1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched.h> 23 #include <linux/sched/rt.h> 24 #include <linux/export.h> 25 #include <linux/spinlock.h> 26 #include <linux/interrupt.h> 27 #include <linux/debug_locks.h> 28 #include "mcs_spinlock.h" 29 30 /* 31 * In the DEBUG case we are using the "NULL fastpath" for mutexes, 32 * which forces all calls into the slowpath: 33 */ 34 #ifdef CONFIG_DEBUG_MUTEXES 35 # include "mutex-debug.h" 36 # include <asm-generic/mutex-null.h> 37 /* 38 * Must be 0 for the debug case so we do not do the unlock outside of the 39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this 40 * case. 41 */ 42 # undef __mutex_slowpath_needs_to_unlock 43 # define __mutex_slowpath_needs_to_unlock() 0 44 #else 45 # include "mutex.h" 46 # include <asm/mutex.h> 47 #endif 48 49 void 50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 51 { 52 atomic_set(&lock->count, 1); 53 spin_lock_init(&lock->wait_lock); 54 INIT_LIST_HEAD(&lock->wait_list); 55 mutex_clear_owner(lock); 56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 57 osq_lock_init(&lock->osq); 58 #endif 59 60 debug_mutex_init(lock, name, key); 61 } 62 63 EXPORT_SYMBOL(__mutex_init); 64 65 #ifndef CONFIG_DEBUG_LOCK_ALLOC 66 /* 67 * We split the mutex lock/unlock logic into separate fastpath and 68 * slowpath functions, to reduce the register pressure on the fastpath. 69 * We also put the fastpath first in the kernel image, to make sure the 70 * branch is predicted by the CPU as default-untaken. 71 */ 72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count); 73 74 /** 75 * mutex_lock - acquire the mutex 76 * @lock: the mutex to be acquired 77 * 78 * Lock the mutex exclusively for this task. If the mutex is not 79 * available right now, it will sleep until it can get it. 80 * 81 * The mutex must later on be released by the same task that 82 * acquired it. Recursive locking is not allowed. The task 83 * may not exit without first unlocking the mutex. Also, kernel 84 * memory where the mutex resides mutex must not be freed with 85 * the mutex still locked. The mutex must first be initialized 86 * (or statically defined) before it can be locked. memset()-ing 87 * the mutex to 0 is not allowed. 88 * 89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 90 * checks that will enforce the restrictions and will also do 91 * deadlock debugging. ) 92 * 93 * This function is similar to (but not equivalent to) down(). 94 */ 95 void __sched mutex_lock(struct mutex *lock) 96 { 97 might_sleep(); 98 /* 99 * The locking fastpath is the 1->0 transition from 100 * 'unlocked' into 'locked' state. 101 */ 102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); 103 mutex_set_owner(lock); 104 } 105 106 EXPORT_SYMBOL(mutex_lock); 107 #endif 108 109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, 110 struct ww_acquire_ctx *ww_ctx) 111 { 112 #ifdef CONFIG_DEBUG_MUTEXES 113 /* 114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 115 * but released with a normal mutex_unlock in this call. 116 * 117 * This should never happen, always use ww_mutex_unlock. 118 */ 119 DEBUG_LOCKS_WARN_ON(ww->ctx); 120 121 /* 122 * Not quite done after calling ww_acquire_done() ? 123 */ 124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 125 126 if (ww_ctx->contending_lock) { 127 /* 128 * After -EDEADLK you tried to 129 * acquire a different ww_mutex? Bad! 130 */ 131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 132 133 /* 134 * You called ww_mutex_lock after receiving -EDEADLK, 135 * but 'forgot' to unlock everything else first? 136 */ 137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 138 ww_ctx->contending_lock = NULL; 139 } 140 141 /* 142 * Naughty, using a different class will lead to undefined behavior! 143 */ 144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 145 #endif 146 ww_ctx->acquired++; 147 } 148 149 /* 150 * after acquiring lock with fastpath or when we lost out in contested 151 * slowpath, set ctx and wake up any waiters so they can recheck. 