1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 #ifndef CONFIG_DEBUG_LOCKDEP 187 static 188 #endif 189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 191 192 static inline struct lock_class *hlock_class(struct held_lock *hlock) 193 { 194 unsigned int class_idx = hlock->class_idx; 195 196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 197 barrier(); 198 199 if (!test_bit(class_idx, lock_classes_in_use)) { 200 /* 201 * Someone passed in garbage, we give up. 202 */ 203 DEBUG_LOCKS_WARN_ON(1); 204 return NULL; 205 } 206 207 /* 208 * At this point, if the passed hlock->class_idx is still garbage, 209 * we just have to live with it 210 */ 211 return lock_classes + class_idx; 212 } 213 214 #ifdef CONFIG_LOCK_STAT 215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 216 217 static inline u64 lockstat_clock(void) 218 { 219 return local_clock(); 220 } 221 222 static int lock_point(unsigned long points[], unsigned long ip) 223 { 224 int i; 225 226 for (i = 0; i < LOCKSTAT_POINTS; i++) { 227 if (points[i] == 0) { 228 points[i] = ip; 229 break; 230 } 231 if (points[i] == ip) 232 break; 233 } 234 235 return i; 236 } 237 238 static void lock_time_inc(struct lock_time *lt, u64 time) 239 { 240 if (time > lt->max) 241 lt->max = time; 242 243 if (time < lt->min || !lt->nr) 244 lt->min = time; 245 246 lt->total += time; 247 lt->nr++; 248 } 249 250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 251 { 252 if (!src->nr) 253 return; 254 255 if (src->max > dst->max) 256 dst->max = src->max; 257 258 if (src->min < dst->min || !dst->nr) 259 dst->min = src->min; 260 261 dst->total += src->total; 262 dst->nr += src->nr; 263 } 264 265 struct lock_class_stats lock_stats(struct lock_class *class) 266 { 267 struct lock_class_stats stats; 268 int cpu, i; 269 270 memset(&stats, 0, sizeof(struct lock_class_stats)); 271 for_each_possible_cpu(cpu) { 272 struct lock_class_stats *pcs = 273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 276 stats.contention_point[i] += pcs->contention_point[i]; 277 278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 279 stats.contending_point[i] += pcs->contending_point[i]; 280 281 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 282 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 283 284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 286 287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 288 stats.bounces[i] += pcs->bounces[i]; 289 } 290 291 return stats; 292 } 293 294 void clear_lock_stats(struct lock_class *class) 295 { 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 struct lock_class_stats *cpu_stats = 300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 301 302 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 303 } 304 memset(class->contention_point, 0, sizeof(class->contention_point)); 305 memset(class->contending_point, 0, sizeof(class->contending_point)); 306 } 307 308 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 309 { 310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 311 } 312 313 static void lock_release_holdtime(struct held_lock *hlock) 314 { 315 struct lock_class_stats *stats; 316 u64 holdtime; 317 318 if (!lock_stat) 319 return; 320 321 holdtime = lockstat_clock() - hlock->holdtime_stamp; 322 323 stats = get_lock_stats(hlock_class(hlock)); 324 if (hlock->read) 325 lock_time_inc(&stats->read_holdtime, holdtime); 326 else 327 lock_time_inc(&stats->write_holdtime, holdtime); 328 } 329 #else 330 static inline void lock_release_holdtime(struct held_lock *hlock) 331 { 332 } 333 #endif 334 335 /* 336 * We keep a global list of all lock classes. The list is only accessed with 337 * the lockdep spinlock lock held. free_lock_classes is a list with free 338 * elements. These elements are linked together by the lock_entry member in 339 * struct lock_class. 340 */ 341 LIST_HEAD(all_lock_classes); 342 static LIST_HEAD(free_lock_classes); 343 344 /** 345 * struct pending_free - information about data structures about to be freed 346 * @zapped: Head of a list with struct lock_class elements. 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 348 * are about to be freed. 349 */ 350 struct pending_free { 351 struct list_head zapped; 352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 353 }; 354 355 /** 356 * struct delayed_free - data structures used for delayed freeing 357 * 358 * A data structure for delayed freeing of data structures that may be 359 * accessed by RCU readers at the time these were freed. 360 * 361 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 362 * @index: Index of @pf to which freed data structures are added. 363 * @scheduled: Whether or not an RCU callback has been scheduled. 364 * @pf: Array with information about data structures about to be freed. 365 */ 366 static struct delayed_free { 367 struct rcu_head rcu_head; 368 int index; 369 int scheduled; 370 struct pending_free pf[2]; 371 } delayed_free; 372 373 /* 374 * The lockdep classes are in a hash-table as well, for fast lookup: 375 */ 376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 379 #define classhashentry(key) (classhash_table + __classhashfn((key))) 380 381 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 382 383 /* 384 * We put the lock dependency chains into a hash-table as well, to cache 385 * their existence: 386 */ 387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 391 392 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 393 394 /* 395 * the id of held_lock 396 */ 397 static inline u16 hlock_id(struct held_lock *hlock) 398 { 399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 400 401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 402 } 403 404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 405 { 406 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 407 } 408 409 /* 410 * The hash key of the lock dependency chains is a hash itself too: 411 * it's a hash of all locks taken up to that lock, including that lock. 412 * It's a 64-bit hash, because it's important for the keys to be 413 * unique. 414 */ 415 static inline u64 iterate_chain_key(u64 key, u32 idx) 416 { 417 u32 k0 = key, k1 = key >> 32; 418 419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 420 421 return k0 | (u64)k1 << 32; 422 } 423 424 void lockdep_init_task(struct task_struct *task) 425 { 426 task->lockdep_depth = 0; /* no locks held yet */ 427 task->curr_chain_key = INITIAL_CHAIN_KEY; 428 task->lockdep_recursion = 0; 429 } 430 431 static __always_inline void lockdep_recursion_inc(void) 432 { 433 __this_cpu_inc(lockdep_recursion); 434 } 435 436 static __always_inline void lockdep_recursion_finish(void) 437 { 438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 439 __this_cpu_write(lockdep_recursion, 0); 440 } 441 442 void lockdep_set_selftest_task(struct task_struct *task) 443 { 444 lockdep_selftest_task_struct = task; 445 } 446 447 /* 448 * Debugging switches: 449 */ 450 451 #define VERBOSE 0 452 #define VERY_VERBOSE 0 453 454 #if VERBOSE 455 # define HARDIRQ_VERBOSE 1 456 # define SOFTIRQ_VERBOSE 1 457 #else 458 # define HARDIRQ_VERBOSE 0 459 # define SOFTIRQ_VERBOSE 0 460 #endif 461 462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 463 /* 464 * Quick filtering for interesting events: 465 */ 466 static int class_filter(struct lock_class *class) 467 { 468 #if 0 469 /* Example */ 470 if (class->name_version == 1 && 471 !strcmp(class->name, "lockname")) 472 return 1; 473 if (class->name_version == 1 && 474 !strcmp(class->name, "&struct->lockfield")) 475 return 1; 476 #endif 477 /* Filter everything else. 1 would be to allow everything else */ 478 return 0; 479 } 480 #endif 481 482 static int verbose(struct lock_class *class) 483 { 484 #if VERBOSE 485 return class_filter(class); 486 #endif 487 return 0; 488 } 489 490 static void print_lockdep_off(const char *bug_msg) 491 { 492 printk(KERN_DEBUG "%s\n", bug_msg); 493 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 494 #ifdef CONFIG_LOCK_STAT 495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 496 #endif 497 } 498 499 unsigned long nr_stack_trace_entries; 500 501 #ifdef CONFIG_PROVE_LOCKING 502 /** 503 * struct lock_trace - single stack backtrace 504 * @hash_entry: Entry in a stack_trace_hash[] list. 505 * @hash: jhash() of @entries. 506 * @nr_entries: Number of entries in @entries. 507 * @entries: Actual stack backtrace. 508 */ 509 struct lock_trace { 510 struct hlist_node hash_entry; 511 u32 hash; 512 u32 nr_entries; 513 unsigned long entries[] __aligned(sizeof(unsigned long)); 514 }; 515 #define LOCK_TRACE_SIZE_IN_LONGS \ 516 (sizeof(struct lock_trace) / sizeof(unsigned long)) 517 /* 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 519 */ 520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 522 523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 524 { 525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 526 memcmp(t1->entries, t2->entries, 527 t1->nr_entries * sizeof(t1->entries[0])) == 0; 528 } 529 530 static struct lock_trace *save_trace(void) 531 { 532 struct lock_trace *trace, *t2; 533 struct hlist_head *hash_head; 534 u32 hash; 535 int max_entries; 536 537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 539 540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 542 LOCK_TRACE_SIZE_IN_LONGS; 543 544 if (max_entries <= 0) { 545 if (!debug_locks_off_graph_unlock()) 546 return NULL; 547 548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 549 dump_stack(); 550 551 return NULL; 552 } 553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 554 555 hash = jhash(trace->entries, trace->nr_entries * 556 sizeof(trace->entries[0]), 0); 557 trace->hash = hash; 558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 559 hlist_for_each_entry(t2, hash_head, hash_entry) { 560 if (traces_identical(trace, t2)) 561 return t2; 562 } 563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 564 hlist_add_head(&trace->hash_entry, hash_head); 565 566 return trace; 567 } 568 569 /* Return the number of stack traces in the stack_trace[] array. */ 570 u64 lockdep_stack_trace_count(void) 571 { 572 struct lock_trace *trace; 573 u64 c = 0; 574 int i; 575 576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 578 c++; 579 } 580 } 581 582 return c; 583 } 584 585 /* Return the number of stack hash chains that have at least one stack trace. */ 586 u64 lockdep_stack_hash_count(void) 587 { 588 u64 c = 0; 589 int i; 590 591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 592 if (!hlist_empty(&stack_trace_hash[i])) 593 c++; 594 595 return c; 596 } 597 #endif 598 599 unsigned int nr_hardirq_chains; 600 unsigned int nr_softirq_chains; 601 unsigned int nr_process_chains; 602 unsigned int max_lockdep_depth; 603 604 #ifdef CONFIG_DEBUG_LOCKDEP 605 /* 606 * Various lockdep statistics: 607 */ 608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 609 #endif 610 611 #ifdef CONFIG_PROVE_LOCKING 612 /* 613 * Locking printouts: 614 */ 615 616 #define __USAGE(__STATE) \ 617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 621 622 static const char *usage_str[] = 623 { 624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 625 #include "lockdep_states.h" 626 #undef LOCKDEP_STATE 627 [LOCK_USED] = "INITIAL USE", 628 [LOCK_USED_READ] = "INITIAL READ USE", 629 /* abused as string storage for verify_lock_unused() */ 630 [LOCK_USAGE_STATES] = "IN-NMI", 631 }; 632 #endif 633 634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 635 { 636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 637 } 638 639 static inline unsigned long lock_flag(enum lock_usage_bit bit) 640 { 641 return 1UL << bit; 642 } 643 644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 645 { 646 /* 647 * The usage character defaults to '.' (i.e., irqs disabled and not in 648 * irq context), which is the safest usage category. 649 */ 650 char c = '.'; 651 652 /* 653 * The order of the following usage checks matters, which will 654 * result in the outcome character as follows: 655 * 656 * - '+': irq is enabled and not in irq context 657 * - '-': in irq context and irq is disabled 658 * - '?': in irq context and irq is enabled 659 */ 660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 661 c = '+'; 662 if (class->usage_mask & lock_flag(bit)) 663 c = '?'; 664 } else if (class->usage_mask & lock_flag(bit)) 665 c = '-'; 666 667 return c; 668 } 669 670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 671 { 672 int i = 0; 673 674 #define LOCKDEP_STATE(__STATE) \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 677 #include "lockdep_states.h" 678 #undef LOCKDEP_STATE 679 680 usage[i] = '\0'; 681 } 682 683 static void __print_lock_name(struct lock_class *class) 684 { 685 char str[KSYM_NAME_LEN]; 686 const char *name; 687 688 name = class->name; 689 if (!name) { 690 name = __get_key_name(class->key, str); 691 printk(KERN_CONT "%s", name); 692 } else { 693 printk(KERN_CONT "%s", name); 694 if (class->name_version > 1) 695 printk(KERN_CONT "#%d", class->name_version); 696 if (class->subclass) 697 printk(KERN_CONT "/%d", class->subclass); 698 } 699 } 700 701 static void print_lock_name(struct lock_class *class) 702 { 703 char usage[LOCK_USAGE_CHARS]; 704 705 get_usage_chars(class, usage); 706 707 printk(KERN_CONT " ("); 708 __print_lock_name(class); 709 printk(KERN_CONT "){%s}-{%d:%d}", usage, 710 class->wait_type_outer ?: class->wait_type_inner, 711 class->wait_type_inner); 712 } 713 714 static void print_lockdep_cache(struct lockdep_map *lock) 715 { 716 const char *name; 717 char str[KSYM_NAME_LEN]; 718 719 name = lock->name; 720 if (!name) 721 name = __get_key_name(lock->key->subkeys, str); 722 723 printk(KERN_CONT "%s", name); 724 } 725 726 static void print_lock(struct held_lock *hlock) 727 { 728 /* 729 * We can be called locklessly through debug_show_all_locks() so be 730 * extra careful, the hlock might have been released and cleared. 731 * 732 * If this indeed happens, lets pretend it does not hurt to continue 733 * to print the lock unless the hlock class_idx does not point to a 734 * registered class. The rationale here is: since we don't attempt 735 * to distinguish whether we are in this situation, if it just 736 * happened we can't count on class_idx to tell either. 737 */ 738 struct lock_class *lock = hlock_class(hlock); 739 740 if (!lock) { 741 printk(KERN_CONT "<RELEASED>\n"); 742 return; 743 } 744 745 printk(KERN_CONT "%px", hlock->instance); 746 print_lock_name(lock); 747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 748 } 749 750 static void lockdep_print_held_locks(struct task_struct *p) 751 { 752 int i, depth = READ_ONCE(p->lockdep_depth); 753 754 if (!depth) 755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 756 else 757 printk("%d lock%s held by %s/%d:\n", depth, 758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 759 /* 760 * It's not reliable to print a task's held locks if it's not sleeping 761 * and it's not the current task. 762 */ 763 if (p != current && task_is_running(p)) 764 return; 765 for (i = 0; i < depth; i++) { 766 printk(" #%d: ", i); 767 print_lock(p->held_locks + i); 768 } 769 } 770 771 static void print_kernel_ident(void) 772 { 773 printk("%s %.*s %s\n", init_utsname()->release, 774 (int)strcspn(init_utsname()->version, " "), 775 init_utsname()->version, 776 print_tainted()); 777 } 778 779 static int very_verbose(struct lock_class *class) 780 { 781 #if VERY_VERBOSE 782 return class_filter(class); 783 #endif 784 return 0; 785 } 786 787 /* 788 * Is this the address of a static object: 789 */ 790 #ifdef __KERNEL__ 791 /* 792 * Check if an address is part of freed initmem. After initmem is freed, 793 * memory can be allocated from it, and such allocations would then have 794 * addresses within the range [_stext, _end]. 795 */ 796 #ifndef arch_is_kernel_initmem_freed 797 static int arch_is_kernel_initmem_freed(unsigned long addr) 798 { 799 if (system_state < SYSTEM_FREEING_INITMEM) 800 return 0; 801 802 return init_section_contains((void *)addr, 1); 803 } 804 #endif 805 806 static int static_obj(const void *obj) 807 { 808 unsigned long start = (unsigned long) &_stext, 809 end = (unsigned long) &_end, 810 addr = (unsigned long) obj; 811 812 if (arch_is_kernel_initmem_freed(addr)) 813 return 0; 814 815 /* 816 * static variable? 817 */ 818 if ((addr >= start) && (addr < end)) 819 return 1; 820 821 if (arch_is_kernel_data(addr)) 822 return 1; 823 824 /* 825 * in-kernel percpu var? 826 */ 827 if (is_kernel_percpu_address(addr)) 828 return 1; 829 830 /* 831 * module static or percpu var? 832 */ 833 return is_module_address(addr) || is_module_percpu_address(addr); 834 } 835 #endif 836 837 /* 838 * To make lock name printouts unique, we calculate a unique 839 * class->name_version generation counter. The caller must hold the graph 840 * lock. 841 */ 842 static int count_matching_names(struct lock_class *new_class) 843 { 844 struct lock_class *class; 845 int count = 0; 846 847 if (!new_class->name) 848 return 0; 849 850 list_for_each_entry(class, &all_lock_classes, lock_entry) { 851 if (new_class->key - new_class->subclass == class->key) 852 return class->name_version; 853 if (class->name && !strcmp(class->name, new_class->name)) 854 count = max(count, class->name_version); 855 } 856 857 return count + 1; 858 } 859 860 /* used from NMI context -- must be lockless */ 861 static noinstr struct lock_class * 862 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 863 { 864 struct lockdep_subclass_key *key; 865 struct hlist_head *hash_head; 866 struct lock_class *class; 867 868 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 869 instrumentation_begin(); 870 debug_locks_off(); 871 printk(KERN_ERR 872 "BUG: looking up invalid subclass: %u\n", subclass); 873 printk(KERN_ERR 874 "turning off the locking correctness validator.\n"); 875 dump_stack(); 876 instrumentation_end(); 877 return NULL; 878 } 879 880 /* 881 * If it is not initialised then it has never been locked, 882 * so it won't be present in the hash table. 883 */ 884 if (unlikely(!lock->key)) 885 return NULL; 886 887 /* 888 * NOTE: the class-key must be unique. For dynamic locks, a static 889 * lock_class_key variable is passed in through the mutex_init() 890 * (or spin_lock_init()) call - which acts as the key. For static 891 * locks we use the lock object itself as the key. 892 */ 893 BUILD_BUG_ON(sizeof(struct lock_class_key) > 894 sizeof(struct lockdep_map)); 895 896 key = lock->key->subkeys + subclass; 897 898 hash_head = classhashentry(key); 899 900 /* 901 * We do an RCU walk of the hash, see lockdep_free_key_range(). 902 */ 903 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 904 return NULL; 905 906 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 907 if (class->key == key) { 908 /* 909 * Huh! same key, different name? Did someone trample 910 * on some memory? We're most confused. 911 */ 912 WARN_ON_ONCE(class->name != lock->name && 913 lock->key != &__lockdep_no_validate__); 914 return class; 915 } 916 } 917 918 return NULL; 919 } 920 921 /* 922 * Static locks do not have their class-keys yet - for them the key is 923 * the lock object itself. If the lock is in the per cpu area, the 924 * canonical address of the lock (per cpu offset removed) is used. 925 */ 926 static bool assign_lock_key(struct lockdep_map *lock) 927 { 928 unsigned long can_addr, addr = (unsigned long)lock; 929 930 #ifdef __KERNEL__ 931 /* 932 * lockdep_free_key_range() assumes that struct lock_class_key 933 * objects do not overlap. Since we use the address of lock 934 * objects as class key for static objects, check whether the 935 * size of lock_class_key objects does not exceed the size of 936 * the smallest lock object. 937 */ 938 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 939 #endif 940 941 if (__is_kernel_percpu_address(addr, &can_addr)) 942 lock->key = (void *)can_addr; 943 else if (__is_module_percpu_address(addr, &can_addr)) 944 lock->key = (void *)can_addr; 945 else if (static_obj(lock)) 946 lock->key = (void *)lock; 947 else { 948 /* Debug-check: all keys must be persistent! */ 949 debug_locks_off(); 950 pr_err("INFO: trying to register non-static key.\n"); 951 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 952 pr_err("you didn't initialize this object before use?\n"); 953 pr_err("turning off the locking correctness validator.\n"); 954 dump_stack(); 955 return false; 956 } 957 958 return true; 959 } 960 961 #ifdef CONFIG_DEBUG_LOCKDEP 962 963 /* Check whether element @e occurs in list @h */ 964 static bool in_list(struct list_head *e, struct list_head *h) 965 { 966 struct list_head *f; 967 968 list_for_each(f, h) { 969 if (e == f) 970 return true; 971 } 972 973 return false; 974 } 975 976 /* 977 * Check whether entry @e occurs in any of the locks_after or locks_before 978 * lists. 979 */ 980 static bool in_any_class_list(struct list_head *e) 981 { 982 struct lock_class *class; 983 int i; 984 985 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 986 class = &lock_classes[i]; 987 if (in_list(e, &class->locks_after) || 988 in_list(e, &class->locks_before)) 989 return true; 990 } 991 return false; 992 } 993 994 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 995 { 996 struct lock_list *e; 997 998 list_for_each_entry(e, h, entry) { 999 if (e->links_to != c) { 1000 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1001 c->name ? : "(?)", 1002 (unsigned long)(e - list_entries), 1003 e->links_to && e->links_to->name ? 1004 e->links_to->name : "(?)", 1005 e->class && e->class->name ? e->class->name : 1006 "(?)"); 1007 return false; 1008 } 1009 } 1010 return true; 1011 } 1012 1013 #ifdef CONFIG_PROVE_LOCKING 1014 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1015 #endif 1016 1017 static bool check_lock_chain_key(struct lock_chain *chain) 1018 { 1019 #ifdef CONFIG_PROVE_LOCKING 1020 u64 chain_key = INITIAL_CHAIN_KEY; 1021 int i; 1022 1023 for (i = chain->base; i < chain->base + chain->depth; i++) 1024 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1025 /* 1026 * The 'unsigned long long' casts avoid that a compiler warning 1027 * is reported when building tools/lib/lockdep. 