xref: /linux/kernel/locking/lockdep.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82 
83 static __always_inline bool lockdep_enabled(void)
84 {
85 	if (!debug_locks)
86 		return false;
87 
88 	if (this_cpu_read(lockdep_recursion))
89 		return false;
90 
91 	if (current->lockdep_recursion)
92 		return false;
93 
94 	return true;
95 }
96 
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107 
108 static inline void lockdep_lock(void)
109 {
110 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111 
112 	__this_cpu_inc(lockdep_recursion);
113 	arch_spin_lock(&__lock);
114 	__owner = current;
115 }
116 
117 static inline void lockdep_unlock(void)
118 {
119 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120 
121 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 		return;
123 
124 	__owner = NULL;
125 	arch_spin_unlock(&__lock);
126 	__this_cpu_dec(lockdep_recursion);
127 }
128 
129 static inline bool lockdep_assert_locked(void)
130 {
131 	return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133 
134 static struct task_struct *lockdep_selftest_task_struct;
135 
136 
137 static int graph_lock(void)
138 {
139 	lockdep_lock();
140 	/*
141 	 * Make sure that if another CPU detected a bug while
142 	 * walking the graph we dont change it (while the other
143 	 * CPU is busy printing out stuff with the graph lock
144 	 * dropped already)
145 	 */
146 	if (!debug_locks) {
147 		lockdep_unlock();
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 static inline void graph_unlock(void)
154 {
155 	lockdep_unlock();
156 }
157 
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 	int ret = debug_locks_off();
165 
166 	lockdep_unlock();
167 
168 	return ret;
169 }
170 
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174 
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191 
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194 	unsigned int class_idx = hlock->class_idx;
195 
196 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 	barrier();
198 
199 	if (!test_bit(class_idx, lock_classes_in_use)) {
200 		/*
201 		 * Someone passed in garbage, we give up.
202 		 */
203 		DEBUG_LOCKS_WARN_ON(1);
204 		return NULL;
205 	}
206 
207 	/*
208 	 * At this point, if the passed hlock->class_idx is still garbage,
209 	 * we just have to live with it
210 	 */
211 	return lock_classes + class_idx;
212 }
213 
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216 
217 static inline u64 lockstat_clock(void)
218 {
219 	return local_clock();
220 }
221 
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224 	int i;
225 
226 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
227 		if (points[i] == 0) {
228 			points[i] = ip;
229 			break;
230 		}
231 		if (points[i] == ip)
232 			break;
233 	}
234 
235 	return i;
236 }
237 
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240 	if (time > lt->max)
241 		lt->max = time;
242 
243 	if (time < lt->min || !lt->nr)
244 		lt->min = time;
245 
246 	lt->total += time;
247 	lt->nr++;
248 }
249 
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252 	if (!src->nr)
253 		return;
254 
255 	if (src->max > dst->max)
256 		dst->max = src->max;
257 
258 	if (src->min < dst->min || !dst->nr)
259 		dst->min = src->min;
260 
261 	dst->total += src->total;
262 	dst->nr += src->nr;
263 }
264 
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267 	struct lock_class_stats stats;
268 	int cpu, i;
269 
270 	memset(&stats, 0, sizeof(struct lock_class_stats));
271 	for_each_possible_cpu(cpu) {
272 		struct lock_class_stats *pcs =
273 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274 
275 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276 			stats.contention_point[i] += pcs->contention_point[i];
277 
278 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279 			stats.contending_point[i] += pcs->contending_point[i];
280 
281 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283 
284 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286 
287 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288 			stats.bounces[i] += pcs->bounces[i];
289 	}
290 
291 	return stats;
292 }
293 
294 void clear_lock_stats(struct lock_class *class)
295 {
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		struct lock_class_stats *cpu_stats =
300 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301 
302 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303 	}
304 	memset(class->contention_point, 0, sizeof(class->contention_point));
305 	memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307 
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312 
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315 	struct lock_class_stats *stats;
316 	u64 holdtime;
317 
318 	if (!lock_stat)
319 		return;
320 
321 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
322 
323 	stats = get_lock_stats(hlock_class(hlock));
324 	if (hlock->read)
325 		lock_time_inc(&stats->read_holdtime, holdtime);
326 	else
327 		lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334 
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343 
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *	are about to be freed.
349  */
350 struct pending_free {
351 	struct list_head zapped;
352 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354 
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367 	struct rcu_head		rcu_head;
368 	int			index;
369 	int			scheduled;
370 	struct pending_free	pf[2];
371 } delayed_free;
372 
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
380 
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382 
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
391 
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393 
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400 
401 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403 
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408 
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417 	u32 k0 = key, k1 = key >> 32;
418 
419 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420 
421 	return k0 | (u64)k1 << 32;
422 }
423 
424 void lockdep_init_task(struct task_struct *task)
425 {
426 	task->lockdep_depth = 0; /* no locks held yet */
427 	task->curr_chain_key = INITIAL_CHAIN_KEY;
428 	task->lockdep_recursion = 0;
429 }
430 
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433 	__this_cpu_inc(lockdep_recursion);
434 }
435 
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439 		__this_cpu_write(lockdep_recursion, 0);
440 }
441 
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444 	lockdep_selftest_task_struct = task;
445 }
446 
447 /*
448  * Debugging switches:
449  */
450 
451 #define VERBOSE			0
452 #define VERY_VERBOSE		0
453 
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE	1
456 # define SOFTIRQ_VERBOSE	1
457 #else
458 # define HARDIRQ_VERBOSE	0
459 # define SOFTIRQ_VERBOSE	0
460 #endif
461 
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469 	/* Example */
470 	if (class->name_version == 1 &&
471 			!strcmp(class->name, "lockname"))
472 		return 1;
473 	if (class->name_version == 1 &&
474 			!strcmp(class->name, "&struct->lockfield"))
475 		return 1;
476 #endif
477 	/* Filter everything else. 1 would be to allow everything else */
478 	return 0;
479 }
480 #endif
481 
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485 	return class_filter(class);
486 #endif
487 	return 0;
488 }
489 
490 static void print_lockdep_off(const char *bug_msg)
491 {
492 	printk(KERN_DEBUG "%s\n", bug_msg);
493 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498 
499 unsigned long nr_stack_trace_entries;
500 
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry:	Entry in a stack_trace_hash[] list.
505  * @hash:	jhash() of @entries.
506  * @nr_entries:	Number of entries in @entries.
507  * @entries:	Actual stack backtrace.
508  */
509 struct lock_trace {
510 	struct hlist_node	hash_entry;
511 	u32			hash;
512 	u32			nr_entries;
513 	unsigned long		entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS				\
516 	(sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522 
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526 		memcmp(t1->entries, t2->entries,
527 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529 
530 static struct lock_trace *save_trace(void)
531 {
532 	struct lock_trace *trace, *t2;
533 	struct hlist_head *hash_head;
534 	u32 hash;
535 	int max_entries;
536 
537 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539 
540 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542 		LOCK_TRACE_SIZE_IN_LONGS;
543 
544 	if (max_entries <= 0) {
545 		if (!debug_locks_off_graph_unlock())
546 			return NULL;
547 
548 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549 		dump_stack();
550 
551 		return NULL;
552 	}
553 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554 
555 	hash = jhash(trace->entries, trace->nr_entries *
556 		     sizeof(trace->entries[0]), 0);
557 	trace->hash = hash;
558 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559 	hlist_for_each_entry(t2, hash_head, hash_entry) {
560 		if (traces_identical(trace, t2))
561 			return t2;
562 	}
563 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564 	hlist_add_head(&trace->hash_entry, hash_head);
565 
566 	return trace;
567 }
568 
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572 	struct lock_trace *trace;
573 	u64 c = 0;
574 	int i;
575 
576 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578 			c++;
579 		}
580 	}
581 
582 	return c;
583 }
584 
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588 	u64 c = 0;
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592 		if (!hlist_empty(&stack_trace_hash[i]))
593 			c++;
594 
595 	return c;
596 }
597 #endif
598 
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603 
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610 
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615 
616 #define __USAGE(__STATE)						\
617 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
618 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
619 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621 
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 	[LOCK_USED] = "INITIAL USE",
628 	[LOCK_USED_READ] = "INITIAL READ USE",
629 	/* abused as string storage for verify_lock_unused() */
630 	[LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633 
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638 
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641 	return 1UL << bit;
642 }
643 
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646 	/*
647 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
648 	 * irq context), which is the safest usage category.
649 	 */
650 	char c = '.';
651 
652 	/*
653 	 * The order of the following usage checks matters, which will
654 	 * result in the outcome character as follows:
655 	 *
656 	 * - '+': irq is enabled and not in irq context
657 	 * - '-': in irq context and irq is disabled
658 	 * - '?': in irq context and irq is enabled
659 	 */
660 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661 		c = '+';
662 		if (class->usage_mask & lock_flag(bit))
663 			c = '?';
664 	} else if (class->usage_mask & lock_flag(bit))
665 		c = '-';
666 
667 	return c;
668 }
669 
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672 	int i = 0;
673 
674 #define LOCKDEP_STATE(__STATE) 						\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
676 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679 
680 	usage[i] = '\0';
681 }
682 
683 static void __print_lock_name(struct lock_class *class)
684 {
685 	char str[KSYM_NAME_LEN];
686 	const char *name;
687 
688 	name = class->name;
689 	if (!name) {
690 		name = __get_key_name(class->key, str);
691 		printk(KERN_CONT "%s", name);
692 	} else {
693 		printk(KERN_CONT "%s", name);
694 		if (class->name_version > 1)
695 			printk(KERN_CONT "#%d", class->name_version);
696 		if (class->subclass)
697 			printk(KERN_CONT "/%d", class->subclass);
698 	}
699 }
700 
701 static void print_lock_name(struct lock_class *class)
702 {
703 	char usage[LOCK_USAGE_CHARS];
704 
705 	get_usage_chars(class, usage);
706 
707 	printk(KERN_CONT " (");
708 	__print_lock_name(class);
709 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
710 			class->wait_type_outer ?: class->wait_type_inner,
711 			class->wait_type_inner);
712 }
713 
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716 	const char *name;
717 	char str[KSYM_NAME_LEN];
718 
719 	name = lock->name;
720 	if (!name)
721 		name = __get_key_name(lock->key->subkeys, str);
722 
723 	printk(KERN_CONT "%s", name);
724 }
725 
726 static void print_lock(struct held_lock *hlock)
727 {
728 	/*
729 	 * We can be called locklessly through debug_show_all_locks() so be
730 	 * extra careful, the hlock might have been released and cleared.
731 	 *
732 	 * If this indeed happens, lets pretend it does not hurt to continue
733 	 * to print the lock unless the hlock class_idx does not point to a
734 	 * registered class. The rationale here is: since we don't attempt
735 	 * to distinguish whether we are in this situation, if it just
736 	 * happened we can't count on class_idx to tell either.
737 	 */
738 	struct lock_class *lock = hlock_class(hlock);
739 
740 	if (!lock) {
741 		printk(KERN_CONT "<RELEASED>\n");
742 		return;
743 	}
744 
745 	printk(KERN_CONT "%px", hlock->instance);
746 	print_lock_name(lock);
747 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749 
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752 	int i, depth = READ_ONCE(p->lockdep_depth);
753 
754 	if (!depth)
755 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756 	else
757 		printk("%d lock%s held by %s/%d:\n", depth,
758 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759 	/*
760 	 * It's not reliable to print a task's held locks if it's not sleeping
761 	 * and it's not the current task.
762 	 */
763 	if (p != current && task_is_running(p))
764 		return;
765 	for (i = 0; i < depth; i++) {
766 		printk(" #%d: ", i);
767 		print_lock(p->held_locks + i);
768 	}
769 }
770 
771 static void print_kernel_ident(void)
772 {
773 	printk("%s %.*s %s\n", init_utsname()->release,
774 		(int)strcspn(init_utsname()->version, " "),
775 		init_utsname()->version,
776 		print_tainted());
777 }
778 
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782 	return class_filter(class);
783 #endif
784 	return 0;
785 }
786 
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 /*
792  * Check if an address is part of freed initmem. After initmem is freed,
793  * memory can be allocated from it, and such allocations would then have
794  * addresses within the range [_stext, _end].
795  */
796 #ifndef arch_is_kernel_initmem_freed
797 static int arch_is_kernel_initmem_freed(unsigned long addr)
798 {
799 	if (system_state < SYSTEM_FREEING_INITMEM)
800 		return 0;
801 
802 	return init_section_contains((void *)addr, 1);
803 }
804 #endif
805 
806 static int static_obj(const void *obj)
807 {
808 	unsigned long start = (unsigned long) &_stext,
809 		      end   = (unsigned long) &_end,
810 		      addr  = (unsigned long) obj;
811 
812 	if (arch_is_kernel_initmem_freed(addr))
813 		return 0;
814 
815 	/*
816 	 * static variable?
817 	 */
818 	if ((addr >= start) && (addr < end))
819 		return 1;
820 
821 	if (arch_is_kernel_data(addr))
822 		return 1;
823 
824 	/*
825 	 * in-kernel percpu var?
826 	 */
827 	if (is_kernel_percpu_address(addr))
828 		return 1;
829 
830 	/*
831 	 * module static or percpu var?
832 	 */
833 	return is_module_address(addr) || is_module_percpu_address(addr);
834 }
835 #endif
836 
837 /*
838  * To make lock name printouts unique, we calculate a unique
839  * class->name_version generation counter. The caller must hold the graph
840  * lock.
841  */
842 static int count_matching_names(struct lock_class *new_class)
843 {
844 	struct lock_class *class;
845 	int count = 0;
846 
847 	if (!new_class->name)
848 		return 0;
849 
850 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
851 		if (new_class->key - new_class->subclass == class->key)
852 			return class->name_version;
853 		if (class->name && !strcmp(class->name, new_class->name))
854 			count = max(count, class->name_version);
855 	}
856 
857 	return count + 1;
858 }
859 
860 /* used from NMI context -- must be lockless */
861 static noinstr struct lock_class *
862 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
863 {
864 	struct lockdep_subclass_key *key;
865 	struct hlist_head *hash_head;
866 	struct lock_class *class;
867 
868 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
869 		instrumentation_begin();
870 		debug_locks_off();
871 		printk(KERN_ERR
872 			"BUG: looking up invalid subclass: %u\n", subclass);
873 		printk(KERN_ERR
874 			"turning off the locking correctness validator.\n");
875 		dump_stack();
876 		instrumentation_end();
877 		return NULL;
878 	}
879 
880 	/*
881 	 * If it is not initialised then it has never been locked,
882 	 * so it won't be present in the hash table.
883 	 */
884 	if (unlikely(!lock->key))
885 		return NULL;
886 
887 	/*
888 	 * NOTE: the class-key must be unique. For dynamic locks, a static
889 	 * lock_class_key variable is passed in through the mutex_init()
890 	 * (or spin_lock_init()) call - which acts as the key. For static
891 	 * locks we use the lock object itself as the key.
892 	 */
893 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
894 			sizeof(struct lockdep_map));
895 
896 	key = lock->key->subkeys + subclass;
897 
898 	hash_head = classhashentry(key);
899 
900 	/*
901 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
902 	 */
903 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
904 		return NULL;
905 
906 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
907 		if (class->key == key) {
908 			/*
909 			 * Huh! same key, different name? Did someone trample
910 			 * on some memory? We're most confused.
911 			 */
912 			WARN_ON_ONCE(class->name != lock->name &&
913 				     lock->key != &__lockdep_no_validate__);
914 			return class;
915 		}
916 	}
917 
918 	return NULL;
919 }
920 
921 /*
922  * Static locks do not have their class-keys yet - for them the key is
923  * the lock object itself. If the lock is in the per cpu area, the
924  * canonical address of the lock (per cpu offset removed) is used.
925  */
926 static bool assign_lock_key(struct lockdep_map *lock)
927 {
928 	unsigned long can_addr, addr = (unsigned long)lock;
929 
930 #ifdef __KERNEL__
931 	/*
932 	 * lockdep_free_key_range() assumes that struct lock_class_key
933 	 * objects do not overlap. Since we use the address of lock
934 	 * objects as class key for static objects, check whether the
935 	 * size of lock_class_key objects does not exceed the size of
936 	 * the smallest lock object.
937 	 */
938 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
939 #endif
940 
941 	if (__is_kernel_percpu_address(addr, &can_addr))
942 		lock->key = (void *)can_addr;
943 	else if (__is_module_percpu_address(addr, &can_addr))
944 		lock->key = (void *)can_addr;
945 	else if (static_obj(lock))
946 		lock->key = (void *)lock;
947 	else {
948 		/* Debug-check: all keys must be persistent! */
949 		debug_locks_off();
950 		pr_err("INFO: trying to register non-static key.\n");
951 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
952 		pr_err("you didn't initialize this object before use?\n");
953 		pr_err("turning off the locking correctness validator.\n");
954 		dump_stack();
955 		return false;
956 	}
957 
958 	return true;
959 }
960 
961 #ifdef CONFIG_DEBUG_LOCKDEP
962 
963 /* Check whether element @e occurs in list @h */
964 static bool in_list(struct list_head *e, struct list_head *h)
965 {
966 	struct list_head *f;
967 
968 	list_for_each(f, h) {
969 		if (e == f)
970 			return true;
971 	}
972 
973 	return false;
974 }
975 
976 /*
977  * Check whether entry @e occurs in any of the locks_after or locks_before
978  * lists.
979  */
980 static bool in_any_class_list(struct list_head *e)
981 {
982 	struct lock_class *class;
983 	int i;
984 
985 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
986 		class = &lock_classes[i];
987 		if (in_list(e, &class->locks_after) ||
988 		    in_list(e, &class->locks_before))
989 			return true;
990 	}
991 	return false;
992 }
993 
994 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
995 {
996 	struct lock_list *e;
997 
998 	list_for_each_entry(e, h, entry) {
999 		if (e->links_to != c) {
1000 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1001 			       c->name ? : "(?)",
1002 			       (unsigned long)(e - list_entries),
1003 			       e->links_to && e->links_to->name ?
1004 			       e->links_to->name : "(?)",
1005 			       e->class && e->class->name ? e->class->name :
1006 			       "(?)");
1007 			return false;
1008 		}
1009 	}
1010 	return true;
1011 }
1012 
1013 #ifdef CONFIG_PROVE_LOCKING
1014 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1015 #endif
1016 
1017 static bool check_lock_chain_key(struct lock_chain *chain)
1018 {
1019 #ifdef CONFIG_PROVE_LOCKING
1020 	u64 chain_key = INITIAL_CHAIN_KEY;
1021 	int i;
1022 
1023 	for (i = chain->base; i < chain->base + chain->depth; i++)
1024 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1025 	/*
1026 	 * The 'unsigned long long' casts avoid that a compiler warning
1027 	 * is reported when building tools/lib/lockdep.
1028 	 */
1029 	if (chain->chain_key != chain_key) {
1030 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1031 		       (unsigned long long)(chain - lock_chains),
1032 		       (unsigned long long)chain->chain_key,
1033 		       (unsigned long long)chain_key);
1034 		return false;
1035 	}
1036 #endif
1037 	return true;
1038 }
1039 
1040 static bool in_any_zapped_class_list(struct lock_class *class)
1041 {
1042 	struct pending_free *pf;
1043 	int i;
1044 
1045 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1046 		if (in_list(&class->lock_entry, &pf->zapped))
1047 			return true;
1048 	}
1049 
1050 	return false;
1051 }
1052 
1053 static bool __check_data_structures(void)
1054 {
1055 	struct lock_class *class;
1056 	struct lock_chain *chain;
1057 	struct hlist_head *head;
1058 	struct lock_list *e;
1059 	int i;
1060 
1061 	/* Check whether all classes occur in a lock list. */
1062 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1063 		class = &lock_classes[i];
1064 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1065 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1066 		    !in_any_zapped_class_list(class)) {
1067 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1068 			       class, class->name ? : "(?)");
1069 			return false;
1070 		}
1071 	}
1072 
1073 	/* Check whether all classes have valid lock lists. */
1074 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1075 		class = &lock_classes[i];
1076 		if (!class_lock_list_valid(class, &class->locks_before))
1077 			return false;
1078 		if (!class_lock_list_valid(class, &class->locks_after))
1079 			return false;
1080 	}
1081 
1082 	/* Check the chain_key of all lock chains. */
1083 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1084 		head = chainhash_table + i;
1085 		hlist_for_each_entry_rcu(chain, head, entry) {
1086 			if (!check_lock_chain_key(chain))
1087 				return false;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Check whether all list entries that are in use occur in a class
1093 	 * lock list.
1094 	 */
1095 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096 		e = list_entries + i;
1097 		if (!in_any_class_list(&e->entry)) {
1098 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1099 			       (unsigned int)(e - list_entries),
1100 			       e->class->name ? : "(?)",
1101 			       e->links_to->name ? : "(?)");
1102 			return false;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Check whether all list entries that are not in use do not occur in
1108 	 * a class lock list.
1109 	 */
1110 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1111 		e = list_entries + i;
1112 		if (in_any_class_list(&e->entry)) {
1113 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1114 			       (unsigned int)(e - list_entries),
1115 			       e->class && e->class->name ? e->class->name :
1116 			       "(?)",
1117 			       e->links_to && e->links_to->name ?
1118 			       e->links_to->name : "(?)");
1119 			return false;
1120 		}
1121 	}
1122 
1123 	return true;
1124 }
1125 
1126 int check_consistency = 0;
1127 module_param(check_consistency, int, 0644);
1128 
1129 static void check_data_structures(void)
1130 {
1131 	static bool once = false;
1132 
1133 	if (check_consistency && !once) {
1134 		if (!__check_data_structures()) {
1135 			once = true;
1136 			WARN_ON(once);
1137 		}
1138 	}
1139 }
1140 
1141 #else /* CONFIG_DEBUG_LOCKDEP */
1142 
1143 static inline void check_data_structures(void) { }
1144 
1145 #endif /* CONFIG_DEBUG_LOCKDEP */
1146 
1147 static void init_chain_block_buckets(void);
1148 
1149 /*
1150  * Initialize the lock_classes[] array elements, the free_lock_classes list
1151  * and also the delayed_free structure.
