1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 #include <linux/console.h> 60 61 #include <asm/sections.h> 62 63 #include "lockdep_internals.h" 64 65 #include <trace/events/lock.h> 66 67 #ifdef CONFIG_PROVE_LOCKING 68 static int prove_locking = 1; 69 module_param(prove_locking, int, 0644); 70 #else 71 #define prove_locking 0 72 #endif 73 74 #ifdef CONFIG_LOCK_STAT 75 static int lock_stat = 1; 76 module_param(lock_stat, int, 0644); 77 #else 78 #define lock_stat 0 79 #endif 80 81 #ifdef CONFIG_SYSCTL 82 static struct ctl_table kern_lockdep_table[] = { 83 #ifdef CONFIG_PROVE_LOCKING 84 { 85 .procname = "prove_locking", 86 .data = &prove_locking, 87 .maxlen = sizeof(int), 88 .mode = 0644, 89 .proc_handler = proc_dointvec, 90 }, 91 #endif /* CONFIG_PROVE_LOCKING */ 92 #ifdef CONFIG_LOCK_STAT 93 { 94 .procname = "lock_stat", 95 .data = &lock_stat, 96 .maxlen = sizeof(int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec, 99 }, 100 #endif /* CONFIG_LOCK_STAT */ 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 nbcon_cpu_emergency_enter(); 578 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 579 dump_stack(); 580 nbcon_cpu_emergency_exit(); 581 582 return NULL; 583 } 584 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 585 586 hash = jhash(trace->entries, trace->nr_entries * 587 sizeof(trace->entries[0]), 0); 588 trace->hash = hash; 589 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 590 hlist_for_each_entry(t2, hash_head, hash_entry) { 591 if (traces_identical(trace, t2)) 592 return t2; 593 } 594 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 595 hlist_add_head(&trace->hash_entry, hash_head); 596 597 return trace; 598 } 599 600 /* Return the number of stack traces in the stack_trace[] array. */ 601 u64 lockdep_stack_trace_count(void) 602 { 603 struct lock_trace *trace; 604 u64 c = 0; 605 int i; 606 607 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 608 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 609 c++; 610 } 611 } 612 613 return c; 614 } 615 616 /* Return the number of stack hash chains that have at least one stack trace. */ 617 u64 lockdep_stack_hash_count(void) 618 { 619 u64 c = 0; 620 int i; 621 622 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 623 if (!hlist_empty(&stack_trace_hash[i])) 624 c++; 625 626 return c; 627 } 628 #endif 629 630 unsigned int nr_hardirq_chains; 631 unsigned int nr_softirq_chains; 632 unsigned int nr_process_chains; 633 unsigned int max_lockdep_depth; 634 635 #ifdef CONFIG_DEBUG_LOCKDEP 636 /* 637 * Various lockdep statistics: 638 */ 639 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 640 #endif 641 642 #ifdef CONFIG_PROVE_LOCKING 643 /* 644 * Locking printouts: 645 */ 646 647 #define __USAGE(__STATE) \ 648 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 649 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 650 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 651 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 652 653 static const char *usage_str[] = 654 { 655 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 656 #include "lockdep_states.h" 657 #undef LOCKDEP_STATE 658 [LOCK_USED] = "INITIAL USE", 659 [LOCK_USED_READ] = "INITIAL READ USE", 660 /* abused as string storage for verify_lock_unused() */ 661 [LOCK_USAGE_STATES] = "IN-NMI", 662 }; 663 #endif 664 665 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 666 { 667 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 668 } 669 670 static inline unsigned long lock_flag(enum lock_usage_bit bit) 671 { 672 return 1UL << bit; 673 } 674 675 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 676 { 677 /* 678 * The usage character defaults to '.' (i.e., irqs disabled and not in 679 * irq context), which is the safest usage category. 