1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 #include <linux/console.h> 60 61 #include <asm/sections.h> 62 63 #include "lockdep_internals.h" 64 65 #include <trace/events/lock.h> 66 67 #ifdef CONFIG_PROVE_LOCKING 68 static int prove_locking = 1; 69 module_param(prove_locking, int, 0644); 70 #else 71 #define prove_locking 0 72 #endif 73 74 #ifdef CONFIG_LOCK_STAT 75 static int lock_stat = 1; 76 module_param(lock_stat, int, 0644); 77 #else 78 #define lock_stat 0 79 #endif 80 81 #ifdef CONFIG_SYSCTL 82 static struct ctl_table kern_lockdep_table[] = { 83 #ifdef CONFIG_PROVE_LOCKING 84 { 85 .procname = "prove_locking", 86 .data = &prove_locking, 87 .maxlen = sizeof(int), 88 .mode = 0644, 89 .proc_handler = proc_dointvec, 90 }, 91 #endif /* CONFIG_PROVE_LOCKING */ 92 #ifdef CONFIG_LOCK_STAT 93 { 94 .procname = "lock_stat", 95 .data = &lock_stat, 96 .maxlen = sizeof(int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec, 99 }, 100 #endif /* CONFIG_LOCK_STAT */ 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 #ifdef CONFIG_PROVE_LOCKING 161 static inline bool lockdep_assert_locked(void) 162 { 163 return DEBUG_LOCKS_WARN_ON(__owner != current); 164 } 165 #endif 166 167 static struct task_struct *lockdep_selftest_task_struct; 168 169 170 static int graph_lock(void) 171 { 172 lockdep_lock(); 173 /* 174 * Make sure that if another CPU detected a bug while 175 * walking the graph we dont change it (while the other 176 * CPU is busy printing out stuff with the graph lock 177 * dropped already) 178 */ 179 if (!debug_locks) { 180 lockdep_unlock(); 181 return 0; 182 } 183 return 1; 184 } 185 186 static inline void graph_unlock(void) 187 { 188 lockdep_unlock(); 189 } 190 191 /* 192 * Turn lock debugging off and return with 0 if it was off already, 193 * and also release the graph lock: 194 */ 195 static inline int debug_locks_off_graph_unlock(void) 196 { 197 int ret = debug_locks_off(); 198 199 lockdep_unlock(); 200 201 return ret; 202 } 203 204 unsigned long nr_list_entries; 205 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 206 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 207 208 /* 209 * All data structures here are protected by the global debug_lock. 210 * 211 * nr_lock_classes is the number of elements of lock_classes[] that is 212 * in use. 213 */ 214 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 215 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 216 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 217 unsigned long nr_lock_classes; 218 unsigned long nr_zapped_classes; 219 unsigned long max_lock_class_idx; 220 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 221 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 222 223 static inline struct lock_class *hlock_class(struct held_lock *hlock) 224 { 225 unsigned int class_idx = hlock->class_idx; 226 227 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 228 barrier(); 229 230 if (!test_bit(class_idx, lock_classes_in_use)) { 231 /* 232 * Someone passed in garbage, we give up. 233 */ 234 DEBUG_LOCKS_WARN_ON(1); 235 return NULL; 236 } 237 238 /* 239 * At this point, if the passed hlock->class_idx is still garbage, 240 * we just have to live with it 241 */ 242 return lock_classes + class_idx; 243 } 244 245 #ifdef CONFIG_LOCK_STAT 246 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 247 248 static inline u64 lockstat_clock(void) 249 { 250 return local_clock(); 251 } 252 253 static int lock_point(unsigned long points[], unsigned long ip) 254 { 255 int i; 256 257 for (i = 0; i < LOCKSTAT_POINTS; i++) { 258 if (points[i] == 0) { 259 points[i] = ip; 260 break; 261 } 262 if (points[i] == ip) 263 break; 264 } 265 266 return i; 267 } 268 269 static void lock_time_inc(struct lock_time *lt, u64 time) 270 { 271 if (time > lt->max) 272 lt->max = time; 273 274 if (time < lt->min || !lt->nr) 275 lt->min = time; 276 277 lt->total += time; 278 lt->nr++; 279 } 280 281 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 282 { 283 if (!src->nr) 284 return; 285 286 if (src->max > dst->max) 287 dst->max = src->max; 288 289 if (src->min < dst->min || !dst->nr) 290 dst->min = src->min; 291 292 dst->total += src->total; 293 dst->nr += src->nr; 294 } 295 296 struct lock_class_stats lock_stats(struct lock_class *class) 297 { 298 struct lock_class_stats stats; 299 int cpu, i; 300 301 memset(&stats, 0, sizeof(struct lock_class_stats)); 302 for_each_possible_cpu(cpu) { 303 struct lock_class_stats *pcs = 304 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 305 306 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 307 stats.contention_point[i] += pcs->contention_point[i]; 308 309 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 310 stats.contending_point[i] += pcs->contending_point[i]; 311 312 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 313 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 314 315 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 316 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 317 318 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 319 stats.bounces[i] += pcs->bounces[i]; 320 } 321 322 return stats; 323 } 324 325 void clear_lock_stats(struct lock_class *class) 326 { 327 int cpu; 328 329 for_each_possible_cpu(cpu) { 330 struct lock_class_stats *cpu_stats = 331 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 332 333 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 334 } 335 memset(class->contention_point, 0, sizeof(class->contention_point)); 336 memset(class->contending_point, 0, sizeof(class->contending_point)); 337 } 338 339 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 340 { 341 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 342 } 343 344 static void lock_release_holdtime(struct held_lock *hlock) 345 { 346 struct lock_class_stats *stats; 347 u64 holdtime; 348 349 if (!lock_stat) 350 return; 351 352 holdtime = lockstat_clock() - hlock->holdtime_stamp; 353 354 stats = get_lock_stats(hlock_class(hlock)); 355 if (hlock->read) 356 lock_time_inc(&stats->read_holdtime, holdtime); 357 else 358 lock_time_inc(&stats->write_holdtime, holdtime); 359 } 360 #else 361 static inline void lock_release_holdtime(struct held_lock *hlock) 362 { 363 } 364 #endif 365 366 /* 367 * We keep a global list of all lock classes. The list is only accessed with 368 * the lockdep spinlock lock held. free_lock_classes is a list with free 369 * elements. These elements are linked together by the lock_entry member in 370 * struct lock_class. 371 */ 372 static LIST_HEAD(all_lock_classes); 373 static LIST_HEAD(free_lock_classes); 374 375 /** 376 * struct pending_free - information about data structures about to be freed 377 * @zapped: Head of a list with struct lock_class elements. 378 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 379 * are about to be freed. 380 */ 381 struct pending_free { 382 struct list_head zapped; 383 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 384 }; 385 386 /** 387 * struct delayed_free - data structures used for delayed freeing 388 * 389 * A data structure for delayed freeing of data structures that may be 390 * accessed by RCU readers at the time these were freed. 391 * 392 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 393 * @index: Index of @pf to which freed data structures are added. 394 * @scheduled: Whether or not an RCU callback has been scheduled. 395 * @pf: Array with information about data structures about to be freed. 396 */ 397 static struct delayed_free { 398 struct rcu_head rcu_head; 399 int index; 400 int scheduled; 401 struct pending_free pf[2]; 402 } delayed_free; 403 404 /* 405 * The lockdep classes are in a hash-table as well, for fast lookup: 406 */ 407 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 408 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 409 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 410 #define classhashentry(key) (classhash_table + __classhashfn((key))) 411 412 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 413 414 /* 415 * We put the lock dependency chains into a hash-table as well, to cache 416 * their existence: 417 */ 418 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 419 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 420 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 421 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 422 423 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 424 425 /* 426 * the id of held_lock 427 */ 428 static inline u16 hlock_id(struct held_lock *hlock) 429 { 430 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 431 432 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 433 } 434 435 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id) 436 { 437 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 438 } 439 440 /* 441 * The hash key of the lock dependency chains is a hash itself too: 442 * it's a hash of all locks taken up to that lock, including that lock. 443 * It's a 64-bit hash, because it's important for the keys to be 444 * unique. 445 */ 446 static inline u64 iterate_chain_key(u64 key, u32 idx) 447 { 448 u32 k0 = key, k1 = key >> 32; 449 450 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 451 452 return k0 | (u64)k1 << 32; 453 } 454 455 void lockdep_init_task(struct task_struct *task) 456 { 457 task->lockdep_depth = 0; /* no locks held yet */ 458 task->curr_chain_key = INITIAL_CHAIN_KEY; 459 task->lockdep_recursion = 0; 460 } 461 462 static __always_inline void lockdep_recursion_inc(void) 463 { 464 __this_cpu_inc(lockdep_recursion); 465 } 466 467 static __always_inline void lockdep_recursion_finish(void) 468 { 469 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 470 __this_cpu_write(lockdep_recursion, 0); 471 } 472 473 void lockdep_set_selftest_task(struct task_struct *task) 474 { 475 lockdep_selftest_task_struct = task; 476 } 477 478 /* 479 * Debugging switches: 480 */ 481 482 #define VERBOSE 0 483 #define VERY_VERBOSE 0 484 485 #if VERBOSE 486 # define HARDIRQ_VERBOSE 1 487 # define SOFTIRQ_VERBOSE 1 488 #else 489 # define HARDIRQ_VERBOSE 0 490 # define SOFTIRQ_VERBOSE 0 491 #endif 492 493 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 494 /* 495 * Quick filtering for interesting events: 496 */ 497 static int class_filter(struct lock_class *class) 498 { 499 #if 0 500 /* Example */ 501 if (class->name_version == 1 && 502 !strcmp(class->name, "lockname")) 503 return 1; 504 if (class->name_version == 1 && 505 !strcmp(class->name, "&struct->lockfield")) 506 return 1; 507 #endif 508 /* Filter everything else. 1 would be to allow everything else */ 509 return 0; 510 } 511 #endif 512 513 static int verbose(struct lock_class *class) 514 { 515 #if VERBOSE 516 return class_filter(class); 517 #endif 518 return 0; 519 } 520 521 static void print_lockdep_off(const char *bug_msg) 522 { 523 printk(KERN_DEBUG "%s\n", bug_msg); 524 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 525 #ifdef CONFIG_LOCK_STAT 526 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 527 #endif 528 } 529 530 unsigned long nr_stack_trace_entries; 531 532 #ifdef CONFIG_PROVE_LOCKING 533 /** 534 * struct lock_trace - single stack backtrace 535 * @hash_entry: Entry in a stack_trace_hash[] list. 536 * @hash: jhash() of @entries. 537 * @nr_entries: Number of entries in @entries. 538 * @entries: Actual stack backtrace. 539 */ 540 struct lock_trace { 541 struct hlist_node hash_entry; 542 u32 hash; 543 u32 nr_entries; 544 unsigned long entries[] __aligned(sizeof(unsigned long)); 545 }; 546 #define LOCK_TRACE_SIZE_IN_LONGS \ 547 (sizeof(struct lock_trace) / sizeof(unsigned long)) 548 /* 549 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 550 */ 551 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 552 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 553 554 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 555 { 556 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 557 memcmp(t1->entries, t2->entries, 558 t1->nr_entries * sizeof(t1->entries[0])) == 0; 559 } 560 561 static struct lock_trace *save_trace(void) 562 { 563 struct lock_trace *trace, *t2; 564 struct hlist_head *hash_head; 565 u32 hash; 566 int max_entries; 567 568 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 569 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 570 571 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 572 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 573 LOCK_TRACE_SIZE_IN_LONGS; 574 575 if (max_entries <= 0) { 576 if (!debug_locks_off_graph_unlock()) 577 return NULL; 578 579 nbcon_cpu_emergency_enter(); 580 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 581 dump_stack(); 582 nbcon_cpu_emergency_exit(); 583 584 return NULL; 585 } 586 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 587 588 hash = jhash(trace->entries, trace->nr_entries * 589 sizeof(trace->entries[0]), 0); 590 trace->hash = hash; 591 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 592 hlist_for_each_entry(t2, hash_head, hash_entry) { 593 if (traces_identical(trace, t2)) 594 return t2; 595 } 596 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 597 hlist_add_head(&trace->hash_entry, hash_head); 598 599 return trace; 600 } 601 602 /* Return the number of stack traces in the stack_trace[] array. */ 603 u64 lockdep_stack_trace_count(void) 604 { 605 struct lock_trace *trace; 606 u64 c = 0; 607 int i; 608 609 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 610 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 611 c++; 612 } 613 } 614 615 return c; 616 } 617 618 /* Return the number of stack hash chains that have at least one stack trace. */ 619 u64 lockdep_stack_hash_count(void) 620 { 621 u64 c = 0; 622 int i; 623 624 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 625 if (!hlist_empty(&stack_trace_hash[i])) 626 c++; 627 628 return c; 629 } 630 #endif 631 632 unsigned int nr_hardirq_chains; 633 unsigned int nr_softirq_chains; 634 unsigned int nr_process_chains; 635 unsigned int max_lockdep_depth; 636 637 #ifdef CONFIG_DEBUG_LOCKDEP 638 /* 639 * Various lockdep statistics: 640 */ 641 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 642 #endif 643 644 #ifdef CONFIG_PROVE_LOCKING 645 /* 646 * Locking printouts: 647 */ 648 649 #define __USAGE(__STATE) \ 650 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 651 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 652 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 653 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 654 655 static const char *usage_str[] = 656 { 657 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 658 #include "lockdep_states.h" 659 #undef LOCKDEP_STATE 660 [LOCK_USED] = "INITIAL USE", 661 [LOCK_USED_READ] = "INITIAL READ USE", 662 /* abused as string storage for verify_lock_unused() */ 663 [LOCK_USAGE_STATES] = "IN-NMI", 664 }; 665 #endif 666 667 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 668 { 669 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 670 } 671 672 static inline unsigned long lock_flag(enum lock_usage_bit bit) 673 { 674 return 1UL << bit; 675 } 676 677 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 678 { 679 /* 680 * The usage character defaults to '.' (i.e., irqs disabled and not in 681 * irq context), which is the safest usage category. 682 */ 683 char c = '.'; 684 685 /* 686 * The order of the following usage checks matters, which will 687 * result in the outcome character as follows: 688 * 689 * - '+': irq is enabled and not in irq context 690 * - '-': in irq context and irq is disabled 691 * - '?': in irq context and irq is enabled 692 */ 693 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 694 c = '+'; 695 if (class->usage_mask & lock_flag(bit)) 696 c = '?'; 697 } else if (class->usage_mask & lock_flag(bit)) 698 c = '-'; 699 700 return c; 701 } 702 703 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 704 { 705 int i = 0; 706 707 #define LOCKDEP_STATE(__STATE) \ 708 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 709 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 710 #include "lockdep_states.h" 711 #undef LOCKDEP_STATE 712 713 usage[i] = '\0'; 714 } 715 716 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 717 { 718 char str[KSYM_NAME_LEN]; 719 const char *name; 720 721 name = class->name; 722 if (!name) { 723 name = __get_key_name(class->key, str); 724 printk(KERN_CONT "%s", name); 725 } else { 726 printk(KERN_CONT "%s", name); 727 if (class->name_version > 1) 728 printk(KERN_CONT "#%d", class->name_version); 729 if (class->subclass) 730 printk(KERN_CONT "/%d", class->subclass); 731 if (hlock && class->print_fn) 732 class->print_fn(hlock->instance); 733 } 734 } 735 736 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 737 { 738 char usage[LOCK_USAGE_CHARS]; 739 740 get_usage_chars(class, usage); 741 742 printk(KERN_CONT " ("); 743 __print_lock_name(hlock, class); 744 printk(KERN_CONT "){%s}-{%d:%d}", usage, 745 class->wait_type_outer ?: class->wait_type_inner, 746 class->wait_type_inner); 747 } 748 749 static void print_lockdep_cache(struct lockdep_map *lock) 750 { 751 const char *name; 752 char str[KSYM_NAME_LEN]; 753 754 name = lock->name; 755 if (!name) 756 name = __get_key_name(lock->key->subkeys, str); 757 758 printk(KERN_CONT "%s", name); 759 } 760 761 static void print_lock(struct held_lock *hlock) 762 { 763 /* 764 * We can be called locklessly through debug_show_all_locks() so be 765 * extra careful, the hlock might have been released and cleared. 766 * 767 * If this indeed happens, lets pretend it does not hurt to continue 768 * to print the lock unless the hlock class_idx does not point to a 769 * registered class. The rationale here is: since we don't attempt 770 * to distinguish whether we are in this situation, if it just 771 * happened we can't count on class_idx to tell either. 772 */ 773 struct lock_class *lock = hlock_class(hlock); 774 775 if (!lock) { 776 printk(KERN_CONT "<RELEASED>\n"); 777 return; 778 } 779 780 printk(KERN_CONT "%px", hlock->instance); 781 print_lock_name(hlock, lock); 782 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 783 } 784 785 static void lockdep_print_held_locks(struct task_struct *p) 786 { 787 int i, depth = READ_ONCE(p->lockdep_depth); 788 789 if (!depth) 790 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 791 else 792 printk("%d lock%s held by %s/%d:\n", depth, 793 str_plural(depth), p->comm, task_pid_nr(p)); 794 /* 795 * It's not reliable to print a task's held locks if it's not sleeping 796 * and it's not the current task. 797 */ 798 if (p != current && task_is_running(p)) 799 return; 800 for (i = 0; i < depth; i++) { 801 printk(" #%d: ", i); 802 print_lock(p->held_locks + i); 803 } 804 } 805 806 static void print_kernel_ident(void) 807 { 808 printk("%s %.*s %s\n", init_utsname()->release, 809 (int)strcspn(init_utsname()->version, " "), 810 init_utsname()->version, 811 print_tainted()); 812 } 813 814 static int very_verbose(struct lock_class *class) 815 { 816 #if VERY_VERBOSE 817 return class_filter(class); 818 #endif 819 return 0; 820 } 821 822 /* 823 * Is this the address of a static object: 824 */ 825 #ifdef __KERNEL__ 826 static int static_obj(const void *obj) 827 { 828 unsigned long addr = (unsigned long) obj; 829 830 if (is_kernel_core_data(addr)) 831 return 1; 832 833 /* 834 * keys are allowed in the __ro_after_init section. 835 */ 836 if (is_kernel_rodata(addr)) 837 return 1; 838 839 /* 840 * in initdata section and used during bootup only? 841 * NOTE: On some platforms the initdata section is 842 * outside of the _stext ... _end range. 843 */ 844 if (system_state < SYSTEM_FREEING_INITMEM && 845 init_section_contains((void *)addr, 1)) 846 return 1; 847 848 /* 849 * in-kernel percpu var? 850 */ 851 if (is_kernel_percpu_address(addr)) 852 return 1; 853 854 /* 855 * module static or percpu var? 856 */ 857 return is_module_address(addr) || is_module_percpu_address(addr); 858 } 859 #endif 860 861 /* 862 * To make lock name printouts unique, we calculate a unique 863 * class->name_version generation counter. The caller must hold the graph 864 * lock. 865 */ 866 static int count_matching_names(struct lock_class *new_class) 867 { 868 struct lock_class *class; 869 int count = 0; 870 871 if (!new_class->name) 872 return 0; 873 874 list_for_each_entry(class, &all_lock_classes, lock_entry) { 875 if (new_class->key - new_class->subclass == class->key) 876 return class->name_version; 877 if (class->name && !strcmp(class->name, new_class->name)) 878 count = max(count, class->name_version); 879 } 880 881 return count + 1; 882 } 883 884 /* used from NMI context -- must be lockless */ 885 static noinstr struct lock_class * 886 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 887 { 888 struct lockdep_subclass_key *key; 889 struct hlist_head *hash_head; 890 struct lock_class *class; 891 892 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 893 instrumentation_begin(); 894 debug_locks_off(); 895 nbcon_cpu_emergency_enter(); 896 printk(KERN_ERR 897 "BUG: looking up invalid subclass: %u\n", subclass); 898 printk(KERN_ERR 899 "turning off the locking correctness validator.\n"); 900 dump_stack(); 901 nbcon_cpu_emergency_exit(); 902 instrumentation_end(); 903 return NULL; 904 } 905 906 /* 907 * If it is not initialised then it has never been locked, 908 * so it won't be present in the hash table. 909 */ 910 if (unlikely(!lock->key)) 911 return NULL; 912 913 /* 914 * NOTE: the class-key must be unique. For dynamic locks, a static 915 * lock_class_key variable is passed in through the mutex_init() 916 * (or spin_lock_init()) call - which acts as the key. For static 917 * locks we use the lock object itself as the key. 918 */ 919 BUILD_BUG_ON(sizeof(struct lock_class_key) > 920 sizeof(struct lockdep_map)); 921 922 key = lock->key->subkeys + subclass; 923 924 hash_head = classhashentry(key); 925 926 /* 927 * We do an RCU walk of the hash, see lockdep_free_key_range(). 928 */ 929 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 930 return NULL; 931 932 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 933 if (class->key == key) { 934 /* 935 * Huh! same key, different name? Did someone trample 936 * on some memory? We're most confused. 937 */ 938 WARN_ONCE(class->name != lock->name && 939 lock->key != &__lockdep_no_validate__, 940 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 941 lock->name, lock->key, class->name); 942 return class; 943 } 944 } 945 946 return NULL; 947 } 948 949 /* 950 * Static locks do not have their class-keys yet - for them the key is 951 * the lock object itself. If the lock is in the per cpu area, the 952 * canonical address of the lock (per cpu offset removed) is used. 953 */ 954 static bool assign_lock_key(struct lockdep_map *lock) 955 { 956 unsigned long can_addr, addr = (unsigned long)lock; 957 958 #ifdef __KERNEL__ 959 /* 960 * lockdep_free_key_range() assumes that struct lock_class_key 961 * objects do not overlap. Since we use the address of lock 962 * objects as class key for static objects, check whether the 963 * size of lock_class_key objects does not exceed the size of 964 * the smallest lock object. 965 */ 966 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 967 #endif 968 969 if (__is_kernel_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (__is_module_percpu_address(addr, &can_addr)) 972 lock->key = (void *)can_addr; 973 else if (static_obj(lock)) 974 lock->key = (void *)lock; 975 else { 976 /* Debug-check: all keys must be persistent! */ 977 debug_locks_off(); 978 nbcon_cpu_emergency_enter(); 979 pr_err("INFO: trying to register non-static key.\n"); 980 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 981 pr_err("you didn't initialize this object before use?\n"); 982 pr_err("turning off the locking correctness validator.\n"); 983 dump_stack(); 984 nbcon_cpu_emergency_exit(); 985 return false; 986 } 987 988 return true; 989 } 990 991 #ifdef CONFIG_DEBUG_LOCKDEP 992 993 /* Check whether element @e occurs in list @h */ 994 static bool in_list(struct list_head *e, struct list_head *h) 995 { 996 struct list_head *f; 997 998 list_for_each(f, h) { 999 if (e == f) 1000 return true; 1001 } 1002 1003 return false; 1004 } 1005 1006 /* 1007 * Check whether entry @e occurs in any of the locks_after or locks_before 1008 * lists. 