xref: /linux/kernel/locking/lockdep.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60 
61 #include <asm/sections.h>
62 
63 #include "lockdep_internals.h"
64 
65 #include <trace/events/lock.h>
66 
67 #ifdef CONFIG_PROVE_LOCKING
68 static int prove_locking = 1;
69 module_param(prove_locking, int, 0644);
70 #else
71 #define prove_locking 0
72 #endif
73 
74 #ifdef CONFIG_LOCK_STAT
75 static int lock_stat = 1;
76 module_param(lock_stat, int, 0644);
77 #else
78 #define lock_stat 0
79 #endif
80 
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_lockdep_table[] = {
83 #ifdef CONFIG_PROVE_LOCKING
84 	{
85 		.procname       = "prove_locking",
86 		.data           = &prove_locking,
87 		.maxlen         = sizeof(int),
88 		.mode           = 0644,
89 		.proc_handler   = proc_dointvec,
90 	},
91 #endif /* CONFIG_PROVE_LOCKING */
92 #ifdef CONFIG_LOCK_STAT
93 	{
94 		.procname       = "lock_stat",
95 		.data           = &lock_stat,
96 		.maxlen         = sizeof(int),
97 		.mode           = 0644,
98 		.proc_handler   = proc_dointvec,
99 	},
100 #endif /* CONFIG_LOCK_STAT */
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 #ifdef CONFIG_PROVE_LOCKING
161 static inline bool lockdep_assert_locked(void)
162 {
163 	return DEBUG_LOCKS_WARN_ON(__owner != current);
164 }
165 #endif
166 
167 static struct task_struct *lockdep_selftest_task_struct;
168 
169 
170 static int graph_lock(void)
171 {
172 	lockdep_lock();
173 	/*
174 	 * Make sure that if another CPU detected a bug while
175 	 * walking the graph we dont change it (while the other
176 	 * CPU is busy printing out stuff with the graph lock
177 	 * dropped already)
178 	 */
179 	if (!debug_locks) {
180 		lockdep_unlock();
181 		return 0;
182 	}
183 	return 1;
184 }
185 
186 static inline void graph_unlock(void)
187 {
188 	lockdep_unlock();
189 }
190 
191 /*
192  * Turn lock debugging off and return with 0 if it was off already,
193  * and also release the graph lock:
194  */
195 static inline int debug_locks_off_graph_unlock(void)
196 {
197 	int ret = debug_locks_off();
198 
199 	lockdep_unlock();
200 
201 	return ret;
202 }
203 
204 unsigned long nr_list_entries;
205 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
206 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
207 
208 /*
209  * All data structures here are protected by the global debug_lock.
210  *
211  * nr_lock_classes is the number of elements of lock_classes[] that is
212  * in use.
213  */
214 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
215 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
216 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
217 unsigned long nr_lock_classes;
218 unsigned long nr_zapped_classes;
219 unsigned long max_lock_class_idx;
220 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
221 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
222 
223 static inline struct lock_class *hlock_class(struct held_lock *hlock)
224 {
225 	unsigned int class_idx = hlock->class_idx;
226 
227 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
228 	barrier();
229 
230 	if (!test_bit(class_idx, lock_classes_in_use)) {
231 		/*
232 		 * Someone passed in garbage, we give up.
233 		 */
234 		DEBUG_LOCKS_WARN_ON(1);
235 		return NULL;
236 	}
237 
238 	/*
239 	 * At this point, if the passed hlock->class_idx is still garbage,
240 	 * we just have to live with it
241 	 */
242 	return lock_classes + class_idx;
243 }
244 
245 #ifdef CONFIG_LOCK_STAT
246 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
247 
248 static inline u64 lockstat_clock(void)
249 {
250 	return local_clock();
251 }
252 
253 static int lock_point(unsigned long points[], unsigned long ip)
254 {
255 	int i;
256 
257 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
258 		if (points[i] == 0) {
259 			points[i] = ip;
260 			break;
261 		}
262 		if (points[i] == ip)
263 			break;
264 	}
265 
266 	return i;
267 }
268 
269 static void lock_time_inc(struct lock_time *lt, u64 time)
270 {
271 	if (time > lt->max)
272 		lt->max = time;
273 
274 	if (time < lt->min || !lt->nr)
275 		lt->min = time;
276 
277 	lt->total += time;
278 	lt->nr++;
279 }
280 
281 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
282 {
283 	if (!src->nr)
284 		return;
285 
286 	if (src->max > dst->max)
287 		dst->max = src->max;
288 
289 	if (src->min < dst->min || !dst->nr)
290 		dst->min = src->min;
291 
292 	dst->total += src->total;
293 	dst->nr += src->nr;
294 }
295 
296 struct lock_class_stats lock_stats(struct lock_class *class)
297 {
298 	struct lock_class_stats stats;
299 	int cpu, i;
300 
301 	memset(&stats, 0, sizeof(struct lock_class_stats));
302 	for_each_possible_cpu(cpu) {
303 		struct lock_class_stats *pcs =
304 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
305 
306 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
307 			stats.contention_point[i] += pcs->contention_point[i];
308 
309 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
310 			stats.contending_point[i] += pcs->contending_point[i];
311 
312 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
313 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
314 
315 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
316 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
317 
318 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
319 			stats.bounces[i] += pcs->bounces[i];
320 	}
321 
322 	return stats;
323 }
324 
325 void clear_lock_stats(struct lock_class *class)
326 {
327 	int cpu;
328 
329 	for_each_possible_cpu(cpu) {
330 		struct lock_class_stats *cpu_stats =
331 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
332 
333 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
334 	}
335 	memset(class->contention_point, 0, sizeof(class->contention_point));
336 	memset(class->contending_point, 0, sizeof(class->contending_point));
337 }
338 
339 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
340 {
341 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
342 }
343 
344 static void lock_release_holdtime(struct held_lock *hlock)
345 {
346 	struct lock_class_stats *stats;
347 	u64 holdtime;
348 
349 	if (!lock_stat)
350 		return;
351 
352 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
353 
354 	stats = get_lock_stats(hlock_class(hlock));
355 	if (hlock->read)
356 		lock_time_inc(&stats->read_holdtime, holdtime);
357 	else
358 		lock_time_inc(&stats->write_holdtime, holdtime);
359 }
360 #else
361 static inline void lock_release_holdtime(struct held_lock *hlock)
362 {
363 }
364 #endif
365 
366 /*
367  * We keep a global list of all lock classes. The list is only accessed with
368  * the lockdep spinlock lock held. free_lock_classes is a list with free
369  * elements. These elements are linked together by the lock_entry member in
370  * struct lock_class.
371  */
372 static LIST_HEAD(all_lock_classes);
373 static LIST_HEAD(free_lock_classes);
374 
375 /**
376  * struct pending_free - information about data structures about to be freed
377  * @zapped: Head of a list with struct lock_class elements.
378  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
379  *	are about to be freed.
380  */
381 struct pending_free {
382 	struct list_head zapped;
383 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
384 };
385 
386 /**
387  * struct delayed_free - data structures used for delayed freeing
388  *
389  * A data structure for delayed freeing of data structures that may be
390  * accessed by RCU readers at the time these were freed.
391  *
392  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
393  * @index:     Index of @pf to which freed data structures are added.
394  * @scheduled: Whether or not an RCU callback has been scheduled.
395  * @pf:        Array with information about data structures about to be freed.
396  */
397 static struct delayed_free {
398 	struct rcu_head		rcu_head;
399 	int			index;
400 	int			scheduled;
401 	struct pending_free	pf[2];
402 } delayed_free;
403 
404 /*
405  * The lockdep classes are in a hash-table as well, for fast lookup:
406  */
407 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
408 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
409 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
410 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
411 
412 static struct hlist_head classhash_table[CLASSHASH_SIZE];
413 
414 /*
415  * We put the lock dependency chains into a hash-table as well, to cache
416  * their existence:
417  */
418 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
419 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
420 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
421 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
422 
423 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
424 
425 /*
426  * the id of held_lock
427  */
428 static inline u16 hlock_id(struct held_lock *hlock)
429 {
430 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
431 
432 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
433 }
434 
435 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id)
436 {
437 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
438 }
439 
440 /*
441  * The hash key of the lock dependency chains is a hash itself too:
442  * it's a hash of all locks taken up to that lock, including that lock.
443  * It's a 64-bit hash, because it's important for the keys to be
444  * unique.
445  */
446 static inline u64 iterate_chain_key(u64 key, u32 idx)
447 {
448 	u32 k0 = key, k1 = key >> 32;
449 
450 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
451 
452 	return k0 | (u64)k1 << 32;
453 }
454 
455 void lockdep_init_task(struct task_struct *task)
456 {
457 	task->lockdep_depth = 0; /* no locks held yet */
458 	task->curr_chain_key = INITIAL_CHAIN_KEY;
459 	task->lockdep_recursion = 0;
460 }
461 
462 static __always_inline void lockdep_recursion_inc(void)
463 {
464 	__this_cpu_inc(lockdep_recursion);
465 }
466 
467 static __always_inline void lockdep_recursion_finish(void)
468 {
469 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
470 		__this_cpu_write(lockdep_recursion, 0);
471 }
472 
473 void lockdep_set_selftest_task(struct task_struct *task)
474 {
475 	lockdep_selftest_task_struct = task;
476 }
477 
478 /*
479  * Debugging switches:
480  */
481 
482 #define VERBOSE			0
483 #define VERY_VERBOSE		0
484 
485 #if VERBOSE
486 # define HARDIRQ_VERBOSE	1
487 # define SOFTIRQ_VERBOSE	1
488 #else
489 # define HARDIRQ_VERBOSE	0
490 # define SOFTIRQ_VERBOSE	0
491 #endif
492 
493 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
494 /*
495  * Quick filtering for interesting events:
496  */
497 static int class_filter(struct lock_class *class)
498 {
499 #if 0
500 	/* Example */
501 	if (class->name_version == 1 &&
502 			!strcmp(class->name, "lockname"))
503 		return 1;
504 	if (class->name_version == 1 &&
505 			!strcmp(class->name, "&struct->lockfield"))
506 		return 1;
507 #endif
508 	/* Filter everything else. 1 would be to allow everything else */
509 	return 0;
510 }
511 #endif
512 
513 static int verbose(struct lock_class *class)
514 {
515 #if VERBOSE
516 	return class_filter(class);
517 #endif
518 	return 0;
519 }
520 
521 static void print_lockdep_off(const char *bug_msg)
522 {
523 	printk(KERN_DEBUG "%s\n", bug_msg);
524 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
525 #ifdef CONFIG_LOCK_STAT
526 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
527 #endif
528 }
529 
530 unsigned long nr_stack_trace_entries;
531 
532 #ifdef CONFIG_PROVE_LOCKING
533 /**
534  * struct lock_trace - single stack backtrace
535  * @hash_entry:	Entry in a stack_trace_hash[] list.
536  * @hash:	jhash() of @entries.
537  * @nr_entries:	Number of entries in @entries.
538  * @entries:	Actual stack backtrace.
539  */
540 struct lock_trace {
541 	struct hlist_node	hash_entry;
542 	u32			hash;
543 	u32			nr_entries;
544 	unsigned long		entries[] __aligned(sizeof(unsigned long));
545 };
546 #define LOCK_TRACE_SIZE_IN_LONGS				\
547 	(sizeof(struct lock_trace) / sizeof(unsigned long))
548 /*
549  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
550  */
551 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
552 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
553 
554 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
555 {
556 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
557 		memcmp(t1->entries, t2->entries,
558 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
559 }
560 
561 static struct lock_trace *save_trace(void)
562 {
563 	struct lock_trace *trace, *t2;
564 	struct hlist_head *hash_head;
565 	u32 hash;
566 	int max_entries;
567 
568 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
569 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
570 
571 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
572 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
573 		LOCK_TRACE_SIZE_IN_LONGS;
574 
575 	if (max_entries <= 0) {
576 		if (!debug_locks_off_graph_unlock())
577 			return NULL;
578 
579 		nbcon_cpu_emergency_enter();
580 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
581 		dump_stack();
582 		nbcon_cpu_emergency_exit();
583 
584 		return NULL;
585 	}
586 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
587 
588 	hash = jhash(trace->entries, trace->nr_entries *
589 		     sizeof(trace->entries[0]), 0);
590 	trace->hash = hash;
591 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
592 	hlist_for_each_entry(t2, hash_head, hash_entry) {
593 		if (traces_identical(trace, t2))
594 			return t2;
595 	}
596 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
597 	hlist_add_head(&trace->hash_entry, hash_head);
598 
599 	return trace;
600 }
601 
602 /* Return the number of stack traces in the stack_trace[] array. */
603 u64 lockdep_stack_trace_count(void)
604 {
605 	struct lock_trace *trace;
606 	u64 c = 0;
607 	int i;
608 
609 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
610 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
611 			c++;
612 		}
613 	}
614 
615 	return c;
616 }
617 
618 /* Return the number of stack hash chains that have at least one stack trace. */
619 u64 lockdep_stack_hash_count(void)
620 {
621 	u64 c = 0;
622 	int i;
623 
624 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
625 		if (!hlist_empty(&stack_trace_hash[i]))
626 			c++;
627 
628 	return c;
629 }
630 #endif
631 
632 unsigned int nr_hardirq_chains;
633 unsigned int nr_softirq_chains;
634 unsigned int nr_process_chains;
635 unsigned int max_lockdep_depth;
636 
637 #ifdef CONFIG_DEBUG_LOCKDEP
638 /*
639  * Various lockdep statistics:
640  */
641 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
642 #endif
643 
644 #ifdef CONFIG_PROVE_LOCKING
645 /*
646  * Locking printouts:
647  */
648 
649 #define __USAGE(__STATE)						\
650 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
651 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
652 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
653 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
654 
655 static const char *usage_str[] =
656 {
657 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
658 #include "lockdep_states.h"
659 #undef LOCKDEP_STATE
660 	[LOCK_USED] = "INITIAL USE",
661 	[LOCK_USED_READ] = "INITIAL READ USE",
662 	/* abused as string storage for verify_lock_unused() */
663 	[LOCK_USAGE_STATES] = "IN-NMI",
664 };
665 #endif
666 
667 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
668 {
669 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
670 }
671 
672 static inline unsigned long lock_flag(enum lock_usage_bit bit)
673 {
674 	return 1UL << bit;
675 }
676 
677 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
678 {
679 	/*
680 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
681 	 * irq context), which is the safest usage category.
682 	 */
683 	char c = '.';
684 
685 	/*
686 	 * The order of the following usage checks matters, which will
687 	 * result in the outcome character as follows:
688 	 *
689 	 * - '+': irq is enabled and not in irq context
690 	 * - '-': in irq context and irq is disabled
691 	 * - '?': in irq context and irq is enabled
692 	 */
693 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
694 		c = '+';
695 		if (class->usage_mask & lock_flag(bit))
696 			c = '?';
697 	} else if (class->usage_mask & lock_flag(bit))
698 		c = '-';
699 
700 	return c;
701 }
702 
703 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
704 {
705 	int i = 0;
706 
707 #define LOCKDEP_STATE(__STATE) 						\
708 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
709 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
710 #include "lockdep_states.h"
711 #undef LOCKDEP_STATE
712 
713 	usage[i] = '\0';
714 }
715 
716 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
717 {
718 	char str[KSYM_NAME_LEN];
719 	const char *name;
720 
721 	name = class->name;
722 	if (!name) {
723 		name = __get_key_name(class->key, str);
724 		printk(KERN_CONT "%s", name);
725 	} else {
726 		printk(KERN_CONT "%s", name);
727 		if (class->name_version > 1)
728 			printk(KERN_CONT "#%d", class->name_version);
729 		if (class->subclass)
730 			printk(KERN_CONT "/%d", class->subclass);
731 		if (hlock && class->print_fn)
732 			class->print_fn(hlock->instance);
733 	}
734 }
735 
736 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
737 {
738 	char usage[LOCK_USAGE_CHARS];
739 
740 	get_usage_chars(class, usage);
741 
742 	printk(KERN_CONT " (");
743 	__print_lock_name(hlock, class);
744 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
745 			class->wait_type_outer ?: class->wait_type_inner,
746 			class->wait_type_inner);
747 }
748 
749 static void print_lockdep_cache(struct lockdep_map *lock)
750 {
751 	const char *name;
752 	char str[KSYM_NAME_LEN];
753 
754 	name = lock->name;
755 	if (!name)
756 		name = __get_key_name(lock->key->subkeys, str);
757 
758 	printk(KERN_CONT "%s", name);
759 }
760 
761 static void print_lock(struct held_lock *hlock)
762 {
763 	/*
764 	 * We can be called locklessly through debug_show_all_locks() so be
765 	 * extra careful, the hlock might have been released and cleared.
766 	 *
767 	 * If this indeed happens, lets pretend it does not hurt to continue
768 	 * to print the lock unless the hlock class_idx does not point to a
769 	 * registered class. The rationale here is: since we don't attempt
770 	 * to distinguish whether we are in this situation, if it just
771 	 * happened we can't count on class_idx to tell either.
772 	 */
773 	struct lock_class *lock = hlock_class(hlock);
774 
775 	if (!lock) {
776 		printk(KERN_CONT "<RELEASED>\n");
777 		return;
778 	}
779 
780 	printk(KERN_CONT "%px", hlock->instance);
781 	print_lock_name(hlock, lock);
782 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
783 }
784 
785 static void lockdep_print_held_locks(struct task_struct *p)
786 {
787 	int i, depth = READ_ONCE(p->lockdep_depth);
788 
789 	if (!depth)
790 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
791 	else
792 		printk("%d lock%s held by %s/%d:\n", depth,
793 		       str_plural(depth), p->comm, task_pid_nr(p));
794 	/*
795 	 * It's not reliable to print a task's held locks if it's not sleeping
796 	 * and it's not the current task.
797 	 */
798 	if (p != current && task_is_running(p))
799 		return;
800 	for (i = 0; i < depth; i++) {
801 		printk(" #%d: ", i);
802 		print_lock(p->held_locks + i);
803 	}
804 }
805 
806 static void print_kernel_ident(void)
807 {
808 	printk("%s %.*s %s\n", init_utsname()->release,
809 		(int)strcspn(init_utsname()->version, " "),
810 		init_utsname()->version,
811 		print_tainted());
812 }
813 
814 static int very_verbose(struct lock_class *class)
815 {
816 #if VERY_VERBOSE
817 	return class_filter(class);
818 #endif
819 	return 0;
820 }
821 
822 /*
823  * Is this the address of a static object:
824  */
825 #ifdef __KERNEL__
826 static int static_obj(const void *obj)
827 {
828 	unsigned long addr = (unsigned long) obj;
829 
830 	if (is_kernel_core_data(addr))
831 		return 1;
832 
833 	/*
834 	 * keys are allowed in the __ro_after_init section.
835 	 */
836 	if (is_kernel_rodata(addr))
837 		return 1;
838 
839 	/*
840 	 * in initdata section and used during bootup only?
841 	 * NOTE: On some platforms the initdata section is
842 	 * outside of the _stext ... _end range.
843 	 */
844 	if (system_state < SYSTEM_FREEING_INITMEM &&
845 		init_section_contains((void *)addr, 1))
846 		return 1;
847 
848 	/*
849 	 * in-kernel percpu var?
850 	 */
851 	if (is_kernel_percpu_address(addr))
852 		return 1;
853 
854 	/*
855 	 * module static or percpu var?
856 	 */
857 	return is_module_address(addr) || is_module_percpu_address(addr);
858 }
859 #endif
860 
861 /*
862  * To make lock name printouts unique, we calculate a unique
863  * class->name_version generation counter. The caller must hold the graph
864  * lock.
865  */
866 static int count_matching_names(struct lock_class *new_class)
867 {
868 	struct lock_class *class;
869 	int count = 0;
870 
871 	if (!new_class->name)
872 		return 0;
873 
874 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
875 		if (new_class->key - new_class->subclass == class->key)
876 			return class->name_version;
877 		if (class->name && !strcmp(class->name, new_class->name))
878 			count = max(count, class->name_version);
879 	}
880 
881 	return count + 1;
882 }
883 
884 /* used from NMI context -- must be lockless */
885 static noinstr struct lock_class *
886 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
887 {
888 	struct lockdep_subclass_key *key;
889 	struct hlist_head *hash_head;
890 	struct lock_class *class;
891 
892 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
893 		instrumentation_begin();
894 		debug_locks_off();
895 		nbcon_cpu_emergency_enter();
896 		printk(KERN_ERR
897 			"BUG: looking up invalid subclass: %u\n", subclass);
898 		printk(KERN_ERR
899 			"turning off the locking correctness validator.\n");
900 		dump_stack();
901 		nbcon_cpu_emergency_exit();
902 		instrumentation_end();
903 		return NULL;
904 	}
905 
906 	/*
907 	 * If it is not initialised then it has never been locked,
908 	 * so it won't be present in the hash table.
909 	 */
910 	if (unlikely(!lock->key))
911 		return NULL;
912 
913 	/*
914 	 * NOTE: the class-key must be unique. For dynamic locks, a static
915 	 * lock_class_key variable is passed in through the mutex_init()
916 	 * (or spin_lock_init()) call - which acts as the key. For static
917 	 * locks we use the lock object itself as the key.
918 	 */
919 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
920 			sizeof(struct lockdep_map));
921 
922 	key = lock->key->subkeys + subclass;
923 
924 	hash_head = classhashentry(key);
925 
926 	/*
927 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
928 	 */
929 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
930 		return NULL;
931 
932 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
933 		if (class->key == key) {
934 			/*
935 			 * Huh! same key, different name? Did someone trample
936 			 * on some memory? We're most confused.
937 			 */
938 			WARN_ONCE(class->name != lock->name &&
939 				  lock->key != &__lockdep_no_validate__,
940 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
941 				  lock->name, lock->key, class->name);
942 			return class;
943 		}
944 	}
945 
946 	return NULL;
947 }
948 
949 /*
950  * Static locks do not have their class-keys yet - for them the key is
951  * the lock object itself. If the lock is in the per cpu area, the
952  * canonical address of the lock (per cpu offset removed) is used.
953  */
954 static bool assign_lock_key(struct lockdep_map *lock)
955 {
956 	unsigned long can_addr, addr = (unsigned long)lock;
957 
958 #ifdef __KERNEL__
959 	/*
960 	 * lockdep_free_key_range() assumes that struct lock_class_key
961 	 * objects do not overlap. Since we use the address of lock
962 	 * objects as class key for static objects, check whether the
963 	 * size of lock_class_key objects does not exceed the size of
964 	 * the smallest lock object.
965 	 */
966 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
967 #endif
968 
969 	if (__is_kernel_percpu_address(addr, &can_addr))
970 		lock->key = (void *)can_addr;
971 	else if (__is_module_percpu_address(addr, &can_addr))
972 		lock->key = (void *)can_addr;
973 	else if (static_obj(lock))
974 		lock->key = (void *)lock;
975 	else {
976 		/* Debug-check: all keys must be persistent! */
977 		debug_locks_off();
978 		nbcon_cpu_emergency_enter();
979 		pr_err("INFO: trying to register non-static key.\n");
980 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
981 		pr_err("you didn't initialize this object before use?\n");
982 		pr_err("turning off the locking correctness validator.\n");
983 		dump_stack();
984 		nbcon_cpu_emergency_exit();
985 		return false;
986 	}
987 
988 	return true;
989 }
990 
991 #ifdef CONFIG_DEBUG_LOCKDEP
992 
993 /* Check whether element @e occurs in list @h */
994 static bool in_list(struct list_head *e, struct list_head *h)
995 {
996 	struct list_head *f;
997 
998 	list_for_each(f, h) {
999 		if (e == f)
1000 			return true;
1001 	}
1002 
1003 	return false;
1004 }
1005 
1006 /*
1007  * Check whether entry @e occurs in any of the locks_after or locks_before
1008  * lists.
1009  */
1010 static bool in_any_class_list(struct list_head *e)
1011 {
1012 	struct lock_class *class;
1013 	int i;
1014 
1015 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1016 		class = &lock_classes[i];
1017 		if (in_list(e, &class->locks_after) ||
1018 		    in_list(e, &class->locks_before))
1019 			return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1025 {
1026 	struct lock_list *e;
1027 
1028 	list_for_each_entry(e, h, entry) {
1029 		if (e->links_to != c) {
1030 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1031 			       c->name ? : "(?)",
1032 			       (unsigned long)(e - list_entries),
1033 			       e->links_to && e->links_to->name ?
1034 			       e->links_to->name : "(?)",
1035 			       e->class && e->class->name ? e->class->name :
1036 			       "(?)");
1037 			return false;
1038 		}
1039 	}
1040 	return true;
1041 }
1042 
1043 #ifdef CONFIG_PROVE_LOCKING
1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1045 #endif
1046 
1047 static bool check_lock_chain_key(struct lock_chain *chain)
1048 {
1049 #ifdef CONFIG_PROVE_LOCKING
1050 	u64 chain_key = INITIAL_CHAIN_KEY;
1051 	int i;
1052 
1053 	for (i = chain->base; i < chain->base + chain->depth; i++)
1054 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1055 	/*
1056 	 * The 'unsigned long long' casts avoid that a compiler warning
1057 	 * is reported when building tools/lib/lockdep.