1152  */
1153 static void init_data_structures_once(void)
1154 {
1155 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1156 	int i;
1157 
1158 	if (likely(rcu_head_initialized))
1159 		return;
1160 
1161 	if (system_state >= SYSTEM_SCHEDULING) {
1162 		init_rcu_head(&delayed_free.rcu_head);
1163 		rcu_head_initialized = true;
1164 	}
1165 
1166 	if (ds_initialized)
1167 		return;
1168 
1169 	ds_initialized = true;
1170 
1171 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1172 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1173 
1174 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1175 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1176 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1177 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1178 	}
1179 	init_chain_block_buckets();
1180 }
1181 
1182 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1183 {
1184 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1185 
1186 	return lock_keys_hash + hash;
1187 }
1188 
1189 /* Register a dynamically allocated key. */
1190 void lockdep_register_key(struct lock_class_key *key)
1191 {
1192 	struct hlist_head *hash_head;
1193 	struct lock_class_key *k;
1194 	unsigned long flags;
1195 
1196 	if (WARN_ON_ONCE(static_obj(key)))
1197 		return;
1198 	hash_head = keyhashentry(key);
1199 
1200 	raw_local_irq_save(flags);
1201 	if (!graph_lock())
1202 		goto restore_irqs;
1203 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1204 		if (WARN_ON_ONCE(k == key))
1205 			goto out_unlock;
1206 	}
1207 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1208 out_unlock:
1209 	graph_unlock();
1210 restore_irqs:
1211 	raw_local_irq_restore(flags);
1212 }
1213 EXPORT_SYMBOL_GPL(lockdep_register_key);
1214 
1215 /* Check whether a key has been registered as a dynamic key. */
1216 static bool is_dynamic_key(const struct lock_class_key *key)
1217 {
1218 	struct hlist_head *hash_head;
1219 	struct lock_class_key *k;
1220 	bool found = false;
1221 
1222 	if (WARN_ON_ONCE(static_obj(key)))
1223 		return false;
1224 
1225 	/*
1226 	 * If lock debugging is disabled lock_keys_hash[] may contain
1227 	 * pointers to memory that has already been freed. Avoid triggering
1228 	 * a use-after-free in that case by returning early.
1229 	 */
1230 	if (!debug_locks)
1231 		return true;
1232 
1233 	hash_head = keyhashentry(key);
1234 
1235 	rcu_read_lock();
1236 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1237 		if (k == key) {
1238 			found = true;
1239 			break;
1240 		}
1241 	}
1242 	rcu_read_unlock();
1243 
1244 	return found;
1245 }
1246 
1247 /*
1248  * Register a lock's class in the hash-table, if the class is not present
1249  * yet. Otherwise we look it up. We cache the result in the lock object
1250  * itself, so actual lookup of the hash should be once per lock object.
1251  */
1252 static struct lock_class *
1253 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1254 {
1255 	struct lockdep_subclass_key *key;
1256 	struct hlist_head *hash_head;
1257 	struct lock_class *class;
1258 
1259 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1260 
1261 	class = look_up_lock_class(lock, subclass);
1262 	if (likely(class))
1263 		goto out_set_class_cache;
1264 
1265 	if (!lock->key) {
1266 		if (!assign_lock_key(lock))
1267 			return NULL;
1268 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1269 		return NULL;
1270 	}
1271 
1272 	key = lock->key->subkeys + subclass;
1273 	hash_head = classhashentry(key);
1274 
1275 	if (!graph_lock()) {
1276 		return NULL;
1277 	}
1278 	/*
1279 	 * We have to do the hash-walk again, to avoid races
1280 	 * with another CPU:
1281 	 */
1282 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1283 		if (class->key == key)
1284 			goto out_unlock_set;
1285 	}
1286 
1287 	init_data_structures_once();
1288 
1289 	/* Allocate a new lock class and add it to the hash. */
1290 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1291 					 lock_entry);
1292 	if (!class) {
1293 		if (!debug_locks_off_graph_unlock()) {
1294 			return NULL;
1295 		}
1296 
1297 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1298 		dump_stack();
1299 		return NULL;
1300 	}
1301 	nr_lock_classes++;
1302 	__set_bit(class - lock_classes, lock_classes_in_use);
1303 	debug_atomic_inc(nr_unused_locks);
1304 	class->key = key;
1305 	class->name = lock->name;
1306 	class->subclass = subclass;
1307 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1308 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1309 	class->name_version = count_matching_names(class);
1310 	class->wait_type_inner = lock->wait_type_inner;
1311 	class->wait_type_outer = lock->wait_type_outer;
1312 	class->lock_type = lock->lock_type;
1313 	/*
1314 	 * We use RCU's safe list-add method to make
1315 	 * parallel walking of the hash-list safe:
1316 	 */
1317 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1318 	/*
1319 	 * Remove the class from the free list and add it to the global list
1320 	 * of classes.
1321 	 */
1322 	list_move_tail(&class->lock_entry, &all_lock_classes);
1323 
1324 	if (verbose(class)) {
1325 		graph_unlock();
1326 
1327 		printk("\nnew class %px: %s", class->key, class->name);
1328 		if (class->name_version > 1)
1329 			printk(KERN_CONT "#%d", class->name_version);
1330 		printk(KERN_CONT "\n");
1331 		dump_stack();
1332 
1333 		if (!graph_lock()) {
1334 			return NULL;
1335 		}
1336 	}
1337 out_unlock_set:
1338 	graph_unlock();
1339 
1340 out_set_class_cache:
1341 	if (!subclass || force)
1342 		lock->class_cache[0] = class;
1343 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1344 		lock->class_cache[subclass] = class;
1345 
1346 	/*
1347 	 * Hash collision, did we smoke some? We found a class with a matching
1348 	 * hash but the subclass -- which is hashed in -- didn't match.
1349 	 */
1350 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1351 		return NULL;
1352 
1353 	return class;
1354 }
1355 
1356 #ifdef CONFIG_PROVE_LOCKING
1357 /*
1358  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1359  * with NULL on failure)
1360  */
1361 static struct lock_list *alloc_list_entry(void)
1362 {
1363 	int idx = find_first_zero_bit(list_entries_in_use,
1364 				      ARRAY_SIZE(list_entries));
1365 
1366 	if (idx >= ARRAY_SIZE(list_entries)) {
1367 		if (!debug_locks_off_graph_unlock())
1368 			return NULL;
1369 
1370 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1371 		dump_stack();
1372 		return NULL;
1373 	}
1374 	nr_list_entries++;
1375 	__set_bit(idx, list_entries_in_use);
1376 	return list_entries + idx;
1377 }
1378 
1379 /*
1380  * Add a new dependency to the head of the list:
1381  */
1382 static int add_lock_to_list(struct lock_class *this,
1383 			    struct lock_class *links_to, struct list_head *head,
1384 			    unsigned long ip, u16 distance, u8 dep,
1385 			    const struct lock_trace *trace)
1386 {
1387 	struct lock_list *entry;
1388 	/*
1389 	 * Lock not present yet - get a new dependency struct and
1390 	 * add it to the list:
1391 	 */
1392 	entry = alloc_list_entry();
1393 	if (!entry)
1394 		return 0;
1395 
1396 	entry->class = this;
1397 	entry->links_to = links_to;
1398 	entry->dep = dep;
1399 	entry->distance = distance;
1400 	entry->trace = trace;
1401 	/*
1402 	 * Both allocation and removal are done under the graph lock; but
1403 	 * iteration is under RCU-sched; see look_up_lock_class() and
1404 	 * lockdep_free_key_range().
1405 	 */
1406 	list_add_tail_rcu(&entry->entry, head);
1407 
1408 	return 1;
1409 }
1410 
1411 /*
1412  * For good efficiency of modular, we use power of 2
1413  */
1414 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1415 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1416 
1417 /*
1418  * The circular_queue and helpers are used to implement graph
1419  * breadth-first search (BFS) algorithm, by which we can determine
1420  * whether there is a path from a lock to another. In deadlock checks,
1421  * a path from the next lock to be acquired to a previous held lock
1422  * indicates that adding the <prev> -> <next> lock dependency will
1423  * produce a circle in the graph. Breadth-first search instead of
1424  * depth-first search is used in order to find the shortest (circular)
1425  * path.
1426  */
1427 struct circular_queue {
1428 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1429 	unsigned int  front, rear;
1430 };
1431 
1432 static struct circular_queue lock_cq;
1433 
1434 unsigned int max_bfs_queue_depth;
1435 
1436 static unsigned int lockdep_dependency_gen_id;
1437 
1438 static inline void __cq_init(struct circular_queue *cq)
1439 {
1440 	cq->front = cq->rear = 0;
1441 	lockdep_dependency_gen_id++;
1442 }
1443 
1444 static inline int __cq_empty(struct circular_queue *cq)
1445 {
1446 	return (cq->front == cq->rear);
1447 }
1448 
1449 static inline int __cq_full(struct circular_queue *cq)
1450 {
1451 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1452 }
1453 
1454 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1455 {
1456 	if (__cq_full(cq))
1457 		return -1;
1458 
1459 	cq->element[cq->rear] = elem;
1460 	cq->rear = (cq->rear + 1) & CQ_MASK;
1461 	return 0;
1462 }
1463 
1464 /*
1465  * Dequeue an element from the circular_queue, return a lock_list if
1466  * the queue is not empty, or NULL if otherwise.
1467  */
1468 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1469 {
1470 	struct lock_list * lock;
1471 
1472 	if (__cq_empty(cq))
1473 		return NULL;
1474 
1475 	lock = cq->element[cq->front];
1476 	cq->front = (cq->front + 1) & CQ_MASK;
1477 
1478 	return lock;
1479 }
1480 
1481 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1482 {
1483 	return (cq->rear - cq->front) & CQ_MASK;
1484 }
1485 
1486 static inline void mark_lock_accessed(struct lock_list *lock)
1487 {
1488 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1489 }
1490 
1491 static inline void visit_lock_entry(struct lock_list *lock,
1492 				    struct lock_list *parent)
1493 {
1494 	lock->parent = parent;
1495 }
1496 
1497 static inline unsigned long lock_accessed(struct lock_list *lock)
1498 {
1499 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1500 }
1501 
1502 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1503 {
1504 	return child->parent;
1505 }
1506 
1507 static inline int get_lock_depth(struct lock_list *child)
1508 {
1509 	int depth = 0;
1510 	struct lock_list *parent;
1511 
1512 	while ((parent = get_lock_parent(child))) {
1513 		child = parent;
1514 		depth++;
1515 	}
1516 	return depth;
1517 }
1518 
1519 /*
1520  * Return the forward or backward dependency list.
1521  *
1522  * @lock:   the lock_list to get its class's dependency list
1523  * @offset: the offset to struct lock_class to determine whether it is
1524  *          locks_after or locks_before
1525  */
1526 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1527 {
1528 	void *lock_class = lock->class;
1529 
1530 	return lock_class + offset;
1531 }
1532 /*
1533  * Return values of a bfs search:
1534  *
1535  * BFS_E* indicates an error
1536  * BFS_R* indicates a result (match or not)
1537  *
1538  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1539  *
1540  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1541  *
1542  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1543  *             *@target_entry.
1544  *
1545  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1546  *               _unchanged_.
1547  */
1548 enum bfs_result {
1549 	BFS_EINVALIDNODE = -2,
1550 	BFS_EQUEUEFULL = -1,
1551 	BFS_RMATCH = 0,
1552 	BFS_RNOMATCH = 1,
1553 };
1554 
1555 /*
1556  * bfs_result < 0 means error
1557  */
1558 static inline bool bfs_error(enum bfs_result res)
1559 {
1560 	return res < 0;
1561 }
1562 
1563 /*
1564  * DEP_*_BIT in lock_list::dep
1565  *
1566  * For dependency @prev -> @next:
1567  *
1568  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1569  *       (->read == 2)
1570  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1571  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1572  *   EN: @prev is exclusive locker and @next is non-recursive locker
1573  *
1574  * Note that we define the value of DEP_*_BITs so that:
1575  *   bit0 is prev->read == 0
1576  *   bit1 is next->read != 2
1577  */
1578 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1579 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1580 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1581 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1582 
1583 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1584 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1585 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1586 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1587 
1588 static inline unsigned int
1589 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1590 {
1591 	return (prev->read == 0) + ((next->read != 2) << 1);
1592 }
1593 
1594 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1595 {
1596 	return 1U << __calc_dep_bit(prev, next);
1597 }
1598 
1599 /*
1600  * calculate the dep_bit for backwards edges. We care about whether @prev is
1601  * shared and whether @next is recursive.
1602  */
1603 static inline unsigned int
1604 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1605 {
1606 	return (next->read != 2) + ((prev->read == 0) << 1);
1607 }
1608 
1609 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1610 {
1611 	return 1U << __calc_dep_bitb(prev, next);
1612 }
1613 
1614 /*
1615  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1616  * search.
1617  */
1618 static inline void __bfs_init_root(struct lock_list *lock,
1619 				   struct lock_class *class)
1620 {
1621 	lock->class = class;
1622 	lock->parent = NULL;
1623 	lock->only_xr = 0;
1624 }
1625 
1626 /*
1627  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1628  * root for a BFS search.
1629  *
1630  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1631  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1632  * and -(S*)->.
1633  */
1634 static inline void bfs_init_root(struct lock_list *lock,
1635 				 struct held_lock *hlock)
1636 {
1637 	__bfs_init_root(lock, hlock_class(hlock));
1638 	lock->only_xr = (hlock->read == 2);
1639 }
1640 
1641 /*
1642  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1643  *
1644  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1645  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1646  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1647  */
1648 static inline void bfs_init_rootb(struct lock_list *lock,
1649 				  struct held_lock *hlock)
1650 {
1651 	__bfs_init_root(lock, hlock_class(hlock));
1652 	lock->only_xr = (hlock->read != 0);
1653 }
1654 
1655 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1656 {
1657 	if (!lock || !lock->parent)
1658 		return NULL;
1659 
1660 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1661 				     &lock->entry, struct lock_list, entry);
1662 }
1663 
1664 /*
1665  * Breadth-First Search to find a strong path in the dependency graph.
1666  *
1667  * @source_entry: the source of the path we are searching for.
1668  * @data: data used for the second parameter of @match function
1669  * @match: match function for the search
1670  * @target_entry: pointer to the target of a matched path
1671  * @offset: the offset to struct lock_class to determine whether it is
1672  *          locks_after or locks_before
1673  *
1674  * We may have multiple edges (considering different kinds of dependencies,
1675  * e.g. ER and SN) between two nodes in the dependency graph. But
1676  * only the strong dependency path in the graph is relevant to deadlocks. A
1677  * strong dependency path is a dependency path that doesn't have two adjacent
1678  * dependencies as -(*R)-> -(S*)->, please see:
1679  *
1680  *         Documentation/locking/lockdep-design.rst
1681  *
1682  * for more explanation of the definition of strong dependency paths
1683  *
1684  * In __bfs(), we only traverse in the strong dependency path:
1685  *
1686  *     In lock_list::only_xr, we record whether the previous dependency only
1687  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1688  *     filter out any -(S*)-> in the current dependency and after that, the
1689  *     ->only_xr is set according to whether we only have -(*R)-> left.
1690  */
1691 static enum bfs_result __bfs(struct lock_list *source_entry,
1692 			     void *data,
1693 			     bool (*match)(struct lock_list *entry, void *data),
1694 			     bool (*skip)(struct lock_list *entry, void *data),
1695 			     struct lock_list **target_entry,
1696 			     int offset)
1697 {
1698 	struct circular_queue *cq = &lock_cq;
1699 	struct lock_list *lock = NULL;
1700 	struct lock_list *entry;
1701 	struct list_head *head;
1702 	unsigned int cq_depth;
1703 	bool first;
1704 
1705 	lockdep_assert_locked();
1706 
1707 	__cq_init(cq);
1708 	__cq_enqueue(cq, source_entry);
1709 
1710 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1711 		if (!lock->class)
1712 			return BFS_EINVALIDNODE;
1713 
1714 		/*
1715 		 * Step 1: check whether we already finish on this one.
1716 		 *
1717 		 * If we have visited all the dependencies from this @lock to
1718 		 * others (iow, if we have visited all lock_list entries in
1719 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1720 		 * and visit all the dependencies in the list and mark this
1721 		 * list accessed.
1722 		 */
1723 		if (lock_accessed(lock))
1724 			continue;
1725 		else
1726 			mark_lock_accessed(lock);
1727 
1728 		/*
1729 		 * Step 2: check whether prev dependency and this form a strong
1730 		 *         dependency path.
1731 		 */
1732 		if (lock->parent) { /* Parent exists, check prev dependency */
1733 			u8 dep = lock->dep;
1734 			bool prev_only_xr = lock->parent->only_xr;
1735 
1736 			/*
1737 			 * Mask out all -(S*)-> if we only have *R in previous
1738 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1739 			 * dependency.
1740 			 */
1741 			if (prev_only_xr)
1742 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1743 
1744 			/* If nothing left, we skip */
1745 			if (!dep)
1746 				continue;
1747 
1748 			/* If there are only -(*R)-> left, set that for the next step */
1749 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1750 		}
1751 
1752 		/*
1753 		 * Step 3: we haven't visited this and there is a strong
1754 		 *         dependency path to this, so check with @match.
1755 		 *         If @skip is provide and returns true, we skip this
1756 		 *         lock (and any path this lock is in).
1757 		 */
1758 		if (skip && skip(lock, data))
1759 			continue;
1760 
1761 		if (match(lock, data)) {
1762 			*target_entry = lock;
1763 			return BFS_RMATCH;
1764 		}
1765 
1766 		/*
1767 		 * Step 4: if not match, expand the path by adding the
1768 		 *         forward or backwards dependencies in the search
1769 		 *
1770 		 */
1771 		first = true;
1772 		head = get_dep_list(lock, offset);
1773 		list_for_each_entry_rcu(entry, head, entry) {
1774 			visit_lock_entry(entry, lock);
1775 
1776 			/*
1777 			 * Note we only enqueue the first of the list into the
1778 			 * queue, because we can always find a sibling
1779 			 * dependency from one (see __bfs_next()), as a result
1780 			 * the space of queue is saved.
1781 			 */
1782 			if (!first)
1783 				continue;
1784 
1785 			first = false;
1786 
1787 			if (__cq_enqueue(cq, entry))
1788 				return BFS_EQUEUEFULL;
1789 
1790 			cq_depth = __cq_get_elem_count(cq);
1791 			if (max_bfs_queue_depth < cq_depth)
1792 				max_bfs_queue_depth = cq_depth;
1793 		}
1794 	}
1795 
1796 	return BFS_RNOMATCH;
1797 }
1798 
1799 static inline enum bfs_result
1800 __bfs_forwards(struct lock_list *src_entry,
1801 	       void *data,
1802 	       bool (*match)(struct lock_list *entry, void *data),
1803 	       bool (*skip)(struct lock_list *entry, void *data),
1804 	       struct lock_list **target_entry)
1805 {
1806 	return __bfs(src_entry, data, match, skip, target_entry,
1807 		     offsetof(struct lock_class, locks_after));
1808 
1809 }
1810 
1811 static inline enum bfs_result
1812 __bfs_backwards(struct lock_list *src_entry,
1813 		void *data,
1814 		bool (*match)(struct lock_list *entry, void *data),
1815 	       bool (*skip)(struct lock_list *entry, void *data),
1816 		struct lock_list **target_entry)
1817 {
1818 	return __bfs(src_entry, data, match, skip, target_entry,
1819 		     offsetof(struct lock_class, locks_before));
1820 
1821 }
1822 
1823 static void print_lock_trace(const struct lock_trace *trace,
1824 			     unsigned int spaces)
1825 {
1826 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1827 }
1828 
1829 /*
1830  * Print a dependency chain entry (this is only done when a deadlock
1831  * has been detected):
1832  */
1833 static noinline void
1834 print_circular_bug_entry(struct lock_list *target, int depth)
1835 {
1836 	if (debug_locks_silent)
1837 		return;
1838 	printk("\n-> #%u", depth);
1839 	print_lock_name(target->class);
1840 	printk(KERN_CONT ":\n");
1841 	print_lock_trace(target->trace, 6);
1842 }
1843 
1844 static void
1845 print_circular_lock_scenario(struct held_lock *src,
1846 			     struct held_lock *tgt,
1847 			     struct lock_list *prt)
1848 {
1849 	struct lock_class *source = hlock_class(src);
1850 	struct lock_class *target = hlock_class(tgt);
1851 	struct lock_class *parent = prt->class;
1852 
1853 	/*
1854 	 * A direct locking problem where unsafe_class lock is taken
1855 	 * directly by safe_class lock, then all we need to show
1856 	 * is the deadlock scenario, as it is obvious that the
1857 	 * unsafe lock is taken under the safe lock.
1858 	 *
1859 	 * But if there is a chain instead, where the safe lock takes
1860 	 * an intermediate lock (middle_class) where this lock is
1861 	 * not the same as the safe lock, then the lock chain is
1862 	 * used to describe the problem. Otherwise we would need
1863 	 * to show a different CPU case for each link in the chain
1864 	 * from the safe_class lock to the unsafe_class lock.
1865 	 */
1866 	if (parent != source) {
1867 		printk("Chain exists of:\n  ");
1868 		__print_lock_name(source);
1869 		printk(KERN_CONT " --> ");
1870 		__print_lock_name(parent);
1871 		printk(KERN_CONT " --> ");
1872 		__print_lock_name(target);
1873 		printk(KERN_CONT "\n\n");
1874 	}
1875 
1876 	printk(" Possible unsafe locking scenario:\n\n");
1877 	printk("       CPU0                    CPU1\n");
1878 	printk("       ----                    ----\n");
1879 	printk("  lock(");
1880 	__print_lock_name(target);
1881 	printk(KERN_CONT ");\n");
1882 	printk("                               lock(");
1883 	__print_lock_name(parent);
1884 	printk(KERN_CONT ");\n");
1885 	printk("                               lock(");
1886 	__print_lock_name(target);
1887 	printk(KERN_CONT ");\n");
1888 	printk("  lock(");
1889 	__print_lock_name(source);
1890 	printk(KERN_CONT ");\n");
1891 	printk("\n *** DEADLOCK ***\n\n");
1892 }
1893 
1894 /*
1895  * When a circular dependency is detected, print the
1896  * header first:
1897  */
1898 static noinline void
1899 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1900 			struct held_lock *check_src,
1901 			struct held_lock *check_tgt)
1902 {
1903 	struct task_struct *curr = current;
1904 
1905 	if (debug_locks_silent)
1906 		return;
1907 
1908 	pr_warn("\n");
1909 	pr_warn("======================================================\n");
1910 	pr_warn("WARNING: possible circular locking dependency detected\n");
1911 	print_kernel_ident();
1912 	pr_warn("------------------------------------------------------\n");
1913 	pr_warn("%s/%d is trying to acquire lock:\n",
1914 		curr->comm, task_pid_nr(curr));
1915 	print_lock(check_src);
1916 
1917 	pr_warn("\nbut task is already holding lock:\n");
1918 
1919 	print_lock(check_tgt);
1920 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1921 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1922 
1923 	print_circular_bug_entry(entry, depth);
1924 }
1925 
1926 /*
1927  * We are about to add A -> B into the dependency graph, and in __bfs() a
1928  * strong dependency path A -> .. -> B is found: hlock_class equals
1929  * entry->class.
1930  *
1931  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1932  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1933  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1934  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1935  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1936  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1937  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1938  *
1939  * We need to make sure both the start and the end of A -> .. -> B is not
1940  * weaker than A -> B. For the start part, please see the comment in
1941  * check_redundant(). For the end part, we need:
1942  *
1943  * Either
1944  *
1945  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1946  *
1947  * or
1948  *
1949  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1950  *
1951  */
1952 static inline bool hlock_equal(struct lock_list *entry, void *data)
1953 {
1954 	struct held_lock *hlock = (struct held_lock *)data;
1955 
1956 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1957 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1958 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1959 }
1960 
1961 /*
1962  * We are about to add B -> A into the dependency graph, and in __bfs() a
1963  * strong dependency path A -> .. -> B is found: hlock_class equals
1964  * entry->class.