680 */ 681 char c = '.'; 682 683 /* 684 * The order of the following usage checks matters, which will 685 * result in the outcome character as follows: 686 * 687 * - '+': irq is enabled and not in irq context 688 * - '-': in irq context and irq is disabled 689 * - '?': in irq context and irq is enabled 690 */ 691 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 692 c = '+'; 693 if (class->usage_mask & lock_flag(bit)) 694 c = '?'; 695 } else if (class->usage_mask & lock_flag(bit)) 696 c = '-'; 697 698 return c; 699 } 700 701 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 702 { 703 int i = 0; 704 705 #define LOCKDEP_STATE(__STATE) \ 706 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 707 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 708 #include "lockdep_states.h" 709 #undef LOCKDEP_STATE 710 711 usage[i] = '\0'; 712 } 713 714 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 715 { 716 char str[KSYM_NAME_LEN]; 717 const char *name; 718 719 name = class->name; 720 if (!name) { 721 name = __get_key_name(class->key, str); 722 printk(KERN_CONT "%s", name); 723 } else { 724 printk(KERN_CONT "%s", name); 725 if (class->name_version > 1) 726 printk(KERN_CONT "#%d", class->name_version); 727 if (class->subclass) 728 printk(KERN_CONT "/%d", class->subclass); 729 if (hlock && class->print_fn) 730 class->print_fn(hlock->instance); 731 } 732 } 733 734 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 735 { 736 char usage[LOCK_USAGE_CHARS]; 737 738 get_usage_chars(class, usage); 739 740 printk(KERN_CONT " ("); 741 __print_lock_name(hlock, class); 742 printk(KERN_CONT "){%s}-{%d:%d}", usage, 743 class->wait_type_outer ?: class->wait_type_inner, 744 class->wait_type_inner); 745 } 746 747 static void print_lockdep_cache(struct lockdep_map *lock) 748 { 749 const char *name; 750 char str[KSYM_NAME_LEN]; 751 752 name = lock->name; 753 if (!name) 754 name = __get_key_name(lock->key->subkeys, str); 755 756 printk(KERN_CONT "%s", name); 757 } 758 759 static void print_lock(struct held_lock *hlock) 760 { 761 /* 762 * We can be called locklessly through debug_show_all_locks() so be 763 * extra careful, the hlock might have been released and cleared. 764 * 765 * If this indeed happens, lets pretend it does not hurt to continue 766 * to print the lock unless the hlock class_idx does not point to a 767 * registered class. The rationale here is: since we don't attempt 768 * to distinguish whether we are in this situation, if it just 769 * happened we can't count on class_idx to tell either. 770 */ 771 struct lock_class *lock = hlock_class(hlock); 772 773 if (!lock) { 774 printk(KERN_CONT "<RELEASED>\n"); 775 return; 776 } 777 778 printk(KERN_CONT "%px", hlock->instance); 779 print_lock_name(hlock, lock); 780 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 781 } 782 783 static void lockdep_print_held_locks(struct task_struct *p) 784 { 785 int i, depth = READ_ONCE(p->lockdep_depth); 786 787 if (!depth) 788 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 789 else 790 printk("%d lock%s held by %s/%d:\n", depth, 791 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 792 /* 793 * It's not reliable to print a task's held locks if it's not sleeping 794 * and it's not the current task. 795 */ 796 if (p != current && task_is_running(p)) 797 return; 798 for (i = 0; i < depth; i++) { 799 printk(" #%d: ", i); 800 print_lock(p->held_locks + i); 801 } 802 } 803 804 static void print_kernel_ident(void) 805 { 806 printk("%s %.*s %s\n", init_utsname()->release, 807 (int)strcspn(init_utsname()->version, " "), 808 init_utsname()->version, 809 print_tainted()); 810 } 811 812 static int very_verbose(struct lock_class *class) 813 { 814 #if VERY_VERBOSE 815 return class_filter(class); 816 #endif 817 return 0; 818 } 819 820 /* 821 * Is this the address of a static object: 822 */ 823 #ifdef __KERNEL__ 824 static int static_obj(const void *obj) 825 { 826 unsigned long addr = (unsigned long) obj; 827 828 if (is_kernel_core_data(addr)) 829 return 1; 830 831 /* 832 * keys are allowed in the __ro_after_init section. 