152 * 153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set, 154 * as the fastpath and opportunistic spinning are disabled in that case. 155 */ 156 static __always_inline void 157 ww_mutex_set_context_fastpath(struct ww_mutex *lock, 158 struct ww_acquire_ctx *ctx) 159 { 160 unsigned long flags; 161 struct mutex_waiter *cur; 162 163 ww_mutex_lock_acquired(lock, ctx); 164 165 lock->ctx = ctx; 166 167 /* 168 * The lock->ctx update should be visible on all cores before 169 * the atomic read is done, otherwise contended waiters might be 170 * missed. The contended waiters will either see ww_ctx == NULL 171 * and keep spinning, or it will acquire wait_lock, add itself 172 * to waiter list and sleep. 173 */ 174 smp_mb(); /* ^^^ */ 175 176 /* 177 * Check if lock is contended, if not there is nobody to wake up 178 */ 179 if (likely(atomic_read(&lock->base.count) == 0)) 180 return; 181 182 /* 183 * Uh oh, we raced in fastpath, wake up everyone in this case, 184 * so they can see the new lock->ctx. 185 */ 186 spin_lock_mutex(&lock->base.wait_lock, flags); 187 list_for_each_entry(cur, &lock->base.wait_list, list) { 188 debug_mutex_wake_waiter(&lock->base, cur); 189 wake_up_process(cur->task); 190 } 191 spin_unlock_mutex(&lock->base.wait_lock, flags); 192 } 193 194 195 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 196 /* 197 * In order to avoid a stampede of mutex spinners from acquiring the mutex 198 * more or less simultaneously, the spinners need to acquire a MCS lock 199 * first before spinning on the owner field. 200 * 201 */ 202 203 /* 204 * Mutex spinning code migrated from kernel/sched/core.c 205 */ 206 207 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 208 { 209 if (lock->owner != owner) 210 return false; 211 212 /* 213 * Ensure we emit the owner->on_cpu, dereference _after_ checking 214 * lock->owner still matches owner, if that fails, owner might 215 * point to free()d memory, if it still matches, the rcu_read_lock() 216 * ensures the memory stays valid. 217 */ 218 barrier(); 219 220 return owner->on_cpu; 221 } 222 223 /* 224 * Look out! "owner" is an entirely speculative pointer 225 * access and not reliable. 226 */ 227 static noinline 228 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 229 { 230 rcu_read_lock(); 231 while (owner_running(lock, owner)) { 232 if (need_resched()) 233 break; 234 235 cpu_relax_lowlatency(); 236 } 237 rcu_read_unlock(); 238 239 /* 240 * We break out the loop above on need_resched() and when the 241 * owner changed, which is a sign for heavy contention. Return 242 * success only when lock->owner is NULL. 243 */ 244 return lock->owner == NULL; 245 } 246 247 /* 248 * Initial check for entering the mutex spinning loop 249 */ 250 static inline int mutex_can_spin_on_owner(struct mutex *lock) 251 { 252 struct task_struct *owner; 253 int retval = 1; 254 255 if (need_resched()) 256 return 0; 257 258 rcu_read_lock(); 259 owner = ACCESS_ONCE(lock->owner); 260 if (owner) 261 retval = owner->on_cpu; 262 rcu_read_unlock(); 263 /* 264 * if lock->owner is not set, the mutex owner may have just acquired 265 * it and not set the owner yet or the mutex has been released. 266 */ 267 return retval; 268 } 269 270 /* 271 * Atomically try to take the lock when it is available 272 */ 273 static inline bool mutex_try_to_acquire(struct mutex *lock) 274 { 275 return !mutex_is_locked(lock) && 276 (atomic_cmpxchg(&lock->count, 1, 0) == 1); 277 } 278 279 /* 280 * Optimistic spinning. 281 * 282 * We try to spin for acquisition when we find that the lock owner 283 * is currently running on a (different) CPU and while we don't 284 * need to reschedule. The rationale is that if the lock owner is 285 * running, it is likely to release the lock soon. 286 * 287 * Since this needs the lock owner, and this mutex implementation 288 * doesn't track the owner atomically in the lock field, we need to 289 * track it non-atomically. 