1965  *
1966  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1967  * dependency cycle, that means:
1968  *
1969  * Either
1970  *
1971  *     a) B -> A is -(E*)->
1972  *
1973  * or
1974  *
1975  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1976  *
1977  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1978  */
1979 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1980 {
1981 	struct held_lock *hlock = (struct held_lock *)data;
1982 
1983 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1984 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1985 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1986 }
1987 
1988 static noinline void print_circular_bug(struct lock_list *this,
1989 				struct lock_list *target,
1990 				struct held_lock *check_src,
1991 				struct held_lock *check_tgt)
1992 {
1993 	struct task_struct *curr = current;
1994 	struct lock_list *parent;
1995 	struct lock_list *first_parent;
1996 	int depth;
1997 
1998 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1999 		return;
2000 
2001 	this->trace = save_trace();
2002 	if (!this->trace)
2003 		return;
2004 
2005 	depth = get_lock_depth(target);
2006 
2007 	print_circular_bug_header(target, depth, check_src, check_tgt);
2008 
2009 	parent = get_lock_parent(target);
2010 	first_parent = parent;
2011 
2012 	while (parent) {
2013 		print_circular_bug_entry(parent, --depth);
2014 		parent = get_lock_parent(parent);
2015 	}
2016 
2017 	printk("\nother info that might help us debug this:\n\n");
2018 	print_circular_lock_scenario(check_src, check_tgt,
2019 				     first_parent);
2020 
2021 	lockdep_print_held_locks(curr);
2022 
2023 	printk("\nstack backtrace:\n");
2024 	dump_stack();
2025 }
2026 
2027 static noinline void print_bfs_bug(int ret)
2028 {
2029 	if (!debug_locks_off_graph_unlock())
2030 		return;
2031 
2032 	/*
2033 	 * Breadth-first-search failed, graph got corrupted?
2034 	 */
2035 	WARN(1, "lockdep bfs error:%d\n", ret);
2036 }
2037 
2038 static bool noop_count(struct lock_list *entry, void *data)
2039 {
2040 	(*(unsigned long *)data)++;
2041 	return false;
2042 }
2043 
2044 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2045 {
2046 	unsigned long  count = 0;
2047 	struct lock_list *target_entry;
2048 
2049 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2050 
2051 	return count;
2052 }
2053 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2054 {
2055 	unsigned long ret, flags;
2056 	struct lock_list this;
2057 
2058 	__bfs_init_root(&this, class);
2059 
2060 	raw_local_irq_save(flags);
2061 	lockdep_lock();
2062 	ret = __lockdep_count_forward_deps(&this);
2063 	lockdep_unlock();
2064 	raw_local_irq_restore(flags);
2065 
2066 	return ret;
2067 }
2068 
2069 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2070 {
2071 	unsigned long  count = 0;
2072 	struct lock_list *target_entry;
2073 
2074 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2075 
2076 	return count;
2077 }
2078 
2079 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2080 {
2081 	unsigned long ret, flags;
2082 	struct lock_list this;
2083 
2084 	__bfs_init_root(&this, class);
2085 
2086 	raw_local_irq_save(flags);
2087 	lockdep_lock();
2088 	ret = __lockdep_count_backward_deps(&this);
2089 	lockdep_unlock();
2090 	raw_local_irq_restore(flags);
2091 
2092 	return ret;
2093 }
2094 
2095 /*
2096  * Check that the dependency graph starting at <src> can lead to
2097  * <target> or not.
2098  */
2099 static noinline enum bfs_result
2100 check_path(struct held_lock *target, struct lock_list *src_entry,
2101 	   bool (*match)(struct lock_list *entry, void *data),
2102 	   bool (*skip)(struct lock_list *entry, void *data),
2103 	   struct lock_list **target_entry)
2104 {
2105 	enum bfs_result ret;
2106 
2107 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2108 
2109 	if (unlikely(bfs_error(ret)))
2110 		print_bfs_bug(ret);
2111 
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Prove that the dependency graph starting at <src> can not
2117  * lead to <target>. If it can, there is a circle when adding
2118  * <target> -> <src> dependency.
2119  *
2120  * Print an error and return BFS_RMATCH if it does.
2121  */
2122 static noinline enum bfs_result
2123 check_noncircular(struct held_lock *src, struct held_lock *target,
2124 		  struct lock_trace **const trace)
2125 {
2126 	enum bfs_result ret;
2127 	struct lock_list *target_entry;
2128 	struct lock_list src_entry;
2129 
2130 	bfs_init_root(&src_entry, src);
2131 
2132 	debug_atomic_inc(nr_cyclic_checks);
2133 
2134 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2135 
2136 	if (unlikely(ret == BFS_RMATCH)) {
2137 		if (!*trace) {
2138 			/*
2139 			 * If save_trace fails here, the printing might
2140 			 * trigger a WARN but because of the !nr_entries it
2141 			 * should not do bad things.
2142 			 */
2143 			*trace = save_trace();
2144 		}
2145 
2146 		print_circular_bug(&src_entry, target_entry, src, target);
2147 	}
2148 
2149 	return ret;
2150 }
2151 
2152 #ifdef CONFIG_TRACE_IRQFLAGS
2153 
2154 /*
2155  * Forwards and backwards subgraph searching, for the purposes of
2156  * proving that two subgraphs can be connected by a new dependency
2157  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2158  *
2159  * A irq safe->unsafe deadlock happens with the following conditions:
2160  *
2161  * 1) We have a strong dependency path A -> ... -> B
2162  *
2163  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2164  *    irq can create a new dependency B -> A (consider the case that a holder
2165  *    of B gets interrupted by an irq whose handler will try to acquire A).
2166  *
2167  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2168  *    strong circle:
2169  *
2170  *      For the usage bits of B:
2171  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2172  *           ENABLED_IRQ usage suffices.
2173  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2174  *           ENABLED_IRQ_*_READ usage suffices.
2175  *
2176  *      For the usage bits of A:
2177  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2178  *           USED_IN_IRQ usage suffices.
2179  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2180  *           USED_IN_IRQ_*_READ usage suffices.
2181  */
2182 
2183 /*
2184  * There is a strong dependency path in the dependency graph: A -> B, and now
2185  * we need to decide which usage bit of A should be accumulated to detect
2186  * safe->unsafe bugs.
2187  *
2188  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2189  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2190  *
2191  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2192  * path, any usage of A should be considered. Otherwise, we should only
2193  * consider _READ usage.
2194  */
2195 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2196 {
2197 	if (!entry->only_xr)
2198 		*(unsigned long *)mask |= entry->class->usage_mask;
2199 	else /* Mask out _READ usage bits */
2200 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2201 
2202 	return false;
2203 }
2204 
2205 /*
2206  * There is a strong dependency path in the dependency graph: A -> B, and now
2207  * we need to decide which usage bit of B conflicts with the usage bits of A,
2208  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2209  *
2210  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2211  * path, any usage of B should be considered. Otherwise, we should only
2212  * consider _READ usage.
2213  */
2214 static inline bool usage_match(struct lock_list *entry, void *mask)
2215 {
2216 	if (!entry->only_xr)
2217 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2218 	else /* Mask out _READ usage bits */
2219 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2220 }
2221 
2222 static inline bool usage_skip(struct lock_list *entry, void *mask)
2223 {
2224 	/*
2225 	 * Skip local_lock() for irq inversion detection.
2226 	 *
2227 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2228 	 * dependency.
2229 	 *
2230 	 * For RT, an irq inversion happens when we have lock A and B, and on
2231 	 * some CPU we can have:
2232 	 *
2233 	 *	lock(A);
2234 	 *	<interrupted>
2235 	 *	  lock(B);
2236 	 *
2237 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2238 	 *
2239 	 * Now we prove local_lock() cannot exist in that dependency. First we
2240 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2241 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2242 	 * wait context check will complain. And since B is not a sleep lock,
2243 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2244 	 * local_lock() is 3, which is greater than 2, therefore there is no
2245 	 * way the local_lock() exists in the dependency B -> ... -> A.
2246 	 *
2247 	 * As a result, we will skip local_lock(), when we search for irq
2248 	 * inversion bugs.
2249 	 */
2250 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2251 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2252 			return false;
2253 
2254 		return true;
2255 	}
2256 
2257 	return false;
2258 }
2259 
2260 /*
2261  * Find a node in the forwards-direction dependency sub-graph starting
2262  * at @root->class that matches @bit.
2263  *
2264  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2265  * into *@target_entry.
2266  */
2267 static enum bfs_result
2268 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2269 			struct lock_list **target_entry)
2270 {
2271 	enum bfs_result result;
2272 
2273 	debug_atomic_inc(nr_find_usage_forwards_checks);
2274 
2275 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2276 
2277 	return result;
2278 }
2279 
2280 /*
2281  * Find a node in the backwards-direction dependency sub-graph starting
2282  * at @root->class that matches @bit.
2283  */
2284 static enum bfs_result
2285 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2286 			struct lock_list **target_entry)
2287 {
2288 	enum bfs_result result;
2289 
2290 	debug_atomic_inc(nr_find_usage_backwards_checks);
2291 
2292 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2293 
2294 	return result;
2295 }
2296 
2297 static void print_lock_class_header(struct lock_class *class, int depth)
2298 {
2299 	int bit;
2300 
2301 	printk("%*s->", depth, "");
2302 	print_lock_name(class);
2303 #ifdef CONFIG_DEBUG_LOCKDEP
2304 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2305 #endif
2306 	printk(KERN_CONT " {\n");
2307 
2308 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2309 		if (class->usage_mask & (1 << bit)) {
2310 			int len = depth;
2311 
2312 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2313 			len += printk(KERN_CONT " at:\n");
2314 			print_lock_trace(class->usage_traces[bit], len);
2315 		}
2316 	}
2317 	printk("%*s }\n", depth, "");
2318 
2319 	printk("%*s ... key      at: [<%px>] %pS\n",
2320 		depth, "", class->key, class->key);
2321 }
2322 
2323 /*
2324  * Dependency path printing:
2325  *
2326  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2327  * printing out each lock in the dependency path will help on understanding how
2328  * the deadlock could happen. Here are some details about dependency path
2329  * printing:
2330  *
2331  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2332  * 	for a lock dependency A -> B, there are two lock_lists:
2333  *
2334  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2335  * 		->links_to is A. In this case, we can say the lock_list is
2336  * 		"A -> B" (forwards case).
2337  *
2338  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2339  * 		and ->links_to is B. In this case, we can say the lock_list is
2340  * 		"B <- A" (bacwards case).
2341  *
2342  * 	The ->trace of both a) and b) point to the call trace where B was
2343  * 	acquired with A held.
2344  *
2345  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2346  * 	represent a certain lock dependency, it only provides an initial entry
2347  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2348  * 	->class is A, as a result BFS will search all dependencies starting with
2349  * 	A, e.g. A -> B or A -> C.
2350  *
2351  * 	The notation of a forwards helper lock_list is like "-> A", which means
2352  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2353  * 	or A -> C.
2354  *
2355  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2356  * 	we should search the backwards dependencies ending with "B", e.g.
2357  * 	B <- A or B <- C.
2358  */
2359 
2360 /*
2361  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2362  *
2363  * We have a lock dependency path as follow:
2364  *
2365  *    @root                                                                 @leaf
2366  *      |                                                                     |
2367  *      V                                                                     V
2368  *	          ->parent                                   ->parent
2369  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2370  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2371  *
2372  * , so it's natural that we start from @leaf and print every ->class and
2373  * ->trace until we reach the @root.
2374  */
2375 static void __used
2376 print_shortest_lock_dependencies(struct lock_list *leaf,
2377 				 struct lock_list *root)
2378 {
2379 	struct lock_list *entry = leaf;
2380 	int depth;
2381 
2382 	/*compute depth from generated tree by BFS*/
2383 	depth = get_lock_depth(leaf);
2384 
2385 	do {
2386 		print_lock_class_header(entry->class, depth);
2387 		printk("%*s ... acquired at:\n", depth, "");
2388 		print_lock_trace(entry->trace, 2);
2389 		printk("\n");
2390 
2391 		if (depth == 0 && (entry != root)) {
2392 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2393 			break;
2394 		}
2395 
2396 		entry = get_lock_parent(entry);
2397 		depth--;
2398 	} while (entry && (depth >= 0));
2399 }
2400 
2401 /*
2402  * printk the shortest lock dependencies from @leaf to @root.
2403  *
2404  * We have a lock dependency path (from a backwards search) as follow:
2405  *
2406  *    @leaf                                                                 @root
2407  *      |                                                                     |
2408  *      V                                                                     V
2409  *	          ->parent                                   ->parent
2410  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2411  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2412  *
2413  * , so when we iterate from @leaf to @root, we actually print the lock
2414  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2415  *
2416  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2417  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2418  * trace of L1 in the dependency path, which is alright, because most of the
2419  * time we can figure out where L1 is held from the call trace of L2.
2420  */
2421 static void __used
2422 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2423 					   struct lock_list *root)
2424 {
2425 	struct lock_list *entry = leaf;
2426 	const struct lock_trace *trace = NULL;
2427 	int depth;
2428 
2429 	/*compute depth from generated tree by BFS*/
2430 	depth = get_lock_depth(leaf);
2431 
2432 	do {
2433 		print_lock_class_header(entry->class, depth);
2434 		if (trace) {
2435 			printk("%*s ... acquired at:\n", depth, "");
2436 			print_lock_trace(trace, 2);
2437 			printk("\n");
2438 		}
2439 
2440 		/*
2441 		 * Record the pointer to the trace for the next lock_list
2442 		 * entry, see the comments for the function.
2443 		 */
2444 		trace = entry->trace;
2445 
2446 		if (depth == 0 && (entry != root)) {
2447 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2448 			break;
2449 		}
2450 
2451 		entry = get_lock_parent(entry);
2452 		depth--;
2453 	} while (entry && (depth >= 0));
2454 }
2455 
2456 static void
2457 print_irq_lock_scenario(struct lock_list *safe_entry,
2458 			struct lock_list *unsafe_entry,
2459 			struct lock_class *prev_class,
2460 			struct lock_class *next_class)
2461 {
2462 	struct lock_class *safe_class = safe_entry->class;
2463 	struct lock_class *unsafe_class = unsafe_entry->class;
2464 	struct lock_class *middle_class = prev_class;
2465 
2466 	if (middle_class == safe_class)
2467 		middle_class = next_class;
2468 
2469 	/*
2470 	 * A direct locking problem where unsafe_class lock is taken
2471 	 * directly by safe_class lock, then all we need to show
2472 	 * is the deadlock scenario, as it is obvious that the
2473 	 * unsafe lock is taken under the safe lock.
2474 	 *
2475 	 * But if there is a chain instead, where the safe lock takes
2476 	 * an intermediate lock (middle_class) where this lock is
2477 	 * not the same as the safe lock, then the lock chain is
2478 	 * used to describe the problem. Otherwise we would need
2479 	 * to show a different CPU case for each link in the chain
2480 	 * from the safe_class lock to the unsafe_class lock.
2481 	 */
2482 	if (middle_class != unsafe_class) {
2483 		printk("Chain exists of:\n  ");
2484 		__print_lock_name(safe_class);
2485 		printk(KERN_CONT " --> ");
2486 		__print_lock_name(middle_class);
2487 		printk(KERN_CONT " --> ");
2488 		__print_lock_name(unsafe_class);
2489 		printk(KERN_CONT "\n\n");
2490 	}
2491 
2492 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2493 	printk("       CPU0                    CPU1\n");
2494 	printk("       ----                    ----\n");
2495 	printk("  lock(");
2496 	__print_lock_name(unsafe_class);
2497 	printk(KERN_CONT ");\n");
2498 	printk("                               local_irq_disable();\n");
2499 	printk("                               lock(");
2500 	__print_lock_name(safe_class);
2501 	printk(KERN_CONT ");\n");
2502 	printk("                               lock(");
2503 	__print_lock_name(middle_class);
2504 	printk(KERN_CONT ");\n");
2505 	printk("  <Interrupt>\n");
2506 	printk("    lock(");
2507 	__print_lock_name(safe_class);
2508 	printk(KERN_CONT ");\n");
2509 	printk("\n *** DEADLOCK ***\n\n");
2510 }
2511 
2512 static void
2513 print_bad_irq_dependency(struct task_struct *curr,
2514 			 struct lock_list *prev_root,
2515 			 struct lock_list *next_root,
2516 			 struct lock_list *backwards_entry,
2517 			 struct lock_list *forwards_entry,
2518 			 struct held_lock *prev,
2519 			 struct held_lock *next,
2520 			 enum lock_usage_bit bit1,
2521 			 enum lock_usage_bit bit2,
2522 			 const char *irqclass)
2523 {
2524 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2525 		return;
2526 
2527 	pr_warn("\n");
2528 	pr_warn("=====================================================\n");
2529 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2530 		irqclass, irqclass);
2531 	print_kernel_ident();
2532 	pr_warn("-----------------------------------------------------\n");
2533 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2534 		curr->comm, task_pid_nr(curr),
2535 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2536 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2537 		lockdep_hardirqs_enabled(),
2538 		curr->softirqs_enabled);
2539 	print_lock(next);
2540 
2541 	pr_warn("\nand this task is already holding:\n");
2542 	print_lock(prev);
2543 	pr_warn("which would create a new lock dependency:\n");
2544 	print_lock_name(hlock_class(prev));
2545 	pr_cont(" ->");
2546 	print_lock_name(hlock_class(next));
2547 	pr_cont("\n");
2548 
2549 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2550 		irqclass);
2551 	print_lock_name(backwards_entry->class);
2552 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2553 
2554 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2555 
2556 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2557 	print_lock_name(forwards_entry->class);
2558 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2559 	pr_warn("...");
2560 
2561 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2562 
2563 	pr_warn("\nother info that might help us debug this:\n\n");
2564 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2565 				hlock_class(prev), hlock_class(next));
2566 
2567 	lockdep_print_held_locks(curr);
2568 
2569 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2570 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2571 
2572 	pr_warn("\nthe dependencies between the lock to be acquired");
2573 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2574 	next_root->trace = save_trace();
2575 	if (!next_root->trace)
2576 		return;
2577 	print_shortest_lock_dependencies(forwards_entry, next_root);
2578 
2579 	pr_warn("\nstack backtrace:\n");
2580 	dump_stack();
2581 }
2582 
2583 static const char *state_names[] = {
2584 #define LOCKDEP_STATE(__STATE) \
2585 	__stringify(__STATE),
2586 #include "lockdep_states.h"
2587 #undef LOCKDEP_STATE
2588 };
2589 
2590 static const char *state_rnames[] = {
2591 #define LOCKDEP_STATE(__STATE) \
2592 	__stringify(__STATE)"-READ",
2593 #include "lockdep_states.h"
2594 #undef LOCKDEP_STATE
2595 };
2596 
2597 static inline const char *state_name(enum lock_usage_bit bit)
2598 {
2599 	if (bit & LOCK_USAGE_READ_MASK)
2600 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2601 	else
2602 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2603 }
2604 
2605 /*
2606  * The bit number is encoded like:
2607  *
2608  *  bit0: 0 exclusive, 1 read lock
2609  *  bit1: 0 used in irq, 1 irq enabled
2610  *  bit2-n: state
2611  */
2612 static int exclusive_bit(int new_bit)
2613 {
2614 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2615 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2616 
2617 	/*
2618 	 * keep state, bit flip the direction and strip read.
2619 	 */
2620 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2621 }
2622 
2623 /*
2624  * Observe that when given a bitmask where each bitnr is encoded as above, a
2625  * right shift of the mask transforms the individual bitnrs as -1 and
2626  * conversely, a left shift transforms into +1 for the individual bitnrs.
2627  *
2628  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2629  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2630  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2631  *
2632  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2633  *
2634  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2635  * all bits set) and recompose with bitnr1 flipped.
2636  */
2637 static unsigned long invert_dir_mask(unsigned long mask)
2638 {
2639 	unsigned long excl = 0;
2640 
2641 	/* Invert dir */
2642 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2643 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2644 
2645 	return excl;
2646 }
2647 
2648 /*
2649  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2650  * usage may cause deadlock too, for example:
2651  *
2652  * P1				P2
2653  * <irq disabled>
2654  * write_lock(l1);		<irq enabled>
2655  *				read_lock(l2);
2656  * write_lock(l2);
2657  * 				<in irq>
2658  * 				read_lock(l1);
2659  *
2660  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2661  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2662  * deadlock.
2663  *
2664  * In fact, all of the following cases may cause deadlocks:
2665  *
2666  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2667  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2668  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2669  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2670  *
2671  * As a result, to calculate the "exclusive mask", first we invert the
2672  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2673  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2674  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2675  */
2676 static unsigned long exclusive_mask(unsigned long mask)
2677 {
2678 	unsigned long excl = invert_dir_mask(mask);
2679 
2680 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2681 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2682 
2683 	return excl;
2684 }
2685 
2686 /*
2687  * Retrieve the _possible_ original mask to which @mask is
2688  * exclusive. Ie: this is the opposite of exclusive_mask().
2689  * Note that 2 possible original bits can match an exclusive
2690  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2691  * cleared. So both are returned for each exclusive bit.
2692  */
2693 static unsigned long original_mask(unsigned long mask)
2694 {
2695 	unsigned long excl = invert_dir_mask(mask);
2696 
2697 	/* Include read in existing usages */
2698 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2699 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2700 
2701 	return excl;
2702 }
2703 
2704 /*
2705  * Find the first pair of bit match between an original
2706  * usage mask and an exclusive usage mask.
2707  */
2708 static int find_exclusive_match(unsigned long mask,
2709 				unsigned long excl_mask,
2710 				enum lock_usage_bit *bitp,
2711 				enum lock_usage_bit *excl_bitp)
2712 {
2713 	int bit, excl, excl_read;
2714 
2715 	for_each_set_bit(bit, &mask, LOCK_USED) {
2716 		/*
2717 		 * exclusive_bit() strips the read bit, however,
2718 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2719 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2720 		 */
2721 		excl = exclusive_bit(bit);
2722 		excl_read = excl | LOCK_USAGE_READ_MASK;
2723 		if (excl_mask & lock_flag(excl)) {
2724 			*bitp = bit;
2725 			*excl_bitp = excl;
2726 			return 0;
2727 		} else if (excl_mask & lock_flag(excl_read)) {
2728 			*bitp = bit;
2729 			*excl_bitp = excl_read;
2730 			return 0;
2731 		}
2732 	}
2733 	return -1;
2734 }
2735 
2736 /*
2737  * Prove that the new dependency does not connect a hardirq-safe(-read)
2738  * lock with a hardirq-unsafe lock - to achieve this we search
2739  * the backwards-subgraph starting at <prev>, and the
2740  * forwards-subgraph starting at <next>:
2741  */
2742 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2743 			   struct held_lock *next)
2744 {
2745 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2746 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2747 	struct lock_list *target_entry1;
2748 	struct lock_list *target_entry;
2749 	struct lock_list this, that;
2750 	enum bfs_result ret;
2751 
2752 	/*
2753 	 * Step 1: gather all hard/soft IRQs usages backward in an
2754 	 * accumulated usage mask.
2755 	 */
2756 	bfs_init_rootb(&this, prev);
2757 
2758 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2759 	if (bfs_error(ret)) {
2760 		print_bfs_bug(ret);
2761 		return 0;
2762 	}
2763 
2764 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2765 	if (!usage_mask)
2766 		return 1;
2767 
2768 	/*
2769 	 * Step 2: find exclusive uses forward that match the previous
2770 	 * backward accumulated mask.
