1 /* 2 * kernel/lockdep.c 3 * 4 * Runtime locking correctness validator 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 10 * 11 * this code maps all the lock dependencies as they occur in a live kernel 12 * and will warn about the following classes of locking bugs: 13 * 14 * - lock inversion scenarios 15 * - circular lock dependencies 16 * - hardirq/softirq safe/unsafe locking bugs 17 * 18 * Bugs are reported even if the current locking scenario does not cause 19 * any deadlock at this point. 20 * 21 * I.e. if anytime in the past two locks were taken in a different order, 22 * even if it happened for another task, even if those were different 23 * locks (but of the same class as this lock), this code will detect it. 24 * 25 * Thanks to Arjan van de Ven for coming up with the initial idea of 26 * mapping lock dependencies runtime. 27 */ 28 #define DISABLE_BRANCH_PROFILING 29 #include <linux/mutex.h> 30 #include <linux/sched.h> 31 #include <linux/sched/clock.h> 32 #include <linux/sched/task.h> 33 #include <linux/delay.h> 34 #include <linux/module.h> 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/spinlock.h> 38 #include <linux/kallsyms.h> 39 #include <linux/interrupt.h> 40 #include <linux/stacktrace.h> 41 #include <linux/debug_locks.h> 42 #include <linux/irqflags.h> 43 #include <linux/utsname.h> 44 #include <linux/hash.h> 45 #include <linux/ftrace.h> 46 #include <linux/stringify.h> 47 #include <linux/bitops.h> 48 #include <linux/gfp.h> 49 #include <linux/kmemcheck.h> 50 #include <linux/random.h> 51 #include <linux/jhash.h> 52 53 #include <asm/sections.h> 54 55 #include "lockdep_internals.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/lock.h> 59 60 #ifdef CONFIG_PROVE_LOCKING 61 int prove_locking = 1; 62 module_param(prove_locking, int, 0644); 63 #else 64 #define prove_locking 0 65 #endif 66 67 #ifdef CONFIG_LOCK_STAT 68 int lock_stat = 1; 69 module_param(lock_stat, int, 0644); 70 #else 71 #define lock_stat 0 72 #endif 73 74 /* 75 * lockdep_lock: protects the lockdep graph, the hashes and the 76 * class/list/hash allocators. 77 * 78 * This is one of the rare exceptions where it's justified 79 * to use a raw spinlock - we really dont want the spinlock 80 * code to recurse back into the lockdep code... 81 */ 82 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 83 84 static int graph_lock(void) 85 { 86 arch_spin_lock(&lockdep_lock); 87 /* 88 * Make sure that if another CPU detected a bug while 89 * walking the graph we dont change it (while the other 90 * CPU is busy printing out stuff with the graph lock 91 * dropped already) 92 */ 93 if (!debug_locks) { 94 arch_spin_unlock(&lockdep_lock); 95 return 0; 96 } 97 /* prevent any recursions within lockdep from causing deadlocks */ 98 current->lockdep_recursion++; 99 return 1; 100 } 101 102 static inline int graph_unlock(void) 103 { 104 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) { 105 /* 106 * The lockdep graph lock isn't locked while we expect it to 107 * be, we're confused now, bye! 108 */ 109 return DEBUG_LOCKS_WARN_ON(1); 110 } 111 112 current->lockdep_recursion--; 113 arch_spin_unlock(&lockdep_lock); 114 return 0; 115 } 116 117 /* 118 * Turn lock debugging off and return with 0 if it was off already, 119 * and also release the graph lock: 120 */ 121 static inline int debug_locks_off_graph_unlock(void) 122 { 123 int ret = debug_locks_off(); 124 125 arch_spin_unlock(&lockdep_lock); 126 127 return ret; 128 } 129 130 unsigned long nr_list_entries; 131 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 132 133 /* 134 * All data structures here are protected by the global debug_lock. 135 * 136 * Mutex key structs only get allocated, once during bootup, and never 137 * get freed - this significantly simplifies the debugging code. 138 */ 139 unsigned long nr_lock_classes; 140 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 141 142 static inline struct lock_class *hlock_class(struct held_lock *hlock) 143 { 144 if (!hlock->class_idx) { 145 /* 146 * Someone passed in garbage, we give up. 147 */ 148 DEBUG_LOCKS_WARN_ON(1); 149 return NULL; 150 } 151 return lock_classes + hlock->class_idx - 1; 152 } 153 154 #ifdef CONFIG_LOCK_STAT 155 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 156 157 static inline u64 lockstat_clock(void) 158 { 159 return local_clock(); 160 } 161 162 static int lock_point(unsigned long points[], unsigned long ip) 163 { 164 int i; 165 166 for (i = 0; i < LOCKSTAT_POINTS; i++) { 167 if (points[i] == 0) { 168 points[i] = ip; 169 break; 170 } 171 if (points[i] == ip) 172 break; 173 } 174 175 return i; 176 } 177 178 static void lock_time_inc(struct lock_time *lt, u64 time) 179 { 180 if (time > lt->max) 181 lt->max = time; 182 183 if (time < lt->min || !lt->nr) 184 lt->min = time; 185 186 lt->total += time; 187 lt->nr++; 188 } 189 190 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 191 { 192 if (!src->nr) 193 return; 194 195 if (src->max > dst->max) 196 dst->max = src->max; 197 198 if (src->min < dst->min || !dst->nr) 199 dst->min = src->min; 200 201 dst->total += src->total; 202 dst->nr += src->nr; 203 } 204 205 struct lock_class_stats lock_stats(struct lock_class *class) 206 { 207 struct lock_class_stats stats; 208 int cpu, i; 209 210 memset(&stats, 0, sizeof(struct lock_class_stats)); 211 for_each_possible_cpu(cpu) { 212 struct lock_class_stats *pcs = 213 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 214 215 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 216 stats.contention_point[i] += pcs->contention_point[i]; 217 218 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 219 stats.contending_point[i] += pcs->contending_point[i]; 220 221 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 222 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 223 224 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 225 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 226 227 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 228 stats.bounces[i] += pcs->bounces[i]; 229 } 230 231 return stats; 232 } 233 234 void clear_lock_stats(struct lock_class *class) 235 { 236 int cpu; 237 238 for_each_possible_cpu(cpu) { 239 struct lock_class_stats *cpu_stats = 240 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 241 242 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 243 } 244 memset(class->contention_point, 0, sizeof(class->contention_point)); 245 memset(class->contending_point, 0, sizeof(class->contending_point)); 246 } 247 248 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 249 { 250 return &get_cpu_var(cpu_lock_stats)[class - lock_classes]; 251 } 252 253 static void put_lock_stats(struct lock_class_stats *stats) 254 { 255 put_cpu_var(cpu_lock_stats); 256 } 257 258 static void lock_release_holdtime(struct held_lock *hlock) 259 { 260 struct lock_class_stats *stats; 261 u64 holdtime; 262 263 if (!lock_stat) 264 return; 265 266 holdtime = lockstat_clock() - hlock->holdtime_stamp; 267 268 stats = get_lock_stats(hlock_class(hlock)); 269 if (hlock->read) 270 lock_time_inc(&stats->read_holdtime, holdtime); 271 else 272 lock_time_inc(&stats->write_holdtime, holdtime); 273 put_lock_stats(stats); 274 } 275 #else 276 static inline void lock_release_holdtime(struct held_lock *hlock) 277 { 278 } 279 #endif 280 281 /* 282 * We keep a global list of all lock classes. The list only grows, 283 * never shrinks. The list is only accessed with the lockdep 284 * spinlock lock held. 285 */ 286 LIST_HEAD(all_lock_classes); 287 288 /* 289 * The lockdep classes are in a hash-table as well, for fast lookup: 290 */ 291 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 292 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 293 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 294 #define classhashentry(key) (classhash_table + __classhashfn((key))) 295 296 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 297 298 /* 299 * We put the lock dependency chains into a hash-table as well, to cache 300 * their existence: 301 */ 302 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 303 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 304 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 305 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 306 307 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 308 309 /* 310 * The hash key of the lock dependency chains is a hash itself too: 311 * it's a hash of all locks taken up to that lock, including that lock. 312 * It's a 64-bit hash, because it's important for the keys to be 313 * unique. 314 */ 315 static inline u64 iterate_chain_key(u64 key, u32 idx) 316 { 317 u32 k0 = key, k1 = key >> 32; 318 319 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 320 321 return k0 | (u64)k1 << 32; 322 } 323 324 void lockdep_off(void) 325 { 326 current->lockdep_recursion++; 327 } 328 EXPORT_SYMBOL(lockdep_off); 329 330 void lockdep_on(void) 331 { 332 current->lockdep_recursion--; 333 } 334 EXPORT_SYMBOL(lockdep_on); 335 336 /* 337 * Debugging switches: 338 */ 339 340 #define VERBOSE 0 341 #define VERY_VERBOSE 0 342 343 #if VERBOSE 344 # define HARDIRQ_VERBOSE 1 345 # define SOFTIRQ_VERBOSE 1 346 # define RECLAIM_VERBOSE 1 347 #else 348 # define HARDIRQ_VERBOSE 0 349 # define SOFTIRQ_VERBOSE 0 350 # define RECLAIM_VERBOSE 0 351 #endif 352 353 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE 354 /* 355 * Quick filtering for interesting events: 356 */ 357 static int class_filter(struct lock_class *class) 358 { 359 #if 0 360 /* Example */ 361 if (class->name_version == 1 && 362 !strcmp(class->name, "lockname")) 363 return 1; 364 if (class->name_version == 1 && 365 !strcmp(class->name, "&struct->lockfield")) 366 return 1; 367 #endif 368 /* Filter everything else. 1 would be to allow everything else */ 369 return 0; 370 } 371 #endif 372 373 static int verbose(struct lock_class *class) 374 { 375 #if VERBOSE 376 return class_filter(class); 377 #endif 378 return 0; 379 } 380 381 /* 382 * Stack-trace: tightly packed array of stack backtrace 383 * addresses. Protected by the graph_lock. 384 */ 385 unsigned long nr_stack_trace_entries; 386 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 387 388 static void print_lockdep_off(const char *bug_msg) 389 { 390 printk(KERN_DEBUG "%s\n", bug_msg); 391 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 392 #ifdef CONFIG_LOCK_STAT 393 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 394 #endif 395 } 396 397 static int save_trace(struct stack_trace *trace) 398 { 399 trace->nr_entries = 0; 400 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 401 trace->entries = stack_trace + nr_stack_trace_entries; 402 403 trace->skip = 3; 404 405 save_stack_trace(trace); 406 407 /* 408 * Some daft arches put -1 at the end to indicate its a full trace. 409 * 410 * <rant> this is buggy anyway, since it takes a whole extra entry so a 411 * complete trace that maxes out the entries provided will be reported 412 * as incomplete, friggin useless </rant> 413 */ 414 if (trace->nr_entries != 0 && 415 trace->entries[trace->nr_entries-1] == ULONG_MAX) 416 trace->nr_entries--; 417 418 trace->max_entries = trace->nr_entries; 419 420 nr_stack_trace_entries += trace->nr_entries; 421 422 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 423 if (!debug_locks_off_graph_unlock()) 424 return 0; 425 426 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 427 dump_stack(); 428 429 return 0; 430 } 431 432 return 1; 433 } 434 435 unsigned int nr_hardirq_chains; 436 unsigned int nr_softirq_chains; 437 unsigned int nr_process_chains; 438 unsigned int max_lockdep_depth; 439 440 #ifdef CONFIG_DEBUG_LOCKDEP 441 /* 442 * Various lockdep statistics: 443 */ 444 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 445 #endif 446 447 /* 448 * Locking printouts: 449 */ 450 451 #define __USAGE(__STATE) \ 452 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 453 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 454 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 455 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 456 457 static const char *usage_str[] = 458 { 459 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 460 #include "lockdep_states.h" 461 #undef LOCKDEP_STATE 462 [LOCK_USED] = "INITIAL USE", 463 }; 464 465 const char * __get_key_name(struct lockdep_subclass_key *key, char *str) 466 { 467 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 468 } 469 470 static inline unsigned long lock_flag(enum lock_usage_bit bit) 471 { 472 return 1UL << bit; 473 } 474 475 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 476 { 477 char c = '.'; 478 479 if (class->usage_mask & lock_flag(bit + 2)) 480 c = '+'; 481 if (class->usage_mask & lock_flag(bit)) { 482 c = '-'; 483 if (class->usage_mask & lock_flag(bit + 2)) 484 c = '?'; 485 } 486 487 return c; 488 } 489 490 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 491 { 492 int i = 0; 493 494 #define LOCKDEP_STATE(__STATE) \ 495 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 496 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 497 #include "lockdep_states.h" 498 #undef LOCKDEP_STATE 499 500 usage[i] = '\0'; 501 } 502 503 static void __print_lock_name(struct lock_class *class) 504 { 505 char str[KSYM_NAME_LEN]; 506 const char *name; 507 508 name = class->name; 509 if (!name) { 510 name = __get_key_name(class->key, str); 511 printk(KERN_CONT "%s", name); 512 } else { 513 printk(KERN_CONT "%s", name); 514 if (class->name_version > 1) 515 printk(KERN_CONT "#%d", class->name_version); 516 if (class->subclass) 517 printk(KERN_CONT "/%d", class->subclass); 518 } 519 } 520 521 static void print_lock_name(struct lock_class *class) 522 { 523 char usage[LOCK_USAGE_CHARS]; 524 525 get_usage_chars(class, usage); 526 527 printk(KERN_CONT " ("); 528 __print_lock_name(class); 529 printk(KERN_CONT "){%s}", usage); 530 } 531 532 static void print_lockdep_cache(struct lockdep_map *lock) 533 { 534 const char *name; 535 char str[KSYM_NAME_LEN]; 536 537 name = lock->name; 538 if (!name) 539 name = __get_key_name(lock->key->subkeys, str); 540 541 printk(KERN_CONT "%s", name); 542 } 543 544 static void print_lock(struct held_lock *hlock) 545 { 546 /* 547 * We can be called locklessly through debug_show_all_locks() so be 548 * extra careful, the hlock might have been released and cleared. 549 */ 550 unsigned int class_idx = hlock->class_idx; 551 552 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */ 553 barrier(); 554 555 if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) { 556 printk(KERN_CONT "<RELEASED>\n"); 557 return; 558 } 559 560 print_lock_name(lock_classes + class_idx - 1); 561 printk(KERN_CONT ", at: [<%p>] %pS\n", 562 (void *)hlock->acquire_ip, (void *)hlock->acquire_ip); 563 } 564 565 static void lockdep_print_held_locks(struct task_struct *curr) 566 { 567 int i, depth = curr->lockdep_depth; 568 569 if (!depth) { 570 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr)); 571 return; 572 } 573 printk("%d lock%s held by %s/%d:\n", 574 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr)); 575 576 for (i = 0; i < depth; i++) { 577 printk(" #%d: ", i); 578 print_lock(curr->held_locks + i); 579 } 580 } 581 582 static void print_kernel_ident(void) 583 { 584 printk("%s %.*s %s\n", init_utsname()->release, 585 (int)strcspn(init_utsname()->version, " "), 586 init_utsname()->version, 587 print_tainted()); 588 } 589 590 static int very_verbose(struct lock_class *class) 591 { 592 #if VERY_VERBOSE 593 return class_filter(class); 594 #endif 595 return 0; 596 } 597 598 /* 599 * Is this the address of a static object: 600 */ 601 #ifdef __KERNEL__ 602 static int static_obj(void *obj) 603 { 604 unsigned long start = (unsigned long) &_stext, 605 end = (unsigned long) &_end, 606 addr = (unsigned long) obj; 607 608 /* 609 * static variable? 