290 * 291 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock 292 * to serialize everything. 293 * 294 * The mutex spinners are queued up using MCS lock so that only one 295 * spinner can compete for the mutex. However, if mutex spinning isn't 296 * going to happen, there is no point in going through the lock/unlock 297 * overhead. 298 * 299 * Returns true when the lock was taken, otherwise false, indicating 300 * that we need to jump to the slowpath and sleep. 301 */ 302 static bool mutex_optimistic_spin(struct mutex *lock, 303 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 304 { 305 struct task_struct *task = current; 306 307 if (!mutex_can_spin_on_owner(lock)) 308 goto done; 309 310 if (!osq_lock(&lock->osq)) 311 goto done; 312 313 while (true) { 314 struct task_struct *owner; 315 316 if (use_ww_ctx && ww_ctx->acquired > 0) { 317 struct ww_mutex *ww; 318 319 ww = container_of(lock, struct ww_mutex, base); 320 /* 321 * If ww->ctx is set the contents are undefined, only 322 * by acquiring wait_lock there is a guarantee that 323 * they are not invalid when reading. 324 * 325 * As such, when deadlock detection needs to be 326 * performed the optimistic spinning cannot be done. 327 */ 328 if (ACCESS_ONCE(ww->ctx)) 329 break; 330 } 331 332 /* 333 * If there's an owner, wait for it to either 334 * release the lock or go to sleep. 335 */ 336 owner = ACCESS_ONCE(lock->owner); 337 if (owner && !mutex_spin_on_owner(lock, owner)) 338 break; 339 340 /* Try to acquire the mutex if it is unlocked. */ 341 if (mutex_try_to_acquire(lock)) { 342 lock_acquired(&lock->dep_map, ip); 343 344 if (use_ww_ctx) { 345 struct ww_mutex *ww; 346 ww = container_of(lock, struct ww_mutex, base); 347 348 ww_mutex_set_context_fastpath(ww, ww_ctx); 349 } 350 351 mutex_set_owner(lock); 352 osq_unlock(&lock->osq); 353 return true; 354 } 355 356 /* 357 * When there's no owner, we might have preempted between the 358 * owner acquiring the lock and setting the owner field. If 359 * we're an RT task that will live-lock because we won't let 360 * the owner complete. 361 */ 362 if (!owner && (need_resched() || rt_task(task))) 363 break; 364 365 /* 366 * The cpu_relax() call is a compiler barrier which forces 367 * everything in this loop to be re-loaded. We don't need 368 * memory barriers as we'll eventually observe the right 369 * values at the cost of a few extra spins. 370 */ 371 cpu_relax_lowlatency(); 372 } 373 374 osq_unlock(&lock->osq); 375 done: 376 /* 377 * If we fell out of the spin path because of need_resched(), 378 * reschedule now, before we try-lock the mutex. This avoids getting 379 * scheduled out right after we obtained the mutex. 380 */ 381 if (need_resched()) { 382 /* 383 * We _should_ have TASK_RUNNING here, but just in case 384 * we do not, make it so, otherwise we might get stuck. 385 */ 386 __set_current_state(TASK_RUNNING); 387 schedule_preempt_disabled(); 388 } 389 390 return false; 391 } 392 #else 393 static bool mutex_optimistic_spin(struct mutex *lock, 394 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 395 { 396 return false; 397 } 398 #endif 399 400 __visible __used noinline 401 void __sched __mutex_unlock_slowpath(atomic_t *lock_count); 402 403 /** 404 * mutex_unlock - release the mutex 405 * @lock: the mutex to be released 406 * 407 * Unlock a mutex that has been locked by this task previously. 408 * 409 * This function must not be used in interrupt context. Unlocking 410 * of a not locked mutex is not allowed. 411 * 412 * This function is similar to (but not equivalent to) up(). 413 */ 414 void __sched mutex_unlock(struct mutex *lock) 415 { 416 /* 417 * The unlocking fastpath is the 0->1 transition from 'locked' 418 * into 'unlocked' state: 419 */ 420 #ifndef CONFIG_DEBUG_MUTEXES 421 /* 422 * When debugging is enabled we must not clear the owner before time, 423 * the slow path will always be taken, and that clears the owner field 424 * after verifying that it was indeed current. 