2771 	 */
2772 	forward_mask = exclusive_mask(usage_mask);
2773 
2774 	bfs_init_root(&that, next);
2775 
2776 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2777 	if (bfs_error(ret)) {
2778 		print_bfs_bug(ret);
2779 		return 0;
2780 	}
2781 	if (ret == BFS_RNOMATCH)
2782 		return 1;
2783 
2784 	/*
2785 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2786 	 * list whose usage mask matches the exclusive usage mask from the
2787 	 * lock found on the forward list.
2788 	 *
2789 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2790 	 * the follow case:
2791 	 *
2792 	 * When trying to add A -> B to the graph, we find that there is a
2793 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2794 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2795 	 * invert bits of M's usage_mask, we will find another lock N that is
2796 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2797 	 * cause a inversion deadlock.
2798 	 */
2799 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2800 
2801 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2802 	if (bfs_error(ret)) {
2803 		print_bfs_bug(ret);
2804 		return 0;
2805 	}
2806 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2807 		return 1;
2808 
2809 	/*
2810 	 * Step 4: narrow down to a pair of incompatible usage bits
2811 	 * and report it.
2812 	 */
2813 	ret = find_exclusive_match(target_entry->class->usage_mask,
2814 				   target_entry1->class->usage_mask,
2815 				   &backward_bit, &forward_bit);
2816 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2817 		return 1;
2818 
2819 	print_bad_irq_dependency(curr, &this, &that,
2820 				 target_entry, target_entry1,
2821 				 prev, next,
2822 				 backward_bit, forward_bit,
2823 				 state_name(backward_bit));
2824 
2825 	return 0;
2826 }
2827 
2828 #else
2829 
2830 static inline int check_irq_usage(struct task_struct *curr,
2831 				  struct held_lock *prev, struct held_lock *next)
2832 {
2833 	return 1;
2834 }
2835 
2836 static inline bool usage_skip(struct lock_list *entry, void *mask)
2837 {
2838 	return false;
2839 }
2840 
2841 #endif /* CONFIG_TRACE_IRQFLAGS */
2842 
2843 #ifdef CONFIG_LOCKDEP_SMALL
2844 /*
2845  * Check that the dependency graph starting at <src> can lead to
2846  * <target> or not. If it can, <src> -> <target> dependency is already
2847  * in the graph.
2848  *
2849  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2850  * any error appears in the bfs search.
2851  */
2852 static noinline enum bfs_result
2853 check_redundant(struct held_lock *src, struct held_lock *target)
2854 {
2855 	enum bfs_result ret;
2856 	struct lock_list *target_entry;
2857 	struct lock_list src_entry;
2858 
2859 	bfs_init_root(&src_entry, src);
2860 	/*
2861 	 * Special setup for check_redundant().
2862 	 *
2863 	 * To report redundant, we need to find a strong dependency path that
2864 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2865 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2866 	 * we achieve this by setting the initial node's ->only_xr to true in
2867 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2868 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2869 	 */
2870 	src_entry.only_xr = src->read == 0;
2871 
2872 	debug_atomic_inc(nr_redundant_checks);
2873 
2874 	/*
2875 	 * Note: we skip local_lock() for redundant check, because as the
2876 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2877 	 * the same.
2878 	 */
2879 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2880 
2881 	if (ret == BFS_RMATCH)
2882 		debug_atomic_inc(nr_redundant);
2883 
2884 	return ret;
2885 }
2886 
2887 #else
2888 
2889 static inline enum bfs_result
2890 check_redundant(struct held_lock *src, struct held_lock *target)
2891 {
2892 	return BFS_RNOMATCH;
2893 }
2894 
2895 #endif
2896 
2897 static void inc_chains(int irq_context)
2898 {
2899 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2900 		nr_hardirq_chains++;
2901 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2902 		nr_softirq_chains++;
2903 	else
2904 		nr_process_chains++;
2905 }
2906 
2907 static void dec_chains(int irq_context)
2908 {
2909 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2910 		nr_hardirq_chains--;
2911 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2912 		nr_softirq_chains--;
2913 	else
2914 		nr_process_chains--;
2915 }
2916 
2917 static void
2918 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2919 {
2920 	struct lock_class *next = hlock_class(nxt);
2921 	struct lock_class *prev = hlock_class(prv);
2922 
2923 	printk(" Possible unsafe locking scenario:\n\n");
2924 	printk("       CPU0\n");
2925 	printk("       ----\n");
2926 	printk("  lock(");
2927 	__print_lock_name(prev);
2928 	printk(KERN_CONT ");\n");
2929 	printk("  lock(");
2930 	__print_lock_name(next);
2931 	printk(KERN_CONT ");\n");
2932 	printk("\n *** DEADLOCK ***\n\n");
2933 	printk(" May be due to missing lock nesting notation\n\n");
2934 }
2935 
2936 static void
2937 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2938 		   struct held_lock *next)
2939 {
2940 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2941 		return;
2942 
2943 	pr_warn("\n");
2944 	pr_warn("============================================\n");
2945 	pr_warn("WARNING: possible recursive locking detected\n");
2946 	print_kernel_ident();
2947 	pr_warn("--------------------------------------------\n");
2948 	pr_warn("%s/%d is trying to acquire lock:\n",
2949 		curr->comm, task_pid_nr(curr));
2950 	print_lock(next);
2951 	pr_warn("\nbut task is already holding lock:\n");
2952 	print_lock(prev);
2953 
2954 	pr_warn("\nother info that might help us debug this:\n");
2955 	print_deadlock_scenario(next, prev);
2956 	lockdep_print_held_locks(curr);
2957 
2958 	pr_warn("\nstack backtrace:\n");
2959 	dump_stack();
2960 }
2961 
2962 /*
2963  * Check whether we are holding such a class already.
2964  *
2965  * (Note that this has to be done separately, because the graph cannot
2966  * detect such classes of deadlocks.)
2967  *
2968  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2969  * lock class is held but nest_lock is also held, i.e. we rely on the
2970  * nest_lock to avoid the deadlock.
2971  */
2972 static int
2973 check_deadlock(struct task_struct *curr, struct held_lock *next)
2974 {
2975 	struct held_lock *prev;
2976 	struct held_lock *nest = NULL;
2977 	int i;
2978 
2979 	for (i = 0; i < curr->lockdep_depth; i++) {
2980 		prev = curr->held_locks + i;
2981 
2982 		if (prev->instance == next->nest_lock)
2983 			nest = prev;
2984 
2985 		if (hlock_class(prev) != hlock_class(next))
2986 			continue;
2987 
2988 		/*
2989 		 * Allow read-after-read recursion of the same
2990 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2991 		 */
2992 		if ((next->read == 2) && prev->read)
2993 			continue;
2994 
2995 		/*
2996 		 * We're holding the nest_lock, which serializes this lock's
2997 		 * nesting behaviour.
2998 		 */
2999 		if (nest)
3000 			return 2;
3001 
3002 		print_deadlock_bug(curr, prev, next);
3003 		return 0;
3004 	}
3005 	return 1;
3006 }
3007 
3008 /*
3009  * There was a chain-cache miss, and we are about to add a new dependency
3010  * to a previous lock. We validate the following rules:
3011  *
3012  *  - would the adding of the <prev> -> <next> dependency create a
3013  *    circular dependency in the graph? [== circular deadlock]
3014  *
3015  *  - does the new prev->next dependency connect any hardirq-safe lock
3016  *    (in the full backwards-subgraph starting at <prev>) with any
3017  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3018  *    <next>)? [== illegal lock inversion with hardirq contexts]
3019  *
3020  *  - does the new prev->next dependency connect any softirq-safe lock
3021  *    (in the full backwards-subgraph starting at <prev>) with any
3022  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3023  *    <next>)? [== illegal lock inversion with softirq contexts]
3024  *
3025  * any of these scenarios could lead to a deadlock.
3026  *
3027  * Then if all the validations pass, we add the forwards and backwards
3028  * dependency.
3029  */
3030 static int
3031 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3032 	       struct held_lock *next, u16 distance,
3033 	       struct lock_trace **const trace)
3034 {
3035 	struct lock_list *entry;
3036 	enum bfs_result ret;
3037 
3038 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3039 		/*
3040 		 * The warning statements below may trigger a use-after-free
3041 		 * of the class name. It is better to trigger a use-after free
3042 		 * and to have the class name most of the time instead of not
3043 		 * having the class name available.
3044 		 */
3045 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3046 			  "Detected use-after-free of lock class %px/%s\n",
3047 			  hlock_class(prev),
3048 			  hlock_class(prev)->name);
3049 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3050 			  "Detected use-after-free of lock class %px/%s\n",
3051 			  hlock_class(next),
3052 			  hlock_class(next)->name);
3053 		return 2;
3054 	}
3055 
3056 	/*
3057 	 * Prove that the new <prev> -> <next> dependency would not
3058 	 * create a circular dependency in the graph. (We do this by
3059 	 * a breadth-first search into the graph starting at <next>,
3060 	 * and check whether we can reach <prev>.)
3061 	 *
3062 	 * The search is limited by the size of the circular queue (i.e.,
3063 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3064 	 * in the graph whose neighbours are to be checked.
3065 	 */
3066 	ret = check_noncircular(next, prev, trace);
3067 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3068 		return 0;
3069 
3070 	if (!check_irq_usage(curr, prev, next))
3071 		return 0;
3072 
3073 	/*
3074 	 * Is the <prev> -> <next> dependency already present?
3075 	 *
3076 	 * (this may occur even though this is a new chain: consider
3077 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3078 	 *  chains - the second one will be new, but L1 already has
3079 	 *  L2 added to its dependency list, due to the first chain.)
3080 	 */
3081 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3082 		if (entry->class == hlock_class(next)) {
3083 			if (distance == 1)
3084 				entry->distance = 1;
3085 			entry->dep |= calc_dep(prev, next);
3086 
3087 			/*
3088 			 * Also, update the reverse dependency in @next's
3089 			 * ->locks_before list.
3090 			 *
3091 			 *  Here we reuse @entry as the cursor, which is fine
3092 			 *  because we won't go to the next iteration of the
3093 			 *  outer loop:
3094 			 *
3095 			 *  For normal cases, we return in the inner loop.
3096 			 *
3097 			 *  If we fail to return, we have inconsistency, i.e.
3098 			 *  <prev>::locks_after contains <next> while
3099 			 *  <next>::locks_before doesn't contain <prev>. In
3100 			 *  that case, we return after the inner and indicate
3101 			 *  something is wrong.
3102 			 */
3103 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3104 				if (entry->class == hlock_class(prev)) {
3105 					if (distance == 1)
3106 						entry->distance = 1;
3107 					entry->dep |= calc_depb(prev, next);
3108 					return 1;
3109 				}
3110 			}
3111 
3112 			/* <prev> is not found in <next>::locks_before */
3113 			return 0;
3114 		}
3115 	}
3116 
3117 	/*
3118 	 * Is the <prev> -> <next> link redundant?
3119 	 */
3120 	ret = check_redundant(prev, next);
3121 	if (bfs_error(ret))
3122 		return 0;
3123 	else if (ret == BFS_RMATCH)
3124 		return 2;
3125 
3126 	if (!*trace) {
3127 		*trace = save_trace();
3128 		if (!*trace)
3129 			return 0;
3130 	}
3131 
3132 	/*
3133 	 * Ok, all validations passed, add the new lock
3134 	 * to the previous lock's dependency list:
3135 	 */
3136 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3137 			       &hlock_class(prev)->locks_after,
3138 			       next->acquire_ip, distance,
3139 			       calc_dep(prev, next),
3140 			       *trace);
3141 
3142 	if (!ret)
3143 		return 0;
3144 
3145 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3146 			       &hlock_class(next)->locks_before,
3147 			       next->acquire_ip, distance,
3148 			       calc_depb(prev, next),
3149 			       *trace);
3150 	if (!ret)
3151 		return 0;
3152 
3153 	return 2;
3154 }
3155 
3156 /*
3157  * Add the dependency to all directly-previous locks that are 'relevant'.
3158  * The ones that are relevant are (in increasing distance from curr):
3159  * all consecutive trylock entries and the final non-trylock entry - or
3160  * the end of this context's lock-chain - whichever comes first.
3161  */
3162 static int
3163 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3164 {
3165 	struct lock_trace *trace = NULL;
3166 	int depth = curr->lockdep_depth;
3167 	struct held_lock *hlock;
3168 
3169 	/*
3170 	 * Debugging checks.
3171 	 *
3172 	 * Depth must not be zero for a non-head lock:
3173 	 */
3174 	if (!depth)
3175 		goto out_bug;
3176 	/*
3177 	 * At least two relevant locks must exist for this
3178 	 * to be a head:
3179 	 */
3180 	if (curr->held_locks[depth].irq_context !=
3181 			curr->held_locks[depth-1].irq_context)
3182 		goto out_bug;
3183 
3184 	for (;;) {
3185 		u16 distance = curr->lockdep_depth - depth + 1;
3186 		hlock = curr->held_locks + depth - 1;
3187 
3188 		if (hlock->check) {
3189 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3190 			if (!ret)
3191 				return 0;
3192 
3193 			/*
3194 			 * Stop after the first non-trylock entry,
3195 			 * as non-trylock entries have added their
3196 			 * own direct dependencies already, so this
3197 			 * lock is connected to them indirectly:
3198 			 */
3199 			if (!hlock->trylock)
3200 				break;
3201 		}
3202 
3203 		depth--;
3204 		/*
3205 		 * End of lock-stack?
3206 		 */
3207 		if (!depth)
3208 			break;
3209 		/*
3210 		 * Stop the search if we cross into another context:
3211 		 */
3212 		if (curr->held_locks[depth].irq_context !=
3213 				curr->held_locks[depth-1].irq_context)
3214 			break;
3215 	}
3216 	return 1;
3217 out_bug:
3218 	if (!debug_locks_off_graph_unlock())
3219 		return 0;
3220 
3221 	/*
3222 	 * Clearly we all shouldn't be here, but since we made it we
3223 	 * can reliable say we messed up our state. See the above two
3224 	 * gotos for reasons why we could possibly end up here.
3225 	 */
3226 	WARN_ON(1);
3227 
3228 	return 0;
3229 }
3230 
3231 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3232 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3233 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3234 unsigned long nr_zapped_lock_chains;
3235 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3236 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3237 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3238 
3239 /*
3240  * The first 2 chain_hlocks entries in the chain block in the bucket
3241  * list contains the following meta data:
3242  *
3243  *   entry[0]:
3244  *     Bit    15 - always set to 1 (it is not a class index)
3245  *     Bits 0-14 - upper 15 bits of the next block index
3246  *   entry[1]    - lower 16 bits of next block index
3247  *
3248  * A next block index of all 1 bits means it is the end of the list.
3249  *
3250  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3251  * the chain block size:
3252  *
3253  *   entry[2] - upper 16 bits of the chain block size
3254  *   entry[3] - lower 16 bits of the chain block size
3255  */
3256 #define MAX_CHAIN_BUCKETS	16
3257 #define CHAIN_BLK_FLAG		(1U << 15)
3258 #define CHAIN_BLK_LIST_END	0xFFFFU
3259 
3260 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3261 
3262 static inline int size_to_bucket(int size)
3263 {
3264 	if (size > MAX_CHAIN_BUCKETS)
3265 		return 0;
3266 
3267 	return size - 1;
3268 }
3269 
3270 /*
3271  * Iterate all the chain blocks in a bucket.
3272  */
3273 #define for_each_chain_block(bucket, prev, curr)		\
3274 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3275 	     (curr) >= 0;					\
3276 	     (prev) = (curr), (curr) = chain_block_next(curr))
3277 
3278 /*
3279  * next block or -1
3280  */
3281 static inline int chain_block_next(int offset)
3282 {
3283 	int next = chain_hlocks[offset];
3284 
3285 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3286 
3287 	if (next == CHAIN_BLK_LIST_END)
3288 		return -1;
3289 
3290 	next &= ~CHAIN_BLK_FLAG;
3291 	next <<= 16;
3292 	next |= chain_hlocks[offset + 1];
3293 
3294 	return next;
3295 }
3296 
3297 /*
3298  * bucket-0 only
3299  */
3300 static inline int chain_block_size(int offset)
3301 {
3302 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3303 }
3304 
3305 static inline void init_chain_block(int offset, int next, int bucket, int size)
3306 {
3307 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3308 	chain_hlocks[offset + 1] = (u16)next;
3309 
3310 	if (size && !bucket) {
3311 		chain_hlocks[offset + 2] = size >> 16;
3312 		chain_hlocks[offset + 3] = (u16)size;
3313 	}
3314 }
3315 
3316 static inline void add_chain_block(int offset, int size)
3317 {
3318 	int bucket = size_to_bucket(size);
3319 	int next = chain_block_buckets[bucket];
3320 	int prev, curr;
3321 
3322 	if (unlikely(size < 2)) {
3323 		/*
3324 		 * We can't store single entries on the freelist. Leak them.
3325 		 *
3326 		 * One possible way out would be to uniquely mark them, other
3327 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3328 		 * the block before it is re-added.
3329 		 */
3330 		if (size)
3331 			nr_lost_chain_hlocks++;
3332 		return;
3333 	}
3334 
3335 	nr_free_chain_hlocks += size;
3336 	if (!bucket) {
3337 		nr_large_chain_blocks++;
3338 
3339 		/*
3340 		 * Variable sized, sort large to small.
3341 		 */
3342 		for_each_chain_block(0, prev, curr) {
3343 			if (size >= chain_block_size(curr))
3344 				break;
3345 		}
3346 		init_chain_block(offset, curr, 0, size);
3347 		if (prev < 0)
3348 			chain_block_buckets[0] = offset;
3349 		else
3350 			init_chain_block(prev, offset, 0, 0);
3351 		return;
3352 	}
3353 	/*
3354 	 * Fixed size, add to head.
3355 	 */
3356 	init_chain_block(offset, next, bucket, size);
3357 	chain_block_buckets[bucket] = offset;
3358 }
3359 
3360 /*
3361  * Only the first block in the list can be deleted.
3362  *
3363  * For the variable size bucket[0], the first block (the largest one) is
3364  * returned, broken up and put back into the pool. So if a chain block of
3365  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3366  * queued up after the primordial chain block and never be used until the
3367  * hlock entries in the primordial chain block is almost used up. That
3368  * causes fragmentation and reduce allocation efficiency. That can be
3369  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3370  */
3371 static inline void del_chain_block(int bucket, int size, int next)
3372 {
3373 	nr_free_chain_hlocks -= size;
3374 	chain_block_buckets[bucket] = next;
3375 
3376 	if (!bucket)
3377 		nr_large_chain_blocks--;
3378 }
3379 
3380 static void init_chain_block_buckets(void)
3381 {
3382 	int i;
3383 
3384 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3385 		chain_block_buckets[i] = -1;
3386 
3387 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3388 }
3389 
3390 /*
3391  * Return offset of a chain block of the right size or -1 if not found.
3392  *
3393  * Fairly simple worst-fit allocator with the addition of a number of size
3394  * specific free lists.
3395  */
3396 static int alloc_chain_hlocks(int req)
3397 {
3398 	int bucket, curr, size;
3399 
3400 	/*
3401 	 * We rely on the MSB to act as an escape bit to denote freelist
3402 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3403 	 */
3404 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3405 
3406 	init_data_structures_once();
3407 
3408 	if (nr_free_chain_hlocks < req)
3409 		return -1;
3410 
3411 	/*
3412 	 * We require a minimum of 2 (u16) entries to encode a freelist
3413 	 * 'pointer'.
3414 	 */
3415 	req = max(req, 2);
3416 	bucket = size_to_bucket(req);
3417 	curr = chain_block_buckets[bucket];
3418 
3419 	if (bucket) {
3420 		if (curr >= 0) {
3421 			del_chain_block(bucket, req, chain_block_next(curr));
3422 			return curr;
3423 		}
3424 		/* Try bucket 0 */
3425 		curr = chain_block_buckets[0];
3426 	}
3427 
3428 	/*
3429 	 * The variable sized freelist is sorted by size; the first entry is
3430 	 * the largest. Use it if it fits.
3431 	 */
3432 	if (curr >= 0) {
3433 		size = chain_block_size(curr);
3434 		if (likely(size >= req)) {
3435 			del_chain_block(0, size, chain_block_next(curr));
3436 			add_chain_block(curr + req, size - req);
3437 			return curr;
3438 		}
3439 	}
3440 
3441 	/*
3442 	 * Last resort, split a block in a larger sized bucket.
3443 	 */
3444 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3445 		bucket = size_to_bucket(size);
3446 		curr = chain_block_buckets[bucket];
3447 		if (curr < 0)
3448 			continue;
3449 
3450 		del_chain_block(bucket, size, chain_block_next(curr));
3451 		add_chain_block(curr + req, size - req);
3452 		return curr;
3453 	}
3454 
3455 	return -1;
3456 }
3457 
3458 static inline void free_chain_hlocks(int base, int size)
3459 {
3460 	add_chain_block(base, max(size, 2));
3461 }
3462 
3463 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3464 {
3465 	u16 chain_hlock = chain_hlocks[chain->base + i];
3466 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3467 
3468 	return lock_classes + class_idx - 1;
3469 }
3470 
3471 /*
3472  * Returns the index of the first held_lock of the current chain
3473  */
3474 static inline int get_first_held_lock(struct task_struct *curr,
3475 					struct held_lock *hlock)
3476 {
3477 	int i;
3478 	struct held_lock *hlock_curr;
3479 
3480 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3481 		hlock_curr = curr->held_locks + i;
3482 		if (hlock_curr->irq_context != hlock->irq_context)
3483 			break;
3484 
3485 	}
3486 
3487 	return ++i;
3488 }
3489 
3490 #ifdef CONFIG_DEBUG_LOCKDEP
3491 /*
3492  * Returns the next chain_key iteration
3493  */
3494 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3495 {
3496 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3497 
3498 	printk(" hlock_id:%d -> chain_key:%016Lx",
3499 		(unsigned int)hlock_id,
3500 		(unsigned long long)new_chain_key);
3501 	return new_chain_key;
3502 }
3503 
3504 static void
3505 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3506 {
3507 	struct held_lock *hlock;
3508 	u64 chain_key = INITIAL_CHAIN_KEY;
3509 	int depth = curr->lockdep_depth;
3510 	int i = get_first_held_lock(curr, hlock_next);
3511 
3512 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3513 		hlock_next->irq_context);
3514 	for (; i < depth; i++) {
3515 		hlock = curr->held_locks + i;
3516 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3517 
3518 		print_lock(hlock);
3519 	}
3520 
3521 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3522 	print_lock(hlock_next);
3523 }
3524 
3525 static void print_chain_keys_chain(struct lock_chain *chain)
3526 {
3527 	int i;
3528 	u64 chain_key = INITIAL_CHAIN_KEY;
3529 	u16 hlock_id;
3530 
3531 	printk("depth: %u\n", chain->depth);
3532 	for (i = 0; i < chain->depth; i++) {
3533 		hlock_id = chain_hlocks[chain->base + i];
3534 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3535 
3536 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3537 		printk("\n");
3538 	}
3539 }
3540 
3541 static void print_collision(struct task_struct *curr,
3542 			struct held_lock *hlock_next,
3543 			struct lock_chain *chain)
3544 {
3545 	pr_warn("\n");
3546 	pr_warn("============================\n");
3547 	pr_warn("WARNING: chain_key collision\n");
3548 	print_kernel_ident();
3549 	pr_warn("----------------------------\n");
3550 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3551 	pr_warn("Hash chain already cached but the contents don't match!\n");
3552 
3553 	pr_warn("Held locks:");
3554 	print_chain_keys_held_locks(curr, hlock_next);
3555 
3556 	pr_warn("Locks in cached chain:");
3557 	print_chain_keys_chain(chain);
3558 
3559 	pr_warn("\nstack backtrace:\n");
3560 	dump_stack();
3561 }
3562 #endif
3563 
3564 /*
3565  * Checks whether the chain and the current held locks are consistent
3566  * in depth and also in content. If they are not it most likely means
3567  * that there was a collision during the calculation of the chain_key.