1009 */ 1010 static bool in_any_class_list(struct list_head *e) 1011 { 1012 struct lock_class *class; 1013 int i; 1014 1015 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1016 class = &lock_classes[i]; 1017 if (in_list(e, &class->locks_after) || 1018 in_list(e, &class->locks_before)) 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1025 { 1026 struct lock_list *e; 1027 1028 list_for_each_entry(e, h, entry) { 1029 if (e->links_to != c) { 1030 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1031 c->name ? : "(?)", 1032 (unsigned long)(e - list_entries), 1033 e->links_to && e->links_to->name ? 1034 e->links_to->name : "(?)", 1035 e->class && e->class->name ? e->class->name : 1036 "(?)"); 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 #ifdef CONFIG_PROVE_LOCKING 1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1045 #endif 1046 1047 static bool check_lock_chain_key(struct lock_chain *chain) 1048 { 1049 #ifdef CONFIG_PROVE_LOCKING 1050 u64 chain_key = INITIAL_CHAIN_KEY; 1051 int i; 1052 1053 for (i = chain->base; i < chain->base + chain->depth; i++) 1054 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1055 /* 1056 * The 'unsigned long long' casts avoid that a compiler warning 1057 * is reported when building tools/lib/lockdep. 1058 */ 1059 if (chain->chain_key != chain_key) { 1060 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1061 (unsigned long long)(chain - lock_chains), 1062 (unsigned long long)chain->chain_key, 1063 (unsigned long long)chain_key); 1064 return false; 1065 } 1066 #endif 1067 return true; 1068 } 1069 1070 static bool in_any_zapped_class_list(struct lock_class *class) 1071 { 1072 struct pending_free *pf; 1073 int i; 1074 1075 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1076 if (in_list(&class->lock_entry, &pf->zapped)) 1077 return true; 1078 } 1079 1080 return false; 1081 } 1082 1083 static bool __check_data_structures(void) 1084 { 1085 struct lock_class *class; 1086 struct lock_chain *chain; 1087 struct hlist_head *head; 1088 struct lock_list *e; 1089 int i; 1090 1091 /* Check whether all classes occur in a lock list. */ 1092 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1093 class = &lock_classes[i]; 1094 if (!in_list(&class->lock_entry, &all_lock_classes) && 1095 !in_list(&class->lock_entry, &free_lock_classes) && 1096 !in_any_zapped_class_list(class)) { 1097 printk(KERN_INFO "class %px/%s is not in any class list\n", 1098 class, class->name ? : "(?)"); 1099 return false; 1100 } 1101 } 1102 1103 /* Check whether all classes have valid lock lists. */ 1104 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1105 class = &lock_classes[i]; 1106 if (!class_lock_list_valid(class, &class->locks_before)) 1107 return false; 1108 if (!class_lock_list_valid(class, &class->locks_after)) 1109 return false; 1110 } 1111 1112 /* Check the chain_key of all lock chains. */ 1113 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1114 head = chainhash_table + i; 1115 hlist_for_each_entry_rcu(chain, head, entry) { 1116 if (!check_lock_chain_key(chain)) 1117 return false; 1118 } 1119 } 1120 1121 /* 1122 * Check whether all list entries that are in use occur in a class 1123 * lock list. 1124 */ 1125 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1126 e = list_entries + i; 1127 if (!in_any_class_list(&e->entry)) { 1128 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1129 (unsigned int)(e - list_entries), 1130 e->class->name ? : "(?)", 1131 e->links_to->name ? : "(?)"); 1132 return false; 1133 } 1134 } 1135 1136 /* 1137 * Check whether all list entries that are not in use do not occur in 1138 * a class lock list. 1139 */ 1140 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1141 e = list_entries + i; 1142 if (in_any_class_list(&e->entry)) { 1143 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1144 (unsigned int)(e - list_entries), 1145 e->class && e->class->name ? e->class->name : 1146 "(?)", 1147 e->links_to && e->links_to->name ? 1148 e->links_to->name : "(?)"); 1149 return false; 1150 } 1151 } 1152 1153 return true; 1154 } 1155 1156 int check_consistency = 0; 1157 module_param(check_consistency, int, 0644); 1158 1159 static void check_data_structures(void) 1160 { 1161 static bool once = false; 1162 1163 if (check_consistency && !once) { 1164 if (!__check_data_structures()) { 1165 once = true; 1166 WARN_ON(once); 1167 } 1168 } 1169 } 1170 1171 #else /* CONFIG_DEBUG_LOCKDEP */ 1172 1173 static inline void check_data_structures(void) { } 1174 1175 #endif /* CONFIG_DEBUG_LOCKDEP */ 1176 1177 static void init_chain_block_buckets(void); 1178 1179 /* 1180 * Initialize the lock_classes[] array elements, the free_lock_classes list 1181 * and also the delayed_free structure. 1182 */ 1183 static void init_data_structures_once(void) 1184 { 1185 static bool __read_mostly ds_initialized, rcu_head_initialized; 1186 int i; 1187 1188 if (likely(rcu_head_initialized)) 1189 return; 1190 1191 if (system_state >= SYSTEM_SCHEDULING) { 1192 init_rcu_head(&delayed_free.rcu_head); 1193 rcu_head_initialized = true; 1194 } 1195 1196 if (ds_initialized) 1197 return; 1198 1199 ds_initialized = true; 1200 1201 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1202 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1203 1204 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1205 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1206 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1207 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1208 } 1209 init_chain_block_buckets(); 1210 } 1211 1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1213 { 1214 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1215 1216 return lock_keys_hash + hash; 1217 } 1218 1219 /* Register a dynamically allocated key. */ 1220 void lockdep_register_key(struct lock_class_key *key) 1221 { 1222 struct hlist_head *hash_head; 1223 struct lock_class_key *k; 1224 unsigned long flags; 1225 1226 if (WARN_ON_ONCE(static_obj(key))) 1227 return; 1228 hash_head = keyhashentry(key); 1229 1230 raw_local_irq_save(flags); 1231 if (!graph_lock()) 1232 goto restore_irqs; 1233 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1234 if (WARN_ON_ONCE(k == key)) 1235 goto out_unlock; 1236 } 1237 hlist_add_head_rcu(&key->hash_entry, hash_head); 1238 out_unlock: 1239 graph_unlock(); 1240 restore_irqs: 1241 raw_local_irq_restore(flags); 1242 } 1243 EXPORT_SYMBOL_GPL(lockdep_register_key); 1244 1245 /* Check whether a key has been registered as a dynamic key. */ 1246 static bool is_dynamic_key(const struct lock_class_key *key) 1247 { 1248 struct hlist_head *hash_head; 1249 struct lock_class_key *k; 1250 bool found = false; 1251 1252 if (WARN_ON_ONCE(static_obj(key))) 1253 return false; 1254 1255 /* 1256 * If lock debugging is disabled lock_keys_hash[] may contain 1257 * pointers to memory that has already been freed. Avoid triggering 1258 * a use-after-free in that case by returning early. 1259 */ 1260 if (!debug_locks) 1261 return true; 1262 1263 hash_head = keyhashentry(key); 1264 1265 rcu_read_lock(); 1266 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1267 if (k == key) { 1268 found = true; 1269 break; 1270 } 1271 } 1272 rcu_read_unlock(); 1273 1274 return found; 1275 } 1276 1277 /* 1278 * Register a lock's class in the hash-table, if the class is not present 1279 * yet. Otherwise we look it up. We cache the result in the lock object 1280 * itself, so actual lookup of the hash should be once per lock object. 1281 */ 1282 static struct lock_class * 1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1284 { 1285 struct lockdep_subclass_key *key; 1286 struct hlist_head *hash_head; 1287 struct lock_class *class; 1288 int idx; 1289 1290 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1291 1292 class = look_up_lock_class(lock, subclass); 1293 if (likely(class)) 1294 goto out_set_class_cache; 1295 1296 if (!lock->key) { 1297 if (!assign_lock_key(lock)) 1298 return NULL; 1299 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1300 return NULL; 1301 } 1302 1303 key = lock->key->subkeys + subclass; 1304 hash_head = classhashentry(key); 1305 1306 if (!graph_lock()) { 1307 return NULL; 1308 } 1309 /* 1310 * We have to do the hash-walk again, to avoid races 1311 * with another CPU: 1312 */ 1313 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1314 if (class->key == key) 1315 goto out_unlock_set; 1316 } 1317 1318 init_data_structures_once(); 1319 1320 /* Allocate a new lock class and add it to the hash. */ 1321 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1322 lock_entry); 1323 if (!class) { 1324 if (!debug_locks_off_graph_unlock()) { 1325 return NULL; 1326 } 1327 1328 nbcon_cpu_emergency_enter(); 1329 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1330 dump_stack(); 1331 nbcon_cpu_emergency_exit(); 1332 return NULL; 1333 } 1334 nr_lock_classes++; 1335 __set_bit(class - lock_classes, lock_classes_in_use); 1336 debug_atomic_inc(nr_unused_locks); 1337 class->key = key; 1338 class->name = lock->name; 1339 class->subclass = subclass; 1340 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1341 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1342 class->name_version = count_matching_names(class); 1343 class->wait_type_inner = lock->wait_type_inner; 1344 class->wait_type_outer = lock->wait_type_outer; 1345 class->lock_type = lock->lock_type; 1346 /* 1347 * We use RCU's safe list-add method to make 1348 * parallel walking of the hash-list safe: 1349 */ 1350 hlist_add_head_rcu(&class->hash_entry, hash_head); 1351 /* 1352 * Remove the class from the free list and add it to the global list 1353 * of classes. 1354 */ 1355 list_move_tail(&class->lock_entry, &all_lock_classes); 1356 idx = class - lock_classes; 1357 if (idx > max_lock_class_idx) 1358 max_lock_class_idx = idx; 1359 1360 if (verbose(class)) { 1361 graph_unlock(); 1362 1363 nbcon_cpu_emergency_enter(); 1364 printk("\nnew class %px: %s", class->key, class->name); 1365 if (class->name_version > 1) 1366 printk(KERN_CONT "#%d", class->name_version); 1367 printk(KERN_CONT "\n"); 1368 dump_stack(); 1369 nbcon_cpu_emergency_exit(); 1370 1371 if (!graph_lock()) { 1372 return NULL; 1373 } 1374 } 1375 out_unlock_set: 1376 graph_unlock(); 1377 1378 out_set_class_cache: 1379 if (!subclass || force) 1380 lock->class_cache[0] = class; 1381 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1382 lock->class_cache[subclass] = class; 1383 1384 /* 1385 * Hash collision, did we smoke some? We found a class with a matching 1386 * hash but the subclass -- which is hashed in -- didn't match. 1387 */ 1388 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1389 return NULL; 1390 1391 return class; 1392 } 1393 1394 #ifdef CONFIG_PROVE_LOCKING 1395 /* 1396 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1397 * with NULL on failure) 1398 */ 1399 static struct lock_list *alloc_list_entry(void) 1400 { 1401 int idx = find_first_zero_bit(list_entries_in_use, 1402 ARRAY_SIZE(list_entries)); 1403 1404 if (idx >= ARRAY_SIZE(list_entries)) { 1405 if (!debug_locks_off_graph_unlock()) 1406 return NULL; 1407 1408 nbcon_cpu_emergency_enter(); 1409 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1410 dump_stack(); 1411 nbcon_cpu_emergency_exit(); 1412 return NULL; 1413 } 1414 nr_list_entries++; 1415 __set_bit(idx, list_entries_in_use); 1416 return list_entries + idx; 1417 } 1418 1419 /* 1420 * Add a new dependency to the head of the list: 1421 */ 1422 static int add_lock_to_list(struct lock_class *this, 1423 struct lock_class *links_to, struct list_head *head, 1424 u16 distance, u8 dep, 1425 const struct lock_trace *trace) 1426 { 1427 struct lock_list *entry; 1428 /* 1429 * Lock not present yet - get a new dependency struct and 1430 * add it to the list: 1431 */ 1432 entry = alloc_list_entry(); 1433 if (!entry) 1434 return 0; 1435 1436 entry->class = this; 1437 entry->links_to = links_to; 1438 entry->dep = dep; 1439 entry->distance = distance; 1440 entry->trace = trace; 1441 /* 1442 * Both allocation and removal are done under the graph lock; but 1443 * iteration is under RCU-sched; see look_up_lock_class() and 1444 * lockdep_free_key_range(). 1445 */ 1446 list_add_tail_rcu(&entry->entry, head); 1447 1448 return 1; 1449 } 1450 1451 /* 1452 * For good efficiency of modular, we use power of 2 1453 */ 1454 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1455 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1456 1457 /* 1458 * The circular_queue and helpers are used to implement graph 1459 * breadth-first search (BFS) algorithm, by which we can determine 1460 * whether there is a path from a lock to another. In deadlock checks, 1461 * a path from the next lock to be acquired to a previous held lock 1462 * indicates that adding the <prev> -> <next> lock dependency will 1463 * produce a circle in the graph. Breadth-first search instead of 1464 * depth-first search is used in order to find the shortest (circular) 1465 * path. 1466 */ 1467 struct circular_queue { 1468 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1469 unsigned int front, rear; 1470 }; 1471 1472 static struct circular_queue lock_cq; 1473 1474 unsigned int max_bfs_queue_depth; 1475 1476 static unsigned int lockdep_dependency_gen_id; 1477 1478 static inline void __cq_init(struct circular_queue *cq) 1479 { 1480 cq->front = cq->rear = 0; 1481 lockdep_dependency_gen_id++; 1482 } 1483 1484 static inline int __cq_empty(struct circular_queue *cq) 1485 { 1486 return (cq->front == cq->rear); 1487 } 1488 1489 static inline int __cq_full(struct circular_queue *cq) 1490 { 1491 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1492 } 1493 1494 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1495 { 1496 if (__cq_full(cq)) 1497 return -1; 1498 1499 cq->element[cq->rear] = elem; 1500 cq->rear = (cq->rear + 1) & CQ_MASK; 1501 return 0; 1502 } 1503 1504 /* 1505 * Dequeue an element from the circular_queue, return a lock_list if 1506 * the queue is not empty, or NULL if otherwise. 1507 */ 1508 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1509 { 1510 struct lock_list * lock; 1511 1512 if (__cq_empty(cq)) 1513 return NULL; 1514 1515 lock = cq->element[cq->front]; 1516 cq->front = (cq->front + 1) & CQ_MASK; 1517 1518 return lock; 1519 } 1520 1521 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1522 { 1523 return (cq->rear - cq->front) & CQ_MASK; 1524 } 1525 1526 static inline void mark_lock_accessed(struct lock_list *lock) 1527 { 1528 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1529 } 1530 1531 static inline void visit_lock_entry(struct lock_list *lock, 1532 struct lock_list *parent) 1533 { 1534 lock->parent = parent; 1535 } 1536 1537 static inline unsigned long lock_accessed(struct lock_list *lock) 1538 { 1539 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1540 } 1541 1542 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1543 { 1544 return child->parent; 1545 } 1546 1547 static inline int get_lock_depth(struct lock_list *child) 1548 { 1549 int depth = 0; 1550 struct lock_list *parent; 1551 1552 while ((parent = get_lock_parent(child))) { 1553 child = parent; 1554 depth++; 1555 } 1556 return depth; 1557 } 1558 1559 /* 1560 * Return the forward or backward dependency list. 1561 * 1562 * @lock: the lock_list to get its class's dependency list 1563 * @offset: the offset to struct lock_class to determine whether it is 1564 * locks_after or locks_before 1565 */ 1566 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1567 { 1568 void *lock_class = lock->class; 1569 1570 return lock_class + offset; 1571 } 1572 /* 1573 * Return values of a bfs search: 1574 * 1575 * BFS_E* indicates an error 1576 * BFS_R* indicates a result (match or not) 1577 * 1578 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1579 * 1580 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1581 * 1582 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1583 * *@target_entry. 1584 * 1585 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1586 * _unchanged_. 1587 */ 1588 enum bfs_result { 1589 BFS_EINVALIDNODE = -2, 1590 BFS_EQUEUEFULL = -1, 1591 BFS_RMATCH = 0, 1592 BFS_RNOMATCH = 1, 1593 }; 1594 1595 /* 1596 * bfs_result < 0 means error 1597 */ 1598 static inline bool bfs_error(enum bfs_result res) 1599 { 1600 return res < 0; 1601 } 1602 1603 /* 1604 * DEP_*_BIT in lock_list::dep 1605 * 1606 * For dependency @prev -> @next: 1607 * 1608 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1609 * (->read == 2) 1610 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1611 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1612 * EN: @prev is exclusive locker and @next is non-recursive locker 1613 * 1614 * Note that we define the value of DEP_*_BITs so that: 1615 * bit0 is prev->read == 0 1616 * bit1 is next->read != 2 1617 */ 1618 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1619 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1620 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1621 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1622 1623 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1624 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1625 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1626 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1627 1628 static inline unsigned int 1629 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1630 { 1631 return (prev->read == 0) + ((next->read != 2) << 1); 1632 } 1633 1634 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1635 { 1636 return 1U << __calc_dep_bit(prev, next); 1637 } 1638 1639 /* 1640 * calculate the dep_bit for backwards edges. We care about whether @prev is 1641 * shared and whether @next is recursive. 1642 */ 1643 static inline unsigned int 1644 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1645 { 1646 return (next->read != 2) + ((prev->read == 0) << 1); 1647 } 1648 1649 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1650 { 1651 return 1U << __calc_dep_bitb(prev, next); 1652 } 1653 1654 /* 1655 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1656 * search. 1657 */ 1658 static inline void __bfs_init_root(struct lock_list *lock, 1659 struct lock_class *class) 1660 { 1661 lock->class = class; 1662 lock->parent = NULL; 1663 lock->only_xr = 0; 1664 } 1665 1666 /* 1667 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1668 * root for a BFS search. 1669 * 1670 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1671 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1672 * and -(S*)->. 1673 */ 1674 static inline void bfs_init_root(struct lock_list *lock, 1675 struct held_lock *hlock) 1676 { 1677 __bfs_init_root(lock, hlock_class(hlock)); 1678 lock->only_xr = (hlock->read == 2); 1679 } 1680 1681 /* 1682 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1683 * 1684 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1685 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1686 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1687 */ 1688 static inline void bfs_init_rootb(struct lock_list *lock, 1689 struct held_lock *hlock) 1690 { 1691 __bfs_init_root(lock, hlock_class(hlock)); 1692 lock->only_xr = (hlock->read != 0); 1693 } 1694 1695 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1696 { 1697 if (!lock || !lock->parent) 1698 return NULL; 1699 1700 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1701 &lock->entry, struct lock_list, entry); 1702 } 1703 1704 /* 1705 * Breadth-First Search to find a strong path in the dependency graph. 1706 * 1707 * @source_entry: the source of the path we are searching for. 1708 * @data: data used for the second parameter of @match function 1709 * @match: match function for the search 1710 * @target_entry: pointer to the target of a matched path 1711 * @offset: the offset to struct lock_class to determine whether it is 1712 * locks_after or locks_before 1713 * 1714 * We may have multiple edges (considering different kinds of dependencies, 1715 * e.g. ER and SN) between two nodes in the dependency graph. But 1716 * only the strong dependency path in the graph is relevant to deadlocks. A 1717 * strong dependency path is a dependency path that doesn't have two adjacent 1718 * dependencies as -(*R)-> -(S*)->, please see: 1719 * 1720 * Documentation/locking/lockdep-design.rst 1721 * 1722 * for more explanation of the definition of strong dependency paths 1723 * 1724 * In __bfs(), we only traverse in the strong dependency path: 1725 * 1726 * In lock_list::only_xr, we record whether the previous dependency only 1727 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1728 * filter out any -(S*)-> in the current dependency and after that, the 1729 * ->only_xr is set according to whether we only have -(*R)-> left. 1730 */ 1731 static enum bfs_result __bfs(struct lock_list *source_entry, 1732 void *data, 1733 bool (*match)(struct lock_list *entry, void *data), 1734 bool (*skip)(struct lock_list *entry, void *data), 1735 struct lock_list **target_entry, 1736 int offset) 1737 { 1738 struct circular_queue *cq = &lock_cq; 1739 struct lock_list *lock = NULL; 1740 struct lock_list *entry; 1741 struct list_head *head; 1742 unsigned int cq_depth; 1743 bool first; 1744 1745 lockdep_assert_locked(); 1746 1747 __cq_init(cq); 1748 __cq_enqueue(cq, source_entry); 1749 1750 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1751 if (!lock->class) 1752 return BFS_EINVALIDNODE; 1753 1754 /* 1755 * Step 1: check whether we already finish on this one. 1756 * 1757 * If we have visited all the dependencies from this @lock to 1758 * others (iow, if we have visited all lock_list entries in 1759 * @lock->class->locks_{after,before}) we skip, otherwise go 1760 * and visit all the dependencies in the list and mark this 1761 * list accessed. 1762 */ 1763 if (lock_accessed(lock)) 1764 continue; 1765 else 1766 mark_lock_accessed(lock); 1767 1768 /* 1769 * Step 2: check whether prev dependency and this form a strong 1770 * dependency path. 1771 */ 1772 if (lock->parent) { /* Parent exists, check prev dependency */ 1773 u8 dep = lock->dep; 1774 bool prev_only_xr = lock->parent->only_xr; 1775 1776 /* 1777 * Mask out all -(S*)-> if we only have *R in previous 1778 * step, because -(*R)-> -(S*)-> don't make up a strong 1779 * dependency. 1780 */ 1781 if (prev_only_xr) 1782 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1783 1784 /* If nothing left, we skip */ 1785 if (!dep) 1786 continue; 1787 1788 /* If there are only -(*R)-> left, set that for the next step */ 1789 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1790 } 1791 1792 /* 1793 * Step 3: we haven't visited this and there is a strong 1794 * dependency path to this, so check with @match. 1795 * If @skip is provide and returns true, we skip this 1796 * lock (and any path this lock is in). 1797 */ 1798 if (skip && skip(lock, data)) 1799 continue; 1800 1801 if (match(lock, data)) { 1802 *target_entry = lock; 1803 return BFS_RMATCH; 1804 } 1805 1806 /* 1807 * Step 4: if not match, expand the path by adding the 1808 * forward or backwards dependencies in the search 1809 * 1810 */ 1811 first = true; 1812 head = get_dep_list(lock, offset); 1813 list_for_each_entry_rcu(entry, head, entry) { 1814 visit_lock_entry(entry, lock); 1815 1816 /* 1817 * Note we only enqueue the first of the list into the 1818 * queue, because we can always find a sibling 1819 * dependency from one (see __bfs_next()), as a result 1820 * the space of queue is saved. 