610 */ 611 if ((addr >= start) && (addr < end)) 612 return 1; 613 614 if (arch_is_kernel_data(addr)) 615 return 1; 616 617 /* 618 * in-kernel percpu var? 619 */ 620 if (is_kernel_percpu_address(addr)) 621 return 1; 622 623 /* 624 * module static or percpu var? 625 */ 626 return is_module_address(addr) || is_module_percpu_address(addr); 627 } 628 #endif 629 630 /* 631 * To make lock name printouts unique, we calculate a unique 632 * class->name_version generation counter: 633 */ 634 static int count_matching_names(struct lock_class *new_class) 635 { 636 struct lock_class *class; 637 int count = 0; 638 639 if (!new_class->name) 640 return 0; 641 642 list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) { 643 if (new_class->key - new_class->subclass == class->key) 644 return class->name_version; 645 if (class->name && !strcmp(class->name, new_class->name)) 646 count = max(count, class->name_version); 647 } 648 649 return count + 1; 650 } 651 652 /* 653 * Register a lock's class in the hash-table, if the class is not present 654 * yet. Otherwise we look it up. We cache the result in the lock object 655 * itself, so actual lookup of the hash should be once per lock object. 656 */ 657 static inline struct lock_class * 658 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) 659 { 660 struct lockdep_subclass_key *key; 661 struct hlist_head *hash_head; 662 struct lock_class *class; 663 664 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 665 debug_locks_off(); 666 printk(KERN_ERR 667 "BUG: looking up invalid subclass: %u\n", subclass); 668 printk(KERN_ERR 669 "turning off the locking correctness validator.\n"); 670 dump_stack(); 671 return NULL; 672 } 673 674 /* 675 * Static locks do not have their class-keys yet - for them the key 676 * is the lock object itself: 677 */ 678 if (unlikely(!lock->key)) 679 lock->key = (void *)lock; 680 681 /* 682 * NOTE: the class-key must be unique. For dynamic locks, a static 683 * lock_class_key variable is passed in through the mutex_init() 684 * (or spin_lock_init()) call - which acts as the key. For static 685 * locks we use the lock object itself as the key. 686 */ 687 BUILD_BUG_ON(sizeof(struct lock_class_key) > 688 sizeof(struct lockdep_map)); 689 690 key = lock->key->subkeys + subclass; 691 692 hash_head = classhashentry(key); 693 694 /* 695 * We do an RCU walk of the hash, see lockdep_free_key_range(). 696 */ 697 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 698 return NULL; 699 700 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 701 if (class->key == key) { 702 /* 703 * Huh! same key, different name? Did someone trample 704 * on some memory? We're most confused. 705 */ 706 WARN_ON_ONCE(class->name != lock->name); 707 return class; 708 } 709 } 710 711 return NULL; 712 } 713 714 /* 715 * Register a lock's class in the hash-table, if the class is not present 716 * yet. Otherwise we look it up. We cache the result in the lock object 717 * itself, so actual lookup of the hash should be once per lock object. 718 */ 719 static struct lock_class * 720 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 721 { 722 struct lockdep_subclass_key *key; 723 struct hlist_head *hash_head; 724 struct lock_class *class; 725 726 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 727 728 class = look_up_lock_class(lock, subclass); 729 if (likely(class)) 730 goto out_set_class_cache; 731 732 /* 733 * Debug-check: all keys must be persistent! 734 */ 735 if (!static_obj(lock->key)) { 736 debug_locks_off(); 737 printk("INFO: trying to register non-static key.\n"); 738 printk("the code is fine but needs lockdep annotation.\n"); 739 printk("turning off the locking correctness validator.\n"); 740 dump_stack(); 741 742 return NULL; 743 } 744 745 key = lock->key->subkeys + subclass; 746 hash_head = classhashentry(key); 747 748 if (!graph_lock()) { 749 return NULL; 750 } 751 /* 752 * We have to do the hash-walk again, to avoid races 753 * with another CPU: 754 */ 755 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 756 if (class->key == key) 757 goto out_unlock_set; 758 } 759 760 /* 761 * Allocate a new key from the static array, and add it to 762 * the hash: 763 */ 764 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) { 765 if (!debug_locks_off_graph_unlock()) { 766 return NULL; 767 } 768 769 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 770 dump_stack(); 771 return NULL; 772 } 773 class = lock_classes + nr_lock_classes++; 774 debug_atomic_inc(nr_unused_locks); 775 class->key = key; 776 class->name = lock->name; 777 class->subclass = subclass; 778 INIT_LIST_HEAD(&class->lock_entry); 779 INIT_LIST_HEAD(&class->locks_before); 780 INIT_LIST_HEAD(&class->locks_after); 781 class->name_version = count_matching_names(class); 782 /* 783 * We use RCU's safe list-add method to make 784 * parallel walking of the hash-list safe: 785 */ 786 hlist_add_head_rcu(&class->hash_entry, hash_head); 787 /* 788 * Add it to the global list of classes: 789 */ 790 list_add_tail_rcu(&class->lock_entry, &all_lock_classes); 791 792 if (verbose(class)) { 793 graph_unlock(); 794 795 printk("\nnew class %p: %s", class->key, class->name); 796 if (class->name_version > 1) 797 printk(KERN_CONT "#%d", class->name_version); 798 printk(KERN_CONT "\n"); 799 dump_stack(); 800 801 if (!graph_lock()) { 802 return NULL; 803 } 804 } 805 out_unlock_set: 806 graph_unlock(); 807 808 out_set_class_cache: 809 if (!subclass || force) 810 lock->class_cache[0] = class; 811 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 812 lock->class_cache[subclass] = class; 813 814 /* 815 * Hash collision, did we smoke some? We found a class with a matching 816 * hash but the subclass -- which is hashed in -- didn't match. 817 */ 818 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 819 return NULL; 820 821 return class; 822 } 823 824 #ifdef CONFIG_PROVE_LOCKING 825 /* 826 * Allocate a lockdep entry. (assumes the graph_lock held, returns 827 * with NULL on failure) 828 */ 829 static struct lock_list *alloc_list_entry(void) 830 { 831 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) { 832 if (!debug_locks_off_graph_unlock()) 833 return NULL; 834 835 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 836 dump_stack(); 837 return NULL; 838 } 839 return list_entries + nr_list_entries++; 840 } 841 842 /* 843 * Add a new dependency to the head of the list: 844 */ 845 static int add_lock_to_list(struct lock_class *this, struct list_head *head, 846 unsigned long ip, int distance, 847 struct stack_trace *trace) 848 { 849 struct lock_list *entry; 850 /* 851 * Lock not present yet - get a new dependency struct and 852 * add it to the list: 853 */ 854 entry = alloc_list_entry(); 855 if (!entry) 856 return 0; 857 858 entry->class = this; 859 entry->distance = distance; 860 entry->trace = *trace; 861 /* 862 * Both allocation and removal are done under the graph lock; but 863 * iteration is under RCU-sched; see look_up_lock_class() and 864 * lockdep_free_key_range(). 865 */ 866 list_add_tail_rcu(&entry->entry, head); 867 868 return 1; 869 } 870 871 /* 872 * For good efficiency of modular, we use power of 2 873 */ 874 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 875 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 876 877 /* 878 * The circular_queue and helpers is used to implement the 879 * breadth-first search(BFS)algorithem, by which we can build 880 * the shortest path from the next lock to be acquired to the 881 * previous held lock if there is a circular between them. 882 */ 883 struct circular_queue { 884 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; 885 unsigned int front, rear; 886 }; 887 888 static struct circular_queue lock_cq; 889 890 unsigned int max_bfs_queue_depth; 891 892 static unsigned int lockdep_dependency_gen_id; 893 894 static inline void __cq_init(struct circular_queue *cq) 895 { 896 cq->front = cq->rear = 0; 897 lockdep_dependency_gen_id++; 898 } 899 900 static inline int __cq_empty(struct circular_queue *cq) 901 { 902 return (cq->front == cq->rear); 903 } 904 905 static inline int __cq_full(struct circular_queue *cq) 906 { 907 return ((cq->rear + 1) & CQ_MASK) == cq->front; 908 } 909 910 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) 911 { 912 if (__cq_full(cq)) 913 return -1; 914 915 cq->element[cq->rear] = elem; 916 cq->rear = (cq->rear + 1) & CQ_MASK; 917 return 0; 918 } 919 920 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) 921 { 922 if (__cq_empty(cq)) 923 return -1; 924 925 *elem = cq->element[cq->front]; 926 cq->front = (cq->front + 1) & CQ_MASK; 927 return 0; 928 } 929 930 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 931 { 932 return (cq->rear - cq->front) & CQ_MASK; 933 } 934 935 static inline void mark_lock_accessed(struct lock_list *lock, 936 struct lock_list *parent) 937 { 938 unsigned long nr; 939 940 nr = lock - list_entries; 941 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 942 lock->parent = parent; 943 lock->class->dep_gen_id = lockdep_dependency_gen_id; 944 } 945 946 static inline unsigned long lock_accessed(struct lock_list *lock) 947 { 948 unsigned long nr; 949 950 nr = lock - list_entries; 951 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 952 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 953 } 954 955 static inline struct lock_list *get_lock_parent(struct lock_list *child) 956 { 957 return child->parent; 958 } 959 960 static inline int get_lock_depth(struct lock_list *child) 961 { 962 int depth = 0; 963 struct lock_list *parent; 964 965 while ((parent = get_lock_parent(child))) { 966 child = parent; 967 depth++; 968 } 969 return depth; 970 } 971 972 static int __bfs(struct lock_list *source_entry, 973 void *data, 974 int (*match)(struct lock_list *entry, void *data), 975 struct lock_list **target_entry, 976 int forward) 977 { 978 struct lock_list *entry; 979 struct list_head *head; 980 struct circular_queue *cq = &lock_cq; 981 int ret = 1; 982 983 if (match(source_entry, data)) { 984 *target_entry = source_entry; 985 ret = 0; 986 goto exit; 987 } 988 989 if (forward) 990 head = &source_entry->class->locks_after; 991 else 992 head = &source_entry->class->locks_before; 993 994 if (list_empty(head)) 995 goto exit; 996 997 __cq_init(cq); 998 __cq_enqueue(cq, (unsigned long)source_entry); 999 1000 while (!__cq_empty(cq)) { 1001 struct lock_list *lock; 1002 1003 __cq_dequeue(cq, (unsigned long *)&lock); 1004 1005 if (!lock->class) { 1006 ret = -2; 1007 goto exit; 1008 } 1009 1010 if (forward) 1011 head = &lock->class->locks_after; 1012 else 1013 head = &lock->class->locks_before; 1014 1015 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1016 1017 list_for_each_entry_rcu(entry, head, entry) { 1018 if (!lock_accessed(entry)) { 1019 unsigned int cq_depth; 1020 mark_lock_accessed(entry, lock); 1021 if (match(entry, data)) { 1022 *target_entry = entry; 1023 ret = 0; 1024 goto exit; 1025 } 1026 1027 if (__cq_enqueue(cq, (unsigned long)entry)) { 1028 ret = -1; 1029 goto exit; 1030 } 1031 cq_depth = __cq_get_elem_count(cq); 1032 if (max_bfs_queue_depth < cq_depth) 1033 max_bfs_queue_depth = cq_depth; 1034 } 1035 } 1036 } 1037 exit: 1038 return ret; 1039 } 1040 1041 static inline int __bfs_forwards(struct lock_list *src_entry, 1042 void *data, 1043 int (*match)(struct lock_list *entry, void *data), 1044 struct lock_list **target_entry) 1045 { 1046 return __bfs(src_entry, data, match, target_entry, 1); 1047 1048 } 1049 1050 static inline int __bfs_backwards(struct lock_list *src_entry, 1051 void *data, 1052 int (*match)(struct lock_list *entry, void *data), 1053 struct lock_list **target_entry) 1054 { 1055 return __bfs(src_entry, data, match, target_entry, 0); 1056 1057 } 1058 1059 /* 1060 * Recursive, forwards-direction lock-dependency checking, used for 1061 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1062 * checking. 1063 */ 1064 1065 /* 1066 * Print a dependency chain entry (this is only done when a deadlock 1067 * has been detected): 1068 */ 1069 static noinline int 1070 print_circular_bug_entry(struct lock_list *target, int depth) 1071 { 1072 if (debug_locks_silent) 1073 return 0; 1074 printk("\n-> #%u", depth); 1075 print_lock_name(target->class); 1076 printk(KERN_CONT ":\n"); 1077 print_stack_trace(&target->trace, 6); 1078 1079 return 0; 1080 } 1081 1082 static void 1083 print_circular_lock_scenario(struct held_lock *src, 1084 struct held_lock *tgt, 1085 struct lock_list *prt) 1086 { 1087 struct lock_class *source = hlock_class(src); 1088 struct lock_class *target = hlock_class(tgt); 1089 struct lock_class *parent = prt->class; 1090 1091 /* 1092 * A direct locking problem where unsafe_class lock is taken 1093 * directly by safe_class lock, then all we need to show 1094 * is the deadlock scenario, as it is obvious that the 1095 * unsafe lock is taken under the safe lock. 1096 * 1097 * But if there is a chain instead, where the safe lock takes 1098 * an intermediate lock (middle_class) where this lock is 1099 * not the same as the safe lock, then the lock chain is 1100 * used to describe the problem. Otherwise we would need 1101 * to show a different CPU case for each link in the chain 1102 * from the safe_class lock to the unsafe_class lock. 1103 */ 1104 if (parent != source) { 1105 printk("Chain exists of:\n "); 1106 __print_lock_name(source); 1107 printk(KERN_CONT " --> "); 1108 __print_lock_name(parent); 1109 printk(KERN_CONT " --> "); 1110 __print_lock_name(target); 1111 printk(KERN_CONT "\n\n"); 1112 } 1113 1114 printk(" Possible unsafe locking scenario:\n\n"); 1115 printk(" CPU0 CPU1\n"); 1116 printk(" ---- ----\n"); 1117 printk(" lock("); 1118 __print_lock_name(target); 1119 printk(KERN_CONT ");\n"); 1120 printk(" lock("); 1121 __print_lock_name(parent); 1122 printk(KERN_CONT ");\n"); 1123 printk(" lock("); 1124 __print_lock_name(target); 1125 printk(KERN_CONT ");\n"); 1126 printk(" lock("); 1127 __print_lock_name(source); 1128 printk(KERN_CONT ");\n"); 1129 printk("\n *** DEADLOCK ***\n\n"); 1130 } 1131 1132 /* 1133 * When a circular dependency is detected, print the 1134 * header first: 1135 */ 1136 static noinline int 1137 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1138 struct held_lock *check_src, 1139 struct held_lock *check_tgt) 1140 { 1141 struct task_struct *curr = current; 1142 1143 if (debug_locks_silent) 1144 return 0; 1145 1146 printk("\n"); 1147 printk("======================================================\n"); 1148 printk("[ INFO: possible circular locking dependency detected ]\n"); 1149 print_kernel_ident(); 1150 printk("-------------------------------------------------------\n"); 1151 printk("%s/%d is trying to acquire lock:\n", 1152 curr->comm, task_pid_nr(curr)); 1153 print_lock(check_src); 1154 printk("\nbut task is already holding lock:\n"); 1155 print_lock(check_tgt); 1156 printk("\nwhich lock already depends on the new lock.