3568  * Returns: 0 not passed, 1 passed
3569  */
3570 static int check_no_collision(struct task_struct *curr,
3571 			struct held_lock *hlock,
3572 			struct lock_chain *chain)
3573 {
3574 #ifdef CONFIG_DEBUG_LOCKDEP
3575 	int i, j, id;
3576 
3577 	i = get_first_held_lock(curr, hlock);
3578 
3579 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3580 		print_collision(curr, hlock, chain);
3581 		return 0;
3582 	}
3583 
3584 	for (j = 0; j < chain->depth - 1; j++, i++) {
3585 		id = hlock_id(&curr->held_locks[i]);
3586 
3587 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3588 			print_collision(curr, hlock, chain);
3589 			return 0;
3590 		}
3591 	}
3592 #endif
3593 	return 1;
3594 }
3595 
3596 /*
3597  * Given an index that is >= -1, return the index of the next lock chain.
3598  * Return -2 if there is no next lock chain.
3599  */
3600 long lockdep_next_lockchain(long i)
3601 {
3602 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3603 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3604 }
3605 
3606 unsigned long lock_chain_count(void)
3607 {
3608 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3609 }
3610 
3611 /* Must be called with the graph lock held. */
3612 static struct lock_chain *alloc_lock_chain(void)
3613 {
3614 	int idx = find_first_zero_bit(lock_chains_in_use,
3615 				      ARRAY_SIZE(lock_chains));
3616 
3617 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3618 		return NULL;
3619 	__set_bit(idx, lock_chains_in_use);
3620 	return lock_chains + idx;
3621 }
3622 
3623 /*
3624  * Adds a dependency chain into chain hashtable. And must be called with
3625  * graph_lock held.
3626  *
3627  * Return 0 if fail, and graph_lock is released.
3628  * Return 1 if succeed, with graph_lock held.
3629  */
3630 static inline int add_chain_cache(struct task_struct *curr,
3631 				  struct held_lock *hlock,
3632 				  u64 chain_key)
3633 {
3634 	struct hlist_head *hash_head = chainhashentry(chain_key);
3635 	struct lock_chain *chain;
3636 	int i, j;
3637 
3638 	/*
3639 	 * The caller must hold the graph lock, ensure we've got IRQs
3640 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3641 	 * lockdep won't complain about its own locking errors.
3642 	 */
3643 	if (lockdep_assert_locked())
3644 		return 0;
3645 
3646 	chain = alloc_lock_chain();
3647 	if (!chain) {
3648 		if (!debug_locks_off_graph_unlock())
3649 			return 0;
3650 
3651 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3652 		dump_stack();
3653 		return 0;
3654 	}
3655 	chain->chain_key = chain_key;
3656 	chain->irq_context = hlock->irq_context;
3657 	i = get_first_held_lock(curr, hlock);
3658 	chain->depth = curr->lockdep_depth + 1 - i;
3659 
3660 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3661 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3662 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3663 
3664 	j = alloc_chain_hlocks(chain->depth);
3665 	if (j < 0) {
3666 		if (!debug_locks_off_graph_unlock())
3667 			return 0;
3668 
3669 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3670 		dump_stack();
3671 		return 0;
3672 	}
3673 
3674 	chain->base = j;
3675 	for (j = 0; j < chain->depth - 1; j++, i++) {
3676 		int lock_id = hlock_id(curr->held_locks + i);
3677 
3678 		chain_hlocks[chain->base + j] = lock_id;
3679 	}
3680 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3681 	hlist_add_head_rcu(&chain->entry, hash_head);
3682 	debug_atomic_inc(chain_lookup_misses);
3683 	inc_chains(chain->irq_context);
3684 
3685 	return 1;
3686 }
3687 
3688 /*
3689  * Look up a dependency chain. Must be called with either the graph lock or
3690  * the RCU read lock held.
3691  */
3692 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3693 {
3694 	struct hlist_head *hash_head = chainhashentry(chain_key);
3695 	struct lock_chain *chain;
3696 
3697 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3698 		if (READ_ONCE(chain->chain_key) == chain_key) {
3699 			debug_atomic_inc(chain_lookup_hits);
3700 			return chain;
3701 		}
3702 	}
3703 	return NULL;
3704 }
3705 
3706 /*
3707  * If the key is not present yet in dependency chain cache then
3708  * add it and return 1 - in this case the new dependency chain is
3709  * validated. If the key is already hashed, return 0.
3710  * (On return with 1 graph_lock is held.)
3711  */
3712 static inline int lookup_chain_cache_add(struct task_struct *curr,
3713 					 struct held_lock *hlock,
3714 					 u64 chain_key)
3715 {
3716 	struct lock_class *class = hlock_class(hlock);
3717 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3718 
3719 	if (chain) {
3720 cache_hit:
3721 		if (!check_no_collision(curr, hlock, chain))
3722 			return 0;
3723 
3724 		if (very_verbose(class)) {
3725 			printk("\nhash chain already cached, key: "
3726 					"%016Lx tail class: [%px] %s\n",
3727 					(unsigned long long)chain_key,
3728 					class->key, class->name);
3729 		}
3730 
3731 		return 0;
3732 	}
3733 
3734 	if (very_verbose(class)) {
3735 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3736 			(unsigned long long)chain_key, class->key, class->name);
3737 	}
3738 
3739 	if (!graph_lock())
3740 		return 0;
3741 
3742 	/*
3743 	 * We have to walk the chain again locked - to avoid duplicates:
3744 	 */
3745 	chain = lookup_chain_cache(chain_key);
3746 	if (chain) {
3747 		graph_unlock();
3748 		goto cache_hit;
3749 	}
3750 
3751 	if (!add_chain_cache(curr, hlock, chain_key))
3752 		return 0;
3753 
3754 	return 1;
3755 }
3756 
3757 static int validate_chain(struct task_struct *curr,
3758 			  struct held_lock *hlock,
3759 			  int chain_head, u64 chain_key)
3760 {
3761 	/*
3762 	 * Trylock needs to maintain the stack of held locks, but it
3763 	 * does not add new dependencies, because trylock can be done
3764 	 * in any order.
3765 	 *
3766 	 * We look up the chain_key and do the O(N^2) check and update of
3767 	 * the dependencies only if this is a new dependency chain.
3768 	 * (If lookup_chain_cache_add() return with 1 it acquires
3769 	 * graph_lock for us)
3770 	 */
3771 	if (!hlock->trylock && hlock->check &&
3772 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3773 		/*
3774 		 * Check whether last held lock:
3775 		 *
3776 		 * - is irq-safe, if this lock is irq-unsafe
3777 		 * - is softirq-safe, if this lock is hardirq-unsafe
3778 		 *
3779 		 * And check whether the new lock's dependency graph
3780 		 * could lead back to the previous lock:
3781 		 *
3782 		 * - within the current held-lock stack
3783 		 * - across our accumulated lock dependency records
3784 		 *
3785 		 * any of these scenarios could lead to a deadlock.
3786 		 */
3787 		/*
3788 		 * The simple case: does the current hold the same lock
3789 		 * already?
3790 		 */
3791 		int ret = check_deadlock(curr, hlock);
3792 
3793 		if (!ret)
3794 			return 0;
3795 		/*
3796 		 * Add dependency only if this lock is not the head
3797 		 * of the chain, and if the new lock introduces no more
3798 		 * lock dependency (because we already hold a lock with the
3799 		 * same lock class) nor deadlock (because the nest_lock
3800 		 * serializes nesting locks), see the comments for
3801 		 * check_deadlock().
3802 		 */
3803 		if (!chain_head && ret != 2) {
3804 			if (!check_prevs_add(curr, hlock))
3805 				return 0;
3806 		}
3807 
3808 		graph_unlock();
3809 	} else {
3810 		/* after lookup_chain_cache_add(): */
3811 		if (unlikely(!debug_locks))
3812 			return 0;
3813 	}
3814 
3815 	return 1;
3816 }
3817 #else
3818 static inline int validate_chain(struct task_struct *curr,
3819 				 struct held_lock *hlock,
3820 				 int chain_head, u64 chain_key)
3821 {
3822 	return 1;
3823 }
3824 
3825 static void init_chain_block_buckets(void)	{ }
3826 #endif /* CONFIG_PROVE_LOCKING */
3827 
3828 /*
3829  * We are building curr_chain_key incrementally, so double-check
3830  * it from scratch, to make sure that it's done correctly:
3831  */
3832 static void check_chain_key(struct task_struct *curr)
3833 {
3834 #ifdef CONFIG_DEBUG_LOCKDEP
3835 	struct held_lock *hlock, *prev_hlock = NULL;
3836 	unsigned int i;
3837 	u64 chain_key = INITIAL_CHAIN_KEY;
3838 
3839 	for (i = 0; i < curr->lockdep_depth; i++) {
3840 		hlock = curr->held_locks + i;
3841 		if (chain_key != hlock->prev_chain_key) {
3842 			debug_locks_off();
3843 			/*
3844 			 * We got mighty confused, our chain keys don't match
3845 			 * with what we expect, someone trample on our task state?
3846 			 */
3847 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3848 				curr->lockdep_depth, i,
3849 				(unsigned long long)chain_key,
3850 				(unsigned long long)hlock->prev_chain_key);
3851 			return;
3852 		}
3853 
3854 		/*
3855 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3856 		 * it registered lock class index?
3857 		 */
3858 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3859 			return;
3860 
3861 		if (prev_hlock && (prev_hlock->irq_context !=
3862 							hlock->irq_context))
3863 			chain_key = INITIAL_CHAIN_KEY;
3864 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3865 		prev_hlock = hlock;
3866 	}
3867 	if (chain_key != curr->curr_chain_key) {
3868 		debug_locks_off();
3869 		/*
3870 		 * More smoking hash instead of calculating it, damn see these
3871 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3872 		 */
3873 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3874 			curr->lockdep_depth, i,
3875 			(unsigned long long)chain_key,
3876 			(unsigned long long)curr->curr_chain_key);
3877 	}
3878 #endif
3879 }
3880 
3881 #ifdef CONFIG_PROVE_LOCKING
3882 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3883 		     enum lock_usage_bit new_bit);
3884 
3885 static void print_usage_bug_scenario(struct held_lock *lock)
3886 {
3887 	struct lock_class *class = hlock_class(lock);
3888 
3889 	printk(" Possible unsafe locking scenario:\n\n");
3890 	printk("       CPU0\n");
3891 	printk("       ----\n");
3892 	printk("  lock(");
3893 	__print_lock_name(class);
3894 	printk(KERN_CONT ");\n");
3895 	printk("  <Interrupt>\n");
3896 	printk("    lock(");
3897 	__print_lock_name(class);
3898 	printk(KERN_CONT ");\n");
3899 	printk("\n *** DEADLOCK ***\n\n");
3900 }
3901 
3902 static void
3903 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3904 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3905 {
3906 	if (!debug_locks_off() || debug_locks_silent)
3907 		return;
3908 
3909 	pr_warn("\n");
3910 	pr_warn("================================\n");
3911 	pr_warn("WARNING: inconsistent lock state\n");
3912 	print_kernel_ident();
3913 	pr_warn("--------------------------------\n");
3914 
3915 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3916 		usage_str[prev_bit], usage_str[new_bit]);
3917 
3918 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3919 		curr->comm, task_pid_nr(curr),
3920 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3921 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3922 		lockdep_hardirqs_enabled(),
3923 		lockdep_softirqs_enabled(curr));
3924 	print_lock(this);
3925 
3926 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3927 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3928 
3929 	print_irqtrace_events(curr);
3930 	pr_warn("\nother info that might help us debug this:\n");
3931 	print_usage_bug_scenario(this);
3932 
3933 	lockdep_print_held_locks(curr);
3934 
3935 	pr_warn("\nstack backtrace:\n");
3936 	dump_stack();
3937 }
3938 
3939 /*
3940  * Print out an error if an invalid bit is set:
3941  */
3942 static inline int
3943 valid_state(struct task_struct *curr, struct held_lock *this,
3944 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3945 {
3946 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3947 		graph_unlock();
3948 		print_usage_bug(curr, this, bad_bit, new_bit);
3949 		return 0;
3950 	}
3951 	return 1;
3952 }
3953 
3954 
3955 /*
3956  * print irq inversion bug:
3957  */
3958 static void
3959 print_irq_inversion_bug(struct task_struct *curr,
3960 			struct lock_list *root, struct lock_list *other,
3961 			struct held_lock *this, int forwards,
3962 			const char *irqclass)
3963 {
3964 	struct lock_list *entry = other;
3965 	struct lock_list *middle = NULL;
3966 	int depth;
3967 
3968 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3969 		return;
3970 
3971 	pr_warn("\n");
3972 	pr_warn("========================================================\n");
3973 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3974 	print_kernel_ident();
3975 	pr_warn("--------------------------------------------------------\n");
3976 	pr_warn("%s/%d just changed the state of lock:\n",
3977 		curr->comm, task_pid_nr(curr));
3978 	print_lock(this);
3979 	if (forwards)
3980 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3981 	else
3982 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3983 	print_lock_name(other->class);
3984 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3985 
3986 	pr_warn("\nother info that might help us debug this:\n");
3987 
3988 	/* Find a middle lock (if one exists) */
3989 	depth = get_lock_depth(other);
3990 	do {
3991 		if (depth == 0 && (entry != root)) {
3992 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3993 			break;
3994 		}
3995 		middle = entry;
3996 		entry = get_lock_parent(entry);
3997 		depth--;
3998 	} while (entry && entry != root && (depth >= 0));
3999 	if (forwards)
4000 		print_irq_lock_scenario(root, other,
4001 			middle ? middle->class : root->class, other->class);
4002 	else
4003 		print_irq_lock_scenario(other, root,
4004 			middle ? middle->class : other->class, root->class);
4005 
4006 	lockdep_print_held_locks(curr);
4007 
4008 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4009 	root->trace = save_trace();
4010 	if (!root->trace)
4011 		return;
4012 	print_shortest_lock_dependencies(other, root);
4013 
4014 	pr_warn("\nstack backtrace:\n");
4015 	dump_stack();
4016 }
4017 
4018 /*
4019  * Prove that in the forwards-direction subgraph starting at <this>
4020  * there is no lock matching <mask>:
4021  */
4022 static int
4023 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4024 		     enum lock_usage_bit bit)
4025 {
4026 	enum bfs_result ret;
4027 	struct lock_list root;
4028 	struct lock_list *target_entry;
4029 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4030 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4031 
4032 	bfs_init_root(&root, this);
4033 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4034 	if (bfs_error(ret)) {
4035 		print_bfs_bug(ret);
4036 		return 0;
4037 	}
4038 	if (ret == BFS_RNOMATCH)
4039 		return 1;
4040 
4041 	/* Check whether write or read usage is the match */
4042 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4043 		print_irq_inversion_bug(curr, &root, target_entry,
4044 					this, 1, state_name(bit));
4045 	} else {
4046 		print_irq_inversion_bug(curr, &root, target_entry,
4047 					this, 1, state_name(read_bit));
4048 	}
4049 
4050 	return 0;
4051 }
4052 
4053 /*
4054  * Prove that in the backwards-direction subgraph starting at <this>
4055  * there is no lock matching <mask>:
4056  */
4057 static int
4058 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4059 		      enum lock_usage_bit bit)
4060 {
4061 	enum bfs_result ret;
4062 	struct lock_list root;
4063 	struct lock_list *target_entry;
4064 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4065 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4066 
4067 	bfs_init_rootb(&root, this);
4068 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4069 	if (bfs_error(ret)) {
4070 		print_bfs_bug(ret);
4071 		return 0;
4072 	}
4073 	if (ret == BFS_RNOMATCH)
4074 		return 1;
4075 
4076 	/* Check whether write or read usage is the match */
4077 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4078 		print_irq_inversion_bug(curr, &root, target_entry,
4079 					this, 0, state_name(bit));
4080 	} else {
4081 		print_irq_inversion_bug(curr, &root, target_entry,
4082 					this, 0, state_name(read_bit));
4083 	}
4084 
4085 	return 0;
4086 }
4087 
4088 void print_irqtrace_events(struct task_struct *curr)
4089 {
4090 	const struct irqtrace_events *trace = &curr->irqtrace;
4091 
4092 	printk("irq event stamp: %u\n", trace->irq_events);
4093 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4094 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4095 		(void *)trace->hardirq_enable_ip);
4096 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4097 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4098 		(void *)trace->hardirq_disable_ip);
4099 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4100 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4101 		(void *)trace->softirq_enable_ip);
4102 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4103 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4104 		(void *)trace->softirq_disable_ip);
4105 }
4106 
4107 static int HARDIRQ_verbose(struct lock_class *class)
4108 {
4109 #if HARDIRQ_VERBOSE
4110 	return class_filter(class);
4111 #endif
4112 	return 0;
4113 }
4114 
4115 static int SOFTIRQ_verbose(struct lock_class *class)
4116 {
4117 #if SOFTIRQ_VERBOSE
4118 	return class_filter(class);
4119 #endif
4120 	return 0;
4121 }
4122 
4123 static int (*state_verbose_f[])(struct lock_class *class) = {
4124 #define LOCKDEP_STATE(__STATE) \
4125 	__STATE##_verbose,
4126 #include "lockdep_states.h"
4127 #undef LOCKDEP_STATE
4128 };
4129 
4130 static inline int state_verbose(enum lock_usage_bit bit,
4131 				struct lock_class *class)
4132 {
4133 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4134 }
4135 
4136 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4137 			     enum lock_usage_bit bit, const char *name);
4138 
4139 static int
4140 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4141 		enum lock_usage_bit new_bit)
4142 {
4143 	int excl_bit = exclusive_bit(new_bit);
4144 	int read = new_bit & LOCK_USAGE_READ_MASK;
4145 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4146 
4147 	/*
4148 	 * Validate that this particular lock does not have conflicting
4149 	 * usage states.
4150 	 */
4151 	if (!valid_state(curr, this, new_bit, excl_bit))
4152 		return 0;
4153 
4154 	/*
4155 	 * Check for read in write conflicts
4156 	 */
4157 	if (!read && !valid_state(curr, this, new_bit,
4158 				  excl_bit + LOCK_USAGE_READ_MASK))
4159 		return 0;
4160 
4161 
4162 	/*
4163 	 * Validate that the lock dependencies don't have conflicting usage
4164 	 * states.
4165 	 */
4166 	if (dir) {
4167 		/*
4168 		 * mark ENABLED has to look backwards -- to ensure no dependee
4169 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4170 		 */
4171 		if (!check_usage_backwards(curr, this, excl_bit))
4172 			return 0;
4173 	} else {
4174 		/*
4175 		 * mark USED_IN has to look forwards -- to ensure no dependency
4176 		 * has ENABLED state, which would allow recursion deadlocks.
4177 		 */
4178 		if (!check_usage_forwards(curr, this, excl_bit))
4179 			return 0;
4180 	}
4181 
4182 	if (state_verbose(new_bit, hlock_class(this)))
4183 		return 2;
4184 
4185 	return 1;
4186 }
4187 
4188 /*
4189  * Mark all held locks with a usage bit:
4190  */
4191 static int
4192 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4193 {
4194 	struct held_lock *hlock;
4195 	int i;
4196 
4197 	for (i = 0; i < curr->lockdep_depth; i++) {
4198 		enum lock_usage_bit hlock_bit = base_bit;
4199 		hlock = curr->held_locks + i;
4200 
4201 		if (hlock->read)
4202 			hlock_bit += LOCK_USAGE_READ_MASK;
4203 
4204 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4205 
4206 		if (!hlock->check)
4207 			continue;
4208 
4209 		if (!mark_lock(curr, hlock, hlock_bit))
4210 			return 0;
4211 	}
4212 
4213 	return 1;
4214 }
4215 
4216 /*
4217  * Hardirqs will be enabled:
4218  */
4219 static void __trace_hardirqs_on_caller(void)
4220 {
4221 	struct task_struct *curr = current;
4222 
4223 	/*
4224 	 * We are going to turn hardirqs on, so set the
4225 	 * usage bit for all held locks:
4226 	 */
4227 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4228 		return;
4229 	/*
4230 	 * If we have softirqs enabled, then set the usage
4231 	 * bit for all held locks. (disabled hardirqs prevented
4232 	 * this bit from being set before)
4233 	 */
4234 	if (curr->softirqs_enabled)
4235 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4236 }
4237 
4238 /**
4239  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4240  * @ip:		Caller address
4241  *
4242  * Invoked before a possible transition to RCU idle from exit to user or
4243  * guest mode. This ensures that all RCU operations are done before RCU
4244  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4245  * invoked to set the final state.
4246  */
4247 void lockdep_hardirqs_on_prepare(unsigned long ip)
4248 {
4249 	if (unlikely(!debug_locks))
4250 		return;
4251 
4252 	/*
4253 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4254 	 */
4255 	if (unlikely(in_nmi()))
4256 		return;
4257 
4258 	if (unlikely(this_cpu_read(lockdep_recursion)))
4259 		return;
4260 
4261 	if (unlikely(lockdep_hardirqs_enabled())) {
4262 		/*
4263 		 * Neither irq nor preemption are disabled here
4264 		 * so this is racy by nature but losing one hit
4265 		 * in a stat is not a big deal.
4266 		 */
4267 		__debug_atomic_inc(redundant_hardirqs_on);
4268 		return;
4269 	}
4270 
4271 	/*
4272 	 * We're enabling irqs and according to our state above irqs weren't
4273 	 * already enabled, yet we find the hardware thinks they are in fact
4274 	 * enabled.. someone messed up their IRQ state tracing.
4275 	 */
4276 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4277 		return;
4278 
4279 	/*
4280 	 * See the fine text that goes along with this variable definition.
4281 	 */
4282 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4283 		return;
4284 
4285 	/*
4286 	 * Can't allow enabling interrupts while in an interrupt handler,
4287 	 * that's general bad form and such. Recursion, limited stack etc..