833 */ 834 if (is_kernel_rodata(addr)) 835 return 1; 836 837 /* 838 * in initdata section and used during bootup only? 839 * NOTE: On some platforms the initdata section is 840 * outside of the _stext ... _end range. 841 */ 842 if (system_state < SYSTEM_FREEING_INITMEM && 843 init_section_contains((void *)addr, 1)) 844 return 1; 845 846 /* 847 * in-kernel percpu var? 848 */ 849 if (is_kernel_percpu_address(addr)) 850 return 1; 851 852 /* 853 * module static or percpu var? 854 */ 855 return is_module_address(addr) || is_module_percpu_address(addr); 856 } 857 #endif 858 859 /* 860 * To make lock name printouts unique, we calculate a unique 861 * class->name_version generation counter. The caller must hold the graph 862 * lock. 863 */ 864 static int count_matching_names(struct lock_class *new_class) 865 { 866 struct lock_class *class; 867 int count = 0; 868 869 if (!new_class->name) 870 return 0; 871 872 list_for_each_entry(class, &all_lock_classes, lock_entry) { 873 if (new_class->key - new_class->subclass == class->key) 874 return class->name_version; 875 if (class->name && !strcmp(class->name, new_class->name)) 876 count = max(count, class->name_version); 877 } 878 879 return count + 1; 880 } 881 882 /* used from NMI context -- must be lockless */ 883 static noinstr struct lock_class * 884 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 885 { 886 struct lockdep_subclass_key *key; 887 struct hlist_head *hash_head; 888 struct lock_class *class; 889 890 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 891 instrumentation_begin(); 892 debug_locks_off(); 893 nbcon_cpu_emergency_enter(); 894 printk(KERN_ERR 895 "BUG: looking up invalid subclass: %u\n", subclass); 896 printk(KERN_ERR 897 "turning off the locking correctness validator.\n"); 898 dump_stack(); 899 nbcon_cpu_emergency_exit(); 900 instrumentation_end(); 901 return NULL; 902 } 903 904 /* 905 * If it is not initialised then it has never been locked, 906 * so it won't be present in the hash table. 907 */ 908 if (unlikely(!lock->key)) 909 return NULL; 910 911 /* 912 * NOTE: the class-key must be unique. For dynamic locks, a static 913 * lock_class_key variable is passed in through the mutex_init() 914 * (or spin_lock_init()) call - which acts as the key. For static 915 * locks we use the lock object itself as the key. 916 */ 917 BUILD_BUG_ON(sizeof(struct lock_class_key) > 918 sizeof(struct lockdep_map)); 919 920 key = lock->key->subkeys + subclass; 921 922 hash_head = classhashentry(key); 923 924 /* 925 * We do an RCU walk of the hash, see lockdep_free_key_range(). 926 */ 927 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 928 return NULL; 929 930 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 931 if (class->key == key) { 932 /* 933 * Huh! same key, different name? Did someone trample 934 * on some memory? We're most confused. 935 */ 936 WARN_ONCE(class->name != lock->name && 937 lock->key != &__lockdep_no_validate__, 938 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 939 lock->name, lock->key, class->name); 940 return class; 941 } 942 } 943 944 return NULL; 945 } 946 947 /* 948 * Static locks do not have their class-keys yet - for them the key is 949 * the lock object itself. If the lock is in the per cpu area, the 950 * canonical address of the lock (per cpu offset removed) is used. 951 */ 952 static bool assign_lock_key(struct lockdep_map *lock) 953 { 954 unsigned long can_addr, addr = (unsigned long)lock; 955 956 #ifdef __KERNEL__ 957 /* 958 * lockdep_free_key_range() assumes that struct lock_class_key 959 * objects do not overlap. Since we use the address of lock 960 * objects as class key for static objects, check whether the 961 * size of lock_class_key objects does not exceed the size of 962 * the smallest lock object. 963 */ 964 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 965 #endif 966 967 if (__is_kernel_percpu_address(addr, &can_addr)) 968 lock->key = (void *)can_addr; 969 else if (__is_module_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (static_obj(lock)) 972 lock->key = (void *)lock; 973 else { 974 /* Debug-check: all keys must be persistent! */ 975 debug_locks_off(); 976 nbcon_cpu_emergency_enter(); 977 pr_err("INFO: trying to register non-static key.