill conditions while holding
676 		 * wait_lock. This ensures the lock cancellation is ordered
677 		 * against mutex_unlock() and wake-ups do not go missing.
678 		 */
679 		if (signal_pending_state(state, current)) {
680 			ret = -EINTR;
681 			goto err;
682 		}
683 
684 		if (ww_ctx) {
685 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
686 			if (ret)
687 				goto err;
688 		}
689 
690 		raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
691 
692 		schedule_preempt_disabled();
693 
694 		first = __mutex_waiter_is_first(lock, &waiter);
695 
696 		/*
697 		 * As we likely have been woken up by task
698 		 * that has cleared our blocked_on state, re-set
699 		 * it to the lock we are trying to acquire.
700 		 */
701 		set_task_blocked_on(current, lock);
702 		set_current_state(state);
703 		/*
704 		 * Here we order against unlock; we must either see it change
705 		 * state back to RUNNING and fall through the next schedule(),
706 		 * or we must see its unlock and acquire.
707 		 */
708 		if (__mutex_trylock_or_handoff(lock, first))
709 			break;
710 
711 		if (first) {
712 			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
713 			/*
714 			 * mutex_optimistic_spin() can call schedule(), so
715 			 * clear blocked on so we don't become unselectable
716 			 * to run.
717 			 */
718 			clear_task_blocked_on(current, lock);
719 			if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
720 				break;
721 			set_task_blocked_on(current, lock);
722 			trace_contention_begin(lock, LCB_F_MUTEX);
723 		}
724 
725 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
726 	}
727 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
728 acquired:
729 	__clear_task_blocked_on(current, lock);
730 	__set_current_state(TASK_RUNNING);
731 
732 	if (ww_ctx) {
733 		/*
734 		 * Wound-Wait; we stole the lock (!first_waiter), check the
735 		 * waiters as anyone might want to wound us.
736 		 */
737 		if (!ww_ctx->is_wait_die &&
738 		    !__mutex_waiter_is_first(lock, &waiter))
739 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
740 	}
741 
742 	__mutex_remove_waiter(lock, &waiter);
743 
744 	debug_mutex_free_waiter(&waiter);
745 
746 skip_wait:
747 	/* got the lock - cleanup and rejoice! */
748 	lock_acquired(&lock->dep_map, ip);
749 	trace_contention_end(lock, 0);
750 
751 	if (ww_ctx)
752 		ww_mutex_lock_acquired(ww, ww_ctx);
753 
754 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
755 	preempt_enable();
756 	return 0;
757 
758 err:
759 	__clear_task_blocked_on(current, lock);
760 	__set_current_state(TASK_RUNNING);
761 	__mutex_remove_waiter(lock, &waiter);
762 err_early_kill:
763 	WARN_ON(__get_task_blocked_on(current));
764 	trace_contention_end(lock, ret);
765 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
766 	debug_mutex_free_waiter(&waiter);
767 	mutex_release(&lock->dep_map, ip);
768 	preempt_enable();
769 	return ret;
770 }
771 
772 static int __sched
773 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
774 	     struct lockdep_map *nest_lock, unsigned long ip)
775 {
776 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
777 }
778 
779 static int __sched
780 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
781 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
782 {
783 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
784 }
785 
786 /**
787  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
788  * @ww: mutex to lock
789  * @ww_ctx: optional w/w acquire context
790  *
791  * Trylocks a mutex with the optional acquire context; no deadlock detection is
792  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
793  *
794  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
795  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
796  *
797  * A mutex acquired with this function must be released with ww_mutex_unlock.
798  */
799 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
800 {
801 	if (!ww_ctx)
802 		return mutex_trylock(&ww->base);
803 
804 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
805 
806 	/*
807 	 * Reset the wounded flag after a kill. No other process can
808 	 * race and wound us here, since they can't have a valid owner
809 	 * pointer if we don't have any locks held.