4288 	 */
4289 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4290 		return;
4291 
4292 	current->hardirq_chain_key = current->curr_chain_key;
4293 
4294 	lockdep_recursion_inc();
4295 	__trace_hardirqs_on_caller();
4296 	lockdep_recursion_finish();
4297 }
4298 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4299 
4300 void noinstr lockdep_hardirqs_on(unsigned long ip)
4301 {
4302 	struct irqtrace_events *trace = &current->irqtrace;
4303 
4304 	if (unlikely(!debug_locks))
4305 		return;
4306 
4307 	/*
4308 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4309 	 * tracking state and hardware state are out of sync.
4310 	 *
4311 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4312 	 * and not rely on hardware state like normal interrupts.
4313 	 */
4314 	if (unlikely(in_nmi())) {
4315 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4316 			return;
4317 
4318 		/*
4319 		 * Skip:
4320 		 *  - recursion check, because NMI can hit lockdep;
4321 		 *  - hardware state check, because above;
4322 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4323 		 */
4324 		goto skip_checks;
4325 	}
4326 
4327 	if (unlikely(this_cpu_read(lockdep_recursion)))
4328 		return;
4329 
4330 	if (lockdep_hardirqs_enabled()) {
4331 		/*
4332 		 * Neither irq nor preemption are disabled here
4333 		 * so this is racy by nature but losing one hit
4334 		 * in a stat is not a big deal.
4335 		 */
4336 		__debug_atomic_inc(redundant_hardirqs_on);
4337 		return;
4338 	}
4339 
4340 	/*
4341 	 * We're enabling irqs and according to our state above irqs weren't
4342 	 * already enabled, yet we find the hardware thinks they are in fact
4343 	 * enabled.. someone messed up their IRQ state tracing.
4344 	 */
4345 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4346 		return;
4347 
4348 	/*
4349 	 * Ensure the lock stack remained unchanged between
4350 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4351 	 */
4352 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4353 			    current->curr_chain_key);
4354 
4355 skip_checks:
4356 	/* we'll do an OFF -> ON transition: */
4357 	__this_cpu_write(hardirqs_enabled, 1);
4358 	trace->hardirq_enable_ip = ip;
4359 	trace->hardirq_enable_event = ++trace->irq_events;
4360 	debug_atomic_inc(hardirqs_on_events);
4361 }
4362 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4363 
4364 /*
4365  * Hardirqs were disabled:
4366  */
4367 void noinstr lockdep_hardirqs_off(unsigned long ip)
4368 {
4369 	if (unlikely(!debug_locks))
4370 		return;
4371 
4372 	/*
4373 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4374 	 * they will restore the software state. This ensures the software
4375 	 * state is consistent inside NMIs as well.
4376 	 */
4377 	if (in_nmi()) {
4378 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4379 			return;
4380 	} else if (__this_cpu_read(lockdep_recursion))
4381 		return;
4382 
4383 	/*
4384 	 * So we're supposed to get called after you mask local IRQs, but for
4385 	 * some reason the hardware doesn't quite think you did a proper job.
4386 	 */
4387 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4388 		return;
4389 
4390 	if (lockdep_hardirqs_enabled()) {
4391 		struct irqtrace_events *trace = &current->irqtrace;
4392 
4393 		/*
4394 		 * We have done an ON -> OFF transition:
4395 		 */
4396 		__this_cpu_write(hardirqs_enabled, 0);
4397 		trace->hardirq_disable_ip = ip;
4398 		trace->hardirq_disable_event = ++trace->irq_events;
4399 		debug_atomic_inc(hardirqs_off_events);
4400 	} else {
4401 		debug_atomic_inc(redundant_hardirqs_off);
4402 	}
4403 }
4404 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4405 
4406 /*
4407  * Softirqs will be enabled:
4408  */
4409 void lockdep_softirqs_on(unsigned long ip)
4410 {
4411 	struct irqtrace_events *trace = &current->irqtrace;
4412 
4413 	if (unlikely(!lockdep_enabled()))
4414 		return;
4415 
4416 	/*
4417 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4418 	 * funny state and nesting things.
4419 	 */
4420 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4421 		return;
4422 
4423 	if (current->softirqs_enabled) {
4424 		debug_atomic_inc(redundant_softirqs_on);
4425 		return;
4426 	}
4427 
4428 	lockdep_recursion_inc();
4429 	/*
4430 	 * We'll do an OFF -> ON transition:
4431 	 */
4432 	current->softirqs_enabled = 1;
4433 	trace->softirq_enable_ip = ip;
4434 	trace->softirq_enable_event = ++trace->irq_events;
4435 	debug_atomic_inc(softirqs_on_events);
4436 	/*
4437 	 * We are going to turn softirqs on, so set the
4438 	 * usage bit for all held locks, if hardirqs are
4439 	 * enabled too:
4440 	 */
4441 	if (lockdep_hardirqs_enabled())
4442 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4443 	lockdep_recursion_finish();
4444 }
4445 
4446 /*
4447  * Softirqs were disabled:
4448  */
4449 void lockdep_softirqs_off(unsigned long ip)
4450 {
4451 	if (unlikely(!lockdep_enabled()))
4452 		return;
4453 
4454 	/*
4455 	 * We fancy IRQs being disabled here, see softirq.c
4456 	 */
4457 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4458 		return;
4459 
4460 	if (current->softirqs_enabled) {
4461 		struct irqtrace_events *trace = &current->irqtrace;
4462 
4463 		/*
4464 		 * We have done an ON -> OFF transition:
4465 		 */
4466 		current->softirqs_enabled = 0;
4467 		trace->softirq_disable_ip = ip;
4468 		trace->softirq_disable_event = ++trace->irq_events;
4469 		debug_atomic_inc(softirqs_off_events);
4470 		/*
4471 		 * Whoops, we wanted softirqs off, so why aren't they?
4472 		 */
4473 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4474 	} else
4475 		debug_atomic_inc(redundant_softirqs_off);
4476 }
4477 
4478 static int
4479 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4480 {
4481 	if (!check)
4482 		goto lock_used;
4483 
4484 	/*
4485 	 * If non-trylock use in a hardirq or softirq context, then
4486 	 * mark the lock as used in these contexts:
4487 	 */
4488 	if (!hlock->trylock) {
4489 		if (hlock->read) {
4490 			if (lockdep_hardirq_context())
4491 				if (!mark_lock(curr, hlock,
4492 						LOCK_USED_IN_HARDIRQ_READ))
4493 					return 0;
4494 			if (curr->softirq_context)
4495 				if (!mark_lock(curr, hlock,
4496 						LOCK_USED_IN_SOFTIRQ_READ))
4497 					return 0;
4498 		} else {
4499 			if (lockdep_hardirq_context())
4500 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4501 					return 0;
4502 			if (curr->softirq_context)
4503 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4504 					return 0;
4505 		}
4506 	}
4507 	if (!hlock->hardirqs_off) {
4508 		if (hlock->read) {
4509 			if (!mark_lock(curr, hlock,
4510 					LOCK_ENABLED_HARDIRQ_READ))
4511 				return 0;
4512 			if (curr->softirqs_enabled)
4513 				if (!mark_lock(curr, hlock,
4514 						LOCK_ENABLED_SOFTIRQ_READ))
4515 					return 0;
4516 		} else {
4517 			if (!mark_lock(curr, hlock,
4518 					LOCK_ENABLED_HARDIRQ))
4519 				return 0;
4520 			if (curr->softirqs_enabled)
4521 				if (!mark_lock(curr, hlock,
4522 						LOCK_ENABLED_SOFTIRQ))
4523 					return 0;
4524 		}
4525 	}
4526 
4527 lock_used:
4528 	/* mark it as used: */
4529 	if (!mark_lock(curr, hlock, LOCK_USED))
4530 		return 0;
4531 
4532 	return 1;
4533 }
4534 
4535 static inline unsigned int task_irq_context(struct task_struct *task)
4536 {
4537 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4538 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4539 }
4540 
4541 static int separate_irq_context(struct task_struct *curr,
4542 		struct held_lock *hlock)
4543 {
4544 	unsigned int depth = curr->lockdep_depth;
4545 
4546 	/*
4547 	 * Keep track of points where we cross into an interrupt context:
4548 	 */
4549 	if (depth) {
4550 		struct held_lock *prev_hlock;
4551 
4552 		prev_hlock = curr->held_locks + depth-1;
4553 		/*
4554 		 * If we cross into another context, reset the
4555 		 * hash key (this also prevents the checking and the
4556 		 * adding of the dependency to 'prev'):
4557 		 */
4558 		if (prev_hlock->irq_context != hlock->irq_context)
4559 			return 1;
4560 	}
4561 	return 0;
4562 }
4563 
4564 /*
4565  * Mark a lock with a usage bit, and validate the state transition:
4566  */
4567 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4568 			     enum lock_usage_bit new_bit)
4569 {
4570 	unsigned int new_mask, ret = 1;
4571 
4572 	if (new_bit >= LOCK_USAGE_STATES) {
4573 		DEBUG_LOCKS_WARN_ON(1);
4574 		return 0;
4575 	}
4576 
4577 	if (new_bit == LOCK_USED && this->read)
4578 		new_bit = LOCK_USED_READ;
4579 
4580 	new_mask = 1 << new_bit;
4581 
4582 	/*
4583 	 * If already set then do not dirty the cacheline,
4584 	 * nor do any checks:
4585 	 */
4586 	if (likely(hlock_class(this)->usage_mask & new_mask))
4587 		return 1;
4588 
4589 	if (!graph_lock())
4590 		return 0;
4591 	/*
4592 	 * Make sure we didn't race:
4593 	 */
4594 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4595 		goto unlock;
4596 
4597 	if (!hlock_class(this)->usage_mask)
4598 		debug_atomic_dec(nr_unused_locks);
4599 
4600 	hlock_class(this)->usage_mask |= new_mask;
4601 
4602 	if (new_bit < LOCK_TRACE_STATES) {
4603 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4604 			return 0;
4605 	}
4606 
4607 	if (new_bit < LOCK_USED) {
4608 		ret = mark_lock_irq(curr, this, new_bit);
4609 		if (!ret)
4610 			return 0;
4611 	}
4612 
4613 unlock:
4614 	graph_unlock();
4615 
4616 	/*
4617 	 * We must printk outside of the graph_lock:
4618 	 */
4619 	if (ret == 2) {
4620 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4621 		print_lock(this);
4622 		print_irqtrace_events(curr);
4623 		dump_stack();
4624 	}
4625 
4626 	return ret;
4627 }
4628 
4629 static inline short task_wait_context(struct task_struct *curr)
4630 {
4631 	/*
4632 	 * Set appropriate wait type for the context; for IRQs we have to take
4633 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4634 	 */
4635 	if (lockdep_hardirq_context()) {
4636 		/*
4637 		 * Check if force_irqthreads will run us threaded.
4638 		 */
4639 		if (curr->hardirq_threaded || curr->irq_config)
4640 			return LD_WAIT_CONFIG;
4641 
4642 		return LD_WAIT_SPIN;
4643 	} else if (curr->softirq_context) {
4644 		/*
4645 		 * Softirqs are always threaded.
4646 		 */
4647 		return LD_WAIT_CONFIG;
4648 	}
4649 
4650 	return LD_WAIT_MAX;
4651 }
4652 
4653 static int
4654 print_lock_invalid_wait_context(struct task_struct *curr,
4655 				struct held_lock *hlock)
4656 {
4657 	short curr_inner;
4658 
4659 	if (!debug_locks_off())
4660 		return 0;
4661 	if (debug_locks_silent)
4662 		return 0;
4663 
4664 	pr_warn("\n");
4665 	pr_warn("=============================\n");
4666 	pr_warn("[ BUG: Invalid wait context ]\n");
4667 	print_kernel_ident();
4668 	pr_warn("-----------------------------\n");
4669 
4670 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4671 	print_lock(hlock);
4672 
4673 	pr_warn("other info that might help us debug this:\n");
4674 
4675 	curr_inner = task_wait_context(curr);
4676 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4677 
4678 	lockdep_print_held_locks(curr);
4679 
4680 	pr_warn("stack backtrace:\n");
4681 	dump_stack();
4682 
4683 	return 0;
4684 }
4685 
4686 /*
4687  * Verify the wait_type context.
4688  *
4689  * This check validates we take locks in the right wait-type order; that is it
4690  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4691  * acquire spinlocks inside raw_spinlocks and the sort.
4692  *
4693  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4694  * can be taken from (pretty much) any context but also has constraints.
4695  * However when taken in a stricter environment the RCU lock does not loosen
4696  * the constraints.
4697  *
4698  * Therefore we must look for the strictest environment in the lock stack and
4699  * compare that to the lock we're trying to acquire.
4700  */
4701 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4702 {
4703 	u8 next_inner = hlock_class(next)->wait_type_inner;
4704 	u8 next_outer = hlock_class(next)->wait_type_outer;
4705 	u8 curr_inner;
4706 	int depth;
4707 
4708 	if (!next_inner || next->trylock)
4709 		return 0;
4710 
4711 	if (!next_outer)
4712 		next_outer = next_inner;
4713 
4714 	/*
4715 	 * Find start of current irq_context..
4716 	 */
4717 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4718 		struct held_lock *prev = curr->held_locks + depth;
4719 		if (prev->irq_context != next->irq_context)
4720 			break;
4721 	}
4722 	depth++;
4723 
4724 	curr_inner = task_wait_context(curr);
4725 
4726 	for (; depth < curr->lockdep_depth; depth++) {
4727 		struct held_lock *prev = curr->held_locks + depth;
4728 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4729 
4730 		if (prev_inner) {
4731 			/*
4732 			 * We can have a bigger inner than a previous one
4733 			 * when outer is smaller than inner, as with RCU.
4734 			 *
4735 			 * Also due to trylocks.
4736 			 */
4737 			curr_inner = min(curr_inner, prev_inner);
4738 		}
4739 	}
4740 
4741 	if (next_outer > curr_inner)
4742 		return print_lock_invalid_wait_context(curr, next);
4743 
4744 	return 0;
4745 }
4746 
4747 #else /* CONFIG_PROVE_LOCKING */
4748 
4749 static inline int
4750 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4751 {
4752 	return 1;
4753 }
4754 
4755 static inline unsigned int task_irq_context(struct task_struct *task)
4756 {
4757 	return 0;
4758 }
4759 
4760 static inline int separate_irq_context(struct task_struct *curr,
4761 		struct held_lock *hlock)
4762 {
4763 	return 0;
4764 }
4765 
4766 static inline int check_wait_context(struct task_struct *curr,
4767 				     struct held_lock *next)
4768 {
4769 	return 0;
4770 }
4771 
4772 #endif /* CONFIG_PROVE_LOCKING */
4773 
4774 /*
4775  * Initialize a lock instance's lock-class mapping info:
4776  */
4777 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4778 			    struct lock_class_key *key, int subclass,
4779 			    u8 inner, u8 outer, u8 lock_type)
4780 {
4781 	int i;
4782 
4783 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4784 		lock->class_cache[i] = NULL;
4785 
4786 #ifdef CONFIG_LOCK_STAT
4787 	lock->cpu = raw_smp_processor_id();
4788 #endif
4789 
4790 	/*
4791 	 * Can't be having no nameless bastards around this place!
4792 	 */
4793 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4794 		lock->name = "NULL";
4795 		return;
4796 	}
4797 
4798 	lock->name = name;
4799 
4800 	lock->wait_type_outer = outer;
4801 	lock->wait_type_inner = inner;
4802 	lock->lock_type = lock_type;
4803 
4804 	/*
4805 	 * No key, no joy, we need to hash something.
4806 	 */
4807 	if (DEBUG_LOCKS_WARN_ON(!key))
4808 		return;
4809 	/*
4810 	 * Sanity check, the lock-class key must either have been allocated
4811 	 * statically or must have been registered as a dynamic key.
4812 	 */
4813 	if (!static_obj(key) && !is_dynamic_key(key)) {
4814 		if (debug_locks)
4815 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4816 		DEBUG_LOCKS_WARN_ON(1);
4817 		return;
4818 	}
4819 	lock->key = key;
4820 
4821 	if (unlikely(!debug_locks))
4822 		return;
4823 
4824 	if (subclass) {
4825 		unsigned long flags;
4826 
4827 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4828 			return;
4829 
4830 		raw_local_irq_save(flags);
4831 		lockdep_recursion_inc();
4832 		register_lock_class(lock, subclass, 1);
4833 		lockdep_recursion_finish();
4834 		raw_local_irq_restore(flags);
4835 	}
4836 }
4837 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4838 
4839 struct lock_class_key __lockdep_no_validate__;
4840 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4841 
4842 static void
4843 print_lock_nested_lock_not_held(struct task_struct *curr,
4844 				struct held_lock *hlock,
4845 				unsigned long ip)
4846 {
4847 	if (!debug_locks_off())
4848 		return;
4849 	if (debug_locks_silent)
4850 		return;
4851 
4852 	pr_warn("\n");
4853 	pr_warn("==================================\n");
4854 	pr_warn("WARNING: Nested lock was not taken\n");
4855 	print_kernel_ident();
4856 	pr_warn("----------------------------------\n");
4857 
4858 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4859 	print_lock(hlock);
4860 
4861 	pr_warn("\nbut this task is not holding:\n");
4862 	pr_warn("%s\n", hlock->nest_lock->name);
4863 
4864 	pr_warn("\nstack backtrace:\n");
4865 	dump_stack();
4866 
4867 	pr_warn("\nother info that might help us debug this:\n");
4868 	lockdep_print_held_locks(curr);
4869 
4870 	pr_warn("\nstack backtrace:\n");
4871 	dump_stack();
4872 }
4873 
4874 static int __lock_is_held(const struct lockdep_map *lock, int read);
4875 
4876 /*
4877  * This gets called for every mutex_lock*()/spin_lock*() operation.
4878  * We maintain the dependency maps and validate the locking attempt:
4879  *
4880  * The callers must make sure that IRQs are disabled before calling it,
4881  * otherwise we could get an interrupt which would want to take locks,
4882  * which would end up in lockdep again.
4883  */
4884 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4885 			  int trylock, int read, int check, int hardirqs_off,
4886 			  struct lockdep_map *nest_lock, unsigned long ip,
4887 			  int references, int pin_count)
4888 {
4889 	struct task_struct *curr = current;
4890 	struct lock_class *class = NULL;
4891 	struct held_lock *hlock;
4892 	unsigned int depth;
4893 	int chain_head = 0;
4894 	int class_idx;
4895 	u64 chain_key;
4896 
4897 	if (unlikely(!debug_locks))
4898 		return 0;
4899 
4900 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4901 		check = 0;
4902 
4903 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4904 		class = lock->class_cache[subclass];
4905 	/*
4906 	 * Not cached?
4907 	 */
4908 	if (unlikely(!class)) {
4909 		class = register_lock_class(lock, subclass, 0);
4910 		if (!class)
4911 			return 0;
4912 	}
4913 
4914 	debug_class_ops_inc(class);
4915 
4916 	if (very_verbose(class)) {
4917 		printk("\nacquire class [%px] %s", class->key, class->name);
4918 		if (class->name_version > 1)
4919 			printk(KERN_CONT "#%d", class->name_version);
4920 		printk(KERN_CONT "\n");
4921 		dump_stack();
4922 	}
4923 
4924 	/*
4925 	 * Add the lock to the list of currently held locks.
4926 	 * (we dont increase the depth just yet, up until the
4927 	 * dependency checks are done)
4928 	 */
4929 	depth = curr->lockdep_depth;
4930 	/*
4931 	 * Ran out of static storage for our per-task lock stack again have we?
4932 	 */
4933 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4934 		return 0;
4935 
4936 	class_idx = class - lock_classes;
4937 
4938 	if (depth) { /* we're holding locks */
4939 		hlock = curr->held_locks + depth - 1;
4940 		if (hlock->class_idx == class_idx && nest_lock) {
4941 			if (!references)
4942 				references++;
4943 
4944 			if (!hlock->references)
4945 				hlock->references++;
4946 
4947 			hlock->references += references;
4948 
4949 			/* Overflow */
4950 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4951 				return 0;
4952 
4953 			return 2;
4954 		}
4955 	}
4956 
4957 	hlock = curr->held_locks + depth;
4958 	/*
4959 	 * Plain impossible, we just registered it and checked it weren't no
4960 	 * NULL like.. I bet this mushroom I ate was good!
4961 	 */
4962 	if (DEBUG_LOCKS_WARN_ON(!class))
4963 		return 0;
4964 	hlock->class_idx = class_idx;
4965 	hlock->acquire_ip = ip;
4966 	hlock->instance = lock;
4967 	hlock->nest_lock = nest_lock;
4968 	hlock->irq_context = task_irq_context(curr);
4969 	hlock->trylock = trylock;
4970 	hlock->read = read;
4971 	hlock->check = check;
4972 	hlock->hardirqs_off = !!hardirqs_off;
4973 	hlock->references = references;
4974 #ifdef CONFIG_LOCK_STAT
4975 	hlock->waittime_stamp = 0;
4976 	hlock->holdtime_stamp = lockstat_clock();
4977 #endif
4978 	hlock->pin_count = pin_count;
4979 
4980 	if (check_wait_context(curr, hlock))
4981 		return 0;
4982 
4983 	/* Initialize the lock usage bit */
4984 	if (!mark_usage(curr, hlock, check))
4985 		return 0;
4986 
4987 	/*
4988 	 * Calculate the chain hash: it's the combined hash of all the
4989 	 * lock keys along the dependency chain. We save the hash value
4990 	 * at every step so that we can get the current hash easily
4991 	 * after unlock. The chain hash is then used to cache dependency
4992 	 * results.
4993 	 *
4994 	 * The 'key ID' is what is the most compact key value to drive
4995 	 * the hash, not class->key.
4996 	 */
4997 	/*
4998 	 * Whoops, we did it again.. class_idx is invalid.
4999 	 */
5000 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5001 		return 0;
5002 
5003 	chain_key = curr->curr_chain_key;
5004 	if (!depth) {
5005 		/*
5006 		 * How can we have a chain hash when we ain't got no keys?!
5007 		 */
5008 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5009 			return 0;
5010 		chain_head = 1;
5011 	}
5012 
5013 	hlock->prev_chain_key = chain_key;
5014 	if (separate_irq_context(curr, hlock)) {
5015 		chain_key = INITIAL_CHAIN_KEY;
5016 		chain_head = 1;
5017 	}
5018 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5019 
5020 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5021 		print_lock_nested_lock_not_held(curr, hlock, ip);
5022 		return 0;
5023 	}
5024 
5025 	if (!debug_locks_silent) {
5026 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5027 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5028 	}
5029 
5030 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5031 		return 0;
5032 
5033 	curr->curr_chain_key = chain_key;
5034 	curr->lockdep_depth++;
5035 	check_chain_key(curr);
5036 #ifdef CONFIG_DEBUG_LOCKDEP
5037 	if (unlikely(!debug_locks))
5038 		return 0;
5039 #endif
5040 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5041 		debug_locks_off();
5042 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5043 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5044 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5045 
5046 		lockdep_print_held_locks(current);
5047 		debug_show_all_locks();
5048 		dump_stack();
5049 
5050 		return 0;
5051 	}
5052 
5053 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5054 		max_lockdep_depth = curr->lockdep_depth;
5055 
5056 	return 1;
5057 }
5058 
5059 static void print_unlock_imbalance_bug(struct task_struct *curr,
5060 				       struct lockdep_map *lock,
5061 				       unsigned long ip)
5062 {
5063 	if (!debug_locks_off())
5064 		return;
5065 	if (debug_locks_silent)
5066 		return;
5067 
5068 	pr_warn("\n");
5069 	pr_warn("=====================================\n");
5070 	pr_warn("WARNING: bad unlock balance detected!\n");
5071 	print_kernel_ident();
5072 	pr_warn("-------------------------------------\n");
5073 	pr_warn("%s/%d is trying to release lock (",
5074 		curr->comm, task_pid_nr(curr));
5075 	print_lockdep_cache(lock);
5076 	pr_cont(") at:\n");
5077 	print_ip_sym(KERN_WARNING, ip);
5078 	pr_warn("but there are no more locks to release!\n");
5079 	pr_warn("\nother info that might help us debug this:\n");
5080 	lockdep_print_held_locks(curr);
5081 
5082 	pr_warn("\nstack backtrace:\n");
5083 	dump_stack();
5084 }
5085 
5086 static noinstr int match_held_lock(const struct held_lock *hlock,
5087 				   const struct lockdep_map *lock)
5088 {
5089 	if (hlock->instance == lock)
5090 		return 1;
5091 
5092 	if (hlock->references) {
5093 		const struct lock_class *class = lock->class_cache[0];
5094 
5095 		if (!class)
5096 			class = look_up_lock_class(lock, 0);
5097 
5098 		/*
5099 		 * If look_up_lock_class() failed to find a class, we're trying
5100 		 * to test if we hold a lock that has never yet been acquired.