1058 	 */
1059 	if (chain->chain_key != chain_key) {
1060 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1061 		       (unsigned long long)(chain - lock_chains),
1062 		       (unsigned long long)chain->chain_key,
1063 		       (unsigned long long)chain_key);
1064 		return false;
1065 	}
1066 #endif
1067 	return true;
1068 }
1069 
1070 static bool in_any_zapped_class_list(struct lock_class *class)
1071 {
1072 	struct pending_free *pf;
1073 	int i;
1074 
1075 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1076 		if (in_list(&class->lock_entry, &pf->zapped))
1077 			return true;
1078 	}
1079 
1080 	return false;
1081 }
1082 
1083 static bool __check_data_structures(void)
1084 {
1085 	struct lock_class *class;
1086 	struct lock_chain *chain;
1087 	struct hlist_head *head;
1088 	struct lock_list *e;
1089 	int i;
1090 
1091 	/* Check whether all classes occur in a lock list. */
1092 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1093 		class = &lock_classes[i];
1094 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1095 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1096 		    !in_any_zapped_class_list(class)) {
1097 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1098 			       class, class->name ? : "(?)");
1099 			return false;
1100 		}
1101 	}
1102 
1103 	/* Check whether all classes have valid lock lists. */
1104 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1105 		class = &lock_classes[i];
1106 		if (!class_lock_list_valid(class, &class->locks_before))
1107 			return false;
1108 		if (!class_lock_list_valid(class, &class->locks_after))
1109 			return false;
1110 	}
1111 
1112 	/* Check the chain_key of all lock chains. */
1113 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1114 		head = chainhash_table + i;
1115 		hlist_for_each_entry_rcu(chain, head, entry) {
1116 			if (!check_lock_chain_key(chain))
1117 				return false;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Check whether all list entries that are in use occur in a class
1123 	 * lock list.
1124 	 */
1125 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1126 		e = list_entries + i;
1127 		if (!in_any_class_list(&e->entry)) {
1128 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1129 			       (unsigned int)(e - list_entries),
1130 			       e->class->name ? : "(?)",
1131 			       e->links_to->name ? : "(?)");
1132 			return false;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Check whether all list entries that are not in use do not occur in
1138 	 * a class lock list.
1139 	 */
1140 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1141 		e = list_entries + i;
1142 		if (in_any_class_list(&e->entry)) {
1143 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1144 			       (unsigned int)(e - list_entries),
1145 			       e->class && e->class->name ? e->class->name :
1146 			       "(?)",
1147 			       e->links_to && e->links_to->name ?
1148 			       e->links_to->name : "(?)");
1149 			return false;
1150 		}
1151 	}
1152 
1153 	return true;
1154 }
1155 
1156 int check_consistency = 0;
1157 module_param(check_consistency, int, 0644);
1158 
1159 static void check_data_structures(void)
1160 {
1161 	static bool once = false;
1162 
1163 	if (check_consistency && !once) {
1164 		if (!__check_data_structures()) {
1165 			once = true;
1166 			WARN_ON(once);
1167 		}
1168 	}
1169 }
1170 
1171 #else /* CONFIG_DEBUG_LOCKDEP */
1172 
1173 static inline void check_data_structures(void) { }
1174 
1175 #endif /* CONFIG_DEBUG_LOCKDEP */
1176 
1177 static void init_chain_block_buckets(void);
1178 
1179 /*
1180  * Initialize the lock_classes[] array elements, the free_lock_classes list
1181  * and also the delayed_free structure.
1182  */
1183 static void init_data_structures_once(void)
1184 {
1185 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1186 	int i;
1187 
1188 	if (likely(rcu_head_initialized))
1189 		return;
1190 
1191 	if (system_state >= SYSTEM_SCHEDULING) {
1192 		init_rcu_head(&delayed_free.rcu_head);
1193 		rcu_head_initialized = true;
1194 	}
1195 
1196 	if (ds_initialized)
1197 		return;
1198 
1199 	ds_initialized = true;
1200 
1201 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1202 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1203 
1204 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1205 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1206 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1207 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1208 	}
1209 	init_chain_block_buckets();
1210 }
1211 
1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1213 {
1214 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1215 
1216 	return lock_keys_hash + hash;
1217 }
1218 
1219 /* Register a dynamically allocated key. */
1220 void lockdep_register_key(struct lock_class_key *key)
1221 {
1222 	struct hlist_head *hash_head;
1223 	struct lock_class_key *k;
1224 	unsigned long flags;
1225 
1226 	if (WARN_ON_ONCE(static_obj(key)))
1227 		return;
1228 	hash_head = keyhashentry(key);
1229 
1230 	raw_local_irq_save(flags);
1231 	if (!graph_lock())
1232 		goto restore_irqs;
1233 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234 		if (WARN_ON_ONCE(k == key))
1235 			goto out_unlock;
1236 	}
1237 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1238 out_unlock:
1239 	graph_unlock();
1240 restore_irqs:
1241 	raw_local_irq_restore(flags);
1242 }
1243 EXPORT_SYMBOL_GPL(lockdep_register_key);
1244 
1245 /* Check whether a key has been registered as a dynamic key. */
1246 static bool is_dynamic_key(const struct lock_class_key *key)
1247 {
1248 	struct hlist_head *hash_head;
1249 	struct lock_class_key *k;
1250 	bool found = false;
1251 
1252 	if (WARN_ON_ONCE(static_obj(key)))
1253 		return false;
1254 
1255 	/*
1256 	 * If lock debugging is disabled lock_keys_hash[] may contain
1257 	 * pointers to memory that has already been freed. Avoid triggering
1258 	 * a use-after-free in that case by returning early.
1259 	 */
1260 	if (!debug_locks)
1261 		return true;
1262 
1263 	hash_head = keyhashentry(key);
1264 
1265 	rcu_read_lock();
1266 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1267 		if (k == key) {
1268 			found = true;
1269 			break;
1270 		}
1271 	}
1272 	rcu_read_unlock();
1273 
1274 	return found;
1275 }
1276 
1277 /*
1278  * Register a lock's class in the hash-table, if the class is not present
1279  * yet. Otherwise we look it up. We cache the result in the lock object
1280  * itself, so actual lookup of the hash should be once per lock object.
1281  */
1282 static struct lock_class *
1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1284 {
1285 	struct lockdep_subclass_key *key;
1286 	struct hlist_head *hash_head;
1287 	struct lock_class *class;
1288 	int idx;
1289 
1290 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1291 
1292 	class = look_up_lock_class(lock, subclass);
1293 	if (likely(class))
1294 		goto out_set_class_cache;
1295 
1296 	if (!lock->key) {
1297 		if (!assign_lock_key(lock))
1298 			return NULL;
1299 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1300 		return NULL;
1301 	}
1302 
1303 	key = lock->key->subkeys + subclass;
1304 	hash_head = classhashentry(key);
1305 
1306 	if (!graph_lock()) {
1307 		return NULL;
1308 	}
1309 	/*
1310 	 * We have to do the hash-walk again, to avoid races
1311 	 * with another CPU:
1312 	 */
1313 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1314 		if (class->key == key)
1315 			goto out_unlock_set;
1316 	}
1317 
1318 	init_data_structures_once();
1319 
1320 	/* Allocate a new lock class and add it to the hash. */
1321 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1322 					 lock_entry);
1323 	if (!class) {
1324 		if (!debug_locks_off_graph_unlock()) {
1325 			return NULL;
1326 		}
1327 
1328 		nbcon_cpu_emergency_enter();
1329 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1330 		dump_stack();
1331 		nbcon_cpu_emergency_exit();
1332 		return NULL;
1333 	}
1334 	nr_lock_classes++;
1335 	__set_bit(class - lock_classes, lock_classes_in_use);
1336 	debug_atomic_inc(nr_unused_locks);
1337 	class->key = key;
1338 	class->name = lock->name;
1339 	class->subclass = subclass;
1340 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1341 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1342 	class->name_version = count_matching_names(class);
1343 	class->wait_type_inner = lock->wait_type_inner;
1344 	class->wait_type_outer = lock->wait_type_outer;
1345 	class->lock_type = lock->lock_type;
1346 	/*
1347 	 * We use RCU's safe list-add method to make
1348 	 * parallel walking of the hash-list safe:
1349 	 */
1350 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1351 	/*
1352 	 * Remove the class from the free list and add it to the global list
1353 	 * of classes.
1354 	 */
1355 	list_move_tail(&class->lock_entry, &all_lock_classes);
1356 	idx = class - lock_classes;
1357 	if (idx > max_lock_class_idx)
1358 		max_lock_class_idx = idx;
1359 
1360 	if (verbose(class)) {
1361 		graph_unlock();
1362 
1363 		nbcon_cpu_emergency_enter();
1364 		printk("\nnew class %px: %s", class->key, class->name);
1365 		if (class->name_version > 1)
1366 			printk(KERN_CONT "#%d", class->name_version);
1367 		printk(KERN_CONT "\n");
1368 		dump_stack();
1369 		nbcon_cpu_emergency_exit();
1370 
1371 		if (!graph_lock()) {
1372 			return NULL;
1373 		}
1374 	}
1375 out_unlock_set:
1376 	graph_unlock();
1377 
1378 out_set_class_cache:
1379 	if (!subclass || force)
1380 		lock->class_cache[0] = class;
1381 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1382 		lock->class_cache[subclass] = class;
1383 
1384 	/*
1385 	 * Hash collision, did we smoke some? We found a class with a matching
1386 	 * hash but the subclass -- which is hashed in -- didn't match.
1387 	 */
1388 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1389 		return NULL;
1390 
1391 	return class;
1392 }
1393 
1394 #ifdef CONFIG_PROVE_LOCKING
1395 /*
1396  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1397  * with NULL on failure)
1398  */
1399 static struct lock_list *alloc_list_entry(void)
1400 {
1401 	int idx = find_first_zero_bit(list_entries_in_use,
1402 				      ARRAY_SIZE(list_entries));
1403 
1404 	if (idx >= ARRAY_SIZE(list_entries)) {
1405 		if (!debug_locks_off_graph_unlock())
1406 			return NULL;
1407 
1408 		nbcon_cpu_emergency_enter();
1409 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1410 		dump_stack();
1411 		nbcon_cpu_emergency_exit();
1412 		return NULL;
1413 	}
1414 	nr_list_entries++;
1415 	__set_bit(idx, list_entries_in_use);
1416 	return list_entries + idx;
1417 }
1418 
1419 /*
1420  * Add a new dependency to the head of the list:
1421  */
1422 static int add_lock_to_list(struct lock_class *this,
1423 			    struct lock_class *links_to, struct list_head *head,
1424 			    u16 distance, u8 dep,
1425 			    const struct lock_trace *trace)
1426 {
1427 	struct lock_list *entry;
1428 	/*
1429 	 * Lock not present yet - get a new dependency struct and
1430 	 * add it to the list:
1431 	 */
1432 	entry = alloc_list_entry();
1433 	if (!entry)
1434 		return 0;
1435 
1436 	entry->class = this;
1437 	entry->links_to = links_to;
1438 	entry->dep = dep;
1439 	entry->distance = distance;
1440 	entry->trace = trace;
1441 	/*
1442 	 * Both allocation and removal are done under the graph lock; but
1443 	 * iteration is under RCU-sched; see look_up_lock_class() and
1444 	 * lockdep_free_key_range().
1445 	 */
1446 	list_add_tail_rcu(&entry->entry, head);
1447 
1448 	return 1;
1449 }
1450 
1451 /*
1452  * For good efficiency of modular, we use power of 2
1453  */
1454 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1455 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1456 
1457 /*
1458  * The circular_queue and helpers are used to implement graph
1459  * breadth-first search (BFS) algorithm, by which we can determine
1460  * whether there is a path from a lock to another. In deadlock checks,
1461  * a path from the next lock to be acquired to a previous held lock
1462  * indicates that adding the <prev> -> <next> lock dependency will
1463  * produce a circle in the graph. Breadth-first search instead of
1464  * depth-first search is used in order to find the shortest (circular)
1465  * path.
1466  */
1467 struct circular_queue {
1468 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1469 	unsigned int  front, rear;
1470 };
1471 
1472 static struct circular_queue lock_cq;
1473 
1474 unsigned int max_bfs_queue_depth;
1475 
1476 static unsigned int lockdep_dependency_gen_id;
1477 
1478 static inline void __cq_init(struct circular_queue *cq)
1479 {
1480 	cq->front = cq->rear = 0;
1481 	lockdep_dependency_gen_id++;
1482 }
1483 
1484 static inline int __cq_empty(struct circular_queue *cq)
1485 {
1486 	return (cq->front == cq->rear);
1487 }
1488 
1489 static inline int __cq_full(struct circular_queue *cq)
1490 {
1491 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1492 }
1493 
1494 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1495 {
1496 	if (__cq_full(cq))
1497 		return -1;
1498 
1499 	cq->element[cq->rear] = elem;
1500 	cq->rear = (cq->rear + 1) & CQ_MASK;
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Dequeue an element from the circular_queue, return a lock_list if
1506  * the queue is not empty, or NULL if otherwise.
1507  */
1508 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1509 {
1510 	struct lock_list * lock;
1511 
1512 	if (__cq_empty(cq))
1513 		return NULL;
1514 
1515 	lock = cq->element[cq->front];
1516 	cq->front = (cq->front + 1) & CQ_MASK;
1517 
1518 	return lock;
1519 }
1520 
1521 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1522 {
1523 	return (cq->rear - cq->front) & CQ_MASK;
1524 }
1525 
1526 static inline void mark_lock_accessed(struct lock_list *lock)
1527 {
1528 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1529 }
1530 
1531 static inline void visit_lock_entry(struct lock_list *lock,
1532 				    struct lock_list *parent)
1533 {
1534 	lock->parent = parent;
1535 }
1536 
1537 static inline unsigned long lock_accessed(struct lock_list *lock)
1538 {
1539 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1540 }
1541 
1542 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1543 {
1544 	return child->parent;
1545 }
1546 
1547 static inline int get_lock_depth(struct lock_list *child)
1548 {
1549 	int depth = 0;
1550 	struct lock_list *parent;
1551 
1552 	while ((parent = get_lock_parent(child))) {
1553 		child = parent;
1554 		depth++;
1555 	}
1556 	return depth;
1557 }
1558 
1559 /*
1560  * Return the forward or backward dependency list.
1561  *
1562  * @lock:   the lock_list to get its class's dependency list
1563  * @offset: the offset to struct lock_class to determine whether it is
1564  *          locks_after or locks_before
1565  */
1566 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1567 {
1568 	void *lock_class = lock->class;
1569 
1570 	return lock_class + offset;
1571 }
1572 /*
1573  * Return values of a bfs search:
1574  *
1575  * BFS_E* indicates an error
1576  * BFS_R* indicates a result (match or not)
1577  *
1578  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1579  *
1580  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1581  *
1582  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1583  *             *@target_entry.
1584  *
1585  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1586  *               _unchanged_.
1587  */
1588 enum bfs_result {
1589 	BFS_EINVALIDNODE = -2,
1590 	BFS_EQUEUEFULL = -1,
1591 	BFS_RMATCH = 0,
1592 	BFS_RNOMATCH = 1,
1593 };
1594 
1595 /*
1596  * bfs_result < 0 means error
1597  */
1598 static inline bool bfs_error(enum bfs_result res)
1599 {
1600 	return res < 0;
1601 }
1602 
1603 /*
1604  * DEP_*_BIT in lock_list::dep
1605  *
1606  * For dependency @prev -> @next:
1607  *
1608  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1609  *       (->read == 2)
1610  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1611  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1612  *   EN: @prev is exclusive locker and @next is non-recursive locker
1613  *
1614  * Note that we define the value of DEP_*_BITs so that:
1615  *   bit0 is prev->read == 0
1616  *   bit1 is next->read != 2
1617  */
1618 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1619 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1620 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1621 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1622 
1623 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1624 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1625 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1626 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1627 
1628 static inline unsigned int
1629 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1630 {
1631 	return (prev->read == 0) + ((next->read != 2) << 1);
1632 }
1633 
1634 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1635 {
1636 	return 1U << __calc_dep_bit(prev, next);
1637 }
1638 
1639 /*
1640  * calculate the dep_bit for backwards edges. We care about whether @prev is
1641  * shared and whether @next is recursive.
1642  */
1643 static inline unsigned int
1644 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1645 {
1646 	return (next->read != 2) + ((prev->read == 0) << 1);
1647 }
1648 
1649 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1650 {
1651 	return 1U << __calc_dep_bitb(prev, next);
1652 }
1653 
1654 /*
1655  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1656  * search.
1657  */
1658 static inline void __bfs_init_root(struct lock_list *lock,
1659 				   struct lock_class *class)
1660 {
1661 	lock->class = class;
1662 	lock->parent = NULL;
1663 	lock->only_xr = 0;
1664 }
1665 
1666 /*
1667  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1668  * root for a BFS search.
1669  *
1670  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1671  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1672  * and -(S*)->.
1673  */
1674 static inline void bfs_init_root(struct lock_list *lock,
1675 				 struct held_lock *hlock)
1676 {
1677 	__bfs_init_root(lock, hlock_class(hlock));
1678 	lock->only_xr = (hlock->read == 2);
1679 }
1680 
1681 /*
1682  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1683  *
1684  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1685  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1686  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1687  */
1688 static inline void bfs_init_rootb(struct lock_list *lock,
1689 				  struct held_lock *hlock)
1690 {
1691 	__bfs_init_root(lock, hlock_class(hlock));
1692 	lock->only_xr = (hlock->read != 0);
1693 }
1694 
1695 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1696 {
1697 	if (!lock || !lock->parent)
1698 		return NULL;
1699 
1700 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1701 				     &lock->entry, struct lock_list, entry);
1702 }
1703 
1704 /*
1705  * Breadth-First Search to find a strong path in the dependency graph.
1706  *
1707  * @source_entry: the source of the path we are searching for.
1708  * @data: data used for the second parameter of @match function
1709  * @match: match function for the search
1710  * @target_entry: pointer to the target of a matched path
1711  * @offset: the offset to struct lock_class to determine whether it is
1712  *          locks_after or locks_before
1713  *
1714  * We may have multiple edges (considering different kinds of dependencies,
1715  * e.g. ER and SN) between two nodes in the dependency graph. But
1716  * only the strong dependency path in the graph is relevant to deadlocks. A
1717  * strong dependency path is a dependency path that doesn't have two adjacent
1718  * dependencies as -(*R)-> -(S*)->, please see:
1719  *
1720  *         Documentation/locking/lockdep-design.rst
1721  *
1722  * for more explanation of the definition of strong dependency paths
1723  *
1724  * In __bfs(), we only traverse in the strong dependency path:
1725  *
1726  *     In lock_list::only_xr, we record whether the previous dependency only
1727  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1728  *     filter out any -(S*)-> in the current dependency and after that, the
1729  *     ->only_xr is set according to whether we only have -(*R)-> left.
1730  */
1731 static enum bfs_result __bfs(struct lock_list *source_entry,
1732 			     void *data,
1733 			     bool (*match)(struct lock_list *entry, void *data),
1734 			     bool (*skip)(struct lock_list *entry, void *data),
1735 			     struct lock_list **target_entry,
1736 			     int offset)
1737 {
1738 	struct circular_queue *cq = &lock_cq;
1739 	struct lock_list *lock = NULL;
1740 	struct lock_list *entry;
1741 	struct list_head *head;
1742 	unsigned int cq_depth;
1743 	bool first;
1744 
1745 	lockdep_assert_locked();
1746 
1747 	__cq_init(cq);
1748 	__cq_enqueue(cq, source_entry);
1749 
1750 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1751 		if (!lock->class)
1752 			return BFS_EINVALIDNODE;
1753 
1754 		/*
1755 		 * Step 1: check whether we already finish on this one.
1756 		 *
1757 		 * If we have visited all the dependencies from this @lock to
1758 		 * others (iow, if we have visited all lock_list entries in
1759 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1760 		 * and visit all the dependencies in the list and mark this
1761 		 * list accessed.
1762 		 */
1763 		if (lock_accessed(lock))
1764 			continue;
1765 		else
1766 			mark_lock_accessed(lock);
1767 
1768 		/*
1769 		 * Step 2: check whether prev dependency and this form a strong
1770 		 *         dependency path.
1771 		 */
1772 		if (lock->parent) { /* Parent exists, check prev dependency */
1773 			u8 dep = lock->dep;
1774 			bool prev_only_xr = lock->parent->only_xr;
1775 
1776 			/*
1777 			 * Mask out all -(S*)-> if we only have *R in previous
1778 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1779 			 * dependency.
1780 			 */
1781 			if (prev_only_xr)
1782 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1783 
1784 			/* If nothing left, we skip */
1785 			if (!dep)
1786 				continue;
1787 
1788 			/* If there are only -(*R)-> left, set that for the next step */
1789 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1790 		}
1791 
1792 		/*
1793 		 * Step 3: we haven't visited this and there is a strong
1794 		 *         dependency path to this, so check with @match.
1795 		 *         If @skip is provide and returns true, we skip this
1796 		 *         lock (and any path this lock is in).
1797 		 */
1798 		if (skip && skip(lock, data))
1799 			continue;
1800 
1801 		if (match(lock, data)) {
1802 			*target_entry = lock;
1803 			return BFS_RMATCH;
1804 		}
1805 
1806 		/*
1807 		 * Step 4: if not match, expand the path by adding the
1808 		 *         forward or backwards dependencies in the search
1809 		 *
1810 		 */
1811 		first = true;
1812 		head = get_dep_list(lock, offset);
1813 		list_for_each_entry_rcu(entry, head, entry) {
1814 			visit_lock_entry(entry, lock);
1815 
1816 			/*
1817 			 * Note we only enqueue the first of the list into the
1818 			 * queue, because we can always find a sibling
1819 			 * dependency from one (see __bfs_next()), as a result
1820 			 * the space of queue is saved.
1821 			 */
1822 			if (!first)
1823 				continue;
1824 
1825 			first = false;
1826 
1827 			if (__cq_enqueue(cq, entry))
1828 				return BFS_EQUEUEFULL;
1829 
1830 			cq_depth = __cq_get_elem_count(cq);
1831 			if (max_bfs_queue_depth < cq_depth)
1832 				max_bfs_queue_depth = cq_depth;
1833 		}
1834 	}
1835 
1836 	return BFS_RNOMATCH;
1837 }
1838 
1839 static inline enum bfs_result
1840 __bfs_forwards(struct lock_list *src_entry,
1841 	       void *data,
1842 	       bool (*match)(struct lock_list *entry, void *data),
1843 	       bool (*skip)(struct lock_list *entry, void *data),
1844 	       struct lock_list **target_entry)
1845 {
1846 	return __bfs(src_entry, data, match, skip, target_entry,
1847 		     offsetof(struct lock_class, locks_after));
1848 
1849 }
1850 
1851 static inline enum bfs_result
1852 __bfs_backwards(struct lock_list *src_entry,
1853 		void *data,
1854 		bool (*match)(struct lock_list *entry, void *data),
1855 	       bool (*skip)(struct lock_list *entry, void *data),
1856 		struct lock_list **target_entry)
1857 {
1858 	return __bfs(src_entry, data, match, skip, target_entry,
1859 		     offsetof(struct lock_class, locks_before));
1860 
1861 }
1862 
1863 static void print_lock_trace(const struct lock_trace *trace,
1864 			     unsigned int spaces)
1865 {
1866 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1867 }
1868 
1869 /*
1870  * Print a dependency chain entry (this is only done when a deadlock
1871  * has been detected):
1872  */
1873 static noinline void
1874 print_circular_bug_entry(struct lock_list *target, int depth)
1875 {
1876 	if (debug_locks_silent)
1877 		return;
1878 	printk("\n-> #%u", depth);
1879 	print_lock_name(NULL, target->class);
1880 	printk(KERN_CONT ":\n");
1881 	print_lock_trace(target->trace, 6);
1882 }
1883 
1884 static void
1885 print_circular_lock_scenario(struct held_lock *src,
1886 			     struct held_lock *tgt,
1887 			     struct lock_list *prt)
1888 {
1889 	struct lock_class *source = hlock_class(src);
1890 	struct lock_class *target = hlock_class(tgt);
1891 	struct lock_class *parent = prt->class;
1892 	int src_read = src->read;
1893 	int tgt_read = tgt->read;
1894 
1895 	/*
1896 	 * A direct locking problem where unsafe_class lock is taken
1897 	 * directly by safe_class lock, then all we need to show
1898 	 * is the deadlock scenario, as it is obvious that the
1899 	 * unsafe lock is taken under the safe lock.
1900 	 *
1901 	 * But if there is a chain instead, where the safe lock takes
1902 	 * an intermediate lock (middle_class) where this lock is
1903 	 * not the same as the safe lock, then the lock chain is
1904 	 * used to describe the problem. Otherwise we would need
1905 	 * to show a different CPU case for each link in the chain
1906 	 * from the safe_class lock to the unsafe_class lock.