1028 */ 1029 if (chain->chain_key != chain_key) { 1030 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1031 (unsigned long long)(chain - lock_chains), 1032 (unsigned long long)chain->chain_key, 1033 (unsigned long long)chain_key); 1034 return false; 1035 } 1036 #endif 1037 return true; 1038 } 1039 1040 static bool in_any_zapped_class_list(struct lock_class *class) 1041 { 1042 struct pending_free *pf; 1043 int i; 1044 1045 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1046 if (in_list(&class->lock_entry, &pf->zapped)) 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 static bool __check_data_structures(void) 1054 { 1055 struct lock_class *class; 1056 struct lock_chain *chain; 1057 struct hlist_head *head; 1058 struct lock_list *e; 1059 int i; 1060 1061 /* Check whether all classes occur in a lock list. */ 1062 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1063 class = &lock_classes[i]; 1064 if (!in_list(&class->lock_entry, &all_lock_classes) && 1065 !in_list(&class->lock_entry, &free_lock_classes) && 1066 !in_any_zapped_class_list(class)) { 1067 printk(KERN_INFO "class %px/%s is not in any class list\n", 1068 class, class->name ? : "(?)"); 1069 return false; 1070 } 1071 } 1072 1073 /* Check whether all classes have valid lock lists. */ 1074 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1075 class = &lock_classes[i]; 1076 if (!class_lock_list_valid(class, &class->locks_before)) 1077 return false; 1078 if (!class_lock_list_valid(class, &class->locks_after)) 1079 return false; 1080 } 1081 1082 /* Check the chain_key of all lock chains. */ 1083 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1084 head = chainhash_table + i; 1085 hlist_for_each_entry_rcu(chain, head, entry) { 1086 if (!check_lock_chain_key(chain)) 1087 return false; 1088 } 1089 } 1090 1091 /* 1092 * Check whether all list entries that are in use occur in a class 1093 * lock list. 1094 */ 1095 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1096 e = list_entries + i; 1097 if (!in_any_class_list(&e->entry)) { 1098 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1099 (unsigned int)(e - list_entries), 1100 e->class->name ? : "(?)", 1101 e->links_to->name ? : "(?)"); 1102 return false; 1103 } 1104 } 1105 1106 /* 1107 * Check whether all list entries that are not in use do not occur in 1108 * a class lock list. 1109 */ 1110 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1111 e = list_entries + i; 1112 if (in_any_class_list(&e->entry)) { 1113 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1114 (unsigned int)(e - list_entries), 1115 e->class && e->class->name ? e->class->name : 1116 "(?)", 1117 e->links_to && e->links_to->name ? 1118 e->links_to->name : "(?)"); 1119 return false; 1120 } 1121 } 1122 1123 return true; 1124 } 1125 1126 int check_consistency = 0; 1127 module_param(check_consistency, int, 0644); 1128 1129 static void check_data_structures(void) 1130 { 1131 static bool once = false; 1132 1133 if (check_consistency && !once) { 1134 if (!__check_data_structures()) { 1135 once = true; 1136 WARN_ON(once); 1137 } 1138 } 1139 } 1140 1141 #else /* CONFIG_DEBUG_LOCKDEP */ 1142 1143 static inline void check_data_structures(void) { } 1144 1145 #endif /* CONFIG_DEBUG_LOCKDEP */ 1146 1147 static void init_chain_block_buckets(void); 1148 1149 /* 1150 * Initialize the lock_classes[] array elements, the free_lock_classes list 1151 * and also the delayed_free structure. 1152 */ 1153 static void init_data_structures_once(void) 1154 { 1155 static bool __read_mostly ds_initialized, rcu_head_initialized; 1156 int i; 1157 1158 if (likely(rcu_head_initialized)) 1159 return; 1160 1161 if (system_state >= SYSTEM_SCHEDULING) { 1162 init_rcu_head(&delayed_free.rcu_head); 1163 rcu_head_initialized = true; 1164 } 1165 1166 if (ds_initialized) 1167 return; 1168 1169 ds_initialized = true; 1170 1171 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1172 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1173 1174 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1175 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1176 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1177 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1178 } 1179 init_chain_block_buckets(); 1180 } 1181 1182 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1183 { 1184 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1185 1186 return lock_keys_hash + hash; 1187 } 1188 1189 /* Register a dynamically allocated key. */ 1190 void lockdep_register_key(struct lock_class_key *key) 1191 { 1192 struct hlist_head *hash_head; 1193 struct lock_class_key *k; 1194 unsigned long flags; 1195 1196 if (WARN_ON_ONCE(static_obj(key))) 1197 return; 1198 hash_head = keyhashentry(key); 1199 1200 raw_local_irq_save(flags); 1201 if (!graph_lock()) 1202 goto restore_irqs; 1203 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1204 if (WARN_ON_ONCE(k == key)) 1205 goto out_unlock; 1206 } 1207 hlist_add_head_rcu(&key->hash_entry, hash_head); 1208 out_unlock: 1209 graph_unlock(); 1210 restore_irqs: 1211 raw_local_irq_restore(flags); 1212 } 1213 EXPORT_SYMBOL_GPL(lockdep_register_key); 1214 1215 /* Check whether a key has been registered as a dynamic key. */ 1216 static bool is_dynamic_key(const struct lock_class_key *key) 1217 { 1218 struct hlist_head *hash_head; 1219 struct lock_class_key *k; 1220 bool found = false; 1221 1222 if (WARN_ON_ONCE(static_obj(key))) 1223 return false; 1224 1225 /* 1226 * If lock debugging is disabled lock_keys_hash[] may contain 1227 * pointers to memory that has already been freed. Avoid triggering 1228 * a use-after-free in that case by returning early. 1229 */ 1230 if (!debug_locks) 1231 return true; 1232 1233 hash_head = keyhashentry(key); 1234 1235 rcu_read_lock(); 1236 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1237 if (k == key) { 1238 found = true; 1239 break; 1240 } 1241 } 1242 rcu_read_unlock(); 1243 1244 return found; 1245 } 1246 1247 /* 1248 * Register a lock's class in the hash-table, if the class is not present 1249 * yet. Otherwise we look it up. We cache the result in the lock object 1250 * itself, so actual lookup of the hash should be once per lock object. 1251 */ 1252 static struct lock_class * 1253 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1254 { 1255 struct lockdep_subclass_key *key; 1256 struct hlist_head *hash_head; 1257 struct lock_class *class; 1258 1259 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1260 1261 class = look_up_lock_class(lock, subclass); 1262 if (likely(class)) 1263 goto out_set_class_cache; 1264 1265 if (!lock->key) { 1266 if (!assign_lock_key(lock)) 1267 return NULL; 1268 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1269 return NULL; 1270 } 1271 1272 key = lock->key->subkeys + subclass; 1273 hash_head = classhashentry(key); 1274 1275 if (!graph_lock()) { 1276 return NULL; 1277 } 1278 /* 1279 * We have to do the hash-walk again, to avoid races 1280 * with another CPU: 1281 */ 1282 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1283 if (class->key == key) 1284 goto out_unlock_set; 1285 } 1286 1287 init_data_structures_once(); 1288 1289 /* Allocate a new lock class and add it to the hash. */ 1290 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1291 lock_entry); 1292 if (!class) { 1293 if (!debug_locks_off_graph_unlock()) { 1294 return NULL; 1295 } 1296 1297 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1298 dump_stack(); 1299 return NULL; 1300 } 1301 nr_lock_classes++; 1302 __set_bit(class - lock_classes, lock_classes_in_use); 1303 debug_atomic_inc(nr_unused_locks); 1304 class->key = key; 1305 class->name = lock->name; 1306 class->subclass = subclass; 1307 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1308 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1309 class->name_version = count_matching_names(class); 1310 class->wait_type_inner = lock->wait_type_inner; 1311 class->wait_type_outer = lock->wait_type_outer; 1312 class->lock_type = lock->lock_type; 1313 /* 1314 * We use RCU's safe list-add method to make 1315 * parallel walking of the hash-list safe: 1316 */ 1317 hlist_add_head_rcu(&class->hash_entry, hash_head); 1318 /* 1319 * Remove the class from the free list and add it to the global list 1320 * of classes. 1321 */ 1322 list_move_tail(&class->lock_entry, &all_lock_classes); 1323 1324 if (verbose(class)) { 1325 graph_unlock(); 1326 1327 printk("\nnew class %px: %s", class->key, class->name); 1328 if (class->name_version > 1) 1329 printk(KERN_CONT "#%d", class->name_version); 1330 printk(KERN_CONT "\n"); 1331 dump_stack(); 1332 1333 if (!graph_lock()) { 1334 return NULL; 1335 } 1336 } 1337 out_unlock_set: 1338 graph_unlock(); 1339 1340 out_set_class_cache: 1341 if (!subclass || force) 1342 lock->class_cache[0] = class; 1343 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1344 lock->class_cache[subclass] = class; 1345 1346 /* 1347 * Hash collision, did we smoke some? We found a class with a matching 1348 * hash but the subclass -- which is hashed in -- didn't match. 1349 */ 1350 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1351 return NULL; 1352 1353 return class; 1354 } 1355 1356 #ifdef CONFIG_PROVE_LOCKING 1357 /* 1358 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1359 * with NULL on failure) 1360 */ 1361 static struct lock_list *alloc_list_entry(void) 1362 { 1363 int idx = find_first_zero_bit(list_entries_in_use, 1364 ARRAY_SIZE(list_entries)); 1365 1366 if (idx >= ARRAY_SIZE(list_entries)) { 1367 if (!debug_locks_off_graph_unlock()) 1368 return NULL; 1369 1370 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1371 dump_stack(); 1372 return NULL; 1373 } 1374 nr_list_entries++; 1375 __set_bit(idx, list_entries_in_use); 1376 return list_entries + idx; 1377 } 1378 1379 /* 1380 * Add a new dependency to the head of the list: 1381 */ 1382 static int add_lock_to_list(struct lock_class *this, 1383 struct lock_class *links_to, struct list_head *head, 1384 unsigned long ip, u16 distance, u8 dep, 1385 const struct lock_trace *trace) 1386 { 1387 struct lock_list *entry; 1388 /* 1389 * Lock not present yet - get a new dependency struct and 1390 * add it to the list: 1391 */ 1392 entry = alloc_list_entry(); 1393 if (!entry) 1394 return 0; 1395 1396 entry->class = this; 1397 entry->links_to = links_to; 1398 entry->dep = dep; 1399 entry->distance = distance; 1400 entry->trace = trace; 1401 /* 1402 * Both allocation and removal are done under the graph lock; but 1403 * iteration is under RCU-sched; see look_up_lock_class() and 1404 * lockdep_free_key_range(). 1405 */ 1406 list_add_tail_rcu(&entry->entry, head); 1407 1408 return 1; 1409 } 1410 1411 /* 1412 * For good efficiency of modular, we use power of 2 1413 */ 1414 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1415 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1416 1417 /* 1418 * The circular_queue and helpers are used to implement graph 1419 * breadth-first search (BFS) algorithm, by which we can determine 1420 * whether there is a path from a lock to another. In deadlock checks, 1421 * a path from the next lock to be acquired to a previous held lock 1422 * indicates that adding the <prev> -> <next> lock dependency will 1423 * produce a circle in the graph. Breadth-first search instead of 1424 * depth-first search is used in order to find the shortest (circular) 1425 * path. 1426 */ 1427 struct circular_queue { 1428 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1429 unsigned int front, rear; 1430 }; 1431 1432 static struct circular_queue lock_cq; 1433 1434 unsigned int max_bfs_queue_depth; 1435 1436 static unsigned int lockdep_dependency_gen_id; 1437 1438 static inline void __cq_init(struct circular_queue *cq) 1439 { 1440 cq->front = cq->rear = 0; 1441 lockdep_dependency_gen_id++; 1442 } 1443 1444 static inline int __cq_empty(struct circular_queue *cq) 1445 { 1446 return (cq->front == cq->rear); 1447 } 1448 1449 static inline int __cq_full(struct circular_queue *cq) 1450 { 1451 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1452 } 1453 1454 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1455 { 1456 if (__cq_full(cq)) 1457 return -1; 1458 1459 cq->element[cq->rear] = elem; 1460 cq->rear = (cq->rear + 1) & CQ_MASK; 1461 return 0; 1462 } 1463 1464 /* 1465 * Dequeue an element from the circular_queue, return a lock_list if 1466 * the queue is not empty, or NULL if otherwise. 1467 */ 1468 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1469 { 1470 struct lock_list * lock; 1471 1472 if (__cq_empty(cq)) 1473 return NULL; 1474 1475 lock = cq->element[cq->front]; 1476 cq->front = (cq->front + 1) & CQ_MASK; 1477 1478 return lock; 1479 } 1480 1481 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1482 { 1483 return (cq->rear - cq->front) & CQ_MASK; 1484 } 1485 1486 static inline void mark_lock_accessed(struct lock_list *lock) 1487 { 1488 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1489 } 1490 1491 static inline void visit_lock_entry(struct lock_list *lock, 1492 struct lock_list *parent) 1493 { 1494 lock->parent = parent; 1495 } 1496 1497 static inline unsigned long lock_accessed(struct lock_list *lock) 1498 { 1499 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1500 } 1501 1502 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1503 { 1504 return child->parent; 1505 } 1506 1507 static inline int get_lock_depth(struct lock_list *child) 1508 { 1509 int depth = 0; 1510 struct lock_list *parent; 1511 1512 while ((parent = get_lock_parent(child))) { 1513 child = parent; 1514 depth++; 1515 } 1516 return depth; 1517 } 1518 1519 /* 1520 * Return the forward or backward dependency list. 1521 * 1522 * @lock: the lock_list to get its class's dependency list 1523 * @offset: the offset to struct lock_class to determine whether it is 1524 * locks_after or locks_before 1525 */ 1526 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1527 { 1528 void *lock_class = lock->class; 1529 1530 return lock_class + offset; 1531 } 1532 /* 1533 * Return values of a bfs search: 1534 * 1535 * BFS_E* indicates an error 1536 * BFS_R* indicates a result (match or not) 1537 * 1538 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1539 * 1540 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1541 * 1542 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1543 * *@target_entry. 1544 * 1545 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1546 * _unchanged_. 1547 */ 1548 enum bfs_result { 1549 BFS_EINVALIDNODE = -2, 1550 BFS_EQUEUEFULL = -1, 1551 BFS_RMATCH = 0, 1552 BFS_RNOMATCH = 1, 1553 }; 1554 1555 /* 1556 * bfs_result < 0 means error 1557 */ 1558 static inline bool bfs_error(enum bfs_result res) 1559 { 1560 return res < 0; 1561 } 1562 1563 /* 1564 * DEP_*_BIT in lock_list::dep 1565 * 1566 * For dependency @prev -> @next: 1567 * 1568 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1569 * (->read == 2) 1570 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1571 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1572 * EN: @prev is exclusive locker and @next is non-recursive locker 1573 * 1574 * Note that we define the value of DEP_*_BITs so that: 1575 * bit0 is prev->read == 0 1576 * bit1 is next->read != 2 1577 */ 1578 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1579 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1580 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1581 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1582 1583 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1584 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1585 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1586 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1587 1588 static inline unsigned int 1589 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1590 { 1591 return (prev->read == 0) + ((next->read != 2) << 1); 1592 } 1593 1594 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1595 { 1596 return 1U << __calc_dep_bit(prev, next); 1597 } 1598 1599 /* 1600 * calculate the dep_bit for backwards edges. We care about whether @prev is 1601 * shared and whether @next is recursive. 1602 */ 1603 static inline unsigned int 1604 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1605 { 1606 return (next->read != 2) + ((prev->read == 0) << 1); 1607 } 1608 1609 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1610 { 1611 return 1U << __calc_dep_bitb(prev, next); 1612 } 1613 1614 /* 1615 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1616 * search. 1617 */ 1618 static inline void __bfs_init_root(struct lock_list *lock, 1619 struct lock_class *class) 1620 { 1621 lock->class = class; 1622 lock->parent = NULL; 1623 lock->only_xr = 0; 1624 } 1625 1626 /* 1627 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1628 * root for a BFS search. 1629 * 1630 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1631 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1632 * and -(S*)->. 1633 */ 1634 static inline void bfs_init_root(struct lock_list *lock, 1635 struct held_lock *hlock) 1636 { 1637 __bfs_init_root(lock, hlock_class(hlock)); 1638 lock->only_xr = (hlock->read == 2); 1639 } 1640 1641 /* 1642 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1643 * 1644 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1645 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1646 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1647 */ 1648 static inline void bfs_init_rootb(struct lock_list *lock, 1649 struct held_lock *hlock) 1650 { 1651 __bfs_init_root(lock, hlock_class(hlock)); 1652 lock->only_xr = (hlock->read != 0); 1653 } 1654 1655 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1656 { 1657 if (!lock || !lock->parent) 1658 return NULL; 1659 1660 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1661 &lock->entry, struct lock_list, entry); 1662 } 1663 1664 /* 1665 * Breadth-First Search to find a strong path in the dependency graph. 1666 * 1667 * @source_entry: the source of the path we are searching for. 1668 * @data: data used for the second parameter of @match function 1669 * @match: match function for the search 1670 * @target_entry: pointer to the target of a matched path 1671 * @offset: the offset to struct lock_class to determine whether it is 1672 * locks_after or locks_before 1673 * 1674 * We may have multiple edges (considering different kinds of dependencies, 1675 * e.g. ER and SN) between two nodes in the dependency graph. But 1676 * only the strong dependency path in the graph is relevant to deadlocks. A 1677 * strong dependency path is a dependency path that doesn't have two adjacent 1678 * dependencies as -(*R)-> -(S*)->, please see: 1679 * 1680 * Documentation/locking/lockdep-design.rst 1681 * 1682 * for more explanation of the definition of strong dependency paths 1683 * 1684 * In __bfs(), we only traverse in the strong dependency path: 1685 * 1686 * In lock_list::only_xr, we record whether the previous dependency only 1687 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1688 * filter out any -(S*)-> in the current dependency and after that, the 1689 * ->only_xr is set according to whether we only have -(*R)-> left. 1690 */ 1691 static enum bfs_result __bfs(struct lock_list *source_entry, 1692 void *data, 1693 bool (*match)(struct lock_list *entry, void *data), 1694 bool (*skip)(struct lock_list *entry, void *data), 1695 struct lock_list **target_entry, 1696 int offset) 1697 { 1698 struct circular_queue *cq = &lock_cq; 1699 struct lock_list *lock = NULL; 1700 struct lock_list *entry; 1701 struct list_head *head; 1702 unsigned int cq_depth; 1703 bool first; 1704 1705 lockdep_assert_locked(); 1706 1707 __cq_init(cq); 1708 __cq_enqueue(cq, source_entry); 1709 1710 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1711 if (!lock->class) 1712 return BFS_EINVALIDNODE; 1713 1714 /* 1715 * Step 1: check whether we already finish on this one. 1716 * 1717 * If we have visited all the dependencies from this @lock to 1718 * others (iow, if we have visited all lock_list entries in 1719 * @lock->class->locks_{after,before}) we skip, otherwise go 1720 * and visit all the dependencies in the list and mark this 1721 * list accessed. 1722 */ 1723 if (lock_accessed(lock)) 1724 continue; 1725 else 1726 mark_lock_accessed(lock); 1727 1728 /* 1729 * Step 2: check whether prev dependency and this form a strong 1730 * dependency path. 1731 */ 1732 if (lock->parent) { /* Parent exists, check prev dependency */ 1733 u8 dep = lock->dep; 1734 bool prev_only_xr = lock->parent->only_xr; 1735 1736 /* 1737 * Mask out all -(S*)-> if we only have *R in previous 1738 * step, because -(*R)-> -(S*)-> don't make up a strong 1739 * dependency. 1740 */ 1741 if (prev_only_xr) 1742 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1743 1744 /* If nothing left, we skip */ 1745 if (!dep) 1746 continue; 1747 1748 /* If there are only -(*R)-> left, set that for the next step */ 1749 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1750 } 1751 1752 /* 1753 * Step 3: we haven't visited this and there is a strong 1754 * dependency path to this, so check with @match. 1755 * If @skip is provide and returns true, we skip this 1756 * lock (and any path this lock is in). 1757 */ 1758 if (skip && skip(lock, data)) 1759 continue; 1760 1761 if (match(lock, data)) { 1762 *target_entry = lock; 1763 return BFS_RMATCH; 1764 } 1765 1766 /* 1767 * Step 4: if not match, expand the path by adding the 1768 * forward or backwards dependencies in the search 1769 * 1770 */ 1771 first = true; 1772 head = get_dep_list(lock, offset); 1773 list_for_each_entry_rcu(entry, head, entry) { 1774 visit_lock_entry(entry, lock); 1775 1776 /* 1777 * Note we only enqueue the first of the list into the 1778 * queue, because we can always find a sibling 1779 * dependency from one (see __bfs_next()), as a result 1780 * the space of queue is saved. 