\n\n"); 1157 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1158 1159 print_circular_bug_entry(entry, depth); 1160 1161 return 0; 1162 } 1163 1164 static inline int class_equal(struct lock_list *entry, void *data) 1165 { 1166 return entry->class == data; 1167 } 1168 1169 static noinline int print_circular_bug(struct lock_list *this, 1170 struct lock_list *target, 1171 struct held_lock *check_src, 1172 struct held_lock *check_tgt) 1173 { 1174 struct task_struct *curr = current; 1175 struct lock_list *parent; 1176 struct lock_list *first_parent; 1177 int depth; 1178 1179 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1180 return 0; 1181 1182 if (!save_trace(&this->trace)) 1183 return 0; 1184 1185 depth = get_lock_depth(target); 1186 1187 print_circular_bug_header(target, depth, check_src, check_tgt); 1188 1189 parent = get_lock_parent(target); 1190 first_parent = parent; 1191 1192 while (parent) { 1193 print_circular_bug_entry(parent, --depth); 1194 parent = get_lock_parent(parent); 1195 } 1196 1197 printk("\nother info that might help us debug this:\n\n"); 1198 print_circular_lock_scenario(check_src, check_tgt, 1199 first_parent); 1200 1201 lockdep_print_held_locks(curr); 1202 1203 printk("\nstack backtrace:\n"); 1204 dump_stack(); 1205 1206 return 0; 1207 } 1208 1209 static noinline int print_bfs_bug(int ret) 1210 { 1211 if (!debug_locks_off_graph_unlock()) 1212 return 0; 1213 1214 /* 1215 * Breadth-first-search failed, graph got corrupted? 1216 */ 1217 WARN(1, "lockdep bfs error:%d\n", ret); 1218 1219 return 0; 1220 } 1221 1222 static int noop_count(struct lock_list *entry, void *data) 1223 { 1224 (*(unsigned long *)data)++; 1225 return 0; 1226 } 1227 1228 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1229 { 1230 unsigned long count = 0; 1231 struct lock_list *uninitialized_var(target_entry); 1232 1233 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1234 1235 return count; 1236 } 1237 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1238 { 1239 unsigned long ret, flags; 1240 struct lock_list this; 1241 1242 this.parent = NULL; 1243 this.class = class; 1244 1245 local_irq_save(flags); 1246 arch_spin_lock(&lockdep_lock); 1247 ret = __lockdep_count_forward_deps(&this); 1248 arch_spin_unlock(&lockdep_lock); 1249 local_irq_restore(flags); 1250 1251 return ret; 1252 } 1253 1254 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1255 { 1256 unsigned long count = 0; 1257 struct lock_list *uninitialized_var(target_entry); 1258 1259 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1260 1261 return count; 1262 } 1263 1264 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1265 { 1266 unsigned long ret, flags; 1267 struct lock_list this; 1268 1269 this.parent = NULL; 1270 this.class = class; 1271 1272 local_irq_save(flags); 1273 arch_spin_lock(&lockdep_lock); 1274 ret = __lockdep_count_backward_deps(&this); 1275 arch_spin_unlock(&lockdep_lock); 1276 local_irq_restore(flags); 1277 1278 return ret; 1279 } 1280 1281 /* 1282 * Prove that the dependency graph starting at <entry> can not 1283 * lead to <target>. Print an error and return 0 if it does. 1284 */ 1285 static noinline int 1286 check_noncircular(struct lock_list *root, struct lock_class *target, 1287 struct lock_list **target_entry) 1288 { 1289 int result; 1290 1291 debug_atomic_inc(nr_cyclic_checks); 1292 1293 result = __bfs_forwards(root, target, class_equal, target_entry); 1294 1295 return result; 1296 } 1297 1298 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1299 /* 1300 * Forwards and backwards subgraph searching, for the purposes of 1301 * proving that two subgraphs can be connected by a new dependency 1302 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1303 */ 1304 1305 static inline int usage_match(struct lock_list *entry, void *bit) 1306 { 1307 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); 1308 } 1309 1310 1311 1312 /* 1313 * Find a node in the forwards-direction dependency sub-graph starting 1314 * at @root->class that matches @bit. 1315 * 1316 * Return 0 if such a node exists in the subgraph, and put that node 1317 * into *@target_entry. 1318 * 1319 * Return 1 otherwise and keep *@target_entry unchanged. 1320 * Return <0 on error. 1321 */ 1322 static int 1323 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, 1324 struct lock_list **target_entry) 1325 { 1326 int result; 1327 1328 debug_atomic_inc(nr_find_usage_forwards_checks); 1329 1330 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1331 1332 return result; 1333 } 1334 1335 /* 1336 * Find a node in the backwards-direction dependency sub-graph starting 1337 * at @root->class that matches @bit. 1338 * 1339 * Return 0 if such a node exists in the subgraph, and put that node 1340 * into *@target_entry. 1341 * 1342 * Return 1 otherwise and keep *@target_entry unchanged. 1343 * Return <0 on error. 1344 */ 1345 static int 1346 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, 1347 struct lock_list **target_entry) 1348 { 1349 int result; 1350 1351 debug_atomic_inc(nr_find_usage_backwards_checks); 1352 1353 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1354 1355 return result; 1356 } 1357 1358 static void print_lock_class_header(struct lock_class *class, int depth) 1359 { 1360 int bit; 1361 1362 printk("%*s->", depth, ""); 1363 print_lock_name(class); 1364 printk(KERN_CONT " ops: %lu", class->ops); 1365 printk(KERN_CONT " {\n"); 1366 1367 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1368 if (class->usage_mask & (1 << bit)) { 1369 int len = depth; 1370 1371 len += printk("%*s %s", depth, "", usage_str[bit]); 1372 len += printk(KERN_CONT " at:\n"); 1373 print_stack_trace(class->usage_traces + bit, len); 1374 } 1375 } 1376 printk("%*s }\n", depth, ""); 1377 1378 printk("%*s ... key at: [<%p>] %pS\n", 1379 depth, "", class->key, class->key); 1380 } 1381 1382 /* 1383 * printk the shortest lock dependencies from @start to @end in reverse order: 1384 */ 1385 static void __used 1386 print_shortest_lock_dependencies(struct lock_list *leaf, 1387 struct lock_list *root) 1388 { 1389 struct lock_list *entry = leaf; 1390 int depth; 1391 1392 /*compute depth from generated tree by BFS*/ 1393 depth = get_lock_depth(leaf); 1394 1395 do { 1396 print_lock_class_header(entry->class, depth); 1397 printk("%*s ... acquired at:\n", depth, ""); 1398 print_stack_trace(&entry->trace, 2); 1399 printk("\n"); 1400 1401 if (depth == 0 && (entry != root)) { 1402 printk("lockdep:%s bad path found in chain graph\n", __func__); 1403 break; 1404 } 1405 1406 entry = get_lock_parent(entry); 1407 depth--; 1408 } while (entry && (depth >= 0)); 1409 1410 return; 1411 } 1412 1413 static void 1414 print_irq_lock_scenario(struct lock_list *safe_entry, 1415 struct lock_list *unsafe_entry, 1416 struct lock_class *prev_class, 1417 struct lock_class *next_class) 1418 { 1419 struct lock_class *safe_class = safe_entry->class; 1420 struct lock_class *unsafe_class = unsafe_entry->class; 1421 struct lock_class *middle_class = prev_class; 1422 1423 if (middle_class == safe_class) 1424 middle_class = next_class; 1425 1426 /* 1427 * A direct locking problem where unsafe_class lock is taken 1428 * directly by safe_class lock, then all we need to show 1429 * is the deadlock scenario, as it is obvious that the 1430 * unsafe lock is taken under the safe lock. 1431 * 1432 * But if there is a chain instead, where the safe lock takes 1433 * an intermediate lock (middle_class) where this lock is 1434 * not the same as the safe lock, then the lock chain is 1435 * used to describe the problem. Otherwise we would need 1436 * to show a different CPU case for each link in the chain 1437 * from the safe_class lock to the unsafe_class lock. 1438 */ 1439 if (middle_class != unsafe_class) { 1440 printk("Chain exists of:\n "); 1441 __print_lock_name(safe_class); 1442 printk(KERN_CONT " --> "); 1443 __print_lock_name(middle_class); 1444 printk(KERN_CONT " --> "); 1445 __print_lock_name(unsafe_class); 1446 printk(KERN_CONT "\n\n"); 1447 } 1448 1449 printk(" Possible interrupt unsafe locking scenario:\n\n"); 1450 printk(" CPU0 CPU1\n"); 1451 printk(" ---- ----\n"); 1452 printk(" lock("); 1453 __print_lock_name(unsafe_class); 1454 printk(KERN_CONT ");\n"); 1455 printk(" local_irq_disable();\n"); 1456 printk(" lock("); 1457 __print_lock_name(safe_class); 1458 printk(KERN_CONT ");\n"); 1459 printk(" lock("); 1460 __print_lock_name(middle_class); 1461 printk(KERN_CONT ");\n"); 1462 printk(" <Interrupt>\n"); 1463 printk(" lock("); 1464 __print_lock_name(safe_class); 1465 printk(KERN_CONT ");\n"); 1466 printk("\n *** DEADLOCK ***\n\n"); 1467 } 1468 1469 static int 1470 print_bad_irq_dependency(struct task_struct *curr, 1471 struct lock_list *prev_root, 1472 struct lock_list *next_root, 1473 struct lock_list *backwards_entry, 1474 struct lock_list *forwards_entry, 1475 struct held_lock *prev, 1476 struct held_lock *next, 1477 enum lock_usage_bit bit1, 1478 enum lock_usage_bit bit2, 1479 const char *irqclass) 1480 { 1481 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1482 return 0; 1483 1484 printk("\n"); 1485 printk("======================================================\n"); 1486 printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n", 1487 irqclass, irqclass); 1488 print_kernel_ident(); 1489 printk("------------------------------------------------------\n"); 1490 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 1491 curr->comm, task_pid_nr(curr), 1492 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 1493 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 1494 curr->hardirqs_enabled, 1495 curr->softirqs_enabled); 1496 print_lock(next); 1497 1498 printk("\nand this task is already holding:\n"); 1499 print_lock(prev); 1500 printk("which would create a new lock dependency:\n"); 1501 print_lock_name(hlock_class(prev)); 1502 printk(KERN_CONT " ->"); 1503 print_lock_name(hlock_class(next)); 1504 printk(KERN_CONT "\n"); 1505 1506 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1507 irqclass); 1508 print_lock_name(backwards_entry->class); 1509 printk("\n... which became %s-irq-safe at:\n", irqclass); 1510 1511 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); 1512 1513 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1514 print_lock_name(forwards_entry->class); 1515 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1516 printk("..."); 1517 1518 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); 1519 1520 printk("\nother info that might help us debug this:\n\n"); 1521 print_irq_lock_scenario(backwards_entry, forwards_entry, 1522 hlock_class(prev), hlock_class(next)); 1523 1524 lockdep_print_held_locks(curr); 1525 1526 printk("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 1527 if (!save_trace(&prev_root->trace)) 1528 return 0; 1529 print_shortest_lock_dependencies(backwards_entry, prev_root); 1530 1531 printk("\nthe dependencies between the lock to be acquired"); 1532 printk(" and %s-irq-unsafe lock:\n", irqclass); 1533 if (!save_trace(&next_root->trace)) 1534 return 0; 1535 print_shortest_lock_dependencies(forwards_entry, next_root); 1536 1537 printk("\nstack backtrace:\n"); 1538 dump_stack(); 1539 1540 return 0; 1541 } 1542 1543 static int 1544 check_usage(struct task_struct *curr, struct held_lock *prev, 1545 struct held_lock *next, enum lock_usage_bit bit_backwards, 1546 enum lock_usage_bit bit_forwards, const char *irqclass) 1547 { 1548 int ret; 1549 struct lock_list this, that; 1550 struct lock_list *uninitialized_var(target_entry); 1551 struct lock_list *uninitialized_var(target_entry1); 1552 1553 this.parent = NULL; 1554 1555 this.class = hlock_class(prev); 1556 ret = find_usage_backwards(&this, bit_backwards, &target_entry); 1557 if (ret < 0) 1558 return print_bfs_bug(ret); 1559 if (ret == 1) 1560 return ret; 1561 1562 that.parent = NULL; 1563 that.class = hlock_class(next); 1564 ret = find_usage_forwards(&that, bit_forwards, &target_entry1); 1565 if (ret < 0) 1566 return print_bfs_bug(ret); 1567 if (ret == 1) 1568 return ret; 1569 1570 return print_bad_irq_dependency(curr, &this, &that, 1571 target_entry, target_entry1, 1572 prev, next, 1573 bit_backwards, bit_forwards, irqclass); 1574 } 1575 1576 static const char *state_names[] = { 1577 #define LOCKDEP_STATE(__STATE) \ 1578 __stringify(__STATE), 1579 #include "lockdep_states.h" 1580 #undef LOCKDEP_STATE 1581 }; 1582 1583 static const char *state_rnames[] = { 1584 #define LOCKDEP_STATE(__STATE) \ 1585 __stringify(__STATE)"-READ", 1586 #include "lockdep_states.h" 1587 #undef LOCKDEP_STATE 1588 }; 1589 1590 static inline const char *state_name(enum lock_usage_bit bit) 1591 { 1592 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; 1593 } 1594 1595 static int exclusive_bit(int new_bit) 1596 { 1597 /* 1598 * USED_IN 1599 * USED_IN_READ 1600 * ENABLED 1601 * ENABLED_READ 1602 * 1603 * bit 0 - write/read 1604 * bit 1 - used_in/enabled 1605 * bit 2+ state 1606 */ 1607 1608 int state = new_bit & ~3; 1609 int dir = new_bit & 2; 1610 1611 /* 1612 * keep state, bit flip the direction and strip read. 1613 */ 1614 return state | (dir ^ 2); 1615 } 1616 1617 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 1618 struct held_lock *next, enum lock_usage_bit bit) 1619 { 1620 /* 1621 * Prove that the new dependency does not connect a hardirq-safe 1622 * lock with a hardirq-unsafe lock - to achieve this we search 1623 * the backwards-subgraph starting at <prev>, and the 1624 * forwards-subgraph starting at <next>: 1625 */ 1626 if (!check_usage(curr, prev, next, bit, 1627 exclusive_bit(bit), state_name(bit))) 1628 return 0; 1629 1630 bit++; /* _READ */ 1631 1632 /* 1633 * Prove that the new dependency does not connect a hardirq-safe-read 1634 * lock with a hardirq-unsafe lock - to achieve this we search 1635 * the backwards-subgraph starting at <prev>, and the 1636 * forwards-subgraph starting at <next>: 1637 */ 1638 if (!check_usage(curr, prev, next, bit, 1639 exclusive_bit(bit), state_name(bit))) 1640 return 0; 1641 1642 return 1; 1643 } 1644 1645 static int 1646 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1647 struct held_lock *next) 1648 { 1649 #define LOCKDEP_STATE(__STATE) \ 1650 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ 1651 return 0; 1652 #include "lockdep_states.h" 1653 #undef LOCKDEP_STATE 1654 1655 return 1; 1656 } 1657 1658 static void inc_chains(void) 1659 { 1660 if (current->hardirq_context) 1661 nr_hardirq_chains++; 1662 else { 1663 if (current->softirq_context) 1664 nr_softirq_chains++; 1665 else 1666 nr_process_chains++; 1667 } 1668 } 1669 1670 #else 1671 1672 static inline int 1673 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1674 struct held_lock *next) 1675 { 1676 return 1; 1677 } 1678 1679 static inline void inc_chains(void) 1680 { 1681 nr_process_chains++; 1682 } 1683 1684 #endif 1685 1686 static void 1687 print_deadlock_scenario(struct held_lock *nxt, 1688 struct held_lock *prv) 1689 { 1690 struct lock_class *next = hlock_class(nxt); 1691 struct lock_class *prev = hlock_class(prv); 1692 1693 printk(" Possible unsafe locking scenario:\n\n"); 1694 printk(" CPU0\n"); 1695 printk(" ----\n"); 1696 printk(" lock("); 1697 __print_lock_name(prev); 1698 printk(KERN_CONT ");\n"); 1699 printk(" lock("); 1700 __print_lock_name(next); 1701 printk(KERN_CONT ");\n"); 1702 printk("\n *** DEADLOCK ***\n\n"); 1703 printk(" May be due to missing lock nesting notation\n\n"); 1704 } 1705 1706 static int 1707 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 1708 struct held_lock *next) 1709 { 1710 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1711 return 0; 1712 1713 printk("\n"); 1714 printk("=============================================\n"); 1715 printk("[ INFO: possible recursive locking detected ]\n"); 1716 print_kernel_ident(); 1717 printk("---------------------------------------------\n"); 1718 printk("%s/%d is trying to acquire lock:\n", 1719 curr->comm, task_pid_nr(curr)); 1720 print_lock(next); 1721 printk("\nbut task is already holding lock:\n"); 1722 print_lock(prev); 1723 1724 printk("\nother info that might help us debug this:\n"); 1725 print_deadlock_scenario(next, prev); 1726 lockdep_print_held_locks(curr); 1727 1728 printk("\nstack backtrace:\n"); 1729 dump_stack(); 1730 1731 return 0; 1732 } 1733 1734 /* 1735 * Check whether we are holding such a class already. 