1821 */ 1822 if (!first) 1823 continue; 1824 1825 first = false; 1826 1827 if (__cq_enqueue(cq, entry)) 1828 return BFS_EQUEUEFULL; 1829 1830 cq_depth = __cq_get_elem_count(cq); 1831 if (max_bfs_queue_depth < cq_depth) 1832 max_bfs_queue_depth = cq_depth; 1833 } 1834 } 1835 1836 return BFS_RNOMATCH; 1837 } 1838 1839 static inline enum bfs_result 1840 __bfs_forwards(struct lock_list *src_entry, 1841 void *data, 1842 bool (*match)(struct lock_list *entry, void *data), 1843 bool (*skip)(struct lock_list *entry, void *data), 1844 struct lock_list **target_entry) 1845 { 1846 return __bfs(src_entry, data, match, skip, target_entry, 1847 offsetof(struct lock_class, locks_after)); 1848 1849 } 1850 1851 static inline enum bfs_result 1852 __bfs_backwards(struct lock_list *src_entry, 1853 void *data, 1854 bool (*match)(struct lock_list *entry, void *data), 1855 bool (*skip)(struct lock_list *entry, void *data), 1856 struct lock_list **target_entry) 1857 { 1858 return __bfs(src_entry, data, match, skip, target_entry, 1859 offsetof(struct lock_class, locks_before)); 1860 1861 } 1862 1863 static void print_lock_trace(const struct lock_trace *trace, 1864 unsigned int spaces) 1865 { 1866 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1867 } 1868 1869 /* 1870 * Print a dependency chain entry (this is only done when a deadlock 1871 * has been detected): 1872 */ 1873 static noinline void 1874 print_circular_bug_entry(struct lock_list *target, int depth) 1875 { 1876 if (debug_locks_silent) 1877 return; 1878 printk("\n-> #%u", depth); 1879 print_lock_name(NULL, target->class); 1880 printk(KERN_CONT ":\n"); 1881 print_lock_trace(target->trace, 6); 1882 } 1883 1884 static void 1885 print_circular_lock_scenario(struct held_lock *src, 1886 struct held_lock *tgt, 1887 struct lock_list *prt) 1888 { 1889 struct lock_class *source = hlock_class(src); 1890 struct lock_class *target = hlock_class(tgt); 1891 struct lock_class *parent = prt->class; 1892 int src_read = src->read; 1893 int tgt_read = tgt->read; 1894 1895 /* 1896 * A direct locking problem where unsafe_class lock is taken 1897 * directly by safe_class lock, then all we need to show 1898 * is the deadlock scenario, as it is obvious that the 1899 * unsafe lock is taken under the safe lock. 1900 * 1901 * But if there is a chain instead, where the safe lock takes 1902 * an intermediate lock (middle_class) where this lock is 1903 * not the same as the safe lock, then the lock chain is 1904 * used to describe the problem. Otherwise we would need 1905 * to show a different CPU case for each link in the chain 1906 * from the safe_class lock to the unsafe_class lock. 1907 */ 1908 if (parent != source) { 1909 printk("Chain exists of:\n "); 1910 __print_lock_name(src, source); 1911 printk(KERN_CONT " --> "); 1912 __print_lock_name(NULL, parent); 1913 printk(KERN_CONT " --> "); 1914 __print_lock_name(tgt, target); 1915 printk(KERN_CONT "\n\n"); 1916 } 1917 1918 printk(" Possible unsafe locking scenario:\n\n"); 1919 printk(" CPU0 CPU1\n"); 1920 printk(" ---- ----\n"); 1921 if (tgt_read != 0) 1922 printk(" rlock("); 1923 else 1924 printk(" lock("); 1925 __print_lock_name(tgt, target); 1926 printk(KERN_CONT ");\n"); 1927 printk(" lock("); 1928 __print_lock_name(NULL, parent); 1929 printk(KERN_CONT ");\n"); 1930 printk(" lock("); 1931 __print_lock_name(tgt, target); 1932 printk(KERN_CONT ");\n"); 1933 if (src_read != 0) 1934 printk(" rlock("); 1935 else if (src->sync) 1936 printk(" sync("); 1937 else 1938 printk(" lock("); 1939 __print_lock_name(src, source); 1940 printk(KERN_CONT ");\n"); 1941 printk("\n *** DEADLOCK ***\n\n"); 1942 } 1943 1944 /* 1945 * When a circular dependency is detected, print the 1946 * header first: 1947 */ 1948 static noinline void 1949 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1950 struct held_lock *check_src, 1951 struct held_lock *check_tgt) 1952 { 1953 struct task_struct *curr = current; 1954 1955 if (debug_locks_silent) 1956 return; 1957 1958 pr_warn("\n"); 1959 pr_warn("======================================================\n"); 1960 pr_warn("WARNING: possible circular locking dependency detected\n"); 1961 print_kernel_ident(); 1962 pr_warn("------------------------------------------------------\n"); 1963 pr_warn("%s/%d is trying to acquire lock:\n", 1964 curr->comm, task_pid_nr(curr)); 1965 print_lock(check_src); 1966 1967 pr_warn("\nbut task is already holding lock:\n"); 1968 1969 print_lock(check_tgt); 1970 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1971 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1972 1973 print_circular_bug_entry(entry, depth); 1974 } 1975 1976 /* 1977 * We are about to add A -> B into the dependency graph, and in __bfs() a 1978 * strong dependency path A -> .. -> B is found: hlock_class equals 1979 * entry->class. 1980 * 1981 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1982 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1983 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1984 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1985 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1986 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1987 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1988 * 1989 * We need to make sure both the start and the end of A -> .. -> B is not 1990 * weaker than A -> B. For the start part, please see the comment in 1991 * check_redundant(). For the end part, we need: 1992 * 1993 * Either 1994 * 1995 * a) A -> B is -(*R)-> (everything is not weaker than that) 1996 * 1997 * or 1998 * 1999 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 2000 * 2001 */ 2002 static inline bool hlock_equal(struct lock_list *entry, void *data) 2003 { 2004 struct held_lock *hlock = (struct held_lock *)data; 2005 2006 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2007 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2008 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2009 } 2010 2011 /* 2012 * We are about to add B -> A into the dependency graph, and in __bfs() a 2013 * strong dependency path A -> .. -> B is found: hlock_class equals 2014 * entry->class. 2015 * 2016 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2017 * dependency cycle, that means: 2018 * 2019 * Either 2020 * 2021 * a) B -> A is -(E*)-> 2022 * 2023 * or 2024 * 2025 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2026 * 2027 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2028 */ 2029 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2030 { 2031 struct held_lock *hlock = (struct held_lock *)data; 2032 2033 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2034 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2035 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2036 } 2037 2038 static noinline void print_circular_bug(struct lock_list *this, 2039 struct lock_list *target, 2040 struct held_lock *check_src, 2041 struct held_lock *check_tgt) 2042 { 2043 struct task_struct *curr = current; 2044 struct lock_list *parent; 2045 struct lock_list *first_parent; 2046 int depth; 2047 2048 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2049 return; 2050 2051 this->trace = save_trace(); 2052 if (!this->trace) 2053 return; 2054 2055 depth = get_lock_depth(target); 2056 2057 nbcon_cpu_emergency_enter(); 2058 2059 print_circular_bug_header(target, depth, check_src, check_tgt); 2060 2061 parent = get_lock_parent(target); 2062 first_parent = parent; 2063 2064 while (parent) { 2065 print_circular_bug_entry(parent, --depth); 2066 parent = get_lock_parent(parent); 2067 } 2068 2069 printk("\nother info that might help us debug this:\n\n"); 2070 print_circular_lock_scenario(check_src, check_tgt, 2071 first_parent); 2072 2073 lockdep_print_held_locks(curr); 2074 2075 printk("\nstack backtrace:\n"); 2076 dump_stack(); 2077 2078 nbcon_cpu_emergency_exit(); 2079 } 2080 2081 static noinline void print_bfs_bug(int ret) 2082 { 2083 if (!debug_locks_off_graph_unlock()) 2084 return; 2085 2086 /* 2087 * Breadth-first-search failed, graph got corrupted? 2088 */ 2089 if (ret == BFS_EQUEUEFULL) 2090 pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n"); 2091 2092 WARN(1, "lockdep bfs error:%d\n", ret); 2093 } 2094 2095 static bool noop_count(struct lock_list *entry, void *data) 2096 { 2097 (*(unsigned long *)data)++; 2098 return false; 2099 } 2100 2101 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2102 { 2103 unsigned long count = 0; 2104 struct lock_list *target_entry; 2105 2106 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2107 2108 return count; 2109 } 2110 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2111 { 2112 unsigned long ret, flags; 2113 struct lock_list this; 2114 2115 __bfs_init_root(&this, class); 2116 2117 raw_local_irq_save(flags); 2118 lockdep_lock(); 2119 ret = __lockdep_count_forward_deps(&this); 2120 lockdep_unlock(); 2121 raw_local_irq_restore(flags); 2122 2123 return ret; 2124 } 2125 2126 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2127 { 2128 unsigned long count = 0; 2129 struct lock_list *target_entry; 2130 2131 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2132 2133 return count; 2134 } 2135 2136 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2137 { 2138 unsigned long ret, flags; 2139 struct lock_list this; 2140 2141 __bfs_init_root(&this, class); 2142 2143 raw_local_irq_save(flags); 2144 lockdep_lock(); 2145 ret = __lockdep_count_backward_deps(&this); 2146 lockdep_unlock(); 2147 raw_local_irq_restore(flags); 2148 2149 return ret; 2150 } 2151 2152 /* 2153 * Check that the dependency graph starting at <src> can lead to 2154 * <target> or not. 2155 */ 2156 static noinline enum bfs_result 2157 check_path(struct held_lock *target, struct lock_list *src_entry, 2158 bool (*match)(struct lock_list *entry, void *data), 2159 bool (*skip)(struct lock_list *entry, void *data), 2160 struct lock_list **target_entry) 2161 { 2162 enum bfs_result ret; 2163 2164 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2165 2166 if (unlikely(bfs_error(ret))) 2167 print_bfs_bug(ret); 2168 2169 return ret; 2170 } 2171 2172 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2173 2174 /* 2175 * Prove that the dependency graph starting at <src> can not 2176 * lead to <target>. If it can, there is a circle when adding 2177 * <target> -> <src> dependency. 2178 * 2179 * Print an error and return BFS_RMATCH if it does. 2180 */ 2181 static noinline enum bfs_result 2182 check_noncircular(struct held_lock *src, struct held_lock *target, 2183 struct lock_trace **const trace) 2184 { 2185 enum bfs_result ret; 2186 struct lock_list *target_entry; 2187 struct lock_list src_entry; 2188 2189 bfs_init_root(&src_entry, src); 2190 2191 debug_atomic_inc(nr_cyclic_checks); 2192 2193 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2194 2195 if (unlikely(ret == BFS_RMATCH)) { 2196 if (!*trace) { 2197 /* 2198 * If save_trace fails here, the printing might 2199 * trigger a WARN but because of the !nr_entries it 2200 * should not do bad things. 2201 */ 2202 *trace = save_trace(); 2203 } 2204 2205 if (src->class_idx == target->class_idx) 2206 print_deadlock_bug(current, src, target); 2207 else 2208 print_circular_bug(&src_entry, target_entry, src, target); 2209 } 2210 2211 return ret; 2212 } 2213 2214 #ifdef CONFIG_TRACE_IRQFLAGS 2215 2216 /* 2217 * Forwards and backwards subgraph searching, for the purposes of 2218 * proving that two subgraphs can be connected by a new dependency 2219 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2220 * 2221 * A irq safe->unsafe deadlock happens with the following conditions: 2222 * 2223 * 1) We have a strong dependency path A -> ... -> B 2224 * 2225 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2226 * irq can create a new dependency B -> A (consider the case that a holder 2227 * of B gets interrupted by an irq whose handler will try to acquire A). 2228 * 2229 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2230 * strong circle: 2231 * 2232 * For the usage bits of B: 2233 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2234 * ENABLED_IRQ usage suffices. 2235 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2236 * ENABLED_IRQ_*_READ usage suffices. 2237 * 2238 * For the usage bits of A: 2239 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2240 * USED_IN_IRQ usage suffices. 2241 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2242 * USED_IN_IRQ_*_READ usage suffices. 2243 */ 2244 2245 /* 2246 * There is a strong dependency path in the dependency graph: A -> B, and now 2247 * we need to decide which usage bit of A should be accumulated to detect 2248 * safe->unsafe bugs. 2249 * 2250 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2251 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2252 * 2253 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2254 * path, any usage of A should be considered. Otherwise, we should only 2255 * consider _READ usage. 2256 */ 2257 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2258 { 2259 if (!entry->only_xr) 2260 *(unsigned long *)mask |= entry->class->usage_mask; 2261 else /* Mask out _READ usage bits */ 2262 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2263 2264 return false; 2265 } 2266 2267 /* 2268 * There is a strong dependency path in the dependency graph: A -> B, and now 2269 * we need to decide which usage bit of B conflicts with the usage bits of A, 2270 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2271 * 2272 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2273 * path, any usage of B should be considered. Otherwise, we should only 2274 * consider _READ usage. 2275 */ 2276 static inline bool usage_match(struct lock_list *entry, void *mask) 2277 { 2278 if (!entry->only_xr) 2279 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2280 else /* Mask out _READ usage bits */ 2281 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2282 } 2283 2284 static inline bool usage_skip(struct lock_list *entry, void *mask) 2285 { 2286 if (entry->class->lock_type == LD_LOCK_NORMAL) 2287 return false; 2288 2289 /* 2290 * Skip local_lock() for irq inversion detection. 2291 * 2292 * For !RT, local_lock() is not a real lock, so it won't carry any 2293 * dependency. 2294 * 2295 * For RT, an irq inversion happens when we have lock A and B, and on 2296 * some CPU we can have: 2297 * 2298 * lock(A); 2299 * <interrupted> 2300 * lock(B); 2301 * 2302 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2303 * 2304 * Now we prove local_lock() cannot exist in that dependency. First we 2305 * have the observation for any lock chain L1 -> ... -> Ln, for any 2306 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2307 * wait context check will complain. And since B is not a sleep lock, 2308 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2309 * local_lock() is 3, which is greater than 2, therefore there is no 2310 * way the local_lock() exists in the dependency B -> ... -> A. 2311 * 2312 * As a result, we will skip local_lock(), when we search for irq 2313 * inversion bugs. 2314 */ 2315 if (entry->class->lock_type == LD_LOCK_PERCPU && 2316 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2317 return false; 2318 2319 /* 2320 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2321 * a lock and only used to override the wait_type. 2322 */ 2323 2324 return true; 2325 } 2326 2327 /* 2328 * Find a node in the forwards-direction dependency sub-graph starting 2329 * at @root->class that matches @bit. 2330 * 2331 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2332 * into *@target_entry. 2333 */ 2334 static enum bfs_result 2335 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2336 struct lock_list **target_entry) 2337 { 2338 enum bfs_result result; 2339 2340 debug_atomic_inc(nr_find_usage_forwards_checks); 2341 2342 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2343 2344 return result; 2345 } 2346 2347 /* 2348 * Find a node in the backwards-direction dependency sub-graph starting 2349 * at @root->class that matches @bit. 2350 */ 2351 static enum bfs_result 2352 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2353 struct lock_list **target_entry) 2354 { 2355 enum bfs_result result; 2356 2357 debug_atomic_inc(nr_find_usage_backwards_checks); 2358 2359 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2360 2361 return result; 2362 } 2363 2364 static void print_lock_class_header(struct lock_class *class, int depth) 2365 { 2366 int bit; 2367 2368 printk("%*s->", depth, ""); 2369 print_lock_name(NULL, class); 2370 #ifdef CONFIG_DEBUG_LOCKDEP 2371 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2372 #endif 2373 printk(KERN_CONT " {\n"); 2374 2375 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2376 if (class->usage_mask & (1 << bit)) { 2377 int len = depth; 2378 2379 len += printk("%*s %s", depth, "", usage_str[bit]); 2380 len += printk(KERN_CONT " at:\n"); 2381 print_lock_trace(class->usage_traces[bit], len); 2382 } 2383 } 2384 printk("%*s }\n", depth, ""); 2385 2386 printk("%*s ... key at: [<%px>] %pS\n", 2387 depth, "", class->key, class->key); 2388 } 2389 2390 /* 2391 * Dependency path printing: 2392 * 2393 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2394 * printing out each lock in the dependency path will help on understanding how 2395 * the deadlock could happen. Here are some details about dependency path 2396 * printing: 2397 * 2398 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2399 * for a lock dependency A -> B, there are two lock_lists: 2400 * 2401 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2402 * ->links_to is A. In this case, we can say the lock_list is 2403 * "A -> B" (forwards case). 2404 * 2405 * b) lock_list in the ->locks_before list of B, whose ->class is A 2406 * and ->links_to is B. In this case, we can say the lock_list is 2407 * "B <- A" (bacwards case). 2408 * 2409 * The ->trace of both a) and b) point to the call trace where B was 2410 * acquired with A held. 2411 * 2412 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2413 * represent a certain lock dependency, it only provides an initial entry 2414 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2415 * ->class is A, as a result BFS will search all dependencies starting with 2416 * A, e.g. A -> B or A -> C. 2417 * 2418 * The notation of a forwards helper lock_list is like "-> A", which means 2419 * we should search the forwards dependencies starting with "A", e.g A -> B 2420 * or A -> C. 2421 * 2422 * The notation of a bacwards helper lock_list is like "<- B", which means 2423 * we should search the backwards dependencies ending with "B", e.g. 2424 * B <- A or B <- C. 2425 */ 2426 2427 /* 2428 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2429 * 2430 * We have a lock dependency path as follow: 2431 * 2432 * @root @leaf 2433 * | | 2434 * V V 2435 * ->parent ->parent 2436 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2437 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2438 * 2439 * , so it's natural that we start from @leaf and print every ->class and 2440 * ->trace until we reach the @root. 2441 */ 2442 static void __used 2443 print_shortest_lock_dependencies(struct lock_list *leaf, 2444 struct lock_list *root) 2445 { 2446 struct lock_list *entry = leaf; 2447 int depth; 2448 2449 /*compute depth from generated tree by BFS*/ 2450 depth = get_lock_depth(leaf); 2451 2452 do { 2453 print_lock_class_header(entry->class, depth); 2454 printk("%*s ... acquired at:\n", depth, ""); 2455 print_lock_trace(entry->trace, 2); 2456 printk("\n"); 2457 2458 if (depth == 0 && (entry != root)) { 2459 printk("lockdep:%s bad path found in chain graph\n", __func__); 2460 break; 2461 } 2462 2463 entry = get_lock_parent(entry); 2464 depth--; 2465 } while (entry && (depth >= 0)); 2466 } 2467 2468 /* 2469 * printk the shortest lock dependencies from @leaf to @root. 2470 * 2471 * We have a lock dependency path (from a backwards search) as follow: 2472 * 2473 * @leaf @root 2474 * | | 2475 * V V 2476 * ->parent ->parent 2477 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2478 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2479 * 2480 * , so when we iterate from @leaf to @root, we actually print the lock 2481 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2482 * 2483 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2484 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2485 * trace of L1 in the dependency path, which is alright, because most of the 2486 * time we can figure out where L1 is held from the call trace of L2. 2487 */ 2488 static void __used 2489 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2490 struct lock_list *root) 2491 { 2492 struct lock_list *entry = leaf; 2493 const struct lock_trace *trace = NULL; 2494 int depth; 2495 2496 /*compute depth from generated tree by BFS*/ 2497 depth = get_lock_depth(leaf); 2498 2499 do { 2500 print_lock_class_header(entry->class, depth); 2501 if (trace) { 2502 printk("%*s ... acquired at:\n", depth, ""); 2503 print_lock_trace(trace, 2); 2504 printk("\n"); 2505 } 2506 2507 /* 2508 * Record the pointer to the trace for the next lock_list 2509 * entry, see the comments for the function. 2510 */ 2511 trace = entry->trace; 2512 2513 if (depth == 0 && (entry != root)) { 2514 printk("lockdep:%s bad path found in chain graph\n", __func__); 2515 break; 2516 } 2517 2518 entry = get_lock_parent(entry); 2519 depth--; 2520 } while (entry && (depth >= 0)); 2521 } 2522 2523 static void 2524 print_irq_lock_scenario(struct lock_list *safe_entry, 2525 struct lock_list *unsafe_entry, 2526 struct lock_class *prev_class, 2527 struct lock_class *next_class) 2528 { 2529 struct lock_class *safe_class = safe_entry->class; 2530 struct lock_class *unsafe_class = unsafe_entry->class; 2531 struct lock_class *middle_class = prev_class; 2532 2533 if (middle_class == safe_class) 2534 middle_class = next_class; 2535 2536 /* 2537 * A direct locking problem where unsafe_class lock is taken 2538 * directly by safe_class lock, then all we need to show 2539 * is the deadlock scenario, as it is obvious that the 2540 * unsafe lock is taken under the safe lock. 2541 * 2542 * But if there is a chain instead, where the safe lock takes 2543 * an intermediate lock (middle_class) where this lock is 2544 * not the same as the safe lock, then the lock chain is 2545 * used to describe the problem. Otherwise we would need 2546 * to show a different CPU case for each link in the chain 2547 * from the safe_class lock to the unsafe_class lock. 2548 */ 2549 if (middle_class != unsafe_class) { 2550 printk("Chain exists of:\n "); 2551 __print_lock_name(NULL, safe_class); 2552 printk(KERN_CONT " --> "); 2553 __print_lock_name(NULL, middle_class); 2554 printk(KERN_CONT " --> "); 2555 __print_lock_name(NULL, unsafe_class); 2556 printk(KERN_CONT "\n\n"); 2557 } 2558 2559 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2560 printk(" CPU0 CPU1\n"); 2561 printk(" ---- ----\n"); 2562 printk(" lock("); 2563 __print_lock_name(NULL, unsafe_class); 2564 printk(KERN_CONT ");\n"); 2565 printk(" local_irq_disable();\n"); 2566 printk(" lock("); 2567 __print_lock_name(NULL, safe_class); 2568 printk(KERN_CONT ");\n"); 2569 printk(" lock("); 2570 __print_lock_name(NULL, middle_class); 2571 printk(KERN_CONT ");\n"); 2572 printk(" <Interrupt>\n"); 2573 printk(" lock("); 2574 __print_lock_name(NULL, safe_class); 2575 printk(KERN_CONT ");\n"); 2576 printk("\n *** DEADLOCK ***\n\n"); 2577 } 2578 2579 static void 2580 print_bad_irq_dependency(struct task_struct *curr, 2581 struct lock_list *prev_root, 2582 struct lock_list *next_root, 2583 struct lock_list *backwards_entry, 2584 struct lock_list *forwards_entry, 2585 struct held_lock *prev, 2586 struct held_lock *next, 2587 enum lock_usage_bit bit1, 2588 enum lock_usage_bit bit2, 2589 const char *irqclass) 2590 { 2591 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2592 return; 2593 2594 nbcon_cpu_emergency_enter(); 2595 2596 pr_warn("\n"); 2597 pr_warn("=====================================================\n"); 2598 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2599 irqclass, irqclass); 2600 print_kernel_ident(); 2601 pr_warn("-----------------------------------------------------\n"); 2602 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2603 curr->comm, task_pid_nr(curr), 2604 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2605 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2606 lockdep_hardirqs_enabled(), 2607 curr->softirqs_enabled); 2608 print_lock(next); 2609 2610 pr_warn("\nand this task is already holding:\n"); 2611 print_lock(prev); 2612 pr_warn("which would create a new lock dependency:\n"); 2613 print_lock_name(prev, hlock_class(prev)); 2614 pr_cont(" ->"); 2615 print_lock_name(next, hlock_class(next)); 2616 pr_cont("\n"); 2617 2618 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2619 irqclass); 2620 print_lock_name(NULL, backwards_entry->class); 2621 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2622 2623 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2624 2625 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2626 print_lock_name(NULL, forwards_entry->class); 2627 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2628 pr_warn("..."); 2629 2630 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2631 2632 pr_warn("\nother info that might help us debug this:\n\n"); 2633 print_irq_lock_scenario(backwards_entry, forwards_entry, 2634 hlock_class(prev), hlock_class(next)); 2635 2636 lockdep_print_held_locks(curr); 2637 2638 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2639 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2640 2641 pr_warn("\nthe dependencies between the lock to be acquired"); 2642 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2643 next_root->trace = save_trace(); 2644 if (!next_root->trace) 2645 goto out; 2646 print_shortest_lock_dependencies(forwards_entry, next_root); 2647 2648 pr_warn("\nstack backtrace:\n"); 2649 dump_stack(); 2650 out: 2651 nbcon_cpu_emergency_exit(); 2652 } 2653 2654 static const char *state_names[] = { 2655 #define LOCKDEP_STATE(__STATE) \ 2656 __stringify(__STATE), 2657 #include "lockdep_states.h" 2658 #undef LOCKDEP_STATE 2659 }; 2660 2661 static const char *state_rnames[] = { 2662 #define LOCKDEP_STATE(__STATE) \ 2663 __stringify(__STATE)"-READ", 2664 #include "lockdep_states.h" 2665 #undef LOCKDEP_STATE 2666 }; 2667 2668 static inline const char *state_name(enum lock_usage_bit bit) 2669 { 2670 if (bit & LOCK_USAGE_READ_MASK) 2671 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2672 else 2673 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2674 } 2675 2676 /* 2677 * The bit number is encoded like: 2678 * 2679 * bit0: 0 exclusive, 1 read lock 2680 * bit1: 0 used in irq, 1 irq enabled 2681 * bit2-n: state 2682 */ 2683 static int exclusive_bit(int new_bit) 2684 { 2685 int state = new_bit & LOCK_USAGE_STATE_MASK; 2686 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2687 2688 /* 2689 * keep state, bit flip the direction and strip read. 2690 */ 2691 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2692 } 2693 2694 /* 2695 * Observe that when given a bitmask where each bitnr is encoded as above, a 2696 * right shift of the mask transforms the individual bitnrs as -1 and 2697 * conversely, a left shift transforms into +1 for the individual bitnrs. 