1907 	 */
1908 	if (parent != source) {
1909 		printk("Chain exists of:\n  ");
1910 		__print_lock_name(src, source);
1911 		printk(KERN_CONT " --> ");
1912 		__print_lock_name(NULL, parent);
1913 		printk(KERN_CONT " --> ");
1914 		__print_lock_name(tgt, target);
1915 		printk(KERN_CONT "\n\n");
1916 	}
1917 
1918 	printk(" Possible unsafe locking scenario:\n\n");
1919 	printk("       CPU0                    CPU1\n");
1920 	printk("       ----                    ----\n");
1921 	if (tgt_read != 0)
1922 		printk("  rlock(");
1923 	else
1924 		printk("  lock(");
1925 	__print_lock_name(tgt, target);
1926 	printk(KERN_CONT ");\n");
1927 	printk("                               lock(");
1928 	__print_lock_name(NULL, parent);
1929 	printk(KERN_CONT ");\n");
1930 	printk("                               lock(");
1931 	__print_lock_name(tgt, target);
1932 	printk(KERN_CONT ");\n");
1933 	if (src_read != 0)
1934 		printk("  rlock(");
1935 	else if (src->sync)
1936 		printk("  sync(");
1937 	else
1938 		printk("  lock(");
1939 	__print_lock_name(src, source);
1940 	printk(KERN_CONT ");\n");
1941 	printk("\n *** DEADLOCK ***\n\n");
1942 }
1943 
1944 /*
1945  * When a circular dependency is detected, print the
1946  * header first:
1947  */
1948 static noinline void
1949 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1950 			struct held_lock *check_src,
1951 			struct held_lock *check_tgt)
1952 {
1953 	struct task_struct *curr = current;
1954 
1955 	if (debug_locks_silent)
1956 		return;
1957 
1958 	pr_warn("\n");
1959 	pr_warn("======================================================\n");
1960 	pr_warn("WARNING: possible circular locking dependency detected\n");
1961 	print_kernel_ident();
1962 	pr_warn("------------------------------------------------------\n");
1963 	pr_warn("%s/%d is trying to acquire lock:\n",
1964 		curr->comm, task_pid_nr(curr));
1965 	print_lock(check_src);
1966 
1967 	pr_warn("\nbut task is already holding lock:\n");
1968 
1969 	print_lock(check_tgt);
1970 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1971 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1972 
1973 	print_circular_bug_entry(entry, depth);
1974 }
1975 
1976 /*
1977  * We are about to add A -> B into the dependency graph, and in __bfs() a
1978  * strong dependency path A -> .. -> B is found: hlock_class equals
1979  * entry->class.
1980  *
1981  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1982  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1983  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1984  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1985  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1986  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1987  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1988  *
1989  * We need to make sure both the start and the end of A -> .. -> B is not
1990  * weaker than A -> B. For the start part, please see the comment in
1991  * check_redundant(). For the end part, we need:
1992  *
1993  * Either
1994  *
1995  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1996  *
1997  * or
1998  *
1999  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
2000  *
2001  */
2002 static inline bool hlock_equal(struct lock_list *entry, void *data)
2003 {
2004 	struct held_lock *hlock = (struct held_lock *)data;
2005 
2006 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2007 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2008 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2009 }
2010 
2011 /*
2012  * We are about to add B -> A into the dependency graph, and in __bfs() a
2013  * strong dependency path A -> .. -> B is found: hlock_class equals
2014  * entry->class.
2015  *
2016  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2017  * dependency cycle, that means:
2018  *
2019  * Either
2020  *
2021  *     a) B -> A is -(E*)->
2022  *
2023  * or
2024  *
2025  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2026  *
2027  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2028  */
2029 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2030 {
2031 	struct held_lock *hlock = (struct held_lock *)data;
2032 
2033 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2034 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2035 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2036 }
2037 
2038 static noinline void print_circular_bug(struct lock_list *this,
2039 				struct lock_list *target,
2040 				struct held_lock *check_src,
2041 				struct held_lock *check_tgt)
2042 {
2043 	struct task_struct *curr = current;
2044 	struct lock_list *parent;
2045 	struct lock_list *first_parent;
2046 	int depth;
2047 
2048 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2049 		return;
2050 
2051 	this->trace = save_trace();
2052 	if (!this->trace)
2053 		return;
2054 
2055 	depth = get_lock_depth(target);
2056 
2057 	nbcon_cpu_emergency_enter();
2058 
2059 	print_circular_bug_header(target, depth, check_src, check_tgt);
2060 
2061 	parent = get_lock_parent(target);
2062 	first_parent = parent;
2063 
2064 	while (parent) {
2065 		print_circular_bug_entry(parent, --depth);
2066 		parent = get_lock_parent(parent);
2067 	}
2068 
2069 	printk("\nother info that might help us debug this:\n\n");
2070 	print_circular_lock_scenario(check_src, check_tgt,
2071 				     first_parent);
2072 
2073 	lockdep_print_held_locks(curr);
2074 
2075 	printk("\nstack backtrace:\n");
2076 	dump_stack();
2077 
2078 	nbcon_cpu_emergency_exit();
2079 }
2080 
2081 static noinline void print_bfs_bug(int ret)
2082 {
2083 	if (!debug_locks_off_graph_unlock())
2084 		return;
2085 
2086 	/*
2087 	 * Breadth-first-search failed, graph got corrupted?
2088 	 */
2089 	if (ret == BFS_EQUEUEFULL)
2090 		pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2091 
2092 	WARN(1, "lockdep bfs error:%d\n", ret);
2093 }
2094 
2095 static bool noop_count(struct lock_list *entry, void *data)
2096 {
2097 	(*(unsigned long *)data)++;
2098 	return false;
2099 }
2100 
2101 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2102 {
2103 	unsigned long  count = 0;
2104 	struct lock_list *target_entry;
2105 
2106 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2107 
2108 	return count;
2109 }
2110 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2111 {
2112 	unsigned long ret, flags;
2113 	struct lock_list this;
2114 
2115 	__bfs_init_root(&this, class);
2116 
2117 	raw_local_irq_save(flags);
2118 	lockdep_lock();
2119 	ret = __lockdep_count_forward_deps(&this);
2120 	lockdep_unlock();
2121 	raw_local_irq_restore(flags);
2122 
2123 	return ret;
2124 }
2125 
2126 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2127 {
2128 	unsigned long  count = 0;
2129 	struct lock_list *target_entry;
2130 
2131 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2132 
2133 	return count;
2134 }
2135 
2136 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2137 {
2138 	unsigned long ret, flags;
2139 	struct lock_list this;
2140 
2141 	__bfs_init_root(&this, class);
2142 
2143 	raw_local_irq_save(flags);
2144 	lockdep_lock();
2145 	ret = __lockdep_count_backward_deps(&this);
2146 	lockdep_unlock();
2147 	raw_local_irq_restore(flags);
2148 
2149 	return ret;
2150 }
2151 
2152 /*
2153  * Check that the dependency graph starting at <src> can lead to
2154  * <target> or not.
2155  */
2156 static noinline enum bfs_result
2157 check_path(struct held_lock *target, struct lock_list *src_entry,
2158 	   bool (*match)(struct lock_list *entry, void *data),
2159 	   bool (*skip)(struct lock_list *entry, void *data),
2160 	   struct lock_list **target_entry)
2161 {
2162 	enum bfs_result ret;
2163 
2164 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2165 
2166 	if (unlikely(bfs_error(ret)))
2167 		print_bfs_bug(ret);
2168 
2169 	return ret;
2170 }
2171 
2172 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2173 
2174 /*
2175  * Prove that the dependency graph starting at <src> can not
2176  * lead to <target>. If it can, there is a circle when adding
2177  * <target> -> <src> dependency.
2178  *
2179  * Print an error and return BFS_RMATCH if it does.
2180  */
2181 static noinline enum bfs_result
2182 check_noncircular(struct held_lock *src, struct held_lock *target,
2183 		  struct lock_trace **const trace)
2184 {
2185 	enum bfs_result ret;
2186 	struct lock_list *target_entry;
2187 	struct lock_list src_entry;
2188 
2189 	bfs_init_root(&src_entry, src);
2190 
2191 	debug_atomic_inc(nr_cyclic_checks);
2192 
2193 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2194 
2195 	if (unlikely(ret == BFS_RMATCH)) {
2196 		if (!*trace) {
2197 			/*
2198 			 * If save_trace fails here, the printing might
2199 			 * trigger a WARN but because of the !nr_entries it
2200 			 * should not do bad things.
2201 			 */
2202 			*trace = save_trace();
2203 		}
2204 
2205 		if (src->class_idx == target->class_idx)
2206 			print_deadlock_bug(current, src, target);
2207 		else
2208 			print_circular_bug(&src_entry, target_entry, src, target);
2209 	}
2210 
2211 	return ret;
2212 }
2213 
2214 #ifdef CONFIG_TRACE_IRQFLAGS
2215 
2216 /*
2217  * Forwards and backwards subgraph searching, for the purposes of
2218  * proving that two subgraphs can be connected by a new dependency
2219  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2220  *
2221  * A irq safe->unsafe deadlock happens with the following conditions:
2222  *
2223  * 1) We have a strong dependency path A -> ... -> B
2224  *
2225  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2226  *    irq can create a new dependency B -> A (consider the case that a holder
2227  *    of B gets interrupted by an irq whose handler will try to acquire A).
2228  *
2229  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2230  *    strong circle:
2231  *
2232  *      For the usage bits of B:
2233  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2234  *           ENABLED_IRQ usage suffices.
2235  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2236  *           ENABLED_IRQ_*_READ usage suffices.
2237  *
2238  *      For the usage bits of A:
2239  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2240  *           USED_IN_IRQ usage suffices.
2241  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2242  *           USED_IN_IRQ_*_READ usage suffices.
2243  */
2244 
2245 /*
2246  * There is a strong dependency path in the dependency graph: A -> B, and now
2247  * we need to decide which usage bit of A should be accumulated to detect
2248  * safe->unsafe bugs.
2249  *
2250  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2251  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2252  *
2253  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2254  * path, any usage of A should be considered. Otherwise, we should only
2255  * consider _READ usage.
2256  */
2257 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2258 {
2259 	if (!entry->only_xr)
2260 		*(unsigned long *)mask |= entry->class->usage_mask;
2261 	else /* Mask out _READ usage bits */
2262 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2263 
2264 	return false;
2265 }
2266 
2267 /*
2268  * There is a strong dependency path in the dependency graph: A -> B, and now
2269  * we need to decide which usage bit of B conflicts with the usage bits of A,
2270  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2271  *
2272  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2273  * path, any usage of B should be considered. Otherwise, we should only
2274  * consider _READ usage.
2275  */
2276 static inline bool usage_match(struct lock_list *entry, void *mask)
2277 {
2278 	if (!entry->only_xr)
2279 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2280 	else /* Mask out _READ usage bits */
2281 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2282 }
2283 
2284 static inline bool usage_skip(struct lock_list *entry, void *mask)
2285 {
2286 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2287 		return false;
2288 
2289 	/*
2290 	 * Skip local_lock() for irq inversion detection.
2291 	 *
2292 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2293 	 * dependency.
2294 	 *
2295 	 * For RT, an irq inversion happens when we have lock A and B, and on
2296 	 * some CPU we can have:
2297 	 *
2298 	 *	lock(A);
2299 	 *	<interrupted>
2300 	 *	  lock(B);
2301 	 *
2302 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2303 	 *
2304 	 * Now we prove local_lock() cannot exist in that dependency. First we
2305 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2306 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2307 	 * wait context check will complain. And since B is not a sleep lock,
2308 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2309 	 * local_lock() is 3, which is greater than 2, therefore there is no
2310 	 * way the local_lock() exists in the dependency B -> ... -> A.
2311 	 *
2312 	 * As a result, we will skip local_lock(), when we search for irq
2313 	 * inversion bugs.
2314 	 */
2315 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2316 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2317 		return false;
2318 
2319 	/*
2320 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2321 	 * a lock and only used to override the wait_type.
2322 	 */
2323 
2324 	return true;
2325 }
2326 
2327 /*
2328  * Find a node in the forwards-direction dependency sub-graph starting
2329  * at @root->class that matches @bit.
2330  *
2331  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2332  * into *@target_entry.
2333  */
2334 static enum bfs_result
2335 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2336 			struct lock_list **target_entry)
2337 {
2338 	enum bfs_result result;
2339 
2340 	debug_atomic_inc(nr_find_usage_forwards_checks);
2341 
2342 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2343 
2344 	return result;
2345 }
2346 
2347 /*
2348  * Find a node in the backwards-direction dependency sub-graph starting
2349  * at @root->class that matches @bit.
2350  */
2351 static enum bfs_result
2352 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2353 			struct lock_list **target_entry)
2354 {
2355 	enum bfs_result result;
2356 
2357 	debug_atomic_inc(nr_find_usage_backwards_checks);
2358 
2359 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2360 
2361 	return result;
2362 }
2363 
2364 static void print_lock_class_header(struct lock_class *class, int depth)
2365 {
2366 	int bit;
2367 
2368 	printk("%*s->", depth, "");
2369 	print_lock_name(NULL, class);
2370 #ifdef CONFIG_DEBUG_LOCKDEP
2371 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2372 #endif
2373 	printk(KERN_CONT " {\n");
2374 
2375 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2376 		if (class->usage_mask & (1 << bit)) {
2377 			int len = depth;
2378 
2379 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2380 			len += printk(KERN_CONT " at:\n");
2381 			print_lock_trace(class->usage_traces[bit], len);
2382 		}
2383 	}
2384 	printk("%*s }\n", depth, "");
2385 
2386 	printk("%*s ... key      at: [<%px>] %pS\n",
2387 		depth, "", class->key, class->key);
2388 }
2389 
2390 /*
2391  * Dependency path printing:
2392  *
2393  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2394  * printing out each lock in the dependency path will help on understanding how
2395  * the deadlock could happen. Here are some details about dependency path
2396  * printing:
2397  *
2398  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2399  * 	for a lock dependency A -> B, there are two lock_lists:
2400  *
2401  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2402  * 		->links_to is A. In this case, we can say the lock_list is
2403  * 		"A -> B" (forwards case).
2404  *
2405  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2406  * 		and ->links_to is B. In this case, we can say the lock_list is
2407  * 		"B <- A" (bacwards case).
2408  *
2409  * 	The ->trace of both a) and b) point to the call trace where B was
2410  * 	acquired with A held.
2411  *
2412  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2413  * 	represent a certain lock dependency, it only provides an initial entry
2414  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2415  * 	->class is A, as a result BFS will search all dependencies starting with
2416  * 	A, e.g. A -> B or A -> C.
2417  *
2418  * 	The notation of a forwards helper lock_list is like "-> A", which means
2419  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2420  * 	or A -> C.
2421  *
2422  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2423  * 	we should search the backwards dependencies ending with "B", e.g.
2424  * 	B <- A or B <- C.
2425  */
2426 
2427 /*
2428  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2429  *
2430  * We have a lock dependency path as follow:
2431  *
2432  *    @root                                                                 @leaf
2433  *      |                                                                     |
2434  *      V                                                                     V
2435  *	          ->parent                                   ->parent
2436  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2437  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2438  *
2439  * , so it's natural that we start from @leaf and print every ->class and
2440  * ->trace until we reach the @root.
2441  */
2442 static void __used
2443 print_shortest_lock_dependencies(struct lock_list *leaf,
2444 				 struct lock_list *root)
2445 {
2446 	struct lock_list *entry = leaf;
2447 	int depth;
2448 
2449 	/*compute depth from generated tree by BFS*/
2450 	depth = get_lock_depth(leaf);
2451 
2452 	do {
2453 		print_lock_class_header(entry->class, depth);
2454 		printk("%*s ... acquired at:\n", depth, "");
2455 		print_lock_trace(entry->trace, 2);
2456 		printk("\n");
2457 
2458 		if (depth == 0 && (entry != root)) {
2459 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2460 			break;
2461 		}
2462 
2463 		entry = get_lock_parent(entry);
2464 		depth--;
2465 	} while (entry && (depth >= 0));
2466 }
2467 
2468 /*
2469  * printk the shortest lock dependencies from @leaf to @root.
2470  *
2471  * We have a lock dependency path (from a backwards search) as follow:
2472  *
2473  *    @leaf                                                                 @root
2474  *      |                                                                     |
2475  *      V                                                                     V
2476  *	          ->parent                                   ->parent
2477  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2478  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2479  *
2480  * , so when we iterate from @leaf to @root, we actually print the lock
2481  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2482  *
2483  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2484  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2485  * trace of L1 in the dependency path, which is alright, because most of the
2486  * time we can figure out where L1 is held from the call trace of L2.
2487  */
2488 static void __used
2489 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2490 					   struct lock_list *root)
2491 {
2492 	struct lock_list *entry = leaf;
2493 	const struct lock_trace *trace = NULL;
2494 	int depth;
2495 
2496 	/*compute depth from generated tree by BFS*/
2497 	depth = get_lock_depth(leaf);
2498 
2499 	do {
2500 		print_lock_class_header(entry->class, depth);
2501 		if (trace) {
2502 			printk("%*s ... acquired at:\n", depth, "");
2503 			print_lock_trace(trace, 2);
2504 			printk("\n");
2505 		}
2506 
2507 		/*
2508 		 * Record the pointer to the trace for the next lock_list
2509 		 * entry, see the comments for the function.
2510 		 */
2511 		trace = entry->trace;
2512 
2513 		if (depth == 0 && (entry != root)) {
2514 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2515 			break;
2516 		}
2517 
2518 		entry = get_lock_parent(entry);
2519 		depth--;
2520 	} while (entry && (depth >= 0));
2521 }
2522 
2523 static void
2524 print_irq_lock_scenario(struct lock_list *safe_entry,
2525 			struct lock_list *unsafe_entry,
2526 			struct lock_class *prev_class,
2527 			struct lock_class *next_class)
2528 {
2529 	struct lock_class *safe_class = safe_entry->class;
2530 	struct lock_class *unsafe_class = unsafe_entry->class;
2531 	struct lock_class *middle_class = prev_class;
2532 
2533 	if (middle_class == safe_class)
2534 		middle_class = next_class;
2535 
2536 	/*
2537 	 * A direct locking problem where unsafe_class lock is taken
2538 	 * directly by safe_class lock, then all we need to show
2539 	 * is the deadlock scenario, as it is obvious that the
2540 	 * unsafe lock is taken under the safe lock.
2541 	 *
2542 	 * But if there is a chain instead, where the safe lock takes
2543 	 * an intermediate lock (middle_class) where this lock is
2544 	 * not the same as the safe lock, then the lock chain is
2545 	 * used to describe the problem. Otherwise we would need
2546 	 * to show a different CPU case for each link in the chain
2547 	 * from the safe_class lock to the unsafe_class lock.
2548 	 */
2549 	if (middle_class != unsafe_class) {
2550 		printk("Chain exists of:\n  ");
2551 		__print_lock_name(NULL, safe_class);
2552 		printk(KERN_CONT " --> ");
2553 		__print_lock_name(NULL, middle_class);
2554 		printk(KERN_CONT " --> ");
2555 		__print_lock_name(NULL, unsafe_class);
2556 		printk(KERN_CONT "\n\n");
2557 	}
2558 
2559 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2560 	printk("       CPU0                    CPU1\n");
2561 	printk("       ----                    ----\n");
2562 	printk("  lock(");
2563 	__print_lock_name(NULL, unsafe_class);
2564 	printk(KERN_CONT ");\n");
2565 	printk("                               local_irq_disable();\n");
2566 	printk("                               lock(");
2567 	__print_lock_name(NULL, safe_class);
2568 	printk(KERN_CONT ");\n");
2569 	printk("                               lock(");
2570 	__print_lock_name(NULL, middle_class);
2571 	printk(KERN_CONT ");\n");
2572 	printk("  <Interrupt>\n");
2573 	printk("    lock(");
2574 	__print_lock_name(NULL, safe_class);
2575 	printk(KERN_CONT ");\n");
2576 	printk("\n *** DEADLOCK ***\n\n");
2577 }
2578 
2579 static void
2580 print_bad_irq_dependency(struct task_struct *curr,
2581 			 struct lock_list *prev_root,
2582 			 struct lock_list *next_root,
2583 			 struct lock_list *backwards_entry,
2584 			 struct lock_list *forwards_entry,
2585 			 struct held_lock *prev,
2586 			 struct held_lock *next,
2587 			 enum lock_usage_bit bit1,
2588 			 enum lock_usage_bit bit2,
2589 			 const char *irqclass)
2590 {
2591 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2592 		return;
2593 
2594 	nbcon_cpu_emergency_enter();
2595 
2596 	pr_warn("\n");
2597 	pr_warn("=====================================================\n");
2598 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2599 		irqclass, irqclass);
2600 	print_kernel_ident();
2601 	pr_warn("-----------------------------------------------------\n");
2602 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2603 		curr->comm, task_pid_nr(curr),
2604 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2605 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2606 		lockdep_hardirqs_enabled(),
2607 		curr->softirqs_enabled);
2608 	print_lock(next);
2609 
2610 	pr_warn("\nand this task is already holding:\n");
2611 	print_lock(prev);
2612 	pr_warn("which would create a new lock dependency:\n");
2613 	print_lock_name(prev, hlock_class(prev));
2614 	pr_cont(" ->");
2615 	print_lock_name(next, hlock_class(next));
2616 	pr_cont("\n");
2617 
2618 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2619 		irqclass);
2620 	print_lock_name(NULL, backwards_entry->class);
2621 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2622 
2623 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2624 
2625 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2626 	print_lock_name(NULL, forwards_entry->class);
2627 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2628 	pr_warn("...");
2629 
2630 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2631 
2632 	pr_warn("\nother info that might help us debug this:\n\n");
2633 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2634 				hlock_class(prev), hlock_class(next));
2635 
2636 	lockdep_print_held_locks(curr);
2637 
2638 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2639 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2640 
2641 	pr_warn("\nthe dependencies between the lock to be acquired");
2642 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2643 	next_root->trace = save_trace();
2644 	if (!next_root->trace)
2645 		goto out;
2646 	print_shortest_lock_dependencies(forwards_entry, next_root);
2647 
2648 	pr_warn("\nstack backtrace:\n");
2649 	dump_stack();
2650 out:
2651 	nbcon_cpu_emergency_exit();
2652 }
2653 
2654 static const char *state_names[] = {
2655 #define LOCKDEP_STATE(__STATE) \
2656 	__stringify(__STATE),
2657 #include "lockdep_states.h"
2658 #undef LOCKDEP_STATE
2659 };
2660 
2661 static const char *state_rnames[] = {
2662 #define LOCKDEP_STATE(__STATE) \
2663 	__stringify(__STATE)"-READ",
2664 #include "lockdep_states.h"
2665 #undef LOCKDEP_STATE
2666 };
2667 
2668 static inline const char *state_name(enum lock_usage_bit bit)
2669 {
2670 	if (bit & LOCK_USAGE_READ_MASK)
2671 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2672 	else
2673 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2674 }
2675 
2676 /*
2677  * The bit number is encoded like:
2678  *
2679  *  bit0: 0 exclusive, 1 read lock
2680  *  bit1: 0 used in irq, 1 irq enabled
2681  *  bit2-n: state
2682  */
2683 static int exclusive_bit(int new_bit)
2684 {
2685 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2686 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2687 
2688 	/*
2689 	 * keep state, bit flip the direction and strip read.
2690 	 */
2691 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2692 }
2693 
2694 /*
2695  * Observe that when given a bitmask where each bitnr is encoded as above, a
2696  * right shift of the mask transforms the individual bitnrs as -1 and
2697  * conversely, a left shift transforms into +1 for the individual bitnrs.
2698  *
2699  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2700  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2701  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2702  *
2703  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2704  *
2705  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2706  * all bits set) and recompose with bitnr1 flipped.
2707  */
2708 static unsigned long invert_dir_mask(unsigned long mask)
2709 {
2710 	unsigned long excl = 0;
2711 
2712 	/* Invert dir */
2713 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2714 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2715 
2716 	return excl;
2717 }
2718 
2719 /*
2720  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2721  * usage may cause deadlock too, for example:
2722  *
2723  * P1				P2
2724  * <irq disabled>
2725  * write_lock(l1);		<irq enabled>
2726  *				read_lock(l2);
2727  * write_lock(l2);
2728  * 				<in irq>
2729  * 				read_lock(l1);
2730  *
2731  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2732  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2733  * deadlock.
2734  *
2735  * In fact, all of the following cases may cause deadlocks:
2736  *
2737  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2738  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2739  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2740  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2741  *
2742  * As a result, to calculate the "exclusive mask", first we invert the
2743  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2744  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2745  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2746  */
2747 static unsigned long exclusive_mask(unsigned long mask)
2748 {
2749 	unsigned long excl = invert_dir_mask(mask);
2750 
2751 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2752 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2753 
2754 	return excl;
2755 }
2756 
2757 /*
2758  * Retrieve the _possible_ original mask to which @mask is
2759  * exclusive. Ie: this is the opposite of exclusive_mask().
2760  * Note that 2 possible original bits can match an exclusive
2761  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2762  * cleared. So both are returned for each exclusive bit.