\n"); 978 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 979 pr_err("you didn't initialize this object before use?\n"); 980 pr_err("turning off the locking correctness validator.\n"); 981 dump_stack(); 982 nbcon_cpu_emergency_exit(); 983 return false; 984 } 985 986 return true; 987 } 988 989 #ifdef CONFIG_DEBUG_LOCKDEP 990 991 /* Check whether element @e occurs in list @h */ 992 static bool in_list(struct list_head *e, struct list_head *h) 993 { 994 struct list_head *f; 995 996 list_for_each(f, h) { 997 if (e == f) 998 return true; 999 } 1000 1001 return false; 1002 } 1003 1004 /* 1005 * Check whether entry @e occurs in any of the locks_after or locks_before 1006 * lists. 1007 */ 1008 static bool in_any_class_list(struct list_head *e) 1009 { 1010 struct lock_class *class; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1014 class = &lock_classes[i]; 1015 if (in_list(e, &class->locks_after) || 1016 in_list(e, &class->locks_before)) 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1023 { 1024 struct lock_list *e; 1025 1026 list_for_each_entry(e, h, entry) { 1027 if (e->links_to != c) { 1028 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1029 c->name ? : "(?)", 1030 (unsigned long)(e - list_entries), 1031 e->links_to && e->links_to->name ? 1032 e->links_to->name : "(?)", 1033 e->class && e->class->name ? e->class->name : 1034 "(?)"); 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_PROVE_LOCKING 1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1043 #endif 1044 1045 static bool check_lock_chain_key(struct lock_chain *chain) 1046 { 1047 #ifdef CONFIG_PROVE_LOCKING 1048 u64 chain_key = INITIAL_CHAIN_KEY; 1049 int i; 1050 1051 for (i = chain->base; i < chain->base + chain->depth; i++) 1052 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1053 /* 1054 * The 'unsigned long long' casts avoid that a compiler warning 1055 * is reported when building tools/lib/lockdep. 1056 */ 1057 if (chain->chain_key != chain_key) { 1058 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1059 (unsigned long long)(chain - lock_chains), 1060 (unsigned long long)chain->chain_key, 1061 (unsigned long long)chain_key); 1062 return false; 1063 } 1064 #endif 1065 return true; 1066 } 1067 1068 static bool in_any_zapped_class_list(struct lock_class *class) 1069 { 1070 struct pending_free *pf; 1071 int i; 1072 1073 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1074 if (in_list(&class->lock_entry, &pf->zapped)) 1075 return true; 1076 } 1077 1078 return false; 1079 } 1080 1081 static bool __check_data_structures(void) 1082 { 1083 struct lock_class *class; 1084 struct lock_chain *chain; 1085 struct hlist_head *head; 1086 struct lock_list *e; 1087 int i; 1088 1089 /* Check whether all classes occur in a lock list. */ 1090 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1091 class = &lock_classes[i]; 1092 if (!in_list(&class->lock_entry, &all_lock_classes) && 1093 !in_list(&class->lock_entry, &free_lock_classes) && 1094 !in_any_zapped_class_list(class)) { 1095 printk(KERN_INFO "class %px/%s is not in any class list\n", 1096 class, class->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* Check whether all classes have valid lock lists. */ 1102 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1103 class = &lock_classes[i]; 1104 if (!class_lock_list_valid(class, &class->locks_before)) 1105 return false; 1106 if (!class_lock_list_valid(class, &class->locks_after)) 1107 return false; 1108 } 1109 1110 /* Check the chain_key of all lock chains. */ 1111 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1112 head = chainhash_table + i; 1113 hlist_for_each_entry_rcu(chain, head, entry) { 1114 if (!check_lock_chain_key(chain)) 1115 return false; 1116 } 1117 } 1118 1119 /* 1120 * Check whether all