810 	 */
811 	if (ww_ctx->acquired == 0)
812 		ww_ctx->wounded = 0;
813 
814 	if (__mutex_trylock(&ww->base)) {
815 		ww_mutex_set_context_fastpath(ww, ww_ctx);
816 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
817 		return 1;
818 	}
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL(ww_mutex_trylock);
823 
824 #ifdef CONFIG_DEBUG_LOCK_ALLOC
825 void __sched
826 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
827 {
828 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
829 }
830 
831 EXPORT_SYMBOL_GPL(mutex_lock_nested);
832 
833 void __sched
834 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
835 {
836 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
837 }
838 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
839 
840 int __sched
841 _mutex_lock_killable(struct mutex *lock, unsigned int subclass,
842 				      struct lockdep_map *nest)
843 {
844 	return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_);
845 }
846 EXPORT_SYMBOL_GPL(_mutex_lock_killable);
847 
848 int __sched
849 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
850 {
851 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
852 }
853 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
854 
855 void __sched
856 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
857 {
858 	int token;
859 
860 	might_sleep();
861 
862 	token = io_schedule_prepare();
863 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
864 			    subclass, NULL, _RET_IP_, NULL, 0);
865 	io_schedule_finish(token);
866 }
867 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
868 
869 static inline int
870 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
871 {
872 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
873 	unsigned tmp;
874 
875 	if (ctx->deadlock_inject_countdown-- == 0) {
876 		tmp = ctx->deadlock_inject_interval;
877 		if (tmp > UINT_MAX/4)
878 			tmp = UINT_MAX;
879 		else
880 			tmp = tmp*2 + tmp + tmp/2;
881 
882 		ctx->deadlock_inject_interval = tmp;
883 		ctx->deadlock_inject_countdown = tmp;
884 		ctx->contending_lock = lock;
885 
886 		ww_mutex_unlock(lock);
887 
888 		return -EDEADLK;
889 	}
890 #endif
891 
892 	return 0;
893 }
894 
895 int __sched
896 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
897 {
898 	int ret;
899 
900 	might_sleep();
901 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
902 			       0, _RET_IP_, ctx);
903 	if (!ret && ctx && ctx->acquired > 1)
904 		return ww_mutex_deadlock_injection(lock, ctx);
905 
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(ww_mutex_lock);
909 
910 int __sched
911 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
912 {
913 	int ret;
914 
915 	might_sleep();
916 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
917 			      0, _RET_IP_, ctx);
918 
919 	if (!ret && ctx && ctx->acquired > 1)
920 		return ww_mutex_deadlock_injection(lock, ctx);
921 
922 	return ret;
923 }
924 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
925 
926 #endif
927 
928 /*
929  * Release the lock, slowpath:
930  */
931 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
932 {
933 	struct task_struct *next = NULL;
934 	DEFINE_WAKE_Q(wake_q);
935 	unsigned long owner;
936 	unsigned long flags;
937 
938 	mutex_release(&lock->dep_map, ip);
939 
940 	/*
941 	 * Release the lock before (potentially) taking the spinlock such that
942 	 * other contenders can get on with things ASAP.
943 	 *
944 	 * Except when HANDOFF, in that case we must not clear the owner field,
945 	 * but instead set it to the top waiter.
946 	 */
947 	owner = atomic_long_read(&lock->owner);
948 	for (;;) {
949 		MUTEX_WARN_ON(__owner_task(owner) != current);
950 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
951 
952 		if (owner & MUTEX_FLAG_HANDOFF)
953 			break;
954 
955 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
956 			if (owner & MUTEX_FLAG_WAITERS)
957 				break;
958 
959 			return;
960 		}
961 	}
962 
963 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
964 	debug_mutex_unlock(lock);
965 	if (!list_empty(&lock->wait_list)) {
966 		/* get the first entry from the wait-list: */
967 		struct mutex_waiter *waiter =
968 			list_first_entry(&lock->wait_list,
969 					 struct mutex_waiter, list);
970 
971 		next = waiter->task;
972 
973 		debug_mutex_wake_waiter(lock, waiter);
974 		__clear_task_blocked_on(next, lock);
975 		wake_q_add(&wake_q, next);
976 	}
977 
978 	if (owner & MUTEX_FLAG_HANDOFF)
979 		__mutex_handoff(lock, next);
980 
981 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
982 }
983 
984 #ifndef CONFIG_DEBUG_LOCK_ALLOC
985 /*
986  * Here come the less common (and hence less performance-critical) APIs:
987  * mutex_lock_interruptible() and mutex_trylock().
988  */
989 static noinline int __sched
990 __mutex_lock_killable_slowpath(struct mutex *lock);
991 
992 static noinline int __sched
993 __mutex_lock_interruptible_slowpath(struct mutex *lock);
994 
995 /**
996  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
997  * @lock: The mutex to be acquired.
998  *
999  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1000  * process is sleeping, this function will return without acquiring the
1001  * mutex.
1002  *
1003  * Context: Process context.
1004  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1005  * signal arrived.
1006  */
1007 int __sched mutex_lock_interruptible(struct mutex *lock)
1008 {
1009 	might_sleep();
1010 
1011 	if (__mutex_trylock_fast(lock))
1012 		return 0;
1013 
1014 	return __mutex_lock_interruptible_slowpath(lock);
1015 }
1016 
1017 EXPORT_SYMBOL(mutex_lock_interruptible);
1018 
1019 /**
1020  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1021  * @lock: The mutex to be acquired.
1022  *
1023  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1024  * the current process is delivered while the process is sleeping, this
1025  * function will return without acquiring the mutex.
1026  *
1027  * Context: Process context.