1736 * 1737 * (Note that this has to be done separately, because the graph cannot 1738 * detect such classes of deadlocks.) 1739 * 1740 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 1741 */ 1742 static int 1743 check_deadlock(struct task_struct *curr, struct held_lock *next, 1744 struct lockdep_map *next_instance, int read) 1745 { 1746 struct held_lock *prev; 1747 struct held_lock *nest = NULL; 1748 int i; 1749 1750 for (i = 0; i < curr->lockdep_depth; i++) { 1751 prev = curr->held_locks + i; 1752 1753 if (prev->instance == next->nest_lock) 1754 nest = prev; 1755 1756 if (hlock_class(prev) != hlock_class(next)) 1757 continue; 1758 1759 /* 1760 * Allow read-after-read recursion of the same 1761 * lock class (i.e. read_lock(lock)+read_lock(lock)): 1762 */ 1763 if ((read == 2) && prev->read) 1764 return 2; 1765 1766 /* 1767 * We're holding the nest_lock, which serializes this lock's 1768 * nesting behaviour. 1769 */ 1770 if (nest) 1771 return 2; 1772 1773 return print_deadlock_bug(curr, prev, next); 1774 } 1775 return 1; 1776 } 1777 1778 /* 1779 * There was a chain-cache miss, and we are about to add a new dependency 1780 * to a previous lock. We recursively validate the following rules: 1781 * 1782 * - would the adding of the <prev> -> <next> dependency create a 1783 * circular dependency in the graph? [== circular deadlock] 1784 * 1785 * - does the new prev->next dependency connect any hardirq-safe lock 1786 * (in the full backwards-subgraph starting at <prev>) with any 1787 * hardirq-unsafe lock (in the full forwards-subgraph starting at 1788 * <next>)? [== illegal lock inversion with hardirq contexts] 1789 * 1790 * - does the new prev->next dependency connect any softirq-safe lock 1791 * (in the full backwards-subgraph starting at <prev>) with any 1792 * softirq-unsafe lock (in the full forwards-subgraph starting at 1793 * <next>)? [== illegal lock inversion with softirq contexts] 1794 * 1795 * any of these scenarios could lead to a deadlock. 1796 * 1797 * Then if all the validations pass, we add the forwards and backwards 1798 * dependency. 1799 */ 1800 static int 1801 check_prev_add(struct task_struct *curr, struct held_lock *prev, 1802 struct held_lock *next, int distance, int *stack_saved) 1803 { 1804 struct lock_list *entry; 1805 int ret; 1806 struct lock_list this; 1807 struct lock_list *uninitialized_var(target_entry); 1808 /* 1809 * Static variable, serialized by the graph_lock(). 1810 * 1811 * We use this static variable to save the stack trace in case 1812 * we call into this function multiple times due to encountering 1813 * trylocks in the held lock stack. 1814 */ 1815 static struct stack_trace trace; 1816 1817 /* 1818 * Prove that the new <prev> -> <next> dependency would not 1819 * create a circular dependency in the graph. (We do this by 1820 * forward-recursing into the graph starting at <next>, and 1821 * checking whether we can reach <prev>.) 1822 * 1823 * We are using global variables to control the recursion, to 1824 * keep the stackframe size of the recursive functions low: 1825 */ 1826 this.class = hlock_class(next); 1827 this.parent = NULL; 1828 ret = check_noncircular(&this, hlock_class(prev), &target_entry); 1829 if (unlikely(!ret)) 1830 return print_circular_bug(&this, target_entry, next, prev); 1831 else if (unlikely(ret < 0)) 1832 return print_bfs_bug(ret); 1833 1834 if (!check_prev_add_irq(curr, prev, next)) 1835 return 0; 1836 1837 /* 1838 * For recursive read-locks we do all the dependency checks, 1839 * but we dont store read-triggered dependencies (only 1840 * write-triggered dependencies). This ensures that only the 1841 * write-side dependencies matter, and that if for example a 1842 * write-lock never takes any other locks, then the reads are 1843 * equivalent to a NOP. 1844 */ 1845 if (next->read == 2 || prev->read == 2) 1846 return 1; 1847 /* 1848 * Is the <prev> -> <next> dependency already present? 1849 * 1850 * (this may occur even though this is a new chain: consider 1851 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 1852 * chains - the second one will be new, but L1 already has 1853 * L2 added to its dependency list, due to the first chain.) 1854 */ 1855 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 1856 if (entry->class == hlock_class(next)) { 1857 if (distance == 1) 1858 entry->distance = 1; 1859 return 2; 1860 } 1861 } 1862 1863 if (!*stack_saved) { 1864 if (!save_trace(&trace)) 1865 return 0; 1866 *stack_saved = 1; 1867 } 1868 1869 /* 1870 * Ok, all validations passed, add the new lock 1871 * to the previous lock's dependency list: 1872 */ 1873 ret = add_lock_to_list(hlock_class(next), 1874 &hlock_class(prev)->locks_after, 1875 next->acquire_ip, distance, &trace); 1876 1877 if (!ret) 1878 return 0; 1879 1880 ret = add_lock_to_list(hlock_class(prev), 1881 &hlock_class(next)->locks_before, 1882 next->acquire_ip, distance, &trace); 1883 if (!ret) 1884 return 0; 1885 1886 /* 1887 * Debugging printouts: 1888 */ 1889 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) { 1890 /* We drop graph lock, so another thread can overwrite trace. */ 1891 *stack_saved = 0; 1892 graph_unlock(); 1893 printk("\n new dependency: "); 1894 print_lock_name(hlock_class(prev)); 1895 printk(KERN_CONT " => "); 1896 print_lock_name(hlock_class(next)); 1897 printk(KERN_CONT "\n"); 1898 dump_stack(); 1899 return graph_lock(); 1900 } 1901 return 1; 1902 } 1903 1904 /* 1905 * Add the dependency to all directly-previous locks that are 'relevant'. 1906 * The ones that are relevant are (in increasing distance from curr): 1907 * all consecutive trylock entries and the final non-trylock entry - or 1908 * the end of this context's lock-chain - whichever comes first. 1909 */ 1910 static int 1911 check_prevs_add(struct task_struct *curr, struct held_lock *next) 1912 { 1913 int depth = curr->lockdep_depth; 1914 int stack_saved = 0; 1915 struct held_lock *hlock; 1916 1917 /* 1918 * Debugging checks. 1919 * 1920 * Depth must not be zero for a non-head lock: 1921 */ 1922 if (!depth) 1923 goto out_bug; 1924 /* 1925 * At least two relevant locks must exist for this 1926 * to be a head: 1927 */ 1928 if (curr->held_locks[depth].irq_context != 1929 curr->held_locks[depth-1].irq_context) 1930 goto out_bug; 1931 1932 for (;;) { 1933 int distance = curr->lockdep_depth - depth + 1; 1934 hlock = curr->held_locks + depth - 1; 1935 /* 1936 * Only non-recursive-read entries get new dependencies 1937 * added: 1938 */ 1939 if (hlock->read != 2 && hlock->check) { 1940 if (!check_prev_add(curr, hlock, next, 1941 distance, &stack_saved)) 1942 return 0; 1943 /* 1944 * Stop after the first non-trylock entry, 1945 * as non-trylock entries have added their 1946 * own direct dependencies already, so this 1947 * lock is connected to them indirectly: 1948 */ 1949 if (!hlock->trylock) 1950 break; 1951 } 1952 depth--; 1953 /* 1954 * End of lock-stack? 1955 */ 1956 if (!depth) 1957 break; 1958 /* 1959 * Stop the search if we cross into another context: 1960 */ 1961 if (curr->held_locks[depth].irq_context != 1962 curr->held_locks[depth-1].irq_context) 1963 break; 1964 } 1965 return 1; 1966 out_bug: 1967 if (!debug_locks_off_graph_unlock()) 1968 return 0; 1969 1970 /* 1971 * Clearly we all shouldn't be here, but since we made it we 1972 * can reliable say we messed up our state. See the above two 1973 * gotos for reasons why we could possibly end up here. 1974 */ 1975 WARN_ON(1); 1976 1977 return 0; 1978 } 1979 1980 unsigned long nr_lock_chains; 1981 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 1982 int nr_chain_hlocks; 1983 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1984 1985 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 1986 { 1987 return lock_classes + chain_hlocks[chain->base + i]; 1988 } 1989 1990 /* 1991 * Returns the index of the first held_lock of the current chain 1992 */ 1993 static inline int get_first_held_lock(struct task_struct *curr, 1994 struct held_lock *hlock) 1995 { 1996 int i; 1997 struct held_lock *hlock_curr; 1998 1999 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 2000 hlock_curr = curr->held_locks + i; 2001 if (hlock_curr->irq_context != hlock->irq_context) 2002 break; 2003 2004 } 2005 2006 return ++i; 2007 } 2008 2009 #ifdef CONFIG_DEBUG_LOCKDEP 2010 /* 2011 * Returns the next chain_key iteration 2012 */ 2013 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2014 { 2015 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2016 2017 printk(" class_idx:%d -> chain_key:%016Lx", 2018 class_idx, 2019 (unsigned long long)new_chain_key); 2020 return new_chain_key; 2021 } 2022 2023 static void 2024 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2025 { 2026 struct held_lock *hlock; 2027 u64 chain_key = 0; 2028 int depth = curr->lockdep_depth; 2029 int i; 2030 2031 printk("depth: %u\n", depth + 1); 2032 for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) { 2033 hlock = curr->held_locks + i; 2034 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2035 2036 print_lock(hlock); 2037 } 2038 2039 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2040 print_lock(hlock_next); 2041 } 2042 2043 static void print_chain_keys_chain(struct lock_chain *chain) 2044 { 2045 int i; 2046 u64 chain_key = 0; 2047 int class_id; 2048 2049 printk("depth: %u\n", chain->depth); 2050 for (i = 0; i < chain->depth; i++) { 2051 class_id = chain_hlocks[chain->base + i]; 2052 chain_key = print_chain_key_iteration(class_id + 1, chain_key); 2053 2054 print_lock_name(lock_classes + class_id); 2055 printk("\n"); 2056 } 2057 } 2058 2059 static void print_collision(struct task_struct *curr, 2060 struct held_lock *hlock_next, 2061 struct lock_chain *chain) 2062 { 2063 printk("\n"); 2064 printk("======================\n"); 2065 printk("[chain_key collision ]\n"); 2066 print_kernel_ident(); 2067 printk("----------------------\n"); 2068 printk("%s/%d: ", current->comm, task_pid_nr(current)); 2069 printk("Hash chain already cached but the contents don't match!\n"); 2070 2071 printk("Held locks:"); 2072 print_chain_keys_held_locks(curr, hlock_next); 2073 2074 printk("Locks in cached chain:"); 2075 print_chain_keys_chain(chain); 2076 2077 printk("\nstack backtrace:\n"); 2078 dump_stack(); 2079 } 2080 #endif 2081 2082 /* 2083 * Checks whether the chain and the current held locks are consistent 2084 * in depth and also in content. If they are not it most likely means 2085 * that there was a collision during the calculation of the chain_key. 2086 * Returns: 0 not passed, 1 passed 2087 */ 2088 static int check_no_collision(struct task_struct *curr, 2089 struct held_lock *hlock, 2090 struct lock_chain *chain) 2091 { 2092 #ifdef CONFIG_DEBUG_LOCKDEP 2093 int i, j, id; 2094 2095 i = get_first_held_lock(curr, hlock); 2096 2097 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2098 print_collision(curr, hlock, chain); 2099 return 0; 2100 } 2101 2102 for (j = 0; j < chain->depth - 1; j++, i++) { 2103 id = curr->held_locks[i].class_idx - 1; 2104 2105 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2106 print_collision(curr, hlock, chain); 2107 return 0; 2108 } 2109 } 2110 #endif 2111 return 1; 2112 } 2113 2114 /* 2115 * Look up a dependency chain. If the key is not present yet then 2116 * add it and return 1 - in this case the new dependency chain is 2117 * validated. If the key is already hashed, return 0. 2118 * (On return with 1 graph_lock is held.) 2119 */ 2120 static inline int lookup_chain_cache(struct task_struct *curr, 2121 struct held_lock *hlock, 2122 u64 chain_key) 2123 { 2124 struct lock_class *class = hlock_class(hlock); 2125 struct hlist_head *hash_head = chainhashentry(chain_key); 2126 struct lock_chain *chain; 2127 int i, j; 2128 2129 /* 2130 * We might need to take the graph lock, ensure we've got IRQs 2131 * disabled to make this an IRQ-safe lock.. for recursion reasons 2132 * lockdep won't complain about its own locking errors. 2133 */ 2134 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2135 return 0; 2136 /* 2137 * We can walk it lock-free, because entries only get added 2138 * to the hash: 2139 */ 2140 hlist_for_each_entry_rcu(chain, hash_head, entry) { 2141 if (chain->chain_key == chain_key) { 2142 cache_hit: 2143 debug_atomic_inc(chain_lookup_hits); 2144 if (!check_no_collision(curr, hlock, chain)) 2145 return 0; 2146 2147 if (very_verbose(class)) 2148 printk("\nhash chain already cached, key: " 2149 "%016Lx tail class: [%p] %s\n", 2150 (unsigned long long)chain_key, 2151 class->key, class->name); 2152 return 0; 2153 } 2154 } 2155 if (very_verbose(class)) 2156 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n", 2157 (unsigned long long)chain_key, class->key, class->name); 2158 /* 2159 * Allocate a new chain entry from the static array, and add 2160 * it to the hash: 2161 */ 2162 if (!graph_lock()) 2163 return 0; 2164 /* 2165 * We have to walk the chain again locked - to avoid duplicates: 2166 */ 2167 hlist_for_each_entry(chain, hash_head, entry) { 2168 if (chain->chain_key == chain_key) { 2169 graph_unlock(); 2170 goto cache_hit; 2171 } 2172 } 2173 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2174 if (!debug_locks_off_graph_unlock()) 2175 return 0; 2176 2177 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2178 dump_stack(); 2179 return 0; 2180 } 2181 chain = lock_chains + nr_lock_chains++; 2182 chain->chain_key = chain_key; 2183 chain->irq_context = hlock->irq_context; 2184 i = get_first_held_lock(curr, hlock); 2185 chain->depth = curr->lockdep_depth + 1 - i; 2186 2187 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 2188 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 2189 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 2190 2191 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2192 chain->base = nr_chain_hlocks; 2193 for (j = 0; j < chain->depth - 1; j++, i++) { 2194 int lock_id = curr->held_locks[i].class_idx - 1; 2195 chain_hlocks[chain->base + j] = lock_id; 2196 } 2197 chain_hlocks[chain->base + j] = class - lock_classes; 2198 } 2199 2200 if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS) 2201 nr_chain_hlocks += chain->depth; 2202 2203 #ifdef CONFIG_DEBUG_LOCKDEP 2204 /* 2205 * Important for check_no_collision(). 2206 */ 2207 if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) { 2208 if (!debug_locks_off_graph_unlock()) 2209 return 0; 2210 2211 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 2212 dump_stack(); 2213 return 0; 2214 } 2215 #endif 2216 2217 hlist_add_head_rcu(&chain->entry, hash_head); 2218 debug_atomic_inc(chain_lookup_misses); 2219 inc_chains(); 2220 2221 return 1; 2222 } 2223 2224 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock, 2225 struct held_lock *hlock, int chain_head, u64 chain_key) 2226 { 2227 /* 2228 * Trylock needs to maintain the stack of held locks, but it 2229 * does not add new dependencies, because trylock can be done 2230 * in any order. 2231 * 2232 * We look up the chain_key and do the O(N^2) check and update of 2233 * the dependencies only if this is a new dependency chain. 