425 */ 426 mutex_clear_owner(lock); 427 #endif 428 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); 429 } 430 431 EXPORT_SYMBOL(mutex_unlock); 432 433 /** 434 * ww_mutex_unlock - release the w/w mutex 435 * @lock: the mutex to be released 436 * 437 * Unlock a mutex that has been locked by this task previously with any of the 438 * ww_mutex_lock* functions (with or without an acquire context). It is 439 * forbidden to release the locks after releasing the acquire context. 440 * 441 * This function must not be used in interrupt context. Unlocking 442 * of a unlocked mutex is not allowed. 443 */ 444 void __sched ww_mutex_unlock(struct ww_mutex *lock) 445 { 446 /* 447 * The unlocking fastpath is the 0->1 transition from 'locked' 448 * into 'unlocked' state: 449 */ 450 if (lock->ctx) { 451 #ifdef CONFIG_DEBUG_MUTEXES 452 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 453 #endif 454 if (lock->ctx->acquired > 0) 455 lock->ctx->acquired--; 456 lock->ctx = NULL; 457 } 458 459 #ifndef CONFIG_DEBUG_MUTEXES 460 /* 461 * When debugging is enabled we must not clear the owner before time, 462 * the slow path will always be taken, and that clears the owner field 463 * after verifying that it was indeed current. 464 */ 465 mutex_clear_owner(&lock->base); 466 #endif 467 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath); 468 } 469 EXPORT_SYMBOL(ww_mutex_unlock); 470 471 static inline int __sched 472 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) 473 { 474 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 475 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx); 476 477 if (!hold_ctx) 478 return 0; 479 480 if (unlikely(ctx == hold_ctx)) 481 return -EALREADY; 482 483 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && 484 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { 485 #ifdef CONFIG_DEBUG_MUTEXES 486 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 487 ctx->contending_lock = ww; 488 #endif 489 return -EDEADLK; 490 } 491 492 return 0; 493 } 494 495 /* 496 * Lock a mutex (possibly interruptible), slowpath: 497 */ 498 static __always_inline int __sched 499 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 500 struct lockdep_map *nest_lock, unsigned long ip, 501 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 502 { 503 struct task_struct *task = current; 504 struct mutex_waiter waiter; 505 unsigned long flags; 506 int ret; 507 508 preempt_disable(); 509 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 510 511 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) { 512 /* got the lock, yay! */ 513 preempt_enable(); 514 return 0; 515 } 516 517 spin_lock_mutex(&lock->wait_lock, flags); 518 519 /* 520 * Once more, try to acquire the lock. Only try-lock the mutex if 521 * it is unlocked to reduce unnecessary xchg() operations. 522 */ 523 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1)) 524 goto skip_wait; 525 526 debug_mutex_lock_common(lock, &waiter); 527 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); 528 529 /* add waiting tasks to the end of the waitqueue (FIFO): */ 530 list_add_tail(&waiter.list, &lock->wait_list); 531 waiter.task = task; 532 533 lock_contended(&lock->dep_map, ip); 534 535 for (;;) { 536 /* 537 * Lets try to take the lock again - this is needed even if 538 * we get here for the first time (shortly after failing to 539 * acquire the lock), to make sure that we get a wakeup once 540 * it's unlocked. Later on, if we sleep, this is the 541 * operation that gives us the lock. We xchg it to -1, so 542 * that when we release the lock, we properly wake up the 543 * other waiters. We only attempt the xchg if the count is 544 * non-negative in order to avoid unnecessary xchg operations: 545 */ 546 if (atomic_read(&lock->count) >= 