2763  */
2764 static unsigned long original_mask(unsigned long mask)
2765 {
2766 	unsigned long excl = invert_dir_mask(mask);
2767 
2768 	/* Include read in existing usages */
2769 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2770 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2771 
2772 	return excl;
2773 }
2774 
2775 /*
2776  * Find the first pair of bit match between an original
2777  * usage mask and an exclusive usage mask.
2778  */
2779 static int find_exclusive_match(unsigned long mask,
2780 				unsigned long excl_mask,
2781 				enum lock_usage_bit *bitp,
2782 				enum lock_usage_bit *excl_bitp)
2783 {
2784 	int bit, excl, excl_read;
2785 
2786 	for_each_set_bit(bit, &mask, LOCK_USED) {
2787 		/*
2788 		 * exclusive_bit() strips the read bit, however,
2789 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2790 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2791 		 */
2792 		excl = exclusive_bit(bit);
2793 		excl_read = excl | LOCK_USAGE_READ_MASK;
2794 		if (excl_mask & lock_flag(excl)) {
2795 			*bitp = bit;
2796 			*excl_bitp = excl;
2797 			return 0;
2798 		} else if (excl_mask & lock_flag(excl_read)) {
2799 			*bitp = bit;
2800 			*excl_bitp = excl_read;
2801 			return 0;
2802 		}
2803 	}
2804 	return -1;
2805 }
2806 
2807 /*
2808  * Prove that the new dependency does not connect a hardirq-safe(-read)
2809  * lock with a hardirq-unsafe lock - to achieve this we search
2810  * the backwards-subgraph starting at <prev>, and the
2811  * forwards-subgraph starting at <next>:
2812  */
2813 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2814 			   struct held_lock *next)
2815 {
2816 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2817 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2818 	struct lock_list *target_entry1;
2819 	struct lock_list *target_entry;
2820 	struct lock_list this, that;
2821 	enum bfs_result ret;
2822 
2823 	/*
2824 	 * Step 1: gather all hard/soft IRQs usages backward in an
2825 	 * accumulated usage mask.
2826 	 */
2827 	bfs_init_rootb(&this, prev);
2828 
2829 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2830 	if (bfs_error(ret)) {
2831 		print_bfs_bug(ret);
2832 		return 0;
2833 	}
2834 
2835 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2836 	if (!usage_mask)
2837 		return 1;
2838 
2839 	/*
2840 	 * Step 2: find exclusive uses forward that match the previous
2841 	 * backward accumulated mask.
2842 	 */
2843 	forward_mask = exclusive_mask(usage_mask);
2844 
2845 	bfs_init_root(&that, next);
2846 
2847 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2848 	if (bfs_error(ret)) {
2849 		print_bfs_bug(ret);
2850 		return 0;
2851 	}
2852 	if (ret == BFS_RNOMATCH)
2853 		return 1;
2854 
2855 	/*
2856 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2857 	 * list whose usage mask matches the exclusive usage mask from the
2858 	 * lock found on the forward list.
2859 	 *
2860 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2861 	 * the follow case:
2862 	 *
2863 	 * When trying to add A -> B to the graph, we find that there is a
2864 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2865 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2866 	 * invert bits of M's usage_mask, we will find another lock N that is
2867 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2868 	 * cause a inversion deadlock.
2869 	 */
2870 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2871 
2872 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2873 	if (bfs_error(ret)) {
2874 		print_bfs_bug(ret);
2875 		return 0;
2876 	}
2877 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2878 		return 1;
2879 
2880 	/*
2881 	 * Step 4: narrow down to a pair of incompatible usage bits
2882 	 * and report it.
2883 	 */
2884 	ret = find_exclusive_match(target_entry->class->usage_mask,
2885 				   target_entry1->class->usage_mask,
2886 				   &backward_bit, &forward_bit);
2887 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2888 		return 1;
2889 
2890 	print_bad_irq_dependency(curr, &this, &that,
2891 				 target_entry, target_entry1,
2892 				 prev, next,
2893 				 backward_bit, forward_bit,
2894 				 state_name(backward_bit));
2895 
2896 	return 0;
2897 }
2898 
2899 #else
2900 
2901 static inline int check_irq_usage(struct task_struct *curr,
2902 				  struct held_lock *prev, struct held_lock *next)
2903 {
2904 	return 1;
2905 }
2906 
2907 static inline bool usage_skip(struct lock_list *entry, void *mask)
2908 {
2909 	return false;
2910 }
2911 
2912 #endif /* CONFIG_TRACE_IRQFLAGS */
2913 
2914 #ifdef CONFIG_LOCKDEP_SMALL
2915 /*
2916  * Check that the dependency graph starting at <src> can lead to
2917  * <target> or not. If it can, <src> -> <target> dependency is already
2918  * in the graph.
2919  *
2920  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2921  * any error appears in the bfs search.
2922  */
2923 static noinline enum bfs_result
2924 check_redundant(struct held_lock *src, struct held_lock *target)
2925 {
2926 	enum bfs_result ret;
2927 	struct lock_list *target_entry;
2928 	struct lock_list src_entry;
2929 
2930 	bfs_init_root(&src_entry, src);
2931 	/*
2932 	 * Special setup for check_redundant().
2933 	 *
2934 	 * To report redundant, we need to find a strong dependency path that
2935 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2936 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2937 	 * we achieve this by setting the initial node's ->only_xr to true in
2938 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2939 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2940 	 */
2941 	src_entry.only_xr = src->read == 0;
2942 
2943 	debug_atomic_inc(nr_redundant_checks);
2944 
2945 	/*
2946 	 * Note: we skip local_lock() for redundant check, because as the
2947 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2948 	 * the same.
2949 	 */
2950 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2951 
2952 	if (ret == BFS_RMATCH)
2953 		debug_atomic_inc(nr_redundant);
2954 
2955 	return ret;
2956 }
2957 
2958 #else
2959 
2960 static inline enum bfs_result
2961 check_redundant(struct held_lock *src, struct held_lock *target)
2962 {
2963 	return BFS_RNOMATCH;
2964 }
2965 
2966 #endif
2967 
2968 static void inc_chains(int irq_context)
2969 {
2970 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2971 		nr_hardirq_chains++;
2972 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2973 		nr_softirq_chains++;
2974 	else
2975 		nr_process_chains++;
2976 }
2977 
2978 static void dec_chains(int irq_context)
2979 {
2980 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2981 		nr_hardirq_chains--;
2982 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2983 		nr_softirq_chains--;
2984 	else
2985 		nr_process_chains--;
2986 }
2987 
2988 static void
2989 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2990 {
2991 	struct lock_class *next = hlock_class(nxt);
2992 	struct lock_class *prev = hlock_class(prv);
2993 
2994 	printk(" Possible unsafe locking scenario:\n\n");
2995 	printk("       CPU0\n");
2996 	printk("       ----\n");
2997 	printk("  lock(");
2998 	__print_lock_name(prv, prev);
2999 	printk(KERN_CONT ");\n");
3000 	printk("  lock(");
3001 	__print_lock_name(nxt, next);
3002 	printk(KERN_CONT ");\n");
3003 	printk("\n *** DEADLOCK ***\n\n");
3004 	printk(" May be due to missing lock nesting notation\n\n");
3005 }
3006 
3007 static void
3008 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3009 		   struct held_lock *next)
3010 {
3011 	struct lock_class *class = hlock_class(prev);
3012 
3013 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3014 		return;
3015 
3016 	nbcon_cpu_emergency_enter();
3017 
3018 	pr_warn("\n");
3019 	pr_warn("============================================\n");
3020 	pr_warn("WARNING: possible recursive locking detected\n");
3021 	print_kernel_ident();
3022 	pr_warn("--------------------------------------------\n");
3023 	pr_warn("%s/%d is trying to acquire lock:\n",
3024 		curr->comm, task_pid_nr(curr));
3025 	print_lock(next);
3026 	pr_warn("\nbut task is already holding lock:\n");
3027 	print_lock(prev);
3028 
3029 	if (class->cmp_fn) {
3030 		pr_warn("and the lock comparison function returns %i:\n",
3031 			class->cmp_fn(prev->instance, next->instance));
3032 	}
3033 
3034 	pr_warn("\nother info that might help us debug this:\n");
3035 	print_deadlock_scenario(next, prev);
3036 	lockdep_print_held_locks(curr);
3037 
3038 	pr_warn("\nstack backtrace:\n");
3039 	dump_stack();
3040 
3041 	nbcon_cpu_emergency_exit();
3042 }
3043 
3044 /*
3045  * Check whether we are holding such a class already.
3046  *
3047  * (Note that this has to be done separately, because the graph cannot
3048  * detect such classes of deadlocks.)
3049  *
3050  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3051  * lock class is held but nest_lock is also held, i.e. we rely on the
3052  * nest_lock to avoid the deadlock.
3053  */
3054 static int
3055 check_deadlock(struct task_struct *curr, struct held_lock *next)
3056 {
3057 	struct lock_class *class;
3058 	struct held_lock *prev;
3059 	struct held_lock *nest = NULL;
3060 	int i;
3061 
3062 	for (i = 0; i < curr->lockdep_depth; i++) {
3063 		prev = curr->held_locks + i;
3064 
3065 		if (prev->instance == next->nest_lock)
3066 			nest = prev;
3067 
3068 		if (hlock_class(prev) != hlock_class(next))
3069 			continue;
3070 
3071 		/*
3072 		 * Allow read-after-read recursion of the same
3073 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3074 		 */
3075 		if ((next->read == 2) && prev->read)
3076 			continue;
3077 
3078 		class = hlock_class(prev);
3079 
3080 		if (class->cmp_fn &&
3081 		    class->cmp_fn(prev->instance, next->instance) < 0)
3082 			continue;
3083 
3084 		/*
3085 		 * We're holding the nest_lock, which serializes this lock's
3086 		 * nesting behaviour.
3087 		 */
3088 		if (nest)
3089 			return 2;
3090 
3091 		print_deadlock_bug(curr, prev, next);
3092 		return 0;
3093 	}
3094 	return 1;
3095 }
3096 
3097 /*
3098  * There was a chain-cache miss, and we are about to add a new dependency
3099  * to a previous lock. We validate the following rules:
3100  *
3101  *  - would the adding of the <prev> -> <next> dependency create a
3102  *    circular dependency in the graph? [== circular deadlock]
3103  *
3104  *  - does the new prev->next dependency connect any hardirq-safe lock
3105  *    (in the full backwards-subgraph starting at <prev>) with any
3106  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3107  *    <next>)? [== illegal lock inversion with hardirq contexts]
3108  *
3109  *  - does the new prev->next dependency connect any softirq-safe lock
3110  *    (in the full backwards-subgraph starting at <prev>) with any
3111  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3112  *    <next>)? [== illegal lock inversion with softirq contexts]
3113  *
3114  * any of these scenarios could lead to a deadlock.
3115  *
3116  * Then if all the validations pass, we add the forwards and backwards
3117  * dependency.
3118  */
3119 static int
3120 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3121 	       struct held_lock *next, u16 distance,
3122 	       struct lock_trace **const trace)
3123 {
3124 	struct lock_list *entry;
3125 	enum bfs_result ret;
3126 
3127 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3128 		/*
3129 		 * The warning statements below may trigger a use-after-free
3130 		 * of the class name. It is better to trigger a use-after free
3131 		 * and to have the class name most of the time instead of not
3132 		 * having the class name available.
3133 		 */
3134 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3135 			  "Detected use-after-free of lock class %px/%s\n",
3136 			  hlock_class(prev),
3137 			  hlock_class(prev)->name);
3138 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3139 			  "Detected use-after-free of lock class %px/%s\n",
3140 			  hlock_class(next),
3141 			  hlock_class(next)->name);
3142 		return 2;
3143 	}
3144 
3145 	if (prev->class_idx == next->class_idx) {
3146 		struct lock_class *class = hlock_class(prev);
3147 
3148 		if (class->cmp_fn &&
3149 		    class->cmp_fn(prev->instance, next->instance) < 0)
3150 			return 2;
3151 	}
3152 
3153 	/*
3154 	 * Prove that the new <prev> -> <next> dependency would not
3155 	 * create a circular dependency in the graph. (We do this by
3156 	 * a breadth-first search into the graph starting at <next>,
3157 	 * and check whether we can reach <prev>.)
3158 	 *
3159 	 * The search is limited by the size of the circular queue (i.e.,
3160 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3161 	 * in the graph whose neighbours are to be checked.
3162 	 */
3163 	ret = check_noncircular(next, prev, trace);
3164 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3165 		return 0;
3166 
3167 	if (!check_irq_usage(curr, prev, next))
3168 		return 0;
3169 
3170 	/*
3171 	 * Is the <prev> -> <next> dependency already present?
3172 	 *
3173 	 * (this may occur even though this is a new chain: consider
3174 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3175 	 *  chains - the second one will be new, but L1 already has
3176 	 *  L2 added to its dependency list, due to the first chain.)
3177 	 */
3178 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3179 		if (entry->class == hlock_class(next)) {
3180 			if (distance == 1)
3181 				entry->distance = 1;
3182 			entry->dep |= calc_dep(prev, next);
3183 
3184 			/*
3185 			 * Also, update the reverse dependency in @next's
3186 			 * ->locks_before list.
3187 			 *
3188 			 *  Here we reuse @entry as the cursor, which is fine
3189 			 *  because we won't go to the next iteration of the
3190 			 *  outer loop:
3191 			 *
3192 			 *  For normal cases, we return in the inner loop.
3193 			 *
3194 			 *  If we fail to return, we have inconsistency, i.e.
3195 			 *  <prev>::locks_after contains <next> while
3196 			 *  <next>::locks_before doesn't contain <prev>. In
3197 			 *  that case, we return after the inner and indicate
3198 			 *  something is wrong.
3199 			 */
3200 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3201 				if (entry->class == hlock_class(prev)) {
3202 					if (distance == 1)
3203 						entry->distance = 1;
3204 					entry->dep |= calc_depb(prev, next);
3205 					return 1;
3206 				}
3207 			}
3208 
3209 			/* <prev> is not found in <next>::locks_before */
3210 			return 0;
3211 		}
3212 	}
3213 
3214 	/*
3215 	 * Is the <prev> -> <next> link redundant?
3216 	 */
3217 	ret = check_redundant(prev, next);
3218 	if (bfs_error(ret))
3219 		return 0;
3220 	else if (ret == BFS_RMATCH)
3221 		return 2;
3222 
3223 	if (!*trace) {
3224 		*trace = save_trace();
3225 		if (!*trace)
3226 			return 0;
3227 	}
3228 
3229 	/*
3230 	 * Ok, all validations passed, add the new lock
3231 	 * to the previous lock's dependency list:
3232 	 */
3233 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3234 			       &hlock_class(prev)->locks_after, distance,
3235 			       calc_dep(prev, next), *trace);
3236 
3237 	if (!ret)
3238 		return 0;
3239 
3240 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3241 			       &hlock_class(next)->locks_before, distance,
3242 			       calc_depb(prev, next), *trace);
3243 	if (!ret)
3244 		return 0;
3245 
3246 	return 2;
3247 }
3248 
3249 /*
3250  * Add the dependency to all directly-previous locks that are 'relevant'.
3251  * The ones that are relevant are (in increasing distance from curr):
3252  * all consecutive trylock entries and the final non-trylock entry - or
3253  * the end of this context's lock-chain - whichever comes first.
3254  */
3255 static int
3256 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3257 {
3258 	struct lock_trace *trace = NULL;
3259 	int depth = curr->lockdep_depth;
3260 	struct held_lock *hlock;
3261 
3262 	/*
3263 	 * Debugging checks.
3264 	 *
3265 	 * Depth must not be zero for a non-head lock:
3266 	 */
3267 	if (!depth)
3268 		goto out_bug;
3269 	/*
3270 	 * At least two relevant locks must exist for this
3271 	 * to be a head:
3272 	 */
3273 	if (curr->held_locks[depth].irq_context !=
3274 			curr->held_locks[depth-1].irq_context)
3275 		goto out_bug;
3276 
3277 	for (;;) {
3278 		u16 distance = curr->lockdep_depth - depth + 1;
3279 		hlock = curr->held_locks + depth - 1;
3280 
3281 		if (hlock->check) {
3282 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3283 			if (!ret)
3284 				return 0;
3285 
3286 			/*
3287 			 * Stop after the first non-trylock entry,
3288 			 * as non-trylock entries have added their
3289 			 * own direct dependencies already, so this
3290 			 * lock is connected to them indirectly:
3291 			 */
3292 			if (!hlock->trylock)
3293 				break;
3294 		}
3295 
3296 		depth--;
3297 		/*
3298 		 * End of lock-stack?
3299 		 */
3300 		if (!depth)
3301 			break;
3302 		/*
3303 		 * Stop the search if we cross into another context:
3304 		 */
3305 		if (curr->held_locks[depth].irq_context !=
3306 				curr->held_locks[depth-1].irq_context)
3307 			break;
3308 	}
3309 	return 1;
3310 out_bug:
3311 	if (!debug_locks_off_graph_unlock())
3312 		return 0;
3313 
3314 	/*
3315 	 * Clearly we all shouldn't be here, but since we made it we
3316 	 * can reliable say we messed up our state. See the above two
3317 	 * gotos for reasons why we could possibly end up here.
3318 	 */
3319 	WARN_ON(1);
3320 
3321 	return 0;
3322 }
3323 
3324 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3325 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3326 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3327 unsigned long nr_zapped_lock_chains;
3328 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3329 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3330 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3331 
3332 /*
3333  * The first 2 chain_hlocks entries in the chain block in the bucket
3334  * list contains the following meta data:
3335  *
3336  *   entry[0]:
3337  *     Bit    15 - always set to 1 (it is not a class index)
3338  *     Bits 0-14 - upper 15 bits of the next block index
3339  *   entry[1]    - lower 16 bits of next block index
3340  *
3341  * A next block index of all 1 bits means it is the end of the list.
3342  *
3343  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3344  * the chain block size:
3345  *
3346  *   entry[2] - upper 16 bits of the chain block size
3347  *   entry[3] - lower 16 bits of the chain block size
3348  */
3349 #define MAX_CHAIN_BUCKETS	16
3350 #define CHAIN_BLK_FLAG		(1U << 15)
3351 #define CHAIN_BLK_LIST_END	0xFFFFU
3352 
3353 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3354 
3355 static inline int size_to_bucket(int size)
3356 {
3357 	if (size > MAX_CHAIN_BUCKETS)
3358 		return 0;
3359 
3360 	return size - 1;
3361 }
3362 
3363 /*
3364  * Iterate all the chain blocks in a bucket.
3365  */
3366 #define for_each_chain_block(bucket, prev, curr)		\
3367 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3368 	     (curr) >= 0;					\
3369 	     (prev) = (curr), (curr) = chain_block_next(curr))
3370 
3371 /*
3372  * next block or -1
3373  */
3374 static inline int chain_block_next(int offset)
3375 {
3376 	int next = chain_hlocks[offset];
3377 
3378 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3379 
3380 	if (next == CHAIN_BLK_LIST_END)
3381 		return -1;
3382 
3383 	next &= ~CHAIN_BLK_FLAG;
3384 	next <<= 16;
3385 	next |= chain_hlocks[offset + 1];
3386 
3387 	return next;
3388 }
3389 
3390 /*
3391  * bucket-0 only
3392  */
3393 static inline int chain_block_size(int offset)
3394 {
3395 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3396 }
3397 
3398 static inline void init_chain_block(int offset, int next, int bucket, int size)
3399 {
3400 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3401 	chain_hlocks[offset + 1] = (u16)next;
3402 
3403 	if (size && !bucket) {
3404 		chain_hlocks[offset + 2] = size >> 16;
3405 		chain_hlocks[offset + 3] = (u16)size;
3406 	}
3407 }
3408 
3409 static inline void add_chain_block(int offset, int size)
3410 {
3411 	int bucket = size_to_bucket(size);
3412 	int next = chain_block_buckets[bucket];
3413 	int prev, curr;
3414 
3415 	if (unlikely(size < 2)) {
3416 		/*
3417 		 * We can't store single entries on the freelist. Leak them.
3418 		 *
3419 		 * One possible way out would be to uniquely mark them, other
3420 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3421 		 * the block before it is re-added.
3422 		 */
3423 		if (size)
3424 			nr_lost_chain_hlocks++;
3425 		return;
3426 	}
3427 
3428 	nr_free_chain_hlocks += size;
3429 	if (!bucket) {
3430 		nr_large_chain_blocks++;
3431 
3432 		/*
3433 		 * Variable sized, sort large to small.
3434 		 */
3435 		for_each_chain_block(0, prev, curr) {
3436 			if (size >= chain_block_size(curr))
3437 				break;
3438 		}
3439 		init_chain_block(offset, curr, 0, size);
3440 		if (prev < 0)
3441 			chain_block_buckets[0] = offset;
3442 		else
3443 			init_chain_block(prev, offset, 0, 0);
3444 		return;
3445 	}
3446 	/*
3447 	 * Fixed size, add to head.
3448 	 */
3449 	init_chain_block(offset, next, bucket, size);
3450 	chain_block_buckets[bucket] = offset;
3451 }
3452 
3453 /*
3454  * Only the first block in the list can be deleted.
3455  *
3456  * For the variable size bucket[0], the first block (the largest one) is
3457  * returned, broken up and put back into the pool. So if a chain block of
3458  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3459  * queued up after the primordial chain block and never be used until the
3460  * hlock entries in the primordial chain block is almost used up. That
3461  * causes fragmentation and reduce allocation efficiency. That can be
3462  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3463  */
3464 static inline void del_chain_block(int bucket, int size, int next)
3465 {
3466 	nr_free_chain_hlocks -= size;
3467 	chain_block_buckets[bucket] = next;
3468 
3469 	if (!bucket)
3470 		nr_large_chain_blocks--;
3471 }
3472 
3473 static void init_chain_block_buckets(void)
3474 {
3475 	int i;
3476 
3477 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3478 		chain_block_buckets[i] = -1;
3479 
3480 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3481 }
3482 
3483 /*
3484  * Return offset of a chain block of the right size or -1 if not found.
3485  *
3486  * Fairly simple worst-fit allocator with the addition of a number of size
3487  * specific free lists.
3488  */
3489 static int alloc_chain_hlocks(int req)
3490 {
3491 	int bucket, curr, size;
3492 
3493 	/*
3494 	 * We rely on the MSB to act as an escape bit to denote freelist
3495 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3496 	 */
3497 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3498 
3499 	init_data_structures_once();
3500 
3501 	if (nr_free_chain_hlocks < req)
3502 		return -1;
3503 
3504 	/*
3505 	 * We require a minimum of 2 (u16) entries to encode a freelist
3506 	 * 'pointer'.
3507 	 */
3508 	req = max(req, 2);
3509 	bucket = size_to_bucket(req);
3510 	curr = chain_block_buckets[bucket];
3511 
3512 	if (bucket) {
3513 		if (curr >= 0) {
3514 			del_chain_block(bucket, req, chain_block_next(curr));
3515 			return curr;
3516 		}
3517 		/* Try bucket 0 */
3518 		curr = chain_block_buckets[0];
3519 	}
3520 
3521 	/*
3522 	 * The variable sized freelist is sorted by size; the first entry is
3523 	 * the largest. Use it if it fits.
3524 	 */
3525 	if (curr >= 0) {
3526 		size = chain_block_size(curr);
3527 		if (likely(size >= req)) {
3528 			del_chain_block(0, size, chain_block_next(curr));
3529 			if (size > req)
3530 				add_chain_block(curr + req, size - req);
3531 			return curr;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * Last resort, split a block in a larger sized bucket.