1781 */ 1782 if (!first) 1783 continue; 1784 1785 first = false; 1786 1787 if (__cq_enqueue(cq, entry)) 1788 return BFS_EQUEUEFULL; 1789 1790 cq_depth = __cq_get_elem_count(cq); 1791 if (max_bfs_queue_depth < cq_depth) 1792 max_bfs_queue_depth = cq_depth; 1793 } 1794 } 1795 1796 return BFS_RNOMATCH; 1797 } 1798 1799 static inline enum bfs_result 1800 __bfs_forwards(struct lock_list *src_entry, 1801 void *data, 1802 bool (*match)(struct lock_list *entry, void *data), 1803 bool (*skip)(struct lock_list *entry, void *data), 1804 struct lock_list **target_entry) 1805 { 1806 return __bfs(src_entry, data, match, skip, target_entry, 1807 offsetof(struct lock_class, locks_after)); 1808 1809 } 1810 1811 static inline enum bfs_result 1812 __bfs_backwards(struct lock_list *src_entry, 1813 void *data, 1814 bool (*match)(struct lock_list *entry, void *data), 1815 bool (*skip)(struct lock_list *entry, void *data), 1816 struct lock_list **target_entry) 1817 { 1818 return __bfs(src_entry, data, match, skip, target_entry, 1819 offsetof(struct lock_class, locks_before)); 1820 1821 } 1822 1823 static void print_lock_trace(const struct lock_trace *trace, 1824 unsigned int spaces) 1825 { 1826 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1827 } 1828 1829 /* 1830 * Print a dependency chain entry (this is only done when a deadlock 1831 * has been detected): 1832 */ 1833 static noinline void 1834 print_circular_bug_entry(struct lock_list *target, int depth) 1835 { 1836 if (debug_locks_silent) 1837 return; 1838 printk("\n-> #%u", depth); 1839 print_lock_name(target->class); 1840 printk(KERN_CONT ":\n"); 1841 print_lock_trace(target->trace, 6); 1842 } 1843 1844 static void 1845 print_circular_lock_scenario(struct held_lock *src, 1846 struct held_lock *tgt, 1847 struct lock_list *prt) 1848 { 1849 struct lock_class *source = hlock_class(src); 1850 struct lock_class *target = hlock_class(tgt); 1851 struct lock_class *parent = prt->class; 1852 1853 /* 1854 * A direct locking problem where unsafe_class lock is taken 1855 * directly by safe_class lock, then all we need to show 1856 * is the deadlock scenario, as it is obvious that the 1857 * unsafe lock is taken under the safe lock. 1858 * 1859 * But if there is a chain instead, where the safe lock takes 1860 * an intermediate lock (middle_class) where this lock is 1861 * not the same as the safe lock, then the lock chain is 1862 * used to describe the problem. Otherwise we would need 1863 * to show a different CPU case for each link in the chain 1864 * from the safe_class lock to the unsafe_class lock. 1865 */ 1866 if (parent != source) { 1867 printk("Chain exists of:\n "); 1868 __print_lock_name(source); 1869 printk(KERN_CONT " --> "); 1870 __print_lock_name(parent); 1871 printk(KERN_CONT " --> "); 1872 __print_lock_name(target); 1873 printk(KERN_CONT "\n\n"); 1874 } 1875 1876 printk(" Possible unsafe locking scenario:\n\n"); 1877 printk(" CPU0 CPU1\n"); 1878 printk(" ---- ----\n"); 1879 printk(" lock("); 1880 __print_lock_name(target); 1881 printk(KERN_CONT ");\n"); 1882 printk(" lock("); 1883 __print_lock_name(parent); 1884 printk(KERN_CONT ");\n"); 1885 printk(" lock("); 1886 __print_lock_name(target); 1887 printk(KERN_CONT ");\n"); 1888 printk(" lock("); 1889 __print_lock_name(source); 1890 printk(KERN_CONT ");\n"); 1891 printk("\n *** DEADLOCK ***\n\n"); 1892 } 1893 1894 /* 1895 * When a circular dependency is detected, print the 1896 * header first: 1897 */ 1898 static noinline void 1899 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1900 struct held_lock *check_src, 1901 struct held_lock *check_tgt) 1902 { 1903 struct task_struct *curr = current; 1904 1905 if (debug_locks_silent) 1906 return; 1907 1908 pr_warn("\n"); 1909 pr_warn("======================================================\n"); 1910 pr_warn("WARNING: possible circular locking dependency detected\n"); 1911 print_kernel_ident(); 1912 pr_warn("------------------------------------------------------\n"); 1913 pr_warn("%s/%d is trying to acquire lock:\n", 1914 curr->comm, task_pid_nr(curr)); 1915 print_lock(check_src); 1916 1917 pr_warn("\nbut task is already holding lock:\n"); 1918 1919 print_lock(check_tgt); 1920 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1921 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1922 1923 print_circular_bug_entry(entry, depth); 1924 } 1925 1926 /* 1927 * We are about to add A -> B into the dependency graph, and in __bfs() a 1928 * strong dependency path A -> .. -> B is found: hlock_class equals 1929 * entry->class. 1930 * 1931 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1932 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1933 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1934 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1935 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1936 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1937 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1938 * 1939 * We need to make sure both the start and the end of A -> .. -> B is not 1940 * weaker than A -> B. For the start part, please see the comment in 1941 * check_redundant(). For the end part, we need: 1942 * 1943 * Either 1944 * 1945 * a) A -> B is -(*R)-> (everything is not weaker than that) 1946 * 1947 * or 1948 * 1949 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1950 * 1951 */ 1952 static inline bool hlock_equal(struct lock_list *entry, void *data) 1953 { 1954 struct held_lock *hlock = (struct held_lock *)data; 1955 1956 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1957 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1958 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1959 } 1960 1961 /* 1962 * We are about to add B -> A into the dependency graph, and in __bfs() a 1963 * strong dependency path A -> .. -> B is found: hlock_class equals 1964 * entry->class. 1965 * 1966 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1967 * dependency cycle, that means: 1968 * 1969 * Either 1970 * 1971 * a) B -> A is -(E*)-> 1972 * 1973 * or 1974 * 1975 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1976 * 1977 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1978 */ 1979 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1980 { 1981 struct held_lock *hlock = (struct held_lock *)data; 1982 1983 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1984 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1985 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1986 } 1987 1988 static noinline void print_circular_bug(struct lock_list *this, 1989 struct lock_list *target, 1990 struct held_lock *check_src, 1991 struct held_lock *check_tgt) 1992 { 1993 struct task_struct *curr = current; 1994 struct lock_list *parent; 1995 struct lock_list *first_parent; 1996 int depth; 1997 1998 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1999 return; 2000 2001 this->trace = save_trace(); 2002 if (!this->trace) 2003 return; 2004 2005 depth = get_lock_depth(target); 2006 2007 print_circular_bug_header(target, depth, check_src, check_tgt); 2008 2009 parent = get_lock_parent(target); 2010 first_parent = parent; 2011 2012 while (parent) { 2013 print_circular_bug_entry(parent, --depth); 2014 parent = get_lock_parent(parent); 2015 } 2016 2017 printk("\nother info that might help us debug this:\n\n"); 2018 print_circular_lock_scenario(check_src, check_tgt, 2019 first_parent); 2020 2021 lockdep_print_held_locks(curr); 2022 2023 printk("\nstack backtrace:\n"); 2024 dump_stack(); 2025 } 2026 2027 static noinline void print_bfs_bug(int ret) 2028 { 2029 if (!debug_locks_off_graph_unlock()) 2030 return; 2031 2032 /* 2033 * Breadth-first-search failed, graph got corrupted? 2034 */ 2035 WARN(1, "lockdep bfs error:%d\n", ret); 2036 } 2037 2038 static bool noop_count(struct lock_list *entry, void *data) 2039 { 2040 (*(unsigned long *)data)++; 2041 return false; 2042 } 2043 2044 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2045 { 2046 unsigned long count = 0; 2047 struct lock_list *target_entry; 2048 2049 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2050 2051 return count; 2052 } 2053 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2054 { 2055 unsigned long ret, flags; 2056 struct lock_list this; 2057 2058 __bfs_init_root(&this, class); 2059 2060 raw_local_irq_save(flags); 2061 lockdep_lock(); 2062 ret = __lockdep_count_forward_deps(&this); 2063 lockdep_unlock(); 2064 raw_local_irq_restore(flags); 2065 2066 return ret; 2067 } 2068 2069 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2070 { 2071 unsigned long count = 0; 2072 struct lock_list *target_entry; 2073 2074 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2075 2076 return count; 2077 } 2078 2079 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2080 { 2081 unsigned long ret, flags; 2082 struct lock_list this; 2083 2084 __bfs_init_root(&this, class); 2085 2086 raw_local_irq_save(flags); 2087 lockdep_lock(); 2088 ret = __lockdep_count_backward_deps(&this); 2089 lockdep_unlock(); 2090 raw_local_irq_restore(flags); 2091 2092 return ret; 2093 } 2094 2095 /* 2096 * Check that the dependency graph starting at <src> can lead to 2097 * <target> or not. 2098 */ 2099 static noinline enum bfs_result 2100 check_path(struct held_lock *target, struct lock_list *src_entry, 2101 bool (*match)(struct lock_list *entry, void *data), 2102 bool (*skip)(struct lock_list *entry, void *data), 2103 struct lock_list **target_entry) 2104 { 2105 enum bfs_result ret; 2106 2107 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2108 2109 if (unlikely(bfs_error(ret))) 2110 print_bfs_bug(ret); 2111 2112 return ret; 2113 } 2114 2115 /* 2116 * Prove that the dependency graph starting at <src> can not 2117 * lead to <target>. If it can, there is a circle when adding 2118 * <target> -> <src> dependency. 2119 * 2120 * Print an error and return BFS_RMATCH if it does. 2121 */ 2122 static noinline enum bfs_result 2123 check_noncircular(struct held_lock *src, struct held_lock *target, 2124 struct lock_trace **const trace) 2125 { 2126 enum bfs_result ret; 2127 struct lock_list *target_entry; 2128 struct lock_list src_entry; 2129 2130 bfs_init_root(&src_entry, src); 2131 2132 debug_atomic_inc(nr_cyclic_checks); 2133 2134 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2135 2136 if (unlikely(ret == BFS_RMATCH)) { 2137 if (!*trace) { 2138 /* 2139 * If save_trace fails here, the printing might 2140 * trigger a WARN but because of the !nr_entries it 2141 * should not do bad things. 2142 */ 2143 *trace = save_trace(); 2144 } 2145 2146 print_circular_bug(&src_entry, target_entry, src, target); 2147 } 2148 2149 return ret; 2150 } 2151 2152 #ifdef CONFIG_TRACE_IRQFLAGS 2153 2154 /* 2155 * Forwards and backwards subgraph searching, for the purposes of 2156 * proving that two subgraphs can be connected by a new dependency 2157 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2158 * 2159 * A irq safe->unsafe deadlock happens with the following conditions: 2160 * 2161 * 1) We have a strong dependency path A -> ... -> B 2162 * 2163 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2164 * irq can create a new dependency B -> A (consider the case that a holder 2165 * of B gets interrupted by an irq whose handler will try to acquire A). 2166 * 2167 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2168 * strong circle: 2169 * 2170 * For the usage bits of B: 2171 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2172 * ENABLED_IRQ usage suffices. 2173 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2174 * ENABLED_IRQ_*_READ usage suffices. 2175 * 2176 * For the usage bits of A: 2177 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2178 * USED_IN_IRQ usage suffices. 2179 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2180 * USED_IN_IRQ_*_READ usage suffices. 2181 */ 2182 2183 /* 2184 * There is a strong dependency path in the dependency graph: A -> B, and now 2185 * we need to decide which usage bit of A should be accumulated to detect 2186 * safe->unsafe bugs. 2187 * 2188 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2189 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2190 * 2191 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2192 * path, any usage of A should be considered. Otherwise, we should only 2193 * consider _READ usage. 2194 */ 2195 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2196 { 2197 if (!entry->only_xr) 2198 *(unsigned long *)mask |= entry->class->usage_mask; 2199 else /* Mask out _READ usage bits */ 2200 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2201 2202 return false; 2203 } 2204 2205 /* 2206 * There is a strong dependency path in the dependency graph: A -> B, and now 2207 * we need to decide which usage bit of B conflicts with the usage bits of A, 2208 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2209 * 2210 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2211 * path, any usage of B should be considered. Otherwise, we should only 2212 * consider _READ usage. 2213 */ 2214 static inline bool usage_match(struct lock_list *entry, void *mask) 2215 { 2216 if (!entry->only_xr) 2217 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2218 else /* Mask out _READ usage bits */ 2219 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2220 } 2221 2222 static inline bool usage_skip(struct lock_list *entry, void *mask) 2223 { 2224 /* 2225 * Skip local_lock() for irq inversion detection. 2226 * 2227 * For !RT, local_lock() is not a real lock, so it won't carry any 2228 * dependency. 2229 * 2230 * For RT, an irq inversion happens when we have lock A and B, and on 2231 * some CPU we can have: 2232 * 2233 * lock(A); 2234 * <interrupted> 2235 * lock(B); 2236 * 2237 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2238 * 2239 * Now we prove local_lock() cannot exist in that dependency. First we 2240 * have the observation for any lock chain L1 -> ... -> Ln, for any 2241 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2242 * wait context check will complain. And since B is not a sleep lock, 2243 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2244 * local_lock() is 3, which is greater than 2, therefore there is no 2245 * way the local_lock() exists in the dependency B -> ... -> A. 2246 * 2247 * As a result, we will skip local_lock(), when we search for irq 2248 * inversion bugs. 2249 */ 2250 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2251 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2252 return false; 2253 2254 return true; 2255 } 2256 2257 return false; 2258 } 2259 2260 /* 2261 * Find a node in the forwards-direction dependency sub-graph starting 2262 * at @root->class that matches @bit. 2263 * 2264 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2265 * into *@target_entry. 2266 */ 2267 static enum bfs_result 2268 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2269 struct lock_list **target_entry) 2270 { 2271 enum bfs_result result; 2272 2273 debug_atomic_inc(nr_find_usage_forwards_checks); 2274 2275 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2276 2277 return result; 2278 } 2279 2280 /* 2281 * Find a node in the backwards-direction dependency sub-graph starting 2282 * at @root->class that matches @bit. 2283 */ 2284 static enum bfs_result 2285 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2286 struct lock_list **target_entry) 2287 { 2288 enum bfs_result result; 2289 2290 debug_atomic_inc(nr_find_usage_backwards_checks); 2291 2292 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2293 2294 return result; 2295 } 2296 2297 static void print_lock_class_header(struct lock_class *class, int depth) 2298 { 2299 int bit; 2300 2301 printk("%*s->", depth, ""); 2302 print_lock_name(class); 2303 #ifdef CONFIG_DEBUG_LOCKDEP 2304 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2305 #endif 2306 printk(KERN_CONT " {\n"); 2307 2308 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2309 if (class->usage_mask & (1 << bit)) { 2310 int len = depth; 2311 2312 len += printk("%*s %s", depth, "", usage_str[bit]); 2313 len += printk(KERN_CONT " at:\n"); 2314 print_lock_trace(class->usage_traces[bit], len); 2315 } 2316 } 2317 printk("%*s }\n", depth, ""); 2318 2319 printk("%*s ... key at: [<%px>] %pS\n", 2320 depth, "", class->key, class->key); 2321 } 2322 2323 /* 2324 * Dependency path printing: 2325 * 2326 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2327 * printing out each lock in the dependency path will help on understanding how 2328 * the deadlock could happen. Here are some details about dependency path 2329 * printing: 2330 * 2331 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2332 * for a lock dependency A -> B, there are two lock_lists: 2333 * 2334 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2335 * ->links_to is A. In this case, we can say the lock_list is 2336 * "A -> B" (forwards case). 2337 * 2338 * b) lock_list in the ->locks_before list of B, whose ->class is A 2339 * and ->links_to is B. In this case, we can say the lock_list is 2340 * "B <- A" (bacwards case). 2341 * 2342 * The ->trace of both a) and b) point to the call trace where B was 2343 * acquired with A held. 2344 * 2345 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2346 * represent a certain lock dependency, it only provides an initial entry 2347 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2348 * ->class is A, as a result BFS will search all dependencies starting with 2349 * A, e.g. A -> B or A -> C. 2350 * 2351 * The notation of a forwards helper lock_list is like "-> A", which means 2352 * we should search the forwards dependencies starting with "A", e.g A -> B 2353 * or A -> C. 2354 * 2355 * The notation of a bacwards helper lock_list is like "<- B", which means 2356 * we should search the backwards dependencies ending with "B", e.g. 2357 * B <- A or B <- C. 2358 */ 2359 2360 /* 2361 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2362 * 2363 * We have a lock dependency path as follow: 2364 * 2365 * @root @leaf 2366 * | | 2367 * V V 2368 * ->parent ->parent 2369 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2370 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2371 * 2372 * , so it's natural that we start from @leaf and print every ->class and 2373 * ->trace until we reach the @root. 2374 */ 2375 static void __used 2376 print_shortest_lock_dependencies(struct lock_list *leaf, 2377 struct lock_list *root) 2378 { 2379 struct lock_list *entry = leaf; 2380 int depth; 2381 2382 /*compute depth from generated tree by BFS*/ 2383 depth = get_lock_depth(leaf); 2384 2385 do { 2386 print_lock_class_header(entry->class, depth); 2387 printk("%*s ... acquired at:\n", depth, ""); 2388 print_lock_trace(entry->trace, 2); 2389 printk("\n"); 2390 2391 if (depth == 0 && (entry != root)) { 2392 printk("lockdep:%s bad path found in chain graph\n", __func__); 2393 break; 2394 } 2395 2396 entry = get_lock_parent(entry); 2397 depth--; 2398 } while (entry && (depth >= 0)); 2399 } 2400 2401 /* 2402 * printk the shortest lock dependencies from @leaf to @root. 2403 * 2404 * We have a lock dependency path (from a backwards search) as follow: 2405 * 2406 * @leaf @root 2407 * | | 2408 * V V 2409 * ->parent ->parent 2410 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2411 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2412 * 2413 * , so when we iterate from @leaf to @root, we actually print the lock 2414 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2415 * 2416 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2417 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2418 * trace of L1 in the dependency path, which is alright, because most of the 2419 * time we can figure out where L1 is held from the call trace of L2. 2420 */ 2421 static void __used 2422 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2423 struct lock_list *root) 2424 { 2425 struct lock_list *entry = leaf; 2426 const struct lock_trace *trace = NULL; 2427 int depth; 2428 2429 /*compute depth from generated tree by BFS*/ 2430 depth = get_lock_depth(leaf); 2431 2432 do { 2433 print_lock_class_header(entry->class, depth); 2434 if (trace) { 2435 printk("%*s ... acquired at:\n", depth, ""); 2436 print_lock_trace(trace, 2); 2437 printk("\n"); 2438 } 2439 2440 /* 2441 * Record the pointer to the trace for the next lock_list 2442 * entry, see the comments for the function. 2443 */ 2444 trace = entry->trace; 2445 2446 if (depth == 0 && (entry != root)) { 2447 printk("lockdep:%s bad path found in chain graph\n", __func__); 2448 break; 2449 } 2450 2451 entry = get_lock_parent(entry); 2452 depth--; 2453 } while (entry && (depth >= 0)); 2454 } 2455 2456 static void 2457 print_irq_lock_scenario(struct lock_list *safe_entry, 2458 struct lock_list *unsafe_entry, 2459 struct lock_class *prev_class, 2460 struct lock_class *next_class) 2461 { 2462 struct lock_class *safe_class = safe_entry->class; 2463 struct lock_class *unsafe_class = unsafe_entry->class; 2464 struct lock_class *middle_class = prev_class; 2465 2466 if (middle_class == safe_class) 2467 middle_class = next_class; 2468 2469 /* 2470 * A direct locking problem where unsafe_class lock is taken 2471 * directly by safe_class lock, then all we need to show 2472 * is the deadlock scenario, as it is obvious that the 2473 * unsafe lock is taken under the safe lock. 2474 * 2475 * But if there is a chain instead, where the safe lock takes 2476 * an intermediate lock (middle_class) where this lock is 2477 * not the same as the safe lock, then the lock chain is 2478 * used to describe the problem. Otherwise we would need 2479 * to show a different CPU case for each link in the chain 2480 * from the safe_class lock to the unsafe_class lock. 2481 */ 2482 if (middle_class != unsafe_class) { 2483 printk("Chain exists of:\n "); 2484 __print_lock_name(safe_class); 2485 printk(KERN_CONT " --> "); 2486 __print_lock_name(middle_class); 2487 printk(KERN_CONT " --> "); 2488 __print_lock_name(unsafe_class); 2489 printk(KERN_CONT "\n\n"); 2490 } 2491 2492 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2493 printk(" CPU0 CPU1\n"); 2494 printk(" ---- ----\n"); 2495 printk(" lock("); 2496 __print_lock_name(unsafe_class); 2497 printk(KERN_CONT ");\n"); 2498 printk(" local_irq_disable();\n"); 2499 printk(" lock("); 2500 __print_lock_name(safe_class); 2501 printk(KERN_CONT ");\n"); 2502 printk(" lock("); 2503 __print_lock_name(middle_class); 2504 printk(KERN_CONT ");\n"); 2505 printk(" <Interrupt>\n"); 2506 printk(" lock("); 2507 __print_lock_name(safe_class); 2508 printk(KERN_CONT ");\n"); 2509 printk("\n *** DEADLOCK ***\n\n"); 2510 } 2511 2512 static void 2513 print_bad_irq_dependency(struct task_struct *curr, 2514 struct lock_list *prev_root, 2515 struct lock_list *next_root, 2516 struct lock_list *backwards_entry, 2517 struct lock_list *forwards_entry, 2518 struct held_lock *prev, 2519 struct held_lock *next, 2520 enum lock_usage_bit bit1, 2521 enum lock_usage_bit bit2, 2522 const char *irqclass) 2523 { 2524 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2525 return; 2526 2527 pr_warn("\n"); 2528 pr_warn("=====================================================\n"); 2529 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2530 irqclass, irqclass); 2531 print_kernel_ident(); 2532 pr_warn("-----------------------------------------------------\n"); 2533 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2534 curr->comm, task_pid_nr(curr), 2535 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2536 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2537 lockdep_hardirqs_enabled(), 2538 curr->softirqs_enabled); 2539 print_lock(next); 2540 2541 pr_warn("\nand this task is already holding:\n"); 2542 print_lock(prev); 2543 pr_warn("which would create a new lock dependency:\n"); 2544 print_lock_name(hlock_class(prev)); 2545 pr_cont(" ->"); 2546 print_lock_name(hlock_class(next)); 2547 pr_cont("\n"); 2548 2549 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2550 irqclass); 2551 print_lock_name(backwards_entry->class); 2552 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2553 2554 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2555 2556 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2557 print_lock_name(forwards_entry->class); 2558 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2559 pr_warn("..."); 2560 2561 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2562 2563 pr_warn("\nother info that might help us debug this:\n\n"); 2564 print_irq_lock_scenario(backwards_entry, forwards_entry, 2565 hlock_class(prev), hlock_class(next)); 2566 2567 lockdep_print_held_locks(curr); 2568 2569 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2570 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2571 2572 pr_warn("\nthe dependencies between the lock to be acquired"); 2573 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2574 next_root->trace = save_trace(); 2575 if (!next_root->trace) 2576 return; 2577 print_shortest_lock_dependencies(forwards_entry, next_root); 2578 2579 pr_warn("\nstack backtrace:\n"); 2580 dump_stack(); 2581 } 2582 2583 static const char *state_names[] = { 2584 #define LOCKDEP_STATE(__STATE) \ 2585 __stringify(__STATE), 2586 #include "lockdep_states.h" 2587 #undef LOCKDEP_STATE 2588 }; 2589 2590 static const char *state_rnames[] = { 2591 #define LOCKDEP_STATE(__STATE) \ 2592 __stringify(__STATE)"-READ", 2593 #include "lockdep_states.h" 2594 #undef LOCKDEP_STATE 2595 }; 2596 2597 static inline const char *state_name(enum lock_usage_bit bit) 2598 { 2599 if (bit & LOCK_USAGE_READ_MASK) 2600 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2601 else 2602 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2603 } 2604 2605 /* 2606 * The bit number is encoded like: 2607 * 2608 * bit0: 0 exclusive, 1 read lock 2609 * bit1: 0 used in irq, 1 irq enabled 2610 * bit2-n: state 2611 */ 2612 static int exclusive_bit(int new_bit) 2613 { 2614 int state = new_bit & LOCK_USAGE_STATE_MASK; 2615 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2616 2617 /* 2618 * keep state, bit flip the direction and strip read. 2619 */ 2620 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2621 } 2622 2623 /* 2624 * Observe that when given a bitmask where each bitnr is encoded as above, a 2625 * right shift of the mask transforms the individual bitnrs as -1 and 2626 * conversely, a left shift transforms into +1 for the individual bitnrs. 