0 && 547 (atomic_xchg(&lock->count, -1) == 1)) 548 break; 549 550 /* 551 * got a signal? (This code gets eliminated in the 552 * TASK_UNINTERRUPTIBLE case.) 553 */ 554 if (unlikely(signal_pending_state(state, task))) { 555 ret = -EINTR; 556 goto err; 557 } 558 559 if (use_ww_ctx && ww_ctx->acquired > 0) { 560 ret = __mutex_lock_check_stamp(lock, ww_ctx); 561 if (ret) 562 goto err; 563 } 564 565 __set_task_state(task, state); 566 567 /* didn't get the lock, go to sleep: */ 568 spin_unlock_mutex(&lock->wait_lock, flags); 569 schedule_preempt_disabled(); 570 spin_lock_mutex(&lock->wait_lock, flags); 571 } 572 mutex_remove_waiter(lock, &waiter, current_thread_info()); 573 /* set it to 0 if there are no waiters left: */ 574 if (likely(list_empty(&lock->wait_list))) 575 atomic_set(&lock->count, 0); 576 debug_mutex_free_waiter(&waiter); 577 578 skip_wait: 579 /* got the lock - cleanup and rejoice! */ 580 lock_acquired(&lock->dep_map, ip); 581 mutex_set_owner(lock); 582 583 if (use_ww_ctx) { 584 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 585 struct mutex_waiter *cur; 586 587 /* 588 * This branch gets optimized out for the common case, 589 * and is only important for ww_mutex_lock. 590 */ 591 ww_mutex_lock_acquired(ww, ww_ctx); 592 ww->ctx = ww_ctx; 593 594 /* 595 * Give any possible sleeping processes the chance to wake up, 596 * so they can recheck if they have to back off. 597 */ 598 list_for_each_entry(cur, &lock->wait_list, list) { 599 debug_mutex_wake_waiter(lock, cur); 600 wake_up_process(cur->task); 601 } 602 } 603 604 spin_unlock_mutex(&lock->wait_lock, flags); 605 preempt_enable(); 606 return 0; 607 608 err: 609 mutex_remove_waiter(lock, &waiter, task_thread_info(task)); 610 spin_unlock_mutex(&lock->wait_lock, flags); 611 debug_mutex_free_waiter(&waiter); 612 mutex_release(&lock->dep_map, 1, ip); 613 preempt_enable(); 614 return ret; 615 } 616 617 #ifdef CONFIG_DEBUG_LOCK_ALLOC 618 void __sched 619 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 620 { 621 might_sleep(); 622 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 623 subclass, NULL, _RET_IP_, NULL, 0); 624 } 625 626 EXPORT_SYMBOL_GPL(mutex_lock_nested); 627 628 void __sched 629 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 630 { 631 might_sleep(); 632 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 633 0, nest, _RET_IP_, NULL, 0); 634 } 635 636 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 637 638 int __sched 639 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 640 { 641 might_sleep(); 642 return __mutex_lock_common(lock, TASK_KILLABLE, 643 subclass, NULL, _RET_IP_, NULL, 0); 644 } 645 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 646 647 int __sched 648 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 649 { 650 might_sleep(); 651 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 652 subclass, NULL, _RET_IP_, NULL, 0); 653 } 654 655 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 656 657 static inline int 658 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 659 { 660 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 661 unsigned tmp; 662 663 if (ctx->deadlock_inject_countdown-- == 0) { 664 tmp = ctx->deadlock_inject_interval; 665 if (tmp > UINT_MAX/4) 666 tmp = UINT_MAX; 667 else 668 tmp = tmp*2 + tmp + tmp/2; 669 670 ctx->deadlock_inject_interval = tmp; 671 ctx->deadlock_inject_countdown = tmp; 672 ctx->contending_lock = lock; 673 674 ww_mutex_unlock(lock); 675 676 return -EDEADLK; 677 } 678 #endif 679 680 return 0; 681 } 682 683 int __sched 684 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 685 { 686 int ret; 687 688 might_sleep(); 689 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 690 0, &ctx->dep_map, _RET_IP_, ctx, 1); 691 if (!ret && ctx->acquired > 1) 692 return ww_mutex_deadlock_injection(lock, ctx); 693 694 return ret; 695 } 696 EXPORT_SYMBOL_GPL(__ww_mutex_lock); 