3537 	 */
3538 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3539 		bucket = size_to_bucket(size);
3540 		curr = chain_block_buckets[bucket];
3541 		if (curr < 0)
3542 			continue;
3543 
3544 		del_chain_block(bucket, size, chain_block_next(curr));
3545 		add_chain_block(curr + req, size - req);
3546 		return curr;
3547 	}
3548 
3549 	return -1;
3550 }
3551 
3552 static inline void free_chain_hlocks(int base, int size)
3553 {
3554 	add_chain_block(base, max(size, 2));
3555 }
3556 
3557 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3558 {
3559 	u16 chain_hlock = chain_hlocks[chain->base + i];
3560 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3561 
3562 	return lock_classes + class_idx;
3563 }
3564 
3565 /*
3566  * Returns the index of the first held_lock of the current chain
3567  */
3568 static inline int get_first_held_lock(struct task_struct *curr,
3569 					struct held_lock *hlock)
3570 {
3571 	int i;
3572 	struct held_lock *hlock_curr;
3573 
3574 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3575 		hlock_curr = curr->held_locks + i;
3576 		if (hlock_curr->irq_context != hlock->irq_context)
3577 			break;
3578 
3579 	}
3580 
3581 	return ++i;
3582 }
3583 
3584 #ifdef CONFIG_DEBUG_LOCKDEP
3585 /*
3586  * Returns the next chain_key iteration
3587  */
3588 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3589 {
3590 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3591 
3592 	printk(" hlock_id:%d -> chain_key:%016Lx",
3593 		(unsigned int)hlock_id,
3594 		(unsigned long long)new_chain_key);
3595 	return new_chain_key;
3596 }
3597 
3598 static void
3599 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3600 {
3601 	struct held_lock *hlock;
3602 	u64 chain_key = INITIAL_CHAIN_KEY;
3603 	int depth = curr->lockdep_depth;
3604 	int i = get_first_held_lock(curr, hlock_next);
3605 
3606 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3607 		hlock_next->irq_context);
3608 	for (; i < depth; i++) {
3609 		hlock = curr->held_locks + i;
3610 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3611 
3612 		print_lock(hlock);
3613 	}
3614 
3615 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3616 	print_lock(hlock_next);
3617 }
3618 
3619 static void print_chain_keys_chain(struct lock_chain *chain)
3620 {
3621 	int i;
3622 	u64 chain_key = INITIAL_CHAIN_KEY;
3623 	u16 hlock_id;
3624 
3625 	printk("depth: %u\n", chain->depth);
3626 	for (i = 0; i < chain->depth; i++) {
3627 		hlock_id = chain_hlocks[chain->base + i];
3628 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3629 
3630 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3631 		printk("\n");
3632 	}
3633 }
3634 
3635 static void print_collision(struct task_struct *curr,
3636 			struct held_lock *hlock_next,
3637 			struct lock_chain *chain)
3638 {
3639 	nbcon_cpu_emergency_enter();
3640 
3641 	pr_warn("\n");
3642 	pr_warn("============================\n");
3643 	pr_warn("WARNING: chain_key collision\n");
3644 	print_kernel_ident();
3645 	pr_warn("----------------------------\n");
3646 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3647 	pr_warn("Hash chain already cached but the contents don't match!\n");
3648 
3649 	pr_warn("Held locks:");
3650 	print_chain_keys_held_locks(curr, hlock_next);
3651 
3652 	pr_warn("Locks in cached chain:");
3653 	print_chain_keys_chain(chain);
3654 
3655 	pr_warn("\nstack backtrace:\n");
3656 	dump_stack();
3657 
3658 	nbcon_cpu_emergency_exit();
3659 }
3660 #endif
3661 
3662 /*
3663  * Checks whether the chain and the current held locks are consistent
3664  * in depth and also in content. If they are not it most likely means
3665  * that there was a collision during the calculation of the chain_key.
3666  * Returns: 0 not passed, 1 passed
3667  */
3668 static int check_no_collision(struct task_struct *curr,
3669 			struct held_lock *hlock,
3670 			struct lock_chain *chain)
3671 {
3672 #ifdef CONFIG_DEBUG_LOCKDEP
3673 	int i, j, id;
3674 
3675 	i = get_first_held_lock(curr, hlock);
3676 
3677 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3678 		print_collision(curr, hlock, chain);
3679 		return 0;
3680 	}
3681 
3682 	for (j = 0; j < chain->depth - 1; j++, i++) {
3683 		id = hlock_id(&curr->held_locks[i]);
3684 
3685 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3686 			print_collision(curr, hlock, chain);
3687 			return 0;
3688 		}
3689 	}
3690 #endif
3691 	return 1;
3692 }
3693 
3694 /*
3695  * Given an index that is >= -1, return the index of the next lock chain.
3696  * Return -2 if there is no next lock chain.
3697  */
3698 long lockdep_next_lockchain(long i)
3699 {
3700 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3701 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3702 }
3703 
3704 unsigned long lock_chain_count(void)
3705 {
3706 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3707 }
3708 
3709 /* Must be called with the graph lock held. */
3710 static struct lock_chain *alloc_lock_chain(void)
3711 {
3712 	int idx = find_first_zero_bit(lock_chains_in_use,
3713 				      ARRAY_SIZE(lock_chains));
3714 
3715 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3716 		return NULL;
3717 	__set_bit(idx, lock_chains_in_use);
3718 	return lock_chains + idx;
3719 }
3720 
3721 /*
3722  * Adds a dependency chain into chain hashtable. And must be called with
3723  * graph_lock held.
3724  *
3725  * Return 0 if fail, and graph_lock is released.
3726  * Return 1 if succeed, with graph_lock held.
3727  */
3728 static inline int add_chain_cache(struct task_struct *curr,
3729 				  struct held_lock *hlock,
3730 				  u64 chain_key)
3731 {
3732 	struct hlist_head *hash_head = chainhashentry(chain_key);
3733 	struct lock_chain *chain;
3734 	int i, j;
3735 
3736 	/*
3737 	 * The caller must hold the graph lock, ensure we've got IRQs
3738 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3739 	 * lockdep won't complain about its own locking errors.
3740 	 */
3741 	if (lockdep_assert_locked())
3742 		return 0;
3743 
3744 	chain = alloc_lock_chain();
3745 	if (!chain) {
3746 		if (!debug_locks_off_graph_unlock())
3747 			return 0;
3748 
3749 		nbcon_cpu_emergency_enter();
3750 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3751 		dump_stack();
3752 		nbcon_cpu_emergency_exit();
3753 		return 0;
3754 	}
3755 	chain->chain_key = chain_key;
3756 	chain->irq_context = hlock->irq_context;
3757 	i = get_first_held_lock(curr, hlock);
3758 	chain->depth = curr->lockdep_depth + 1 - i;
3759 
3760 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3761 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3762 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3763 
3764 	j = alloc_chain_hlocks(chain->depth);
3765 	if (j < 0) {
3766 		if (!debug_locks_off_graph_unlock())
3767 			return 0;
3768 
3769 		nbcon_cpu_emergency_enter();
3770 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3771 		dump_stack();
3772 		nbcon_cpu_emergency_exit();
3773 		return 0;
3774 	}
3775 
3776 	chain->base = j;
3777 	for (j = 0; j < chain->depth - 1; j++, i++) {
3778 		int lock_id = hlock_id(curr->held_locks + i);
3779 
3780 		chain_hlocks[chain->base + j] = lock_id;
3781 	}
3782 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3783 	hlist_add_head_rcu(&chain->entry, hash_head);
3784 	debug_atomic_inc(chain_lookup_misses);
3785 	inc_chains(chain->irq_context);
3786 
3787 	return 1;
3788 }
3789 
3790 /*
3791  * Look up a dependency chain. Must be called with either the graph lock or
3792  * the RCU read lock held.
3793  */
3794 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3795 {
3796 	struct hlist_head *hash_head = chainhashentry(chain_key);
3797 	struct lock_chain *chain;
3798 
3799 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3800 		if (READ_ONCE(chain->chain_key) == chain_key) {
3801 			debug_atomic_inc(chain_lookup_hits);
3802 			return chain;
3803 		}
3804 	}
3805 	return NULL;
3806 }
3807 
3808 /*
3809  * If the key is not present yet in dependency chain cache then
3810  * add it and return 1 - in this case the new dependency chain is
3811  * validated. If the key is already hashed, return 0.
3812  * (On return with 1 graph_lock is held.)
3813  */
3814 static inline int lookup_chain_cache_add(struct task_struct *curr,
3815 					 struct held_lock *hlock,
3816 					 u64 chain_key)
3817 {
3818 	struct lock_class *class = hlock_class(hlock);
3819 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3820 
3821 	if (chain) {
3822 cache_hit:
3823 		if (!check_no_collision(curr, hlock, chain))
3824 			return 0;
3825 
3826 		if (very_verbose(class)) {
3827 			printk("\nhash chain already cached, key: "
3828 					"%016Lx tail class: [%px] %s\n",
3829 					(unsigned long long)chain_key,
3830 					class->key, class->name);
3831 		}
3832 
3833 		return 0;
3834 	}
3835 
3836 	if (very_verbose(class)) {
3837 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3838 			(unsigned long long)chain_key, class->key, class->name);
3839 	}
3840 
3841 	if (!graph_lock())
3842 		return 0;
3843 
3844 	/*
3845 	 * We have to walk the chain again locked - to avoid duplicates:
3846 	 */
3847 	chain = lookup_chain_cache(chain_key);
3848 	if (chain) {
3849 		graph_unlock();
3850 		goto cache_hit;
3851 	}
3852 
3853 	if (!add_chain_cache(curr, hlock, chain_key))
3854 		return 0;
3855 
3856 	return 1;
3857 }
3858 
3859 static int validate_chain(struct task_struct *curr,
3860 			  struct held_lock *hlock,
3861 			  int chain_head, u64 chain_key)
3862 {
3863 	/*
3864 	 * Trylock needs to maintain the stack of held locks, but it
3865 	 * does not add new dependencies, because trylock can be done
3866 	 * in any order.
3867 	 *
3868 	 * We look up the chain_key and do the O(N^2) check and update of
3869 	 * the dependencies only if this is a new dependency chain.
3870 	 * (If lookup_chain_cache_add() return with 1 it acquires
3871 	 * graph_lock for us)
3872 	 */
3873 	if (!hlock->trylock && hlock->check &&
3874 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3875 		/*
3876 		 * Check whether last held lock:
3877 		 *
3878 		 * - is irq-safe, if this lock is irq-unsafe
3879 		 * - is softirq-safe, if this lock is hardirq-unsafe
3880 		 *
3881 		 * And check whether the new lock's dependency graph
3882 		 * could lead back to the previous lock:
3883 		 *
3884 		 * - within the current held-lock stack
3885 		 * - across our accumulated lock dependency records
3886 		 *
3887 		 * any of these scenarios could lead to a deadlock.
3888 		 */
3889 		/*
3890 		 * The simple case: does the current hold the same lock
3891 		 * already?
3892 		 */
3893 		int ret = check_deadlock(curr, hlock);
3894 
3895 		if (!ret)
3896 			return 0;
3897 		/*
3898 		 * Add dependency only if this lock is not the head
3899 		 * of the chain, and if the new lock introduces no more
3900 		 * lock dependency (because we already hold a lock with the
3901 		 * same lock class) nor deadlock (because the nest_lock
3902 		 * serializes nesting locks), see the comments for
3903 		 * check_deadlock().
3904 		 */
3905 		if (!chain_head && ret != 2) {
3906 			if (!check_prevs_add(curr, hlock))
3907 				return 0;
3908 		}
3909 
3910 		graph_unlock();
3911 	} else {
3912 		/* after lookup_chain_cache_add(): */
3913 		if (unlikely(!debug_locks))
3914 			return 0;
3915 	}
3916 
3917 	return 1;
3918 }
3919 #else
3920 static inline int validate_chain(struct task_struct *curr,
3921 				 struct held_lock *hlock,
3922 				 int chain_head, u64 chain_key)
3923 {
3924 	return 1;
3925 }
3926 
3927 static void init_chain_block_buckets(void)	{ }
3928 #endif /* CONFIG_PROVE_LOCKING */
3929 
3930 /*
3931  * We are building curr_chain_key incrementally, so double-check
3932  * it from scratch, to make sure that it's done correctly:
3933  */
3934 static void check_chain_key(struct task_struct *curr)
3935 {
3936 #ifdef CONFIG_DEBUG_LOCKDEP
3937 	struct held_lock *hlock, *prev_hlock = NULL;
3938 	unsigned int i;
3939 	u64 chain_key = INITIAL_CHAIN_KEY;
3940 
3941 	for (i = 0; i < curr->lockdep_depth; i++) {
3942 		hlock = curr->held_locks + i;
3943 		if (chain_key != hlock->prev_chain_key) {
3944 			debug_locks_off();
3945 			/*
3946 			 * We got mighty confused, our chain keys don't match
3947 			 * with what we expect, someone trample on our task state?
3948 			 */
3949 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3950 				curr->lockdep_depth, i,
3951 				(unsigned long long)chain_key,
3952 				(unsigned long long)hlock->prev_chain_key);
3953 			return;
3954 		}
3955 
3956 		/*
3957 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3958 		 * it registered lock class index?
3959 		 */
3960 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3961 			return;
3962 
3963 		if (prev_hlock && (prev_hlock->irq_context !=
3964 							hlock->irq_context))
3965 			chain_key = INITIAL_CHAIN_KEY;
3966 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3967 		prev_hlock = hlock;
3968 	}
3969 	if (chain_key != curr->curr_chain_key) {
3970 		debug_locks_off();
3971 		/*
3972 		 * More smoking hash instead of calculating it, damn see these
3973 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3974 		 */
3975 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3976 			curr->lockdep_depth, i,
3977 			(unsigned long long)chain_key,
3978 			(unsigned long long)curr->curr_chain_key);
3979 	}
3980 #endif
3981 }
3982 
3983 #ifdef CONFIG_PROVE_LOCKING
3984 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3985 		     enum lock_usage_bit new_bit);
3986 
3987 static void print_usage_bug_scenario(struct held_lock *lock)
3988 {
3989 	struct lock_class *class = hlock_class(lock);
3990 
3991 	printk(" Possible unsafe locking scenario:\n\n");
3992 	printk("       CPU0\n");
3993 	printk("       ----\n");
3994 	printk("  lock(");
3995 	__print_lock_name(lock, class);
3996 	printk(KERN_CONT ");\n");
3997 	printk("  <Interrupt>\n");
3998 	printk("    lock(");
3999 	__print_lock_name(lock, class);
4000 	printk(KERN_CONT ");\n");
4001 	printk("\n *** DEADLOCK ***\n\n");
4002 }
4003 
4004 static void
4005 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4006 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4007 {
4008 	if (!debug_locks_off() || debug_locks_silent)
4009 		return;
4010 
4011 	nbcon_cpu_emergency_enter();
4012 
4013 	pr_warn("\n");
4014 	pr_warn("================================\n");
4015 	pr_warn("WARNING: inconsistent lock state\n");
4016 	print_kernel_ident();
4017 	pr_warn("--------------------------------\n");
4018 
4019 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4020 		usage_str[prev_bit], usage_str[new_bit]);
4021 
4022 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4023 		curr->comm, task_pid_nr(curr),
4024 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4025 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4026 		lockdep_hardirqs_enabled(),
4027 		lockdep_softirqs_enabled(curr));
4028 	print_lock(this);
4029 
4030 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4031 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4032 
4033 	print_irqtrace_events(curr);
4034 	pr_warn("\nother info that might help us debug this:\n");
4035 	print_usage_bug_scenario(this);
4036 
4037 	lockdep_print_held_locks(curr);
4038 
4039 	pr_warn("\nstack backtrace:\n");
4040 	dump_stack();
4041 
4042 	nbcon_cpu_emergency_exit();
4043 }
4044 
4045 /*
4046  * Print out an error if an invalid bit is set:
4047  */
4048 static inline int
4049 valid_state(struct task_struct *curr, struct held_lock *this,
4050 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4051 {
4052 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4053 		graph_unlock();
4054 		print_usage_bug(curr, this, bad_bit, new_bit);
4055 		return 0;
4056 	}
4057 	return 1;
4058 }
4059 
4060 
4061 /*
4062  * print irq inversion bug:
4063  */
4064 static void
4065 print_irq_inversion_bug(struct task_struct *curr,
4066 			struct lock_list *root, struct lock_list *other,
4067 			struct held_lock *this, int forwards,
4068 			const char *irqclass)
4069 {
4070 	struct lock_list *entry = other;
4071 	struct lock_list *middle = NULL;
4072 	int depth;
4073 
4074 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4075 		return;
4076 
4077 	nbcon_cpu_emergency_enter();
4078 
4079 	pr_warn("\n");
4080 	pr_warn("========================================================\n");
4081 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4082 	print_kernel_ident();
4083 	pr_warn("--------------------------------------------------------\n");
4084 	pr_warn("%s/%d just changed the state of lock:\n",
4085 		curr->comm, task_pid_nr(curr));
4086 	print_lock(this);
4087 	if (forwards)
4088 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4089 	else
4090 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4091 	print_lock_name(NULL, other->class);
4092 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4093 
4094 	pr_warn("\nother info that might help us debug this:\n");
4095 
4096 	/* Find a middle lock (if one exists) */
4097 	depth = get_lock_depth(other);
4098 	do {
4099 		if (depth == 0 && (entry != root)) {
4100 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4101 			break;
4102 		}
4103 		middle = entry;
4104 		entry = get_lock_parent(entry);
4105 		depth--;
4106 	} while (entry && entry != root && (depth >= 0));
4107 	if (forwards)
4108 		print_irq_lock_scenario(root, other,
4109 			middle ? middle->class : root->class, other->class);
4110 	else
4111 		print_irq_lock_scenario(other, root,
4112 			middle ? middle->class : other->class, root->class);
4113 
4114 	lockdep_print_held_locks(curr);
4115 
4116 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4117 	root->trace = save_trace();
4118 	if (!root->trace)
4119 		goto out;
4120 	print_shortest_lock_dependencies(other, root);
4121 
4122 	pr_warn("\nstack backtrace:\n");
4123 	dump_stack();
4124 out:
4125 	nbcon_cpu_emergency_exit();
4126 }
4127 
4128 /*
4129  * Prove that in the forwards-direction subgraph starting at <this>
4130  * there is no lock matching <mask>:
4131  */
4132 static int
4133 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4134 		     enum lock_usage_bit bit)
4135 {
4136 	enum bfs_result ret;
4137 	struct lock_list root;
4138 	struct lock_list *target_entry;
4139 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4140 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4141 
4142 	bfs_init_root(&root, this);
4143 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4144 	if (bfs_error(ret)) {
4145 		print_bfs_bug(ret);
4146 		return 0;
4147 	}
4148 	if (ret == BFS_RNOMATCH)
4149 		return 1;
4150 
4151 	/* Check whether write or read usage is the match */
4152 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4153 		print_irq_inversion_bug(curr, &root, target_entry,
4154 					this, 1, state_name(bit));
4155 	} else {
4156 		print_irq_inversion_bug(curr, &root, target_entry,
4157 					this, 1, state_name(read_bit));
4158 	}
4159 
4160 	return 0;
4161 }
4162 
4163 /*
4164  * Prove that in the backwards-direction subgraph starting at <this>
4165  * there is no lock matching <mask>:
4166  */
4167 static int
4168 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4169 		      enum lock_usage_bit bit)
4170 {
4171 	enum bfs_result ret;
4172 	struct lock_list root;
4173 	struct lock_list *target_entry;
4174 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4175 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4176 
4177 	bfs_init_rootb(&root, this);
4178 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4179 	if (bfs_error(ret)) {
4180 		print_bfs_bug(ret);
4181 		return 0;
4182 	}
4183 	if (ret == BFS_RNOMATCH)
4184 		return 1;
4185 
4186 	/* Check whether write or read usage is the match */
4187 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4188 		print_irq_inversion_bug(curr, &root, target_entry,
4189 					this, 0, state_name(bit));
4190 	} else {
4191 		print_irq_inversion_bug(curr, &root, target_entry,
4192 					this, 0, state_name(read_bit));
4193 	}
4194 
4195 	return 0;
4196 }
4197 
4198 void print_irqtrace_events(struct task_struct *curr)
4199 {
4200 	const struct irqtrace_events *trace = &curr->irqtrace;
4201 
4202 	nbcon_cpu_emergency_enter();
4203 
4204 	printk("irq event stamp: %u\n", trace->irq_events);
4205 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4206 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4207 		(void *)trace->hardirq_enable_ip);
4208 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4209 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4210 		(void *)trace->hardirq_disable_ip);
4211 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4212 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4213 		(void *)trace->softirq_enable_ip);
4214 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4215 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4216 		(void *)trace->softirq_disable_ip);
4217 
4218 	nbcon_cpu_emergency_exit();
4219 }
4220 
4221 static int HARDIRQ_verbose(struct lock_class *class)
4222 {
4223 #if HARDIRQ_VERBOSE
4224 	return class_filter(class);
4225 #endif
4226 	return 0;
4227 }
4228 
4229 static int SOFTIRQ_verbose(struct lock_class *class)
4230 {
4231 #if SOFTIRQ_VERBOSE
4232 	return class_filter(class);
4233 #endif
4234 	return 0;
4235 }
4236 
4237 static int (*state_verbose_f[])(struct lock_class *class) = {
4238 #define LOCKDEP_STATE(__STATE) \
4239 	__STATE##_verbose,
4240 #include "lockdep_states.h"
4241 #undef LOCKDEP_STATE
4242 };
4243 
4244 static inline int state_verbose(enum lock_usage_bit bit,
4245 				struct lock_class *class)
4246 {
4247 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4248 }
4249 
4250 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4251 			     enum lock_usage_bit bit, const char *name);
4252 
4253 static int
4254 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4255 		enum lock_usage_bit new_bit)
4256 {
4257 	int excl_bit = exclusive_bit(new_bit);
4258 	int read = new_bit & LOCK_USAGE_READ_MASK;
4259 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4260 
4261 	/*
4262 	 * Validate that this particular lock does not have conflicting
4263 	 * usage states.
4264 	 */
4265 	if (!valid_state(curr, this, new_bit, excl_bit))
4266 		return 0;
4267 
4268 	/*
4269 	 * Check for read in write conflicts
4270 	 */
4271 	if (!read && !valid_state(curr, this, new_bit,
4272 				  excl_bit + LOCK_USAGE_READ_MASK))
4273 		return 0;
4274 
4275 
4276 	/*
4277 	 * Validate that the lock dependencies don't have conflicting usage
4278 	 * states.
4279 	 */
4280 	if (dir) {
4281 		/*
4282 		 * mark ENABLED has to look backwards -- to ensure no dependee
4283 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4284 		 */
4285 		if (!check_usage_backwards(curr, this, excl_bit))
4286 			return 0;
4287 	} else {
4288 		/*
4289 		 * mark USED_IN has to look forwards -- to ensure no dependency
4290 		 * has ENABLED state, which would allow recursion deadlocks.
4291 		 */
4292 		if (!check_usage_forwards(curr, this, excl_bit))
4293 			return 0;
4294 	}
4295 
4296 	if (state_verbose(new_bit, hlock_class(this)))
4297 		return 2;
4298 
4299 	return 1;
4300 }
4301 
4302 /*
4303  * Mark all held locks with a usage bit:
4304  */
4305 static int
4306 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4307 {
4308 	struct held_lock *hlock;
4309 	int i;
4310 
4311 	for (i = 0; i < curr->lockdep_depth; i++) {
4312 		enum lock_usage_bit hlock_bit = base_bit;
4313 		hlock = curr->held_locks + i;
4314 
4315 		if (hlock->read)
4316 			hlock_bit += LOCK_USAGE_READ_MASK;
4317 
4318 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4319 
4320 		if (!hlock->check)
4321 			continue;
4322 
4323 		if (!mark_lock(curr, hlock, hlock_bit))
4324 			return 0;
4325 	}
4326 
4327 	return 1;
4328 }
4329 
4330 /*
4331  * Hardirqs will be enabled:
4332  */
4333 static void __trace_hardirqs_on_caller(void)
4334 {
4335 	struct task_struct *curr = current;
4336 
4337 	/*
4338 	 * We are going to turn hardirqs on, so set the
4339 	 * usage bit for all held locks:
4340 	 */
4341 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4342 		return;
4343 	/*
4344 	 * If we have softirqs enabled, then set the usage
4345 	 * bit for all held locks. (disabled hardirqs prevented
4346 	 * this bit from being set before)
4347 	 */
4348 	if (curr->softirqs_enabled)
4349 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4350 }
4351 
4352 /**
4353  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4354  *
4355  * Invoked before a possible transition to RCU idle from exit to user or
4356  * guest mode. This ensures that all RCU operations are done before RCU
4357  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4358  * invoked to set the final state.
4359  */
4360 void lockdep_hardirqs_on_prepare(void)
4361 {
4362 	if (unlikely(!debug_locks))
4363 		return;
4364 
4365 	/*
4366 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4367 	 */
4368 	if (unlikely(in_nmi()))
4369 		return;
4370 
4371 	if (unlikely(this_cpu_read(lockdep_recursion)))
4372 		return;
4373 
4374 	if (unlikely(lockdep_hardirqs_enabled())) {
4375 		/*
4376 		 * Neither irq nor preemption are disabled here
4377 		 * so this is racy by nature but losing one hit
4378 		 * in a stat is not a big deal.
4379 		 */
4380 		__debug_atomic_inc(redundant_hardirqs_on);
4381 		return;
4382 	}
4383 
4384 	/*
4385 	 * We're enabling irqs and according to our state above irqs weren't
4386 	 * already enabled, yet we find the hardware thinks they are in fact
4387 	 * enabled.. someone messed up their IRQ state tracing.
4388 	 */
4389 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4390 		return;
4391 
4392 	/*
4393 	 * See the fine text that goes along with this variable definition.
4394 	 */
4395 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4396 		return;
4397 
4398 	/*
4399 	 * Can't allow enabling interrupts while in an interrupt handler,
4400 	 * that's general bad form and such. Recursion, limited stack etc..
4401 	 */
4402 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4403 		return;
4404 
4405 	current->hardirq_chain_key = current->curr_chain_key;
4406 
4407 	lockdep_recursion_inc();
4408 	__trace_hardirqs_on_caller();
4409 	lockdep_recursion_finish();
4410 }
4411 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4412 
4413 void noinstr lockdep_hardirqs_on(unsigned long ip)
4414 {
4415 	struct irqtrace_events *trace = &current->irqtrace;
4416 
4417 	if (unlikely(!debug_locks))
4418 		return;
4419 
4420 	/*
4421 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4422 	 * tracking state and hardware state are out of sync.