list entries that are in use occur in a class 1121 * lock list. 1122 */ 1123 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1124 e = list_entries + i; 1125 if (!in_any_class_list(&e->entry)) { 1126 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1127 (unsigned int)(e - list_entries), 1128 e->class->name ? : "(?)", 1129 e->links_to->name ? : "(?)"); 1130 return false; 1131 } 1132 } 1133 1134 /* 1135 * Check whether all list entries that are not in use do not occur in 1136 * a class lock list. 1137 */ 1138 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1139 e = list_entries + i; 1140 if (in_any_class_list(&e->entry)) { 1141 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1142 (unsigned int)(e - list_entries), 1143 e->class && e->class->name ? e->class->name : 1144 "(?)", 1145 e->links_to && e->links_to->name ? 1146 e->links_to->name : "(?)"); 1147 return false; 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 int check_consistency = 0; 1155 module_param(check_consistency, int, 0644); 1156 1157 static void check_data_structures(void) 1158 { 1159 static bool once = false; 1160 1161 if (check_consistency && !once) { 1162 if (!__check_data_structures()) { 1163 once = true; 1164 WARN_ON(once); 1165 } 1166 } 1167 } 1168 1169 #else /* CONFIG_DEBUG_LOCKDEP */ 1170 1171 static inline void check_data_structures(void) { } 1172 1173 #endif /* CONFIG_DEBUG_LOCKDEP */ 1174 1175 static void init_chain_block_buckets(void); 1176 1177 /* 1178 * Initialize the lock_classes[] array elements, the free_lock_classes list 1179 * and also the delayed_free structure. 1180 */ 1181 static void init_data_structures_once(void) 1182 { 1183 static bool __read_mostly ds_initialized, rcu_head_initialized; 1184 int i; 1185 1186 if (likely(rcu_head_initialized)) 1187 return; 1188 1189 if (system_state >= SYSTEM_SCHEDULING) { 1190 init_rcu_head(&delayed_free.rcu_head); 1191 rcu_head_initialized = true; 1192 } 1193 1194 if (ds_initialized) 1195 return; 1196 1197 ds_initialized = true; 1198 1199 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1200 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1201 1202 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1203 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1205 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1206 } 1207 init_chain_block_buckets(); 1208 } 1209 1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1211 { 1212 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1213 1214 return lock_keys_hash + hash; 1215 } 1216 1217 /* Register a dynamically allocated key. */ 1218 void lockdep_register_key(struct lock_class_key *key) 1219 { 1220 struct hlist_head *hash_head; 1221 struct lock_class_key *k; 1222 unsigned long flags; 1223 1224 if (WARN_ON_ONCE(static_obj(key))) 1225 return; 1226 hash_head = keyhashentry(key); 1227 1228 raw_local_irq_save(flags); 1229 if (!graph_lock()) 1230 goto restore_irqs; 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (WARN_ON_ONCE(k == key)) 1233 goto out_unlock; 1234 } 1235 hlist_add_head_rcu(&key->hash_entry, hash_head); 1236 out_unlock: 1237 graph_unlock(); 1238 restore_irqs: 1239 raw_local_irq_restore(flags); 1240 } 1241 EXPORT_SYMBOL_GPL(lockdep_register_key); 1242 1243 /* Check whether a key has been registered as a dynamic key. */ 1244 static bool is_dynamic_key(const struct lock_class_key *key) 1245 { 1246 struct hlist_head *hash_head; 1247 struct lock_class_key *k; 1248 bool found = false; 1249 1250 if (WARN_ON_ONCE(static_obj(key))) 1251 return false; 1252 1253 /* 1254 * If lock debugging is disabled lock_keys_hash[] may contain 1255 * pointers to memory that has already been freed. Avoid triggering 1256 * a use-after-free in that case by returning early. 