2234 * (If lookup_chain_cache() returns with 1 it acquires 2235 * graph_lock for us) 2236 */ 2237 if (!hlock->trylock && hlock->check && 2238 lookup_chain_cache(curr, hlock, chain_key)) { 2239 /* 2240 * Check whether last held lock: 2241 * 2242 * - is irq-safe, if this lock is irq-unsafe 2243 * - is softirq-safe, if this lock is hardirq-unsafe 2244 * 2245 * And check whether the new lock's dependency graph 2246 * could lead back to the previous lock. 2247 * 2248 * any of these scenarios could lead to a deadlock. If 2249 * All validations 2250 */ 2251 int ret = check_deadlock(curr, hlock, lock, hlock->read); 2252 2253 if (!ret) 2254 return 0; 2255 /* 2256 * Mark recursive read, as we jump over it when 2257 * building dependencies (just like we jump over 2258 * trylock entries): 2259 */ 2260 if (ret == 2) 2261 hlock->read = 2; 2262 /* 2263 * Add dependency only if this lock is not the head 2264 * of the chain, and if it's not a secondary read-lock: 2265 */ 2266 if (!chain_head && ret != 2) 2267 if (!check_prevs_add(curr, hlock)) 2268 return 0; 2269 graph_unlock(); 2270 } else 2271 /* after lookup_chain_cache(): */ 2272 if (unlikely(!debug_locks)) 2273 return 0; 2274 2275 return 1; 2276 } 2277 #else 2278 static inline int validate_chain(struct task_struct *curr, 2279 struct lockdep_map *lock, struct held_lock *hlock, 2280 int chain_head, u64 chain_key) 2281 { 2282 return 1; 2283 } 2284 #endif 2285 2286 /* 2287 * We are building curr_chain_key incrementally, so double-check 2288 * it from scratch, to make sure that it's done correctly: 2289 */ 2290 static void check_chain_key(struct task_struct *curr) 2291 { 2292 #ifdef CONFIG_DEBUG_LOCKDEP 2293 struct held_lock *hlock, *prev_hlock = NULL; 2294 unsigned int i; 2295 u64 chain_key = 0; 2296 2297 for (i = 0; i < curr->lockdep_depth; i++) { 2298 hlock = curr->held_locks + i; 2299 if (chain_key != hlock->prev_chain_key) { 2300 debug_locks_off(); 2301 /* 2302 * We got mighty confused, our chain keys don't match 2303 * with what we expect, someone trample on our task state? 2304 */ 2305 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 2306 curr->lockdep_depth, i, 2307 (unsigned long long)chain_key, 2308 (unsigned long long)hlock->prev_chain_key); 2309 return; 2310 } 2311 /* 2312 * Whoops ran out of static storage again? 2313 */ 2314 if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS)) 2315 return; 2316 2317 if (prev_hlock && (prev_hlock->irq_context != 2318 hlock->irq_context)) 2319 chain_key = 0; 2320 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 2321 prev_hlock = hlock; 2322 } 2323 if (chain_key != curr->curr_chain_key) { 2324 debug_locks_off(); 2325 /* 2326 * More smoking hash instead of calculating it, damn see these 2327 * numbers float.. I bet that a pink elephant stepped on my memory. 2328 */ 2329 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 2330 curr->lockdep_depth, i, 2331 (unsigned long long)chain_key, 2332 (unsigned long long)curr->curr_chain_key); 2333 } 2334 #endif 2335 } 2336 2337 static void 2338 print_usage_bug_scenario(struct held_lock *lock) 2339 { 2340 struct lock_class *class = hlock_class(lock); 2341 2342 printk(" Possible unsafe locking scenario:\n\n"); 2343 printk(" CPU0\n"); 2344 printk(" ----\n"); 2345 printk(" lock("); 2346 __print_lock_name(class); 2347 printk(KERN_CONT ");\n"); 2348 printk(" <Interrupt>\n"); 2349 printk(" lock("); 2350 __print_lock_name(class); 2351 printk(KERN_CONT ");\n"); 2352 printk("\n *** DEADLOCK ***\n\n"); 2353 } 2354 2355 static int 2356 print_usage_bug(struct task_struct *curr, struct held_lock *this, 2357 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 2358 { 2359 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2360 return 0; 2361 2362 printk("\n"); 2363 printk("=================================\n"); 2364 printk("[ INFO: inconsistent lock state ]\n"); 2365 print_kernel_ident(); 2366 printk("---------------------------------\n"); 2367 2368 printk("inconsistent {%s} -> {%s} usage.\n", 2369 usage_str[prev_bit], usage_str[new_bit]); 2370 2371 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 2372 curr->comm, task_pid_nr(curr), 2373 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 2374 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 2375 trace_hardirqs_enabled(curr), 2376 trace_softirqs_enabled(curr)); 2377 print_lock(this); 2378 2379 printk("{%s} state was registered at:\n", usage_str[prev_bit]); 2380 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1); 2381 2382 print_irqtrace_events(curr); 2383 printk("\nother info that might help us debug this:\n"); 2384 print_usage_bug_scenario(this); 2385 2386 lockdep_print_held_locks(curr); 2387 2388 printk("\nstack backtrace:\n"); 2389 dump_stack(); 2390 2391 return 0; 2392 } 2393 2394 /* 2395 * Print out an error if an invalid bit is set: 2396 */ 2397 static inline int 2398 valid_state(struct task_struct *curr, struct held_lock *this, 2399 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 2400 { 2401 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) 2402 return print_usage_bug(curr, this, bad_bit, new_bit); 2403 return 1; 2404 } 2405 2406 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2407 enum lock_usage_bit new_bit); 2408 2409 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 2410 2411 /* 2412 * print irq inversion bug: 2413 */ 2414 static int 2415 print_irq_inversion_bug(struct task_struct *curr, 2416 struct lock_list *root, struct lock_list *other, 2417 struct held_lock *this, int forwards, 2418 const char *irqclass) 2419 { 2420 struct lock_list *entry = other; 2421 struct lock_list *middle = NULL; 2422 int depth; 2423 2424 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2425 return 0; 2426 2427 printk("\n"); 2428 printk("=========================================================\n"); 2429 printk("[ INFO: possible irq lock inversion dependency detected ]\n"); 2430 print_kernel_ident(); 2431 printk("---------------------------------------------------------\n"); 2432 printk("%s/%d just changed the state of lock:\n", 2433 curr->comm, task_pid_nr(curr)); 2434 print_lock(this); 2435 if (forwards) 2436 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2437 else 2438 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2439 print_lock_name(other->class); 2440 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2441 2442 printk("\nother info that might help us debug this:\n"); 2443 2444 /* Find a middle lock (if one exists) */ 2445 depth = get_lock_depth(other); 2446 do { 2447 if (depth == 0 && (entry != root)) { 2448 printk("lockdep:%s bad path found in chain graph\n", __func__); 2449 break; 2450 } 2451 middle = entry; 2452 entry = get_lock_parent(entry); 2453 depth--; 2454 } while (entry && entry != root && (depth >= 0)); 2455 if (forwards) 2456 print_irq_lock_scenario(root, other, 2457 middle ? middle->class : root->class, other->class); 2458 else 2459 print_irq_lock_scenario(other, root, 2460 middle ? middle->class : other->class, root->class); 2461 2462 lockdep_print_held_locks(curr); 2463 2464 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 2465 if (!save_trace(&root->trace)) 2466 return 0; 2467 print_shortest_lock_dependencies(other, root); 2468 2469 printk("\nstack backtrace:\n"); 2470 dump_stack(); 2471 2472 return 0; 2473 } 2474 2475 /* 2476 * Prove that in the forwards-direction subgraph starting at <this> 2477 * there is no lock matching <mask>: 2478 */ 2479 static int 2480 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 2481 enum lock_usage_bit bit, const char *irqclass) 2482 { 2483 int ret; 2484 struct lock_list root; 2485 struct lock_list *uninitialized_var(target_entry); 2486 2487 root.parent = NULL; 2488 root.class = hlock_class(this); 2489 ret = find_usage_forwards(&root, bit, &target_entry); 2490 if (ret < 0) 2491 return print_bfs_bug(ret); 2492 if (ret == 1) 2493 return ret; 2494 2495 return print_irq_inversion_bug(curr, &root, target_entry, 2496 this, 1, irqclass); 2497 } 2498 2499 /* 2500 * Prove that in the backwards-direction subgraph starting at <this> 2501 * there is no lock matching <mask>: 2502 */ 2503 static int 2504 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 2505 enum lock_usage_bit bit, const char *irqclass) 2506 { 2507 int ret; 2508 struct lock_list root; 2509 struct lock_list *uninitialized_var(target_entry); 2510 2511 root.parent = NULL; 2512 root.class = hlock_class(this); 2513 ret = find_usage_backwards(&root, bit, &target_entry); 2514 if (ret < 0) 2515 return print_bfs_bug(ret); 2516 if (ret == 1) 2517 return ret; 2518 2519 return print_irq_inversion_bug(curr, &root, target_entry, 2520 this, 0, irqclass); 2521 } 2522 2523 void print_irqtrace_events(struct task_struct *curr) 2524 { 2525 printk("irq event stamp: %u\n", curr->irq_events); 2526 printk("hardirqs last enabled at (%u): [<%p>] %pS\n", 2527 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip, 2528 (void *)curr->hardirq_enable_ip); 2529 printk("hardirqs last disabled at (%u): [<%p>] %pS\n", 2530 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip, 2531 (void *)curr->hardirq_disable_ip); 2532 printk("softirqs last enabled at (%u): [<%p>] %pS\n", 2533 curr->softirq_enable_event, (void *)curr->softirq_enable_ip, 2534 (void *)curr->softirq_enable_ip); 2535 printk("softirqs last disabled at (%u): [<%p>] %pS\n", 2536 curr->softirq_disable_event, (void *)curr->softirq_disable_ip, 2537 (void *)curr->softirq_disable_ip); 2538 } 2539 2540 static int HARDIRQ_verbose(struct lock_class *class) 2541 { 2542 #if HARDIRQ_VERBOSE 2543 return class_filter(class); 2544 #endif 2545 return 0; 2546 } 2547 2548 static int SOFTIRQ_verbose(struct lock_class *class) 2549 { 2550 #if SOFTIRQ_VERBOSE 2551 return class_filter(class); 2552 #endif 2553 return 0; 2554 } 2555 2556 static int RECLAIM_FS_verbose(struct lock_class *class) 2557 { 2558 #if RECLAIM_VERBOSE 2559 return class_filter(class); 2560 #endif 2561 return 0; 2562 } 2563 2564 #define STRICT_READ_CHECKS 1 2565 2566 static int (*state_verbose_f[])(struct lock_class *class) = { 2567 #define LOCKDEP_STATE(__STATE) \ 2568 __STATE##_verbose, 2569 #include "lockdep_states.h" 2570 #undef LOCKDEP_STATE 2571 }; 2572 2573 static inline int state_verbose(enum lock_usage_bit bit, 2574 struct lock_class *class) 2575 { 2576 return state_verbose_f[bit >> 2](class); 2577 } 2578 2579 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 2580 enum lock_usage_bit bit, const char *name); 2581 2582 static int 2583 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2584 enum lock_usage_bit new_bit) 2585 { 2586 int excl_bit = exclusive_bit(new_bit); 2587 int read = new_bit & 1; 2588 int dir = new_bit & 2; 2589 2590 /* 2591 * mark USED_IN has to look forwards -- to ensure no dependency 2592 * has ENABLED state, which would allow recursion deadlocks. 2593 * 2594 * mark ENABLED has to look backwards -- to ensure no dependee 2595 * has USED_IN state, which, again, would allow recursion deadlocks. 2596 */ 2597 check_usage_f usage = dir ? 2598 check_usage_backwards : check_usage_forwards; 2599 2600 /* 2601 * Validate that this particular lock does not have conflicting 2602 * usage states. 2603 */ 2604 if (!valid_state(curr, this, new_bit, excl_bit)) 2605 return 0; 2606 2607 /* 2608 * Validate that the lock dependencies don't have conflicting usage 2609 * states. 2610 */ 2611 if ((!read || !dir || STRICT_READ_CHECKS) && 2612 !usage(curr, this, excl_bit, state_name(new_bit & ~1))) 2613 return 0; 2614 2615 /* 2616 * Check for read in write conflicts 2617 */ 2618 if (!read) { 2619 if (!valid_state(curr, this, new_bit, excl_bit + 1)) 2620 return 0; 2621 2622 if (STRICT_READ_CHECKS && 2623 !usage(curr, this, excl_bit + 1, 2624 state_name(new_bit + 1))) 2625 return 0; 2626 } 2627 2628 if (state_verbose(new_bit, hlock_class(this))) 2629 return 2; 2630 2631 return 1; 2632 } 2633 2634 enum mark_type { 2635 #define LOCKDEP_STATE(__STATE) __STATE, 2636 #include "lockdep_states.h" 2637 #undef LOCKDEP_STATE 2638 }; 2639 2640 /* 2641 * Mark all held locks with a usage bit: 2642 */ 2643 static int 2644 mark_held_locks(struct task_struct *curr, enum mark_type mark) 2645 { 2646 enum lock_usage_bit usage_bit; 2647 struct held_lock *hlock; 2648 int i; 2649 2650 for (i = 0; i < curr->lockdep_depth; i++) { 2651 hlock = curr->held_locks + i; 2652 2653 usage_bit = 2 + (mark << 2); /* ENABLED */ 2654 if (hlock->read) 2655 usage_bit += 1; /* READ */ 2656 2657 BUG_ON(usage_bit >= LOCK_USAGE_STATES); 2658 2659 if (!hlock->check) 2660 continue; 2661 2662 if (!mark_lock(curr, hlock, usage_bit)) 2663 return 0; 2664 } 2665 2666 return 1; 2667 } 2668 2669 /* 2670 * Hardirqs will be enabled: 2671 */ 2672 static void __trace_hardirqs_on_caller(unsigned long ip) 2673 { 2674 struct task_struct *curr = current; 2675 2676 /* we'll do an OFF -> ON transition: */ 2677 curr->hardirqs_enabled = 1; 2678 2679 /* 2680 * We are going to turn hardirqs on, so set the 2681 * usage bit for all held locks: 2682 */ 2683 if (!mark_held_locks(curr, HARDIRQ)) 2684 return; 2685 /* 2686 * If we have softirqs enabled, then set the usage 2687 * bit for all held locks. (disabled hardirqs prevented 2688 * this bit from being set before) 2689 */ 2690 if (curr->softirqs_enabled) 2691 if (!mark_held_locks(curr, SOFTIRQ)) 2692 return; 2693 2694 curr->hardirq_enable_ip = ip; 2695 curr->hardirq_enable_event = ++curr->irq_events; 2696 debug_atomic_inc(hardirqs_on_events); 2697 } 2698 2699 __visible void trace_hardirqs_on_caller(unsigned long ip) 2700 { 2701 time_hardirqs_on(CALLER_ADDR0, ip); 2702 2703 if (unlikely(!debug_locks || current->lockdep_recursion)) 2704 return; 2705 2706 if (unlikely(current->hardirqs_enabled)) { 2707 /* 2708 * Neither irq nor preemption are disabled here 2709 * so this is racy by nature but losing one hit 2710 * in a stat is not a big deal. 2711 */ 2712 __debug_atomic_inc(redundant_hardirqs_on); 2713 return; 2714 } 2715 2716 /* 2717 * We're enabling irqs and according to our state above irqs weren't 2718 * already enabled, yet we find the hardware thinks they are in fact 2719 * enabled.. someone messed up their IRQ state tracing. 2720 */ 2721 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2722 return; 2723 2724 /* 2725 * See the fine text that goes along with this variable definition. 2726 */ 2727 if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled))) 2728 return; 2729 2730 /* 2731 * Can't allow enabling interrupts while in an interrupt handler, 2732 * that's general bad form and such. Recursion, limited stack etc.. 2733 */ 2734 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 2735 return; 2736 2737 current->lockdep_recursion = 1; 2738 __trace_hardirqs_on_caller(ip); 2739 current->lockdep_recursion = 0; 2740 } 2741 EXPORT_SYMBOL(trace_hardirqs_on_caller); 2742 2743 void trace_hardirqs_on(void) 2744 { 2745 trace_hardirqs_on_caller(CALLER_ADDR0); 2746 } 2747 EXPORT_SYMBOL(trace_hardirqs_on); 2748 2749 /* 2750 * Hardirqs were disabled: 2751 */ 2752 __visible void trace_hardirqs_off_caller(unsigned long ip) 2753 { 2754 struct task_struct *curr = current; 2755 2756 time_hardirqs_off(CALLER_ADDR0, ip); 2757 2758 if (unlikely(!debug_locks || current->lockdep_recursion)) 2759 return; 2760 2761 /* 2762 * So we're supposed to get called after you mask local IRQs, but for 2763 * some reason the hardware doesn't quite think you did a proper job. 2764 */ 2765 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2766 return; 2767 2768 if (curr->hardirqs_enabled) { 2769 /* 2770 * We have done an ON -> OFF transition: 2771 */ 2772 curr->hardirqs_enabled = 0; 2773 curr->hardirq_disable_ip = ip; 2774 curr->hardirq_disable_event = ++curr->irq_events; 2775 debug_atomic_inc(hardirqs_off_events); 2776 } else 2777 debug_atomic_inc(redundant_hardirqs_off); 2778 } 2779 EXPORT_SYMBOL(trace_hardirqs_off_caller); 2780 2781 void trace_hardirqs_off(void) 2782 { 2783 trace_hardirqs_off_caller(CALLER_ADDR0); 2784 } 2785 EXPORT_SYMBOL(trace_hardirqs_off); 2786 2787 /* 2788 * Softirqs will be enabled: 2789 */ 2790 void trace_softirqs_on(unsigned long ip) 2791 { 2792 struct task_struct *curr = current; 2793 2794 if (unlikely(!debug_locks || current->lockdep_recursion)) 2795 return; 2796 2797 /* 2798 * We fancy IRQs being disabled here, see softirq.c, avoids 2799 * funny state and nesting things. 