4423 	 *
4424 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4425 	 * and not rely on hardware state like normal interrupts.
4426 	 */
4427 	if (unlikely(in_nmi())) {
4428 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4429 			return;
4430 
4431 		/*
4432 		 * Skip:
4433 		 *  - recursion check, because NMI can hit lockdep;
4434 		 *  - hardware state check, because above;
4435 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4436 		 */
4437 		goto skip_checks;
4438 	}
4439 
4440 	if (unlikely(this_cpu_read(lockdep_recursion)))
4441 		return;
4442 
4443 	if (lockdep_hardirqs_enabled()) {
4444 		/*
4445 		 * Neither irq nor preemption are disabled here
4446 		 * so this is racy by nature but losing one hit
4447 		 * in a stat is not a big deal.
4448 		 */
4449 		__debug_atomic_inc(redundant_hardirqs_on);
4450 		return;
4451 	}
4452 
4453 	/*
4454 	 * We're enabling irqs and according to our state above irqs weren't
4455 	 * already enabled, yet we find the hardware thinks they are in fact
4456 	 * enabled.. someone messed up their IRQ state tracing.
4457 	 */
4458 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4459 		return;
4460 
4461 	/*
4462 	 * Ensure the lock stack remained unchanged between
4463 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4464 	 */
4465 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4466 			    current->curr_chain_key);
4467 
4468 skip_checks:
4469 	/* we'll do an OFF -> ON transition: */
4470 	__this_cpu_write(hardirqs_enabled, 1);
4471 	trace->hardirq_enable_ip = ip;
4472 	trace->hardirq_enable_event = ++trace->irq_events;
4473 	debug_atomic_inc(hardirqs_on_events);
4474 }
4475 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4476 
4477 /*
4478  * Hardirqs were disabled:
4479  */
4480 void noinstr lockdep_hardirqs_off(unsigned long ip)
4481 {
4482 	if (unlikely(!debug_locks))
4483 		return;
4484 
4485 	/*
4486 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4487 	 * they will restore the software state. This ensures the software
4488 	 * state is consistent inside NMIs as well.
4489 	 */
4490 	if (in_nmi()) {
4491 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4492 			return;
4493 	} else if (__this_cpu_read(lockdep_recursion))
4494 		return;
4495 
4496 	/*
4497 	 * So we're supposed to get called after you mask local IRQs, but for
4498 	 * some reason the hardware doesn't quite think you did a proper job.
4499 	 */
4500 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4501 		return;
4502 
4503 	if (lockdep_hardirqs_enabled()) {
4504 		struct irqtrace_events *trace = &current->irqtrace;
4505 
4506 		/*
4507 		 * We have done an ON -> OFF transition:
4508 		 */
4509 		__this_cpu_write(hardirqs_enabled, 0);
4510 		trace->hardirq_disable_ip = ip;
4511 		trace->hardirq_disable_event = ++trace->irq_events;
4512 		debug_atomic_inc(hardirqs_off_events);
4513 	} else {
4514 		debug_atomic_inc(redundant_hardirqs_off);
4515 	}
4516 }
4517 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4518 
4519 /*
4520  * Softirqs will be enabled:
4521  */
4522 void lockdep_softirqs_on(unsigned long ip)
4523 {
4524 	struct irqtrace_events *trace = &current->irqtrace;
4525 
4526 	if (unlikely(!lockdep_enabled()))
4527 		return;
4528 
4529 	/*
4530 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4531 	 * funny state and nesting things.
4532 	 */
4533 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4534 		return;
4535 
4536 	if (current->softirqs_enabled) {
4537 		debug_atomic_inc(redundant_softirqs_on);
4538 		return;
4539 	}
4540 
4541 	lockdep_recursion_inc();
4542 	/*
4543 	 * We'll do an OFF -> ON transition:
4544 	 */
4545 	current->softirqs_enabled = 1;
4546 	trace->softirq_enable_ip = ip;
4547 	trace->softirq_enable_event = ++trace->irq_events;
4548 	debug_atomic_inc(softirqs_on_events);
4549 	/*
4550 	 * We are going to turn softirqs on, so set the
4551 	 * usage bit for all held locks, if hardirqs are
4552 	 * enabled too:
4553 	 */
4554 	if (lockdep_hardirqs_enabled())
4555 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4556 	lockdep_recursion_finish();
4557 }
4558 
4559 /*
4560  * Softirqs were disabled:
4561  */
4562 void lockdep_softirqs_off(unsigned long ip)
4563 {
4564 	if (unlikely(!lockdep_enabled()))
4565 		return;
4566 
4567 	/*
4568 	 * We fancy IRQs being disabled here, see softirq.c
4569 	 */
4570 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4571 		return;
4572 
4573 	if (current->softirqs_enabled) {
4574 		struct irqtrace_events *trace = &current->irqtrace;
4575 
4576 		/*
4577 		 * We have done an ON -> OFF transition:
4578 		 */
4579 		current->softirqs_enabled = 0;
4580 		trace->softirq_disable_ip = ip;
4581 		trace->softirq_disable_event = ++trace->irq_events;
4582 		debug_atomic_inc(softirqs_off_events);
4583 		/*
4584 		 * Whoops, we wanted softirqs off, so why aren't they?
4585 		 */
4586 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4587 	} else
4588 		debug_atomic_inc(redundant_softirqs_off);
4589 }
4590 
4591 /**
4592  * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4593  *
4594  * @cpu: index of offlined CPU
4595  * @idle: task pointer for offlined CPU's idle thread
4596  *
4597  * Invoked after the CPU is dead. Ensures that the tracing infrastructure
4598  * is left in a suitable state for the CPU to be subsequently brought
4599  * online again.
4600  */
4601 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4602 {
4603 	if (unlikely(!debug_locks))
4604 		return;
4605 
4606 	if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4607 		pr_warn("CPU %u left hardirqs enabled!", cpu);
4608 		if (idle)
4609 			print_irqtrace_events(idle);
4610 		/* Clean it up for when the CPU comes online again. */
4611 		per_cpu(hardirqs_enabled, cpu) = 0;
4612 	}
4613 }
4614 
4615 static int
4616 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4617 {
4618 	if (!check)
4619 		goto lock_used;
4620 
4621 	/*
4622 	 * If non-trylock use in a hardirq or softirq context, then
4623 	 * mark the lock as used in these contexts:
4624 	 */
4625 	if (!hlock->trylock) {
4626 		if (hlock->read) {
4627 			if (lockdep_hardirq_context())
4628 				if (!mark_lock(curr, hlock,
4629 						LOCK_USED_IN_HARDIRQ_READ))
4630 					return 0;
4631 			if (curr->softirq_context)
4632 				if (!mark_lock(curr, hlock,
4633 						LOCK_USED_IN_SOFTIRQ_READ))
4634 					return 0;
4635 		} else {
4636 			if (lockdep_hardirq_context())
4637 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4638 					return 0;
4639 			if (curr->softirq_context)
4640 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4641 					return 0;
4642 		}
4643 	}
4644 
4645 	/*
4646 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4647 	 * creates no critical section and no extra dependency can be introduced
4648 	 * by interrupts
4649 	 */
4650 	if (!hlock->hardirqs_off && !hlock->sync) {
4651 		if (hlock->read) {
4652 			if (!mark_lock(curr, hlock,
4653 					LOCK_ENABLED_HARDIRQ_READ))
4654 				return 0;
4655 			if (curr->softirqs_enabled)
4656 				if (!mark_lock(curr, hlock,
4657 						LOCK_ENABLED_SOFTIRQ_READ))
4658 					return 0;
4659 		} else {
4660 			if (!mark_lock(curr, hlock,
4661 					LOCK_ENABLED_HARDIRQ))
4662 				return 0;
4663 			if (curr->softirqs_enabled)
4664 				if (!mark_lock(curr, hlock,
4665 						LOCK_ENABLED_SOFTIRQ))
4666 					return 0;
4667 		}
4668 	}
4669 
4670 lock_used:
4671 	/* mark it as used: */
4672 	if (!mark_lock(curr, hlock, LOCK_USED))
4673 		return 0;
4674 
4675 	return 1;
4676 }
4677 
4678 static inline unsigned int task_irq_context(struct task_struct *task)
4679 {
4680 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4681 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4682 }
4683 
4684 static int separate_irq_context(struct task_struct *curr,
4685 		struct held_lock *hlock)
4686 {
4687 	unsigned int depth = curr->lockdep_depth;
4688 
4689 	/*
4690 	 * Keep track of points where we cross into an interrupt context:
4691 	 */
4692 	if (depth) {
4693 		struct held_lock *prev_hlock;
4694 
4695 		prev_hlock = curr->held_locks + depth-1;
4696 		/*
4697 		 * If we cross into another context, reset the
4698 		 * hash key (this also prevents the checking and the
4699 		 * adding of the dependency to 'prev'):
4700 		 */
4701 		if (prev_hlock->irq_context != hlock->irq_context)
4702 			return 1;
4703 	}
4704 	return 0;
4705 }
4706 
4707 /*
4708  * Mark a lock with a usage bit, and validate the state transition:
4709  */
4710 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4711 			     enum lock_usage_bit new_bit)
4712 {
4713 	unsigned int new_mask, ret = 1;
4714 
4715 	if (new_bit >= LOCK_USAGE_STATES) {
4716 		DEBUG_LOCKS_WARN_ON(1);
4717 		return 0;
4718 	}
4719 
4720 	if (new_bit == LOCK_USED && this->read)
4721 		new_bit = LOCK_USED_READ;
4722 
4723 	new_mask = 1 << new_bit;
4724 
4725 	/*
4726 	 * If already set then do not dirty the cacheline,
4727 	 * nor do any checks:
4728 	 */
4729 	if (likely(hlock_class(this)->usage_mask & new_mask))
4730 		return 1;
4731 
4732 	if (!graph_lock())
4733 		return 0;
4734 	/*
4735 	 * Make sure we didn't race:
4736 	 */
4737 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4738 		goto unlock;
4739 
4740 	if (!hlock_class(this)->usage_mask)
4741 		debug_atomic_dec(nr_unused_locks);
4742 
4743 	hlock_class(this)->usage_mask |= new_mask;
4744 
4745 	if (new_bit < LOCK_TRACE_STATES) {
4746 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4747 			return 0;
4748 	}
4749 
4750 	if (new_bit < LOCK_USED) {
4751 		ret = mark_lock_irq(curr, this, new_bit);
4752 		if (!ret)
4753 			return 0;
4754 	}
4755 
4756 unlock:
4757 	graph_unlock();
4758 
4759 	/*
4760 	 * We must printk outside of the graph_lock:
4761 	 */
4762 	if (ret == 2) {
4763 		nbcon_cpu_emergency_enter();
4764 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4765 		print_lock(this);
4766 		print_irqtrace_events(curr);
4767 		dump_stack();
4768 		nbcon_cpu_emergency_exit();
4769 	}
4770 
4771 	return ret;
4772 }
4773 
4774 static inline short task_wait_context(struct task_struct *curr)
4775 {
4776 	/*
4777 	 * Set appropriate wait type for the context; for IRQs we have to take
4778 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4779 	 */
4780 	if (lockdep_hardirq_context()) {
4781 		/*
4782 		 * Check if force_irqthreads will run us threaded.
4783 		 */
4784 		if (curr->hardirq_threaded || curr->irq_config)
4785 			return LD_WAIT_CONFIG;
4786 
4787 		return LD_WAIT_SPIN;
4788 	} else if (curr->softirq_context) {
4789 		/*
4790 		 * Softirqs are always threaded.
4791 		 */
4792 		return LD_WAIT_CONFIG;
4793 	}
4794 
4795 	return LD_WAIT_MAX;
4796 }
4797 
4798 static int
4799 print_lock_invalid_wait_context(struct task_struct *curr,
4800 				struct held_lock *hlock)
4801 {
4802 	short curr_inner;
4803 
4804 	if (!debug_locks_off())
4805 		return 0;
4806 	if (debug_locks_silent)
4807 		return 0;
4808 
4809 	nbcon_cpu_emergency_enter();
4810 
4811 	pr_warn("\n");
4812 	pr_warn("=============================\n");
4813 	pr_warn("[ BUG: Invalid wait context ]\n");
4814 	print_kernel_ident();
4815 	pr_warn("-----------------------------\n");
4816 
4817 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4818 	print_lock(hlock);
4819 
4820 	pr_warn("other info that might help us debug this:\n");
4821 
4822 	curr_inner = task_wait_context(curr);
4823 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4824 
4825 	lockdep_print_held_locks(curr);
4826 
4827 	pr_warn("stack backtrace:\n");
4828 	dump_stack();
4829 
4830 	nbcon_cpu_emergency_exit();
4831 
4832 	return 0;
4833 }
4834 
4835 /*
4836  * Verify the wait_type context.
4837  *
4838  * This check validates we take locks in the right wait-type order; that is it
4839  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4840  * acquire spinlocks inside raw_spinlocks and the sort.
4841  *
4842  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4843  * can be taken from (pretty much) any context but also has constraints.
4844  * However when taken in a stricter environment the RCU lock does not loosen
4845  * the constraints.
4846  *
4847  * Therefore we must look for the strictest environment in the lock stack and
4848  * compare that to the lock we're trying to acquire.
4849  */
4850 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4851 {
4852 	u8 next_inner = hlock_class(next)->wait_type_inner;
4853 	u8 next_outer = hlock_class(next)->wait_type_outer;
4854 	u8 curr_inner;
4855 	int depth;
4856 
4857 	if (!next_inner || next->trylock)
4858 		return 0;
4859 
4860 	if (!next_outer)
4861 		next_outer = next_inner;
4862 
4863 	/*
4864 	 * Find start of current irq_context..
4865 	 */
4866 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4867 		struct held_lock *prev = curr->held_locks + depth;
4868 		if (prev->irq_context != next->irq_context)
4869 			break;
4870 	}
4871 	depth++;
4872 
4873 	curr_inner = task_wait_context(curr);
4874 
4875 	for (; depth < curr->lockdep_depth; depth++) {
4876 		struct held_lock *prev = curr->held_locks + depth;
4877 		struct lock_class *class = hlock_class(prev);
4878 		u8 prev_inner = class->wait_type_inner;
4879 
4880 		if (prev_inner) {
4881 			/*
4882 			 * We can have a bigger inner than a previous one
4883 			 * when outer is smaller than inner, as with RCU.
4884 			 *
4885 			 * Also due to trylocks.
4886 			 */
4887 			curr_inner = min(curr_inner, prev_inner);
4888 
4889 			/*
4890 			 * Allow override for annotations -- this is typically
4891 			 * only valid/needed for code that only exists when
4892 			 * CONFIG_PREEMPT_RT=n.
4893 			 */
4894 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4895 				curr_inner = prev_inner;
4896 		}
4897 	}
4898 
4899 	if (next_outer > curr_inner)
4900 		return print_lock_invalid_wait_context(curr, next);
4901 
4902 	return 0;
4903 }
4904 
4905 #else /* CONFIG_PROVE_LOCKING */
4906 
4907 static inline int
4908 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4909 {
4910 	return 1;
4911 }
4912 
4913 static inline unsigned int task_irq_context(struct task_struct *task)
4914 {
4915 	return 0;
4916 }
4917 
4918 static inline int separate_irq_context(struct task_struct *curr,
4919 		struct held_lock *hlock)
4920 {
4921 	return 0;
4922 }
4923 
4924 static inline int check_wait_context(struct task_struct *curr,
4925 				     struct held_lock *next)
4926 {
4927 	return 0;
4928 }
4929 
4930 #endif /* CONFIG_PROVE_LOCKING */
4931 
4932 /*
4933  * Initialize a lock instance's lock-class mapping info:
4934  */
4935 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4936 			    struct lock_class_key *key, int subclass,
4937 			    u8 inner, u8 outer, u8 lock_type)
4938 {
4939 	int i;
4940 
4941 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4942 		lock->class_cache[i] = NULL;
4943 
4944 #ifdef CONFIG_LOCK_STAT
4945 	lock->cpu = raw_smp_processor_id();
4946 #endif
4947 
4948 	/*
4949 	 * Can't be having no nameless bastards around this place!
4950 	 */
4951 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4952 		lock->name = "NULL";
4953 		return;
4954 	}
4955 
4956 	lock->name = name;
4957 
4958 	lock->wait_type_outer = outer;
4959 	lock->wait_type_inner = inner;
4960 	lock->lock_type = lock_type;
4961 
4962 	/*
4963 	 * No key, no joy, we need to hash something.
4964 	 */
4965 	if (DEBUG_LOCKS_WARN_ON(!key))
4966 		return;
4967 	/*
4968 	 * Sanity check, the lock-class key must either have been allocated
4969 	 * statically or must have been registered as a dynamic key.
4970 	 */
4971 	if (!static_obj(key) && !is_dynamic_key(key)) {
4972 		if (debug_locks)
4973 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4974 		DEBUG_LOCKS_WARN_ON(1);
4975 		return;
4976 	}
4977 	lock->key = key;
4978 
4979 	if (unlikely(!debug_locks))
4980 		return;
4981 
4982 	if (subclass) {
4983 		unsigned long flags;
4984 
4985 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4986 			return;
4987 
4988 		raw_local_irq_save(flags);
4989 		lockdep_recursion_inc();
4990 		register_lock_class(lock, subclass, 1);
4991 		lockdep_recursion_finish();
4992 		raw_local_irq_restore(flags);
4993 	}
4994 }
4995 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4996 
4997 struct lock_class_key __lockdep_no_validate__;
4998 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4999 
5000 struct lock_class_key __lockdep_no_track__;
5001 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5002 
5003 #ifdef CONFIG_PROVE_LOCKING
5004 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5005 			     lock_print_fn print_fn)
5006 {
5007 	struct lock_class *class = lock->class_cache[0];
5008 	unsigned long flags;
5009 
5010 	raw_local_irq_save(flags);
5011 	lockdep_recursion_inc();
5012 
5013 	if (!class)
5014 		class = register_lock_class(lock, 0, 0);
5015 
5016 	if (class) {
5017 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
5018 		WARN_ON(class->print_fn && class->print_fn != print_fn);
5019 
5020 		class->cmp_fn	= cmp_fn;
5021 		class->print_fn = print_fn;
5022 	}
5023 
5024 	lockdep_recursion_finish();
5025 	raw_local_irq_restore(flags);
5026 }
5027 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5028 #endif
5029 
5030 static void
5031 print_lock_nested_lock_not_held(struct task_struct *curr,
5032 				struct held_lock *hlock)
5033 {
5034 	if (!debug_locks_off())
5035 		return;
5036 	if (debug_locks_silent)
5037 		return;
5038 
5039 	nbcon_cpu_emergency_enter();
5040 
5041 	pr_warn("\n");
5042 	pr_warn("==================================\n");
5043 	pr_warn("WARNING: Nested lock was not taken\n");
5044 	print_kernel_ident();
5045 	pr_warn("----------------------------------\n");
5046 
5047 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5048 	print_lock(hlock);
5049 
5050 	pr_warn("\nbut this task is not holding:\n");
5051 	pr_warn("%s\n", hlock->nest_lock->name);
5052 
5053 	pr_warn("\nstack backtrace:\n");
5054 	dump_stack();
5055 
5056 	pr_warn("\nother info that might help us debug this:\n");
5057 	lockdep_print_held_locks(curr);
5058 
5059 	pr_warn("\nstack backtrace:\n");
5060 	dump_stack();
5061 
5062 	nbcon_cpu_emergency_exit();
5063 }
5064 
5065 static int __lock_is_held(const struct lockdep_map *lock, int read);
5066 
5067 /*
5068  * This gets called for every mutex_lock*()/spin_lock*() operation.
5069  * We maintain the dependency maps and validate the locking attempt:
5070  *
5071  * The callers must make sure that IRQs are disabled before calling it,
5072  * otherwise we could get an interrupt which would want to take locks,
5073  * which would end up in lockdep again.
5074  */
5075 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5076 			  int trylock, int read, int check, int hardirqs_off,
5077 			  struct lockdep_map *nest_lock, unsigned long ip,
5078 			  int references, int pin_count, int sync)
5079 {
5080 	struct task_struct *curr = current;
5081 	struct lock_class *class = NULL;
5082 	struct held_lock *hlock;
5083 	unsigned int depth;
5084 	int chain_head = 0;
5085 	int class_idx;
5086 	u64 chain_key;
5087 
5088 	if (unlikely(!debug_locks))
5089 		return 0;
5090 
5091 	if (unlikely(lock->key == &__lockdep_no_track__))
5092 		return 0;
5093 
5094 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5095 		check = 0;
5096 
5097 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5098 		class = lock->class_cache[subclass];
5099 	/*
5100 	 * Not cached?
5101 	 */
5102 	if (unlikely(!class)) {
5103 		class = register_lock_class(lock, subclass, 0);
5104 		if (!class)
5105 			return 0;
5106 	}
5107 
5108 	debug_class_ops_inc(class);
5109 
5110 	if (very_verbose(class)) {
5111 		nbcon_cpu_emergency_enter();
5112 		printk("\nacquire class [%px] %s", class->key, class->name);
5113 		if (class->name_version > 1)
5114 			printk(KERN_CONT "#%d", class->name_version);
5115 		printk(KERN_CONT "\n");
5116 		dump_stack();
5117 		nbcon_cpu_emergency_exit();
5118 	}
5119 
5120 	/*
5121 	 * Add the lock to the list of currently held locks.
5122 	 * (we dont increase the depth just yet, up until the
5123 	 * dependency checks are done)
5124 	 */
5125 	depth = curr->lockdep_depth;
5126 	/*
5127 	 * Ran out of static storage for our per-task lock stack again have we?
5128 	 */
5129 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5130 		return 0;
5131 
5132 	class_idx = class - lock_classes;
5133 
5134 	if (depth && !sync) {
5135 		/* we're holding locks and the new held lock is not a sync */
5136 		hlock = curr->held_locks + depth - 1;
5137 		if (hlock->class_idx == class_idx && nest_lock) {
5138 			if (!references)
5139 				references++;
5140 
5141 			if (!hlock->references)
5142 				hlock->references++;
5143 
5144 			hlock->references += references;
5145 
5146 			/* Overflow */
5147 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5148 				return 0;
5149 
5150 			return 2;
5151 		}
5152 	}
5153 
5154 	hlock = curr->held_locks + depth;
5155 	/*
5156 	 * Plain impossible, we just registered it and checked it weren't no
5157 	 * NULL like.. I bet this mushroom I ate was good!
5158 	 */
5159 	if (DEBUG_LOCKS_WARN_ON(!class))
5160 		return 0;
5161 	hlock->class_idx = class_idx;
5162 	hlock->acquire_ip = ip;
5163 	hlock->instance = lock;
5164 	hlock->nest_lock = nest_lock;
5165 	hlock->irq_context = task_irq_context(curr);
5166 	hlock->trylock = trylock;
5167 	hlock->read = read;
5168 	hlock->check = check;
5169 	hlock->sync = !!sync;
5170 	hlock->hardirqs_off = !!hardirqs_off;
5171 	hlock->references = references;
5172 #ifdef CONFIG_LOCK_STAT
5173 	hlock->waittime_stamp = 0;
5174 	hlock->holdtime_stamp = lockstat_clock();
5175 #endif
5176 	hlock->pin_count = pin_count;
5177 
5178 	if (check_wait_context(curr, hlock))
5179 		return 0;
5180 
5181 	/* Initialize the lock usage bit */
5182 	if (!mark_usage(curr, hlock, check))
5183 		return 0;
5184 
5185 	/*
5186 	 * Calculate the chain hash: it's the combined hash of all the
5187 	 * lock keys along the dependency chain. We save the hash value
5188 	 * at every step so that we can get the current hash easily
5189 	 * after unlock. The chain hash is then used to cache dependency
5190 	 * results.
5191 	 *
5192 	 * The 'key ID' is what is the most compact key value to drive
5193 	 * the hash, not class->key.
5194 	 */
5195 	/*
5196 	 * Whoops, we did it again.. class_idx is invalid.
5197 	 */
5198 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5199 		return 0;
5200 
5201 	chain_key = curr->curr_chain_key;
5202 	if (!depth) {
5203 		/*
5204 		 * How can we have a chain hash when we ain't got no keys?!