2698 * 2699 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2700 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2701 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2702 * 2703 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2704 * 2705 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2706 * all bits set) and recompose with bitnr1 flipped. 2707 */ 2708 static unsigned long invert_dir_mask(unsigned long mask) 2709 { 2710 unsigned long excl = 0; 2711 2712 /* Invert dir */ 2713 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2714 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2715 2716 return excl; 2717 } 2718 2719 /* 2720 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2721 * usage may cause deadlock too, for example: 2722 * 2723 * P1 P2 2724 * <irq disabled> 2725 * write_lock(l1); <irq enabled> 2726 * read_lock(l2); 2727 * write_lock(l2); 2728 * <in irq> 2729 * read_lock(l1); 2730 * 2731 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2732 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2733 * deadlock. 2734 * 2735 * In fact, all of the following cases may cause deadlocks: 2736 * 2737 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2738 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2739 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2740 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2741 * 2742 * As a result, to calculate the "exclusive mask", first we invert the 2743 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2744 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2745 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2746 */ 2747 static unsigned long exclusive_mask(unsigned long mask) 2748 { 2749 unsigned long excl = invert_dir_mask(mask); 2750 2751 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2752 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2753 2754 return excl; 2755 } 2756 2757 /* 2758 * Retrieve the _possible_ original mask to which @mask is 2759 * exclusive. Ie: this is the opposite of exclusive_mask(). 2760 * Note that 2 possible original bits can match an exclusive 2761 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2762 * cleared. So both are returned for each exclusive bit. 2763 */ 2764 static unsigned long original_mask(unsigned long mask) 2765 { 2766 unsigned long excl = invert_dir_mask(mask); 2767 2768 /* Include read in existing usages */ 2769 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2770 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2771 2772 return excl; 2773 } 2774 2775 /* 2776 * Find the first pair of bit match between an original 2777 * usage mask and an exclusive usage mask. 2778 */ 2779 static int find_exclusive_match(unsigned long mask, 2780 unsigned long excl_mask, 2781 enum lock_usage_bit *bitp, 2782 enum lock_usage_bit *excl_bitp) 2783 { 2784 int bit, excl, excl_read; 2785 2786 for_each_set_bit(bit, &mask, LOCK_USED) { 2787 /* 2788 * exclusive_bit() strips the read bit, however, 2789 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2790 * to search excl | LOCK_USAGE_READ_MASK as well. 2791 */ 2792 excl = exclusive_bit(bit); 2793 excl_read = excl | LOCK_USAGE_READ_MASK; 2794 if (excl_mask & lock_flag(excl)) { 2795 *bitp = bit; 2796 *excl_bitp = excl; 2797 return 0; 2798 } else if (excl_mask & lock_flag(excl_read)) { 2799 *bitp = bit; 2800 *excl_bitp = excl_read; 2801 return 0; 2802 } 2803 } 2804 return -1; 2805 } 2806 2807 /* 2808 * Prove that the new dependency does not connect a hardirq-safe(-read) 2809 * lock with a hardirq-unsafe lock - to achieve this we search 2810 * the backwards-subgraph starting at <prev>, and the 2811 * forwards-subgraph starting at <next>: 2812 */ 2813 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2814 struct held_lock *next) 2815 { 2816 unsigned long usage_mask = 0, forward_mask, backward_mask; 2817 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2818 struct lock_list *target_entry1; 2819 struct lock_list *target_entry; 2820 struct lock_list this, that; 2821 enum bfs_result ret; 2822 2823 /* 2824 * Step 1: gather all hard/soft IRQs usages backward in an 2825 * accumulated usage mask. 2826 */ 2827 bfs_init_rootb(&this, prev); 2828 2829 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2830 if (bfs_error(ret)) { 2831 print_bfs_bug(ret); 2832 return 0; 2833 } 2834 2835 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2836 if (!usage_mask) 2837 return 1; 2838 2839 /* 2840 * Step 2: find exclusive uses forward that match the previous 2841 * backward accumulated mask. 2842 */ 2843 forward_mask = exclusive_mask(usage_mask); 2844 2845 bfs_init_root(&that, next); 2846 2847 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2848 if (bfs_error(ret)) { 2849 print_bfs_bug(ret); 2850 return 0; 2851 } 2852 if (ret == BFS_RNOMATCH) 2853 return 1; 2854 2855 /* 2856 * Step 3: we found a bad match! Now retrieve a lock from the backward 2857 * list whose usage mask matches the exclusive usage mask from the 2858 * lock found on the forward list. 2859 * 2860 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2861 * the follow case: 2862 * 2863 * When trying to add A -> B to the graph, we find that there is a 2864 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2865 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2866 * invert bits of M's usage_mask, we will find another lock N that is 2867 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2868 * cause a inversion deadlock. 2869 */ 2870 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2871 2872 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2873 if (bfs_error(ret)) { 2874 print_bfs_bug(ret); 2875 return 0; 2876 } 2877 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2878 return 1; 2879 2880 /* 2881 * Step 4: narrow down to a pair of incompatible usage bits 2882 * and report it. 2883 */ 2884 ret = find_exclusive_match(target_entry->class->usage_mask, 2885 target_entry1->class->usage_mask, 2886 &backward_bit, &forward_bit); 2887 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2888 return 1; 2889 2890 print_bad_irq_dependency(curr, &this, &that, 2891 target_entry, target_entry1, 2892 prev, next, 2893 backward_bit, forward_bit, 2894 state_name(backward_bit)); 2895 2896 return 0; 2897 } 2898 2899 #else 2900 2901 static inline int check_irq_usage(struct task_struct *curr, 2902 struct held_lock *prev, struct held_lock *next) 2903 { 2904 return 1; 2905 } 2906 2907 static inline bool usage_skip(struct lock_list *entry, void *mask) 2908 { 2909 return false; 2910 } 2911 2912 #endif /* CONFIG_TRACE_IRQFLAGS */ 2913 2914 #ifdef CONFIG_LOCKDEP_SMALL 2915 /* 2916 * Check that the dependency graph starting at <src> can lead to 2917 * <target> or not. If it can, <src> -> <target> dependency is already 2918 * in the graph. 2919 * 2920 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2921 * any error appears in the bfs search. 2922 */ 2923 static noinline enum bfs_result 2924 check_redundant(struct held_lock *src, struct held_lock *target) 2925 { 2926 enum bfs_result ret; 2927 struct lock_list *target_entry; 2928 struct lock_list src_entry; 2929 2930 bfs_init_root(&src_entry, src); 2931 /* 2932 * Special setup for check_redundant(). 2933 * 2934 * To report redundant, we need to find a strong dependency path that 2935 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2936 * we need to let __bfs() only search for a path starting at a -(E*)->, 2937 * we achieve this by setting the initial node's ->only_xr to true in 2938 * that case. And if <prev> is S, we set initial ->only_xr to false 2939 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2940 */ 2941 src_entry.only_xr = src->read == 0; 2942 2943 debug_atomic_inc(nr_redundant_checks); 2944 2945 /* 2946 * Note: we skip local_lock() for redundant check, because as the 2947 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2948 * the same. 2949 */ 2950 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2951 2952 if (ret == BFS_RMATCH) 2953 debug_atomic_inc(nr_redundant); 2954 2955 return ret; 2956 } 2957 2958 #else 2959 2960 static inline enum bfs_result 2961 check_redundant(struct held_lock *src, struct held_lock *target) 2962 { 2963 return BFS_RNOMATCH; 2964 } 2965 2966 #endif 2967 2968 static void inc_chains(int irq_context) 2969 { 2970 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2971 nr_hardirq_chains++; 2972 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2973 nr_softirq_chains++; 2974 else 2975 nr_process_chains++; 2976 } 2977 2978 static void dec_chains(int irq_context) 2979 { 2980 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2981 nr_hardirq_chains--; 2982 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2983 nr_softirq_chains--; 2984 else 2985 nr_process_chains--; 2986 } 2987 2988 static void 2989 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2990 { 2991 struct lock_class *next = hlock_class(nxt); 2992 struct lock_class *prev = hlock_class(prv); 2993 2994 printk(" Possible unsafe locking scenario:\n\n"); 2995 printk(" CPU0\n"); 2996 printk(" ----\n"); 2997 printk(" lock("); 2998 __print_lock_name(prv, prev); 2999 printk(KERN_CONT ");\n"); 3000 printk(" lock("); 3001 __print_lock_name(nxt, next); 3002 printk(KERN_CONT ");\n"); 3003 printk("\n *** DEADLOCK ***\n\n"); 3004 printk(" May be due to missing lock nesting notation\n\n"); 3005 } 3006 3007 static void 3008 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 3009 struct held_lock *next) 3010 { 3011 struct lock_class *class = hlock_class(prev); 3012 3013 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3014 return; 3015 3016 nbcon_cpu_emergency_enter(); 3017 3018 pr_warn("\n"); 3019 pr_warn("============================================\n"); 3020 pr_warn("WARNING: possible recursive locking detected\n"); 3021 print_kernel_ident(); 3022 pr_warn("--------------------------------------------\n"); 3023 pr_warn("%s/%d is trying to acquire lock:\n", 3024 curr->comm, task_pid_nr(curr)); 3025 print_lock(next); 3026 pr_warn("\nbut task is already holding lock:\n"); 3027 print_lock(prev); 3028 3029 if (class->cmp_fn) { 3030 pr_warn("and the lock comparison function returns %i:\n", 3031 class->cmp_fn(prev->instance, next->instance)); 3032 } 3033 3034 pr_warn("\nother info that might help us debug this:\n"); 3035 print_deadlock_scenario(next, prev); 3036 lockdep_print_held_locks(curr); 3037 3038 pr_warn("\nstack backtrace:\n"); 3039 dump_stack(); 3040 3041 nbcon_cpu_emergency_exit(); 3042 } 3043 3044 /* 3045 * Check whether we are holding such a class already. 3046 * 3047 * (Note that this has to be done separately, because the graph cannot 3048 * detect such classes of deadlocks.) 3049 * 3050 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3051 * lock class is held but nest_lock is also held, i.e. we rely on the 3052 * nest_lock to avoid the deadlock. 3053 */ 3054 static int 3055 check_deadlock(struct task_struct *curr, struct held_lock *next) 3056 { 3057 struct lock_class *class; 3058 struct held_lock *prev; 3059 struct held_lock *nest = NULL; 3060 int i; 3061 3062 for (i = 0; i < curr->lockdep_depth; i++) { 3063 prev = curr->held_locks + i; 3064 3065 if (prev->instance == next->nest_lock) 3066 nest = prev; 3067 3068 if (hlock_class(prev) != hlock_class(next)) 3069 continue; 3070 3071 /* 3072 * Allow read-after-read recursion of the same 3073 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3074 */ 3075 if ((next->read == 2) && prev->read) 3076 continue; 3077 3078 class = hlock_class(prev); 3079 3080 if (class->cmp_fn && 3081 class->cmp_fn(prev->instance, next->instance) < 0) 3082 continue; 3083 3084 /* 3085 * We're holding the nest_lock, which serializes this lock's 3086 * nesting behaviour. 3087 */ 3088 if (nest) 3089 return 2; 3090 3091 print_deadlock_bug(curr, prev, next); 3092 return 0; 3093 } 3094 return 1; 3095 } 3096 3097 /* 3098 * There was a chain-cache miss, and we are about to add a new dependency 3099 * to a previous lock. We validate the following rules: 3100 * 3101 * - would the adding of the <prev> -> <next> dependency create a 3102 * circular dependency in the graph? [== circular deadlock] 3103 * 3104 * - does the new prev->next dependency connect any hardirq-safe lock 3105 * (in the full backwards-subgraph starting at <prev>) with any 3106 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3107 * <next>)? [== illegal lock inversion with hardirq contexts] 3108 * 3109 * - does the new prev->next dependency connect any softirq-safe lock 3110 * (in the full backwards-subgraph starting at <prev>) with any 3111 * softirq-unsafe lock (in the full forwards-subgraph starting at 3112 * <next>)? [== illegal lock inversion with softirq contexts] 3113 * 3114 * any of these scenarios could lead to a deadlock. 3115 * 3116 * Then if all the validations pass, we add the forwards and backwards 3117 * dependency. 3118 */ 3119 static int 3120 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3121 struct held_lock *next, u16 distance, 3122 struct lock_trace **const trace) 3123 { 3124 struct lock_list *entry; 3125 enum bfs_result ret; 3126 3127 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3128 /* 3129 * The warning statements below may trigger a use-after-free 3130 * of the class name. It is better to trigger a use-after free 3131 * and to have the class name most of the time instead of not 3132 * having the class name available. 3133 */ 3134 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3135 "Detected use-after-free of lock class %px/%s\n", 3136 hlock_class(prev), 3137 hlock_class(prev)->name); 3138 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3139 "Detected use-after-free of lock class %px/%s\n", 3140 hlock_class(next), 3141 hlock_class(next)->name); 3142 return 2; 3143 } 3144 3145 if (prev->class_idx == next->class_idx) { 3146 struct lock_class *class = hlock_class(prev); 3147 3148 if (class->cmp_fn && 3149 class->cmp_fn(prev->instance, next->instance) < 0) 3150 return 2; 3151 } 3152 3153 /* 3154 * Prove that the new <prev> -> <next> dependency would not 3155 * create a circular dependency in the graph. (We do this by 3156 * a breadth-first search into the graph starting at <next>, 3157 * and check whether we can reach <prev>.) 3158 * 3159 * The search is limited by the size of the circular queue (i.e., 3160 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3161 * in the graph whose neighbours are to be checked. 3162 */ 3163 ret = check_noncircular(next, prev, trace); 3164 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3165 return 0; 3166 3167 if (!check_irq_usage(curr, prev, next)) 3168 return 0; 3169 3170 /* 3171 * Is the <prev> -> <next> dependency already present? 3172 * 3173 * (this may occur even though this is a new chain: consider 3174 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3175 * chains - the second one will be new, but L1 already has 3176 * L2 added to its dependency list, due to the first chain.) 3177 */ 3178 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3179 if (entry->class == hlock_class(next)) { 3180 if (distance == 1) 3181 entry->distance = 1; 3182 entry->dep |= calc_dep(prev, next); 3183 3184 /* 3185 * Also, update the reverse dependency in @next's 3186 * ->locks_before list. 3187 * 3188 * Here we reuse @entry as the cursor, which is fine 3189 * because we won't go to the next iteration of the 3190 * outer loop: 3191 * 3192 * For normal cases, we return in the inner loop. 3193 * 3194 * If we fail to return, we have inconsistency, i.e. 3195 * <prev>::locks_after contains <next> while 3196 * <next>::locks_before doesn't contain <prev>. In 3197 * that case, we return after the inner and indicate 3198 * something is wrong. 3199 */ 3200 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3201 if (entry->class == hlock_class(prev)) { 3202 if (distance == 1) 3203 entry->distance = 1; 3204 entry->dep |= calc_depb(prev, next); 3205 return 1; 3206 } 3207 } 3208 3209 /* <prev> is not found in <next>::locks_before */ 3210 return 0; 3211 } 3212 } 3213 3214 /* 3215 * Is the <prev> -> <next> link redundant? 3216 */ 3217 ret = check_redundant(prev, next); 3218 if (bfs_error(ret)) 3219 return 0; 3220 else if (ret == BFS_RMATCH) 3221 return 2; 3222 3223 if (!*trace) { 3224 *trace = save_trace(); 3225 if (!*trace) 3226 return 0; 3227 } 3228 3229 /* 3230 * Ok, all validations passed, add the new lock 3231 * to the previous lock's dependency list: 3232 */ 3233 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3234 &hlock_class(prev)->locks_after, distance, 3235 calc_dep(prev, next), *trace); 3236 3237 if (!ret) 3238 return 0; 3239 3240 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3241 &hlock_class(next)->locks_before, distance, 3242 calc_depb(prev, next), *trace); 3243 if (!ret) 3244 return 0; 3245 3246 return 2; 3247 } 3248 3249 /* 3250 * Add the dependency to all directly-previous locks that are 'relevant'. 3251 * The ones that are relevant are (in increasing distance from curr): 3252 * all consecutive trylock entries and the final non-trylock entry - or 3253 * the end of this context's lock-chain - whichever comes first. 3254 */ 3255 static int 3256 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3257 { 3258 struct lock_trace *trace = NULL; 3259 int depth = curr->lockdep_depth; 3260 struct held_lock *hlock; 3261 3262 /* 3263 * Debugging checks. 3264 * 3265 * Depth must not be zero for a non-head lock: 3266 */ 3267 if (!depth) 3268 goto out_bug; 3269 /* 3270 * At least two relevant locks must exist for this 3271 * to be a head: 3272 */ 3273 if (curr->held_locks[depth].irq_context != 3274 curr->held_locks[depth-1].irq_context) 3275 goto out_bug; 3276 3277 for (;;) { 3278 u16 distance = curr->lockdep_depth - depth + 1; 3279 hlock = curr->held_locks + depth - 1; 3280 3281 if (hlock->check) { 3282 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3283 if (!ret) 3284 return 0; 3285 3286 /* 3287 * Stop after the first non-trylock entry, 3288 * as non-trylock entries have added their 3289 * own direct dependencies already, so this 3290 * lock is connected to them indirectly: 3291 */ 3292 if (!hlock->trylock) 3293 break; 3294 } 3295 3296 depth--; 3297 /* 3298 * End of lock-stack? 3299 */ 3300 if (!depth) 3301 break; 3302 /* 3303 * Stop the search if we cross into another context: 3304 */ 3305 if (curr->held_locks[depth].irq_context != 3306 curr->held_locks[depth-1].irq_context) 3307 break; 3308 } 3309 return 1; 3310 out_bug: 3311 if (!debug_locks_off_graph_unlock()) 3312 return 0; 3313 3314 /* 3315 * Clearly we all shouldn't be here, but since we made it we 3316 * can reliable say we messed up our state. See the above two 3317 * gotos for reasons why we could possibly end up here. 3318 */ 3319 WARN_ON(1); 3320 3321 return 0; 3322 } 3323 3324 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3325 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3326 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3327 unsigned long nr_zapped_lock_chains; 3328 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3329 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3330 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3331 3332 /* 3333 * The first 2 chain_hlocks entries in the chain block in the bucket 3334 * list contains the following meta data: 3335 * 3336 * entry[0]: 3337 * Bit 15 - always set to 1 (it is not a class index) 3338 * Bits 0-14 - upper 15 bits of the next block index 3339 * entry[1] - lower 16 bits of next block index 3340 * 3341 * A next block index of all 1 bits means it is the end of the list. 3342 * 3343 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3344 * the chain block size: 3345 * 3346 * entry[2] - upper 16 bits of the chain block size 3347 * entry[3] - lower 16 bits of the chain block size 3348 */ 3349 #define MAX_CHAIN_BUCKETS 16 3350 #define CHAIN_BLK_FLAG (1U << 15) 3351 #define CHAIN_BLK_LIST_END 0xFFFFU 3352 3353 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3354 3355 static inline int size_to_bucket(int size) 3356 { 3357 if (size > MAX_CHAIN_BUCKETS) 3358 return 0; 3359 3360 return size - 1; 3361 } 3362 3363 /* 3364 * Iterate all the chain blocks in a bucket. 3365 */ 3366 #define for_each_chain_block(bucket, prev, curr) \ 3367 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3368 (curr) >= 0; \ 3369 (prev) = (curr), (curr) = chain_block_next(curr)) 3370 3371 /* 3372 * next block or -1 3373 */ 3374 static inline int chain_block_next(int offset) 3375 { 3376 int next = chain_hlocks[offset]; 3377 3378 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3379 3380 if (next == CHAIN_BLK_LIST_END) 3381 return -1; 3382 3383 next &= ~CHAIN_BLK_FLAG; 3384 next <<= 16; 3385 next |= chain_hlocks[offset + 1]; 3386 3387 return next; 3388 } 3389 3390 /* 3391 * bucket-0 only 3392 */ 3393 static inline int chain_block_size(int offset) 3394 { 3395 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3396 } 3397 3398 static inline void init_chain_block(int offset, int next, int bucket, int size) 3399 { 3400 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3401 chain_hlocks[offset + 1] = (u16)next; 3402 3403 if (size && !bucket) { 3404 chain_hlocks[offset + 2] = size >> 16; 3405 chain_hlocks[offset + 3] = (u16)size; 3406 } 3407 } 3408 3409 static inline void add_chain_block(int offset, int size) 3410 { 3411 int bucket = size_to_bucket(size); 3412 int next = chain_block_buckets[bucket]; 3413 int prev, curr; 3414 3415 if (unlikely(size < 2)) { 3416 /* 3417 * We can't store single entries on the freelist. Leak them. 3418 * 3419 * One possible way out would be to uniquely mark them, other 3420 * than with CHAIN_BLK_FLAG, such that we can recover them when 3421 * the block before it is re-added. 