2627 * 2628 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2629 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2630 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2631 * 2632 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2633 * 2634 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2635 * all bits set) and recompose with bitnr1 flipped. 2636 */ 2637 static unsigned long invert_dir_mask(unsigned long mask) 2638 { 2639 unsigned long excl = 0; 2640 2641 /* Invert dir */ 2642 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2643 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2644 2645 return excl; 2646 } 2647 2648 /* 2649 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2650 * usage may cause deadlock too, for example: 2651 * 2652 * P1 P2 2653 * <irq disabled> 2654 * write_lock(l1); <irq enabled> 2655 * read_lock(l2); 2656 * write_lock(l2); 2657 * <in irq> 2658 * read_lock(l1); 2659 * 2660 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2661 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2662 * deadlock. 2663 * 2664 * In fact, all of the following cases may cause deadlocks: 2665 * 2666 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2667 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2668 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2669 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2670 * 2671 * As a result, to calculate the "exclusive mask", first we invert the 2672 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2673 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2674 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2675 */ 2676 static unsigned long exclusive_mask(unsigned long mask) 2677 { 2678 unsigned long excl = invert_dir_mask(mask); 2679 2680 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2681 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2682 2683 return excl; 2684 } 2685 2686 /* 2687 * Retrieve the _possible_ original mask to which @mask is 2688 * exclusive. Ie: this is the opposite of exclusive_mask(). 2689 * Note that 2 possible original bits can match an exclusive 2690 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2691 * cleared. So both are returned for each exclusive bit. 2692 */ 2693 static unsigned long original_mask(unsigned long mask) 2694 { 2695 unsigned long excl = invert_dir_mask(mask); 2696 2697 /* Include read in existing usages */ 2698 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2699 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2700 2701 return excl; 2702 } 2703 2704 /* 2705 * Find the first pair of bit match between an original 2706 * usage mask and an exclusive usage mask. 2707 */ 2708 static int find_exclusive_match(unsigned long mask, 2709 unsigned long excl_mask, 2710 enum lock_usage_bit *bitp, 2711 enum lock_usage_bit *excl_bitp) 2712 { 2713 int bit, excl, excl_read; 2714 2715 for_each_set_bit(bit, &mask, LOCK_USED) { 2716 /* 2717 * exclusive_bit() strips the read bit, however, 2718 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2719 * to search excl | LOCK_USAGE_READ_MASK as well. 2720 */ 2721 excl = exclusive_bit(bit); 2722 excl_read = excl | LOCK_USAGE_READ_MASK; 2723 if (excl_mask & lock_flag(excl)) { 2724 *bitp = bit; 2725 *excl_bitp = excl; 2726 return 0; 2727 } else if (excl_mask & lock_flag(excl_read)) { 2728 *bitp = bit; 2729 *excl_bitp = excl_read; 2730 return 0; 2731 } 2732 } 2733 return -1; 2734 } 2735 2736 /* 2737 * Prove that the new dependency does not connect a hardirq-safe(-read) 2738 * lock with a hardirq-unsafe lock - to achieve this we search 2739 * the backwards-subgraph starting at <prev>, and the 2740 * forwards-subgraph starting at <next>: 2741 */ 2742 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2743 struct held_lock *next) 2744 { 2745 unsigned long usage_mask = 0, forward_mask, backward_mask; 2746 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2747 struct lock_list *target_entry1; 2748 struct lock_list *target_entry; 2749 struct lock_list this, that; 2750 enum bfs_result ret; 2751 2752 /* 2753 * Step 1: gather all hard/soft IRQs usages backward in an 2754 * accumulated usage mask. 2755 */ 2756 bfs_init_rootb(&this, prev); 2757 2758 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2759 if (bfs_error(ret)) { 2760 print_bfs_bug(ret); 2761 return 0; 2762 } 2763 2764 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2765 if (!usage_mask) 2766 return 1; 2767 2768 /* 2769 * Step 2: find exclusive uses forward that match the previous 2770 * backward accumulated mask. 2771 */ 2772 forward_mask = exclusive_mask(usage_mask); 2773 2774 bfs_init_root(&that, next); 2775 2776 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2777 if (bfs_error(ret)) { 2778 print_bfs_bug(ret); 2779 return 0; 2780 } 2781 if (ret == BFS_RNOMATCH) 2782 return 1; 2783 2784 /* 2785 * Step 3: we found a bad match! Now retrieve a lock from the backward 2786 * list whose usage mask matches the exclusive usage mask from the 2787 * lock found on the forward list. 2788 * 2789 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2790 * the follow case: 2791 * 2792 * When trying to add A -> B to the graph, we find that there is a 2793 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2794 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2795 * invert bits of M's usage_mask, we will find another lock N that is 2796 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2797 * cause a inversion deadlock. 2798 */ 2799 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2800 2801 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2802 if (bfs_error(ret)) { 2803 print_bfs_bug(ret); 2804 return 0; 2805 } 2806 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2807 return 1; 2808 2809 /* 2810 * Step 4: narrow down to a pair of incompatible usage bits 2811 * and report it. 2812 */ 2813 ret = find_exclusive_match(target_entry->class->usage_mask, 2814 target_entry1->class->usage_mask, 2815 &backward_bit, &forward_bit); 2816 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2817 return 1; 2818 2819 print_bad_irq_dependency(curr, &this, &that, 2820 target_entry, target_entry1, 2821 prev, next, 2822 backward_bit, forward_bit, 2823 state_name(backward_bit)); 2824 2825 return 0; 2826 } 2827 2828 #else 2829 2830 static inline int check_irq_usage(struct task_struct *curr, 2831 struct held_lock *prev, struct held_lock *next) 2832 { 2833 return 1; 2834 } 2835 2836 static inline bool usage_skip(struct lock_list *entry, void *mask) 2837 { 2838 return false; 2839 } 2840 2841 #endif /* CONFIG_TRACE_IRQFLAGS */ 2842 2843 #ifdef CONFIG_LOCKDEP_SMALL 2844 /* 2845 * Check that the dependency graph starting at <src> can lead to 2846 * <target> or not. If it can, <src> -> <target> dependency is already 2847 * in the graph. 2848 * 2849 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2850 * any error appears in the bfs search. 2851 */ 2852 static noinline enum bfs_result 2853 check_redundant(struct held_lock *src, struct held_lock *target) 2854 { 2855 enum bfs_result ret; 2856 struct lock_list *target_entry; 2857 struct lock_list src_entry; 2858 2859 bfs_init_root(&src_entry, src); 2860 /* 2861 * Special setup for check_redundant(). 2862 * 2863 * To report redundant, we need to find a strong dependency path that 2864 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2865 * we need to let __bfs() only search for a path starting at a -(E*)->, 2866 * we achieve this by setting the initial node's ->only_xr to true in 2867 * that case. And if <prev> is S, we set initial ->only_xr to false 2868 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2869 */ 2870 src_entry.only_xr = src->read == 0; 2871 2872 debug_atomic_inc(nr_redundant_checks); 2873 2874 /* 2875 * Note: we skip local_lock() for redundant check, because as the 2876 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2877 * the same. 2878 */ 2879 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2880 2881 if (ret == BFS_RMATCH) 2882 debug_atomic_inc(nr_redundant); 2883 2884 return ret; 2885 } 2886 2887 #else 2888 2889 static inline enum bfs_result 2890 check_redundant(struct held_lock *src, struct held_lock *target) 2891 { 2892 return BFS_RNOMATCH; 2893 } 2894 2895 #endif 2896 2897 static void inc_chains(int irq_context) 2898 { 2899 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2900 nr_hardirq_chains++; 2901 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2902 nr_softirq_chains++; 2903 else 2904 nr_process_chains++; 2905 } 2906 2907 static void dec_chains(int irq_context) 2908 { 2909 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2910 nr_hardirq_chains--; 2911 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2912 nr_softirq_chains--; 2913 else 2914 nr_process_chains--; 2915 } 2916 2917 static void 2918 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2919 { 2920 struct lock_class *next = hlock_class(nxt); 2921 struct lock_class *prev = hlock_class(prv); 2922 2923 printk(" Possible unsafe locking scenario:\n\n"); 2924 printk(" CPU0\n"); 2925 printk(" ----\n"); 2926 printk(" lock("); 2927 __print_lock_name(prev); 2928 printk(KERN_CONT ");\n"); 2929 printk(" lock("); 2930 __print_lock_name(next); 2931 printk(KERN_CONT ");\n"); 2932 printk("\n *** DEADLOCK ***\n\n"); 2933 printk(" May be due to missing lock nesting notation\n\n"); 2934 } 2935 2936 static void 2937 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2938 struct held_lock *next) 2939 { 2940 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2941 return; 2942 2943 pr_warn("\n"); 2944 pr_warn("============================================\n"); 2945 pr_warn("WARNING: possible recursive locking detected\n"); 2946 print_kernel_ident(); 2947 pr_warn("--------------------------------------------\n"); 2948 pr_warn("%s/%d is trying to acquire lock:\n", 2949 curr->comm, task_pid_nr(curr)); 2950 print_lock(next); 2951 pr_warn("\nbut task is already holding lock:\n"); 2952 print_lock(prev); 2953 2954 pr_warn("\nother info that might help us debug this:\n"); 2955 print_deadlock_scenario(next, prev); 2956 lockdep_print_held_locks(curr); 2957 2958 pr_warn("\nstack backtrace:\n"); 2959 dump_stack(); 2960 } 2961 2962 /* 2963 * Check whether we are holding such a class already. 2964 * 2965 * (Note that this has to be done separately, because the graph cannot 2966 * detect such classes of deadlocks.) 2967 * 2968 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2969 * lock class is held but nest_lock is also held, i.e. we rely on the 2970 * nest_lock to avoid the deadlock. 2971 */ 2972 static int 2973 check_deadlock(struct task_struct *curr, struct held_lock *next) 2974 { 2975 struct held_lock *prev; 2976 struct held_lock *nest = NULL; 2977 int i; 2978 2979 for (i = 0; i < curr->lockdep_depth; i++) { 2980 prev = curr->held_locks + i; 2981 2982 if (prev->instance == next->nest_lock) 2983 nest = prev; 2984 2985 if (hlock_class(prev) != hlock_class(next)) 2986 continue; 2987 2988 /* 2989 * Allow read-after-read recursion of the same 2990 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2991 */ 2992 if ((next->read == 2) && prev->read) 2993 continue; 2994 2995 /* 2996 * We're holding the nest_lock, which serializes this lock's 2997 * nesting behaviour. 2998 */ 2999 if (nest) 3000 return 2; 3001 3002 print_deadlock_bug(curr, prev, next); 3003 return 0; 3004 } 3005 return 1; 3006 } 3007 3008 /* 3009 * There was a chain-cache miss, and we are about to add a new dependency 3010 * to a previous lock. We validate the following rules: 3011 * 3012 * - would the adding of the <prev> -> <next> dependency create a 3013 * circular dependency in the graph? [== circular deadlock] 3014 * 3015 * - does the new prev->next dependency connect any hardirq-safe lock 3016 * (in the full backwards-subgraph starting at <prev>) with any 3017 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3018 * <next>)? [== illegal lock inversion with hardirq contexts] 3019 * 3020 * - does the new prev->next dependency connect any softirq-safe lock 3021 * (in the full backwards-subgraph starting at <prev>) with any 3022 * softirq-unsafe lock (in the full forwards-subgraph starting at 3023 * <next>)? [== illegal lock inversion with softirq contexts] 3024 * 3025 * any of these scenarios could lead to a deadlock. 3026 * 3027 * Then if all the validations pass, we add the forwards and backwards 3028 * dependency. 3029 */ 3030 static int 3031 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3032 struct held_lock *next, u16 distance, 3033 struct lock_trace **const trace) 3034 { 3035 struct lock_list *entry; 3036 enum bfs_result ret; 3037 3038 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3039 /* 3040 * The warning statements below may trigger a use-after-free 3041 * of the class name. It is better to trigger a use-after free 3042 * and to have the class name most of the time instead of not 3043 * having the class name available. 3044 */ 3045 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3046 "Detected use-after-free of lock class %px/%s\n", 3047 hlock_class(prev), 3048 hlock_class(prev)->name); 3049 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3050 "Detected use-after-free of lock class %px/%s\n", 3051 hlock_class(next), 3052 hlock_class(next)->name); 3053 return 2; 3054 } 3055 3056 /* 3057 * Prove that the new <prev> -> <next> dependency would not 3058 * create a circular dependency in the graph. (We do this by 3059 * a breadth-first search into the graph starting at <next>, 3060 * and check whether we can reach <prev>.) 3061 * 3062 * The search is limited by the size of the circular queue (i.e., 3063 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3064 * in the graph whose neighbours are to be checked. 3065 */ 3066 ret = check_noncircular(next, prev, trace); 3067 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3068 return 0; 3069 3070 if (!check_irq_usage(curr, prev, next)) 3071 return 0; 3072 3073 /* 3074 * Is the <prev> -> <next> dependency already present? 3075 * 3076 * (this may occur even though this is a new chain: consider 3077 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3078 * chains - the second one will be new, but L1 already has 3079 * L2 added to its dependency list, due to the first chain.) 3080 */ 3081 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3082 if (entry->class == hlock_class(next)) { 3083 if (distance == 1) 3084 entry->distance = 1; 3085 entry->dep |= calc_dep(prev, next); 3086 3087 /* 3088 * Also, update the reverse dependency in @next's 3089 * ->locks_before list. 3090 * 3091 * Here we reuse @entry as the cursor, which is fine 3092 * because we won't go to the next iteration of the 3093 * outer loop: 3094 * 3095 * For normal cases, we return in the inner loop. 3096 * 3097 * If we fail to return, we have inconsistency, i.e. 3098 * <prev>::locks_after contains <next> while 3099 * <next>::locks_before doesn't contain <prev>. In 3100 * that case, we return after the inner and indicate 3101 * something is wrong. 3102 */ 3103 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3104 if (entry->class == hlock_class(prev)) { 3105 if (distance == 1) 3106 entry->distance = 1; 3107 entry->dep |= calc_depb(prev, next); 3108 return 1; 3109 } 3110 } 3111 3112 /* <prev> is not found in <next>::locks_before */ 3113 return 0; 3114 } 3115 } 3116 3117 /* 3118 * Is the <prev> -> <next> link redundant? 3119 */ 3120 ret = check_redundant(prev, next); 3121 if (bfs_error(ret)) 3122 return 0; 3123 else if (ret == BFS_RMATCH) 3124 return 2; 3125 3126 if (!*trace) { 3127 *trace = save_trace(); 3128 if (!*trace) 3129 return 0; 3130 } 3131 3132 /* 3133 * Ok, all validations passed, add the new lock 3134 * to the previous lock's dependency list: 3135 */ 3136 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3137 &hlock_class(prev)->locks_after, 3138 next->acquire_ip, distance, 3139 calc_dep(prev, next), 3140 *trace); 3141 3142 if (!ret) 3143 return 0; 3144 3145 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3146 &hlock_class(next)->locks_before, 3147 next->acquire_ip, distance, 3148 calc_depb(prev, next), 3149 *trace); 3150 if (!ret) 3151 return 0; 3152 3153 return 2; 3154 } 3155 3156 /* 3157 * Add the dependency to all directly-previous locks that are 'relevant'. 3158 * The ones that are relevant are (in increasing distance from curr): 3159 * all consecutive trylock entries and the final non-trylock entry - or 3160 * the end of this context's lock-chain - whichever comes first. 3161 */ 3162 static int 3163 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3164 { 3165 struct lock_trace *trace = NULL; 3166 int depth = curr->lockdep_depth; 3167 struct held_lock *hlock; 3168 3169 /* 3170 * Debugging checks. 3171 * 3172 * Depth must not be zero for a non-head lock: 3173 */ 3174 if (!depth) 3175 goto out_bug; 3176 /* 3177 * At least two relevant locks must exist for this 3178 * to be a head: 3179 */ 3180 if (curr->held_locks[depth].irq_context != 3181 curr->held_locks[depth-1].irq_context) 3182 goto out_bug; 3183 3184 for (;;) { 3185 u16 distance = curr->lockdep_depth - depth + 1; 3186 hlock = curr->held_locks + depth - 1; 3187 3188 if (hlock->check) { 3189 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3190 if (!ret) 3191 return 0; 3192 3193 /* 3194 * Stop after the first non-trylock entry, 3195 * as non-trylock entries have added their 3196 * own direct dependencies already, so this 3197 * lock is connected to them indirectly: 3198 */ 3199 if (!hlock->trylock) 3200 break; 3201 } 3202 3203 depth--; 3204 /* 3205 * End of lock-stack? 3206 */ 3207 if (!depth) 3208 break; 3209 /* 3210 * Stop the search if we cross into another context: 3211 */ 3212 if (curr->held_locks[depth].irq_context != 3213 curr->held_locks[depth-1].irq_context) 3214 break; 3215 } 3216 return 1; 3217 out_bug: 3218 if (!debug_locks_off_graph_unlock()) 3219 return 0; 3220 3221 /* 3222 * Clearly we all shouldn't be here, but since we made it we 3223 * can reliable say we messed up our state. See the above two 3224 * gotos for reasons why we could possibly end up here. 3225 */ 3226 WARN_ON(1); 3227 3228 return 0; 3229 } 3230 3231 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3232 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3233 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3234 unsigned long nr_zapped_lock_chains; 3235 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3236 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3237 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3238 3239 /* 3240 * The first 2 chain_hlocks entries in the chain block in the bucket 3241 * list contains the following meta data: 3242 * 3243 * entry[0]: 3244 * Bit 15 - always set to 1 (it is not a class index) 3245 * Bits 0-14 - upper 15 bits of the next block index 3246 * entry[1] - lower 16 bits of next block index 3247 * 3248 * A next block index of all 1 bits means it is the end of the list. 3249 * 3250 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3251 * the chain block size: 3252 * 3253 * entry[2] - upper 16 bits of the chain block size 3254 * entry[3] - lower 16 bits of the chain block size 3255 */ 3256 #define MAX_CHAIN_BUCKETS 16 3257 #define CHAIN_BLK_FLAG (1U << 15) 3258 #define CHAIN_BLK_LIST_END 0xFFFFU 3259 3260 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3261 3262 static inline int size_to_bucket(int size) 3263 { 3264 if (size > MAX_CHAIN_BUCKETS) 3265 return 0; 3266 3267 return size - 1; 3268 } 3269 3270 /* 3271 * Iterate all the chain blocks in a bucket. 3272 */ 3273 #define for_each_chain_block(bucket, prev, curr) \ 3274 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3275 (curr) >= 0; \ 3276 (prev) = (curr), (curr) = chain_block_next(curr)) 3277 3278 /* 3279 * next block or -1 3280 */ 3281 static inline int chain_block_next(int offset) 3282 { 3283 int next = chain_hlocks[offset]; 3284 3285 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3286 3287 if (next == CHAIN_BLK_LIST_END) 3288 return -1; 3289 3290 next &= ~CHAIN_BLK_FLAG; 3291 next <<= 16; 3292 next |= chain_hlocks[offset + 1]; 3293 3294 return next; 3295 } 3296 3297 /* 3298 * bucket-0 only 3299 */ 3300 static inline int chain_block_size(int offset) 3301 { 3302 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3303 } 3304 3305 static inline void init_chain_block(int offset, int next, int bucket, int size) 3306 { 3307 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3308 chain_hlocks[offset + 1] = (u16)next; 3309 3310 if (size && !bucket) { 3311 chain_hlocks[offset + 2] = size >> 16; 3312 chain_hlocks[offset + 3] = (u16)size; 3313 } 3314 } 3315 3316 static inline void add_chain_block(int offset, int size) 3317 { 3318 int bucket = size_to_bucket(size); 3319 int next = chain_block_buckets[bucket]; 3320 int prev, curr; 3321 3322 if (unlikely(size < 2)) { 3323 /* 3324 * We can't store single entries on the freelist. Leak them. 3325 * 3326 * One possible way out would be to uniquely mark them, other 3327 * than with CHAIN_BLK_FLAG, such that we can recover them when 3328 * the block before it is re-added. 