1257 */ 1258 if (!debug_locks) 1259 return true; 1260 1261 hash_head = keyhashentry(key); 1262 1263 rcu_read_lock(); 1264 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1265 if (k == key) { 1266 found = true; 1267 break; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return found; 1273 } 1274 1275 /* 1276 * Register a lock's class in the hash-table, if the class is not present 1277 * yet. Otherwise we look it up. We cache the result in the lock object 1278 * itself, so actual lookup of the hash should be once per lock object. 1279 */ 1280 static struct lock_class * 1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1282 { 1283 struct lockdep_subclass_key *key; 1284 struct hlist_head *hash_head; 1285 struct lock_class *class; 1286 int idx; 1287 1288 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1289 1290 class = look_up_lock_class(lock, subclass); 1291 if (likely(class)) 1292 goto out_set_class_cache; 1293 1294 if (!lock->key) { 1295 if (!assign_lock_key(lock)) 1296 return NULL; 1297 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1298 return NULL; 1299 } 1300 1301 key = lock->key->subkeys + subclass; 1302 hash_head = classhashentry(key); 1303 1304 if (!graph_lock()) { 1305 return NULL; 1306 } 1307 /* 1308 * We have to do the hash-walk again, to avoid races 1309 * with another CPU: 1310 */ 1311 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1312 if (class->key == key) 1313 goto out_unlock_set; 1314 } 1315 1316 init_data_structures_once(); 1317 1318 /* Allocate a new lock class and add it to the hash. */ 1319 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1320 lock_entry); 1321 if (!class) { 1322 if (!debug_locks_off_graph_unlock()) { 1323 return NULL; 1324 } 1325 1326 nbcon_cpu_emergency_enter(); 1327 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1328 dump_stack(); 1329 nbcon_cpu_emergency_exit(); 1330 return NULL; 1331 } 1332 nr_lock_classes++; 1333 __set_bit(class - lock_classes, lock_classes_in_use); 1334 debug_atomic_inc(nr_unused_locks); 1335 class->key = key; 1336 class->name = lock->name; 1337 class->subclass = subclass; 1338 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1339 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1340 class->name_version = count_matching_names(class); 1341 class->wait_type_inner = lock->wait_type_inner; 1342 class->wait_type_outer = lock->wait_type_outer; 1343 class->lock_type = lock->lock_type; 1344 /* 1345 * We use RCU's safe list-add method to make 1346 * parallel walking of the hash-list safe: 1347 */ 1348 hlist_add_head_rcu(&class->hash_entry, hash_head); 1349 /* 1350 * Remove the class from the free list and add it to the global list 1351 * of classes. 1352 */ 1353 list_move_tail(&class->lock_entry, &all_lock_classes); 1354 idx = class - lock_classes; 1355 if (idx > max_lock_class_idx) 1356 max_lock_class_idx = idx; 1357 1358 if (verbose(class)) { 1359 graph_unlock(); 1360 1361 nbcon_cpu_emergency_enter(); 1362 printk("\nnew class %px: %s", class->key, class->name); 1363 if (class->name_version > 1) 1364 printk(KERN_CONT "#%d", class->name_version); 1365 printk(KERN_CONT "\n"); 1366 dump_stack(); 1367 nbcon_cpu_emergency_exit(); 1368 1369 if (!graph_lock()) { 1370 return NULL; 1371 } 1372 } 1373 out_unlock_set: 1374 graph_unlock(); 1375 1376 out_set_class_cache: 1377 if (!subclass || force) 1378 lock->class_cache[0] = class; 1379 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1380 lock->class_cache[subclass] = class; 1381 1382 /* 1383 * Hash collision, did we smoke some? We found a class with a matching 1384 * hash but the subclass -- which is hashed in -- didn't match. 