3422 */ 3423 if (size) 3424 nr_lost_chain_hlocks++; 3425 return; 3426 } 3427 3428 nr_free_chain_hlocks += size; 3429 if (!bucket) { 3430 nr_large_chain_blocks++; 3431 3432 /* 3433 * Variable sized, sort large to small. 3434 */ 3435 for_each_chain_block(0, prev, curr) { 3436 if (size >= chain_block_size(curr)) 3437 break; 3438 } 3439 init_chain_block(offset, curr, 0, size); 3440 if (prev < 0) 3441 chain_block_buckets[0] = offset; 3442 else 3443 init_chain_block(prev, offset, 0, 0); 3444 return; 3445 } 3446 /* 3447 * Fixed size, add to head. 3448 */ 3449 init_chain_block(offset, next, bucket, size); 3450 chain_block_buckets[bucket] = offset; 3451 } 3452 3453 /* 3454 * Only the first block in the list can be deleted. 3455 * 3456 * For the variable size bucket[0], the first block (the largest one) is 3457 * returned, broken up and put back into the pool. So if a chain block of 3458 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3459 * queued up after the primordial chain block and never be used until the 3460 * hlock entries in the primordial chain block is almost used up. That 3461 * causes fragmentation and reduce allocation efficiency. That can be 3462 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3463 */ 3464 static inline void del_chain_block(int bucket, int size, int next) 3465 { 3466 nr_free_chain_hlocks -= size; 3467 chain_block_buckets[bucket] = next; 3468 3469 if (!bucket) 3470 nr_large_chain_blocks--; 3471 } 3472 3473 static void init_chain_block_buckets(void) 3474 { 3475 int i; 3476 3477 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3478 chain_block_buckets[i] = -1; 3479 3480 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3481 } 3482 3483 /* 3484 * Return offset of a chain block of the right size or -1 if not found. 3485 * 3486 * Fairly simple worst-fit allocator with the addition of a number of size 3487 * specific free lists. 3488 */ 3489 static int alloc_chain_hlocks(int req) 3490 { 3491 int bucket, curr, size; 3492 3493 /* 3494 * We rely on the MSB to act as an escape bit to denote freelist 3495 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3496 */ 3497 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3498 3499 init_data_structures_once(); 3500 3501 if (nr_free_chain_hlocks < req) 3502 return -1; 3503 3504 /* 3505 * We require a minimum of 2 (u16) entries to encode a freelist 3506 * 'pointer'. 3507 */ 3508 req = max(req, 2); 3509 bucket = size_to_bucket(req); 3510 curr = chain_block_buckets[bucket]; 3511 3512 if (bucket) { 3513 if (curr >= 0) { 3514 del_chain_block(bucket, req, chain_block_next(curr)); 3515 return curr; 3516 } 3517 /* Try bucket 0 */ 3518 curr = chain_block_buckets[0]; 3519 } 3520 3521 /* 3522 * The variable sized freelist is sorted by size; the first entry is 3523 * the largest. Use it if it fits. 3524 */ 3525 if (curr >= 0) { 3526 size = chain_block_size(curr); 3527 if (likely(size >= req)) { 3528 del_chain_block(0, size, chain_block_next(curr)); 3529 if (size > req) 3530 add_chain_block(curr + req, size - req); 3531 return curr; 3532 } 3533 } 3534 3535 /* 3536 * Last resort, split a block in a larger sized bucket. 3537 */ 3538 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3539 bucket = size_to_bucket(size); 3540 curr = chain_block_buckets[bucket]; 3541 if (curr < 0) 3542 continue; 3543 3544 del_chain_block(bucket, size, chain_block_next(curr)); 3545 add_chain_block(curr + req, size - req); 3546 return curr; 3547 } 3548 3549 return -1; 3550 } 3551 3552 static inline void free_chain_hlocks(int base, int size) 3553 { 3554 add_chain_block(base, max(size, 2)); 3555 } 3556 3557 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3558 { 3559 u16 chain_hlock = chain_hlocks[chain->base + i]; 3560 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3561 3562 return lock_classes + class_idx; 3563 } 3564 3565 /* 3566 * Returns the index of the first held_lock of the current chain 3567 */ 3568 static inline int get_first_held_lock(struct task_struct *curr, 3569 struct held_lock *hlock) 3570 { 3571 int i; 3572 struct held_lock *hlock_curr; 3573 3574 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3575 hlock_curr = curr->held_locks + i; 3576 if (hlock_curr->irq_context != hlock->irq_context) 3577 break; 3578 3579 } 3580 3581 return ++i; 3582 } 3583 3584 #ifdef CONFIG_DEBUG_LOCKDEP 3585 /* 3586 * Returns the next chain_key iteration 3587 */ 3588 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3589 { 3590 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3591 3592 printk(" hlock_id:%d -> chain_key:%016Lx", 3593 (unsigned int)hlock_id, 3594 (unsigned long long)new_chain_key); 3595 return new_chain_key; 3596 } 3597 3598 static void 3599 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3600 { 3601 struct held_lock *hlock; 3602 u64 chain_key = INITIAL_CHAIN_KEY; 3603 int depth = curr->lockdep_depth; 3604 int i = get_first_held_lock(curr, hlock_next); 3605 3606 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3607 hlock_next->irq_context); 3608 for (; i < depth; i++) { 3609 hlock = curr->held_locks + i; 3610 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3611 3612 print_lock(hlock); 3613 } 3614 3615 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3616 print_lock(hlock_next); 3617 } 3618 3619 static void print_chain_keys_chain(struct lock_chain *chain) 3620 { 3621 int i; 3622 u64 chain_key = INITIAL_CHAIN_KEY; 3623 u16 hlock_id; 3624 3625 printk("depth: %u\n", chain->depth); 3626 for (i = 0; i < chain->depth; i++) { 3627 hlock_id = chain_hlocks[chain->base + i]; 3628 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3629 3630 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3631 printk("\n"); 3632 } 3633 } 3634 3635 static void print_collision(struct task_struct *curr, 3636 struct held_lock *hlock_next, 3637 struct lock_chain *chain) 3638 { 3639 nbcon_cpu_emergency_enter(); 3640 3641 pr_warn("\n"); 3642 pr_warn("============================\n"); 3643 pr_warn("WARNING: chain_key collision\n"); 3644 print_kernel_ident(); 3645 pr_warn("----------------------------\n"); 3646 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3647 pr_warn("Hash chain already cached but the contents don't match!\n"); 3648 3649 pr_warn("Held locks:"); 3650 print_chain_keys_held_locks(curr, hlock_next); 3651 3652 pr_warn("Locks in cached chain:"); 3653 print_chain_keys_chain(chain); 3654 3655 pr_warn("\nstack backtrace:\n"); 3656 dump_stack(); 3657 3658 nbcon_cpu_emergency_exit(); 3659 } 3660 #endif 3661 3662 /* 3663 * Checks whether the chain and the current held locks are consistent 3664 * in depth and also in content. If they are not it most likely means 3665 * that there was a collision during the calculation of the chain_key. 3666 * Returns: 0 not passed, 1 passed 3667 */ 3668 static int check_no_collision(struct task_struct *curr, 3669 struct held_lock *hlock, 3670 struct lock_chain *chain) 3671 { 3672 #ifdef CONFIG_DEBUG_LOCKDEP 3673 int i, j, id; 3674 3675 i = get_first_held_lock(curr, hlock); 3676 3677 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3678 print_collision(curr, hlock, chain); 3679 return 0; 3680 } 3681 3682 for (j = 0; j < chain->depth - 1; j++, i++) { 3683 id = hlock_id(&curr->held_locks[i]); 3684 3685 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3686 print_collision(curr, hlock, chain); 3687 return 0; 3688 } 3689 } 3690 #endif 3691 return 1; 3692 } 3693 3694 /* 3695 * Given an index that is >= -1, return the index of the next lock chain. 3696 * Return -2 if there is no next lock chain. 3697 */ 3698 long lockdep_next_lockchain(long i) 3699 { 3700 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3701 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3702 } 3703 3704 unsigned long lock_chain_count(void) 3705 { 3706 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3707 } 3708 3709 /* Must be called with the graph lock held. */ 3710 static struct lock_chain *alloc_lock_chain(void) 3711 { 3712 int idx = find_first_zero_bit(lock_chains_in_use, 3713 ARRAY_SIZE(lock_chains)); 3714 3715 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3716 return NULL; 3717 __set_bit(idx, lock_chains_in_use); 3718 return lock_chains + idx; 3719 } 3720 3721 /* 3722 * Adds a dependency chain into chain hashtable. And must be called with 3723 * graph_lock held. 3724 * 3725 * Return 0 if fail, and graph_lock is released. 3726 * Return 1 if succeed, with graph_lock held. 3727 */ 3728 static inline int add_chain_cache(struct task_struct *curr, 3729 struct held_lock *hlock, 3730 u64 chain_key) 3731 { 3732 struct hlist_head *hash_head = chainhashentry(chain_key); 3733 struct lock_chain *chain; 3734 int i, j; 3735 3736 /* 3737 * The caller must hold the graph lock, ensure we've got IRQs 3738 * disabled to make this an IRQ-safe lock.. for recursion reasons 3739 * lockdep won't complain about its own locking errors. 3740 */ 3741 if (lockdep_assert_locked()) 3742 return 0; 3743 3744 chain = alloc_lock_chain(); 3745 if (!chain) { 3746 if (!debug_locks_off_graph_unlock()) 3747 return 0; 3748 3749 nbcon_cpu_emergency_enter(); 3750 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3751 dump_stack(); 3752 nbcon_cpu_emergency_exit(); 3753 return 0; 3754 } 3755 chain->chain_key = chain_key; 3756 chain->irq_context = hlock->irq_context; 3757 i = get_first_held_lock(curr, hlock); 3758 chain->depth = curr->lockdep_depth + 1 - i; 3759 3760 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3761 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3762 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3763 3764 j = alloc_chain_hlocks(chain->depth); 3765 if (j < 0) { 3766 if (!debug_locks_off_graph_unlock()) 3767 return 0; 3768 3769 nbcon_cpu_emergency_enter(); 3770 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3771 dump_stack(); 3772 nbcon_cpu_emergency_exit(); 3773 return 0; 3774 } 3775 3776 chain->base = j; 3777 for (j = 0; j < chain->depth - 1; j++, i++) { 3778 int lock_id = hlock_id(curr->held_locks + i); 3779 3780 chain_hlocks[chain->base + j] = lock_id; 3781 } 3782 chain_hlocks[chain->base + j] = hlock_id(hlock); 3783 hlist_add_head_rcu(&chain->entry, hash_head); 3784 debug_atomic_inc(chain_lookup_misses); 3785 inc_chains(chain->irq_context); 3786 3787 return 1; 3788 } 3789 3790 /* 3791 * Look up a dependency chain. Must be called with either the graph lock or 3792 * the RCU read lock held. 3793 */ 3794 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3795 { 3796 struct hlist_head *hash_head = chainhashentry(chain_key); 3797 struct lock_chain *chain; 3798 3799 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3800 if (READ_ONCE(chain->chain_key) == chain_key) { 3801 debug_atomic_inc(chain_lookup_hits); 3802 return chain; 3803 } 3804 } 3805 return NULL; 3806 } 3807 3808 /* 3809 * If the key is not present yet in dependency chain cache then 3810 * add it and return 1 - in this case the new dependency chain is 3811 * validated. If the key is already hashed, return 0. 3812 * (On return with 1 graph_lock is held.) 3813 */ 3814 static inline int lookup_chain_cache_add(struct task_struct *curr, 3815 struct held_lock *hlock, 3816 u64 chain_key) 3817 { 3818 struct lock_class *class = hlock_class(hlock); 3819 struct lock_chain *chain = lookup_chain_cache(chain_key); 3820 3821 if (chain) { 3822 cache_hit: 3823 if (!check_no_collision(curr, hlock, chain)) 3824 return 0; 3825 3826 if (very_verbose(class)) { 3827 printk("\nhash chain already cached, key: " 3828 "%016Lx tail class: [%px] %s\n", 3829 (unsigned long long)chain_key, 3830 class->key, class->name); 3831 } 3832 3833 return 0; 3834 } 3835 3836 if (very_verbose(class)) { 3837 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3838 (unsigned long long)chain_key, class->key, class->name); 3839 } 3840 3841 if (!graph_lock()) 3842 return 0; 3843 3844 /* 3845 * We have to walk the chain again locked - to avoid duplicates: 3846 */ 3847 chain = lookup_chain_cache(chain_key); 3848 if (chain) { 3849 graph_unlock(); 3850 goto cache_hit; 3851 } 3852 3853 if (!add_chain_cache(curr, hlock, chain_key)) 3854 return 0; 3855 3856 return 1; 3857 } 3858 3859 static int validate_chain(struct task_struct *curr, 3860 struct held_lock *hlock, 3861 int chain_head, u64 chain_key) 3862 { 3863 /* 3864 * Trylock needs to maintain the stack of held locks, but it 3865 * does not add new dependencies, because trylock can be done 3866 * in any order. 3867 * 3868 * We look up the chain_key and do the O(N^2) check and update of 3869 * the dependencies only if this is a new dependency chain. 3870 * (If lookup_chain_cache_add() return with 1 it acquires 3871 * graph_lock for us) 3872 */ 3873 if (!hlock->trylock && hlock->check && 3874 lookup_chain_cache_add(curr, hlock, chain_key)) { 3875 /* 3876 * Check whether last held lock: 3877 * 3878 * - is irq-safe, if this lock is irq-unsafe 3879 * - is softirq-safe, if this lock is hardirq-unsafe 3880 * 3881 * And check whether the new lock's dependency graph 3882 * could lead back to the previous lock: 3883 * 3884 * - within the current held-lock stack 3885 * - across our accumulated lock dependency records 3886 * 3887 * any of these scenarios could lead to a deadlock. 3888 */ 3889 /* 3890 * The simple case: does the current hold the same lock 3891 * already? 3892 */ 3893 int ret = check_deadlock(curr, hlock); 3894 3895 if (!ret) 3896 return 0; 3897 /* 3898 * Add dependency only if this lock is not the head 3899 * of the chain, and if the new lock introduces no more 3900 * lock dependency (because we already hold a lock with the 3901 * same lock class) nor deadlock (because the nest_lock 3902 * serializes nesting locks), see the comments for 3903 * check_deadlock(). 3904 */ 3905 if (!chain_head && ret != 2) { 3906 if (!check_prevs_add(curr, hlock)) 3907 return 0; 3908 } 3909 3910 graph_unlock(); 3911 } else { 3912 /* after lookup_chain_cache_add(): */ 3913 if (unlikely(!debug_locks)) 3914 return 0; 3915 } 3916 3917 return 1; 3918 } 3919 #else 3920 static inline int validate_chain(struct task_struct *curr, 3921 struct held_lock *hlock, 3922 int chain_head, u64 chain_key) 3923 { 3924 return 1; 3925 } 3926 3927 static void init_chain_block_buckets(void) { } 3928 #endif /* CONFIG_PROVE_LOCKING */ 3929 3930 /* 3931 * We are building curr_chain_key incrementally, so double-check 3932 * it from scratch, to make sure that it's done correctly: 3933 */ 3934 static void check_chain_key(struct task_struct *curr) 3935 { 3936 #ifdef CONFIG_DEBUG_LOCKDEP 3937 struct held_lock *hlock, *prev_hlock = NULL; 3938 unsigned int i; 3939 u64 chain_key = INITIAL_CHAIN_KEY; 3940 3941 for (i = 0; i < curr->lockdep_depth; i++) { 3942 hlock = curr->held_locks + i; 3943 if (chain_key != hlock->prev_chain_key) { 3944 debug_locks_off(); 3945 /* 3946 * We got mighty confused, our chain keys don't match 3947 * with what we expect, someone trample on our task state? 3948 */ 3949 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3950 curr->lockdep_depth, i, 3951 (unsigned long long)chain_key, 3952 (unsigned long long)hlock->prev_chain_key); 3953 return; 3954 } 3955 3956 /* 3957 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3958 * it registered lock class index? 3959 */ 3960 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3961 return; 3962 3963 if (prev_hlock && (prev_hlock->irq_context != 3964 hlock->irq_context)) 3965 chain_key = INITIAL_CHAIN_KEY; 3966 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3967 prev_hlock = hlock; 3968 } 3969 if (chain_key != curr->curr_chain_key) { 3970 debug_locks_off(); 3971 /* 3972 * More smoking hash instead of calculating it, damn see these 3973 * numbers float.. I bet that a pink elephant stepped on my memory. 3974 */ 3975 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3976 curr->lockdep_depth, i, 3977 (unsigned long long)chain_key, 3978 (unsigned long long)curr->curr_chain_key); 3979 } 3980 #endif 3981 } 3982 3983 #ifdef CONFIG_PROVE_LOCKING 3984 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3985 enum lock_usage_bit new_bit); 3986 3987 static void print_usage_bug_scenario(struct held_lock *lock) 3988 { 3989 struct lock_class *class = hlock_class(lock); 3990 3991 printk(" Possible unsafe locking scenario:\n\n"); 3992 printk(" CPU0\n"); 3993 printk(" ----\n"); 3994 printk(" lock("); 3995 __print_lock_name(lock, class); 3996 printk(KERN_CONT ");\n"); 3997 printk(" <Interrupt>\n"); 3998 printk(" lock("); 3999 __print_lock_name(lock, class); 4000 printk(KERN_CONT ");\n"); 4001 printk("\n *** DEADLOCK ***\n\n"); 4002 } 4003 4004 static void 4005 print_usage_bug(struct task_struct *curr, struct held_lock *this, 4006 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 4007 { 4008 if (!debug_locks_off() || debug_locks_silent) 4009 return; 4010 4011 nbcon_cpu_emergency_enter(); 4012 4013 pr_warn("\n"); 4014 pr_warn("================================\n"); 4015 pr_warn("WARNING: inconsistent lock state\n"); 4016 print_kernel_ident(); 4017 pr_warn("--------------------------------\n"); 4018 4019 pr_warn("inconsistent {%s} -> {%s} usage.\n", 4020 usage_str[prev_bit], usage_str[new_bit]); 4021 4022 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 4023 curr->comm, task_pid_nr(curr), 4024 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 4025 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 4026 lockdep_hardirqs_enabled(), 4027 lockdep_softirqs_enabled(curr)); 4028 print_lock(this); 4029 4030 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 4031 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 4032 4033 print_irqtrace_events(curr); 4034 pr_warn("\nother info that might help us debug this:\n"); 4035 print_usage_bug_scenario(this); 4036 4037 lockdep_print_held_locks(curr); 4038 4039 pr_warn("\nstack backtrace:\n"); 4040 dump_stack(); 4041 4042 nbcon_cpu_emergency_exit(); 4043 } 4044 4045 /* 4046 * Print out an error if an invalid bit is set: 4047 */ 4048 static inline int 4049 valid_state(struct task_struct *curr, struct held_lock *this, 4050 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4051 { 4052 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4053 graph_unlock(); 4054 print_usage_bug(curr, this, bad_bit, new_bit); 4055 return 0; 4056 } 4057 return 1; 4058 } 4059 4060 4061 /* 4062 * print irq inversion bug: 4063 */ 4064 static void 4065 print_irq_inversion_bug(struct task_struct *curr, 4066 struct lock_list *root, struct lock_list *other, 4067 struct held_lock *this, int forwards, 4068 const char *irqclass) 4069 { 4070 struct lock_list *entry = other; 4071 struct lock_list *middle = NULL; 4072 int depth; 4073 4074 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4075 return; 4076 4077 nbcon_cpu_emergency_enter(); 4078 4079 pr_warn("\n"); 4080 pr_warn("========================================================\n"); 4081 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4082 print_kernel_ident(); 4083 pr_warn("--------------------------------------------------------\n"); 4084 pr_warn("%s/%d just changed the state of lock:\n", 4085 curr->comm, task_pid_nr(curr)); 4086 print_lock(this); 4087 if (forwards) 4088 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4089 else 4090 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4091 print_lock_name(NULL, other->class); 4092 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4093 4094 pr_warn("\nother info that might help us debug this:\n"); 4095 4096 /* Find a middle lock (if one exists) */ 4097 depth = get_lock_depth(other); 4098 do { 4099 if (depth == 0 && (entry != root)) { 4100 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4101 break; 4102 } 4103 middle = entry; 4104 entry = get_lock_parent(entry); 4105 depth--; 4106 } while (entry && entry != root && (depth >= 0)); 4107 if (forwards) 4108 print_irq_lock_scenario(root, other, 4109 middle ? middle->class : root->class, other->class); 4110 else 4111 print_irq_lock_scenario(other, root, 4112 middle ? middle->class : other->class, root->class); 4113 4114 lockdep_print_held_locks(curr); 4115 4116 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4117 root->trace = save_trace(); 4118 if (!root->trace) 4119 goto out; 4120 print_shortest_lock_dependencies(other, root); 4121 4122 pr_warn("\nstack backtrace:\n"); 4123 dump_stack(); 4124 out: 4125 nbcon_cpu_emergency_exit(); 4126 } 4127 4128 /* 4129 * Prove that in the forwards-direction subgraph starting at <this> 4130 * there is no lock matching <mask>: 4131 */ 4132 static int 4133 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4134 enum lock_usage_bit bit) 4135 { 4136 enum bfs_result ret; 4137 struct lock_list root; 4138 struct lock_list *target_entry; 4139 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4140 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4141 4142 bfs_init_root(&root, this); 4143 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4144 if (bfs_error(ret)) { 4145 print_bfs_bug(ret); 4146 return 0; 4147 } 4148 if (ret == BFS_RNOMATCH) 4149 return 1; 4150 4151 /* Check whether write or read usage is the match */ 4152 if (target_entry->class->usage_mask & lock_flag(bit)) { 4153 print_irq_inversion_bug(curr, &root, target_entry, 4154 this, 1, state_name(bit)); 4155 } else { 4156 print_irq_inversion_bug(curr, &root, target_entry, 4157 this, 1, state_name(read_bit)); 4158 } 4159 4160 return 0; 4161 } 4162 4163 /* 4164 * Prove that in the backwards-direction subgraph starting at <this> 4165 * there is no lock matching <mask>: 4166 */ 4167 static int 4168 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4169 enum lock_usage_bit bit) 4170 { 4171 enum bfs_result ret; 4172 struct lock_list root; 4173 struct lock_list *target_entry; 4174 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4175 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4176 4177 bfs_init_rootb(&root, this); 4178 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4179 if (bfs_error(ret)) { 4180 print_bfs_bug(ret); 4181 return 0; 4182 } 4183 if (ret == BFS_RNOMATCH) 4184 return 1; 4185 4186 /* Check whether write or read usage is the match */ 4187 if (target_entry->class->usage_mask & lock_flag(bit)) { 4188 print_irq_inversion_bug(curr, &root, target_entry, 4189 this, 0, state_name(bit)); 4190 } else { 4191 print_irq_inversion_bug(curr, &root, target_entry, 4192 this, 0, state_name(read_bit)); 4193 } 4194 4195 return 0; 4196 } 4197 4198 void print_irqtrace_events(struct task_struct *curr) 4199 { 4200 const struct irqtrace_events *trace = &curr->irqtrace; 4201 4202 nbcon_cpu_emergency_enter(); 4203 4204 printk("irq event stamp: %u\n", trace->irq_events); 4205 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4206 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4207 (void *)trace->hardirq_enable_ip); 4208 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4209 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4210 (void *)trace->hardirq_disable_ip); 4211 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4212 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4213 (void *)trace->softirq_enable_ip); 4214 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4215 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4216 (void *)trace->softirq_disable_ip); 4217 4218 nbcon_cpu_emergency_exit(); 4219 } 4220 4221 static int HARDIRQ_verbose(struct lock_class *class) 4222 { 4223 #if HARDIRQ_VERBOSE 4224 return class_filter(class); 4225 #endif 4226 return 0; 4227 } 4228 4229 static int SOFTIRQ_verbose(struct lock_class *class) 4230 { 4231 #if SOFTIRQ_VERBOSE 4232 return class_filter(class); 4233 #endif 4234 return 0; 4235 } 4236 4237 static int (*state_verbose_f[])(struct lock_class *class) = { 4238 #define LOCKDEP_STATE(__STATE) \ 4239 __STATE##_verbose, 4240 #include "lockdep_states.h" 4241 #undef LOCKDEP_STATE 4242 }; 4243 4244 static inline int state_verbose(enum lock_usage_bit bit, 4245 struct lock_class *class) 4246 { 4247 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4248 } 4249 4250 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4251 enum lock_usage_bit bit, const char *name); 4252 4253 static int 4254 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4255 enum lock_usage_bit new_bit) 4256 { 4257 int excl_bit = exclusive_bit(new_bit); 4258 int read = new_bit & LOCK_USAGE_READ_MASK; 4259 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4260 4261 /* 4262 * Validate that this particular lock does not have conflicting 4263 * usage states. 