697 698 int __sched 699 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 700 { 701 int ret; 702 703 might_sleep(); 704 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 705 0, &ctx->dep_map, _RET_IP_, ctx, 1); 706 707 if (!ret && ctx->acquired > 1) 708 return ww_mutex_deadlock_injection(lock, ctx); 709 710 return ret; 711 } 712 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); 713 714 #endif 715 716 /* 717 * Release the lock, slowpath: 718 */ 719 static inline void 720 __mutex_unlock_common_slowpath(struct mutex *lock, int nested) 721 { 722 unsigned long flags; 723 724 /* 725 * As a performance measurement, release the lock before doing other 726 * wakeup related duties to follow. This allows other tasks to acquire 727 * the lock sooner, while still handling cleanups in past unlock calls. 728 * This can be done as we do not enforce strict equivalence between the 729 * mutex counter and wait_list. 730 * 731 * 732 * Some architectures leave the lock unlocked in the fastpath failure 733 * case, others need to leave it locked. In the later case we have to 734 * unlock it here - as the lock counter is currently 0 or negative. 735 */ 736 if (__mutex_slowpath_needs_to_unlock()) 737 atomic_set(&lock->count, 1); 738 739 spin_lock_mutex(&lock->wait_lock, flags); 740 mutex_release(&lock->dep_map, nested, _RET_IP_); 741 debug_mutex_unlock(lock); 742 743 if (!list_empty(&lock->wait_list)) { 744 /* get the first entry from the wait-list: */ 745 struct mutex_waiter *waiter = 746 list_entry(lock->wait_list.next, 747 struct mutex_waiter, list); 748 749 debug_mutex_wake_waiter(lock, waiter); 750 751 wake_up_process(waiter->task); 752 } 753 754 spin_unlock_mutex(&lock->wait_lock, flags); 755 } 756 757 /* 758 * Release the lock, slowpath: 759 */ 760 __visible void 761 __mutex_unlock_slowpath(atomic_t *lock_count) 762 { 763 struct mutex *lock = container_of(lock_count, struct mutex, count); 764 765 __mutex_unlock_common_slowpath(lock, 1); 766 } 767 768 #ifndef CONFIG_DEBUG_LOCK_ALLOC 769 /* 770 * Here come the less common (and hence less performance-critical) APIs: 771 * mutex_lock_interruptible() and mutex_trylock(). 772 */ 773 static noinline int __sched 774 __mutex_lock_killable_slowpath(struct mutex *lock); 775 776 static noinline int __sched 777 __mutex_lock_interruptible_slowpath(struct mutex *lock); 778 779 /** 780 * mutex_lock_interruptible - acquire the mutex, interruptible 781 * @lock: the mutex to be acquired 782 * 783 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 784 * been acquired or sleep until the mutex becomes available. If a 785 * signal arrives while waiting for the lock then this function 786 * returns -EINTR. 787 * 788 * This function is similar to (but not equivalent to) down_interruptible(). 789 */ 790 int __sched mutex_lock_interruptible(struct mutex *lock) 791 { 792 int ret; 793 794 might_sleep(); 795 ret = __mutex_fastpath_lock_retval(&lock->count); 796 if (likely(!ret)) { 797 mutex_set_owner(lock); 798 return 0; 799 } else 800 return __mutex_lock_interruptible_slowpath(lock); 801 } 802 803 EXPORT_SYMBOL(mutex_lock_interruptible); 804 805 int __sched mutex_lock_killable(struct mutex *lock) 806 { 807 int ret; 808 809 might_sleep(); 810 ret = __mutex_fastpath_lock_retval(&lock->count); 811 if (likely(!ret)) { 812 mutex_set_owner(lock); 813 return 0; 814 } else 815 return __mutex_lock_killable_slowpath(lock); 816 } 817 EXPORT_SYMBOL(mutex_lock_killable); 818 819 __visible void __sched 820 __mutex_lock_slowpath(atomic_t *lock_count) 821 { 822 struct mutex *lock = container_of(lock_count, struct mutex, count); 823 824 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, 825 NULL, _RET_IP_, NULL, 0); 826 } 827 828 static noinline int __sched 829 __mutex_lock_killable_slowpath(struct mutex *lock) 830 { 831 return __mutex_lock_common(lock, TASK_KILLABLE, 0, 832 NULL, _RET_IP_, NULL, 0); 833 } 834 835 static noinline