5205 		 */
5206 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5207 			return 0;
5208 		chain_head = 1;
5209 	}
5210 
5211 	hlock->prev_chain_key = chain_key;
5212 	if (separate_irq_context(curr, hlock)) {
5213 		chain_key = INITIAL_CHAIN_KEY;
5214 		chain_head = 1;
5215 	}
5216 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5217 
5218 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5219 		print_lock_nested_lock_not_held(curr, hlock);
5220 		return 0;
5221 	}
5222 
5223 	if (!debug_locks_silent) {
5224 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5225 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5226 	}
5227 
5228 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5229 		return 0;
5230 
5231 	/* For lock_sync(), we are done here since no actual critical section */
5232 	if (hlock->sync)
5233 		return 1;
5234 
5235 	curr->curr_chain_key = chain_key;
5236 	curr->lockdep_depth++;
5237 	check_chain_key(curr);
5238 #ifdef CONFIG_DEBUG_LOCKDEP
5239 	if (unlikely(!debug_locks))
5240 		return 0;
5241 #endif
5242 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5243 		debug_locks_off();
5244 		nbcon_cpu_emergency_enter();
5245 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5246 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5247 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5248 
5249 		lockdep_print_held_locks(current);
5250 		debug_show_all_locks();
5251 		dump_stack();
5252 		nbcon_cpu_emergency_exit();
5253 
5254 		return 0;
5255 	}
5256 
5257 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5258 		max_lockdep_depth = curr->lockdep_depth;
5259 
5260 	return 1;
5261 }
5262 
5263 static void print_unlock_imbalance_bug(struct task_struct *curr,
5264 				       struct lockdep_map *lock,
5265 				       unsigned long ip)
5266 {
5267 	if (!debug_locks_off())
5268 		return;
5269 	if (debug_locks_silent)
5270 		return;
5271 
5272 	nbcon_cpu_emergency_enter();
5273 
5274 	pr_warn("\n");
5275 	pr_warn("=====================================\n");
5276 	pr_warn("WARNING: bad unlock balance detected!\n");
5277 	print_kernel_ident();
5278 	pr_warn("-------------------------------------\n");
5279 	pr_warn("%s/%d is trying to release lock (",
5280 		curr->comm, task_pid_nr(curr));
5281 	print_lockdep_cache(lock);
5282 	pr_cont(") at:\n");
5283 	print_ip_sym(KERN_WARNING, ip);
5284 	pr_warn("but there are no more locks to release!\n");
5285 	pr_warn("\nother info that might help us debug this:\n");
5286 	lockdep_print_held_locks(curr);
5287 
5288 	pr_warn("\nstack backtrace:\n");
5289 	dump_stack();
5290 
5291 	nbcon_cpu_emergency_exit();
5292 }
5293 
5294 static noinstr int match_held_lock(const struct held_lock *hlock,
5295 				   const struct lockdep_map *lock)
5296 {
5297 	if (hlock->instance == lock)
5298 		return 1;
5299 
5300 	if (hlock->references) {
5301 		const struct lock_class *class = lock->class_cache[0];
5302 
5303 		if (!class)
5304 			class = look_up_lock_class(lock, 0);
5305 
5306 		/*
5307 		 * If look_up_lock_class() failed to find a class, we're trying
5308 		 * to test if we hold a lock that has never yet been acquired.
5309 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5310 		 * holding it either, so report failure.
5311 		 */
5312 		if (!class)
5313 			return 0;
5314 
5315 		/*
5316 		 * References, but not a lock we're actually ref-counting?
5317 		 * State got messed up, follow the sites that change ->references
5318 		 * and try to make sense of it.
5319 		 */
5320 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5321 			return 0;
5322 
5323 		if (hlock->class_idx == class - lock_classes)
5324 			return 1;
5325 	}
5326 
5327 	return 0;
5328 }
5329 
5330 /* @depth must not be zero */
5331 static struct held_lock *find_held_lock(struct task_struct *curr,
5332 					struct lockdep_map *lock,
5333 					unsigned int depth, int *idx)
5334 {
5335 	struct held_lock *ret, *hlock, *prev_hlock;
5336 	int i;
5337 
5338 	i = depth - 1;
5339 	hlock = curr->held_locks + i;
5340 	ret = hlock;
5341 	if (match_held_lock(hlock, lock))
5342 		goto out;
5343 
5344 	ret = NULL;
5345 	for (i--, prev_hlock = hlock--;
5346 	     i >= 0;
5347 	     i--, prev_hlock = hlock--) {
5348 		/*
5349 		 * We must not cross into another context:
5350 		 */
5351 		if (prev_hlock->irq_context != hlock->irq_context) {
5352 			ret = NULL;
5353 			break;
5354 		}
5355 		if (match_held_lock(hlock, lock)) {
5356 			ret = hlock;
5357 			break;
5358 		}
5359 	}
5360 
5361 out:
5362 	*idx = i;
5363 	return ret;
5364 }
5365 
5366 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5367 				int idx, unsigned int *merged)
5368 {
5369 	struct held_lock *hlock;
5370 	int first_idx = idx;
5371 
5372 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5373 		return 0;
5374 
5375 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5376 		switch (__lock_acquire(hlock->instance,
5377 				    hlock_class(hlock)->subclass,
5378 				    hlock->trylock,
5379 				    hlock->read, hlock->check,
5380 				    hlock->hardirqs_off,
5381 				    hlock->nest_lock, hlock->acquire_ip,
5382 				    hlock->references, hlock->pin_count, 0)) {
5383 		case 0:
5384 			return 1;
5385 		case 1:
5386 			break;
5387 		case 2:
5388 			*merged += (idx == first_idx);
5389 			break;
5390 		default:
5391 			WARN_ON(1);
5392 			return 0;
5393 		}
5394 	}
5395 	return 0;
5396 }
5397 
5398 static int
5399 __lock_set_class(struct lockdep_map *lock, const char *name,
5400 		 struct lock_class_key *key, unsigned int subclass,
5401 		 unsigned long ip)
5402 {
5403 	struct task_struct *curr = current;
5404 	unsigned int depth, merged = 0;
5405 	struct held_lock *hlock;
5406 	struct lock_class *class;
5407 	int i;
5408 
5409 	if (unlikely(!debug_locks))
5410 		return 0;
5411 
5412 	depth = curr->lockdep_depth;
5413 	/*
5414 	 * This function is about (re)setting the class of a held lock,
5415 	 * yet we're not actually holding any locks. Naughty user!
5416 	 */
5417 	if (DEBUG_LOCKS_WARN_ON(!depth))
5418 		return 0;
5419 
5420 	hlock = find_held_lock(curr, lock, depth, &i);
5421 	if (!hlock) {
5422 		print_unlock_imbalance_bug(curr, lock, ip);
5423 		return 0;
5424 	}
5425 
5426 	lockdep_init_map_type(lock, name, key, 0,
5427 			      lock->wait_type_inner,
5428 			      lock->wait_type_outer,
5429 			      lock->lock_type);
5430 	class = register_lock_class(lock, subclass, 0);
5431 	hlock->class_idx = class - lock_classes;
5432 
5433 	curr->lockdep_depth = i;
5434 	curr->curr_chain_key = hlock->prev_chain_key;
5435 
5436 	if (reacquire_held_locks(curr, depth, i, &merged))
5437 		return 0;
5438 
5439 	/*
5440 	 * I took it apart and put it back together again, except now I have
5441 	 * these 'spare' parts.. where shall I put them.
5442 	 */
5443 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5444 		return 0;
5445 	return 1;
5446 }
5447 
5448 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5449 {
5450 	struct task_struct *curr = current;
5451 	unsigned int depth, merged = 0;
5452 	struct held_lock *hlock;
5453 	int i;
5454 
5455 	if (unlikely(!debug_locks))
5456 		return 0;
5457 
5458 	depth = curr->lockdep_depth;
5459 	/*
5460 	 * This function is about (re)setting the class of a held lock,
5461 	 * yet we're not actually holding any locks. Naughty user!
5462 	 */
5463 	if (DEBUG_LOCKS_WARN_ON(!depth))
5464 		return 0;
5465 
5466 	hlock = find_held_lock(curr, lock, depth, &i);
5467 	if (!hlock) {
5468 		print_unlock_imbalance_bug(curr, lock, ip);
5469 		return 0;
5470 	}
5471 
5472 	curr->lockdep_depth = i;
5473 	curr->curr_chain_key = hlock->prev_chain_key;
5474 
5475 	WARN(hlock->read, "downgrading a read lock");
5476 	hlock->read = 1;
5477 	hlock->acquire_ip = ip;
5478 
5479 	if (reacquire_held_locks(curr, depth, i, &merged))
5480 		return 0;
5481 
5482 	/* Merging can't happen with unchanged classes.. */
5483 	if (DEBUG_LOCKS_WARN_ON(merged))
5484 		return 0;
5485 
5486 	/*
5487 	 * I took it apart and put it back together again, except now I have
5488 	 * these 'spare' parts.. where shall I put them.
5489 	 */
5490 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5491 		return 0;
5492 
5493 	return 1;
5494 }
5495 
5496 /*
5497  * Remove the lock from the list of currently held locks - this gets
5498  * called on mutex_unlock()/spin_unlock*() (or on a failed
5499  * mutex_lock_interruptible()).
5500  */
5501 static int
5502 __lock_release(struct lockdep_map *lock, unsigned long ip)
5503 {
5504 	struct task_struct *curr = current;
5505 	unsigned int depth, merged = 1;
5506 	struct held_lock *hlock;
5507 	int i;
5508 
5509 	if (unlikely(!debug_locks))
5510 		return 0;
5511 
5512 	depth = curr->lockdep_depth;
5513 	/*
5514 	 * So we're all set to release this lock.. wait what lock? We don't
5515 	 * own any locks, you've been drinking again?
5516 	 */
5517 	if (depth <= 0) {
5518 		print_unlock_imbalance_bug(curr, lock, ip);
5519 		return 0;
5520 	}
5521 
5522 	/*
5523 	 * Check whether the lock exists in the current stack
5524 	 * of held locks:
5525 	 */
5526 	hlock = find_held_lock(curr, lock, depth, &i);
5527 	if (!hlock) {
5528 		print_unlock_imbalance_bug(curr, lock, ip);
5529 		return 0;
5530 	}
5531 
5532 	if (hlock->instance == lock)
5533 		lock_release_holdtime(hlock);
5534 
5535 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5536 
5537 	if (hlock->references) {
5538 		hlock->references--;
5539 		if (hlock->references) {
5540 			/*
5541 			 * We had, and after removing one, still have
5542 			 * references, the current lock stack is still
5543 			 * valid. We're done!
5544 			 */
5545 			return 1;
5546 		}
5547 	}
5548 
5549 	/*
5550 	 * We have the right lock to unlock, 'hlock' points to it.
5551 	 * Now we remove it from the stack, and add back the other
5552 	 * entries (if any), recalculating the hash along the way:
5553 	 */
5554 
5555 	curr->lockdep_depth = i;
5556 	curr->curr_chain_key = hlock->prev_chain_key;
5557 
5558 	/*
5559 	 * The most likely case is when the unlock is on the innermost
5560 	 * lock. In this case, we are done!
5561 	 */
5562 	if (i == depth-1)
5563 		return 1;
5564 
5565 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5566 		return 0;
5567 
5568 	/*
5569 	 * We had N bottles of beer on the wall, we drank one, but now
5570 	 * there's not N-1 bottles of beer left on the wall...
5571 	 * Pouring two of the bottles together is acceptable.
5572 	 */
5573 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5574 
5575 	/*
5576 	 * Since reacquire_held_locks() would have called check_chain_key()
5577 	 * indirectly via __lock_acquire(), we don't need to do it again
5578 	 * on return.
5579 	 */
5580 	return 0;
5581 }
5582 
5583 static __always_inline
5584 int __lock_is_held(const struct lockdep_map *lock, int read)
5585 {
5586 	struct task_struct *curr = current;
5587 	int i;
5588 
5589 	for (i = 0; i < curr->lockdep_depth; i++) {
5590 		struct held_lock *hlock = curr->held_locks + i;
5591 
5592 		if (match_held_lock(hlock, lock)) {
5593 			if (read == -1 || !!hlock->read == read)
5594 				return LOCK_STATE_HELD;
5595 
5596 			return LOCK_STATE_NOT_HELD;
5597 		}
5598 	}
5599 
5600 	return LOCK_STATE_NOT_HELD;
5601 }
5602 
5603 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5604 {
5605 	struct pin_cookie cookie = NIL_COOKIE;
5606 	struct task_struct *curr = current;
5607 	int i;
5608 
5609 	if (unlikely(!debug_locks))
5610 		return cookie;
5611 
5612 	for (i = 0; i < curr->lockdep_depth; i++) {
5613 		struct held_lock *hlock = curr->held_locks + i;
5614 
5615 		if (match_held_lock(hlock, lock)) {
5616 			/*
5617 			 * Grab 16bits of randomness; this is sufficient to not
5618 			 * be guessable and still allows some pin nesting in
5619 			 * our u32 pin_count.
5620 			 */
5621 			cookie.val = 1 + (sched_clock() & 0xffff);
5622 			hlock->pin_count += cookie.val;
5623 			return cookie;
5624 		}
5625 	}
5626 
5627 	WARN(1, "pinning an unheld lock\n");
5628 	return cookie;
5629 }
5630 
5631 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5632 {
5633 	struct task_struct *curr = current;
5634 	int i;
5635 
5636 	if (unlikely(!debug_locks))
5637 		return;
5638 
5639 	for (i = 0; i < curr->lockdep_depth; i++) {
5640 		struct held_lock *hlock = curr->held_locks + i;
5641 
5642 		if (match_held_lock(hlock, lock)) {
5643 			hlock->pin_count += cookie.val;
5644 			return;
5645 		}
5646 	}
5647 
5648 	WARN(1, "pinning an unheld lock\n");
5649 }
5650 
5651 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5652 {
5653 	struct task_struct *curr = current;
5654 	int i;
5655 
5656 	if (unlikely(!debug_locks))
5657 		return;
5658 
5659 	for (i = 0; i < curr->lockdep_depth; i++) {
5660 		struct held_lock *hlock = curr->held_locks + i;
5661 
5662 		if (match_held_lock(hlock, lock)) {
5663 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5664 				return;
5665 
5666 			hlock->pin_count -= cookie.val;
5667 
5668 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5669 				hlock->pin_count = 0;
5670 
5671 			return;
5672 		}
5673 	}
5674 
5675 	WARN(1, "unpinning an unheld lock\n");
5676 }
5677 
5678 /*
5679  * Check whether we follow the irq-flags state precisely:
5680  */
5681 static noinstr void check_flags(unsigned long flags)
5682 {
5683 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5684 	if (!debug_locks)
5685 		return;
5686 
5687 	/* Get the warning out..  */
5688 	instrumentation_begin();
5689 
5690 	if (irqs_disabled_flags(flags)) {
5691 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5692 			printk("possible reason: unannotated irqs-off.\n");
5693 		}
5694 	} else {
5695 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5696 			printk("possible reason: unannotated irqs-on.\n");
5697 		}
5698 	}
5699 
5700 #ifndef CONFIG_PREEMPT_RT
5701 	/*
5702 	 * We dont accurately track softirq state in e.g.
5703 	 * hardirq contexts (such as on 4KSTACKS), so only
5704 	 * check if not in hardirq contexts:
5705 	 */
5706 	if (!hardirq_count()) {
5707 		if (softirq_count()) {
5708 			/* like the above, but with softirqs */
5709 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5710 		} else {
5711 			/* lick the above, does it taste good? */
5712 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5713 		}
5714 	}
5715 #endif
5716 
5717 	if (!debug_locks)
5718 		print_irqtrace_events(current);
5719 
5720 	instrumentation_end();
5721 #endif
5722 }
5723 
5724 void lock_set_class(struct lockdep_map *lock, const char *name,
5725 		    struct lock_class_key *key, unsigned int subclass,
5726 		    unsigned long ip)
5727 {
5728 	unsigned long flags;
5729 
5730 	if (unlikely(!lockdep_enabled()))
5731 		return;
5732 
5733 	raw_local_irq_save(flags);
5734 	lockdep_recursion_inc();
5735 	check_flags(flags);
5736 	if (__lock_set_class(lock, name, key, subclass, ip))
5737 		check_chain_key(current);
5738 	lockdep_recursion_finish();
5739 	raw_local_irq_restore(flags);
5740 }
5741 EXPORT_SYMBOL_GPL(lock_set_class);
5742 
5743 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5744 {
5745 	unsigned long flags;
5746 
5747 	if (unlikely(!lockdep_enabled()))
5748 		return;
5749 
5750 	raw_local_irq_save(flags);
5751 	lockdep_recursion_inc();
5752 	check_flags(flags);
5753 	if (__lock_downgrade(lock, ip))
5754 		check_chain_key(current);
5755 	lockdep_recursion_finish();
5756 	raw_local_irq_restore(flags);
5757 }
5758 EXPORT_SYMBOL_GPL(lock_downgrade);
5759 
5760 /* NMI context !!! */
5761 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5762 {
5763 #ifdef CONFIG_PROVE_LOCKING
5764 	struct lock_class *class = look_up_lock_class(lock, subclass);
5765 	unsigned long mask = LOCKF_USED;
5766 
5767 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5768 	if (!class)
5769 		return;
5770 
5771 	/*
5772 	 * READ locks only conflict with USED, such that if we only ever use
5773 	 * READ locks, there is no deadlock possible -- RCU.
5774 	 */
5775 	if (!hlock->read)
5776 		mask |= LOCKF_USED_READ;
5777 
5778 	if (!(class->usage_mask & mask))
5779 		return;
5780 
5781 	hlock->class_idx = class - lock_classes;
5782 
5783 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5784 #endif
5785 }
5786 
5787 static bool lockdep_nmi(void)
5788 {
5789 	if (raw_cpu_read(lockdep_recursion))
5790 		return false;
5791 
5792 	if (!in_nmi())
5793 		return false;
5794 
5795 	return true;
5796 }
5797 
5798 /*
5799  * read_lock() is recursive if:
5800  * 1. We force lockdep think this way in selftests or
5801  * 2. The implementation is not queued read/write lock or
5802  * 3. The locker is at an in_interrupt() context.
5803  */
5804 bool read_lock_is_recursive(void)
5805 {
5806 	return force_read_lock_recursive ||
5807 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5808 	       in_interrupt();
5809 }
5810 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5811 
5812 /*
5813  * We are not always called with irqs disabled - do that here,
5814  * and also avoid lockdep recursion:
5815  */
5816 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5817 			  int trylock, int read, int check,
5818 			  struct lockdep_map *nest_lock, unsigned long ip)
5819 {
5820 	unsigned long flags;
5821 
5822 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5823 
5824 	if (!debug_locks)
5825 		return;
5826 
5827 	if (unlikely(!lockdep_enabled())) {
5828 		/* XXX allow trylock from NMI ?!? */
5829 		if (lockdep_nmi() && !trylock) {
5830 			struct held_lock hlock;
5831 
5832 			hlock.acquire_ip = ip;
5833 			hlock.instance = lock;
5834 			hlock.nest_lock = nest_lock;
5835 			hlock.irq_context = 2; // XXX
5836 			hlock.trylock = trylock;
5837 			hlock.read = read;
5838 			hlock.check = check;
5839 			hlock.hardirqs_off = true;
5840 			hlock.references = 0;
5841 
5842 			verify_lock_unused(lock, &hlock, subclass);
5843 		}
5844 		return;
5845 	}
5846 
5847 	raw_local_irq_save(flags);
5848 	check_flags(flags);
5849 
5850 	lockdep_recursion_inc();
5851 	__lock_acquire(lock, subclass, trylock, read, check,
5852 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5853 	lockdep_recursion_finish();
5854 	raw_local_irq_restore(flags);
5855 }
5856 EXPORT_SYMBOL_GPL(lock_acquire);
5857 
5858 void lock_release(struct lockdep_map *lock, unsigned long ip)
5859 {
5860 	unsigned long flags;
5861 
5862 	trace_lock_release(lock, ip);
5863 
5864 	if (unlikely(!lockdep_enabled() ||
5865 		     lock->key == &__lockdep_no_track__))
5866 		return;
5867 
5868 	raw_local_irq_save(flags);
5869 	check_flags(flags);
5870 
5871 	lockdep_recursion_inc();
5872 	if (__lock_release(lock, ip))
5873 		check_chain_key(current);
5874 	lockdep_recursion_finish();
5875 	raw_local_irq_restore(flags);
5876 }
5877 EXPORT_SYMBOL_GPL(lock_release);
5878 
5879 /*
5880  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5881  *
5882  * No actual critical section is created by the APIs annotated with this: these
5883  * APIs are used to wait for one or multiple critical sections (on other CPUs
5884  * or threads), and it means that calling these APIs inside these critical
5885  * sections is potential deadlock.
5886  */
5887 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5888 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5889 {
5890 	unsigned long flags;
5891 
5892 	if (unlikely(!lockdep_enabled()))
5893 		return;
5894 
5895 	raw_local_irq_save(flags);
5896 	check_flags(flags);
5897 
5898 	lockdep_recursion_inc();
5899 	__lock_acquire(lock, subclass, 0, read, check,
5900 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5901 	check_chain_key(current);
5902 	lockdep_recursion_finish();
5903 	raw_local_irq_restore(flags);
5904 }
5905 EXPORT_SYMBOL_GPL(lock_sync);
5906 
5907 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5908 {
5909 	unsigned long flags;
5910 	int ret = LOCK_STATE_NOT_HELD;
5911 
5912 	/*
5913 	 * Avoid false negative lockdep_assert_held() and
5914 	 * lockdep_assert_not_held().
5915 	 */
5916 	if (unlikely(!lockdep_enabled()))
5917 		return LOCK_STATE_UNKNOWN;
5918 
5919 	raw_local_irq_save(flags);
5920 	check_flags(flags);
5921 
5922 	lockdep_recursion_inc();
5923 	ret = __lock_is_held(lock, read);
5924 	lockdep_recursion_finish();
5925 	raw_local_irq_restore(flags);
5926 
5927 	return ret;
5928 }
5929 EXPORT_SYMBOL_GPL(lock_is_held_type);
5930 NOKPROBE_SYMBOL(lock_is_held_type);
5931 
5932 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5933 {
5934 	struct pin_cookie cookie = NIL_COOKIE;
5935 	unsigned long flags;
5936 
5937 	if (unlikely(!lockdep_enabled()))
5938 		return cookie;
5939 
5940 	raw_local_irq_save(flags);
5941 	check_flags(flags);
5942 
5943 	lockdep_recursion_inc();
5944 	cookie = __lock_pin_lock(lock);
5945 	lockdep_recursion_finish();
5946 	raw_local_irq_restore(flags);
5947 
5948 	return cookie;
5949 }
5950 EXPORT_SYMBOL_GPL(lock_pin_lock);
5951 
5952 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5953 {
5954 	unsigned long flags;
5955 
5956 	if (unlikely(!lockdep_enabled()))
5957 		return;
5958 
5959 	raw_local_irq_save(flags);
5960 	check_flags(flags);
5961 
5962 	lockdep_recursion_inc();
5963 	__lock_repin_lock(lock, cookie);
5964 	lockdep_recursion_finish();
5965 	raw_local_irq_restore(flags);
5966 }
5967 EXPORT_SYMBOL_GPL(lock_repin_lock);
5968 
5969 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5970 {
5971 	unsigned long flags;
5972 
5973 	if (unlikely(!lockdep_enabled()))
5974 		return;
5975 
5976 	raw_local_irq_save(flags);
5977 	check_flags(flags);
5978 
5979 	lockdep_recursion_inc();
5980 	__lock_unpin_lock(lock, cookie);
5981 	lockdep_recursion_finish();
5982 	raw_local_irq_restore(flags);
5983 }
5984 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5985 
5986 #ifdef CONFIG_LOCK_STAT
5987 static void print_lock_contention_bug(struct task_struct *curr,
5988 				      struct lockdep_map *lock,
5989 				      unsigned long ip)
5990 {
5991 	if (!debug_locks_off())
5992 		return;
5993 	if (debug_locks_silent)
5994 		return;
5995 
5996 	nbcon_cpu_emergency_enter();
5997 
5998 	pr_warn("\n");
5999 	pr_warn("=================================\n");
6000 	pr_warn("WARNING: bad contention detected!\n");
6001 	print_kernel_ident();
6002 	pr_warn("---------------------------------\n");
6003 	pr_warn("%s/%d is trying to contend lock (",
6004 		curr->comm, task_pid_nr(curr));
6005 	print_lockdep_cache(lock);
6006 	pr_cont(") at:\n");
6007 	print_ip_sym(KERN_WARNING, ip);
6008 	pr_warn("but there are no locks held!\n");
6009 	pr_warn("\nother info that might help us debug this:\n");
6010 	lockdep_print_held_locks(curr);
6011 
6012 	pr_warn("\nstack backtrace:\n");
6013 	dump_stack();
6014 
6015 	nbcon_cpu_emergency_exit();
6016 }
6017 
6018 static void
6019 __lock_contended(struct lockdep_map *lock, unsigned long ip)
6020 {
6021 	struct task_struct *curr = current;
6022 	struct held_lock *hlock;
6023 	struct lock_class_stats *stats;
6024 	unsigned int depth;
6025 	int i, contention_point, contending_point;
6026 
6027 	depth = curr->lockdep_depth;
6028 	/*
6029 	 * Whee, we contended on this lock, except it seems we're not
6030 	 * actually trying to acquire anything much at all..