4264 */ 4265 if (!valid_state(curr, this, new_bit, excl_bit)) 4266 return 0; 4267 4268 /* 4269 * Check for read in write conflicts 4270 */ 4271 if (!read && !valid_state(curr, this, new_bit, 4272 excl_bit + LOCK_USAGE_READ_MASK)) 4273 return 0; 4274 4275 4276 /* 4277 * Validate that the lock dependencies don't have conflicting usage 4278 * states. 4279 */ 4280 if (dir) { 4281 /* 4282 * mark ENABLED has to look backwards -- to ensure no dependee 4283 * has USED_IN state, which, again, would allow recursion deadlocks. 4284 */ 4285 if (!check_usage_backwards(curr, this, excl_bit)) 4286 return 0; 4287 } else { 4288 /* 4289 * mark USED_IN has to look forwards -- to ensure no dependency 4290 * has ENABLED state, which would allow recursion deadlocks. 4291 */ 4292 if (!check_usage_forwards(curr, this, excl_bit)) 4293 return 0; 4294 } 4295 4296 if (state_verbose(new_bit, hlock_class(this))) 4297 return 2; 4298 4299 return 1; 4300 } 4301 4302 /* 4303 * Mark all held locks with a usage bit: 4304 */ 4305 static int 4306 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4307 { 4308 struct held_lock *hlock; 4309 int i; 4310 4311 for (i = 0; i < curr->lockdep_depth; i++) { 4312 enum lock_usage_bit hlock_bit = base_bit; 4313 hlock = curr->held_locks + i; 4314 4315 if (hlock->read) 4316 hlock_bit += LOCK_USAGE_READ_MASK; 4317 4318 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4319 4320 if (!hlock->check) 4321 continue; 4322 4323 if (!mark_lock(curr, hlock, hlock_bit)) 4324 return 0; 4325 } 4326 4327 return 1; 4328 } 4329 4330 /* 4331 * Hardirqs will be enabled: 4332 */ 4333 static void __trace_hardirqs_on_caller(void) 4334 { 4335 struct task_struct *curr = current; 4336 4337 /* 4338 * We are going to turn hardirqs on, so set the 4339 * usage bit for all held locks: 4340 */ 4341 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4342 return; 4343 /* 4344 * If we have softirqs enabled, then set the usage 4345 * bit for all held locks. (disabled hardirqs prevented 4346 * this bit from being set before) 4347 */ 4348 if (curr->softirqs_enabled) 4349 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4350 } 4351 4352 /** 4353 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4354 * 4355 * Invoked before a possible transition to RCU idle from exit to user or 4356 * guest mode. This ensures that all RCU operations are done before RCU 4357 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4358 * invoked to set the final state. 4359 */ 4360 void lockdep_hardirqs_on_prepare(void) 4361 { 4362 if (unlikely(!debug_locks)) 4363 return; 4364 4365 /* 4366 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4367 */ 4368 if (unlikely(in_nmi())) 4369 return; 4370 4371 if (unlikely(this_cpu_read(lockdep_recursion))) 4372 return; 4373 4374 if (unlikely(lockdep_hardirqs_enabled())) { 4375 /* 4376 * Neither irq nor preemption are disabled here 4377 * so this is racy by nature but losing one hit 4378 * in a stat is not a big deal. 4379 */ 4380 __debug_atomic_inc(redundant_hardirqs_on); 4381 return; 4382 } 4383 4384 /* 4385 * We're enabling irqs and according to our state above irqs weren't 4386 * already enabled, yet we find the hardware thinks they are in fact 4387 * enabled.. someone messed up their IRQ state tracing. 4388 */ 4389 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4390 return; 4391 4392 /* 4393 * See the fine text that goes along with this variable definition. 4394 */ 4395 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4396 return; 4397 4398 /* 4399 * Can't allow enabling interrupts while in an interrupt handler, 4400 * that's general bad form and such. Recursion, limited stack etc.. 4401 */ 4402 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4403 return; 4404 4405 current->hardirq_chain_key = current->curr_chain_key; 4406 4407 lockdep_recursion_inc(); 4408 __trace_hardirqs_on_caller(); 4409 lockdep_recursion_finish(); 4410 } 4411 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4412 4413 void noinstr lockdep_hardirqs_on(unsigned long ip) 4414 { 4415 struct irqtrace_events *trace = ¤t->irqtrace; 4416 4417 if (unlikely(!debug_locks)) 4418 return; 4419 4420 /* 4421 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4422 * tracking state and hardware state are out of sync. 4423 * 4424 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4425 * and not rely on hardware state like normal interrupts. 4426 */ 4427 if (unlikely(in_nmi())) { 4428 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4429 return; 4430 4431 /* 4432 * Skip: 4433 * - recursion check, because NMI can hit lockdep; 4434 * - hardware state check, because above; 4435 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4436 */ 4437 goto skip_checks; 4438 } 4439 4440 if (unlikely(this_cpu_read(lockdep_recursion))) 4441 return; 4442 4443 if (lockdep_hardirqs_enabled()) { 4444 /* 4445 * Neither irq nor preemption are disabled here 4446 * so this is racy by nature but losing one hit 4447 * in a stat is not a big deal. 4448 */ 4449 __debug_atomic_inc(redundant_hardirqs_on); 4450 return; 4451 } 4452 4453 /* 4454 * We're enabling irqs and according to our state above irqs weren't 4455 * already enabled, yet we find the hardware thinks they are in fact 4456 * enabled.. someone messed up their IRQ state tracing. 4457 */ 4458 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4459 return; 4460 4461 /* 4462 * Ensure the lock stack remained unchanged between 4463 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4464 */ 4465 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4466 current->curr_chain_key); 4467 4468 skip_checks: 4469 /* we'll do an OFF -> ON transition: */ 4470 __this_cpu_write(hardirqs_enabled, 1); 4471 trace->hardirq_enable_ip = ip; 4472 trace->hardirq_enable_event = ++trace->irq_events; 4473 debug_atomic_inc(hardirqs_on_events); 4474 } 4475 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4476 4477 /* 4478 * Hardirqs were disabled: 4479 */ 4480 void noinstr lockdep_hardirqs_off(unsigned long ip) 4481 { 4482 if (unlikely(!debug_locks)) 4483 return; 4484 4485 /* 4486 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4487 * they will restore the software state. This ensures the software 4488 * state is consistent inside NMIs as well. 4489 */ 4490 if (in_nmi()) { 4491 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4492 return; 4493 } else if (__this_cpu_read(lockdep_recursion)) 4494 return; 4495 4496 /* 4497 * So we're supposed to get called after you mask local IRQs, but for 4498 * some reason the hardware doesn't quite think you did a proper job. 4499 */ 4500 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4501 return; 4502 4503 if (lockdep_hardirqs_enabled()) { 4504 struct irqtrace_events *trace = ¤t->irqtrace; 4505 4506 /* 4507 * We have done an ON -> OFF transition: 4508 */ 4509 __this_cpu_write(hardirqs_enabled, 0); 4510 trace->hardirq_disable_ip = ip; 4511 trace->hardirq_disable_event = ++trace->irq_events; 4512 debug_atomic_inc(hardirqs_off_events); 4513 } else { 4514 debug_atomic_inc(redundant_hardirqs_off); 4515 } 4516 } 4517 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4518 4519 /* 4520 * Softirqs will be enabled: 4521 */ 4522 void lockdep_softirqs_on(unsigned long ip) 4523 { 4524 struct irqtrace_events *trace = ¤t->irqtrace; 4525 4526 if (unlikely(!lockdep_enabled())) 4527 return; 4528 4529 /* 4530 * We fancy IRQs being disabled here, see softirq.c, avoids 4531 * funny state and nesting things. 4532 */ 4533 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4534 return; 4535 4536 if (current->softirqs_enabled) { 4537 debug_atomic_inc(redundant_softirqs_on); 4538 return; 4539 } 4540 4541 lockdep_recursion_inc(); 4542 /* 4543 * We'll do an OFF -> ON transition: 4544 */ 4545 current->softirqs_enabled = 1; 4546 trace->softirq_enable_ip = ip; 4547 trace->softirq_enable_event = ++trace->irq_events; 4548 debug_atomic_inc(softirqs_on_events); 4549 /* 4550 * We are going to turn softirqs on, so set the 4551 * usage bit for all held locks, if hardirqs are 4552 * enabled too: 4553 */ 4554 if (lockdep_hardirqs_enabled()) 4555 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4556 lockdep_recursion_finish(); 4557 } 4558 4559 /* 4560 * Softirqs were disabled: 4561 */ 4562 void lockdep_softirqs_off(unsigned long ip) 4563 { 4564 if (unlikely(!lockdep_enabled())) 4565 return; 4566 4567 /* 4568 * We fancy IRQs being disabled here, see softirq.c 4569 */ 4570 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4571 return; 4572 4573 if (current->softirqs_enabled) { 4574 struct irqtrace_events *trace = ¤t->irqtrace; 4575 4576 /* 4577 * We have done an ON -> OFF transition: 4578 */ 4579 current->softirqs_enabled = 0; 4580 trace->softirq_disable_ip = ip; 4581 trace->softirq_disable_event = ++trace->irq_events; 4582 debug_atomic_inc(softirqs_off_events); 4583 /* 4584 * Whoops, we wanted softirqs off, so why aren't they? 4585 */ 4586 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4587 } else 4588 debug_atomic_inc(redundant_softirqs_off); 4589 } 4590 4591 /** 4592 * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped 4593 * 4594 * @cpu: index of offlined CPU 4595 * @idle: task pointer for offlined CPU's idle thread 4596 * 4597 * Invoked after the CPU is dead. Ensures that the tracing infrastructure 4598 * is left in a suitable state for the CPU to be subsequently brought 4599 * online again. 4600 */ 4601 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle) 4602 { 4603 if (unlikely(!debug_locks)) 4604 return; 4605 4606 if (unlikely(per_cpu(hardirqs_enabled, cpu))) { 4607 pr_warn("CPU %u left hardirqs enabled!", cpu); 4608 if (idle) 4609 print_irqtrace_events(idle); 4610 /* Clean it up for when the CPU comes online again. */ 4611 per_cpu(hardirqs_enabled, cpu) = 0; 4612 } 4613 } 4614 4615 static int 4616 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4617 { 4618 if (!check) 4619 goto lock_used; 4620 4621 /* 4622 * If non-trylock use in a hardirq or softirq context, then 4623 * mark the lock as used in these contexts: 4624 */ 4625 if (!hlock->trylock) { 4626 if (hlock->read) { 4627 if (lockdep_hardirq_context()) 4628 if (!mark_lock(curr, hlock, 4629 LOCK_USED_IN_HARDIRQ_READ)) 4630 return 0; 4631 if (curr->softirq_context) 4632 if (!mark_lock(curr, hlock, 4633 LOCK_USED_IN_SOFTIRQ_READ)) 4634 return 0; 4635 } else { 4636 if (lockdep_hardirq_context()) 4637 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4638 return 0; 4639 if (curr->softirq_context) 4640 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4641 return 0; 4642 } 4643 } 4644 4645 /* 4646 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4647 * creates no critical section and no extra dependency can be introduced 4648 * by interrupts 4649 */ 4650 if (!hlock->hardirqs_off && !hlock->sync) { 4651 if (hlock->read) { 4652 if (!mark_lock(curr, hlock, 4653 LOCK_ENABLED_HARDIRQ_READ)) 4654 return 0; 4655 if (curr->softirqs_enabled) 4656 if (!mark_lock(curr, hlock, 4657 LOCK_ENABLED_SOFTIRQ_READ)) 4658 return 0; 4659 } else { 4660 if (!mark_lock(curr, hlock, 4661 LOCK_ENABLED_HARDIRQ)) 4662 return 0; 4663 if (curr->softirqs_enabled) 4664 if (!mark_lock(curr, hlock, 4665 LOCK_ENABLED_SOFTIRQ)) 4666 return 0; 4667 } 4668 } 4669 4670 lock_used: 4671 /* mark it as used: */ 4672 if (!mark_lock(curr, hlock, LOCK_USED)) 4673 return 0; 4674 4675 return 1; 4676 } 4677 4678 static inline unsigned int task_irq_context(struct task_struct *task) 4679 { 4680 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4681 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4682 } 4683 4684 static int separate_irq_context(struct task_struct *curr, 4685 struct held_lock *hlock) 4686 { 4687 unsigned int depth = curr->lockdep_depth; 4688 4689 /* 4690 * Keep track of points where we cross into an interrupt context: 4691 */ 4692 if (depth) { 4693 struct held_lock *prev_hlock; 4694 4695 prev_hlock = curr->held_locks + depth-1; 4696 /* 4697 * If we cross into another context, reset the 4698 * hash key (this also prevents the checking and the 4699 * adding of the dependency to 'prev'): 4700 */ 4701 if (prev_hlock->irq_context != hlock->irq_context) 4702 return 1; 4703 } 4704 return 0; 4705 } 4706 4707 /* 4708 * Mark a lock with a usage bit, and validate the state transition: 4709 */ 4710 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4711 enum lock_usage_bit new_bit) 4712 { 4713 unsigned int new_mask, ret = 1; 4714 4715 if (new_bit >= LOCK_USAGE_STATES) { 4716 DEBUG_LOCKS_WARN_ON(1); 4717 return 0; 4718 } 4719 4720 if (new_bit == LOCK_USED && this->read) 4721 new_bit = LOCK_USED_READ; 4722 4723 new_mask = 1 << new_bit; 4724 4725 /* 4726 * If already set then do not dirty the cacheline, 4727 * nor do any checks: 4728 */ 4729 if (likely(hlock_class(this)->usage_mask & new_mask)) 4730 return 1; 4731 4732 if (!graph_lock()) 4733 return 0; 4734 /* 4735 * Make sure we didn't race: 4736 */ 4737 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4738 goto unlock; 4739 4740 if (!hlock_class(this)->usage_mask) 4741 debug_atomic_dec(nr_unused_locks); 4742 4743 hlock_class(this)->usage_mask |= new_mask; 4744 4745 if (new_bit < LOCK_TRACE_STATES) { 4746 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4747 return 0; 4748 } 4749 4750 if (new_bit < LOCK_USED) { 4751 ret = mark_lock_irq(curr, this, new_bit); 4752 if (!ret) 4753 return 0; 4754 } 4755 4756 unlock: 4757 graph_unlock(); 4758 4759 /* 4760 * We must printk outside of the graph_lock: 4761 */ 4762 if (ret == 2) { 4763 nbcon_cpu_emergency_enter(); 4764 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4765 print_lock(this); 4766 print_irqtrace_events(curr); 4767 dump_stack(); 4768 nbcon_cpu_emergency_exit(); 4769 } 4770 4771 return ret; 4772 } 4773 4774 static inline short task_wait_context(struct task_struct *curr) 4775 { 4776 /* 4777 * Set appropriate wait type for the context; for IRQs we have to take 4778 * into account force_irqthread as that is implied by PREEMPT_RT. 4779 */ 4780 if (lockdep_hardirq_context()) { 4781 /* 4782 * Check if force_irqthreads will run us threaded. 4783 */ 4784 if (curr->hardirq_threaded || curr->irq_config) 4785 return LD_WAIT_CONFIG; 4786 4787 return LD_WAIT_SPIN; 4788 } else if (curr->softirq_context) { 4789 /* 4790 * Softirqs are always threaded. 4791 */ 4792 return LD_WAIT_CONFIG; 4793 } 4794 4795 return LD_WAIT_MAX; 4796 } 4797 4798 static int 4799 print_lock_invalid_wait_context(struct task_struct *curr, 4800 struct held_lock *hlock) 4801 { 4802 short curr_inner; 4803 4804 if (!debug_locks_off()) 4805 return 0; 4806 if (debug_locks_silent) 4807 return 0; 4808 4809 nbcon_cpu_emergency_enter(); 4810 4811 pr_warn("\n"); 4812 pr_warn("=============================\n"); 4813 pr_warn("[ BUG: Invalid wait context ]\n"); 4814 print_kernel_ident(); 4815 pr_warn("-----------------------------\n"); 4816 4817 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4818 print_lock(hlock); 4819 4820 pr_warn("other info that might help us debug this:\n"); 4821 4822 curr_inner = task_wait_context(curr); 4823 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4824 4825 lockdep_print_held_locks(curr); 4826 4827 pr_warn("stack backtrace:\n"); 4828 dump_stack(); 4829 4830 nbcon_cpu_emergency_exit(); 4831 4832 return 0; 4833 } 4834 4835 /* 4836 * Verify the wait_type context. 4837 * 4838 * This check validates we take locks in the right wait-type order; that is it 4839 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4840 * acquire spinlocks inside raw_spinlocks and the sort. 4841 * 4842 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4843 * can be taken from (pretty much) any context but also has constraints. 4844 * However when taken in a stricter environment the RCU lock does not loosen 4845 * the constraints. 4846 * 4847 * Therefore we must look for the strictest environment in the lock stack and 4848 * compare that to the lock we're trying to acquire. 4849 */ 4850 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4851 { 4852 u8 next_inner = hlock_class(next)->wait_type_inner; 4853 u8 next_outer = hlock_class(next)->wait_type_outer; 4854 u8 curr_inner; 4855 int depth; 4856 4857 if (!next_inner || next->trylock) 4858 return 0; 4859 4860 if (!next_outer) 4861 next_outer = next_inner; 4862 4863 /* 4864 * Find start of current irq_context.. 4865 */ 4866 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4867 struct held_lock *prev = curr->held_locks + depth; 4868 if (prev->irq_context != next->irq_context) 4869 break; 4870 } 4871 depth++; 4872 4873 curr_inner = task_wait_context(curr); 4874 4875 for (; depth < curr->lockdep_depth; depth++) { 4876 struct held_lock *prev = curr->held_locks + depth; 4877 struct lock_class *class = hlock_class(prev); 4878 u8 prev_inner = class->wait_type_inner; 4879 4880 if (prev_inner) { 4881 /* 4882 * We can have a bigger inner than a previous one 4883 * when outer is smaller than inner, as with RCU. 4884 * 4885 * Also due to trylocks. 4886 */ 4887 curr_inner = min(curr_inner, prev_inner); 4888 4889 /* 4890 * Allow override for annotations -- this is typically 4891 * only valid/needed for code that only exists when 4892 * CONFIG_PREEMPT_RT=n. 4893 */ 4894 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4895 curr_inner = prev_inner; 4896 } 4897 } 4898 4899 if (next_outer > curr_inner) 4900 return print_lock_invalid_wait_context(curr, next); 4901 4902 return 0; 4903 } 4904 4905 #else /* CONFIG_PROVE_LOCKING */ 4906 4907 static inline int 4908 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4909 { 4910 return 1; 4911 } 4912 4913 static inline unsigned int task_irq_context(struct task_struct *task) 4914 { 4915 return 0; 4916 } 4917 4918 static inline int separate_irq_context(struct task_struct *curr, 4919 struct held_lock *hlock) 4920 { 4921 return 0; 4922 } 4923 4924 static inline int check_wait_context(struct task_struct *curr, 4925 struct held_lock *next) 4926 { 4927 return 0; 4928 } 4929 4930 #endif /* CONFIG_PROVE_LOCKING */ 4931 4932 /* 4933 * Initialize a lock instance's lock-class mapping info: 4934 */ 4935 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4936 struct lock_class_key *key, int subclass, 4937 u8 inner, u8 outer, u8 lock_type) 4938 { 4939 int i; 4940 4941 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4942 lock->class_cache[i] = NULL; 4943 4944 #ifdef CONFIG_LOCK_STAT 4945 lock->cpu = raw_smp_processor_id(); 4946 #endif 4947 4948 /* 4949 * Can't be having no nameless bastards around this place! 4950 */ 4951 if (DEBUG_LOCKS_WARN_ON(!name)) { 4952 lock->name = "NULL"; 4953 return; 4954 } 4955 4956 lock->name = name; 4957 4958 lock->wait_type_outer = outer; 4959 lock->wait_type_inner = inner; 4960 lock->lock_type = lock_type; 4961 4962 /* 4963 * No key, no joy, we need to hash something. 4964 */ 4965 if (DEBUG_LOCKS_WARN_ON(!key)) 4966 return; 4967 /* 4968 * Sanity check, the lock-class key must either have been allocated 4969 * statically or must have been registered as a dynamic key. 4970 */ 4971 if (!static_obj(key) && !is_dynamic_key(key)) { 4972 if (debug_locks) 4973 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4974 DEBUG_LOCKS_WARN_ON(1); 4975 return; 4976 } 4977 lock->key = key; 4978 4979 if (unlikely(!debug_locks)) 4980 return; 4981 4982 if (subclass) { 4983 unsigned long flags; 4984 4985 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4986 return; 4987 4988 raw_local_irq_save(flags); 4989 lockdep_recursion_inc(); 4990 register_lock_class(lock, subclass, 1); 4991 lockdep_recursion_finish(); 4992 raw_local_irq_restore(flags); 4993 } 4994 } 4995 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4996 4997 struct lock_class_key __lockdep_no_validate__; 4998 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4999 5000 struct lock_class_key __lockdep_no_track__; 5001 EXPORT_SYMBOL_GPL(__lockdep_no_track__); 5002 5003 #ifdef CONFIG_PROVE_LOCKING 5004 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 5005 lock_print_fn print_fn) 5006 { 5007 struct lock_class *class = lock->class_cache[0]; 5008 unsigned long flags; 5009 5010 raw_local_irq_save(flags); 5011 lockdep_recursion_inc(); 5012 5013 if (!class) 5014 class = register_lock_class(lock, 0, 0); 5015 5016 if (class) { 5017 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 5018 WARN_ON(class->print_fn && class->print_fn != print_fn); 5019 5020 class->cmp_fn = cmp_fn; 5021 class->print_fn = print_fn; 5022 } 5023 5024 lockdep_recursion_finish(); 5025 raw_local_irq_restore(flags); 5026 } 5027 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 5028 #endif 5029 5030 static void 5031 print_lock_nested_lock_not_held(struct task_struct *curr, 5032 struct held_lock *hlock) 5033 { 5034 if (!debug_locks_off()) 5035 return; 5036 if (debug_locks_silent) 5037 return; 5038 5039 nbcon_cpu_emergency_enter(); 5040 5041 pr_warn("\n"); 5042 pr_warn("==================================\n"); 5043 pr_warn("WARNING: Nested lock was not taken\n"); 5044 print_kernel_ident(); 5045 pr_warn("----------------------------------\n"); 5046 5047 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 5048 print_lock(hlock); 5049 5050 pr_warn("\nbut this task is not holding:\n"); 5051 pr_warn("%s\n", hlock->nest_lock->name); 5052 5053 pr_warn("\nstack backtrace:\n"); 5054 dump_stack(); 5055 5056 pr_warn("\nother info that might help us debug this:\n"); 5057 lockdep_print_held_locks(curr); 5058 5059 pr_warn("\nstack backtrace:\n"); 5060 dump_stack(); 5061 5062 nbcon_cpu_emergency_exit(); 5063 } 5064 5065 static int __lock_is_held(const struct lockdep_map *lock, int read); 5066 5067 /* 5068 * This gets called for every mutex_lock*()/spin_lock*() operation. 5069 * We maintain the dependency maps and validate the locking attempt: 5070 * 5071 * The callers must make sure that IRQs are disabled before calling it, 5072 * otherwise we could get an interrupt which would want to take locks, 5073 * which would end up in lockdep again. 5074 */ 5075 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5076 int trylock, int read, int check, int hardirqs_off, 5077 struct lockdep_map *nest_lock, unsigned long ip, 5078 int references, int pin_count, int sync) 5079 { 5080 struct task_struct *curr = current; 5081 struct lock_class *class = NULL; 5082 struct held_lock *hlock; 5083 unsigned int depth; 5084 int chain_head = 0; 5085 int class_idx; 5086 u64 chain_key; 5087 5088 if (unlikely(!debug_locks)) 5089 return 0; 5090 5091 if (unlikely(lock->key == &__lockdep_no_track__)) 5092 return 0; 5093 5094 if (!prove_locking || lock->key == &__lockdep_no_validate__) 5095 check = 0; 5096 5097 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5098 class = lock->class_cache[subclass]; 5099 /* 5100 * Not cached? 5101 */ 5102 if (unlikely(!class)) { 5103 class = register_lock_class(lock, subclass, 0); 5104 if (!class) 5105 return 0; 5106 } 5107 5108 debug_class_ops_inc(class); 5109 5110 if (very_verbose(class)) { 5111 nbcon_cpu_emergency_enter(); 5112 printk("\nacquire class [%px] %s", class->key, class->name); 5113 if (class->name_version > 1) 5114 printk(KERN_CONT "#%d", class->name_version); 5115 printk(KERN_CONT "\n"); 5116 dump_stack(); 5117 nbcon_cpu_emergency_exit(); 5118 } 5119 5120 /* 5121 * Add the lock to the list of currently held locks. 