2800 */ 2801 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2802 return; 2803 2804 if (curr->softirqs_enabled) { 2805 debug_atomic_inc(redundant_softirqs_on); 2806 return; 2807 } 2808 2809 current->lockdep_recursion = 1; 2810 /* 2811 * We'll do an OFF -> ON transition: 2812 */ 2813 curr->softirqs_enabled = 1; 2814 curr->softirq_enable_ip = ip; 2815 curr->softirq_enable_event = ++curr->irq_events; 2816 debug_atomic_inc(softirqs_on_events); 2817 /* 2818 * We are going to turn softirqs on, so set the 2819 * usage bit for all held locks, if hardirqs are 2820 * enabled too: 2821 */ 2822 if (curr->hardirqs_enabled) 2823 mark_held_locks(curr, SOFTIRQ); 2824 current->lockdep_recursion = 0; 2825 } 2826 2827 /* 2828 * Softirqs were disabled: 2829 */ 2830 void trace_softirqs_off(unsigned long ip) 2831 { 2832 struct task_struct *curr = current; 2833 2834 if (unlikely(!debug_locks || current->lockdep_recursion)) 2835 return; 2836 2837 /* 2838 * We fancy IRQs being disabled here, see softirq.c 2839 */ 2840 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2841 return; 2842 2843 if (curr->softirqs_enabled) { 2844 /* 2845 * We have done an ON -> OFF transition: 2846 */ 2847 curr->softirqs_enabled = 0; 2848 curr->softirq_disable_ip = ip; 2849 curr->softirq_disable_event = ++curr->irq_events; 2850 debug_atomic_inc(softirqs_off_events); 2851 /* 2852 * Whoops, we wanted softirqs off, so why aren't they? 2853 */ 2854 DEBUG_LOCKS_WARN_ON(!softirq_count()); 2855 } else 2856 debug_atomic_inc(redundant_softirqs_off); 2857 } 2858 2859 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) 2860 { 2861 struct task_struct *curr = current; 2862 2863 if (unlikely(!debug_locks)) 2864 return; 2865 2866 /* no reclaim without waiting on it */ 2867 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 2868 return; 2869 2870 /* this guy won't enter reclaim */ 2871 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 2872 return; 2873 2874 /* We're only interested __GFP_FS allocations for now */ 2875 if (!(gfp_mask & __GFP_FS)) 2876 return; 2877 2878 /* 2879 * Oi! Can't be having __GFP_FS allocations with IRQs disabled. 2880 */ 2881 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags))) 2882 return; 2883 2884 mark_held_locks(curr, RECLAIM_FS); 2885 } 2886 2887 static void check_flags(unsigned long flags); 2888 2889 void lockdep_trace_alloc(gfp_t gfp_mask) 2890 { 2891 unsigned long flags; 2892 2893 if (unlikely(current->lockdep_recursion)) 2894 return; 2895 2896 raw_local_irq_save(flags); 2897 check_flags(flags); 2898 current->lockdep_recursion = 1; 2899 __lockdep_trace_alloc(gfp_mask, flags); 2900 current->lockdep_recursion = 0; 2901 raw_local_irq_restore(flags); 2902 } 2903 2904 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) 2905 { 2906 /* 2907 * If non-trylock use in a hardirq or softirq context, then 2908 * mark the lock as used in these contexts: 2909 */ 2910 if (!hlock->trylock) { 2911 if (hlock->read) { 2912 if (curr->hardirq_context) 2913 if (!mark_lock(curr, hlock, 2914 LOCK_USED_IN_HARDIRQ_READ)) 2915 return 0; 2916 if (curr->softirq_context) 2917 if (!mark_lock(curr, hlock, 2918 LOCK_USED_IN_SOFTIRQ_READ)) 2919 return 0; 2920 } else { 2921 if (curr->hardirq_context) 2922 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 2923 return 0; 2924 if (curr->softirq_context) 2925 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 2926 return 0; 2927 } 2928 } 2929 if (!hlock->hardirqs_off) { 2930 if (hlock->read) { 2931 if (!mark_lock(curr, hlock, 2932 LOCK_ENABLED_HARDIRQ_READ)) 2933 return 0; 2934 if (curr->softirqs_enabled) 2935 if (!mark_lock(curr, hlock, 2936 LOCK_ENABLED_SOFTIRQ_READ)) 2937 return 0; 2938 } else { 2939 if (!mark_lock(curr, hlock, 2940 LOCK_ENABLED_HARDIRQ)) 2941 return 0; 2942 if (curr->softirqs_enabled) 2943 if (!mark_lock(curr, hlock, 2944 LOCK_ENABLED_SOFTIRQ)) 2945 return 0; 2946 } 2947 } 2948 2949 /* 2950 * We reuse the irq context infrastructure more broadly as a general 2951 * context checking code. This tests GFP_FS recursion (a lock taken 2952 * during reclaim for a GFP_FS allocation is held over a GFP_FS 2953 * allocation). 2954 */ 2955 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) { 2956 if (hlock->read) { 2957 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ)) 2958 return 0; 2959 } else { 2960 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS)) 2961 return 0; 2962 } 2963 } 2964 2965 return 1; 2966 } 2967 2968 static inline unsigned int task_irq_context(struct task_struct *task) 2969 { 2970 return 2 * !!task->hardirq_context + !!task->softirq_context; 2971 } 2972 2973 static int separate_irq_context(struct task_struct *curr, 2974 struct held_lock *hlock) 2975 { 2976 unsigned int depth = curr->lockdep_depth; 2977 2978 /* 2979 * Keep track of points where we cross into an interrupt context: 2980 */ 2981 if (depth) { 2982 struct held_lock *prev_hlock; 2983 2984 prev_hlock = curr->held_locks + depth-1; 2985 /* 2986 * If we cross into another context, reset the 2987 * hash key (this also prevents the checking and the 2988 * adding of the dependency to 'prev'): 2989 */ 2990 if (prev_hlock->irq_context != hlock->irq_context) 2991 return 1; 2992 } 2993 return 0; 2994 } 2995 2996 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 2997 2998 static inline 2999 int mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3000 enum lock_usage_bit new_bit) 3001 { 3002 WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */ 3003 return 1; 3004 } 3005 3006 static inline int mark_irqflags(struct task_struct *curr, 3007 struct held_lock *hlock) 3008 { 3009 return 1; 3010 } 3011 3012 static inline unsigned int task_irq_context(struct task_struct *task) 3013 { 3014 return 0; 3015 } 3016 3017 static inline int separate_irq_context(struct task_struct *curr, 3018 struct held_lock *hlock) 3019 { 3020 return 0; 3021 } 3022 3023 void lockdep_trace_alloc(gfp_t gfp_mask) 3024 { 3025 } 3026 3027 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 3028 3029 /* 3030 * Mark a lock with a usage bit, and validate the state transition: 3031 */ 3032 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3033 enum lock_usage_bit new_bit) 3034 { 3035 unsigned int new_mask = 1 << new_bit, ret = 1; 3036 3037 /* 3038 * If already set then do not dirty the cacheline, 3039 * nor do any checks: 3040 */ 3041 if (likely(hlock_class(this)->usage_mask & new_mask)) 3042 return 1; 3043 3044 if (!graph_lock()) 3045 return 0; 3046 /* 3047 * Make sure we didn't race: 3048 */ 3049 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 3050 graph_unlock(); 3051 return 1; 3052 } 3053 3054 hlock_class(this)->usage_mask |= new_mask; 3055 3056 if (!save_trace(hlock_class(this)->usage_traces + new_bit)) 3057 return 0; 3058 3059 switch (new_bit) { 3060 #define LOCKDEP_STATE(__STATE) \ 3061 case LOCK_USED_IN_##__STATE: \ 3062 case LOCK_USED_IN_##__STATE##_READ: \ 3063 case LOCK_ENABLED_##__STATE: \ 3064 case LOCK_ENABLED_##__STATE##_READ: 3065 #include "lockdep_states.h" 3066 #undef LOCKDEP_STATE 3067 ret = mark_lock_irq(curr, this, new_bit); 3068 if (!ret) 3069 return 0; 3070 break; 3071 case LOCK_USED: 3072 debug_atomic_dec(nr_unused_locks); 3073 break; 3074 default: 3075 if (!debug_locks_off_graph_unlock()) 3076 return 0; 3077 WARN_ON(1); 3078 return 0; 3079 } 3080 3081 graph_unlock(); 3082 3083 /* 3084 * We must printk outside of the graph_lock: 3085 */ 3086 if (ret == 2) { 3087 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 3088 print_lock(this); 3089 print_irqtrace_events(curr); 3090 dump_stack(); 3091 } 3092 3093 return ret; 3094 } 3095 3096 /* 3097 * Initialize a lock instance's lock-class mapping info: 3098 */ 3099 void lockdep_init_map(struct lockdep_map *lock, const char *name, 3100 struct lock_class_key *key, int subclass) 3101 { 3102 int i; 3103 3104 kmemcheck_mark_initialized(lock, sizeof(*lock)); 3105 3106 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 3107 lock->class_cache[i] = NULL; 3108 3109 #ifdef CONFIG_LOCK_STAT 3110 lock->cpu = raw_smp_processor_id(); 3111 #endif 3112 3113 /* 3114 * Can't be having no nameless bastards around this place! 3115 */ 3116 if (DEBUG_LOCKS_WARN_ON(!name)) { 3117 lock->name = "NULL"; 3118 return; 3119 } 3120 3121 lock->name = name; 3122 3123 /* 3124 * No key, no joy, we need to hash something. 3125 */ 3126 if (DEBUG_LOCKS_WARN_ON(!key)) 3127 return; 3128 /* 3129 * Sanity check, the lock-class key must be persistent: 3130 */ 3131 if (!static_obj(key)) { 3132 printk("BUG: key %p not in .data!\n", key); 3133 /* 3134 * What it says above ^^^^^, I suggest you read it. 3135 */ 3136 DEBUG_LOCKS_WARN_ON(1); 3137 return; 3138 } 3139 lock->key = key; 3140 3141 if (unlikely(!debug_locks)) 3142 return; 3143 3144 if (subclass) { 3145 unsigned long flags; 3146 3147 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 3148 return; 3149 3150 raw_local_irq_save(flags); 3151 current->lockdep_recursion = 1; 3152 register_lock_class(lock, subclass, 1); 3153 current->lockdep_recursion = 0; 3154 raw_local_irq_restore(flags); 3155 } 3156 } 3157 EXPORT_SYMBOL_GPL(lockdep_init_map); 3158 3159 struct lock_class_key __lockdep_no_validate__; 3160 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 3161 3162 static int 3163 print_lock_nested_lock_not_held(struct task_struct *curr, 3164 struct held_lock *hlock, 3165 unsigned long ip) 3166 { 3167 if (!debug_locks_off()) 3168 return 0; 3169 if (debug_locks_silent) 3170 return 0; 3171 3172 printk("\n"); 3173 printk("==================================\n"); 3174 printk("[ BUG: Nested lock was not taken ]\n"); 3175 print_kernel_ident(); 3176 printk("----------------------------------\n"); 3177 3178 printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 3179 print_lock(hlock); 3180 3181 printk("\nbut this task is not holding:\n"); 3182 printk("%s\n", hlock->nest_lock->name); 3183 3184 printk("\nstack backtrace:\n"); 3185 dump_stack(); 3186 3187 printk("\nother info that might help us debug this:\n"); 3188 lockdep_print_held_locks(curr); 3189 3190 printk("\nstack backtrace:\n"); 3191 dump_stack(); 3192 3193 return 0; 3194 } 3195 3196 static int __lock_is_held(struct lockdep_map *lock, int read); 3197 3198 /* 3199 * This gets called for every mutex_lock*()/spin_lock*() operation. 3200 * We maintain the dependency maps and validate the locking attempt: 3201 */ 3202 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3203 int trylock, int read, int check, int hardirqs_off, 3204 struct lockdep_map *nest_lock, unsigned long ip, 3205 int references, int pin_count) 3206 { 3207 struct task_struct *curr = current; 3208 struct lock_class *class = NULL; 3209 struct held_lock *hlock; 3210 unsigned int depth; 3211 int chain_head = 0; 3212 int class_idx; 3213 u64 chain_key; 3214 3215 if (unlikely(!debug_locks)) 3216 return 0; 3217 3218 /* 3219 * Lockdep should run with IRQs disabled, otherwise we could 3220 * get an interrupt which would want to take locks, which would 3221 * end up in lockdep and have you got a head-ache already? 3222 */ 3223 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3224 return 0; 3225 3226 if (!prove_locking || lock->key == &__lockdep_no_validate__) 3227 check = 0; 3228 3229 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 3230 class = lock->class_cache[subclass]; 3231 /* 3232 * Not cached? 3233 */ 3234 if (unlikely(!class)) { 3235 class = register_lock_class(lock, subclass, 0); 3236 if (!class) 3237 return 0; 3238 } 3239 atomic_inc((atomic_t *)&class->ops); 3240 if (very_verbose(class)) { 3241 printk("\nacquire class [%p] %s", class->key, class->name); 3242 if (class->name_version > 1) 3243 printk(KERN_CONT "#%d", class->name_version); 3244 printk(KERN_CONT "\n"); 3245 dump_stack(); 3246 } 3247 3248 /* 3249 * Add the lock to the list of currently held locks. 3250 * (we dont increase the depth just yet, up until the 3251 * dependency checks are done) 3252 */ 3253 depth = curr->lockdep_depth; 3254 /* 3255 * Ran out of static storage for our per-task lock stack again have we? 3256 */ 3257 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 3258 return 0; 3259 3260 class_idx = class - lock_classes + 1; 3261 3262 if (depth) { 3263 hlock = curr->held_locks + depth - 1; 3264 if (hlock->class_idx == class_idx && nest_lock) { 3265 if (hlock->references) { 3266 /* 3267 * Check: unsigned int references:12, overflow. 3268 */ 3269 if (DEBUG_LOCKS_WARN_ON(hlock->references == (1 << 12)-1)) 3270 return 0; 3271 3272 hlock->references++; 3273 } else { 3274 hlock->references = 2; 3275 } 3276 3277 return 1; 3278 } 3279 } 3280 3281 hlock = curr->held_locks + depth; 3282 /* 3283 * Plain impossible, we just registered it and checked it weren't no 3284 * NULL like.. I bet this mushroom I ate was good! 3285 */ 3286 if (DEBUG_LOCKS_WARN_ON(!class)) 3287 return 0; 3288 hlock->class_idx = class_idx; 3289 hlock->acquire_ip = ip; 3290 hlock->instance = lock; 3291 hlock->nest_lock = nest_lock; 3292 hlock->irq_context = task_irq_context(curr); 3293 hlock->trylock = trylock; 3294 hlock->read = read; 3295 hlock->check = check; 3296 hlock->hardirqs_off = !!hardirqs_off; 3297 hlock->references = references; 3298 #ifdef CONFIG_LOCK_STAT 3299 hlock->waittime_stamp = 0; 3300 hlock->holdtime_stamp = lockstat_clock(); 3301 #endif 3302 hlock->pin_count = pin_count; 3303 3304 if (check && !mark_irqflags(curr, hlock)) 3305 return 0; 3306 3307 /* mark it as used: */ 3308 if (!mark_lock(curr, hlock, LOCK_USED)) 3309 return 0; 3310 3311 /* 3312 * Calculate the chain hash: it's the combined hash of all the 3313 * lock keys along the dependency chain. We save the hash value 3314 * at every step so that we can get the current hash easily 3315 * after unlock. The chain hash is then used to cache dependency 3316 * results. 3317 * 3318 * The 'key ID' is what is the most compact key value to drive 3319 * the hash, not class->key. 3320 */ 3321 /* 3322 * Whoops, we did it again.. ran straight out of our static allocation. 3323 */ 3324 if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS)) 3325 return 0; 3326 3327 chain_key = curr->curr_chain_key; 3328 if (!depth) { 3329 /* 3330 * How can we have a chain hash when we ain't got no keys?! 3331 */ 3332 if (DEBUG_LOCKS_WARN_ON(chain_key != 0)) 3333 return 0; 3334 chain_head = 1; 3335 } 3336 3337 hlock->prev_chain_key = chain_key; 3338 if (separate_irq_context(curr, hlock)) { 3339 chain_key = 0; 3340 chain_head = 1; 3341 } 3342 chain_key = iterate_chain_key(chain_key, class_idx); 3343 3344 if (nest_lock && !__lock_is_held(nest_lock, -1)) 3345 return print_lock_nested_lock_not_held(curr, hlock, ip); 3346 3347 if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) 3348 return 0; 3349 3350 curr->curr_chain_key = chain_key; 3351 curr->lockdep_depth++; 3352 check_chain_key(curr); 3353 #ifdef CONFIG_DEBUG_LOCKDEP 3354 if (unlikely(!debug_locks)) 3355 return 0; 3356 #endif 3357 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 3358 debug_locks_off(); 3359 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 3360 printk(KERN_DEBUG "depth: %i max: %lu!