6031 	 */
6032 	if (DEBUG_LOCKS_WARN_ON(!depth))
6033 		return;
6034 
6035 	if (unlikely(lock->key == &__lockdep_no_track__))
6036 		return;
6037 
6038 	hlock = find_held_lock(curr, lock, depth, &i);
6039 	if (!hlock) {
6040 		print_lock_contention_bug(curr, lock, ip);
6041 		return;
6042 	}
6043 
6044 	if (hlock->instance != lock)
6045 		return;
6046 
6047 	hlock->waittime_stamp = lockstat_clock();
6048 
6049 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6050 	contending_point = lock_point(hlock_class(hlock)->contending_point,
6051 				      lock->ip);
6052 
6053 	stats = get_lock_stats(hlock_class(hlock));
6054 	if (contention_point < LOCKSTAT_POINTS)
6055 		stats->contention_point[contention_point]++;
6056 	if (contending_point < LOCKSTAT_POINTS)
6057 		stats->contending_point[contending_point]++;
6058 	if (lock->cpu != smp_processor_id())
6059 		stats->bounces[bounce_contended + !!hlock->read]++;
6060 }
6061 
6062 static void
6063 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6064 {
6065 	struct task_struct *curr = current;
6066 	struct held_lock *hlock;
6067 	struct lock_class_stats *stats;
6068 	unsigned int depth;
6069 	u64 now, waittime = 0;
6070 	int i, cpu;
6071 
6072 	depth = curr->lockdep_depth;
6073 	/*
6074 	 * Yay, we acquired ownership of this lock we didn't try to
6075 	 * acquire, how the heck did that happen?
6076 	 */
6077 	if (DEBUG_LOCKS_WARN_ON(!depth))
6078 		return;
6079 
6080 	if (unlikely(lock->key == &__lockdep_no_track__))
6081 		return;
6082 
6083 	hlock = find_held_lock(curr, lock, depth, &i);
6084 	if (!hlock) {
6085 		print_lock_contention_bug(curr, lock, _RET_IP_);
6086 		return;
6087 	}
6088 
6089 	if (hlock->instance != lock)
6090 		return;
6091 
6092 	cpu = smp_processor_id();
6093 	if (hlock->waittime_stamp) {
6094 		now = lockstat_clock();
6095 		waittime = now - hlock->waittime_stamp;
6096 		hlock->holdtime_stamp = now;
6097 	}
6098 
6099 	stats = get_lock_stats(hlock_class(hlock));
6100 	if (waittime) {
6101 		if (hlock->read)
6102 			lock_time_inc(&stats->read_waittime, waittime);
6103 		else
6104 			lock_time_inc(&stats->write_waittime, waittime);
6105 	}
6106 	if (lock->cpu != cpu)
6107 		stats->bounces[bounce_acquired + !!hlock->read]++;
6108 
6109 	lock->cpu = cpu;
6110 	lock->ip = ip;
6111 }
6112 
6113 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6114 {
6115 	unsigned long flags;
6116 
6117 	trace_lock_contended(lock, ip);
6118 
6119 	if (unlikely(!lock_stat || !lockdep_enabled()))
6120 		return;
6121 
6122 	raw_local_irq_save(flags);
6123 	check_flags(flags);
6124 	lockdep_recursion_inc();
6125 	__lock_contended(lock, ip);
6126 	lockdep_recursion_finish();
6127 	raw_local_irq_restore(flags);
6128 }
6129 EXPORT_SYMBOL_GPL(lock_contended);
6130 
6131 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6132 {
6133 	unsigned long flags;
6134 
6135 	trace_lock_acquired(lock, ip);
6136 
6137 	if (unlikely(!lock_stat || !lockdep_enabled()))
6138 		return;
6139 
6140 	raw_local_irq_save(flags);
6141 	check_flags(flags);
6142 	lockdep_recursion_inc();
6143 	__lock_acquired(lock, ip);
6144 	lockdep_recursion_finish();
6145 	raw_local_irq_restore(flags);
6146 }
6147 EXPORT_SYMBOL_GPL(lock_acquired);
6148 #endif
6149 
6150 /*
6151  * Used by the testsuite, sanitize the validator state
6152  * after a simulated failure:
6153  */
6154 
6155 void lockdep_reset(void)
6156 {
6157 	unsigned long flags;
6158 	int i;
6159 
6160 	raw_local_irq_save(flags);
6161 	lockdep_init_task(current);
6162 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6163 	nr_hardirq_chains = 0;
6164 	nr_softirq_chains = 0;
6165 	nr_process_chains = 0;
6166 	debug_locks = 1;
6167 	for (i = 0; i < CHAINHASH_SIZE; i++)
6168 		INIT_HLIST_HEAD(chainhash_table + i);
6169 	raw_local_irq_restore(flags);
6170 }
6171 
6172 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6173 static void remove_class_from_lock_chain(struct pending_free *pf,
6174 					 struct lock_chain *chain,
6175 					 struct lock_class *class)
6176 {
6177 #ifdef CONFIG_PROVE_LOCKING
6178 	int i;
6179 
6180 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6181 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6182 			continue;
6183 		/*
6184 		 * Each lock class occurs at most once in a lock chain so once
6185 		 * we found a match we can break out of this loop.
6186 		 */
6187 		goto free_lock_chain;
6188 	}
6189 	/* Since the chain has not been modified, return. */
6190 	return;
6191 
6192 free_lock_chain:
6193 	free_chain_hlocks(chain->base, chain->depth);
6194 	/* Overwrite the chain key for concurrent RCU readers. */
6195 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6196 	dec_chains(chain->irq_context);
6197 
6198 	/*
6199 	 * Note: calling hlist_del_rcu() from inside a
6200 	 * hlist_for_each_entry_rcu() loop is safe.
6201 	 */
6202 	hlist_del_rcu(&chain->entry);
6203 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6204 	nr_zapped_lock_chains++;
6205 #endif
6206 }
6207 
6208 /* Must be called with the graph lock held. */
6209 static void remove_class_from_lock_chains(struct pending_free *pf,
6210 					  struct lock_class *class)
6211 {
6212 	struct lock_chain *chain;
6213 	struct hlist_head *head;
6214 	int i;
6215 
6216 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6217 		head = chainhash_table + i;
6218 		hlist_for_each_entry_rcu(chain, head, entry) {
6219 			remove_class_from_lock_chain(pf, chain, class);
6220 		}
6221 	}
6222 }
6223 
6224 /*
6225  * Remove all references to a lock class. The caller must hold the graph lock.
6226  */
6227 static void zap_class(struct pending_free *pf, struct lock_class *class)
6228 {
6229 	struct lock_list *entry;
6230 	int i;
6231 
6232 	WARN_ON_ONCE(!class->key);
6233 
6234 	/*
6235 	 * Remove all dependencies this lock is
6236 	 * involved in:
6237 	 */
6238 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6239 		entry = list_entries + i;
6240 		if (entry->class != class && entry->links_to != class)
6241 			continue;
6242 		__clear_bit(i, list_entries_in_use);
6243 		nr_list_entries--;
6244 		list_del_rcu(&entry->entry);
6245 	}
6246 	if (list_empty(&class->locks_after) &&
6247 	    list_empty(&class->locks_before)) {
6248 		list_move_tail(&class->lock_entry, &pf->zapped);
6249 		hlist_del_rcu(&class->hash_entry);
6250 		WRITE_ONCE(class->key, NULL);
6251 		WRITE_ONCE(class->name, NULL);
6252 		nr_lock_classes--;
6253 		__clear_bit(class - lock_classes, lock_classes_in_use);
6254 		if (class - lock_classes == max_lock_class_idx)
6255 			max_lock_class_idx--;
6256 	} else {
6257 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6258 			  class->name);
6259 	}
6260 
6261 	remove_class_from_lock_chains(pf, class);
6262 	nr_zapped_classes++;
6263 }
6264 
6265 static void reinit_class(struct lock_class *class)
6266 {
6267 	WARN_ON_ONCE(!class->lock_entry.next);
6268 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6269 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6270 	memset_startat(class, 0, key);
6271 	WARN_ON_ONCE(!class->lock_entry.next);
6272 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6273 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6274 }
6275 
6276 static inline int within(const void *addr, void *start, unsigned long size)
6277 {
6278 	return addr >= start && addr < start + size;
6279 }
6280 
6281 static bool inside_selftest(void)
6282 {
6283 	return current == lockdep_selftest_task_struct;
6284 }
6285 
6286 /* The caller must hold the graph lock. */
6287 static struct pending_free *get_pending_free(void)
6288 {
6289 	return delayed_free.pf + delayed_free.index;
6290 }
6291 
6292 static void free_zapped_rcu(struct rcu_head *cb);
6293 
6294 /*
6295 * See if we need to queue an RCU callback, must called with
6296 * the lockdep lock held, returns false if either we don't have
6297 * any pending free or the callback is already scheduled.
6298 * Otherwise, a call_rcu() must follow this function call.
6299 */
6300 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6301 {
6302 	WARN_ON_ONCE(inside_selftest());
6303 
6304 	if (list_empty(&pf->zapped))
6305 		return false;
6306 
6307 	if (delayed_free.scheduled)
6308 		return false;
6309 
6310 	delayed_free.scheduled = true;
6311 
6312 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6313 	delayed_free.index ^= 1;
6314 
6315 	return true;
6316 }
6317 
6318 /* The caller must hold the graph lock. May be called from RCU context. */
6319 static void __free_zapped_classes(struct pending_free *pf)
6320 {
6321 	struct lock_class *class;
6322 
6323 	check_data_structures();
6324 
6325 	list_for_each_entry(class, &pf->zapped, lock_entry)
6326 		reinit_class(class);
6327 
6328 	list_splice_init(&pf->zapped, &free_lock_classes);
6329 
6330 #ifdef CONFIG_PROVE_LOCKING
6331 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6332 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6333 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6334 #endif
6335 }
6336 
6337 static void free_zapped_rcu(struct rcu_head *ch)
6338 {
6339 	struct pending_free *pf;
6340 	unsigned long flags;
6341 	bool need_callback;
6342 
6343 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6344 		return;
6345 
6346 	raw_local_irq_save(flags);
6347 	lockdep_lock();
6348 
6349 	/* closed head */
6350 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6351 	__free_zapped_classes(pf);
6352 	delayed_free.scheduled = false;
6353 	need_callback =
6354 		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6355 	lockdep_unlock();
6356 	raw_local_irq_restore(flags);
6357 
6358 	/*
6359 	* If there's pending free and its callback has not been scheduled,
6360 	* queue an RCU callback.
6361 	*/
6362 	if (need_callback)
6363 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6364 
6365 }
6366 
6367 /*
6368  * Remove all lock classes from the class hash table and from the
6369  * all_lock_classes list whose key or name is in the address range [start,
6370  * start + size). Move these lock classes to the zapped_classes list. Must
6371  * be called with the graph lock held.
6372  */
6373 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6374 				     unsigned long size)
6375 {
6376 	struct lock_class *class;
6377 	struct hlist_head *head;
6378 	int i;
6379 
6380 	/* Unhash all classes that were created by a module. */
6381 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6382 		head = classhash_table + i;
6383 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6384 			if (!within(class->key, start, size) &&
6385 			    !within(class->name, start, size))
6386 				continue;
6387 			zap_class(pf, class);
6388 		}
6389 	}
6390 }
6391 
6392 /*
6393  * Used in module.c to remove lock classes from memory that is going to be
6394  * freed; and possibly re-used by other modules.
6395  *
6396  * We will have had one synchronize_rcu() before getting here, so we're
6397  * guaranteed nobody will look up these exact classes -- they're properly dead
6398  * but still allocated.
6399  */
6400 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6401 {
6402 	struct pending_free *pf;
6403 	unsigned long flags;
6404 	bool need_callback;
6405 
6406 	init_data_structures_once();
6407 
6408 	raw_local_irq_save(flags);
6409 	lockdep_lock();
6410 	pf = get_pending_free();
6411 	__lockdep_free_key_range(pf, start, size);
6412 	need_callback = prepare_call_rcu_zapped(pf);
6413 	lockdep_unlock();
6414 	raw_local_irq_restore(flags);
6415 	if (need_callback)
6416 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6417 	/*
6418 	 * Wait for any possible iterators from look_up_lock_class() to pass
6419 	 * before continuing to free the memory they refer to.
6420 	 */
6421 	synchronize_rcu();
6422 }
6423 
6424 /*
6425  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6426  * Ignores debug_locks. Must only be used by the lockdep selftests.
6427  */
6428 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6429 {
6430 	struct pending_free *pf = delayed_free.pf;
6431 	unsigned long flags;
6432 
6433 	init_data_structures_once();
6434 
6435 	raw_local_irq_save(flags);
6436 	lockdep_lock();
6437 	__lockdep_free_key_range(pf, start, size);
6438 	__free_zapped_classes(pf);
6439 	lockdep_unlock();
6440 	raw_local_irq_restore(flags);
6441 }
6442 
6443 void lockdep_free_key_range(void *start, unsigned long size)
6444 {
6445 	init_data_structures_once();
6446 
6447 	if (inside_selftest())
6448 		lockdep_free_key_range_imm(start, size);
6449 	else
6450 		lockdep_free_key_range_reg(start, size);
6451 }
6452 
6453 /*
6454  * Check whether any element of the @lock->class_cache[] array refers to a
6455  * registered lock class. The caller must hold either the graph lock or the
6456  * RCU read lock.
6457  */
6458 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6459 {
6460 	struct lock_class *class;
6461 	struct hlist_head *head;
6462 	int i, j;
6463 
6464 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6465 		head = classhash_table + i;
6466 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6467 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6468 				if (lock->class_cache[j] == class)
6469 					return true;
6470 		}
6471 	}
6472 	return false;
6473 }
6474 
6475 /* The caller must hold the graph lock. Does not sleep. */
6476 static void __lockdep_reset_lock(struct pending_free *pf,
6477 				 struct lockdep_map *lock)
6478 {
6479 	struct lock_class *class;
6480 	int j;
6481 
6482 	/*
6483 	 * Remove all classes this lock might have:
6484 	 */
6485 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6486 		/*
6487 		 * If the class exists we look it up and zap it:
6488 		 */
6489 		class = look_up_lock_class(lock, j);
6490 		if (class)
6491 			zap_class(pf, class);
6492 	}
6493 	/*
6494 	 * Debug check: in the end all mapped classes should
6495 	 * be gone.
6496 	 */
6497 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6498 		debug_locks_off();
6499 }
6500 
6501 /*
6502  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6503  * released data structures from RCU context.
6504  */
6505 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6506 {
6507 	struct pending_free *pf;
6508 	unsigned long flags;
6509 	int locked;
6510 	bool need_callback = false;
6511 
6512 	raw_local_irq_save(flags);
6513 	locked = graph_lock();
6514 	if (!locked)
6515 		goto out_irq;
6516 
6517 	pf = get_pending_free();
6518 	__lockdep_reset_lock(pf, lock);
6519 	need_callback = prepare_call_rcu_zapped(pf);
6520 
6521 	graph_unlock();
6522 out_irq:
6523 	raw_local_irq_restore(flags);
6524 	if (need_callback)
6525 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6526 }
6527 
6528 /*
6529  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6530  * lockdep selftests.
6531  */
6532 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6533 {
6534 	struct pending_free *pf = delayed_free.pf;
6535 	unsigned long flags;
6536 
6537 	raw_local_irq_save(flags);
6538 	lockdep_lock();
6539 	__lockdep_reset_lock(pf, lock);
6540 	__free_zapped_classes(pf);
6541 	lockdep_unlock();
6542 	raw_local_irq_restore(flags);
6543 }
6544 
6545 void lockdep_reset_lock(struct lockdep_map *lock)
6546 {
6547 	init_data_structures_once();
6548 
6549 	if (inside_selftest())
6550 		lockdep_reset_lock_imm(lock);
6551 	else
6552 		lockdep_reset_lock_reg(lock);
6553 }
6554 
6555 /*
6556  * Unregister a dynamically allocated key.
6557  *
6558  * Unlike lockdep_register_key(), a search is always done to find a matching
6559  * key irrespective of debug_locks to avoid potential invalid access to freed
6560  * memory in lock_class entry.
6561  */
6562 void lockdep_unregister_key(struct lock_class_key *key)
6563 {
6564 	struct hlist_head *hash_head = keyhashentry(key);
6565 	struct lock_class_key *k;
6566 	struct pending_free *pf;
6567 	unsigned long flags;
6568 	bool found = false;
6569 	bool need_callback = false;
6570 
6571 	might_sleep();
6572 
6573 	if (WARN_ON_ONCE(static_obj(key)))
6574 		return;
6575 
6576 	raw_local_irq_save(flags);
6577 	lockdep_lock();
6578 
6579 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6580 		if (k == key) {
6581 			hlist_del_rcu(&k->hash_entry);
6582 			found = true;
6583 			break;
6584 		}
6585 	}
6586 	WARN_ON_ONCE(!found && debug_locks);
6587 	if (found) {
6588 		pf = get_pending_free();
6589 		__lockdep_free_key_range(pf, key, 1);
6590 		need_callback = prepare_call_rcu_zapped(pf);
6591 	}
6592 	lockdep_unlock();
6593 	raw_local_irq_restore(flags);
6594 
6595 	if (need_callback)
6596 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6597 
6598 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6599 	synchronize_rcu();
6600 }
6601 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6602 
6603 void __init lockdep_init(void)
6604 {
6605 	pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6606 
6607 	pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6608 	pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6609 	pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6610 	pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6611 	pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6612 	pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6613 	pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6614 
6615 	pr_info(" memory used by lock dependency info: %zu kB\n",
6616 	       (sizeof(lock_classes) +
6617 		sizeof(lock_classes_in_use) +
6618 		sizeof(classhash_table) +
6619 		sizeof(list_entries) +
6620 		sizeof(list_entries_in_use) +
6621 		sizeof(chainhash_table) +
6622 		sizeof(delayed_free)
6623 #ifdef CONFIG_PROVE_LOCKING
6624 		+ sizeof(lock_cq)
6625 		+ sizeof(lock_chains)
6626 		+ sizeof(lock_chains_in_use)
6627 		+ sizeof(chain_hlocks)
6628 #endif
6629 		) / 1024
6630 		);
6631 
6632 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6633 	pr_info(" memory used for stack traces: %zu kB\n",
6634 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6635 	       );
6636 #endif
6637 
6638 	pr_info(" per task-struct memory footprint: %zu bytes\n",
6639 	       sizeof(((struct task_struct *)NULL)->held_locks));
6640 }
6641 
6642 static void
6643 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6644 		     const void *mem_to, struct held_lock *hlock)
6645 {
6646 	if (!debug_locks_off())
6647 		return;
6648 	if (debug_locks_silent)
6649 		return;
6650 
6651 	nbcon_cpu_emergency_enter();
6652 
6653 	pr_warn("\n");
6654 	pr_warn("=========================\n");
6655 	pr_warn("WARNING: held lock freed!\n");
6656 	print_kernel_ident();
6657 	pr_warn("-------------------------\n");
6658 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6659 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6660 	print_lock(hlock);
6661 	lockdep_print_held_locks(curr);
6662 
6663 	pr_warn("\nstack backtrace:\n");
6664 	dump_stack();
6665 
6666 	nbcon_cpu_emergency_exit();
6667 }
6668 
6669 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6670 				const void* lock_from, unsigned long lock_len)
6671 {
6672 	return lock_from + lock_len <= mem_from ||
6673 		mem_from + mem_len <= lock_from;
6674 }
6675 
6676 /*
6677  * Called when kernel memory is freed (or unmapped), or if a lock
6678  * is destroyed or reinitialized - this code checks whether there is
6679  * any held lock in the memory range of <from> to <to>:
6680  */
6681 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6682 {
6683 	struct task_struct *curr = current;
6684 	struct held_lock *hlock;
6685 	unsigned long flags;
6686 	int i;
6687 
6688 	if (unlikely(!debug_locks))
6689 		return;
6690 
6691 	raw_local_irq_save(flags);
6692 	for (i = 0; i < curr->lockdep_depth; i++) {
6693 		hlock = curr->held_locks + i;
6694 
6695 		if (not_in_range(mem_from, mem_len, hlock->instance,
6696 					sizeof(*hlock->instance)))
6697 			continue;
6698 
6699 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6700 		break;
6701 	}
6702 	raw_local_irq_restore(flags);
6703 }
6704 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6705 
6706 static void print_held_locks_bug(void)
6707 {
6708 	if (!debug_locks_off())
6709 		return;
6710 	if (debug_locks_silent)
6711 		return;
6712 
6713 	nbcon_cpu_emergency_enter();
6714 
6715 	pr_warn("\n");
6716 	pr_warn("====================================\n");
6717 	pr_warn("WARNING: %s/%d still has locks held!\n",
6718 	       current->comm, task_pid_nr(current));
6719 	print_kernel_ident();
6720 	pr_warn("------------------------------------\n");
6721 	lockdep_print_held_locks(current);
6722 	pr_warn("\nstack backtrace:\n");
6723 	dump_stack();
6724 
6725 	nbcon_cpu_emergency_exit();
6726 }
6727 
6728 void debug_check_no_locks_held(void)
6729 {
6730 	if (unlikely(current->lockdep_depth > 0))
6731 		print_held_locks_bug();
6732 }
6733 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6734 
6735 #ifdef __KERNEL__
6736 void debug_show_all_locks(void)
6737 {
6738 	struct task_struct *g, *p;
6739 
6740 	if (unlikely(!debug_locks)) {
6741 		pr_warn("INFO: lockdep is turned off.\n");
6742 		return;
6743 	}
6744 	pr_warn("\nShowing all locks held in the system:\n");
6745 
6746 	rcu_read_lock();
6747 	for_each_process_thread(g, p) {
6748 		if (!p->lockdep_depth)
6749 			continue;
6750 		lockdep_print_held_locks(p);
6751 		touch_nmi_watchdog();
6752 		touch_all_softlockup_watchdogs();
6753 	}
6754 	rcu_read_unlock();
6755 
6756 	pr_warn("\n");
6757 	pr_warn("=============================================\n\n");
6758 }
6759 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6760 #endif
6761 
6762 /*
6763  * Careful: only use this function if you are sure that
6764  * the task cannot run in parallel!
6765  */
6766 void debug_show_held_locks(struct task_struct *task)
6767 {
6768 	if (unlikely(!debug_locks)) {
6769 		printk("INFO: lockdep is turned off.\n");
6770 		return;
6771 	}
6772 	lockdep_print_held_locks(task);
6773 }
6774 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6775 
6776 asmlinkage __visible void lockdep_sys_exit(void)
6777 {
6778 	struct task_struct *curr = current;
6779 
6780 	if (unlikely(curr->lockdep_depth)) {
6781 		if (!debug_locks_off())
6782 			return;
6783 		nbcon_cpu_emergency_enter();
6784 		pr_warn("\n");
6785 		pr_warn("================================================\n");
6786 		pr_warn("WARNING: lock held when returning to user space!\n");
6787 		print_kernel_ident();
6788 		pr_warn("------------------------------------------------\n");
6789 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6790 				curr->comm, curr->pid);
6791 		lockdep_print_held_locks(curr);
6792 		nbcon_cpu_emergency_exit();
6793 	}
6794 
6795 	/*
6796 	 * The lock history for each syscall should be independent. So wipe the
6797 	 * slate clean on return to userspace.
6798 	 */
6799 	lockdep_invariant_state(false);
6800 }
6801 
6802 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6803 {
6804 	struct task_struct *curr = current;
6805 	int dl = READ_ONCE(debug_locks);
6806 	bool rcu = warn_rcu_enter();
6807 
6808 	/* Note: the following can be executed concurrently, so be careful. */
6809 	nbcon_cpu_emergency_enter();
6810 	pr_warn("\n");
6811 	pr_warn("=============================\n");
6812 	pr_warn("WARNING: suspicious RCU usage\n");
6813 	print_kernel_ident();
6814 	pr_warn("-----------------------------\n");
6815 	pr_warn("%s:%d %s!\n", file, line, s);
6816 	pr_warn("\nother info that might help us debug this:\n\n");
6817 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6818 	       !rcu_lockdep_current_cpu_online()
6819 			? "RCU used illegally from offline CPU!\n"
6820 			: "",
6821 	       rcu_scheduler_active, dl,
6822 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6823 
6824 	/*
6825 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6826 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6827 	 * considers that CPU to be in an "extended quiescent state",
6828 	 * which means that RCU will be completely ignoring that CPU.
6829 	 * Therefore, rcu_read_lock() and friends have absolutely no
6830 	 * effect on a CPU running in that state. In other words, even if
6831 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6832 	 * delete data structures out from under it.  RCU really has no
6833 	 * choice here: we need to keep an RCU-free window in idle where
6834 	 * the CPU may possibly enter into low power mode. This way we can
6835 	 * notice an extended quiescent state to other CPUs that started a grace
6836 	 * period. Otherwise we would delay any grace period as long as we run
6837 	 * in the idle task.
6838 	 *
6839 	 * So complain bitterly if someone does call rcu_read_lock(),
6840 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6841 	 */
6842 	if (!rcu_is_watching())
6843 		pr_warn("RCU used illegally from extended quiescent state!\n");
6844 
6845 	lockdep_print_held_locks(curr);
6846 	pr_warn("\nstack backtrace:\n");
6847 	dump_stack();
6848 	nbcon_cpu_emergency_exit();
6849 	warn_rcu_exit(rcu);
6850 }
6851 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6852