5122 * (we dont increase the depth just yet, up until the 5123 * dependency checks are done) 5124 */ 5125 depth = curr->lockdep_depth; 5126 /* 5127 * Ran out of static storage for our per-task lock stack again have we? 5128 */ 5129 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5130 return 0; 5131 5132 class_idx = class - lock_classes; 5133 5134 if (depth && !sync) { 5135 /* we're holding locks and the new held lock is not a sync */ 5136 hlock = curr->held_locks + depth - 1; 5137 if (hlock->class_idx == class_idx && nest_lock) { 5138 if (!references) 5139 references++; 5140 5141 if (!hlock->references) 5142 hlock->references++; 5143 5144 hlock->references += references; 5145 5146 /* Overflow */ 5147 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5148 return 0; 5149 5150 return 2; 5151 } 5152 } 5153 5154 hlock = curr->held_locks + depth; 5155 /* 5156 * Plain impossible, we just registered it and checked it weren't no 5157 * NULL like.. I bet this mushroom I ate was good! 5158 */ 5159 if (DEBUG_LOCKS_WARN_ON(!class)) 5160 return 0; 5161 hlock->class_idx = class_idx; 5162 hlock->acquire_ip = ip; 5163 hlock->instance = lock; 5164 hlock->nest_lock = nest_lock; 5165 hlock->irq_context = task_irq_context(curr); 5166 hlock->trylock = trylock; 5167 hlock->read = read; 5168 hlock->check = check; 5169 hlock->sync = !!sync; 5170 hlock->hardirqs_off = !!hardirqs_off; 5171 hlock->references = references; 5172 #ifdef CONFIG_LOCK_STAT 5173 hlock->waittime_stamp = 0; 5174 hlock->holdtime_stamp = lockstat_clock(); 5175 #endif 5176 hlock->pin_count = pin_count; 5177 5178 if (check_wait_context(curr, hlock)) 5179 return 0; 5180 5181 /* Initialize the lock usage bit */ 5182 if (!mark_usage(curr, hlock, check)) 5183 return 0; 5184 5185 /* 5186 * Calculate the chain hash: it's the combined hash of all the 5187 * lock keys along the dependency chain. We save the hash value 5188 * at every step so that we can get the current hash easily 5189 * after unlock. The chain hash is then used to cache dependency 5190 * results. 5191 * 5192 * The 'key ID' is what is the most compact key value to drive 5193 * the hash, not class->key. 5194 */ 5195 /* 5196 * Whoops, we did it again.. class_idx is invalid. 5197 */ 5198 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5199 return 0; 5200 5201 chain_key = curr->curr_chain_key; 5202 if (!depth) { 5203 /* 5204 * How can we have a chain hash when we ain't got no keys?! 5205 */ 5206 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5207 return 0; 5208 chain_head = 1; 5209 } 5210 5211 hlock->prev_chain_key = chain_key; 5212 if (separate_irq_context(curr, hlock)) { 5213 chain_key = INITIAL_CHAIN_KEY; 5214 chain_head = 1; 5215 } 5216 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5217 5218 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5219 print_lock_nested_lock_not_held(curr, hlock); 5220 return 0; 5221 } 5222 5223 if (!debug_locks_silent) { 5224 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5225 WARN_ON_ONCE(!hlock_class(hlock)->key); 5226 } 5227 5228 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5229 return 0; 5230 5231 /* For lock_sync(), we are done here since no actual critical section */ 5232 if (hlock->sync) 5233 return 1; 5234 5235 curr->curr_chain_key = chain_key; 5236 curr->lockdep_depth++; 5237 check_chain_key(curr); 5238 #ifdef CONFIG_DEBUG_LOCKDEP 5239 if (unlikely(!debug_locks)) 5240 return 0; 5241 #endif 5242 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5243 debug_locks_off(); 5244 nbcon_cpu_emergency_enter(); 5245 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5246 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5247 curr->lockdep_depth, MAX_LOCK_DEPTH); 5248 5249 lockdep_print_held_locks(current); 5250 debug_show_all_locks(); 5251 dump_stack(); 5252 nbcon_cpu_emergency_exit(); 5253 5254 return 0; 5255 } 5256 5257 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5258 max_lockdep_depth = curr->lockdep_depth; 5259 5260 return 1; 5261 } 5262 5263 static void print_unlock_imbalance_bug(struct task_struct *curr, 5264 struct lockdep_map *lock, 5265 unsigned long ip) 5266 { 5267 if (!debug_locks_off()) 5268 return; 5269 if (debug_locks_silent) 5270 return; 5271 5272 nbcon_cpu_emergency_enter(); 5273 5274 pr_warn("\n"); 5275 pr_warn("=====================================\n"); 5276 pr_warn("WARNING: bad unlock balance detected!\n"); 5277 print_kernel_ident(); 5278 pr_warn("-------------------------------------\n"); 5279 pr_warn("%s/%d is trying to release lock (", 5280 curr->comm, task_pid_nr(curr)); 5281 print_lockdep_cache(lock); 5282 pr_cont(") at:\n"); 5283 print_ip_sym(KERN_WARNING, ip); 5284 pr_warn("but there are no more locks to release!\n"); 5285 pr_warn("\nother info that might help us debug this:\n"); 5286 lockdep_print_held_locks(curr); 5287 5288 pr_warn("\nstack backtrace:\n"); 5289 dump_stack(); 5290 5291 nbcon_cpu_emergency_exit(); 5292 } 5293 5294 static noinstr int match_held_lock(const struct held_lock *hlock, 5295 const struct lockdep_map *lock) 5296 { 5297 if (hlock->instance == lock) 5298 return 1; 5299 5300 if (hlock->references) { 5301 const struct lock_class *class = lock->class_cache[0]; 5302 5303 if (!class) 5304 class = look_up_lock_class(lock, 0); 5305 5306 /* 5307 * If look_up_lock_class() failed to find a class, we're trying 5308 * to test if we hold a lock that has never yet been acquired. 5309 * Clearly if the lock hasn't been acquired _ever_, we're not 5310 * holding it either, so report failure. 5311 */ 5312 if (!class) 5313 return 0; 5314 5315 /* 5316 * References, but not a lock we're actually ref-counting? 5317 * State got messed up, follow the sites that change ->references 5318 * and try to make sense of it. 5319 */ 5320 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5321 return 0; 5322 5323 if (hlock->class_idx == class - lock_classes) 5324 return 1; 5325 } 5326 5327 return 0; 5328 } 5329 5330 /* @depth must not be zero */ 5331 static struct held_lock *find_held_lock(struct task_struct *curr, 5332 struct lockdep_map *lock, 5333 unsigned int depth, int *idx) 5334 { 5335 struct held_lock *ret, *hlock, *prev_hlock; 5336 int i; 5337 5338 i = depth - 1; 5339 hlock = curr->held_locks + i; 5340 ret = hlock; 5341 if (match_held_lock(hlock, lock)) 5342 goto out; 5343 5344 ret = NULL; 5345 for (i--, prev_hlock = hlock--; 5346 i >= 0; 5347 i--, prev_hlock = hlock--) { 5348 /* 5349 * We must not cross into another context: 5350 */ 5351 if (prev_hlock->irq_context != hlock->irq_context) { 5352 ret = NULL; 5353 break; 5354 } 5355 if (match_held_lock(hlock, lock)) { 5356 ret = hlock; 5357 break; 5358 } 5359 } 5360 5361 out: 5362 *idx = i; 5363 return ret; 5364 } 5365 5366 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5367 int idx, unsigned int *merged) 5368 { 5369 struct held_lock *hlock; 5370 int first_idx = idx; 5371 5372 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5373 return 0; 5374 5375 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5376 switch (__lock_acquire(hlock->instance, 5377 hlock_class(hlock)->subclass, 5378 hlock->trylock, 5379 hlock->read, hlock->check, 5380 hlock->hardirqs_off, 5381 hlock->nest_lock, hlock->acquire_ip, 5382 hlock->references, hlock->pin_count, 0)) { 5383 case 0: 5384 return 1; 5385 case 1: 5386 break; 5387 case 2: 5388 *merged += (idx == first_idx); 5389 break; 5390 default: 5391 WARN_ON(1); 5392 return 0; 5393 } 5394 } 5395 return 0; 5396 } 5397 5398 static int 5399 __lock_set_class(struct lockdep_map *lock, const char *name, 5400 struct lock_class_key *key, unsigned int subclass, 5401 unsigned long ip) 5402 { 5403 struct task_struct *curr = current; 5404 unsigned int depth, merged = 0; 5405 struct held_lock *hlock; 5406 struct lock_class *class; 5407 int i; 5408 5409 if (unlikely(!debug_locks)) 5410 return 0; 5411 5412 depth = curr->lockdep_depth; 5413 /* 5414 * This function is about (re)setting the class of a held lock, 5415 * yet we're not actually holding any locks. Naughty user! 5416 */ 5417 if (DEBUG_LOCKS_WARN_ON(!depth)) 5418 return 0; 5419 5420 hlock = find_held_lock(curr, lock, depth, &i); 5421 if (!hlock) { 5422 print_unlock_imbalance_bug(curr, lock, ip); 5423 return 0; 5424 } 5425 5426 lockdep_init_map_type(lock, name, key, 0, 5427 lock->wait_type_inner, 5428 lock->wait_type_outer, 5429 lock->lock_type); 5430 class = register_lock_class(lock, subclass, 0); 5431 hlock->class_idx = class - lock_classes; 5432 5433 curr->lockdep_depth = i; 5434 curr->curr_chain_key = hlock->prev_chain_key; 5435 5436 if (reacquire_held_locks(curr, depth, i, &merged)) 5437 return 0; 5438 5439 /* 5440 * I took it apart and put it back together again, except now I have 5441 * these 'spare' parts.. where shall I put them. 5442 */ 5443 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5444 return 0; 5445 return 1; 5446 } 5447 5448 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5449 { 5450 struct task_struct *curr = current; 5451 unsigned int depth, merged = 0; 5452 struct held_lock *hlock; 5453 int i; 5454 5455 if (unlikely(!debug_locks)) 5456 return 0; 5457 5458 depth = curr->lockdep_depth; 5459 /* 5460 * This function is about (re)setting the class of a held lock, 5461 * yet we're not actually holding any locks. Naughty user! 5462 */ 5463 if (DEBUG_LOCKS_WARN_ON(!depth)) 5464 return 0; 5465 5466 hlock = find_held_lock(curr, lock, depth, &i); 5467 if (!hlock) { 5468 print_unlock_imbalance_bug(curr, lock, ip); 5469 return 0; 5470 } 5471 5472 curr->lockdep_depth = i; 5473 curr->curr_chain_key = hlock->prev_chain_key; 5474 5475 WARN(hlock->read, "downgrading a read lock"); 5476 hlock->read = 1; 5477 hlock->acquire_ip = ip; 5478 5479 if (reacquire_held_locks(curr, depth, i, &merged)) 5480 return 0; 5481 5482 /* Merging can't happen with unchanged classes.. */ 5483 if (DEBUG_LOCKS_WARN_ON(merged)) 5484 return 0; 5485 5486 /* 5487 * I took it apart and put it back together again, except now I have 5488 * these 'spare' parts.. where shall I put them. 5489 */ 5490 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5491 return 0; 5492 5493 return 1; 5494 } 5495 5496 /* 5497 * Remove the lock from the list of currently held locks - this gets 5498 * called on mutex_unlock()/spin_unlock*() (or on a failed 5499 * mutex_lock_interruptible()). 5500 */ 5501 static int 5502 __lock_release(struct lockdep_map *lock, unsigned long ip) 5503 { 5504 struct task_struct *curr = current; 5505 unsigned int depth, merged = 1; 5506 struct held_lock *hlock; 5507 int i; 5508 5509 if (unlikely(!debug_locks)) 5510 return 0; 5511 5512 depth = curr->lockdep_depth; 5513 /* 5514 * So we're all set to release this lock.. wait what lock? We don't 5515 * own any locks, you've been drinking again? 5516 */ 5517 if (depth <= 0) { 5518 print_unlock_imbalance_bug(curr, lock, ip); 5519 return 0; 5520 } 5521 5522 /* 5523 * Check whether the lock exists in the current stack 5524 * of held locks: 5525 */ 5526 hlock = find_held_lock(curr, lock, depth, &i); 5527 if (!hlock) { 5528 print_unlock_imbalance_bug(curr, lock, ip); 5529 return 0; 5530 } 5531 5532 if (hlock->instance == lock) 5533 lock_release_holdtime(hlock); 5534 5535 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5536 5537 if (hlock->references) { 5538 hlock->references--; 5539 if (hlock->references) { 5540 /* 5541 * We had, and after removing one, still have 5542 * references, the current lock stack is still 5543 * valid. We're done! 5544 */ 5545 return 1; 5546 } 5547 } 5548 5549 /* 5550 * We have the right lock to unlock, 'hlock' points to it. 5551 * Now we remove it from the stack, and add back the other 5552 * entries (if any), recalculating the hash along the way: 5553 */ 5554 5555 curr->lockdep_depth = i; 5556 curr->curr_chain_key = hlock->prev_chain_key; 5557 5558 /* 5559 * The most likely case is when the unlock is on the innermost 5560 * lock. In this case, we are done! 5561 */ 5562 if (i == depth-1) 5563 return 1; 5564 5565 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5566 return 0; 5567 5568 /* 5569 * We had N bottles of beer on the wall, we drank one, but now 5570 * there's not N-1 bottles of beer left on the wall... 5571 * Pouring two of the bottles together is acceptable. 5572 */ 5573 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5574 5575 /* 5576 * Since reacquire_held_locks() would have called check_chain_key() 5577 * indirectly via __lock_acquire(), we don't need to do it again 5578 * on return. 5579 */ 5580 return 0; 5581 } 5582 5583 static __always_inline 5584 int __lock_is_held(const struct lockdep_map *lock, int read) 5585 { 5586 struct task_struct *curr = current; 5587 int i; 5588 5589 for (i = 0; i < curr->lockdep_depth; i++) { 5590 struct held_lock *hlock = curr->held_locks + i; 5591 5592 if (match_held_lock(hlock, lock)) { 5593 if (read == -1 || !!hlock->read == read) 5594 return LOCK_STATE_HELD; 5595 5596 return LOCK_STATE_NOT_HELD; 5597 } 5598 } 5599 5600 return LOCK_STATE_NOT_HELD; 5601 } 5602 5603 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5604 { 5605 struct pin_cookie cookie = NIL_COOKIE; 5606 struct task_struct *curr = current; 5607 int i; 5608 5609 if (unlikely(!debug_locks)) 5610 return cookie; 5611 5612 for (i = 0; i < curr->lockdep_depth; i++) { 5613 struct held_lock *hlock = curr->held_locks + i; 5614 5615 if (match_held_lock(hlock, lock)) { 5616 /* 5617 * Grab 16bits of randomness; this is sufficient to not 5618 * be guessable and still allows some pin nesting in 5619 * our u32 pin_count. 5620 */ 5621 cookie.val = 1 + (sched_clock() & 0xffff); 5622 hlock->pin_count += cookie.val; 5623 return cookie; 5624 } 5625 } 5626 5627 WARN(1, "pinning an unheld lock\n"); 5628 return cookie; 5629 } 5630 5631 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5632 { 5633 struct task_struct *curr = current; 5634 int i; 5635 5636 if (unlikely(!debug_locks)) 5637 return; 5638 5639 for (i = 0; i < curr->lockdep_depth; i++) { 5640 struct held_lock *hlock = curr->held_locks + i; 5641 5642 if (match_held_lock(hlock, lock)) { 5643 hlock->pin_count += cookie.val; 5644 return; 5645 } 5646 } 5647 5648 WARN(1, "pinning an unheld lock\n"); 5649 } 5650 5651 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5652 { 5653 struct task_struct *curr = current; 5654 int i; 5655 5656 if (unlikely(!debug_locks)) 5657 return; 5658 5659 for (i = 0; i < curr->lockdep_depth; i++) { 5660 struct held_lock *hlock = curr->held_locks + i; 5661 5662 if (match_held_lock(hlock, lock)) { 5663 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5664 return; 5665 5666 hlock->pin_count -= cookie.val; 5667 5668 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5669 hlock->pin_count = 0; 5670 5671 return; 5672 } 5673 } 5674 5675 WARN(1, "unpinning an unheld lock\n"); 5676 } 5677 5678 /* 5679 * Check whether we follow the irq-flags state precisely: 5680 */ 5681 static noinstr void check_flags(unsigned long flags) 5682 { 5683 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5684 if (!debug_locks) 5685 return; 5686 5687 /* Get the warning out.. */ 5688 instrumentation_begin(); 5689 5690 if (irqs_disabled_flags(flags)) { 5691 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5692 printk("possible reason: unannotated irqs-off.\n"); 5693 } 5694 } else { 5695 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5696 printk("possible reason: unannotated irqs-on.\n"); 5697 } 5698 } 5699 5700 #ifndef CONFIG_PREEMPT_RT 5701 /* 5702 * We dont accurately track softirq state in e.g. 5703 * hardirq contexts (such as on 4KSTACKS), so only 5704 * check if not in hardirq contexts: 5705 */ 5706 if (!hardirq_count()) { 5707 if (softirq_count()) { 5708 /* like the above, but with softirqs */ 5709 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5710 } else { 5711 /* lick the above, does it taste good? */ 5712 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5713 } 5714 } 5715 #endif 5716 5717 if (!debug_locks) 5718 print_irqtrace_events(current); 5719 5720 instrumentation_end(); 5721 #endif 5722 } 5723 5724 void lock_set_class(struct lockdep_map *lock, const char *name, 5725 struct lock_class_key *key, unsigned int subclass, 5726 unsigned long ip) 5727 { 5728 unsigned long flags; 5729 5730 if (unlikely(!lockdep_enabled())) 5731 return; 5732 5733 raw_local_irq_save(flags); 5734 lockdep_recursion_inc(); 5735 check_flags(flags); 5736 if (__lock_set_class(lock, name, key, subclass, ip)) 5737 check_chain_key(current); 5738 lockdep_recursion_finish(); 5739 raw_local_irq_restore(flags); 5740 } 5741 EXPORT_SYMBOL_GPL(lock_set_class); 5742 5743 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5744 { 5745 unsigned long flags; 5746 5747 if (unlikely(!lockdep_enabled())) 5748 return; 5749 5750 raw_local_irq_save(flags); 5751 lockdep_recursion_inc(); 5752 check_flags(flags); 5753 if (__lock_downgrade(lock, ip)) 5754 check_chain_key(current); 5755 lockdep_recursion_finish(); 5756 raw_local_irq_restore(flags); 5757 } 5758 EXPORT_SYMBOL_GPL(lock_downgrade); 5759 5760 /* NMI context !!! */ 5761 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5762 { 5763 #ifdef CONFIG_PROVE_LOCKING 5764 struct lock_class *class = look_up_lock_class(lock, subclass); 5765 unsigned long mask = LOCKF_USED; 5766 5767 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5768 if (!class) 5769 return; 5770 5771 /* 5772 * READ locks only conflict with USED, such that if we only ever use 5773 * READ locks, there is no deadlock possible -- RCU. 5774 */ 5775 if (!hlock->read) 5776 mask |= LOCKF_USED_READ; 5777 5778 if (!(class->usage_mask & mask)) 5779 return; 5780 5781 hlock->class_idx = class - lock_classes; 5782 5783 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5784 #endif 5785 } 5786 5787 static bool lockdep_nmi(void) 5788 { 5789 if (raw_cpu_read(lockdep_recursion)) 5790 return false; 5791 5792 if (!in_nmi()) 5793 return false; 5794 5795 return true; 5796 } 5797 5798 /* 5799 * read_lock() is recursive if: 5800 * 1. We force lockdep think this way in selftests or 5801 * 2. The implementation is not queued read/write lock or 5802 * 3. The locker is at an in_interrupt() context. 5803 */ 5804 bool read_lock_is_recursive(void) 5805 { 5806 return force_read_lock_recursive || 5807 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5808 in_interrupt(); 5809 } 5810 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5811 5812 /* 5813 * We are not always called with irqs disabled - do that here, 5814 * and also avoid lockdep recursion: 5815 */ 5816 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5817 int trylock, int read, int check, 5818 struct lockdep_map *nest_lock, unsigned long ip) 5819 { 5820 unsigned long flags; 5821 5822 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5823 5824 if (!debug_locks) 5825 return; 5826 5827 if (unlikely(!lockdep_enabled())) { 5828 /* XXX allow trylock from NMI ?!? */ 5829 if (lockdep_nmi() && !trylock) { 5830 struct held_lock hlock; 5831 5832 hlock.acquire_ip = ip; 5833 hlock.instance = lock; 5834 hlock.nest_lock = nest_lock; 5835 hlock.irq_context = 2; // XXX 5836 hlock.trylock = trylock; 5837 hlock.read = read; 5838 hlock.check = check; 5839 hlock.hardirqs_off = true; 5840 hlock.references = 0; 5841 5842 verify_lock_unused(lock, &hlock, subclass); 5843 } 5844 return; 5845 } 5846 5847 raw_local_irq_save(flags); 5848 check_flags(flags); 5849 5850 lockdep_recursion_inc(); 5851 __lock_acquire(lock, subclass, trylock, read, check, 5852 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5853 lockdep_recursion_finish(); 5854 raw_local_irq_restore(flags); 5855 } 5856 EXPORT_SYMBOL_GPL(lock_acquire); 5857 5858 void lock_release(struct lockdep_map *lock, unsigned long ip) 5859 { 5860 unsigned long flags; 5861 5862 trace_lock_release(lock, ip); 5863 5864 if (unlikely(!lockdep_enabled() || 5865 lock->key == &__lockdep_no_track__)) 5866 return; 5867 5868 raw_local_irq_save(flags); 5869 check_flags(flags); 5870 5871 lockdep_recursion_inc(); 5872 if (__lock_release(lock, ip)) 5873 check_chain_key(current); 5874 lockdep_recursion_finish(); 5875 raw_local_irq_restore(flags); 5876 } 5877 EXPORT_SYMBOL_GPL(lock_release); 5878 5879 /* 5880 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5881 * 5882 * No actual critical section is created by the APIs annotated with this: these 5883 * APIs are used to wait for one or multiple critical sections (on other CPUs 5884 * or threads), and it means that calling these APIs inside these critical 5885 * sections is potential deadlock. 5886 */ 5887 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5888 int check, struct lockdep_map *nest_lock, unsigned long ip) 5889 { 5890 unsigned long flags; 5891 5892 if (unlikely(!lockdep_enabled())) 5893 return; 5894 5895 raw_local_irq_save(flags); 5896 check_flags(flags); 5897 5898 lockdep_recursion_inc(); 5899 __lock_acquire(lock, subclass, 0, read, check, 5900 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5901 check_chain_key(current); 5902 lockdep_recursion_finish(); 5903 raw_local_irq_restore(flags); 5904 } 5905 EXPORT_SYMBOL_GPL(lock_sync); 5906 5907 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5908 { 5909 unsigned long flags; 5910 int ret = LOCK_STATE_NOT_HELD; 5911 5912 /* 5913 * Avoid false negative lockdep_assert_held() and 5914 * lockdep_assert_not_held(). 5915 */ 5916 if (unlikely(!lockdep_enabled())) 5917 return LOCK_STATE_UNKNOWN; 5918 5919 raw_local_irq_save(flags); 5920 check_flags(flags); 5921 5922 lockdep_recursion_inc(); 5923 ret = __lock_is_held(lock, read); 5924 lockdep_recursion_finish(); 5925 raw_local_irq_restore(flags); 5926 5927 return ret; 5928 } 5929 EXPORT_SYMBOL_GPL(lock_is_held_type); 5930 NOKPROBE_SYMBOL(lock_is_held_type); 5931 5932 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5933 { 5934 struct pin_cookie cookie = NIL_COOKIE; 5935 unsigned long flags; 5936 5937 if (unlikely(!lockdep_enabled())) 5938 return cookie; 5939 5940 raw_local_irq_save(flags); 5941 check_flags(flags); 5942 5943 lockdep_recursion_inc(); 5944 cookie = __lock_pin_lock(lock); 5945 lockdep_recursion_finish(); 5946 raw_local_irq_restore(flags); 5947 5948 return cookie; 5949 } 5950 EXPORT_SYMBOL_GPL(lock_pin_lock); 5951 5952 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5953 { 5954 unsigned long flags; 5955 5956 if (unlikely(!lockdep_enabled())) 5957 return; 5958 5959 raw_local_irq_save(flags); 5960 check_flags(flags); 5961 5962 lockdep_recursion_inc(); 5963 __lock_repin_lock(lock, cookie); 5964 lockdep_recursion_finish(); 5965 raw_local_irq_restore(flags); 5966 } 5967 EXPORT_SYMBOL_GPL(lock_repin_lock); 5968 5969 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5970 { 5971 unsigned long flags; 5972 5973 if (unlikely(!lockdep_enabled())) 5974 return; 5975 5976 raw_local_irq_save(flags); 5977 check_flags(flags); 5978 5979 lockdep_recursion_inc(); 5980 __lock_unpin_lock(lock, cookie); 5981 lockdep_recursion_finish(); 5982 raw_local_irq_restore(flags); 5983 } 5984 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5985 5986 #ifdef CONFIG_LOCK_STAT 5987 static void print_lock_contention_bug(struct task_struct *curr, 5988 struct lockdep_map *lock, 5989 unsigned long ip) 5990 { 5991 if (!debug_locks_off()) 5992 return; 5993 if (debug_locks_silent) 5994 return; 5995 5996 nbcon_cpu_emergency_enter(); 5997 5998 pr_warn("\n"); 5999 pr_warn("=================================\n"); 6000 pr_warn("WARNING: bad contention detected!\n"); 6001 print_kernel_ident(); 6002 pr_warn("---------------------------------\n"); 6003 pr_warn("%s/%d is trying to contend lock (", 6004 curr->comm, task_pid_nr(curr)); 6005 print_lockdep_cache(lock); 6006 pr_cont(") at:\n"); 6007 print_ip_sym(KERN_WARNING, ip); 6008 pr_warn("but there are no locks held!