1028  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1029  * fatal signal arrived.
1030  */
1031 int __sched mutex_lock_killable(struct mutex *lock)
1032 {
1033 	might_sleep();
1034 
1035 	if (__mutex_trylock_fast(lock))
1036 		return 0;
1037 
1038 	return __mutex_lock_killable_slowpath(lock);
1039 }
1040 EXPORT_SYMBOL(mutex_lock_killable);
1041 
1042 /**
1043  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1044  * @lock: The mutex to be acquired.
1045  *
1046  * Lock the mutex like mutex_lock().  While the task is waiting for this
1047  * mutex, it will be accounted as being in the IO wait state by the
1048  * scheduler.
1049  *
1050  * Context: Process context.
1051  */
1052 void __sched mutex_lock_io(struct mutex *lock)
1053 {
1054 	int token;
1055 
1056 	token = io_schedule_prepare();
1057 	mutex_lock(lock);
1058 	io_schedule_finish(token);
1059 }
1060 EXPORT_SYMBOL_GPL(mutex_lock_io);
1061 
1062 static noinline void __sched
1063 __mutex_lock_slowpath(struct mutex *lock)
1064 {
1065 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1066 }
1067 
1068 static noinline int __sched
1069 __mutex_lock_killable_slowpath(struct mutex *lock)
1070 {
1071 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1072 }
1073 
1074 static noinline int __sched
1075 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1076 {
1077 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1078 }
1079 
1080 static noinline int __sched
1081 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1082 {
1083 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1084 			       _RET_IP_, ctx);
1085 }
1086 
1087 static noinline int __sched
1088 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1089 					    struct ww_acquire_ctx *ctx)
1090 {
1091 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1092 			       _RET_IP_, ctx);
1093 }
1094 
1095 #endif
1096 
1097 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1098 /**
1099  * mutex_trylock - try to acquire the mutex, without waiting
1100  * @lock: the mutex to be acquired
1101  *
1102  * Try to acquire the mutex atomically. Returns 1 if the mutex
1103  * has been acquired successfully, and 0 on contention.
1104  *
1105  * NOTE: this function follows the spin_trylock() convention, so
1106  * it is negated from the down_trylock() return values! Be careful
1107  * about this when converting semaphore users to mutexes.
1108  *
1109  * This function must not be used in interrupt context. The
1110  * mutex must be released by the same task that acquired it.
1111  */
1112 int __sched mutex_trylock(struct mutex *lock)
1113 {
1114 	MUTEX_WARN_ON(lock->magic != lock);
1115 	return __mutex_trylock(lock);
1116 }
1117 EXPORT_SYMBOL(mutex_trylock);
1118 #else
1119 int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock)
1120 {
1121 	bool locked;
1122 
1123 	MUTEX_WARN_ON(lock->magic != lock);
1124 	locked = __mutex_trylock(lock);
1125 	if (locked)
1126 		mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_);
1127 
1128 	return locked;
1129 }
1130 EXPORT_SYMBOL(_mutex_trylock_nest_lock);
1131 #endif
1132 
1133 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1134 int __sched
1135 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1136 {
1137 	might_sleep();
1138 
1139 	if (__mutex_trylock_fast(&lock->base)) {
1140 		if (ctx)
1141 			ww_mutex_set_context_fastpath(lock, ctx);
1142 		return 0;
1143 	}
1144 
1145 	return __ww_mutex_lock_slowpath(lock, ctx);
1146 }
1147 EXPORT_SYMBOL(ww_mutex_lock);
1148 
1149 int __sched
1150 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1151 {
1152 	might_sleep();
1153 
1154 	if (__mutex_trylock_fast(&lock->base)) {
1155 		if (ctx)
1156 			ww_mutex_set_context_fastpath(lock, ctx);
1157 		return 0;
1158 	}
1159 
1160 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1161 }
1162 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1163 
1164 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1165 #endif /* !CONFIG_PREEMPT_RT */
1166 
1167 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1168 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1169 
1170 /**
1171  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1172  * @cnt: the atomic which we are to dec
1173  * @lock: the mutex to return holding if we dec to 0
1174  *
1175  * return true and hold lock if we dec to 0, return false otherwise
1176  */
1177 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1178 {
1179 	/* dec if we can't possibly hit 0 */
1180 	if (atomic_add_unless(cnt, -1, 1))
1181 		return 0;
1182 	/* we might hit 0, so take the lock */
1183 	mutex_lock(lock);
1184 	if (!atomic_dec_and_test(cnt)) {
1185 		/* when we actually did the dec, we didn't hit 0 */
1186 		mutex_unlock(lock);
1187 		return 0;
1188 	}
1189 	/* we hit 0, and we hold the lock */
1190 	return 1;
1191 }
1192 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1193