3329 */ 3330 if (size) 3331 nr_lost_chain_hlocks++; 3332 return; 3333 } 3334 3335 nr_free_chain_hlocks += size; 3336 if (!bucket) { 3337 nr_large_chain_blocks++; 3338 3339 /* 3340 * Variable sized, sort large to small. 3341 */ 3342 for_each_chain_block(0, prev, curr) { 3343 if (size >= chain_block_size(curr)) 3344 break; 3345 } 3346 init_chain_block(offset, curr, 0, size); 3347 if (prev < 0) 3348 chain_block_buckets[0] = offset; 3349 else 3350 init_chain_block(prev, offset, 0, 0); 3351 return; 3352 } 3353 /* 3354 * Fixed size, add to head. 3355 */ 3356 init_chain_block(offset, next, bucket, size); 3357 chain_block_buckets[bucket] = offset; 3358 } 3359 3360 /* 3361 * Only the first block in the list can be deleted. 3362 * 3363 * For the variable size bucket[0], the first block (the largest one) is 3364 * returned, broken up and put back into the pool. So if a chain block of 3365 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3366 * queued up after the primordial chain block and never be used until the 3367 * hlock entries in the primordial chain block is almost used up. That 3368 * causes fragmentation and reduce allocation efficiency. That can be 3369 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3370 */ 3371 static inline void del_chain_block(int bucket, int size, int next) 3372 { 3373 nr_free_chain_hlocks -= size; 3374 chain_block_buckets[bucket] = next; 3375 3376 if (!bucket) 3377 nr_large_chain_blocks--; 3378 } 3379 3380 static void init_chain_block_buckets(void) 3381 { 3382 int i; 3383 3384 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3385 chain_block_buckets[i] = -1; 3386 3387 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3388 } 3389 3390 /* 3391 * Return offset of a chain block of the right size or -1 if not found. 3392 * 3393 * Fairly simple worst-fit allocator with the addition of a number of size 3394 * specific free lists. 3395 */ 3396 static int alloc_chain_hlocks(int req) 3397 { 3398 int bucket, curr, size; 3399 3400 /* 3401 * We rely on the MSB to act as an escape bit to denote freelist 3402 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3403 */ 3404 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3405 3406 init_data_structures_once(); 3407 3408 if (nr_free_chain_hlocks < req) 3409 return -1; 3410 3411 /* 3412 * We require a minimum of 2 (u16) entries to encode a freelist 3413 * 'pointer'. 3414 */ 3415 req = max(req, 2); 3416 bucket = size_to_bucket(req); 3417 curr = chain_block_buckets[bucket]; 3418 3419 if (bucket) { 3420 if (curr >= 0) { 3421 del_chain_block(bucket, req, chain_block_next(curr)); 3422 return curr; 3423 } 3424 /* Try bucket 0 */ 3425 curr = chain_block_buckets[0]; 3426 } 3427 3428 /* 3429 * The variable sized freelist is sorted by size; the first entry is 3430 * the largest. Use it if it fits. 3431 */ 3432 if (curr >= 0) { 3433 size = chain_block_size(curr); 3434 if (likely(size >= req)) { 3435 del_chain_block(0, size, chain_block_next(curr)); 3436 add_chain_block(curr + req, size - req); 3437 return curr; 3438 } 3439 } 3440 3441 /* 3442 * Last resort, split a block in a larger sized bucket. 3443 */ 3444 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3445 bucket = size_to_bucket(size); 3446 curr = chain_block_buckets[bucket]; 3447 if (curr < 0) 3448 continue; 3449 3450 del_chain_block(bucket, size, chain_block_next(curr)); 3451 add_chain_block(curr + req, size - req); 3452 return curr; 3453 } 3454 3455 return -1; 3456 } 3457 3458 static inline void free_chain_hlocks(int base, int size) 3459 { 3460 add_chain_block(base, max(size, 2)); 3461 } 3462 3463 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3464 { 3465 u16 chain_hlock = chain_hlocks[chain->base + i]; 3466 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3467 3468 return lock_classes + class_idx - 1; 3469 } 3470 3471 /* 3472 * Returns the index of the first held_lock of the current chain 3473 */ 3474 static inline int get_first_held_lock(struct task_struct *curr, 3475 struct held_lock *hlock) 3476 { 3477 int i; 3478 struct held_lock *hlock_curr; 3479 3480 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3481 hlock_curr = curr->held_locks + i; 3482 if (hlock_curr->irq_context != hlock->irq_context) 3483 break; 3484 3485 } 3486 3487 return ++i; 3488 } 3489 3490 #ifdef CONFIG_DEBUG_LOCKDEP 3491 /* 3492 * Returns the next chain_key iteration 3493 */ 3494 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3495 { 3496 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3497 3498 printk(" hlock_id:%d -> chain_key:%016Lx", 3499 (unsigned int)hlock_id, 3500 (unsigned long long)new_chain_key); 3501 return new_chain_key; 3502 } 3503 3504 static void 3505 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3506 { 3507 struct held_lock *hlock; 3508 u64 chain_key = INITIAL_CHAIN_KEY; 3509 int depth = curr->lockdep_depth; 3510 int i = get_first_held_lock(curr, hlock_next); 3511 3512 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3513 hlock_next->irq_context); 3514 for (; i < depth; i++) { 3515 hlock = curr->held_locks + i; 3516 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3517 3518 print_lock(hlock); 3519 } 3520 3521 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3522 print_lock(hlock_next); 3523 } 3524 3525 static void print_chain_keys_chain(struct lock_chain *chain) 3526 { 3527 int i; 3528 u64 chain_key = INITIAL_CHAIN_KEY; 3529 u16 hlock_id; 3530 3531 printk("depth: %u\n", chain->depth); 3532 for (i = 0; i < chain->depth; i++) { 3533 hlock_id = chain_hlocks[chain->base + i]; 3534 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3535 3536 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3537 printk("\n"); 3538 } 3539 } 3540 3541 static void print_collision(struct task_struct *curr, 3542 struct held_lock *hlock_next, 3543 struct lock_chain *chain) 3544 { 3545 pr_warn("\n"); 3546 pr_warn("============================\n"); 3547 pr_warn("WARNING: chain_key collision\n"); 3548 print_kernel_ident(); 3549 pr_warn("----------------------------\n"); 3550 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3551 pr_warn("Hash chain already cached but the contents don't match!\n"); 3552 3553 pr_warn("Held locks:"); 3554 print_chain_keys_held_locks(curr, hlock_next); 3555 3556 pr_warn("Locks in cached chain:"); 3557 print_chain_keys_chain(chain); 3558 3559 pr_warn("\nstack backtrace:\n"); 3560 dump_stack(); 3561 } 3562 #endif 3563 3564 /* 3565 * Checks whether the chain and the current held locks are consistent 3566 * in depth and also in content. If they are not it most likely means 3567 * that there was a collision during the calculation of the chain_key. 3568 * Returns: 0 not passed, 1 passed 3569 */ 3570 static int check_no_collision(struct task_struct *curr, 3571 struct held_lock *hlock, 3572 struct lock_chain *chain) 3573 { 3574 #ifdef CONFIG_DEBUG_LOCKDEP 3575 int i, j, id; 3576 3577 i = get_first_held_lock(curr, hlock); 3578 3579 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3580 print_collision(curr, hlock, chain); 3581 return 0; 3582 } 3583 3584 for (j = 0; j < chain->depth - 1; j++, i++) { 3585 id = hlock_id(&curr->held_locks[i]); 3586 3587 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3588 print_collision(curr, hlock, chain); 3589 return 0; 3590 } 3591 } 3592 #endif 3593 return 1; 3594 } 3595 3596 /* 3597 * Given an index that is >= -1, return the index of the next lock chain. 3598 * Return -2 if there is no next lock chain. 3599 */ 3600 long lockdep_next_lockchain(long i) 3601 { 3602 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3603 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3604 } 3605 3606 unsigned long lock_chain_count(void) 3607 { 3608 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3609 } 3610 3611 /* Must be called with the graph lock held. */ 3612 static struct lock_chain *alloc_lock_chain(void) 3613 { 3614 int idx = find_first_zero_bit(lock_chains_in_use, 3615 ARRAY_SIZE(lock_chains)); 3616 3617 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3618 return NULL; 3619 __set_bit(idx, lock_chains_in_use); 3620 return lock_chains + idx; 3621 } 3622 3623 /* 3624 * Adds a dependency chain into chain hashtable. And must be called with 3625 * graph_lock held. 3626 * 3627 * Return 0 if fail, and graph_lock is released. 3628 * Return 1 if succeed, with graph_lock held. 3629 */ 3630 static inline int add_chain_cache(struct task_struct *curr, 3631 struct held_lock *hlock, 3632 u64 chain_key) 3633 { 3634 struct hlist_head *hash_head = chainhashentry(chain_key); 3635 struct lock_chain *chain; 3636 int i, j; 3637 3638 /* 3639 * The caller must hold the graph lock, ensure we've got IRQs 3640 * disabled to make this an IRQ-safe lock.. for recursion reasons 3641 * lockdep won't complain about its own locking errors. 3642 */ 3643 if (lockdep_assert_locked()) 3644 return 0; 3645 3646 chain = alloc_lock_chain(); 3647 if (!chain) { 3648 if (!debug_locks_off_graph_unlock()) 3649 return 0; 3650 3651 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3652 dump_stack(); 3653 return 0; 3654 } 3655 chain->chain_key = chain_key; 3656 chain->irq_context = hlock->irq_context; 3657 i = get_first_held_lock(curr, hlock); 3658 chain->depth = curr->lockdep_depth + 1 - i; 3659 3660 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3661 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3662 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3663 3664 j = alloc_chain_hlocks(chain->depth); 3665 if (j < 0) { 3666 if (!debug_locks_off_graph_unlock()) 3667 return 0; 3668 3669 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3670 dump_stack(); 3671 return 0; 3672 } 3673 3674 chain->base = j; 3675 for (j = 0; j < chain->depth - 1; j++, i++) { 3676 int lock_id = hlock_id(curr->held_locks + i); 3677 3678 chain_hlocks[chain->base + j] = lock_id; 3679 } 3680 chain_hlocks[chain->base + j] = hlock_id(hlock); 3681 hlist_add_head_rcu(&chain->entry, hash_head); 3682 debug_atomic_inc(chain_lookup_misses); 3683 inc_chains(chain->irq_context); 3684 3685 return 1; 3686 } 3687 3688 /* 3689 * Look up a dependency chain. Must be called with either the graph lock or 3690 * the RCU read lock held. 3691 */ 3692 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3693 { 3694 struct hlist_head *hash_head = chainhashentry(chain_key); 3695 struct lock_chain *chain; 3696 3697 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3698 if (READ_ONCE(chain->chain_key) == chain_key) { 3699 debug_atomic_inc(chain_lookup_hits); 3700 return chain; 3701 } 3702 } 3703 return NULL; 3704 } 3705 3706 /* 3707 * If the key is not present yet in dependency chain cache then 3708 * add it and return 1 - in this case the new dependency chain is 3709 * validated. If the key is already hashed, return 0. 3710 * (On return with 1 graph_lock is held.) 3711 */ 3712 static inline int lookup_chain_cache_add(struct task_struct *curr, 3713 struct held_lock *hlock, 3714 u64 chain_key) 3715 { 3716 struct lock_class *class = hlock_class(hlock); 3717 struct lock_chain *chain = lookup_chain_cache(chain_key); 3718 3719 if (chain) { 3720 cache_hit: 3721 if (!check_no_collision(curr, hlock, chain)) 3722 return 0; 3723 3724 if (very_verbose(class)) { 3725 printk("\nhash chain already cached, key: " 3726 "%016Lx tail class: [%px] %s\n", 3727 (unsigned long long)chain_key, 3728 class->key, class->name); 3729 } 3730 3731 return 0; 3732 } 3733 3734 if (very_verbose(class)) { 3735 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3736 (unsigned long long)chain_key, class->key, class->name); 3737 } 3738 3739 if (!graph_lock()) 3740 return 0; 3741 3742 /* 3743 * We have to walk the chain again locked - to avoid duplicates: 3744 */ 3745 chain = lookup_chain_cache(chain_key); 3746 if (chain) { 3747 graph_unlock(); 3748 goto cache_hit; 3749 } 3750 3751 if (!add_chain_cache(curr, hlock, chain_key)) 3752 return 0; 3753 3754 return 1; 3755 } 3756 3757 static int validate_chain(struct task_struct *curr, 3758 struct held_lock *hlock, 3759 int chain_head, u64 chain_key) 3760 { 3761 /* 3762 * Trylock needs to maintain the stack of held locks, but it 3763 * does not add new dependencies, because trylock can be done 3764 * in any order. 3765 * 3766 * We look up the chain_key and do the O(N^2) check and update of 3767 * the dependencies only if this is a new dependency chain. 3768 * (If lookup_chain_cache_add() return with 1 it acquires 3769 * graph_lock for us) 3770 */ 3771 if (!hlock->trylock && hlock->check && 3772 lookup_chain_cache_add(curr, hlock, chain_key)) { 3773 /* 3774 * Check whether last held lock: 3775 * 3776 * - is irq-safe, if this lock is irq-unsafe 3777 * - is softirq-safe, if this lock is hardirq-unsafe 3778 * 3779 * And check whether the new lock's dependency graph 3780 * could lead back to the previous lock: 3781 * 3782 * - within the current held-lock stack 3783 * - across our accumulated lock dependency records 3784 * 3785 * any of these scenarios could lead to a deadlock. 3786 */ 3787 /* 3788 * The simple case: does the current hold the same lock 3789 * already? 3790 */ 3791 int ret = check_deadlock(curr, hlock); 3792 3793 if (!ret) 3794 return 0; 3795 /* 3796 * Add dependency only if this lock is not the head 3797 * of the chain, and if the new lock introduces no more 3798 * lock dependency (because we already hold a lock with the 3799 * same lock class) nor deadlock (because the nest_lock 3800 * serializes nesting locks), see the comments for 3801 * check_deadlock(). 3802 */ 3803 if (!chain_head && ret != 2) { 3804 if (!check_prevs_add(curr, hlock)) 3805 return 0; 3806 } 3807 3808 graph_unlock(); 3809 } else { 3810 /* after lookup_chain_cache_add(): */ 3811 if (unlikely(!debug_locks)) 3812 return 0; 3813 } 3814 3815 return 1; 3816 } 3817 #else 3818 static inline int validate_chain(struct task_struct *curr, 3819 struct held_lock *hlock, 3820 int chain_head, u64 chain_key) 3821 { 3822 return 1; 3823 } 3824 3825 static void init_chain_block_buckets(void) { } 3826 #endif /* CONFIG_PROVE_LOCKING */ 3827 3828 /* 3829 * We are building curr_chain_key incrementally, so double-check 3830 * it from scratch, to make sure that it's done correctly: 3831 */ 3832 static void check_chain_key(struct task_struct *curr) 3833 { 3834 #ifdef CONFIG_DEBUG_LOCKDEP 3835 struct held_lock *hlock, *prev_hlock = NULL; 3836 unsigned int i; 3837 u64 chain_key = INITIAL_CHAIN_KEY; 3838 3839 for (i = 0; i < curr->lockdep_depth; i++) { 3840 hlock = curr->held_locks + i; 3841 if (chain_key != hlock->prev_chain_key) { 3842 debug_locks_off(); 3843 /* 3844 * We got mighty confused, our chain keys don't match 3845 * with what we expect, someone trample on our task state? 3846 */ 3847 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3848 curr->lockdep_depth, i, 3849 (unsigned long long)chain_key, 3850 (unsigned long long)hlock->prev_chain_key); 3851 return; 3852 } 3853 3854 /* 3855 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3856 * it registered lock class index? 3857 */ 3858 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3859 return; 3860 3861 if (prev_hlock && (prev_hlock->irq_context != 3862 hlock->irq_context)) 3863 chain_key = INITIAL_CHAIN_KEY; 3864 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3865 prev_hlock = hlock; 3866 } 3867 if (chain_key != curr->curr_chain_key) { 3868 debug_locks_off(); 3869 /* 3870 * More smoking hash instead of calculating it, damn see these 3871 * numbers float.. I bet that a pink elephant stepped on my memory. 3872 */ 3873 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3874 curr->lockdep_depth, i, 3875 (unsigned long long)chain_key, 3876 (unsigned long long)curr->curr_chain_key); 3877 } 3878 #endif 3879 } 3880 3881 #ifdef CONFIG_PROVE_LOCKING 3882 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3883 enum lock_usage_bit new_bit); 3884 3885 static void print_usage_bug_scenario(struct held_lock *lock) 3886 { 3887 struct lock_class *class = hlock_class(lock); 3888 3889 printk(" Possible unsafe locking scenario:\n\n"); 3890 printk(" CPU0\n"); 3891 printk(" ----\n"); 3892 printk(" lock("); 3893 __print_lock_name(class); 3894 printk(KERN_CONT ");\n"); 3895 printk(" <Interrupt>\n"); 3896 printk(" lock("); 3897 __print_lock_name(class); 3898 printk(KERN_CONT ");\n"); 3899 printk("\n *** DEADLOCK ***\n\n"); 3900 } 3901 3902 static void 3903 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3904 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3905 { 3906 if (!debug_locks_off() || debug_locks_silent) 3907 return; 3908 3909 pr_warn("\n"); 3910 pr_warn("================================\n"); 3911 pr_warn("WARNING: inconsistent lock state\n"); 3912 print_kernel_ident(); 3913 pr_warn("--------------------------------\n"); 3914 3915 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3916 usage_str[prev_bit], usage_str[new_bit]); 3917 3918 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3919 curr->comm, task_pid_nr(curr), 3920 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3921 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3922 lockdep_hardirqs_enabled(), 3923 lockdep_softirqs_enabled(curr)); 3924 print_lock(this); 3925 3926 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3927 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3928 3929 print_irqtrace_events(curr); 3930 pr_warn("\nother info that might help us debug this:\n"); 3931 print_usage_bug_scenario(this); 3932 3933 lockdep_print_held_locks(curr); 3934 3935 pr_warn("\nstack backtrace:\n"); 3936 dump_stack(); 3937 } 3938 3939 /* 3940 * Print out an error if an invalid bit is set: 3941 */ 3942 static inline int 3943 valid_state(struct task_struct *curr, struct held_lock *this, 3944 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3945 { 3946 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3947 graph_unlock(); 3948 print_usage_bug(curr, this, bad_bit, new_bit); 3949 return 0; 3950 } 3951 return 1; 3952 } 3953 3954 3955 /* 3956 * print irq inversion bug: 3957 */ 3958 static void 3959 print_irq_inversion_bug(struct task_struct *curr, 3960 struct lock_list *root, struct lock_list *other, 3961 struct held_lock *this, int forwards, 3962 const char *irqclass) 3963 { 3964 struct lock_list *entry = other; 3965 struct lock_list *middle = NULL; 3966 int depth; 3967 3968 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3969 return; 3970 3971 pr_warn("\n"); 3972 pr_warn("========================================================\n"); 3973 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3974 print_kernel_ident(); 3975 pr_warn("--------------------------------------------------------\n"); 3976 pr_warn("%s/%d just changed the state of lock:\n", 3977 curr->comm, task_pid_nr(curr)); 3978 print_lock(this); 3979 if (forwards) 3980 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3981 else 3982 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3983 print_lock_name(other->class); 3984 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3985 3986 pr_warn("\nother info that might help us debug this:\n"); 3987 3988 /* Find a middle lock (if one exists) */ 3989 depth = get_lock_depth(other); 3990 do { 3991 if (depth == 0 && (entry != root)) { 3992 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3993 break; 3994 } 3995 middle = entry; 3996 entry = get_lock_parent(entry); 3997 depth--; 3998 } while (entry && entry != root && (depth >= 0)); 3999 if (forwards) 4000 print_irq_lock_scenario(root, other, 4001 middle ? middle->class : root->class, other->class); 4002 else 4003 print_irq_lock_scenario(other, root, 4004 middle ? middle->class : other->class, root->class); 4005 4006 lockdep_print_held_locks(curr); 4007 4008 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4009 root->trace = save_trace(); 4010 if (!root->trace) 4011 return; 4012 print_shortest_lock_dependencies(other, root); 4013 4014 pr_warn("\nstack backtrace:\n"); 4015 dump_stack(); 4016 } 4017 4018 /* 4019 * Prove that in the forwards-direction subgraph starting at <this> 4020 * there is no lock matching <mask>: 4021 */ 4022 static int 4023 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4024 enum lock_usage_bit bit) 4025 { 4026 enum bfs_result ret; 4027 struct lock_list root; 4028 struct lock_list *target_entry; 4029 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4030 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4031 4032 bfs_init_root(&root, this); 4033 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4034 if (bfs_error(ret)) { 4035 print_bfs_bug(ret); 4036 return 0; 4037 } 4038 if (ret == BFS_RNOMATCH) 4039 return 1; 4040 4041 /* Check whether write or read usage is the match */ 4042 if (target_entry->class->usage_mask & lock_flag(bit)) { 4043 print_irq_inversion_bug(curr, &root, target_entry, 4044 this, 1, state_name(bit)); 4045 } else { 4046 print_irq_inversion_bug(curr, &root, target_entry, 4047 this, 1, state_name(read_bit)); 4048 } 4049 4050 return 0; 4051 } 4052 4053 /* 4054 * Prove that in the backwards-direction subgraph starting at <this> 4055 * there is no lock matching <mask>: 4056 */ 4057 static int 4058 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4059 enum lock_usage_bit bit) 4060 { 4061 enum bfs_result ret; 4062 struct lock_list root; 4063 struct lock_list *target_entry; 4064 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4065 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4066 4067 bfs_init_rootb(&root, this); 4068 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4069 if (bfs_error(ret)) { 4070 print_bfs_bug(ret); 4071 return 0; 4072 } 4073 if (ret == BFS_RNOMATCH) 4074 return 1; 4075 4076 /* Check whether write or read usage is the match */ 4077 if (target_entry->class->usage_mask & lock_flag(bit)) { 4078 print_irq_inversion_bug(curr, &root, target_entry, 4079 this, 0, state_name(bit)); 4080 } else { 4081 print_irq_inversion_bug(curr, &root, target_entry, 4082 this, 0, state_name(read_bit)); 4083 } 4084 4085 return 0; 4086 } 4087 4088 void print_irqtrace_events(struct task_struct *curr) 4089 { 4090 const struct irqtrace_events *trace = &curr->irqtrace; 4091 4092 printk("irq event stamp: %u\n", trace->irq_events); 4093 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4094 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4095 (void *)trace->hardirq_enable_ip); 4096 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4097 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4098 (void *)trace->hardirq_disable_ip); 4099 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4100 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4101 (void *)trace->softirq_enable_ip); 4102 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4103 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4104 (void *)trace->softirq_disable_ip); 4105 } 4106 4107 static int HARDIRQ_verbose(struct lock_class *class) 4108 { 4109 #if HARDIRQ_VERBOSE 4110 return class_filter(class); 4111 #endif 4112 return 0; 4113 } 4114 4115 static int SOFTIRQ_verbose(struct lock_class *class) 4116 { 4117 #if SOFTIRQ_VERBOSE 4118 return class_filter(class); 4119 #endif 4120 return 0; 4121 } 4122 4123 static int (*state_verbose_f[])(struct lock_class *class) = { 4124 #define LOCKDEP_STATE(__STATE) \ 4125 __STATE##_verbose, 4126 #include "lockdep_states.h" 4127 #undef LOCKDEP_STATE 4128 }; 4129 4130 static inline int state_verbose(enum lock_usage_bit bit, 4131 struct lock_class *class) 4132 { 4133 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4134 } 4135 4136 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4137 enum lock_usage_bit bit, const char *name); 4138 4139 static int 4140 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4141 enum lock_usage_bit new_bit) 4142 { 4143 int excl_bit = exclusive_bit(new_bit); 4144 int read = new_bit & LOCK_USAGE_READ_MASK; 4145 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4146 4147 /* 4148 * Validate that this particular lock does not have conflicting 4149 * usage states. 