5101 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5102 		 * holding it either, so report failure.
5103 		 */
5104 		if (!class)
5105 			return 0;
5106 
5107 		/*
5108 		 * References, but not a lock we're actually ref-counting?
5109 		 * State got messed up, follow the sites that change ->references
5110 		 * and try to make sense of it.
5111 		 */
5112 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5113 			return 0;
5114 
5115 		if (hlock->class_idx == class - lock_classes)
5116 			return 1;
5117 	}
5118 
5119 	return 0;
5120 }
5121 
5122 /* @depth must not be zero */
5123 static struct held_lock *find_held_lock(struct task_struct *curr,
5124 					struct lockdep_map *lock,
5125 					unsigned int depth, int *idx)
5126 {
5127 	struct held_lock *ret, *hlock, *prev_hlock;
5128 	int i;
5129 
5130 	i = depth - 1;
5131 	hlock = curr->held_locks + i;
5132 	ret = hlock;
5133 	if (match_held_lock(hlock, lock))
5134 		goto out;
5135 
5136 	ret = NULL;
5137 	for (i--, prev_hlock = hlock--;
5138 	     i >= 0;
5139 	     i--, prev_hlock = hlock--) {
5140 		/*
5141 		 * We must not cross into another context:
5142 		 */
5143 		if (prev_hlock->irq_context != hlock->irq_context) {
5144 			ret = NULL;
5145 			break;
5146 		}
5147 		if (match_held_lock(hlock, lock)) {
5148 			ret = hlock;
5149 			break;
5150 		}
5151 	}
5152 
5153 out:
5154 	*idx = i;
5155 	return ret;
5156 }
5157 
5158 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5159 				int idx, unsigned int *merged)
5160 {
5161 	struct held_lock *hlock;
5162 	int first_idx = idx;
5163 
5164 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5165 		return 0;
5166 
5167 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5168 		switch (__lock_acquire(hlock->instance,
5169 				    hlock_class(hlock)->subclass,
5170 				    hlock->trylock,
5171 				    hlock->read, hlock->check,
5172 				    hlock->hardirqs_off,
5173 				    hlock->nest_lock, hlock->acquire_ip,
5174 				    hlock->references, hlock->pin_count)) {
5175 		case 0:
5176 			return 1;
5177 		case 1:
5178 			break;
5179 		case 2:
5180 			*merged += (idx == first_idx);
5181 			break;
5182 		default:
5183 			WARN_ON(1);
5184 			return 0;
5185 		}
5186 	}
5187 	return 0;
5188 }
5189 
5190 static int
5191 __lock_set_class(struct lockdep_map *lock, const char *name,
5192 		 struct lock_class_key *key, unsigned int subclass,
5193 		 unsigned long ip)
5194 {
5195 	struct task_struct *curr = current;
5196 	unsigned int depth, merged = 0;
5197 	struct held_lock *hlock;
5198 	struct lock_class *class;
5199 	int i;
5200 
5201 	if (unlikely(!debug_locks))
5202 		return 0;
5203 
5204 	depth = curr->lockdep_depth;
5205 	/*
5206 	 * This function is about (re)setting the class of a held lock,
5207 	 * yet we're not actually holding any locks. Naughty user!
5208 	 */
5209 	if (DEBUG_LOCKS_WARN_ON(!depth))
5210 		return 0;
5211 
5212 	hlock = find_held_lock(curr, lock, depth, &i);
5213 	if (!hlock) {
5214 		print_unlock_imbalance_bug(curr, lock, ip);
5215 		return 0;
5216 	}
5217 
5218 	lockdep_init_map_waits(lock, name, key, 0,
5219 			       lock->wait_type_inner,
5220 			       lock->wait_type_outer);
5221 	class = register_lock_class(lock, subclass, 0);
5222 	hlock->class_idx = class - lock_classes;
5223 
5224 	curr->lockdep_depth = i;
5225 	curr->curr_chain_key = hlock->prev_chain_key;
5226 
5227 	if (reacquire_held_locks(curr, depth, i, &merged))
5228 		return 0;
5229 
5230 	/*
5231 	 * I took it apart and put it back together again, except now I have
5232 	 * these 'spare' parts.. where shall I put them.
5233 	 */
5234 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5235 		return 0;
5236 	return 1;
5237 }
5238 
5239 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5240 {
5241 	struct task_struct *curr = current;
5242 	unsigned int depth, merged = 0;
5243 	struct held_lock *hlock;
5244 	int i;
5245 
5246 	if (unlikely(!debug_locks))
5247 		return 0;
5248 
5249 	depth = curr->lockdep_depth;
5250 	/*
5251 	 * This function is about (re)setting the class of a held lock,
5252 	 * yet we're not actually holding any locks. Naughty user!
5253 	 */
5254 	if (DEBUG_LOCKS_WARN_ON(!depth))
5255 		return 0;
5256 
5257 	hlock = find_held_lock(curr, lock, depth, &i);
5258 	if (!hlock) {
5259 		print_unlock_imbalance_bug(curr, lock, ip);
5260 		return 0;
5261 	}
5262 
5263 	curr->lockdep_depth = i;
5264 	curr->curr_chain_key = hlock->prev_chain_key;
5265 
5266 	WARN(hlock->read, "downgrading a read lock");
5267 	hlock->read = 1;
5268 	hlock->acquire_ip = ip;
5269 
5270 	if (reacquire_held_locks(curr, depth, i, &merged))
5271 		return 0;
5272 
5273 	/* Merging can't happen with unchanged classes.. */
5274 	if (DEBUG_LOCKS_WARN_ON(merged))
5275 		return 0;
5276 
5277 	/*
5278 	 * I took it apart and put it back together again, except now I have
5279 	 * these 'spare' parts.. where shall I put them.
5280 	 */
5281 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5282 		return 0;
5283 
5284 	return 1;
5285 }
5286 
5287 /*
5288  * Remove the lock from the list of currently held locks - this gets
5289  * called on mutex_unlock()/spin_unlock*() (or on a failed
5290  * mutex_lock_interruptible()).
5291  */
5292 static int
5293 __lock_release(struct lockdep_map *lock, unsigned long ip)
5294 {
5295 	struct task_struct *curr = current;
5296 	unsigned int depth, merged = 1;
5297 	struct held_lock *hlock;
5298 	int i;
5299 
5300 	if (unlikely(!debug_locks))
5301 		return 0;
5302 
5303 	depth = curr->lockdep_depth;
5304 	/*
5305 	 * So we're all set to release this lock.. wait what lock? We don't
5306 	 * own any locks, you've been drinking again?
5307 	 */
5308 	if (depth <= 0) {
5309 		print_unlock_imbalance_bug(curr, lock, ip);
5310 		return 0;
5311 	}
5312 
5313 	/*
5314 	 * Check whether the lock exists in the current stack
5315 	 * of held locks:
5316 	 */
5317 	hlock = find_held_lock(curr, lock, depth, &i);
5318 	if (!hlock) {
5319 		print_unlock_imbalance_bug(curr, lock, ip);
5320 		return 0;
5321 	}
5322 
5323 	if (hlock->instance == lock)
5324 		lock_release_holdtime(hlock);
5325 
5326 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5327 
5328 	if (hlock->references) {
5329 		hlock->references--;
5330 		if (hlock->references) {
5331 			/*
5332 			 * We had, and after removing one, still have
5333 			 * references, the current lock stack is still
5334 			 * valid. We're done!
5335 			 */
5336 			return 1;
5337 		}
5338 	}
5339 
5340 	/*
5341 	 * We have the right lock to unlock, 'hlock' points to it.
5342 	 * Now we remove it from the stack, and add back the other
5343 	 * entries (if any), recalculating the hash along the way:
5344 	 */
5345 
5346 	curr->lockdep_depth = i;
5347 	curr->curr_chain_key = hlock->prev_chain_key;
5348 
5349 	/*
5350 	 * The most likely case is when the unlock is on the innermost
5351 	 * lock. In this case, we are done!
5352 	 */
5353 	if (i == depth-1)
5354 		return 1;
5355 
5356 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5357 		return 0;
5358 
5359 	/*
5360 	 * We had N bottles of beer on the wall, we drank one, but now
5361 	 * there's not N-1 bottles of beer left on the wall...
5362 	 * Pouring two of the bottles together is acceptable.
5363 	 */
5364 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5365 
5366 	/*
5367 	 * Since reacquire_held_locks() would have called check_chain_key()
5368 	 * indirectly via __lock_acquire(), we don't need to do it again
5369 	 * on return.
5370 	 */
5371 	return 0;
5372 }
5373 
5374 static __always_inline
5375 int __lock_is_held(const struct lockdep_map *lock, int read)
5376 {
5377 	struct task_struct *curr = current;
5378 	int i;
5379 
5380 	for (i = 0; i < curr->lockdep_depth; i++) {
5381 		struct held_lock *hlock = curr->held_locks + i;
5382 
5383 		if (match_held_lock(hlock, lock)) {
5384 			if (read == -1 || !!hlock->read == read)
5385 				return LOCK_STATE_HELD;
5386 
5387 			return LOCK_STATE_NOT_HELD;
5388 		}
5389 	}
5390 
5391 	return LOCK_STATE_NOT_HELD;
5392 }
5393 
5394 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5395 {
5396 	struct pin_cookie cookie = NIL_COOKIE;
5397 	struct task_struct *curr = current;
5398 	int i;
5399 
5400 	if (unlikely(!debug_locks))
5401 		return cookie;
5402 
5403 	for (i = 0; i < curr->lockdep_depth; i++) {
5404 		struct held_lock *hlock = curr->held_locks + i;
5405 
5406 		if (match_held_lock(hlock, lock)) {
5407 			/*
5408 			 * Grab 16bits of randomness; this is sufficient to not
5409 			 * be guessable and still allows some pin nesting in
5410 			 * our u32 pin_count.
5411 			 */
5412 			cookie.val = 1 + (prandom_u32() >> 16);
5413 			hlock->pin_count += cookie.val;
5414 			return cookie;
5415 		}
5416 	}
5417 
5418 	WARN(1, "pinning an unheld lock\n");
5419 	return cookie;
5420 }
5421 
5422 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5423 {
5424 	struct task_struct *curr = current;
5425 	int i;
5426 
5427 	if (unlikely(!debug_locks))
5428 		return;
5429 
5430 	for (i = 0; i < curr->lockdep_depth; i++) {
5431 		struct held_lock *hlock = curr->held_locks + i;
5432 
5433 		if (match_held_lock(hlock, lock)) {
5434 			hlock->pin_count += cookie.val;
5435 			return;
5436 		}
5437 	}
5438 
5439 	WARN(1, "pinning an unheld lock\n");
5440 }
5441 
5442 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5443 {
5444 	struct task_struct *curr = current;
5445 	int i;
5446 
5447 	if (unlikely(!debug_locks))
5448 		return;
5449 
5450 	for (i = 0; i < curr->lockdep_depth; i++) {
5451 		struct held_lock *hlock = curr->held_locks + i;
5452 
5453 		if (match_held_lock(hlock, lock)) {
5454 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5455 				return;
5456 
5457 			hlock->pin_count -= cookie.val;
5458 
5459 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5460 				hlock->pin_count = 0;
5461 
5462 			return;
5463 		}
5464 	}
5465 
5466 	WARN(1, "unpinning an unheld lock\n");
5467 }
5468 
5469 /*
5470  * Check whether we follow the irq-flags state precisely:
5471  */
5472 static noinstr void check_flags(unsigned long flags)
5473 {
5474 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5475 	if (!debug_locks)
5476 		return;
5477 
5478 	/* Get the warning out..  */
5479 	instrumentation_begin();
5480 
5481 	if (irqs_disabled_flags(flags)) {
5482 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5483 			printk("possible reason: unannotated irqs-off.\n");
5484 		}
5485 	} else {
5486 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5487 			printk("possible reason: unannotated irqs-on.\n");
5488 		}
5489 	}
5490 
5491 	/*
5492 	 * We dont accurately track softirq state in e.g.
5493 	 * hardirq contexts (such as on 4KSTACKS), so only
5494 	 * check if not in hardirq contexts:
5495 	 */
5496 	if (!hardirq_count()) {
5497 		if (softirq_count()) {
5498 			/* like the above, but with softirqs */
5499 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5500 		} else {
5501 			/* lick the above, does it taste good? */
5502 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5503 		}
5504 	}
5505 
5506 	if (!debug_locks)
5507 		print_irqtrace_events(current);
5508 
5509 	instrumentation_end();
5510 #endif
5511 }
5512 
5513 void lock_set_class(struct lockdep_map *lock, const char *name,
5514 		    struct lock_class_key *key, unsigned int subclass,
5515 		    unsigned long ip)
5516 {
5517 	unsigned long flags;
5518 
5519 	if (unlikely(!lockdep_enabled()))
5520 		return;
5521 
5522 	raw_local_irq_save(flags);
5523 	lockdep_recursion_inc();
5524 	check_flags(flags);
5525 	if (__lock_set_class(lock, name, key, subclass, ip))
5526 		check_chain_key(current);
5527 	lockdep_recursion_finish();
5528 	raw_local_irq_restore(flags);
5529 }
5530 EXPORT_SYMBOL_GPL(lock_set_class);
5531 
5532 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5533 {
5534 	unsigned long flags;
5535 
5536 	if (unlikely(!lockdep_enabled()))
5537 		return;
5538 
5539 	raw_local_irq_save(flags);
5540 	lockdep_recursion_inc();
5541 	check_flags(flags);
5542 	if (__lock_downgrade(lock, ip))
5543 		check_chain_key(current);
5544 	lockdep_recursion_finish();
5545 	raw_local_irq_restore(flags);
5546 }
5547 EXPORT_SYMBOL_GPL(lock_downgrade);
5548 
5549 /* NMI context !!! */
5550 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5551 {
5552 #ifdef CONFIG_PROVE_LOCKING
5553 	struct lock_class *class = look_up_lock_class(lock, subclass);
5554 	unsigned long mask = LOCKF_USED;
5555 
5556 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5557 	if (!class)
5558 		return;
5559 
5560 	/*
5561 	 * READ locks only conflict with USED, such that if we only ever use
5562 	 * READ locks, there is no deadlock possible -- RCU.
5563 	 */
5564 	if (!hlock->read)
5565 		mask |= LOCKF_USED_READ;
5566 
5567 	if (!(class->usage_mask & mask))
5568 		return;
5569 
5570 	hlock->class_idx = class - lock_classes;
5571 
5572 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5573 #endif
5574 }
5575 
5576 static bool lockdep_nmi(void)
5577 {
5578 	if (raw_cpu_read(lockdep_recursion))
5579 		return false;
5580 
5581 	if (!in_nmi())
5582 		return false;
5583 
5584 	return true;
5585 }
5586 
5587 /*
5588  * read_lock() is recursive if:
5589  * 1. We force lockdep think this way in selftests or
5590  * 2. The implementation is not queued read/write lock or
5591  * 3. The locker is at an in_interrupt() context.
5592  */
5593 bool read_lock_is_recursive(void)
5594 {
5595 	return force_read_lock_recursive ||
5596 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5597 	       in_interrupt();
5598 }
5599 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5600 
5601 /*
5602  * We are not always called with irqs disabled - do that here,
5603  * and also avoid lockdep recursion:
5604  */
5605 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5606 			  int trylock, int read, int check,
5607 			  struct lockdep_map *nest_lock, unsigned long ip)
5608 {
5609 	unsigned long flags;
5610 
5611 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5612 
5613 	if (!debug_locks)
5614 		return;
5615 
5616 	if (unlikely(!lockdep_enabled())) {
5617 		/* XXX allow trylock from NMI ?!? */
5618 		if (lockdep_nmi() && !trylock) {
5619 			struct held_lock hlock;
5620 
5621 			hlock.acquire_ip = ip;
5622 			hlock.instance = lock;
5623 			hlock.nest_lock = nest_lock;
5624 			hlock.irq_context = 2; // XXX
5625 			hlock.trylock = trylock;
5626 			hlock.read = read;
5627 			hlock.check = check;
5628 			hlock.hardirqs_off = true;
5629 			hlock.references = 0;
5630 
5631 			verify_lock_unused(lock, &hlock, subclass);
5632 		}
5633 		return;
5634 	}
5635 
5636 	raw_local_irq_save(flags);
5637 	check_flags(flags);
5638 
5639 	lockdep_recursion_inc();
5640 	__lock_acquire(lock, subclass, trylock, read, check,
5641 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5642 	lockdep_recursion_finish();
5643 	raw_local_irq_restore(flags);
5644 }
5645 EXPORT_SYMBOL_GPL(lock_acquire);
5646 
5647 void lock_release(struct lockdep_map *lock, unsigned long ip)
5648 {
5649 	unsigned long flags;
5650 
5651 	trace_lock_release(lock, ip);
5652 
5653 	if (unlikely(!lockdep_enabled()))
5654 		return;
5655 
5656 	raw_local_irq_save(flags);
5657 	check_flags(flags);
5658 
5659 	lockdep_recursion_inc();
5660 	if (__lock_release(lock, ip))
5661 		check_chain_key(current);
5662 	lockdep_recursion_finish();
5663 	raw_local_irq_restore(flags);
5664 }
5665 EXPORT_SYMBOL_GPL(lock_release);
5666 
5667 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5668 {
5669 	unsigned long flags;
5670 	int ret = LOCK_STATE_NOT_HELD;
5671 
5672 	/*
5673 	 * Avoid false negative lockdep_assert_held() and
5674 	 * lockdep_assert_not_held().
5675 	 */
5676 	if (unlikely(!lockdep_enabled()))
5677 		return LOCK_STATE_UNKNOWN;
5678 
5679 	raw_local_irq_save(flags);
5680 	check_flags(flags);
5681 
5682 	lockdep_recursion_inc();
5683 	ret = __lock_is_held(lock, read);
5684 	lockdep_recursion_finish();
5685 	raw_local_irq_restore(flags);
5686 
5687 	return ret;
5688 }
5689 EXPORT_SYMBOL_GPL(lock_is_held_type);
5690 NOKPROBE_SYMBOL(lock_is_held_type);
5691 
5692 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5693 {
5694 	struct pin_cookie cookie = NIL_COOKIE;
5695 	unsigned long flags;
5696 
5697 	if (unlikely(!lockdep_enabled()))
5698 		return cookie;
5699 
5700 	raw_local_irq_save(flags);
5701 	check_flags(flags);
5702 
5703 	lockdep_recursion_inc();
5704 	cookie = __lock_pin_lock(lock);
5705 	lockdep_recursion_finish();
5706 	raw_local_irq_restore(flags);
5707 
5708 	return cookie;
5709 }
5710 EXPORT_SYMBOL_GPL(lock_pin_lock);
5711 
5712 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5713 {
5714 	unsigned long flags;
5715 
5716 	if (unlikely(!lockdep_enabled()))
5717 		return;
5718 
5719 	raw_local_irq_save(flags);
5720 	check_flags(flags);
5721 
5722 	lockdep_recursion_inc();
5723 	__lock_repin_lock(lock, cookie);
5724 	lockdep_recursion_finish();
5725 	raw_local_irq_restore(flags);
5726 }
5727 EXPORT_SYMBOL_GPL(lock_repin_lock);
5728 
5729 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5730 {
5731 	unsigned long flags;
5732 
5733 	if (unlikely(!lockdep_enabled()))
5734 		return;
5735 
5736 	raw_local_irq_save(flags);
5737 	check_flags(flags);
5738 
5739 	lockdep_recursion_inc();
5740 	__lock_unpin_lock(lock, cookie);
5741 	lockdep_recursion_finish();
5742 	raw_local_irq_restore(flags);
5743 }
5744 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5745 
5746 #ifdef CONFIG_LOCK_STAT
5747 static void print_lock_contention_bug(struct task_struct *curr,
5748 				      struct lockdep_map *lock,
5749 				      unsigned long ip)
5750 {
5751 	if (!debug_locks_off())
5752 		return;
5753 	if (debug_locks_silent)
5754 		return;
5755 
5756 	pr_warn("\n");
5757 	pr_warn("=================================\n");
5758 	pr_warn("WARNING: bad contention detected!\n");
5759 	print_kernel_ident();
5760 	pr_warn("---------------------------------\n");
5761 	pr_warn("%s/%d is trying to contend lock (",
5762 		curr->comm, task_pid_nr(curr));
5763 	print_lockdep_cache(lock);
5764 	pr_cont(") at:\n");
5765 	print_ip_sym(KERN_WARNING, ip);
5766 	pr_warn("but there are no locks held!\n");
5767 	pr_warn("\nother info that might help us debug this:\n");
5768 	lockdep_print_held_locks(curr);
5769 
5770 	pr_warn("\nstack backtrace:\n");
5771 	dump_stack();
5772 }
5773 
5774 static void
5775 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5776 {
5777 	struct task_struct *curr = current;
5778 	struct held_lock *hlock;
5779 	struct lock_class_stats *stats;
5780 	unsigned int depth;
5781 	int i, contention_point, contending_point;
5782 
5783 	depth = curr->lockdep_depth;
5784 	/*
5785 	 * Whee, we contended on this lock, except it seems we're not
5786 	 * actually trying to acquire anything much at all..