\n"); 6009 pr_warn("\nother info that might help us debug this:\n"); 6010 lockdep_print_held_locks(curr); 6011 6012 pr_warn("\nstack backtrace:\n"); 6013 dump_stack(); 6014 6015 nbcon_cpu_emergency_exit(); 6016 } 6017 6018 static void 6019 __lock_contended(struct lockdep_map *lock, unsigned long ip) 6020 { 6021 struct task_struct *curr = current; 6022 struct held_lock *hlock; 6023 struct lock_class_stats *stats; 6024 unsigned int depth; 6025 int i, contention_point, contending_point; 6026 6027 depth = curr->lockdep_depth; 6028 /* 6029 * Whee, we contended on this lock, except it seems we're not 6030 * actually trying to acquire anything much at all.. 6031 */ 6032 if (DEBUG_LOCKS_WARN_ON(!depth)) 6033 return; 6034 6035 if (unlikely(lock->key == &__lockdep_no_track__)) 6036 return; 6037 6038 hlock = find_held_lock(curr, lock, depth, &i); 6039 if (!hlock) { 6040 print_lock_contention_bug(curr, lock, ip); 6041 return; 6042 } 6043 6044 if (hlock->instance != lock) 6045 return; 6046 6047 hlock->waittime_stamp = lockstat_clock(); 6048 6049 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 6050 contending_point = lock_point(hlock_class(hlock)->contending_point, 6051 lock->ip); 6052 6053 stats = get_lock_stats(hlock_class(hlock)); 6054 if (contention_point < LOCKSTAT_POINTS) 6055 stats->contention_point[contention_point]++; 6056 if (contending_point < LOCKSTAT_POINTS) 6057 stats->contending_point[contending_point]++; 6058 if (lock->cpu != smp_processor_id()) 6059 stats->bounces[bounce_contended + !!hlock->read]++; 6060 } 6061 6062 static void 6063 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 6064 { 6065 struct task_struct *curr = current; 6066 struct held_lock *hlock; 6067 struct lock_class_stats *stats; 6068 unsigned int depth; 6069 u64 now, waittime = 0; 6070 int i, cpu; 6071 6072 depth = curr->lockdep_depth; 6073 /* 6074 * Yay, we acquired ownership of this lock we didn't try to 6075 * acquire, how the heck did that happen? 6076 */ 6077 if (DEBUG_LOCKS_WARN_ON(!depth)) 6078 return; 6079 6080 if (unlikely(lock->key == &__lockdep_no_track__)) 6081 return; 6082 6083 hlock = find_held_lock(curr, lock, depth, &i); 6084 if (!hlock) { 6085 print_lock_contention_bug(curr, lock, _RET_IP_); 6086 return; 6087 } 6088 6089 if (hlock->instance != lock) 6090 return; 6091 6092 cpu = smp_processor_id(); 6093 if (hlock->waittime_stamp) { 6094 now = lockstat_clock(); 6095 waittime = now - hlock->waittime_stamp; 6096 hlock->holdtime_stamp = now; 6097 } 6098 6099 stats = get_lock_stats(hlock_class(hlock)); 6100 if (waittime) { 6101 if (hlock->read) 6102 lock_time_inc(&stats->read_waittime, waittime); 6103 else 6104 lock_time_inc(&stats->write_waittime, waittime); 6105 } 6106 if (lock->cpu != cpu) 6107 stats->bounces[bounce_acquired + !!hlock->read]++; 6108 6109 lock->cpu = cpu; 6110 lock->ip = ip; 6111 } 6112 6113 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6114 { 6115 unsigned long flags; 6116 6117 trace_lock_contended(lock, ip); 6118 6119 if (unlikely(!lock_stat || !lockdep_enabled())) 6120 return; 6121 6122 raw_local_irq_save(flags); 6123 check_flags(flags); 6124 lockdep_recursion_inc(); 6125 __lock_contended(lock, ip); 6126 lockdep_recursion_finish(); 6127 raw_local_irq_restore(flags); 6128 } 6129 EXPORT_SYMBOL_GPL(lock_contended); 6130 6131 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6132 { 6133 unsigned long flags; 6134 6135 trace_lock_acquired(lock, ip); 6136 6137 if (unlikely(!lock_stat || !lockdep_enabled())) 6138 return; 6139 6140 raw_local_irq_save(flags); 6141 check_flags(flags); 6142 lockdep_recursion_inc(); 6143 __lock_acquired(lock, ip); 6144 lockdep_recursion_finish(); 6145 raw_local_irq_restore(flags); 6146 } 6147 EXPORT_SYMBOL_GPL(lock_acquired); 6148 #endif 6149 6150 /* 6151 * Used by the testsuite, sanitize the validator state 6152 * after a simulated failure: 6153 */ 6154 6155 void lockdep_reset(void) 6156 { 6157 unsigned long flags; 6158 int i; 6159 6160 raw_local_irq_save(flags); 6161 lockdep_init_task(current); 6162 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6163 nr_hardirq_chains = 0; 6164 nr_softirq_chains = 0; 6165 nr_process_chains = 0; 6166 debug_locks = 1; 6167 for (i = 0; i < CHAINHASH_SIZE; i++) 6168 INIT_HLIST_HEAD(chainhash_table + i); 6169 raw_local_irq_restore(flags); 6170 } 6171 6172 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6173 static void remove_class_from_lock_chain(struct pending_free *pf, 6174 struct lock_chain *chain, 6175 struct lock_class *class) 6176 { 6177 #ifdef CONFIG_PROVE_LOCKING 6178 int i; 6179 6180 for (i = chain->base; i < chain->base + chain->depth; i++) { 6181 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6182 continue; 6183 /* 6184 * Each lock class occurs at most once in a lock chain so once 6185 * we found a match we can break out of this loop. 6186 */ 6187 goto free_lock_chain; 6188 } 6189 /* Since the chain has not been modified, return. */ 6190 return; 6191 6192 free_lock_chain: 6193 free_chain_hlocks(chain->base, chain->depth); 6194 /* Overwrite the chain key for concurrent RCU readers. */ 6195 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6196 dec_chains(chain->irq_context); 6197 6198 /* 6199 * Note: calling hlist_del_rcu() from inside a 6200 * hlist_for_each_entry_rcu() loop is safe. 6201 */ 6202 hlist_del_rcu(&chain->entry); 6203 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6204 nr_zapped_lock_chains++; 6205 #endif 6206 } 6207 6208 /* Must be called with the graph lock held. */ 6209 static void remove_class_from_lock_chains(struct pending_free *pf, 6210 struct lock_class *class) 6211 { 6212 struct lock_chain *chain; 6213 struct hlist_head *head; 6214 int i; 6215 6216 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6217 head = chainhash_table + i; 6218 hlist_for_each_entry_rcu(chain, head, entry) { 6219 remove_class_from_lock_chain(pf, chain, class); 6220 } 6221 } 6222 } 6223 6224 /* 6225 * Remove all references to a lock class. The caller must hold the graph lock. 6226 */ 6227 static void zap_class(struct pending_free *pf, struct lock_class *class) 6228 { 6229 struct lock_list *entry; 6230 int i; 6231 6232 WARN_ON_ONCE(!class->key); 6233 6234 /* 6235 * Remove all dependencies this lock is 6236 * involved in: 6237 */ 6238 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6239 entry = list_entries + i; 6240 if (entry->class != class && entry->links_to != class) 6241 continue; 6242 __clear_bit(i, list_entries_in_use); 6243 nr_list_entries--; 6244 list_del_rcu(&entry->entry); 6245 } 6246 if (list_empty(&class->locks_after) && 6247 list_empty(&class->locks_before)) { 6248 list_move_tail(&class->lock_entry, &pf->zapped); 6249 hlist_del_rcu(&class->hash_entry); 6250 WRITE_ONCE(class->key, NULL); 6251 WRITE_ONCE(class->name, NULL); 6252 nr_lock_classes--; 6253 __clear_bit(class - lock_classes, lock_classes_in_use); 6254 if (class - lock_classes == max_lock_class_idx) 6255 max_lock_class_idx--; 6256 } else { 6257 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6258 class->name); 6259 } 6260 6261 remove_class_from_lock_chains(pf, class); 6262 nr_zapped_classes++; 6263 } 6264 6265 static void reinit_class(struct lock_class *class) 6266 { 6267 WARN_ON_ONCE(!class->lock_entry.next); 6268 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6269 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6270 memset_startat(class, 0, key); 6271 WARN_ON_ONCE(!class->lock_entry.next); 6272 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6273 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6274 } 6275 6276 static inline int within(const void *addr, void *start, unsigned long size) 6277 { 6278 return addr >= start && addr < start + size; 6279 } 6280 6281 static bool inside_selftest(void) 6282 { 6283 return current == lockdep_selftest_task_struct; 6284 } 6285 6286 /* The caller must hold the graph lock. */ 6287 static struct pending_free *get_pending_free(void) 6288 { 6289 return delayed_free.pf + delayed_free.index; 6290 } 6291 6292 static void free_zapped_rcu(struct rcu_head *cb); 6293 6294 /* 6295 * See if we need to queue an RCU callback, must called with 6296 * the lockdep lock held, returns false if either we don't have 6297 * any pending free or the callback is already scheduled. 6298 * Otherwise, a call_rcu() must follow this function call. 6299 */ 6300 static bool prepare_call_rcu_zapped(struct pending_free *pf) 6301 { 6302 WARN_ON_ONCE(inside_selftest()); 6303 6304 if (list_empty(&pf->zapped)) 6305 return false; 6306 6307 if (delayed_free.scheduled) 6308 return false; 6309 6310 delayed_free.scheduled = true; 6311 6312 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6313 delayed_free.index ^= 1; 6314 6315 return true; 6316 } 6317 6318 /* The caller must hold the graph lock. May be called from RCU context. */ 6319 static void __free_zapped_classes(struct pending_free *pf) 6320 { 6321 struct lock_class *class; 6322 6323 check_data_structures(); 6324 6325 list_for_each_entry(class, &pf->zapped, lock_entry) 6326 reinit_class(class); 6327 6328 list_splice_init(&pf->zapped, &free_lock_classes); 6329 6330 #ifdef CONFIG_PROVE_LOCKING 6331 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6332 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6333 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6334 #endif 6335 } 6336 6337 static void free_zapped_rcu(struct rcu_head *ch) 6338 { 6339 struct pending_free *pf; 6340 unsigned long flags; 6341 bool need_callback; 6342 6343 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6344 return; 6345 6346 raw_local_irq_save(flags); 6347 lockdep_lock(); 6348 6349 /* closed head */ 6350 pf = delayed_free.pf + (delayed_free.index ^ 1); 6351 __free_zapped_classes(pf); 6352 delayed_free.scheduled = false; 6353 need_callback = 6354 prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index); 6355 lockdep_unlock(); 6356 raw_local_irq_restore(flags); 6357 6358 /* 6359 * If there's pending free and its callback has not been scheduled, 6360 * queue an RCU callback. 6361 */ 6362 if (need_callback) 6363 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6364 6365 } 6366 6367 /* 6368 * Remove all lock classes from the class hash table and from the 6369 * all_lock_classes list whose key or name is in the address range [start, 6370 * start + size). Move these lock classes to the zapped_classes list. Must 6371 * be called with the graph lock held. 6372 */ 6373 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6374 unsigned long size) 6375 { 6376 struct lock_class *class; 6377 struct hlist_head *head; 6378 int i; 6379 6380 /* Unhash all classes that were created by a module. */ 6381 for (i = 0; i < CLASSHASH_SIZE; i++) { 6382 head = classhash_table + i; 6383 hlist_for_each_entry_rcu(class, head, hash_entry) { 6384 if (!within(class->key, start, size) && 6385 !within(class->name, start, size)) 6386 continue; 6387 zap_class(pf, class); 6388 } 6389 } 6390 } 6391 6392 /* 6393 * Used in module.c to remove lock classes from memory that is going to be 6394 * freed; and possibly re-used by other modules. 6395 * 6396 * We will have had one synchronize_rcu() before getting here, so we're 6397 * guaranteed nobody will look up these exact classes -- they're properly dead 6398 * but still allocated. 6399 */ 6400 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6401 { 6402 struct pending_free *pf; 6403 unsigned long flags; 6404 bool need_callback; 6405 6406 init_data_structures_once(); 6407 6408 raw_local_irq_save(flags); 6409 lockdep_lock(); 6410 pf = get_pending_free(); 6411 __lockdep_free_key_range(pf, start, size); 6412 need_callback = prepare_call_rcu_zapped(pf); 6413 lockdep_unlock(); 6414 raw_local_irq_restore(flags); 6415 if (need_callback) 6416 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6417 /* 6418 * Wait for any possible iterators from look_up_lock_class() to pass 6419 * before continuing to free the memory they refer to. 6420 */ 6421 synchronize_rcu(); 6422 } 6423 6424 /* 6425 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6426 * Ignores debug_locks. Must only be used by the lockdep selftests. 6427 */ 6428 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6429 { 6430 struct pending_free *pf = delayed_free.pf; 6431 unsigned long flags; 6432 6433 init_data_structures_once(); 6434 6435 raw_local_irq_save(flags); 6436 lockdep_lock(); 6437 __lockdep_free_key_range(pf, start, size); 6438 __free_zapped_classes(pf); 6439 lockdep_unlock(); 6440 raw_local_irq_restore(flags); 6441 } 6442 6443 void lockdep_free_key_range(void *start, unsigned long size) 6444 { 6445 init_data_structures_once(); 6446 6447 if (inside_selftest()) 6448 lockdep_free_key_range_imm(start, size); 6449 else 6450 lockdep_free_key_range_reg(start, size); 6451 } 6452 6453 /* 6454 * Check whether any element of the @lock->class_cache[] array refers to a 6455 * registered lock class. The caller must hold either the graph lock or the 6456 * RCU read lock. 6457 */ 6458 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6459 { 6460 struct lock_class *class; 6461 struct hlist_head *head; 6462 int i, j; 6463 6464 for (i = 0; i < CLASSHASH_SIZE; i++) { 6465 head = classhash_table + i; 6466 hlist_for_each_entry_rcu(class, head, hash_entry) { 6467 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6468 if (lock->class_cache[j] == class) 6469 return true; 6470 } 6471 } 6472 return false; 6473 } 6474 6475 /* The caller must hold the graph lock. Does not sleep. */ 6476 static void __lockdep_reset_lock(struct pending_free *pf, 6477 struct lockdep_map *lock) 6478 { 6479 struct lock_class *class; 6480 int j; 6481 6482 /* 6483 * Remove all classes this lock might have: 6484 */ 6485 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6486 /* 6487 * If the class exists we look it up and zap it: 6488 */ 6489 class = look_up_lock_class(lock, j); 6490 if (class) 6491 zap_class(pf, class); 6492 } 6493 /* 6494 * Debug check: in the end all mapped classes should 6495 * be gone. 6496 */ 6497 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6498 debug_locks_off(); 6499 } 6500 6501 /* 6502 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6503 * released data structures from RCU context. 6504 */ 6505 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6506 { 6507 struct pending_free *pf; 6508 unsigned long flags; 6509 int locked; 6510 bool need_callback = false; 6511 6512 raw_local_irq_save(flags); 6513 locked = graph_lock(); 6514 if (!locked) 6515 goto out_irq; 6516 6517 pf = get_pending_free(); 6518 __lockdep_reset_lock(pf, lock); 6519 need_callback = prepare_call_rcu_zapped(pf); 6520 6521 graph_unlock(); 6522 out_irq: 6523 raw_local_irq_restore(flags); 6524 if (need_callback) 6525 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6526 } 6527 6528 /* 6529 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6530 * lockdep selftests. 6531 */ 6532 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6533 { 6534 struct pending_free *pf = delayed_free.pf; 6535 unsigned long flags; 6536 6537 raw_local_irq_save(flags); 6538 lockdep_lock(); 6539 __lockdep_reset_lock(pf, lock); 6540 __free_zapped_classes(pf); 6541 lockdep_unlock(); 6542 raw_local_irq_restore(flags); 6543 } 6544 6545 void lockdep_reset_lock(struct lockdep_map *lock) 6546 { 6547 init_data_structures_once(); 6548 6549 if (inside_selftest()) 6550 lockdep_reset_lock_imm(lock); 6551 else 6552 lockdep_reset_lock_reg(lock); 6553 } 6554 6555 /* 6556 * Unregister a dynamically allocated key. 6557 * 6558 * Unlike lockdep_register_key(), a search is always done to find a matching 6559 * key irrespective of debug_locks to avoid potential invalid access to freed 6560 * memory in lock_class entry. 6561 */ 6562 void lockdep_unregister_key(struct lock_class_key *key) 6563 { 6564 struct hlist_head *hash_head = keyhashentry(key); 6565 struct lock_class_key *k; 6566 struct pending_free *pf; 6567 unsigned long flags; 6568 bool found = false; 6569 bool need_callback = false; 6570 6571 might_sleep(); 6572 6573 if (WARN_ON_ONCE(static_obj(key))) 6574 return; 6575 6576 raw_local_irq_save(flags); 6577 lockdep_lock(); 6578 6579 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6580 if (k == key) { 6581 hlist_del_rcu(&k->hash_entry); 6582 found = true; 6583 break; 6584 } 6585 } 6586 WARN_ON_ONCE(!found && debug_locks); 6587 if (found) { 6588 pf = get_pending_free(); 6589 __lockdep_free_key_range(pf, key, 1); 6590 need_callback = prepare_call_rcu_zapped(pf); 6591 } 6592 lockdep_unlock(); 6593 raw_local_irq_restore(flags); 6594 6595 if (need_callback) 6596 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6597 6598 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6599 synchronize_rcu(); 6600 } 6601 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6602 6603 void __init lockdep_init(void) 6604 { 6605 pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6606 6607 pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6608 pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6609 pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6610 pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6611 pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6612 pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6613 pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6614 6615 pr_info(" memory used by lock dependency info: %zu kB\n", 6616 (sizeof(lock_classes) + 6617 sizeof(lock_classes_in_use) + 6618 sizeof(classhash_table) + 6619 sizeof(list_entries) + 6620 sizeof(list_entries_in_use) + 6621 sizeof(chainhash_table) + 6622 sizeof(delayed_free) 6623 #ifdef CONFIG_PROVE_LOCKING 6624 + sizeof(lock_cq) 6625 + sizeof(lock_chains) 6626 + sizeof(lock_chains_in_use) 6627 + sizeof(chain_hlocks) 6628 #endif 6629 ) / 1024 6630 ); 6631 6632 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6633 pr_info(" memory used for stack traces: %zu kB\n", 6634 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6635 ); 6636 #endif 6637 6638 pr_info(" per task-struct memory footprint: %zu bytes\n", 6639 sizeof(((struct task_struct *)NULL)->held_locks)); 6640 } 6641 6642 static void 6643 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6644 const void *mem_to, struct held_lock *hlock) 6645 { 6646 if (!debug_locks_off()) 6647 return; 6648 if (debug_locks_silent) 6649 return; 6650 6651 nbcon_cpu_emergency_enter(); 6652 6653 pr_warn("\n"); 6654 pr_warn("=========================\n"); 6655 pr_warn("WARNING: held lock freed!\n"); 6656 print_kernel_ident(); 6657 pr_warn("-------------------------\n"); 6658 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6659 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6660 print_lock(hlock); 6661 lockdep_print_held_locks(curr); 6662 6663 pr_warn("\nstack backtrace:\n"); 6664 dump_stack(); 6665 6666 nbcon_cpu_emergency_exit(); 6667 } 6668 6669 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6670 const void* lock_from, unsigned long lock_len) 6671 { 6672 return lock_from + lock_len <= mem_from || 6673 mem_from + mem_len <= lock_from; 6674 } 6675 6676 /* 6677 * Called when kernel memory is freed (or unmapped), or if a lock 6678 * is destroyed or reinitialized - this code checks whether there is 6679 * any held lock in the memory range of <from> to <to>: 6680 */ 6681 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6682 { 6683 struct task_struct *curr = current; 6684 struct held_lock *hlock; 6685 unsigned long flags; 6686 int i; 6687 6688 if (unlikely(!debug_locks)) 6689 return; 6690 6691 raw_local_irq_save(flags); 6692 for (i = 0; i < curr->lockdep_depth; i++) { 6693 hlock = curr->held_locks + i; 6694 6695 if (not_in_range(mem_from, mem_len, hlock->instance, 6696 sizeof(*hlock->instance))) 6697 continue; 6698 6699 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6700 break; 6701 } 6702 raw_local_irq_restore(flags); 6703 } 6704 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6705 6706 static void print_held_locks_bug(void) 6707 { 6708 if (!debug_locks_off()) 6709 return; 6710 if (debug_locks_silent) 6711 return; 6712 6713 nbcon_cpu_emergency_enter(); 6714 6715 pr_warn("\n"); 6716 pr_warn("====================================\n"); 6717 pr_warn("WARNING: %s/%d still has locks held!\n", 6718 current->comm, task_pid_nr(current)); 6719 print_kernel_ident(); 6720 pr_warn("------------------------------------\n"); 6721 lockdep_print_held_locks(current); 6722 pr_warn("\nstack backtrace:\n"); 6723 dump_stack(); 6724 6725 nbcon_cpu_emergency_exit(); 6726 } 6727 6728 void debug_check_no_locks_held(void) 6729 { 6730 if (unlikely(current->lockdep_depth > 0)) 6731 print_held_locks_bug(); 6732 } 6733 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6734 6735 #ifdef __KERNEL__ 6736 void debug_show_all_locks(void) 6737 { 6738 struct task_struct *g, *p; 6739 6740 if (unlikely(!debug_locks)) { 6741 pr_warn("INFO: lockdep is turned off.\n"); 6742 return; 6743 } 6744 pr_warn("\nShowing all locks held in the system:\n"); 6745 6746 rcu_read_lock(); 6747 for_each_process_thread(g, p) { 6748 if (!p->lockdep_depth) 6749 continue; 6750 lockdep_print_held_locks(p); 6751 touch_nmi_watchdog(); 6752 touch_all_softlockup_watchdogs(); 6753 } 6754 rcu_read_unlock(); 6755 6756 pr_warn("\n"); 6757 pr_warn("=============================================\n\n"); 6758 } 6759 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6760 #endif 6761 6762 /* 6763 * Careful: only use this function if you are sure that 6764 * the task cannot run in parallel! 6765 */ 6766 void debug_show_held_locks(struct task_struct *task) 6767 { 6768 if (unlikely(!debug_locks)) { 6769 printk("INFO: lockdep is turned off.\n"); 6770 return; 6771 } 6772 lockdep_print_held_locks(task); 6773 } 6774 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6775 6776 asmlinkage __visible void lockdep_sys_exit(void) 6777 { 6778 struct task_struct *curr = current; 6779 6780 if (unlikely(curr->lockdep_depth)) { 6781 if (!debug_locks_off()) 6782 return; 6783 nbcon_cpu_emergency_enter(); 6784 pr_warn("\n"); 6785 pr_warn("================================================\n"); 6786 pr_warn("WARNING: lock held when returning to user space!\n"); 6787 print_kernel_ident(); 6788 pr_warn("------------------------------------------------\n"); 6789 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6790 curr->comm, curr->pid); 6791 lockdep_print_held_locks(curr); 6792 nbcon_cpu_emergency_exit(); 6793 } 6794 6795 /* 6796 * The lock history for each syscall should be independent. So wipe the 6797 * slate clean on return to userspace. 6798 */ 6799 lockdep_invariant_state(false); 6800 } 6801 6802 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6803 { 6804 struct task_struct *curr = current; 6805 int dl = READ_ONCE(debug_locks); 6806 bool rcu = warn_rcu_enter(); 6807 6808 /* Note: the following can be executed concurrently, so be careful. */ 6809 nbcon_cpu_emergency_enter(); 6810 pr_warn("\n"); 6811 pr_warn("=============================\n"); 6812 pr_warn("WARNING: suspicious RCU usage\n"); 6813 print_kernel_ident(); 6814 pr_warn("-----------------------------\n"); 6815 pr_warn("%s:%d %s!\n", file, line, s); 6816 pr_warn("\nother info that might help us debug this:\n\n"); 6817 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6818 !rcu_lockdep_current_cpu_online() 6819 ? "RCU used illegally from offline CPU!\n" 6820 : "", 6821 rcu_scheduler_active, dl, 6822 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6823 6824 /* 6825 * If a CPU is in the RCU-free window in idle (ie: in the section 6826 * between ct_idle_enter() and ct_idle_exit(), then RCU 6827 * considers that CPU to be in an "extended quiescent state", 6828 * which means that RCU will be completely ignoring that CPU. 6829 * Therefore, rcu_read_lock() and friends have absolutely no 6830 * effect on a CPU running in that state. In other words, even if 6831 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6832 * delete data structures out from under it. RCU really has no 6833 * choice here: we need to keep an RCU-free window in idle where 6834 * the CPU may possibly enter into low power mode. This way we can 6835 * notice an extended quiescent state to other CPUs that started a grace 6836 * period. Otherwise we would delay any grace period as long as we run 6837 * in the idle task. 6838 * 6839 * So complain bitterly if someone does call rcu_read_lock(), 6840 * rcu_read_lock_bh() and so on from extended quiescent states. 6841 */ 6842 if (!rcu_is_watching()) 6843 pr_warn("RCU used illegally from extended quiescent state!\n"); 6844 6845 lockdep_print_held_locks(curr); 6846 pr_warn("\nstack backtrace:\n"); 6847 dump_stack(); 6848 nbcon_cpu_emergency_exit(); 6849 warn_rcu_exit(rcu); 6850 } 6851 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6852