4150 */ 4151 if (!valid_state(curr, this, new_bit, excl_bit)) 4152 return 0; 4153 4154 /* 4155 * Check for read in write conflicts 4156 */ 4157 if (!read && !valid_state(curr, this, new_bit, 4158 excl_bit + LOCK_USAGE_READ_MASK)) 4159 return 0; 4160 4161 4162 /* 4163 * Validate that the lock dependencies don't have conflicting usage 4164 * states. 4165 */ 4166 if (dir) { 4167 /* 4168 * mark ENABLED has to look backwards -- to ensure no dependee 4169 * has USED_IN state, which, again, would allow recursion deadlocks. 4170 */ 4171 if (!check_usage_backwards(curr, this, excl_bit)) 4172 return 0; 4173 } else { 4174 /* 4175 * mark USED_IN has to look forwards -- to ensure no dependency 4176 * has ENABLED state, which would allow recursion deadlocks. 4177 */ 4178 if (!check_usage_forwards(curr, this, excl_bit)) 4179 return 0; 4180 } 4181 4182 if (state_verbose(new_bit, hlock_class(this))) 4183 return 2; 4184 4185 return 1; 4186 } 4187 4188 /* 4189 * Mark all held locks with a usage bit: 4190 */ 4191 static int 4192 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4193 { 4194 struct held_lock *hlock; 4195 int i; 4196 4197 for (i = 0; i < curr->lockdep_depth; i++) { 4198 enum lock_usage_bit hlock_bit = base_bit; 4199 hlock = curr->held_locks + i; 4200 4201 if (hlock->read) 4202 hlock_bit += LOCK_USAGE_READ_MASK; 4203 4204 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4205 4206 if (!hlock->check) 4207 continue; 4208 4209 if (!mark_lock(curr, hlock, hlock_bit)) 4210 return 0; 4211 } 4212 4213 return 1; 4214 } 4215 4216 /* 4217 * Hardirqs will be enabled: 4218 */ 4219 static void __trace_hardirqs_on_caller(void) 4220 { 4221 struct task_struct *curr = current; 4222 4223 /* 4224 * We are going to turn hardirqs on, so set the 4225 * usage bit for all held locks: 4226 */ 4227 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4228 return; 4229 /* 4230 * If we have softirqs enabled, then set the usage 4231 * bit for all held locks. (disabled hardirqs prevented 4232 * this bit from being set before) 4233 */ 4234 if (curr->softirqs_enabled) 4235 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4236 } 4237 4238 /** 4239 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4240 * @ip: Caller address 4241 * 4242 * Invoked before a possible transition to RCU idle from exit to user or 4243 * guest mode. This ensures that all RCU operations are done before RCU 4244 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4245 * invoked to set the final state. 4246 */ 4247 void lockdep_hardirqs_on_prepare(unsigned long ip) 4248 { 4249 if (unlikely(!debug_locks)) 4250 return; 4251 4252 /* 4253 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4254 */ 4255 if (unlikely(in_nmi())) 4256 return; 4257 4258 if (unlikely(this_cpu_read(lockdep_recursion))) 4259 return; 4260 4261 if (unlikely(lockdep_hardirqs_enabled())) { 4262 /* 4263 * Neither irq nor preemption are disabled here 4264 * so this is racy by nature but losing one hit 4265 * in a stat is not a big deal. 4266 */ 4267 __debug_atomic_inc(redundant_hardirqs_on); 4268 return; 4269 } 4270 4271 /* 4272 * We're enabling irqs and according to our state above irqs weren't 4273 * already enabled, yet we find the hardware thinks they are in fact 4274 * enabled.. someone messed up their IRQ state tracing. 4275 */ 4276 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4277 return; 4278 4279 /* 4280 * See the fine text that goes along with this variable definition. 4281 */ 4282 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4283 return; 4284 4285 /* 4286 * Can't allow enabling interrupts while in an interrupt handler, 4287 * that's general bad form and such. Recursion, limited stack etc.. 4288 */ 4289 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4290 return; 4291 4292 current->hardirq_chain_key = current->curr_chain_key; 4293 4294 lockdep_recursion_inc(); 4295 __trace_hardirqs_on_caller(); 4296 lockdep_recursion_finish(); 4297 } 4298 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4299 4300 void noinstr lockdep_hardirqs_on(unsigned long ip) 4301 { 4302 struct irqtrace_events *trace = ¤t->irqtrace; 4303 4304 if (unlikely(!debug_locks)) 4305 return; 4306 4307 /* 4308 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4309 * tracking state and hardware state are out of sync. 4310 * 4311 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4312 * and not rely on hardware state like normal interrupts. 4313 */ 4314 if (unlikely(in_nmi())) { 4315 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4316 return; 4317 4318 /* 4319 * Skip: 4320 * - recursion check, because NMI can hit lockdep; 4321 * - hardware state check, because above; 4322 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4323 */ 4324 goto skip_checks; 4325 } 4326 4327 if (unlikely(this_cpu_read(lockdep_recursion))) 4328 return; 4329 4330 if (lockdep_hardirqs_enabled()) { 4331 /* 4332 * Neither irq nor preemption are disabled here 4333 * so this is racy by nature but losing one hit 4334 * in a stat is not a big deal. 4335 */ 4336 __debug_atomic_inc(redundant_hardirqs_on); 4337 return; 4338 } 4339 4340 /* 4341 * We're enabling irqs and according to our state above irqs weren't 4342 * already enabled, yet we find the hardware thinks they are in fact 4343 * enabled.. someone messed up their IRQ state tracing. 4344 */ 4345 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4346 return; 4347 4348 /* 4349 * Ensure the lock stack remained unchanged between 4350 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4351 */ 4352 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4353 current->curr_chain_key); 4354 4355 skip_checks: 4356 /* we'll do an OFF -> ON transition: */ 4357 __this_cpu_write(hardirqs_enabled, 1); 4358 trace->hardirq_enable_ip = ip; 4359 trace->hardirq_enable_event = ++trace->irq_events; 4360 debug_atomic_inc(hardirqs_on_events); 4361 } 4362 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4363 4364 /* 4365 * Hardirqs were disabled: 4366 */ 4367 void noinstr lockdep_hardirqs_off(unsigned long ip) 4368 { 4369 if (unlikely(!debug_locks)) 4370 return; 4371 4372 /* 4373 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4374 * they will restore the software state. This ensures the software 4375 * state is consistent inside NMIs as well. 4376 */ 4377 if (in_nmi()) { 4378 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4379 return; 4380 } else if (__this_cpu_read(lockdep_recursion)) 4381 return; 4382 4383 /* 4384 * So we're supposed to get called after you mask local IRQs, but for 4385 * some reason the hardware doesn't quite think you did a proper job. 4386 */ 4387 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4388 return; 4389 4390 if (lockdep_hardirqs_enabled()) { 4391 struct irqtrace_events *trace = ¤t->irqtrace; 4392 4393 /* 4394 * We have done an ON -> OFF transition: 4395 */ 4396 __this_cpu_write(hardirqs_enabled, 0); 4397 trace->hardirq_disable_ip = ip; 4398 trace->hardirq_disable_event = ++trace->irq_events; 4399 debug_atomic_inc(hardirqs_off_events); 4400 } else { 4401 debug_atomic_inc(redundant_hardirqs_off); 4402 } 4403 } 4404 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4405 4406 /* 4407 * Softirqs will be enabled: 4408 */ 4409 void lockdep_softirqs_on(unsigned long ip) 4410 { 4411 struct irqtrace_events *trace = ¤t->irqtrace; 4412 4413 if (unlikely(!lockdep_enabled())) 4414 return; 4415 4416 /* 4417 * We fancy IRQs being disabled here, see softirq.c, avoids 4418 * funny state and nesting things. 4419 */ 4420 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4421 return; 4422 4423 if (current->softirqs_enabled) { 4424 debug_atomic_inc(redundant_softirqs_on); 4425 return; 4426 } 4427 4428 lockdep_recursion_inc(); 4429 /* 4430 * We'll do an OFF -> ON transition: 4431 */ 4432 current->softirqs_enabled = 1; 4433 trace->softirq_enable_ip = ip; 4434 trace->softirq_enable_event = ++trace->irq_events; 4435 debug_atomic_inc(softirqs_on_events); 4436 /* 4437 * We are going to turn softirqs on, so set the 4438 * usage bit for all held locks, if hardirqs are 4439 * enabled too: 4440 */ 4441 if (lockdep_hardirqs_enabled()) 4442 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4443 lockdep_recursion_finish(); 4444 } 4445 4446 /* 4447 * Softirqs were disabled: 4448 */ 4449 void lockdep_softirqs_off(unsigned long ip) 4450 { 4451 if (unlikely(!lockdep_enabled())) 4452 return; 4453 4454 /* 4455 * We fancy IRQs being disabled here, see softirq.c 4456 */ 4457 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4458 return; 4459 4460 if (current->softirqs_enabled) { 4461 struct irqtrace_events *trace = ¤t->irqtrace; 4462 4463 /* 4464 * We have done an ON -> OFF transition: 4465 */ 4466 current->softirqs_enabled = 0; 4467 trace->softirq_disable_ip = ip; 4468 trace->softirq_disable_event = ++trace->irq_events; 4469 debug_atomic_inc(softirqs_off_events); 4470 /* 4471 * Whoops, we wanted softirqs off, so why aren't they? 4472 */ 4473 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4474 } else 4475 debug_atomic_inc(redundant_softirqs_off); 4476 } 4477 4478 static int 4479 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4480 { 4481 if (!check) 4482 goto lock_used; 4483 4484 /* 4485 * If non-trylock use in a hardirq or softirq context, then 4486 * mark the lock as used in these contexts: 4487 */ 4488 if (!hlock->trylock) { 4489 if (hlock->read) { 4490 if (lockdep_hardirq_context()) 4491 if (!mark_lock(curr, hlock, 4492 LOCK_USED_IN_HARDIRQ_READ)) 4493 return 0; 4494 if (curr->softirq_context) 4495 if (!mark_lock(curr, hlock, 4496 LOCK_USED_IN_SOFTIRQ_READ)) 4497 return 0; 4498 } else { 4499 if (lockdep_hardirq_context()) 4500 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4501 return 0; 4502 if (curr->softirq_context) 4503 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4504 return 0; 4505 } 4506 } 4507 if (!hlock->hardirqs_off) { 4508 if (hlock->read) { 4509 if (!mark_lock(curr, hlock, 4510 LOCK_ENABLED_HARDIRQ_READ)) 4511 return 0; 4512 if (curr->softirqs_enabled) 4513 if (!mark_lock(curr, hlock, 4514 LOCK_ENABLED_SOFTIRQ_READ)) 4515 return 0; 4516 } else { 4517 if (!mark_lock(curr, hlock, 4518 LOCK_ENABLED_HARDIRQ)) 4519 return 0; 4520 if (curr->softirqs_enabled) 4521 if (!mark_lock(curr, hlock, 4522 LOCK_ENABLED_SOFTIRQ)) 4523 return 0; 4524 } 4525 } 4526 4527 lock_used: 4528 /* mark it as used: */ 4529 if (!mark_lock(curr, hlock, LOCK_USED)) 4530 return 0; 4531 4532 return 1; 4533 } 4534 4535 static inline unsigned int task_irq_context(struct task_struct *task) 4536 { 4537 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4538 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4539 } 4540 4541 static int separate_irq_context(struct task_struct *curr, 4542 struct held_lock *hlock) 4543 { 4544 unsigned int depth = curr->lockdep_depth; 4545 4546 /* 4547 * Keep track of points where we cross into an interrupt context: 4548 */ 4549 if (depth) { 4550 struct held_lock *prev_hlock; 4551 4552 prev_hlock = curr->held_locks + depth-1; 4553 /* 4554 * If we cross into another context, reset the 4555 * hash key (this also prevents the checking and the 4556 * adding of the dependency to 'prev'): 4557 */ 4558 if (prev_hlock->irq_context != hlock->irq_context) 4559 return 1; 4560 } 4561 return 0; 4562 } 4563 4564 /* 4565 * Mark a lock with a usage bit, and validate the state transition: 4566 */ 4567 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4568 enum lock_usage_bit new_bit) 4569 { 4570 unsigned int new_mask, ret = 1; 4571 4572 if (new_bit >= LOCK_USAGE_STATES) { 4573 DEBUG_LOCKS_WARN_ON(1); 4574 return 0; 4575 } 4576 4577 if (new_bit == LOCK_USED && this->read) 4578 new_bit = LOCK_USED_READ; 4579 4580 new_mask = 1 << new_bit; 4581 4582 /* 4583 * If already set then do not dirty the cacheline, 4584 * nor do any checks: 4585 */ 4586 if (likely(hlock_class(this)->usage_mask & new_mask)) 4587 return 1; 4588 4589 if (!graph_lock()) 4590 return 0; 4591 /* 4592 * Make sure we didn't race: 4593 */ 4594 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4595 goto unlock; 4596 4597 if (!hlock_class(this)->usage_mask) 4598 debug_atomic_dec(nr_unused_locks); 4599 4600 hlock_class(this)->usage_mask |= new_mask; 4601 4602 if (new_bit < LOCK_TRACE_STATES) { 4603 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4604 return 0; 4605 } 4606 4607 if (new_bit < LOCK_USED) { 4608 ret = mark_lock_irq(curr, this, new_bit); 4609 if (!ret) 4610 return 0; 4611 } 4612 4613 unlock: 4614 graph_unlock(); 4615 4616 /* 4617 * We must printk outside of the graph_lock: 4618 */ 4619 if (ret == 2) { 4620 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4621 print_lock(this); 4622 print_irqtrace_events(curr); 4623 dump_stack(); 4624 } 4625 4626 return ret; 4627 } 4628 4629 static inline short task_wait_context(struct task_struct *curr) 4630 { 4631 /* 4632 * Set appropriate wait type for the context; for IRQs we have to take 4633 * into account force_irqthread as that is implied by PREEMPT_RT. 4634 */ 4635 if (lockdep_hardirq_context()) { 4636 /* 4637 * Check if force_irqthreads will run us threaded. 4638 */ 4639 if (curr->hardirq_threaded || curr->irq_config) 4640 return LD_WAIT_CONFIG; 4641 4642 return LD_WAIT_SPIN; 4643 } else if (curr->softirq_context) { 4644 /* 4645 * Softirqs are always threaded. 4646 */ 4647 return LD_WAIT_CONFIG; 4648 } 4649 4650 return LD_WAIT_MAX; 4651 } 4652 4653 static int 4654 print_lock_invalid_wait_context(struct task_struct *curr, 4655 struct held_lock *hlock) 4656 { 4657 short curr_inner; 4658 4659 if (!debug_locks_off()) 4660 return 0; 4661 if (debug_locks_silent) 4662 return 0; 4663 4664 pr_warn("\n"); 4665 pr_warn("=============================\n"); 4666 pr_warn("[ BUG: Invalid wait context ]\n"); 4667 print_kernel_ident(); 4668 pr_warn("-----------------------------\n"); 4669 4670 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4671 print_lock(hlock); 4672 4673 pr_warn("other info that might help us debug this:\n"); 4674 4675 curr_inner = task_wait_context(curr); 4676 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4677 4678 lockdep_print_held_locks(curr); 4679 4680 pr_warn("stack backtrace:\n"); 4681 dump_stack(); 4682 4683 return 0; 4684 } 4685 4686 /* 4687 * Verify the wait_type context. 4688 * 4689 * This check validates we take locks in the right wait-type order; that is it 4690 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4691 * acquire spinlocks inside raw_spinlocks and the sort. 4692 * 4693 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4694 * can be taken from (pretty much) any context but also has constraints. 4695 * However when taken in a stricter environment the RCU lock does not loosen 4696 * the constraints. 4697 * 4698 * Therefore we must look for the strictest environment in the lock stack and 4699 * compare that to the lock we're trying to acquire. 4700 */ 4701 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4702 { 4703 u8 next_inner = hlock_class(next)->wait_type_inner; 4704 u8 next_outer = hlock_class(next)->wait_type_outer; 4705 u8 curr_inner; 4706 int depth; 4707 4708 if (!next_inner || next->trylock) 4709 return 0; 4710 4711 if (!next_outer) 4712 next_outer = next_inner; 4713 4714 /* 4715 * Find start of current irq_context.. 4716 */ 4717 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4718 struct held_lock *prev = curr->held_locks + depth; 4719 if (prev->irq_context != next->irq_context) 4720 break; 4721 } 4722 depth++; 4723 4724 curr_inner = task_wait_context(curr); 4725 4726 for (; depth < curr->lockdep_depth; depth++) { 4727 struct held_lock *prev = curr->held_locks + depth; 4728 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4729 4730 if (prev_inner) { 4731 /* 4732 * We can have a bigger inner than a previous one 4733 * when outer is smaller than inner, as with RCU. 4734 * 4735 * Also due to trylocks. 4736 */ 4737 curr_inner = min(curr_inner, prev_inner); 4738 } 4739 } 4740 4741 if (next_outer > curr_inner) 4742 return print_lock_invalid_wait_context(curr, next); 4743 4744 return 0; 4745 } 4746 4747 #else /* CONFIG_PROVE_LOCKING */ 4748 4749 static inline int 4750 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4751 { 4752 return 1; 4753 } 4754 4755 static inline unsigned int task_irq_context(struct task_struct *task) 4756 { 4757 return 0; 4758 } 4759 4760 static inline int separate_irq_context(struct task_struct *curr, 4761 struct held_lock *hlock) 4762 { 4763 return 0; 4764 } 4765 4766 static inline int check_wait_context(struct task_struct *curr, 4767 struct held_lock *next) 4768 { 4769 return 0; 4770 } 4771 4772 #endif /* CONFIG_PROVE_LOCKING */ 4773 4774 /* 4775 * Initialize a lock instance's lock-class mapping info: 4776 */ 4777 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4778 struct lock_class_key *key, int subclass, 4779 u8 inner, u8 outer, u8 lock_type) 4780 { 4781 int i; 4782 4783 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4784 lock->class_cache[i] = NULL; 4785 4786 #ifdef CONFIG_LOCK_STAT 4787 lock->cpu = raw_smp_processor_id(); 4788 #endif 4789 4790 /* 4791 * Can't be having no nameless bastards around this place! 4792 */ 4793 if (DEBUG_LOCKS_WARN_ON(!name)) { 4794 lock->name = "NULL"; 4795 return; 4796 } 4797 4798 lock->name = name; 4799 4800 lock->wait_type_outer = outer; 4801 lock->wait_type_inner = inner; 4802 lock->lock_type = lock_type; 4803 4804 /* 4805 * No key, no joy, we need to hash something. 4806 */ 4807 if (DEBUG_LOCKS_WARN_ON(!key)) 4808 return; 4809 /* 4810 * Sanity check, the lock-class key must either have been allocated 4811 * statically or must have been registered as a dynamic key. 4812 */ 4813 if (!static_obj(key) && !is_dynamic_key(key)) { 4814 if (debug_locks) 4815 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4816 DEBUG_LOCKS_WARN_ON(1); 4817 return; 4818 } 4819 lock->key = key; 4820 4821 if (unlikely(!debug_locks)) 4822 return; 4823 4824 if (subclass) { 4825 unsigned long flags; 4826 4827 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4828 return; 4829 4830 raw_local_irq_save(flags); 4831 lockdep_recursion_inc(); 4832 register_lock_class(lock, subclass, 1); 4833 lockdep_recursion_finish(); 4834 raw_local_irq_restore(flags); 4835 } 4836 } 4837 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4838 4839 struct lock_class_key __lockdep_no_validate__; 4840 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4841 4842 static void 4843 print_lock_nested_lock_not_held(struct task_struct *curr, 4844 struct held_lock *hlock, 4845 unsigned long ip) 4846 { 4847 if (!debug_locks_off()) 4848 return; 4849 if (debug_locks_silent) 4850 return; 4851 4852 pr_warn("\n"); 4853 pr_warn("==================================\n"); 4854 pr_warn("WARNING: Nested lock was not taken\n"); 4855 print_kernel_ident(); 4856 pr_warn("----------------------------------\n"); 4857 4858 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4859 print_lock(hlock); 4860 4861 pr_warn("\nbut this task is not holding:\n"); 4862 pr_warn("%s\n", hlock->nest_lock->name); 4863 4864 pr_warn("\nstack backtrace:\n"); 4865 dump_stack(); 4866 4867 pr_warn("\nother info that might help us debug this:\n"); 4868 lockdep_print_held_locks(curr); 4869 4870 pr_warn("\nstack backtrace:\n"); 4871 dump_stack(); 4872 } 4873 4874 static int __lock_is_held(const struct lockdep_map *lock, int read); 4875 4876 /* 4877 * This gets called for every mutex_lock*()/spin_lock*() operation. 4878 * We maintain the dependency maps and validate the locking attempt: 4879 * 4880 * The callers must make sure that IRQs are disabled before calling it, 4881 * otherwise we could get an interrupt which would want to take locks, 4882 * which would end up in lockdep again. 4883 */ 4884 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4885 int trylock, int read, int check, int hardirqs_off, 4886 struct lockdep_map *nest_lock, unsigned long ip, 4887 int references, int pin_count) 4888 { 4889 struct task_struct *curr = current; 4890 struct lock_class *class = NULL; 4891 struct held_lock *hlock; 4892 unsigned int depth; 4893 int chain_head = 0; 4894 int class_idx; 4895 u64 chain_key; 4896 4897 if (unlikely(!debug_locks)) 4898 return 0; 4899 4900 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4901 check = 0; 4902 4903 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4904 class = lock->class_cache[subclass]; 4905 /* 4906 * Not cached? 4907 */ 4908 if (unlikely(!class)) { 4909 class = register_lock_class(lock, subclass, 0); 4910 if (!class) 4911 return 0; 4912 } 4913 4914 debug_class_ops_inc(class); 4915 4916 if (very_verbose(class)) { 4917 printk("\nacquire class [%px] %s", class->key, class->name); 4918 if (class->name_version > 1) 4919 printk(KERN_CONT "#%d", class->name_version); 4920 printk(KERN_CONT "\n"); 4921 dump_stack(); 4922 } 4923 4924 /* 4925 * Add the lock to the list of currently held locks. 