5787 	 */
5788 	if (DEBUG_LOCKS_WARN_ON(!depth))
5789 		return;
5790 
5791 	hlock = find_held_lock(curr, lock, depth, &i);
5792 	if (!hlock) {
5793 		print_lock_contention_bug(curr, lock, ip);
5794 		return;
5795 	}
5796 
5797 	if (hlock->instance != lock)
5798 		return;
5799 
5800 	hlock->waittime_stamp = lockstat_clock();
5801 
5802 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5803 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5804 				      lock->ip);
5805 
5806 	stats = get_lock_stats(hlock_class(hlock));
5807 	if (contention_point < LOCKSTAT_POINTS)
5808 		stats->contention_point[contention_point]++;
5809 	if (contending_point < LOCKSTAT_POINTS)
5810 		stats->contending_point[contending_point]++;
5811 	if (lock->cpu != smp_processor_id())
5812 		stats->bounces[bounce_contended + !!hlock->read]++;
5813 }
5814 
5815 static void
5816 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5817 {
5818 	struct task_struct *curr = current;
5819 	struct held_lock *hlock;
5820 	struct lock_class_stats *stats;
5821 	unsigned int depth;
5822 	u64 now, waittime = 0;
5823 	int i, cpu;
5824 
5825 	depth = curr->lockdep_depth;
5826 	/*
5827 	 * Yay, we acquired ownership of this lock we didn't try to
5828 	 * acquire, how the heck did that happen?
5829 	 */
5830 	if (DEBUG_LOCKS_WARN_ON(!depth))
5831 		return;
5832 
5833 	hlock = find_held_lock(curr, lock, depth, &i);
5834 	if (!hlock) {
5835 		print_lock_contention_bug(curr, lock, _RET_IP_);
5836 		return;
5837 	}
5838 
5839 	if (hlock->instance != lock)
5840 		return;
5841 
5842 	cpu = smp_processor_id();
5843 	if (hlock->waittime_stamp) {
5844 		now = lockstat_clock();
5845 		waittime = now - hlock->waittime_stamp;
5846 		hlock->holdtime_stamp = now;
5847 	}
5848 
5849 	stats = get_lock_stats(hlock_class(hlock));
5850 	if (waittime) {
5851 		if (hlock->read)
5852 			lock_time_inc(&stats->read_waittime, waittime);
5853 		else
5854 			lock_time_inc(&stats->write_waittime, waittime);
5855 	}
5856 	if (lock->cpu != cpu)
5857 		stats->bounces[bounce_acquired + !!hlock->read]++;
5858 
5859 	lock->cpu = cpu;
5860 	lock->ip = ip;
5861 }
5862 
5863 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5864 {
5865 	unsigned long flags;
5866 
5867 	trace_lock_contended(lock, ip);
5868 
5869 	if (unlikely(!lock_stat || !lockdep_enabled()))
5870 		return;
5871 
5872 	raw_local_irq_save(flags);
5873 	check_flags(flags);
5874 	lockdep_recursion_inc();
5875 	__lock_contended(lock, ip);
5876 	lockdep_recursion_finish();
5877 	raw_local_irq_restore(flags);
5878 }
5879 EXPORT_SYMBOL_GPL(lock_contended);
5880 
5881 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5882 {
5883 	unsigned long flags;
5884 
5885 	trace_lock_acquired(lock, ip);
5886 
5887 	if (unlikely(!lock_stat || !lockdep_enabled()))
5888 		return;
5889 
5890 	raw_local_irq_save(flags);
5891 	check_flags(flags);
5892 	lockdep_recursion_inc();
5893 	__lock_acquired(lock, ip);
5894 	lockdep_recursion_finish();
5895 	raw_local_irq_restore(flags);
5896 }
5897 EXPORT_SYMBOL_GPL(lock_acquired);
5898 #endif
5899 
5900 /*
5901  * Used by the testsuite, sanitize the validator state
5902  * after a simulated failure:
5903  */
5904 
5905 void lockdep_reset(void)
5906 {
5907 	unsigned long flags;
5908 	int i;
5909 
5910 	raw_local_irq_save(flags);
5911 	lockdep_init_task(current);
5912 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5913 	nr_hardirq_chains = 0;
5914 	nr_softirq_chains = 0;
5915 	nr_process_chains = 0;
5916 	debug_locks = 1;
5917 	for (i = 0; i < CHAINHASH_SIZE; i++)
5918 		INIT_HLIST_HEAD(chainhash_table + i);
5919 	raw_local_irq_restore(flags);
5920 }
5921 
5922 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5923 static void remove_class_from_lock_chain(struct pending_free *pf,
5924 					 struct lock_chain *chain,
5925 					 struct lock_class *class)
5926 {
5927 #ifdef CONFIG_PROVE_LOCKING
5928 	int i;
5929 
5930 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5931 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5932 			continue;
5933 		/*
5934 		 * Each lock class occurs at most once in a lock chain so once
5935 		 * we found a match we can break out of this loop.
5936 		 */
5937 		goto free_lock_chain;
5938 	}
5939 	/* Since the chain has not been modified, return. */
5940 	return;
5941 
5942 free_lock_chain:
5943 	free_chain_hlocks(chain->base, chain->depth);
5944 	/* Overwrite the chain key for concurrent RCU readers. */
5945 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5946 	dec_chains(chain->irq_context);
5947 
5948 	/*
5949 	 * Note: calling hlist_del_rcu() from inside a
5950 	 * hlist_for_each_entry_rcu() loop is safe.
5951 	 */
5952 	hlist_del_rcu(&chain->entry);
5953 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5954 	nr_zapped_lock_chains++;
5955 #endif
5956 }
5957 
5958 /* Must be called with the graph lock held. */
5959 static void remove_class_from_lock_chains(struct pending_free *pf,
5960 					  struct lock_class *class)
5961 {
5962 	struct lock_chain *chain;
5963 	struct hlist_head *head;
5964 	int i;
5965 
5966 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5967 		head = chainhash_table + i;
5968 		hlist_for_each_entry_rcu(chain, head, entry) {
5969 			remove_class_from_lock_chain(pf, chain, class);
5970 		}
5971 	}
5972 }
5973 
5974 /*
5975  * Remove all references to a lock class. The caller must hold the graph lock.
5976  */
5977 static void zap_class(struct pending_free *pf, struct lock_class *class)
5978 {
5979 	struct lock_list *entry;
5980 	int i;
5981 
5982 	WARN_ON_ONCE(!class->key);
5983 
5984 	/*
5985 	 * Remove all dependencies this lock is
5986 	 * involved in:
5987 	 */
5988 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5989 		entry = list_entries + i;
5990 		if (entry->class != class && entry->links_to != class)
5991 			continue;
5992 		__clear_bit(i, list_entries_in_use);
5993 		nr_list_entries--;
5994 		list_del_rcu(&entry->entry);
5995 	}
5996 	if (list_empty(&class->locks_after) &&
5997 	    list_empty(&class->locks_before)) {
5998 		list_move_tail(&class->lock_entry, &pf->zapped);
5999 		hlist_del_rcu(&class->hash_entry);
6000 		WRITE_ONCE(class->key, NULL);
6001 		WRITE_ONCE(class->name, NULL);
6002 		nr_lock_classes--;
6003 		__clear_bit(class - lock_classes, lock_classes_in_use);
6004 	} else {
6005 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6006 			  class->name);
6007 	}
6008 
6009 	remove_class_from_lock_chains(pf, class);
6010 	nr_zapped_classes++;
6011 }
6012 
6013 static void reinit_class(struct lock_class *class)
6014 {
6015 	void *const p = class;
6016 	const unsigned int offset = offsetof(struct lock_class, key);
6017 
6018 	WARN_ON_ONCE(!class->lock_entry.next);
6019 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6020 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6021 	memset(p + offset, 0, sizeof(*class) - offset);
6022 	WARN_ON_ONCE(!class->lock_entry.next);
6023 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6024 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6025 }
6026 
6027 static inline int within(const void *addr, void *start, unsigned long size)
6028 {
6029 	return addr >= start && addr < start + size;
6030 }
6031 
6032 static bool inside_selftest(void)
6033 {
6034 	return current == lockdep_selftest_task_struct;
6035 }
6036 
6037 /* The caller must hold the graph lock. */
6038 static struct pending_free *get_pending_free(void)
6039 {
6040 	return delayed_free.pf + delayed_free.index;
6041 }
6042 
6043 static void free_zapped_rcu(struct rcu_head *cb);
6044 
6045 /*
6046  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6047  * the graph lock held.
6048  */
6049 static void call_rcu_zapped(struct pending_free *pf)
6050 {
6051 	WARN_ON_ONCE(inside_selftest());
6052 
6053 	if (list_empty(&pf->zapped))
6054 		return;
6055 
6056 	if (delayed_free.scheduled)
6057 		return;
6058 
6059 	delayed_free.scheduled = true;
6060 
6061 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6062 	delayed_free.index ^= 1;
6063 
6064 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6065 }
6066 
6067 /* The caller must hold the graph lock. May be called from RCU context. */
6068 static void __free_zapped_classes(struct pending_free *pf)
6069 {
6070 	struct lock_class *class;
6071 
6072 	check_data_structures();
6073 
6074 	list_for_each_entry(class, &pf->zapped, lock_entry)
6075 		reinit_class(class);
6076 
6077 	list_splice_init(&pf->zapped, &free_lock_classes);
6078 
6079 #ifdef CONFIG_PROVE_LOCKING
6080 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6081 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6082 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6083 #endif
6084 }
6085 
6086 static void free_zapped_rcu(struct rcu_head *ch)
6087 {
6088 	struct pending_free *pf;
6089 	unsigned long flags;
6090 
6091 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6092 		return;
6093 
6094 	raw_local_irq_save(flags);
6095 	lockdep_lock();
6096 
6097 	/* closed head */
6098 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6099 	__free_zapped_classes(pf);
6100 	delayed_free.scheduled = false;
6101 
6102 	/*
6103 	 * If there's anything on the open list, close and start a new callback.
6104 	 */
6105 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6106 
6107 	lockdep_unlock();
6108 	raw_local_irq_restore(flags);
6109 }
6110 
6111 /*
6112  * Remove all lock classes from the class hash table and from the
6113  * all_lock_classes list whose key or name is in the address range [start,
6114  * start + size). Move these lock classes to the zapped_classes list. Must
6115  * be called with the graph lock held.
6116  */
6117 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6118 				     unsigned long size)
6119 {
6120 	struct lock_class *class;
6121 	struct hlist_head *head;
6122 	int i;
6123 
6124 	/* Unhash all classes that were created by a module. */
6125 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6126 		head = classhash_table + i;
6127 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6128 			if (!within(class->key, start, size) &&
6129 			    !within(class->name, start, size))
6130 				continue;
6131 			zap_class(pf, class);
6132 		}
6133 	}
6134 }
6135 
6136 /*
6137  * Used in module.c to remove lock classes from memory that is going to be
6138  * freed; and possibly re-used by other modules.
6139  *
6140  * We will have had one synchronize_rcu() before getting here, so we're
6141  * guaranteed nobody will look up these exact classes -- they're properly dead
6142  * but still allocated.
6143  */
6144 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6145 {
6146 	struct pending_free *pf;
6147 	unsigned long flags;
6148 
6149 	init_data_structures_once();
6150 
6151 	raw_local_irq_save(flags);
6152 	lockdep_lock();
6153 	pf = get_pending_free();
6154 	__lockdep_free_key_range(pf, start, size);
6155 	call_rcu_zapped(pf);
6156 	lockdep_unlock();
6157 	raw_local_irq_restore(flags);
6158 
6159 	/*
6160 	 * Wait for any possible iterators from look_up_lock_class() to pass
6161 	 * before continuing to free the memory they refer to.
6162 	 */
6163 	synchronize_rcu();
6164 }
6165 
6166 /*
6167  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6168  * Ignores debug_locks. Must only be used by the lockdep selftests.
6169  */
6170 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6171 {
6172 	struct pending_free *pf = delayed_free.pf;
6173 	unsigned long flags;
6174 
6175 	init_data_structures_once();
6176 
6177 	raw_local_irq_save(flags);
6178 	lockdep_lock();
6179 	__lockdep_free_key_range(pf, start, size);
6180 	__free_zapped_classes(pf);
6181 	lockdep_unlock();
6182 	raw_local_irq_restore(flags);
6183 }
6184 
6185 void lockdep_free_key_range(void *start, unsigned long size)
6186 {
6187 	init_data_structures_once();
6188 
6189 	if (inside_selftest())
6190 		lockdep_free_key_range_imm(start, size);
6191 	else
6192 		lockdep_free_key_range_reg(start, size);
6193 }
6194 
6195 /*
6196  * Check whether any element of the @lock->class_cache[] array refers to a
6197  * registered lock class. The caller must hold either the graph lock or the
6198  * RCU read lock.
6199  */
6200 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6201 {
6202 	struct lock_class *class;
6203 	struct hlist_head *head;
6204 	int i, j;
6205 
6206 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6207 		head = classhash_table + i;
6208 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6209 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6210 				if (lock->class_cache[j] == class)
6211 					return true;
6212 		}
6213 	}
6214 	return false;
6215 }
6216 
6217 /* The caller must hold the graph lock. Does not sleep. */
6218 static void __lockdep_reset_lock(struct pending_free *pf,
6219 				 struct lockdep_map *lock)
6220 {
6221 	struct lock_class *class;
6222 	int j;
6223 
6224 	/*
6225 	 * Remove all classes this lock might have:
6226 	 */
6227 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6228 		/*
6229 		 * If the class exists we look it up and zap it:
6230 		 */
6231 		class = look_up_lock_class(lock, j);
6232 		if (class)
6233 			zap_class(pf, class);
6234 	}
6235 	/*
6236 	 * Debug check: in the end all mapped classes should
6237 	 * be gone.
6238 	 */
6239 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6240 		debug_locks_off();
6241 }
6242 
6243 /*
6244  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6245  * released data structures from RCU context.
6246  */
6247 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6248 {
6249 	struct pending_free *pf;
6250 	unsigned long flags;
6251 	int locked;
6252 
6253 	raw_local_irq_save(flags);
6254 	locked = graph_lock();
6255 	if (!locked)
6256 		goto out_irq;
6257 
6258 	pf = get_pending_free();
6259 	__lockdep_reset_lock(pf, lock);
6260 	call_rcu_zapped(pf);
6261 
6262 	graph_unlock();
6263 out_irq:
6264 	raw_local_irq_restore(flags);
6265 }
6266 
6267 /*
6268  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6269  * lockdep selftests.
6270  */
6271 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6272 {
6273 	struct pending_free *pf = delayed_free.pf;
6274 	unsigned long flags;
6275 
6276 	raw_local_irq_save(flags);
6277 	lockdep_lock();
6278 	__lockdep_reset_lock(pf, lock);
6279 	__free_zapped_classes(pf);
6280 	lockdep_unlock();
6281 	raw_local_irq_restore(flags);
6282 }
6283 
6284 void lockdep_reset_lock(struct lockdep_map *lock)
6285 {
6286 	init_data_structures_once();
6287 
6288 	if (inside_selftest())
6289 		lockdep_reset_lock_imm(lock);
6290 	else
6291 		lockdep_reset_lock_reg(lock);
6292 }
6293 
6294 /* Unregister a dynamically allocated key. */
6295 void lockdep_unregister_key(struct lock_class_key *key)
6296 {
6297 	struct hlist_head *hash_head = keyhashentry(key);
6298 	struct lock_class_key *k;
6299 	struct pending_free *pf;
6300 	unsigned long flags;
6301 	bool found = false;
6302 
6303 	might_sleep();
6304 
6305 	if (WARN_ON_ONCE(static_obj(key)))
6306 		return;
6307 
6308 	raw_local_irq_save(flags);
6309 	if (!graph_lock())
6310 		goto out_irq;
6311 
6312 	pf = get_pending_free();
6313 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6314 		if (k == key) {
6315 			hlist_del_rcu(&k->hash_entry);
6316 			found = true;
6317 			break;
6318 		}
6319 	}
6320 	WARN_ON_ONCE(!found);
6321 	__lockdep_free_key_range(pf, key, 1);
6322 	call_rcu_zapped(pf);
6323 	graph_unlock();
6324 out_irq:
6325 	raw_local_irq_restore(flags);
6326 
6327 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6328 	synchronize_rcu();
6329 }
6330 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6331 
6332 void __init lockdep_init(void)
6333 {
6334 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6335 
6336 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6337 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6338 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6339 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6340 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6341 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6342 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6343 
6344 	printk(" memory used by lock dependency info: %zu kB\n",
6345 	       (sizeof(lock_classes) +
6346 		sizeof(lock_classes_in_use) +
6347 		sizeof(classhash_table) +
6348 		sizeof(list_entries) +
6349 		sizeof(list_entries_in_use) +
6350 		sizeof(chainhash_table) +
6351 		sizeof(delayed_free)
6352 #ifdef CONFIG_PROVE_LOCKING
6353 		+ sizeof(lock_cq)
6354 		+ sizeof(lock_chains)
6355 		+ sizeof(lock_chains_in_use)
6356 		+ sizeof(chain_hlocks)
6357 #endif
6358 		) / 1024
6359 		);
6360 
6361 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6362 	printk(" memory used for stack traces: %zu kB\n",
6363 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6364 	       );
6365 #endif
6366 
6367 	printk(" per task-struct memory footprint: %zu bytes\n",
6368 	       sizeof(((struct task_struct *)NULL)->held_locks));
6369 }
6370 
6371 static void
6372 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6373 		     const void *mem_to, struct held_lock *hlock)
6374 {
6375 	if (!debug_locks_off())
6376 		return;
6377 	if (debug_locks_silent)
6378 		return;
6379 
6380 	pr_warn("\n");
6381 	pr_warn("=========================\n");
6382 	pr_warn("WARNING: held lock freed!\n");
6383 	print_kernel_ident();
6384 	pr_warn("-------------------------\n");
6385 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6386 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6387 	print_lock(hlock);
6388 	lockdep_print_held_locks(curr);
6389 
6390 	pr_warn("\nstack backtrace:\n");
6391 	dump_stack();
6392 }
6393 
6394 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6395 				const void* lock_from, unsigned long lock_len)
6396 {
6397 	return lock_from + lock_len <= mem_from ||
6398 		mem_from + mem_len <= lock_from;
6399 }
6400 
6401 /*
6402  * Called when kernel memory is freed (or unmapped), or if a lock
6403  * is destroyed or reinitialized - this code checks whether there is
6404  * any held lock in the memory range of <from> to <to>:
6405  */
6406 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6407 {
6408 	struct task_struct *curr = current;
6409 	struct held_lock *hlock;
6410 	unsigned long flags;
6411 	int i;
6412 
6413 	if (unlikely(!debug_locks))
6414 		return;
6415 
6416 	raw_local_irq_save(flags);
6417 	for (i = 0; i < curr->lockdep_depth; i++) {
6418 		hlock = curr->held_locks + i;
6419 
6420 		if (not_in_range(mem_from, mem_len, hlock->instance,
6421 					sizeof(*hlock->instance)))
6422 			continue;
6423 
6424 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6425 		break;
6426 	}
6427 	raw_local_irq_restore(flags);
6428 }
6429 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6430 
6431 static void print_held_locks_bug(void)
6432 {
6433 	if (!debug_locks_off())
6434 		return;
6435 	if (debug_locks_silent)
6436 		return;
6437 
6438 	pr_warn("\n");
6439 	pr_warn("====================================\n");
6440 	pr_warn("WARNING: %s/%d still has locks held!\n",
6441 	       current->comm, task_pid_nr(current));
6442 	print_kernel_ident();
6443 	pr_warn("------------------------------------\n");
6444 	lockdep_print_held_locks(current);
6445 	pr_warn("\nstack backtrace:\n");
6446 	dump_stack();
6447 }
6448 
6449 void debug_check_no_locks_held(void)
6450 {
6451 	if (unlikely(current->lockdep_depth > 0))
6452 		print_held_locks_bug();
6453 }
6454 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6455 
6456 #ifdef __KERNEL__
6457 void debug_show_all_locks(void)
6458 {
6459 	struct task_struct *g, *p;
6460 
6461 	if (unlikely(!debug_locks)) {
6462 		pr_warn("INFO: lockdep is turned off.\n");
6463 		return;
6464 	}
6465 	pr_warn("\nShowing all locks held in the system:\n");
6466 
6467 	rcu_read_lock();
6468 	for_each_process_thread(g, p) {
6469 		if (!p->lockdep_depth)
6470 			continue;
6471 		lockdep_print_held_locks(p);
6472 		touch_nmi_watchdog();
6473 		touch_all_softlockup_watchdogs();
6474 	}
6475 	rcu_read_unlock();
6476 
6477 	pr_warn("\n");
6478 	pr_warn("=============================================\n\n");
6479 }
6480 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6481 #endif
6482 
6483 /*
6484  * Careful: only use this function if you are sure that
6485  * the task cannot run in parallel!
6486  */
6487 void debug_show_held_locks(struct task_struct *task)
6488 {
6489 	if (unlikely(!debug_locks)) {
6490 		printk("INFO: lockdep is turned off.\n");
6491 		return;
6492 	}
6493 	lockdep_print_held_locks(task);
6494 }
6495 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6496 
6497 asmlinkage __visible void lockdep_sys_exit(void)
6498 {
6499 	struct task_struct *curr = current;
6500 
6501 	if (unlikely(curr->lockdep_depth)) {
6502 		if (!debug_locks_off())
6503 			return;
6504 		pr_warn("\n");
6505 		pr_warn("================================================\n");
6506 		pr_warn("WARNING: lock held when returning to user space!\n");
6507 		print_kernel_ident();
6508 		pr_warn("------------------------------------------------\n");
6509 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6510 				curr->comm, curr->pid);
6511 		lockdep_print_held_locks(curr);
6512 	}
6513 
6514 	/*
6515 	 * The lock history for each syscall should be independent. So wipe the
6516 	 * slate clean on return to userspace.
6517 	 */
6518 	lockdep_invariant_state(false);
6519 }
6520 
6521 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6522 {
6523 	struct task_struct *curr = current;
6524 	int dl = READ_ONCE(debug_locks);
6525 
6526 	/* Note: the following can be executed concurrently, so be careful. */
6527 	pr_warn("\n");
6528 	pr_warn("=============================\n");
6529 	pr_warn("WARNING: suspicious RCU usage\n");
6530 	print_kernel_ident();
6531 	pr_warn("-----------------------------\n");
6532 	pr_warn("%s:%d %s!\n", file, line, s);
6533 	pr_warn("\nother info that might help us debug this:\n\n");
6534 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6535 	       !rcu_lockdep_current_cpu_online()
6536 			? "RCU used illegally from offline CPU!\n"
6537 			: "",
6538 	       rcu_scheduler_active, dl,
6539 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6540 
6541 	/*
6542 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6543 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6544 	 * considers that CPU to be in an "extended quiescent state",
6545 	 * which means that RCU will be completely ignoring that CPU.
6546 	 * Therefore, rcu_read_lock() and friends have absolutely no
6547 	 * effect on a CPU running in that state. In other words, even if
6548 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6549 	 * delete data structures out from under it.  RCU really has no
6550 	 * choice here: we need to keep an RCU-free window in idle where
6551 	 * the CPU may possibly enter into low power mode. This way we can
6552 	 * notice an extended quiescent state to other CPUs that started a grace
6553 	 * period. Otherwise we would delay any grace period as long as we run
6554 	 * in the idle task.
6555 	 *
6556 	 * So complain bitterly if someone does call rcu_read_lock(),
6557 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6558 	 */
6559 	if (!rcu_is_watching())
6560 		pr_warn("RCU used illegally from extended quiescent state!\n");
6561 
6562 	lockdep_print_held_locks(curr);
6563 	pr_warn("\nstack backtrace:\n");
6564 	dump_stack();
6565 }
6566 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6567