int __sched 836 __mutex_lock_interruptible_slowpath(struct mutex *lock) 837 { 838 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, 839 NULL, _RET_IP_, NULL, 0); 840 } 841 842 static noinline int __sched 843 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 844 { 845 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, 846 NULL, _RET_IP_, ctx, 1); 847 } 848 849 static noinline int __sched 850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 851 struct ww_acquire_ctx *ctx) 852 { 853 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, 854 NULL, _RET_IP_, ctx, 1); 855 } 856 857 #endif 858 859 /* 860 * Spinlock based trylock, we take the spinlock and check whether we 861 * can get the lock: 862 */ 863 static inline int __mutex_trylock_slowpath(atomic_t *lock_count) 864 { 865 struct mutex *lock = container_of(lock_count, struct mutex, count); 866 unsigned long flags; 867 int prev; 868 869 /* No need to trylock if the mutex is locked. */ 870 if (mutex_is_locked(lock)) 871 return 0; 872 873 spin_lock_mutex(&lock->wait_lock, flags); 874 875 prev = atomic_xchg(&lock->count, -1); 876 if (likely(prev == 1)) { 877 mutex_set_owner(lock); 878 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 879 } 880 881 /* Set it back to 0 if there are no waiters: */ 882 if (likely(list_empty(&lock->wait_list))) 883 atomic_set(&lock->count, 0); 884 885 spin_unlock_mutex(&lock->wait_lock, flags); 886 887 return prev == 1; 888 } 889 890 /** 891 * mutex_trylock - try to acquire the mutex, without waiting 892 * @lock: the mutex to be acquired 893 * 894 * Try to acquire the mutex atomically. Returns 1 if the mutex 895 * has been acquired successfully, and 0 on contention. 896 * 897 * NOTE: this function follows the spin_trylock() convention, so 898 * it is negated from the down_trylock() return values! Be careful 899 * about this when converting semaphore users to mutexes. 900 * 901 * This function must not be used in interrupt context. The 902 * mutex must be released by the same task that acquired it. 903 */ 904 int __sched mutex_trylock(struct mutex *lock) 905 { 906 int ret; 907 908 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); 909 if (ret) 910 mutex_set_owner(lock); 911 912 return ret; 913 } 914 EXPORT_SYMBOL(mutex_trylock); 915 916 #ifndef CONFIG_DEBUG_LOCK_ALLOC 917 int __sched 918 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 919 { 920 int ret; 921 922 might_sleep(); 923 924 ret = __mutex_fastpath_lock_retval(&lock->base.count); 925 926 if (likely(!ret)) { 927 ww_mutex_set_context_fastpath(lock, ctx); 928 mutex_set_owner(&lock->base); 929 } else 930 ret = __ww_mutex_lock_slowpath(lock, ctx); 931 return ret; 932 } 933 EXPORT_SYMBOL(__ww_mutex_lock); 934 935 int __sched 936 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 937 { 938 int ret; 939 940 might_sleep(); 941 942 ret = __mutex_fastpath_lock_retval(&lock->base.count); 943 944 if (likely(!ret)) { 945 ww_mutex_set_context_fastpath(lock, ctx); 946 mutex_set_owner(&lock->base); 947 } else 948 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx); 949 return ret; 950 } 951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible); 952 953 #endif 954 955 /** 956 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 957 * @cnt: the atomic which we are to dec 958 * @lock: the mutex to return holding if we dec to 0 959 * 960 * return true and hold lock if we dec to 0, return false otherwise 961 */ 962 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 963 { 964 /* dec if we can't possibly hit 0 */ 965 if (atomic_add_unless(cnt, -1, 1)) 966 return 0; 967 /* we might hit 0, so take the lock */ 968 mutex_lock(lock); 969 if (!atomic_dec_and_test(cnt)) { 970 /* when we actually did the dec, we didn't hit 0 */ 971 mutex_unlock(lock); 972 return 0; 973 } 974 /* we hit 0, and we hold the lock */ 975 return 1; 976 } 977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 978