4926 * (we dont increase the depth just yet, up until the 4927 * dependency checks are done) 4928 */ 4929 depth = curr->lockdep_depth; 4930 /* 4931 * Ran out of static storage for our per-task lock stack again have we? 4932 */ 4933 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4934 return 0; 4935 4936 class_idx = class - lock_classes; 4937 4938 if (depth) { /* we're holding locks */ 4939 hlock = curr->held_locks + depth - 1; 4940 if (hlock->class_idx == class_idx && nest_lock) { 4941 if (!references) 4942 references++; 4943 4944 if (!hlock->references) 4945 hlock->references++; 4946 4947 hlock->references += references; 4948 4949 /* Overflow */ 4950 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4951 return 0; 4952 4953 return 2; 4954 } 4955 } 4956 4957 hlock = curr->held_locks + depth; 4958 /* 4959 * Plain impossible, we just registered it and checked it weren't no 4960 * NULL like.. I bet this mushroom I ate was good! 4961 */ 4962 if (DEBUG_LOCKS_WARN_ON(!class)) 4963 return 0; 4964 hlock->class_idx = class_idx; 4965 hlock->acquire_ip = ip; 4966 hlock->instance = lock; 4967 hlock->nest_lock = nest_lock; 4968 hlock->irq_context = task_irq_context(curr); 4969 hlock->trylock = trylock; 4970 hlock->read = read; 4971 hlock->check = check; 4972 hlock->hardirqs_off = !!hardirqs_off; 4973 hlock->references = references; 4974 #ifdef CONFIG_LOCK_STAT 4975 hlock->waittime_stamp = 0; 4976 hlock->holdtime_stamp = lockstat_clock(); 4977 #endif 4978 hlock->pin_count = pin_count; 4979 4980 if (check_wait_context(curr, hlock)) 4981 return 0; 4982 4983 /* Initialize the lock usage bit */ 4984 if (!mark_usage(curr, hlock, check)) 4985 return 0; 4986 4987 /* 4988 * Calculate the chain hash: it's the combined hash of all the 4989 * lock keys along the dependency chain. We save the hash value 4990 * at every step so that we can get the current hash easily 4991 * after unlock. The chain hash is then used to cache dependency 4992 * results. 4993 * 4994 * The 'key ID' is what is the most compact key value to drive 4995 * the hash, not class->key. 4996 */ 4997 /* 4998 * Whoops, we did it again.. class_idx is invalid. 4999 */ 5000 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5001 return 0; 5002 5003 chain_key = curr->curr_chain_key; 5004 if (!depth) { 5005 /* 5006 * How can we have a chain hash when we ain't got no keys?! 5007 */ 5008 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5009 return 0; 5010 chain_head = 1; 5011 } 5012 5013 hlock->prev_chain_key = chain_key; 5014 if (separate_irq_context(curr, hlock)) { 5015 chain_key = INITIAL_CHAIN_KEY; 5016 chain_head = 1; 5017 } 5018 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5019 5020 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5021 print_lock_nested_lock_not_held(curr, hlock, ip); 5022 return 0; 5023 } 5024 5025 if (!debug_locks_silent) { 5026 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5027 WARN_ON_ONCE(!hlock_class(hlock)->key); 5028 } 5029 5030 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5031 return 0; 5032 5033 curr->curr_chain_key = chain_key; 5034 curr->lockdep_depth++; 5035 check_chain_key(curr); 5036 #ifdef CONFIG_DEBUG_LOCKDEP 5037 if (unlikely(!debug_locks)) 5038 return 0; 5039 #endif 5040 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5041 debug_locks_off(); 5042 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5043 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5044 curr->lockdep_depth, MAX_LOCK_DEPTH); 5045 5046 lockdep_print_held_locks(current); 5047 debug_show_all_locks(); 5048 dump_stack(); 5049 5050 return 0; 5051 } 5052 5053 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5054 max_lockdep_depth = curr->lockdep_depth; 5055 5056 return 1; 5057 } 5058 5059 static void print_unlock_imbalance_bug(struct task_struct *curr, 5060 struct lockdep_map *lock, 5061 unsigned long ip) 5062 { 5063 if (!debug_locks_off()) 5064 return; 5065 if (debug_locks_silent) 5066 return; 5067 5068 pr_warn("\n"); 5069 pr_warn("=====================================\n"); 5070 pr_warn("WARNING: bad unlock balance detected!\n"); 5071 print_kernel_ident(); 5072 pr_warn("-------------------------------------\n"); 5073 pr_warn("%s/%d is trying to release lock (", 5074 curr->comm, task_pid_nr(curr)); 5075 print_lockdep_cache(lock); 5076 pr_cont(") at:\n"); 5077 print_ip_sym(KERN_WARNING, ip); 5078 pr_warn("but there are no more locks to release!\n"); 5079 pr_warn("\nother info that might help us debug this:\n"); 5080 lockdep_print_held_locks(curr); 5081 5082 pr_warn("\nstack backtrace:\n"); 5083 dump_stack(); 5084 } 5085 5086 static noinstr int match_held_lock(const struct held_lock *hlock, 5087 const struct lockdep_map *lock) 5088 { 5089 if (hlock->instance == lock) 5090 return 1; 5091 5092 if (hlock->references) { 5093 const struct lock_class *class = lock->class_cache[0]; 5094 5095 if (!class) 5096 class = look_up_lock_class(lock, 0); 5097 5098 /* 5099 * If look_up_lock_class() failed to find a class, we're trying 5100 * to test if we hold a lock that has never yet been acquired. 5101 * Clearly if the lock hasn't been acquired _ever_, we're not 5102 * holding it either, so report failure. 5103 */ 5104 if (!class) 5105 return 0; 5106 5107 /* 5108 * References, but not a lock we're actually ref-counting? 5109 * State got messed up, follow the sites that change ->references 5110 * and try to make sense of it. 5111 */ 5112 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5113 return 0; 5114 5115 if (hlock->class_idx == class - lock_classes) 5116 return 1; 5117 } 5118 5119 return 0; 5120 } 5121 5122 /* @depth must not be zero */ 5123 static struct held_lock *find_held_lock(struct task_struct *curr, 5124 struct lockdep_map *lock, 5125 unsigned int depth, int *idx) 5126 { 5127 struct held_lock *ret, *hlock, *prev_hlock; 5128 int i; 5129 5130 i = depth - 1; 5131 hlock = curr->held_locks + i; 5132 ret = hlock; 5133 if (match_held_lock(hlock, lock)) 5134 goto out; 5135 5136 ret = NULL; 5137 for (i--, prev_hlock = hlock--; 5138 i >= 0; 5139 i--, prev_hlock = hlock--) { 5140 /* 5141 * We must not cross into another context: 5142 */ 5143 if (prev_hlock->irq_context != hlock->irq_context) { 5144 ret = NULL; 5145 break; 5146 } 5147 if (match_held_lock(hlock, lock)) { 5148 ret = hlock; 5149 break; 5150 } 5151 } 5152 5153 out: 5154 *idx = i; 5155 return ret; 5156 } 5157 5158 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5159 int idx, unsigned int *merged) 5160 { 5161 struct held_lock *hlock; 5162 int first_idx = idx; 5163 5164 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5165 return 0; 5166 5167 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5168 switch (__lock_acquire(hlock->instance, 5169 hlock_class(hlock)->subclass, 5170 hlock->trylock, 5171 hlock->read, hlock->check, 5172 hlock->hardirqs_off, 5173 hlock->nest_lock, hlock->acquire_ip, 5174 hlock->references, hlock->pin_count)) { 5175 case 0: 5176 return 1; 5177 case 1: 5178 break; 5179 case 2: 5180 *merged += (idx == first_idx); 5181 break; 5182 default: 5183 WARN_ON(1); 5184 return 0; 5185 } 5186 } 5187 return 0; 5188 } 5189 5190 static int 5191 __lock_set_class(struct lockdep_map *lock, const char *name, 5192 struct lock_class_key *key, unsigned int subclass, 5193 unsigned long ip) 5194 { 5195 struct task_struct *curr = current; 5196 unsigned int depth, merged = 0; 5197 struct held_lock *hlock; 5198 struct lock_class *class; 5199 int i; 5200 5201 if (unlikely(!debug_locks)) 5202 return 0; 5203 5204 depth = curr->lockdep_depth; 5205 /* 5206 * This function is about (re)setting the class of a held lock, 5207 * yet we're not actually holding any locks. Naughty user! 5208 */ 5209 if (DEBUG_LOCKS_WARN_ON(!depth)) 5210 return 0; 5211 5212 hlock = find_held_lock(curr, lock, depth, &i); 5213 if (!hlock) { 5214 print_unlock_imbalance_bug(curr, lock, ip); 5215 return 0; 5216 } 5217 5218 lockdep_init_map_waits(lock, name, key, 0, 5219 lock->wait_type_inner, 5220 lock->wait_type_outer); 5221 class = register_lock_class(lock, subclass, 0); 5222 hlock->class_idx = class - lock_classes; 5223 5224 curr->lockdep_depth = i; 5225 curr->curr_chain_key = hlock->prev_chain_key; 5226 5227 if (reacquire_held_locks(curr, depth, i, &merged)) 5228 return 0; 5229 5230 /* 5231 * I took it apart and put it back together again, except now I have 5232 * these 'spare' parts.. where shall I put them. 5233 */ 5234 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5235 return 0; 5236 return 1; 5237 } 5238 5239 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5240 { 5241 struct task_struct *curr = current; 5242 unsigned int depth, merged = 0; 5243 struct held_lock *hlock; 5244 int i; 5245 5246 if (unlikely(!debug_locks)) 5247 return 0; 5248 5249 depth = curr->lockdep_depth; 5250 /* 5251 * This function is about (re)setting the class of a held lock, 5252 * yet we're not actually holding any locks. Naughty user! 5253 */ 5254 if (DEBUG_LOCKS_WARN_ON(!depth)) 5255 return 0; 5256 5257 hlock = find_held_lock(curr, lock, depth, &i); 5258 if (!hlock) { 5259 print_unlock_imbalance_bug(curr, lock, ip); 5260 return 0; 5261 } 5262 5263 curr->lockdep_depth = i; 5264 curr->curr_chain_key = hlock->prev_chain_key; 5265 5266 WARN(hlock->read, "downgrading a read lock"); 5267 hlock->read = 1; 5268 hlock->acquire_ip = ip; 5269 5270 if (reacquire_held_locks(curr, depth, i, &merged)) 5271 return 0; 5272 5273 /* Merging can't happen with unchanged classes.. */ 5274 if (DEBUG_LOCKS_WARN_ON(merged)) 5275 return 0; 5276 5277 /* 5278 * I took it apart and put it back together again, except now I have 5279 * these 'spare' parts.. where shall I put them. 5280 */ 5281 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5282 return 0; 5283 5284 return 1; 5285 } 5286 5287 /* 5288 * Remove the lock from the list of currently held locks - this gets 5289 * called on mutex_unlock()/spin_unlock*() (or on a failed 5290 * mutex_lock_interruptible()). 5291 */ 5292 static int 5293 __lock_release(struct lockdep_map *lock, unsigned long ip) 5294 { 5295 struct task_struct *curr = current; 5296 unsigned int depth, merged = 1; 5297 struct held_lock *hlock; 5298 int i; 5299 5300 if (unlikely(!debug_locks)) 5301 return 0; 5302 5303 depth = curr->lockdep_depth; 5304 /* 5305 * So we're all set to release this lock.. wait what lock? We don't 5306 * own any locks, you've been drinking again? 5307 */ 5308 if (depth <= 0) { 5309 print_unlock_imbalance_bug(curr, lock, ip); 5310 return 0; 5311 } 5312 5313 /* 5314 * Check whether the lock exists in the current stack 5315 * of held locks: 5316 */ 5317 hlock = find_held_lock(curr, lock, depth, &i); 5318 if (!hlock) { 5319 print_unlock_imbalance_bug(curr, lock, ip); 5320 return 0; 5321 } 5322 5323 if (hlock->instance == lock) 5324 lock_release_holdtime(hlock); 5325 5326 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5327 5328 if (hlock->references) { 5329 hlock->references--; 5330 if (hlock->references) { 5331 /* 5332 * We had, and after removing one, still have 5333 * references, the current lock stack is still 5334 * valid. We're done! 5335 */ 5336 return 1; 5337 } 5338 } 5339 5340 /* 5341 * We have the right lock to unlock, 'hlock' points to it. 5342 * Now we remove it from the stack, and add back the other 5343 * entries (if any), recalculating the hash along the way: 5344 */ 5345 5346 curr->lockdep_depth = i; 5347 curr->curr_chain_key = hlock->prev_chain_key; 5348 5349 /* 5350 * The most likely case is when the unlock is on the innermost 5351 * lock. In this case, we are done! 5352 */ 5353 if (i == depth-1) 5354 return 1; 5355 5356 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5357 return 0; 5358 5359 /* 5360 * We had N bottles of beer on the wall, we drank one, but now 5361 * there's not N-1 bottles of beer left on the wall... 5362 * Pouring two of the bottles together is acceptable. 5363 */ 5364 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5365 5366 /* 5367 * Since reacquire_held_locks() would have called check_chain_key() 5368 * indirectly via __lock_acquire(), we don't need to do it again 5369 * on return. 5370 */ 5371 return 0; 5372 } 5373 5374 static __always_inline 5375 int __lock_is_held(const struct lockdep_map *lock, int read) 5376 { 5377 struct task_struct *curr = current; 5378 int i; 5379 5380 for (i = 0; i < curr->lockdep_depth; i++) { 5381 struct held_lock *hlock = curr->held_locks + i; 5382 5383 if (match_held_lock(hlock, lock)) { 5384 if (read == -1 || !!hlock->read == read) 5385 return LOCK_STATE_HELD; 5386 5387 return LOCK_STATE_NOT_HELD; 5388 } 5389 } 5390 5391 return LOCK_STATE_NOT_HELD; 5392 } 5393 5394 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5395 { 5396 struct pin_cookie cookie = NIL_COOKIE; 5397 struct task_struct *curr = current; 5398 int i; 5399 5400 if (unlikely(!debug_locks)) 5401 return cookie; 5402 5403 for (i = 0; i < curr->lockdep_depth; i++) { 5404 struct held_lock *hlock = curr->held_locks + i; 5405 5406 if (match_held_lock(hlock, lock)) { 5407 /* 5408 * Grab 16bits of randomness; this is sufficient to not 5409 * be guessable and still allows some pin nesting in 5410 * our u32 pin_count. 5411 */ 5412 cookie.val = 1 + (prandom_u32() >> 16); 5413 hlock->pin_count += cookie.val; 5414 return cookie; 5415 } 5416 } 5417 5418 WARN(1, "pinning an unheld lock\n"); 5419 return cookie; 5420 } 5421 5422 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5423 { 5424 struct task_struct *curr = current; 5425 int i; 5426 5427 if (unlikely(!debug_locks)) 5428 return; 5429 5430 for (i = 0; i < curr->lockdep_depth; i++) { 5431 struct held_lock *hlock = curr->held_locks + i; 5432 5433 if (match_held_lock(hlock, lock)) { 5434 hlock->pin_count += cookie.val; 5435 return; 5436 } 5437 } 5438 5439 WARN(1, "pinning an unheld lock\n"); 5440 } 5441 5442 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5443 { 5444 struct task_struct *curr = current; 5445 int i; 5446 5447 if (unlikely(!debug_locks)) 5448 return; 5449 5450 for (i = 0; i < curr->lockdep_depth; i++) { 5451 struct held_lock *hlock = curr->held_locks + i; 5452 5453 if (match_held_lock(hlock, lock)) { 5454 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5455 return; 5456 5457 hlock->pin_count -= cookie.val; 5458 5459 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5460 hlock->pin_count = 0; 5461 5462 return; 5463 } 5464 } 5465 5466 WARN(1, "unpinning an unheld lock\n"); 5467 } 5468 5469 /* 5470 * Check whether we follow the irq-flags state precisely: 5471 */ 5472 static noinstr void check_flags(unsigned long flags) 5473 { 5474 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5475 if (!debug_locks) 5476 return; 5477 5478 /* Get the warning out.. */ 5479 instrumentation_begin(); 5480 5481 if (irqs_disabled_flags(flags)) { 5482 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5483 printk("possible reason: unannotated irqs-off.\n"); 5484 } 5485 } else { 5486 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5487 printk("possible reason: unannotated irqs-on.\n"); 5488 } 5489 } 5490 5491 /* 5492 * We dont accurately track softirq state in e.g. 5493 * hardirq contexts (such as on 4KSTACKS), so only 5494 * check if not in hardirq contexts: 5495 */ 5496 if (!hardirq_count()) { 5497 if (softirq_count()) { 5498 /* like the above, but with softirqs */ 5499 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5500 } else { 5501 /* lick the above, does it taste good? */ 5502 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5503 } 5504 } 5505 5506 if (!debug_locks) 5507 print_irqtrace_events(current); 5508 5509 instrumentation_end(); 5510 #endif 5511 } 5512 5513 void lock_set_class(struct lockdep_map *lock, const char *name, 5514 struct lock_class_key *key, unsigned int subclass, 5515 unsigned long ip) 5516 { 5517 unsigned long flags; 5518 5519 if (unlikely(!lockdep_enabled())) 5520 return; 5521 5522 raw_local_irq_save(flags); 5523 lockdep_recursion_inc(); 5524 check_flags(flags); 5525 if (__lock_set_class(lock, name, key, subclass, ip)) 5526 check_chain_key(current); 5527 lockdep_recursion_finish(); 5528 raw_local_irq_restore(flags); 5529 } 5530 EXPORT_SYMBOL_GPL(lock_set_class); 5531 5532 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5533 { 5534 unsigned long flags; 5535 5536 if (unlikely(!lockdep_enabled())) 5537 return; 5538 5539 raw_local_irq_save(flags); 5540 lockdep_recursion_inc(); 5541 check_flags(flags); 5542 if (__lock_downgrade(lock, ip)) 5543 check_chain_key(current); 5544 lockdep_recursion_finish(); 5545 raw_local_irq_restore(flags); 5546 } 5547 EXPORT_SYMBOL_GPL(lock_downgrade); 5548 5549 /* NMI context !!! */ 5550 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5551 { 5552 #ifdef CONFIG_PROVE_LOCKING 5553 struct lock_class *class = look_up_lock_class(lock, subclass); 5554 unsigned long mask = LOCKF_USED; 5555 5556 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5557 if (!class) 5558 return; 5559 5560 /* 5561 * READ locks only conflict with USED, such that if we only ever use 5562 * READ locks, there is no deadlock possible -- RCU. 5563 */ 5564 if (!hlock->read) 5565 mask |= LOCKF_USED_READ; 5566 5567 if (!(class->usage_mask & mask)) 5568 return; 5569 5570 hlock->class_idx = class - lock_classes; 5571 5572 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5573 #endif 5574 } 5575 5576 static bool lockdep_nmi(void) 5577 { 5578 if (raw_cpu_read(lockdep_recursion)) 5579 return false; 5580 5581 if (!in_nmi()) 5582 return false; 5583 5584 return true; 5585 } 5586 5587 /* 5588 * read_lock() is recursive if: 5589 * 1. We force lockdep think this way in selftests or 5590 * 2. The implementation is not queued read/write lock or 5591 * 3. The locker is at an in_interrupt() context. 5592 */ 5593 bool read_lock_is_recursive(void) 5594 { 5595 return force_read_lock_recursive || 5596 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5597 in_interrupt(); 5598 } 5599 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5600 5601 /* 5602 * We are not always called with irqs disabled - do that here, 5603 * and also avoid lockdep recursion: 5604 */ 5605 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5606 int trylock, int read, int check, 5607 struct lockdep_map *nest_lock, unsigned long ip) 5608 { 5609 unsigned long flags; 5610 5611 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5612 5613 if (!debug_locks) 5614 return; 5615 5616 if (unlikely(!lockdep_enabled())) { 5617 /* XXX allow trylock from NMI ?!? */ 5618 if (lockdep_nmi() && !trylock) { 5619 struct held_lock hlock; 5620 5621 hlock.acquire_ip = ip; 5622 hlock.instance = lock; 5623 hlock.nest_lock = nest_lock; 5624 hlock.irq_context = 2; // XXX 5625 hlock.trylock = trylock; 5626 hlock.read = read; 5627 hlock.check = check; 5628 hlock.hardirqs_off = true; 5629 hlock.references = 0; 5630 5631 verify_lock_unused(lock, &hlock, subclass); 5632 } 5633 return; 5634 } 5635 5636 raw_local_irq_save(flags); 5637 check_flags(flags); 5638 5639 lockdep_recursion_inc(); 5640 __lock_acquire(lock, subclass, trylock, read, check, 5641 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5642 lockdep_recursion_finish(); 5643 raw_local_irq_restore(flags); 5644 } 5645 EXPORT_SYMBOL_GPL(lock_acquire); 5646 5647 void lock_release(struct lockdep_map *lock, unsigned long ip) 5648 { 5649 unsigned long flags; 5650 5651 trace_lock_release(lock, ip); 5652 5653 if (unlikely(!lockdep_enabled())) 5654 return; 5655 5656 raw_local_irq_save(flags); 5657 check_flags(flags); 5658 5659 lockdep_recursion_inc(); 5660 if (__lock_release(lock, ip)) 5661 check_chain_key(current); 5662 lockdep_recursion_finish(); 5663 raw_local_irq_restore(flags); 5664 } 5665 EXPORT_SYMBOL_GPL(lock_release); 5666 5667 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5668 { 5669 unsigned long flags; 5670 int ret = LOCK_STATE_NOT_HELD; 5671 5672 /* 5673 * Avoid false negative lockdep_assert_held() and 5674 * lockdep_assert_not_held(). 5675 */ 5676 if (unlikely(!lockdep_enabled())) 5677 return LOCK_STATE_UNKNOWN; 5678 5679 raw_local_irq_save(flags); 5680 check_flags(flags); 5681 5682 lockdep_recursion_inc(); 5683 ret = __lock_is_held(lock, read); 5684 lockdep_recursion_finish(); 5685 raw_local_irq_restore(flags); 5686 5687 return ret; 5688 } 5689 EXPORT_SYMBOL_GPL(lock_is_held_type); 5690 NOKPROBE_SYMBOL(lock_is_held_type); 5691 5692 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5693 { 5694 struct pin_cookie cookie = NIL_COOKIE; 5695 unsigned long flags; 5696 5697 if (unlikely(!lockdep_enabled())) 5698 return cookie; 5699 5700 raw_local_irq_save(flags); 5701 check_flags(flags); 5702 5703 lockdep_recursion_inc(); 5704 cookie = __lock_pin_lock(lock); 5705 lockdep_recursion_finish(); 5706 raw_local_irq_restore(flags); 5707 5708 return cookie; 5709 } 5710 EXPORT_SYMBOL_GPL(lock_pin_lock); 5711 5712 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5713 { 5714 unsigned long flags; 5715 5716 if (unlikely(!lockdep_enabled())) 5717 return; 5718 5719 raw_local_irq_save(flags); 5720 check_flags(flags); 5721 5722 lockdep_recursion_inc(); 5723 __lock_repin_lock(lock, cookie); 5724 lockdep_recursion_finish(); 5725 raw_local_irq_restore(flags); 5726 } 5727 EXPORT_SYMBOL_GPL(lock_repin_lock); 5728 5729 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5730 { 5731 unsigned long flags; 5732 5733 if (unlikely(!lockdep_enabled())) 5734 return; 5735 5736 raw_local_irq_save(flags); 5737 check_flags(flags); 5738 5739 lockdep_recursion_inc(); 5740 __lock_unpin_lock(lock, cookie); 5741 lockdep_recursion_finish(); 5742 raw_local_irq_restore(flags); 5743 } 5744 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5745 5746 #ifdef CONFIG_LOCK_STAT 5747 static void print_lock_contention_bug(struct task_struct *curr, 5748 struct lockdep_map *lock, 5749 unsigned long ip) 5750 { 5751 if (!debug_locks_off()) 5752 return; 5753 if (debug_locks_silent) 5754 return; 5755 5756 pr_warn("\n"); 5757 pr_warn("=================================\n"); 5758 pr_warn("WARNING: bad contention detected!\n"); 5759 print_kernel_ident(); 5760 pr_warn("---------------------------------\n"); 5761 pr_warn("%s/%d is trying to contend lock (", 5762 curr->comm, task_pid_nr(curr)); 5763 print_lockdep_cache(lock); 5764 pr_cont(") at:\n"); 5765 print_ip_sym(KERN_WARNING, ip); 5766 pr_warn("but there are no locks held!