\n", 3361 curr->lockdep_depth, MAX_LOCK_DEPTH); 3362 3363 lockdep_print_held_locks(current); 3364 debug_show_all_locks(); 3365 dump_stack(); 3366 3367 return 0; 3368 } 3369 3370 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 3371 max_lockdep_depth = curr->lockdep_depth; 3372 3373 return 1; 3374 } 3375 3376 static int 3377 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock, 3378 unsigned long ip) 3379 { 3380 if (!debug_locks_off()) 3381 return 0; 3382 if (debug_locks_silent) 3383 return 0; 3384 3385 printk("\n"); 3386 printk("=====================================\n"); 3387 printk("[ BUG: bad unlock balance detected! ]\n"); 3388 print_kernel_ident(); 3389 printk("-------------------------------------\n"); 3390 printk("%s/%d is trying to release lock (", 3391 curr->comm, task_pid_nr(curr)); 3392 print_lockdep_cache(lock); 3393 printk(KERN_CONT ") at:\n"); 3394 print_ip_sym(ip); 3395 printk("but there are no more locks to release!\n"); 3396 printk("\nother info that might help us debug this:\n"); 3397 lockdep_print_held_locks(curr); 3398 3399 printk("\nstack backtrace:\n"); 3400 dump_stack(); 3401 3402 return 0; 3403 } 3404 3405 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) 3406 { 3407 if (hlock->instance == lock) 3408 return 1; 3409 3410 if (hlock->references) { 3411 struct lock_class *class = lock->class_cache[0]; 3412 3413 if (!class) 3414 class = look_up_lock_class(lock, 0); 3415 3416 /* 3417 * If look_up_lock_class() failed to find a class, we're trying 3418 * to test if we hold a lock that has never yet been acquired. 3419 * Clearly if the lock hasn't been acquired _ever_, we're not 3420 * holding it either, so report failure. 3421 */ 3422 if (!class) 3423 return 0; 3424 3425 /* 3426 * References, but not a lock we're actually ref-counting? 3427 * State got messed up, follow the sites that change ->references 3428 * and try to make sense of it. 3429 */ 3430 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 3431 return 0; 3432 3433 if (hlock->class_idx == class - lock_classes + 1) 3434 return 1; 3435 } 3436 3437 return 0; 3438 } 3439 3440 static int 3441 __lock_set_class(struct lockdep_map *lock, const char *name, 3442 struct lock_class_key *key, unsigned int subclass, 3443 unsigned long ip) 3444 { 3445 struct task_struct *curr = current; 3446 struct held_lock *hlock, *prev_hlock; 3447 struct lock_class *class; 3448 unsigned int depth; 3449 int i; 3450 3451 depth = curr->lockdep_depth; 3452 /* 3453 * This function is about (re)setting the class of a held lock, 3454 * yet we're not actually holding any locks. Naughty user! 3455 */ 3456 if (DEBUG_LOCKS_WARN_ON(!depth)) 3457 return 0; 3458 3459 prev_hlock = NULL; 3460 for (i = depth-1; i >= 0; i--) { 3461 hlock = curr->held_locks + i; 3462 /* 3463 * We must not cross into another context: 3464 */ 3465 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3466 break; 3467 if (match_held_lock(hlock, lock)) 3468 goto found_it; 3469 prev_hlock = hlock; 3470 } 3471 return print_unlock_imbalance_bug(curr, lock, ip); 3472 3473 found_it: 3474 lockdep_init_map(lock, name, key, 0); 3475 class = register_lock_class(lock, subclass, 0); 3476 hlock->class_idx = class - lock_classes + 1; 3477 3478 curr->lockdep_depth = i; 3479 curr->curr_chain_key = hlock->prev_chain_key; 3480 3481 for (; i < depth; i++) { 3482 hlock = curr->held_locks + i; 3483 if (!__lock_acquire(hlock->instance, 3484 hlock_class(hlock)->subclass, hlock->trylock, 3485 hlock->read, hlock->check, hlock->hardirqs_off, 3486 hlock->nest_lock, hlock->acquire_ip, 3487 hlock->references, hlock->pin_count)) 3488 return 0; 3489 } 3490 3491 /* 3492 * I took it apart and put it back together again, except now I have 3493 * these 'spare' parts.. where shall I put them. 3494 */ 3495 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3496 return 0; 3497 return 1; 3498 } 3499 3500 /* 3501 * Remove the lock to the list of currently held locks - this gets 3502 * called on mutex_unlock()/spin_unlock*() (or on a failed 3503 * mutex_lock_interruptible()). 3504 * 3505 * @nested is an hysterical artifact, needs a tree wide cleanup. 3506 */ 3507 static int 3508 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) 3509 { 3510 struct task_struct *curr = current; 3511 struct held_lock *hlock, *prev_hlock; 3512 unsigned int depth; 3513 int i; 3514 3515 if (unlikely(!debug_locks)) 3516 return 0; 3517 3518 depth = curr->lockdep_depth; 3519 /* 3520 * So we're all set to release this lock.. wait what lock? We don't 3521 * own any locks, you've been drinking again? 3522 */ 3523 if (DEBUG_LOCKS_WARN_ON(depth <= 0)) 3524 return print_unlock_imbalance_bug(curr, lock, ip); 3525 3526 /* 3527 * Check whether the lock exists in the current stack 3528 * of held locks: 3529 */ 3530 prev_hlock = NULL; 3531 for (i = depth-1; i >= 0; i--) { 3532 hlock = curr->held_locks + i; 3533 /* 3534 * We must not cross into another context: 3535 */ 3536 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3537 break; 3538 if (match_held_lock(hlock, lock)) 3539 goto found_it; 3540 prev_hlock = hlock; 3541 } 3542 return print_unlock_imbalance_bug(curr, lock, ip); 3543 3544 found_it: 3545 if (hlock->instance == lock) 3546 lock_release_holdtime(hlock); 3547 3548 WARN(hlock->pin_count, "releasing a pinned lock\n"); 3549 3550 if (hlock->references) { 3551 hlock->references--; 3552 if (hlock->references) { 3553 /* 3554 * We had, and after removing one, still have 3555 * references, the current lock stack is still 3556 * valid. We're done! 3557 */ 3558 return 1; 3559 } 3560 } 3561 3562 /* 3563 * We have the right lock to unlock, 'hlock' points to it. 3564 * Now we remove it from the stack, and add back the other 3565 * entries (if any), recalculating the hash along the way: 3566 */ 3567 3568 curr->lockdep_depth = i; 3569 curr->curr_chain_key = hlock->prev_chain_key; 3570 3571 for (i++; i < depth; i++) { 3572 hlock = curr->held_locks + i; 3573 if (!__lock_acquire(hlock->instance, 3574 hlock_class(hlock)->subclass, hlock->trylock, 3575 hlock->read, hlock->check, hlock->hardirqs_off, 3576 hlock->nest_lock, hlock->acquire_ip, 3577 hlock->references, hlock->pin_count)) 3578 return 0; 3579 } 3580 3581 /* 3582 * We had N bottles of beer on the wall, we drank one, but now 3583 * there's not N-1 bottles of beer left on the wall... 3584 */ 3585 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1)) 3586 return 0; 3587 3588 return 1; 3589 } 3590 3591 static int __lock_is_held(struct lockdep_map *lock, int read) 3592 { 3593 struct task_struct *curr = current; 3594 int i; 3595 3596 for (i = 0; i < curr->lockdep_depth; i++) { 3597 struct held_lock *hlock = curr->held_locks + i; 3598 3599 if (match_held_lock(hlock, lock)) { 3600 if (read == -1 || hlock->read == read) 3601 return 1; 3602 3603 return 0; 3604 } 3605 } 3606 3607 return 0; 3608 } 3609 3610 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 3611 { 3612 struct pin_cookie cookie = NIL_COOKIE; 3613 struct task_struct *curr = current; 3614 int i; 3615 3616 if (unlikely(!debug_locks)) 3617 return cookie; 3618 3619 for (i = 0; i < curr->lockdep_depth; i++) { 3620 struct held_lock *hlock = curr->held_locks + i; 3621 3622 if (match_held_lock(hlock, lock)) { 3623 /* 3624 * Grab 16bits of randomness; this is sufficient to not 3625 * be guessable and still allows some pin nesting in 3626 * our u32 pin_count. 3627 */ 3628 cookie.val = 1 + (prandom_u32() >> 16); 3629 hlock->pin_count += cookie.val; 3630 return cookie; 3631 } 3632 } 3633 3634 WARN(1, "pinning an unheld lock\n"); 3635 return cookie; 3636 } 3637 3638 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3639 { 3640 struct task_struct *curr = current; 3641 int i; 3642 3643 if (unlikely(!debug_locks)) 3644 return; 3645 3646 for (i = 0; i < curr->lockdep_depth; i++) { 3647 struct held_lock *hlock = curr->held_locks + i; 3648 3649 if (match_held_lock(hlock, lock)) { 3650 hlock->pin_count += cookie.val; 3651 return; 3652 } 3653 } 3654 3655 WARN(1, "pinning an unheld lock\n"); 3656 } 3657 3658 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3659 { 3660 struct task_struct *curr = current; 3661 int i; 3662 3663 if (unlikely(!debug_locks)) 3664 return; 3665 3666 for (i = 0; i < curr->lockdep_depth; i++) { 3667 struct held_lock *hlock = curr->held_locks + i; 3668 3669 if (match_held_lock(hlock, lock)) { 3670 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 3671 return; 3672 3673 hlock->pin_count -= cookie.val; 3674 3675 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 3676 hlock->pin_count = 0; 3677 3678 return; 3679 } 3680 } 3681 3682 WARN(1, "unpinning an unheld lock\n"); 3683 } 3684 3685 /* 3686 * Check whether we follow the irq-flags state precisely: 3687 */ 3688 static void check_flags(unsigned long flags) 3689 { 3690 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \ 3691 defined(CONFIG_TRACE_IRQFLAGS) 3692 if (!debug_locks) 3693 return; 3694 3695 if (irqs_disabled_flags(flags)) { 3696 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 3697 printk("possible reason: unannotated irqs-off.\n"); 3698 } 3699 } else { 3700 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 3701 printk("possible reason: unannotated irqs-on.\n"); 3702 } 3703 } 3704 3705 /* 3706 * We dont accurately track softirq state in e.g. 3707 * hardirq contexts (such as on 4KSTACKS), so only 3708 * check if not in hardirq contexts: 3709 */ 3710 if (!hardirq_count()) { 3711 if (softirq_count()) { 3712 /* like the above, but with softirqs */ 3713 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 3714 } else { 3715 /* lick the above, does it taste good? */ 3716 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 3717 } 3718 } 3719 3720 if (!debug_locks) 3721 print_irqtrace_events(current); 3722 #endif 3723 } 3724 3725 void lock_set_class(struct lockdep_map *lock, const char *name, 3726 struct lock_class_key *key, unsigned int subclass, 3727 unsigned long ip) 3728 { 3729 unsigned long flags; 3730 3731 if (unlikely(current->lockdep_recursion)) 3732 return; 3733 3734 raw_local_irq_save(flags); 3735 current->lockdep_recursion = 1; 3736 check_flags(flags); 3737 if (__lock_set_class(lock, name, key, subclass, ip)) 3738 check_chain_key(current); 3739 current->lockdep_recursion = 0; 3740 raw_local_irq_restore(flags); 3741 } 3742 EXPORT_SYMBOL_GPL(lock_set_class); 3743 3744 /* 3745 * We are not always called with irqs disabled - do that here, 3746 * and also avoid lockdep recursion: 3747 */ 3748 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3749 int trylock, int read, int check, 3750 struct lockdep_map *nest_lock, unsigned long ip) 3751 { 3752 unsigned long flags; 3753 3754 if (unlikely(current->lockdep_recursion)) 3755 return; 3756 3757 raw_local_irq_save(flags); 3758 check_flags(flags); 3759 3760 current->lockdep_recursion = 1; 3761 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 3762 __lock_acquire(lock, subclass, trylock, read, check, 3763 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 3764 current->lockdep_recursion = 0; 3765 raw_local_irq_restore(flags); 3766 } 3767 EXPORT_SYMBOL_GPL(lock_acquire); 3768 3769 void lock_release(struct lockdep_map *lock, int nested, 3770 unsigned long ip) 3771 { 3772 unsigned long flags; 3773 3774 if (unlikely(current->lockdep_recursion)) 3775 return; 3776 3777 raw_local_irq_save(flags); 3778 check_flags(flags); 3779 current->lockdep_recursion = 1; 3780 trace_lock_release(lock, ip); 3781 if (__lock_release(lock, nested, ip)) 3782 check_chain_key(current); 3783 current->lockdep_recursion = 0; 3784 raw_local_irq_restore(flags); 3785 } 3786 EXPORT_SYMBOL_GPL(lock_release); 3787 3788 int lock_is_held_type(struct lockdep_map *lock, int read) 3789 { 3790 unsigned long flags; 3791 int ret = 0; 3792 3793 if (unlikely(current->lockdep_recursion)) 3794 return 1; /* avoid false negative lockdep_assert_held() */ 3795 3796 raw_local_irq_save(flags); 3797 check_flags(flags); 3798 3799 current->lockdep_recursion = 1; 3800 ret = __lock_is_held(lock, read); 3801 current->lockdep_recursion = 0; 3802 raw_local_irq_restore(flags); 3803 3804 return ret; 3805 } 3806 EXPORT_SYMBOL_GPL(lock_is_held_type); 3807 3808 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 3809 { 3810 struct pin_cookie cookie = NIL_COOKIE; 3811 unsigned long flags; 3812 3813 if (unlikely(current->lockdep_recursion)) 3814 return cookie; 3815 3816 raw_local_irq_save(flags); 3817 check_flags(flags); 3818 3819 current->lockdep_recursion = 1; 3820 cookie = __lock_pin_lock(lock); 3821 current->lockdep_recursion = 0; 3822 raw_local_irq_restore(flags); 3823 3824 return cookie; 3825 } 3826 EXPORT_SYMBOL_GPL(lock_pin_lock); 3827 3828 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3829 { 3830 unsigned long flags; 3831 3832 if (unlikely(current->lockdep_recursion)) 3833 return; 3834 3835 raw_local_irq_save(flags); 3836 check_flags(flags); 3837 3838 current->lockdep_recursion = 1; 3839 __lock_repin_lock(lock, cookie); 3840 current->lockdep_recursion = 0; 3841 raw_local_irq_restore(flags); 3842 } 3843 EXPORT_SYMBOL_GPL(lock_repin_lock); 3844 3845 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3846 { 3847 unsigned long flags; 3848 3849 if (unlikely(current->lockdep_recursion)) 3850 return; 3851 3852 raw_local_irq_save(flags); 3853 check_flags(flags); 3854 3855 current->lockdep_recursion = 1; 3856 __lock_unpin_lock(lock, cookie); 3857 current->lockdep_recursion = 0; 3858 raw_local_irq_restore(flags); 3859 } 3860 EXPORT_SYMBOL_GPL(lock_unpin_lock); 3861 3862 void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3863 { 3864 current->lockdep_reclaim_gfp = gfp_mask; 3865 } 3866 3867 void lockdep_clear_current_reclaim_state(void) 3868 { 3869 current->lockdep_reclaim_gfp = 0; 3870 } 3871 3872 #ifdef CONFIG_LOCK_STAT 3873 static int 3874 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, 3875 unsigned long ip) 3876 { 3877 if (!debug_locks_off()) 3878 return 0; 3879 if (debug_locks_silent) 3880 return 0; 3881 3882 printk("\n"); 3883 printk("=================================\n"); 3884 printk("[ BUG: bad contention detected! ]\n"); 3885 print_kernel_ident(); 3886 printk("---------------------------------\n"); 3887 printk("%s/%d is trying to contend lock (", 3888 curr->comm, task_pid_nr(curr)); 3889 print_lockdep_cache(lock); 3890 printk(KERN_CONT ") at:\n"); 3891 print_ip_sym(ip); 3892 printk("but there are no locks held!\n"); 3893 printk("\nother info that might help us debug this:\n"); 3894 lockdep_print_held_locks(curr); 3895 3896 printk("\nstack backtrace:\n"); 3897 dump_stack(); 3898 3899 return 0; 3900 } 3901 3902 static void 3903 __lock_contended(struct lockdep_map *lock, unsigned long ip) 3904 { 3905 struct task_struct *curr = current; 3906 struct held_lock *hlock, *prev_hlock; 3907 struct lock_class_stats *stats; 3908 unsigned int depth; 3909 int i, contention_point, contending_point; 3910 3911 depth = curr->lockdep_depth; 3912 /* 3913 * Whee, we contended on this lock, except it seems we're not 3914 * actually trying to acquire anything much at all.. 3915 */ 3916 if (DEBUG_LOCKS_WARN_ON(!depth)) 3917 return; 3918 3919 prev_hlock = NULL; 3920 for (i = depth-1; i >= 0; i--) { 3921 hlock = curr->held_locks + i; 3922 /* 3923 * We must not cross into another context: 3924 */ 3925 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3926 break; 3927 if (match_held_lock(hlock, lock)) 3928 goto found_it; 3929 prev_hlock = hlock; 3930 } 3931 print_lock_contention_bug(curr, lock, ip); 3932 return; 3933 3934 found_it: 3935 if (hlock->instance != lock) 3936 return; 3937 3938 hlock->waittime_stamp = lockstat_clock(); 3939 3940 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3941 contending_point = lock_point(hlock_class(hlock)->contending_point, 3942 lock->ip); 3943 3944 stats = get_lock_stats(hlock_class(hlock)); 3945 if (contention_point < LOCKSTAT_POINTS) 3946 stats->contention_point[contention_point]++; 3947 if (contending_point < LOCKSTAT_POINTS) 3948 stats->contending_point[contending_point]++; 3949 if (lock->cpu != smp_processor_id()) 3950 stats->bounces[bounce_contended + !!hlock->read]++; 3951 put_lock_stats(stats); 3952 } 3953 3954 static void 3955 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 3956 { 3957 struct task_struct *curr = current; 3958 struct held_lock *hlock, *prev_hlock; 3959 struct lock_class_stats *stats; 3960 unsigned int depth; 3961 u64 now, waittime = 0; 3962 int i, cpu; 3963 3964 depth = curr->lockdep_depth; 3965 /* 3966 * Yay, we acquired ownership of this lock we didn't try to 3967 * acquire, how the heck did that happen? 3968 */ 3969 if (DEBUG_LOCKS_WARN_ON(!depth)) 3970 return; 3971 3972 prev_hlock = NULL; 3973 for (i = depth-1; i >= 0; i--) { 3974 hlock = curr->held_locks + i; 3975 /* 3976 * We must not cross into another context: 3977 */ 3978 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3979 break; 3980 if (match_held_lock(hlock, lock)) 3981 goto found_it; 3982 prev_hlock = hlock; 3983 } 3984 print_lock_contention_bug(curr, lock, _RET_IP_); 3985 return; 3986 3987 found_it: 3988 if (hlock->instance != lock) 3989 return; 3990 3991 cpu = smp_processor_id(); 3992 if (hlock->waittime_stamp) { 3993 now = lockstat_clock(); 3994 waittime = now - hlock->waittime_stamp; 3995 hlock->holdtime_stamp = now; 3996 } 3997 3998 trace_lock_acquired(lock, ip); 3999 4000 stats = get_lock_stats(hlock_class(hlock)); 4001 if (waittime) { 4002 if (hlock->read) 4003 lock_time_inc(&stats->read_waittime, waittime); 4004 else 4005 lock_time_inc(&stats->write_waittime, waittime); 4006 } 4007 if (lock->cpu != cpu) 4008 stats->bounces[bounce_acquired + !!hlock->read]++; 4009 put_lock_stats(stats); 4010 4011 lock->cpu = cpu; 4012 lock->ip = ip; 4013 } 4014 4015 void lock_contended(struct lockdep_map *lock, unsigned long ip) 4016 { 4017 unsigned long flags; 4018 4019 if (unlikely(!lock_stat)) 4020 return; 4021 4022 if (unlikely(current->lockdep_recursion)) 4023 return; 4024 4025 raw_local_irq_save(flags); 4026 check_flags(flags); 4027 current->lockdep_recursion = 1; 4028 trace_lock_contended(lock, ip); 4029 __lock_contended(lock, ip); 4030 current->lockdep_recursion = 0; 4031 raw_local_irq_restore(flags); 4032 } 4033 EXPORT_SYMBOL_GPL(lock_contended); 4034 4035 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 4036 { 4037 unsigned long flags; 4038 4039 if (unlikely(!lock_stat)) 4040 return; 4041 4042 if (unlikely(current->lockdep_recursion)) 4043 return; 4044 4045 raw_local_irq_save(flags); 4046 check_flags(flags); 4047 current->lockdep_recursion = 1; 4048 __lock_acquired(lock, ip); 4049 current->lockdep_recursion = 0; 4050 raw_local_irq_restore(flags); 4051 } 4052 EXPORT_SYMBOL_GPL(lock_acquired); 4053 #endif 4054 4055 /* 4056 * Used by the testsuite, sanitize the validator state 4057 * after a simulated failure: 4058 */ 4059 4060 void lockdep_reset(void) 4061 { 4062 unsigned long flags; 4063 int i; 4064 4065 raw_local_irq_save(flags); 4066 current->curr_chain_key = 0; 4067 current->lockdep_depth = 0; 4068 current->lockdep_recursion = 0; 4069 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 4070 nr_hardirq_chains = 0; 4071 nr_softirq_chains = 0; 4072 nr_process_chains = 0; 4073 debug_locks = 1; 4074 for (i = 0; i < CHAINHASH_SIZE; i++) 4075 INIT_HLIST_HEAD(chainhash_table + i); 4076 raw_local_irq_restore(flags); 4077 } 4078 4079 static void zap_class(struct lock_class *class) 4080 { 4081 int i; 4082 4083 /* 4084 * Remove all dependencies this lock is 4085 * involved in: 4086 */ 4087 for (i = 0; i < nr_list_entries; i++) { 4088 if (list_entries[i].class == class) 4089 list_del_rcu(&list_entries[i].entry); 4090 } 4091 /* 4092 * Unhash the class and remove it from the all_lock_classes list: 4093 */ 4094 hlist_del_rcu(&class->hash_entry); 4095 list_del_rcu(&class->lock_entry); 4096 4097 RCU_INIT_POINTER(class->key, NULL); 4098 RCU_INIT_POINTER(class->name, NULL); 4099 } 4100 4101 static inline int within(const void *addr, void *start, unsigned long size) 4102 { 4103 return addr >= start && addr < start + size; 4104 } 4105 4106 /* 4107 * Used in module.c to remove lock classes from memory that is going to be 4108 * freed; and possibly re-used by other modules. 4109 * 4110 * We will have had one sync_sched() before getting here, so we're guaranteed 4111 * nobody will look up these exact classes -- they're properly dead but still 4112 * allocated. 4113 */ 4114 void lockdep_free_key_range(void *start, unsigned long size) 4115 { 4116 struct lock_class *class; 4117 struct hlist_head *head; 4118 unsigned long flags; 4119 int i; 4120 int locked; 4121 4122 raw_local_irq_save(flags); 4123 locked = graph_lock(); 4124 4125 /* 4126 * Unhash all classes that were created by this module: 4127 */ 4128 for (i = 0; i < CLASSHASH_SIZE; i++) { 4129 head = classhash_table + i; 4130 hlist_for_each_entry_rcu(class, head, hash_entry) { 4131 if (within(class->key, start, size)) 4132 zap_class(class); 4133 else if (within(class->name, start, size)) 4134 zap_class(class); 4135 } 4136 } 4137 4138 if (locked) 4139 graph_unlock(); 4140 raw_local_irq_restore(flags); 4141 4142 /* 4143 * Wait for any possible iterators from look_up_lock_class() to pass 4144 * before continuing to free the memory they refer to. 4145 * 4146 * sync_sched() is sufficient because the read-side is IRQ disable. 4147 */ 4148 synchronize_sched(); 4149 4150 /* 4151 * XXX at this point we could return the resources to the pool; 4152 * instead we leak them. We would need to change to bitmap allocators 4153 * instead of the linear allocators we have now. 4154 */ 4155 } 4156 4157 void lockdep_reset_lock(struct lockdep_map *lock) 4158 { 4159 struct lock_class *class; 4160 struct hlist_head *head; 4161 unsigned long flags; 4162 int i, j; 4163 int locked; 4164 4165 raw_local_irq_save(flags); 4166 4167 /* 4168 * Remove all classes this lock might have: 4169 */ 4170 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 4171 /* 4172 * If the class exists we look it up and zap it: 4173 */ 4174 class = look_up_lock_class(lock, j); 4175 if (class) 4176 zap_class(class); 4177 } 4178 /* 4179 * Debug check: in the end all mapped classes should 4180 * be gone. 4181 */ 4182 locked = graph_lock(); 4183 for (i = 0; i < CLASSHASH_SIZE; i++) { 4184 head = classhash_table + i; 4185 hlist_for_each_entry_rcu(class, head, hash_entry) { 4186 int match = 0; 4187 4188 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 4189 match |= class == lock->class_cache[j]; 4190 4191 if (unlikely(match)) { 4192 if (debug_locks_off_graph_unlock()) { 4193 /* 4194 * We all just reset everything, how did it match? 4195 */ 4196 WARN_ON(1); 4197 } 4198 goto out_restore; 4199 } 4200 } 4201 } 4202 if (locked) 4203 graph_unlock(); 4204 4205 out_restore: 4206 raw_local_irq_restore(flags); 4207 } 4208 4209 void __init lockdep_info(void) 4210 { 4211 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 4212 4213 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 4214 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 4215 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 4216 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 4217 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 4218 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 4219 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 4220 4221 printk(" memory used by lock dependency info: %lu kB\n", 4222 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS + 4223 sizeof(struct list_head) * CLASSHASH_SIZE + 4224 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 4225 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 4226 sizeof(struct list_head) * CHAINHASH_SIZE 4227 #ifdef CONFIG_PROVE_LOCKING 4228 + sizeof(struct circular_queue) 4229 #endif 4230 ) / 1024 4231 ); 4232 4233 printk(" per task-struct memory footprint: %lu bytes\n", 4234 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 4235 } 4236 4237 static void 4238 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 4239 const void *mem_to, struct held_lock *hlock) 4240 { 4241 if (!debug_locks_off()) 4242 return; 4243 if (debug_locks_silent) 4244 return; 4245 4246 printk("\n"); 4247 printk("=========================\n"); 4248 printk("[ BUG: held lock freed! ]\n"); 4249 print_kernel_ident(); 4250 printk("-------------------------\n"); 4251 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n", 4252 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 4253 print_lock(hlock); 4254 lockdep_print_held_locks(curr); 4255 4256 printk("\nstack backtrace:\n"); 4257 dump_stack(); 4258 } 4259 4260 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 4261 const void* lock_from, unsigned long lock_len) 4262 { 4263 return lock_from + lock_len <= mem_from || 4264 mem_from + mem_len <= lock_from; 4265 } 4266 4267 /* 4268 * Called when kernel memory is freed (or unmapped), or if a lock 4269 * is destroyed or reinitialized - this code checks whether there is 4270 * any held lock in the memory range of <from> to <to>: 4271 */ 4272 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 4273 { 4274 struct task_struct *curr = current; 4275 struct held_lock *hlock; 4276 unsigned long flags; 4277 int i; 4278 4279 if (unlikely(!debug_locks)) 4280 return; 4281 4282 local_irq_save(flags); 4283 for (i = 0; i < curr->lockdep_depth; i++) { 4284 hlock = curr->held_locks + i; 4285 4286 if (not_in_range(mem_from, mem_len, hlock->instance, 4287 sizeof(*hlock->instance))) 4288 continue; 4289 4290 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 4291 break; 4292 } 4293 local_irq_restore(flags); 4294 } 4295 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 4296 4297 static void print_held_locks_bug(void) 4298 { 4299 if (!debug_locks_off()) 4300 return; 4301 if (debug_locks_silent) 4302 return; 4303 4304 printk("\n"); 4305 printk("=====================================\n"); 4306 printk("[ BUG: %s/%d still has locks held! ]\n", 4307 current->comm, task_pid_nr(current)); 4308 print_kernel_ident(); 4309 printk("-------------------------------------\n"); 4310 lockdep_print_held_locks(current); 4311 printk("\nstack backtrace:\n"); 4312 dump_stack(); 4313 } 4314 4315 void debug_check_no_locks_held(void) 4316 { 4317 if (unlikely(current->lockdep_depth > 0)) 4318 print_held_locks_bug(); 4319 } 4320 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 4321 4322 #ifdef __KERNEL__ 4323 void debug_show_all_locks(void) 4324 { 4325 struct task_struct *g, *p; 4326 int count = 10; 4327 int unlock = 1; 4328 4329 if (unlikely(!debug_locks)) { 4330 printk("INFO: lockdep is turned off.\n"); 4331 return; 4332 } 4333 printk("\nShowing all locks held in the system:\n"); 4334 4335 /* 4336 * Here we try to get the tasklist_lock as hard as possible, 4337 * if not successful after 2 seconds we ignore it (but keep 4338 * trying). This is to enable a debug printout even if a 4339 * tasklist_lock-holding task deadlocks or crashes. 4340 */ 4341 retry: 4342 if (!read_trylock(&tasklist_lock)) { 4343 if (count == 10) 4344 printk("hm, tasklist_lock locked, retrying... "); 4345 if (count) { 4346 count--; 4347 printk(" #%d", 10-count); 4348 mdelay(200); 4349 goto retry; 4350 } 4351 printk(" ignoring it.\n"); 4352 unlock = 0; 4353 } else { 4354 if (count != 10) 4355 printk(KERN_CONT " locked it.\n"); 4356 } 4357 4358 do_each_thread(g, p) { 4359 /* 4360 * It's not reliable to print a task's held locks 4361 * if it's not sleeping (or if it's not the current 4362 * task): 4363 */ 4364 if (p->state == TASK_RUNNING && p != current) 4365 continue; 4366 if (p->lockdep_depth) 4367 lockdep_print_held_locks(p); 4368 if (!unlock) 4369 if (read_trylock(&tasklist_lock)) 4370 unlock = 1; 4371 } while_each_thread(g, p); 4372 4373 printk("\n"); 4374 printk("=============================================\n\n"); 4375 4376 if (unlock) 4377 read_unlock(&tasklist_lock); 4378 } 4379 EXPORT_SYMBOL_GPL(debug_show_all_locks); 4380 #endif 4381 4382 /* 4383 * Careful: only use this function if you are sure that 4384 * the task cannot run in parallel! 4385 */ 4386 void debug_show_held_locks(struct task_struct *task) 4387 { 4388 if (unlikely(!debug_locks)) { 4389 printk("INFO: lockdep is turned off.\n"); 4390 return; 4391 } 4392 lockdep_print_held_locks(task); 4393 } 4394 EXPORT_SYMBOL_GPL(debug_show_held_locks); 4395 4396 asmlinkage __visible void lockdep_sys_exit(void) 4397 { 4398 struct task_struct *curr = current; 4399 4400 if (unlikely(curr->lockdep_depth)) { 4401 if (!debug_locks_off()) 4402 return; 4403 printk("\n"); 4404 printk("================================================\n"); 4405 printk("[ BUG: lock held when returning to user space! ]\n"); 4406 print_kernel_ident(); 4407 printk("------------------------------------------------\n"); 4408 printk("%s/%d is leaving the kernel with locks still held!\n", 4409 curr->comm, curr->pid); 4410 lockdep_print_held_locks(curr); 4411 } 4412 } 4413 4414 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 4415 { 4416 struct task_struct *curr = current; 4417 4418 #ifndef CONFIG_PROVE_RCU_REPEATEDLY 4419 if (!debug_locks_off()) 4420 return; 4421 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */ 4422 /* Note: the following can be executed concurrently, so be careful. */ 4423 printk("\n"); 4424 pr_err("===============================\n"); 4425 pr_err("[ ERR: suspicious RCU usage. ]\n"); 4426 print_kernel_ident(); 4427 pr_err("-------------------------------\n"); 4428 pr_err("%s:%d %s!\n", file, line, s); 4429 pr_err("\nother info that might help us debug this:\n\n"); 4430 pr_err("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 4431 !rcu_lockdep_current_cpu_online() 4432 ? "RCU used illegally from offline CPU!\n" 4433 : !rcu_is_watching() 4434 ? "RCU used illegally from idle CPU!\n" 4435 : "", 4436 rcu_scheduler_active, debug_locks); 4437 4438 /* 4439 * If a CPU is in the RCU-free window in idle (ie: in the section 4440 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 4441 * considers that CPU to be in an "extended quiescent state", 4442 * which means that RCU will be completely ignoring that CPU. 4443 * Therefore, rcu_read_lock() and friends have absolutely no 4444 * effect on a CPU running in that state. In other words, even if 4445 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 4446 * delete data structures out from under it. RCU really has no 4447 * choice here: we need to keep an RCU-free window in idle where 4448 * the CPU may possibly enter into low power mode. This way we can 4449 * notice an extended quiescent state to other CPUs that started a grace 4450 * period. Otherwise we would delay any grace period as long as we run 4451 * in the idle task. 4452 * 4453 * So complain bitterly if someone does call rcu_read_lock(), 4454 * rcu_read_lock_bh() and so on from extended quiescent states. 4455 */ 4456 if (!rcu_is_watching()) 4457 printk("RCU used illegally from extended quiescent state!\n"); 4458 4459 lockdep_print_held_locks(curr); 4460 printk("\nstack backtrace:\n"); 4461 dump_stack(); 4462 } 4463 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 4464