\n"); 5767 pr_warn("\nother info that might help us debug this:\n"); 5768 lockdep_print_held_locks(curr); 5769 5770 pr_warn("\nstack backtrace:\n"); 5771 dump_stack(); 5772 } 5773 5774 static void 5775 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5776 { 5777 struct task_struct *curr = current; 5778 struct held_lock *hlock; 5779 struct lock_class_stats *stats; 5780 unsigned int depth; 5781 int i, contention_point, contending_point; 5782 5783 depth = curr->lockdep_depth; 5784 /* 5785 * Whee, we contended on this lock, except it seems we're not 5786 * actually trying to acquire anything much at all.. 5787 */ 5788 if (DEBUG_LOCKS_WARN_ON(!depth)) 5789 return; 5790 5791 hlock = find_held_lock(curr, lock, depth, &i); 5792 if (!hlock) { 5793 print_lock_contention_bug(curr, lock, ip); 5794 return; 5795 } 5796 5797 if (hlock->instance != lock) 5798 return; 5799 5800 hlock->waittime_stamp = lockstat_clock(); 5801 5802 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5803 contending_point = lock_point(hlock_class(hlock)->contending_point, 5804 lock->ip); 5805 5806 stats = get_lock_stats(hlock_class(hlock)); 5807 if (contention_point < LOCKSTAT_POINTS) 5808 stats->contention_point[contention_point]++; 5809 if (contending_point < LOCKSTAT_POINTS) 5810 stats->contending_point[contending_point]++; 5811 if (lock->cpu != smp_processor_id()) 5812 stats->bounces[bounce_contended + !!hlock->read]++; 5813 } 5814 5815 static void 5816 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5817 { 5818 struct task_struct *curr = current; 5819 struct held_lock *hlock; 5820 struct lock_class_stats *stats; 5821 unsigned int depth; 5822 u64 now, waittime = 0; 5823 int i, cpu; 5824 5825 depth = curr->lockdep_depth; 5826 /* 5827 * Yay, we acquired ownership of this lock we didn't try to 5828 * acquire, how the heck did that happen? 5829 */ 5830 if (DEBUG_LOCKS_WARN_ON(!depth)) 5831 return; 5832 5833 hlock = find_held_lock(curr, lock, depth, &i); 5834 if (!hlock) { 5835 print_lock_contention_bug(curr, lock, _RET_IP_); 5836 return; 5837 } 5838 5839 if (hlock->instance != lock) 5840 return; 5841 5842 cpu = smp_processor_id(); 5843 if (hlock->waittime_stamp) { 5844 now = lockstat_clock(); 5845 waittime = now - hlock->waittime_stamp; 5846 hlock->holdtime_stamp = now; 5847 } 5848 5849 stats = get_lock_stats(hlock_class(hlock)); 5850 if (waittime) { 5851 if (hlock->read) 5852 lock_time_inc(&stats->read_waittime, waittime); 5853 else 5854 lock_time_inc(&stats->write_waittime, waittime); 5855 } 5856 if (lock->cpu != cpu) 5857 stats->bounces[bounce_acquired + !!hlock->read]++; 5858 5859 lock->cpu = cpu; 5860 lock->ip = ip; 5861 } 5862 5863 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5864 { 5865 unsigned long flags; 5866 5867 trace_lock_contended(lock, ip); 5868 5869 if (unlikely(!lock_stat || !lockdep_enabled())) 5870 return; 5871 5872 raw_local_irq_save(flags); 5873 check_flags(flags); 5874 lockdep_recursion_inc(); 5875 __lock_contended(lock, ip); 5876 lockdep_recursion_finish(); 5877 raw_local_irq_restore(flags); 5878 } 5879 EXPORT_SYMBOL_GPL(lock_contended); 5880 5881 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5882 { 5883 unsigned long flags; 5884 5885 trace_lock_acquired(lock, ip); 5886 5887 if (unlikely(!lock_stat || !lockdep_enabled())) 5888 return; 5889 5890 raw_local_irq_save(flags); 5891 check_flags(flags); 5892 lockdep_recursion_inc(); 5893 __lock_acquired(lock, ip); 5894 lockdep_recursion_finish(); 5895 raw_local_irq_restore(flags); 5896 } 5897 EXPORT_SYMBOL_GPL(lock_acquired); 5898 #endif 5899 5900 /* 5901 * Used by the testsuite, sanitize the validator state 5902 * after a simulated failure: 5903 */ 5904 5905 void lockdep_reset(void) 5906 { 5907 unsigned long flags; 5908 int i; 5909 5910 raw_local_irq_save(flags); 5911 lockdep_init_task(current); 5912 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5913 nr_hardirq_chains = 0; 5914 nr_softirq_chains = 0; 5915 nr_process_chains = 0; 5916 debug_locks = 1; 5917 for (i = 0; i < CHAINHASH_SIZE; i++) 5918 INIT_HLIST_HEAD(chainhash_table + i); 5919 raw_local_irq_restore(flags); 5920 } 5921 5922 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5923 static void remove_class_from_lock_chain(struct pending_free *pf, 5924 struct lock_chain *chain, 5925 struct lock_class *class) 5926 { 5927 #ifdef CONFIG_PROVE_LOCKING 5928 int i; 5929 5930 for (i = chain->base; i < chain->base + chain->depth; i++) { 5931 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5932 continue; 5933 /* 5934 * Each lock class occurs at most once in a lock chain so once 5935 * we found a match we can break out of this loop. 5936 */ 5937 goto free_lock_chain; 5938 } 5939 /* Since the chain has not been modified, return. */ 5940 return; 5941 5942 free_lock_chain: 5943 free_chain_hlocks(chain->base, chain->depth); 5944 /* Overwrite the chain key for concurrent RCU readers. */ 5945 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5946 dec_chains(chain->irq_context); 5947 5948 /* 5949 * Note: calling hlist_del_rcu() from inside a 5950 * hlist_for_each_entry_rcu() loop is safe. 5951 */ 5952 hlist_del_rcu(&chain->entry); 5953 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5954 nr_zapped_lock_chains++; 5955 #endif 5956 } 5957 5958 /* Must be called with the graph lock held. */ 5959 static void remove_class_from_lock_chains(struct pending_free *pf, 5960 struct lock_class *class) 5961 { 5962 struct lock_chain *chain; 5963 struct hlist_head *head; 5964 int i; 5965 5966 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5967 head = chainhash_table + i; 5968 hlist_for_each_entry_rcu(chain, head, entry) { 5969 remove_class_from_lock_chain(pf, chain, class); 5970 } 5971 } 5972 } 5973 5974 /* 5975 * Remove all references to a lock class. The caller must hold the graph lock. 5976 */ 5977 static void zap_class(struct pending_free *pf, struct lock_class *class) 5978 { 5979 struct lock_list *entry; 5980 int i; 5981 5982 WARN_ON_ONCE(!class->key); 5983 5984 /* 5985 * Remove all dependencies this lock is 5986 * involved in: 5987 */ 5988 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5989 entry = list_entries + i; 5990 if (entry->class != class && entry->links_to != class) 5991 continue; 5992 __clear_bit(i, list_entries_in_use); 5993 nr_list_entries--; 5994 list_del_rcu(&entry->entry); 5995 } 5996 if (list_empty(&class->locks_after) && 5997 list_empty(&class->locks_before)) { 5998 list_move_tail(&class->lock_entry, &pf->zapped); 5999 hlist_del_rcu(&class->hash_entry); 6000 WRITE_ONCE(class->key, NULL); 6001 WRITE_ONCE(class->name, NULL); 6002 nr_lock_classes--; 6003 __clear_bit(class - lock_classes, lock_classes_in_use); 6004 } else { 6005 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6006 class->name); 6007 } 6008 6009 remove_class_from_lock_chains(pf, class); 6010 nr_zapped_classes++; 6011 } 6012 6013 static void reinit_class(struct lock_class *class) 6014 { 6015 void *const p = class; 6016 const unsigned int offset = offsetof(struct lock_class, key); 6017 6018 WARN_ON_ONCE(!class->lock_entry.next); 6019 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6020 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6021 memset(p + offset, 0, sizeof(*class) - offset); 6022 WARN_ON_ONCE(!class->lock_entry.next); 6023 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6024 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6025 } 6026 6027 static inline int within(const void *addr, void *start, unsigned long size) 6028 { 6029 return addr >= start && addr < start + size; 6030 } 6031 6032 static bool inside_selftest(void) 6033 { 6034 return current == lockdep_selftest_task_struct; 6035 } 6036 6037 /* The caller must hold the graph lock. */ 6038 static struct pending_free *get_pending_free(void) 6039 { 6040 return delayed_free.pf + delayed_free.index; 6041 } 6042 6043 static void free_zapped_rcu(struct rcu_head *cb); 6044 6045 /* 6046 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6047 * the graph lock held. 6048 */ 6049 static void call_rcu_zapped(struct pending_free *pf) 6050 { 6051 WARN_ON_ONCE(inside_selftest()); 6052 6053 if (list_empty(&pf->zapped)) 6054 return; 6055 6056 if (delayed_free.scheduled) 6057 return; 6058 6059 delayed_free.scheduled = true; 6060 6061 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6062 delayed_free.index ^= 1; 6063 6064 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6065 } 6066 6067 /* The caller must hold the graph lock. May be called from RCU context. */ 6068 static void __free_zapped_classes(struct pending_free *pf) 6069 { 6070 struct lock_class *class; 6071 6072 check_data_structures(); 6073 6074 list_for_each_entry(class, &pf->zapped, lock_entry) 6075 reinit_class(class); 6076 6077 list_splice_init(&pf->zapped, &free_lock_classes); 6078 6079 #ifdef CONFIG_PROVE_LOCKING 6080 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6081 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6082 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6083 #endif 6084 } 6085 6086 static void free_zapped_rcu(struct rcu_head *ch) 6087 { 6088 struct pending_free *pf; 6089 unsigned long flags; 6090 6091 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6092 return; 6093 6094 raw_local_irq_save(flags); 6095 lockdep_lock(); 6096 6097 /* closed head */ 6098 pf = delayed_free.pf + (delayed_free.index ^ 1); 6099 __free_zapped_classes(pf); 6100 delayed_free.scheduled = false; 6101 6102 /* 6103 * If there's anything on the open list, close and start a new callback. 6104 */ 6105 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6106 6107 lockdep_unlock(); 6108 raw_local_irq_restore(flags); 6109 } 6110 6111 /* 6112 * Remove all lock classes from the class hash table and from the 6113 * all_lock_classes list whose key or name is in the address range [start, 6114 * start + size). Move these lock classes to the zapped_classes list. Must 6115 * be called with the graph lock held. 6116 */ 6117 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6118 unsigned long size) 6119 { 6120 struct lock_class *class; 6121 struct hlist_head *head; 6122 int i; 6123 6124 /* Unhash all classes that were created by a module. */ 6125 for (i = 0; i < CLASSHASH_SIZE; i++) { 6126 head = classhash_table + i; 6127 hlist_for_each_entry_rcu(class, head, hash_entry) { 6128 if (!within(class->key, start, size) && 6129 !within(class->name, start, size)) 6130 continue; 6131 zap_class(pf, class); 6132 } 6133 } 6134 } 6135 6136 /* 6137 * Used in module.c to remove lock classes from memory that is going to be 6138 * freed; and possibly re-used by other modules. 6139 * 6140 * We will have had one synchronize_rcu() before getting here, so we're 6141 * guaranteed nobody will look up these exact classes -- they're properly dead 6142 * but still allocated. 6143 */ 6144 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6145 { 6146 struct pending_free *pf; 6147 unsigned long flags; 6148 6149 init_data_structures_once(); 6150 6151 raw_local_irq_save(flags); 6152 lockdep_lock(); 6153 pf = get_pending_free(); 6154 __lockdep_free_key_range(pf, start, size); 6155 call_rcu_zapped(pf); 6156 lockdep_unlock(); 6157 raw_local_irq_restore(flags); 6158 6159 /* 6160 * Wait for any possible iterators from look_up_lock_class() to pass 6161 * before continuing to free the memory they refer to. 6162 */ 6163 synchronize_rcu(); 6164 } 6165 6166 /* 6167 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6168 * Ignores debug_locks. Must only be used by the lockdep selftests. 6169 */ 6170 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6171 { 6172 struct pending_free *pf = delayed_free.pf; 6173 unsigned long flags; 6174 6175 init_data_structures_once(); 6176 6177 raw_local_irq_save(flags); 6178 lockdep_lock(); 6179 __lockdep_free_key_range(pf, start, size); 6180 __free_zapped_classes(pf); 6181 lockdep_unlock(); 6182 raw_local_irq_restore(flags); 6183 } 6184 6185 void lockdep_free_key_range(void *start, unsigned long size) 6186 { 6187 init_data_structures_once(); 6188 6189 if (inside_selftest()) 6190 lockdep_free_key_range_imm(start, size); 6191 else 6192 lockdep_free_key_range_reg(start, size); 6193 } 6194 6195 /* 6196 * Check whether any element of the @lock->class_cache[] array refers to a 6197 * registered lock class. The caller must hold either the graph lock or the 6198 * RCU read lock. 6199 */ 6200 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6201 { 6202 struct lock_class *class; 6203 struct hlist_head *head; 6204 int i, j; 6205 6206 for (i = 0; i < CLASSHASH_SIZE; i++) { 6207 head = classhash_table + i; 6208 hlist_for_each_entry_rcu(class, head, hash_entry) { 6209 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6210 if (lock->class_cache[j] == class) 6211 return true; 6212 } 6213 } 6214 return false; 6215 } 6216 6217 /* The caller must hold the graph lock. Does not sleep. */ 6218 static void __lockdep_reset_lock(struct pending_free *pf, 6219 struct lockdep_map *lock) 6220 { 6221 struct lock_class *class; 6222 int j; 6223 6224 /* 6225 * Remove all classes this lock might have: 6226 */ 6227 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6228 /* 6229 * If the class exists we look it up and zap it: 6230 */ 6231 class = look_up_lock_class(lock, j); 6232 if (class) 6233 zap_class(pf, class); 6234 } 6235 /* 6236 * Debug check: in the end all mapped classes should 6237 * be gone. 6238 */ 6239 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6240 debug_locks_off(); 6241 } 6242 6243 /* 6244 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6245 * released data structures from RCU context. 6246 */ 6247 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6248 { 6249 struct pending_free *pf; 6250 unsigned long flags; 6251 int locked; 6252 6253 raw_local_irq_save(flags); 6254 locked = graph_lock(); 6255 if (!locked) 6256 goto out_irq; 6257 6258 pf = get_pending_free(); 6259 __lockdep_reset_lock(pf, lock); 6260 call_rcu_zapped(pf); 6261 6262 graph_unlock(); 6263 out_irq: 6264 raw_local_irq_restore(flags); 6265 } 6266 6267 /* 6268 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6269 * lockdep selftests. 6270 */ 6271 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6272 { 6273 struct pending_free *pf = delayed_free.pf; 6274 unsigned long flags; 6275 6276 raw_local_irq_save(flags); 6277 lockdep_lock(); 6278 __lockdep_reset_lock(pf, lock); 6279 __free_zapped_classes(pf); 6280 lockdep_unlock(); 6281 raw_local_irq_restore(flags); 6282 } 6283 6284 void lockdep_reset_lock(struct lockdep_map *lock) 6285 { 6286 init_data_structures_once(); 6287 6288 if (inside_selftest()) 6289 lockdep_reset_lock_imm(lock); 6290 else 6291 lockdep_reset_lock_reg(lock); 6292 } 6293 6294 /* Unregister a dynamically allocated key. */ 6295 void lockdep_unregister_key(struct lock_class_key *key) 6296 { 6297 struct hlist_head *hash_head = keyhashentry(key); 6298 struct lock_class_key *k; 6299 struct pending_free *pf; 6300 unsigned long flags; 6301 bool found = false; 6302 6303 might_sleep(); 6304 6305 if (WARN_ON_ONCE(static_obj(key))) 6306 return; 6307 6308 raw_local_irq_save(flags); 6309 if (!graph_lock()) 6310 goto out_irq; 6311 6312 pf = get_pending_free(); 6313 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6314 if (k == key) { 6315 hlist_del_rcu(&k->hash_entry); 6316 found = true; 6317 break; 6318 } 6319 } 6320 WARN_ON_ONCE(!found); 6321 __lockdep_free_key_range(pf, key, 1); 6322 call_rcu_zapped(pf); 6323 graph_unlock(); 6324 out_irq: 6325 raw_local_irq_restore(flags); 6326 6327 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6328 synchronize_rcu(); 6329 } 6330 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6331 6332 void __init lockdep_init(void) 6333 { 6334 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6335 6336 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6337 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6338 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6339 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6340 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6341 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6342 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6343 6344 printk(" memory used by lock dependency info: %zu kB\n", 6345 (sizeof(lock_classes) + 6346 sizeof(lock_classes_in_use) + 6347 sizeof(classhash_table) + 6348 sizeof(list_entries) + 6349 sizeof(list_entries_in_use) + 6350 sizeof(chainhash_table) + 6351 sizeof(delayed_free) 6352 #ifdef CONFIG_PROVE_LOCKING 6353 + sizeof(lock_cq) 6354 + sizeof(lock_chains) 6355 + sizeof(lock_chains_in_use) 6356 + sizeof(chain_hlocks) 6357 #endif 6358 ) / 1024 6359 ); 6360 6361 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6362 printk(" memory used for stack traces: %zu kB\n", 6363 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6364 ); 6365 #endif 6366 6367 printk(" per task-struct memory footprint: %zu bytes\n", 6368 sizeof(((struct task_struct *)NULL)->held_locks)); 6369 } 6370 6371 static void 6372 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6373 const void *mem_to, struct held_lock *hlock) 6374 { 6375 if (!debug_locks_off()) 6376 return; 6377 if (debug_locks_silent) 6378 return; 6379 6380 pr_warn("\n"); 6381 pr_warn("=========================\n"); 6382 pr_warn("WARNING: held lock freed!\n"); 6383 print_kernel_ident(); 6384 pr_warn("-------------------------\n"); 6385 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6386 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6387 print_lock(hlock); 6388 lockdep_print_held_locks(curr); 6389 6390 pr_warn("\nstack backtrace:\n"); 6391 dump_stack(); 6392 } 6393 6394 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6395 const void* lock_from, unsigned long lock_len) 6396 { 6397 return lock_from + lock_len <= mem_from || 6398 mem_from + mem_len <= lock_from; 6399 } 6400 6401 /* 6402 * Called when kernel memory is freed (or unmapped), or if a lock 6403 * is destroyed or reinitialized - this code checks whether there is 6404 * any held lock in the memory range of <from> to <to>: 6405 */ 6406 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6407 { 6408 struct task_struct *curr = current; 6409 struct held_lock *hlock; 6410 unsigned long flags; 6411 int i; 6412 6413 if (unlikely(!debug_locks)) 6414 return; 6415 6416 raw_local_irq_save(flags); 6417 for (i = 0; i < curr->lockdep_depth; i++) { 6418 hlock = curr->held_locks + i; 6419 6420 if (not_in_range(mem_from, mem_len, hlock->instance, 6421 sizeof(*hlock->instance))) 6422 continue; 6423 6424 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6425 break; 6426 } 6427 raw_local_irq_restore(flags); 6428 } 6429 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6430 6431 static void print_held_locks_bug(void) 6432 { 6433 if (!debug_locks_off()) 6434 return; 6435 if (debug_locks_silent) 6436 return; 6437 6438 pr_warn("\n"); 6439 pr_warn("====================================\n"); 6440 pr_warn("WARNING: %s/%d still has locks held!\n", 6441 current->comm, task_pid_nr(current)); 6442 print_kernel_ident(); 6443 pr_warn("------------------------------------\n"); 6444 lockdep_print_held_locks(current); 6445 pr_warn("\nstack backtrace:\n"); 6446 dump_stack(); 6447 } 6448 6449 void debug_check_no_locks_held(void) 6450 { 6451 if (unlikely(current->lockdep_depth > 0)) 6452 print_held_locks_bug(); 6453 } 6454 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6455 6456 #ifdef __KERNEL__ 6457 void debug_show_all_locks(void) 6458 { 6459 struct task_struct *g, *p; 6460 6461 if (unlikely(!debug_locks)) { 6462 pr_warn("INFO: lockdep is turned off.\n"); 6463 return; 6464 } 6465 pr_warn("\nShowing all locks held in the system:\n"); 6466 6467 rcu_read_lock(); 6468 for_each_process_thread(g, p) { 6469 if (!p->lockdep_depth) 6470 continue; 6471 lockdep_print_held_locks(p); 6472 touch_nmi_watchdog(); 6473 touch_all_softlockup_watchdogs(); 6474 } 6475 rcu_read_unlock(); 6476 6477 pr_warn("\n"); 6478 pr_warn("=============================================\n\n"); 6479 } 6480 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6481 #endif 6482 6483 /* 6484 * Careful: only use this function if you are sure that 6485 * the task cannot run in parallel! 6486 */ 6487 void debug_show_held_locks(struct task_struct *task) 6488 { 6489 if (unlikely(!debug_locks)) { 6490 printk("INFO: lockdep is turned off.\n"); 6491 return; 6492 } 6493 lockdep_print_held_locks(task); 6494 } 6495 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6496 6497 asmlinkage __visible void lockdep_sys_exit(void) 6498 { 6499 struct task_struct *curr = current; 6500 6501 if (unlikely(curr->lockdep_depth)) { 6502 if (!debug_locks_off()) 6503 return; 6504 pr_warn("\n"); 6505 pr_warn("================================================\n"); 6506 pr_warn("WARNING: lock held when returning to user space!\n"); 6507 print_kernel_ident(); 6508 pr_warn("------------------------------------------------\n"); 6509 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6510 curr->comm, curr->pid); 6511 lockdep_print_held_locks(curr); 6512 } 6513 6514 /* 6515 * The lock history for each syscall should be independent. So wipe the 6516 * slate clean on return to userspace. 6517 */ 6518 lockdep_invariant_state(false); 6519 } 6520 6521 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6522 { 6523 struct task_struct *curr = current; 6524 int dl = READ_ONCE(debug_locks); 6525 6526 /* Note: the following can be executed concurrently, so be careful. */ 6527 pr_warn("\n"); 6528 pr_warn("=============================\n"); 6529 pr_warn("WARNING: suspicious RCU usage\n"); 6530 print_kernel_ident(); 6531 pr_warn("-----------------------------\n"); 6532 pr_warn("%s:%d %s!\n", file, line, s); 6533 pr_warn("\nother info that might help us debug this:\n\n"); 6534 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6535 !rcu_lockdep_current_cpu_online() 6536 ? "RCU used illegally from offline CPU!\n" 6537 : "", 6538 rcu_scheduler_active, dl, 6539 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6540 6541 /* 6542 * If a CPU is in the RCU-free window in idle (ie: in the section 6543 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6544 * considers that CPU to be in an "extended quiescent state", 6545 * which means that RCU will be completely ignoring that CPU. 6546 * Therefore, rcu_read_lock() and friends have absolutely no 6547 * effect on a CPU running in that state. In other words, even if 6548 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6549 * delete data structures out from under it. RCU really has no 6550 * choice here: we need to keep an RCU-free window in idle where 6551 * the CPU may possibly enter into low power mode. This way we can 6552 * notice an extended quiescent state to other CPUs that started a grace 6553 * period. Otherwise we would delay any grace period as long as we run 6554 * in the idle task. 6555 * 6556 * So complain bitterly if someone does call rcu_read_lock(), 6557 * rcu_read_lock_bh() and so on from extended quiescent states. 6558 */ 6559 if (!rcu_is_watching()) 6560 pr_warn("RCU used illegally from extended quiescent state!\n"); 6561 6562 lockdep_print_held_locks(curr); 6563 pr_warn("\nstack backtrace:\n"); 6564 dump_stack(); 6565 } 6566 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6567