1385 */ 1386 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1387 return NULL; 1388 1389 return class; 1390 } 1391 1392 #ifdef CONFIG_PROVE_LOCKING 1393 /* 1394 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1395 * with NULL on failure) 1396 */ 1397 static struct lock_list *alloc_list_entry(void) 1398 { 1399 int idx = find_first_zero_bit(list_entries_in_use, 1400 ARRAY_SIZE(list_entries)); 1401 1402 if (idx >= ARRAY_SIZE(list_entries)) { 1403 if (!debug_locks_off_graph_unlock()) 1404 return NULL; 1405 1406 nbcon_cpu_emergency_enter(); 1407 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1408 dump_stack(); 1409 nbcon_cpu_emergency_exit(); 1410 return NULL; 1411 } 1412 nr_list_entries++; 1413 __set_bit(idx, list_entries_in_use); 1414 return list_entries + idx; 1415 } 1416 1417 /* 1418 * Add a new dependency to the head of the list: 1419 */ 1420 static int add_lock_to_list(struct lock_class *this, 1421 struct lock_class *links_to, struct list_head *head, 1422 u16 distance, u8 dep, 1423 const struct lock_trace *trace) 1424 { 1425 struct lock_list *entry; 1426 /* 1427 * Lock not present yet - get a new dependency struct and 1428 * add it to the list: 1429 */ 1430 entry = alloc_list_entry(); 1431 if (!entry) 1432 return 0; 1433 1434 entry->class = this; 1435 entry->links_to = links_to; 1436 entry->dep = dep; 1437 entry->distance = distance; 1438 entry->trace = trace; 1439 /* 1440 * Both allocation and removal are done under the graph lock; but 1441 * iteration is under RCU-sched; see look_up_lock_class() and 1442 * lockdep_free_key_range(). 1443 */ 1444 list_add_tail_rcu(&entry->entry, head); 1445 1446 return 1; 1447 } 1448 1449 /* 1450 * For good efficiency of modular, we use power of 2 1451 */ 1452 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1453 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1454 1455 /* 1456 * The circular_queue and helpers are used to implement graph 1457 * breadth-first search (BFS) algorithm, by which we can determine 1458 * whether there is a path from a lock to another. In deadlock checks, 1459 * a path from the next lock to be acquired to a previous held lock 1460 * indicates that adding the <prev> -> <next> lock dependency will 1461 * produce a circle in the graph. Breadth-first search instead of 1462 * depth-first search is used in order to find the shortest (circular) 1463 * path. 1464 */ 1465 struct circular_queue { 1466 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1467 unsigned int front, rear; 1468 }; 1469 1470 static struct circular_queue lock_cq; 1471 1472 unsigned int max_bfs_queue_depth; 1473 1474 static unsigned int lockdep_dependency_gen_id; 1475 1476 static inline void __cq_init(struct circular_queue *cq) 1477 { 1478 cq->front = cq->rear = 0; 1479 lockdep_dependency_gen_id++; 1480 } 1481 1482 static inline int __cq_empty(struct circular_queue *cq) 1483 { 1484 return (cq->front == cq->rear); 1485 } 1486 1487 static inline int __cq_full(struct circular_queue *cq) 1488 { 1489 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1490 } 1491 1492 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1493 { 1494 if (__cq_full(cq)) 1495 return -1; 1496 1497 cq->element[cq->rear] = elem; 1498 cq->rear = (cq->rear + 1) & CQ_MASK; 1499 return 0; 1500 } 1501 1502 /* 1503 * Dequeue an element from the circular_queue, return a lock_list if 1504 * the queue is not empty, or NULL if otherwise. 1505 */ 1506 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1507 { 1508 struct lock_list * lock; 1509 1510 if (__cq_empty(cq)) 1511 return NULL; 1512 1513 lock = cq->element[cq->front]; 1514 cq->front = (cq->front + 1) & CQ_MASK; 1515 1516 return lock; 1517 } 1518 1519 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1520 { 1521 return (cq->rear - cq->front) & CQ_MASK; 1522 } 1523 1524 static inline void mark_lock_accessed(struct lock_list *lock) 1525 { 1526 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1527 } 1528 1529 static inline void visit_lock_entry(struct lock_list *lock, 1530 struct lock_list *parent) 1531 { 1532 lock->parent = parent; 1533 } 1534 1535 static inline unsigned long lock_accessed(struct lock_list *lock) 1536 { 1537 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1538 } 1539 1540 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1541 { 1542 return child->parent; 1543 } 1544 1545 static inline int get_lock_depth(struct lock_list *child) 1546 { 1547 int depth = 0; 1548 struct lock_list *parent; 1549 1550 while ((parent = get_lock_parent(child))) { 1551 child = parent; 1552 depth++; 1553 } 1554 return depth; 1555 } 1556 1557 /* 1558 * Return the forward or backward dependency list. 1559 * 1560 * @lock: the lock_list to get its class's dependency list 1561 * @offset: the offset to struct lock_class to determine whether it is 1562 * locks_after or locks_before 1563 */ 1564 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1565 { 1566 void *lock_class = lock->class; 1567 1568 return lock_class + offset; 1569 } 1570 /* 1571 * Return values of a bfs search: 1572 * 1573 * BFS_E* indicates an error 1574 * BFS_R* indicates a result (match or not) 1575 * 1576 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1577 * 1578 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1579 * 1580 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1581 * *@target_entry. 1582 * 1583 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1584 * _unchanged_. 1585 */ 1586 enum bfs_result { 1587 BFS_EINVALIDNODE = -2, 1588 BFS_EQUEUEFULL = -1, 1589 BFS_RMATCH = 0, 1590 BFS_RNOMATCH = 1, 1591 }; 1592 1593 /* 1594 * bfs_result < 0 means error 1595 */ 1596 static inline bool bfs_error(enum bfs_result res) 1597 { 1598 return res < 0; 1599 } 1600 1601 /* 1602 * DEP_*_BIT in lock_list::dep 1603 * 1604 * For dependency @prev -> @next: 1605 * 1606 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1607 * (->read == 2) 1608 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1609 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1610 * EN: @prev is exclusive locker and @next is non-recursive locker 1611 * 1612 * Note that we define the value of DEP_*_BITs so that: 1613 * bit0 is prev->read == 0 1614 * bit1 is next->read != 2 1615 */ 1616 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1617 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1618 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1619 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1620 1621 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1622 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1623 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1624 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1625 1626 static inline unsigned int 1627 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1628 { 1629 return (prev->read == 0) + ((next->read != 2) << 1); 1630 } 1631 1632 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1633 { 1634 return 1U << __calc_dep_bit(prev, next); 1635 } 1636 1637 /* 1638 * calculate the dep_bit for backwards edges. We care about whether @prev is 1639 * shared and whether @next is recursive. 1640 */ 1641 static inline unsigned int 1642 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1643 { 1644 return (next->read != 2) + ((prev->read == 0) << 1); 1645 } 1646 1647 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1648 { 1649 return 1U << __calc_dep_bitb(prev, next); 1650 } 1651 1652 /* 1653 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1654 * search. 1655 */ 1656 static inline void __bfs_init_root(struct lock_list *lock, 1657 struct lock_class *class) 1658 { 1659 lock->class = class; 1660 lock->parent = NULL; 1661 lock->only_xr = 0; 1662 } 1663 1664 /* 1665 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1666 * root for a BFS search. 1667 * 1668 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1669 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1670 * and -(S*)->. 1671 */ 1672 static inline void bfs_init_root(struct lock_list *lock, 1673 struct held_lock *hlock) 1674 { 1675 __bfs_init_root(lock, hlock_class(hlock)); 1676 lock->only_xr = (hlock->read == 2); 1677 } 1678 1679 /* 1680 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1681 * 1682 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1683 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1684 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1685 */ 1686 static inline void bfs_init_rootb(struct lock_list *lock, 1687 struct held_lock *hlock) 1688 { 1689 __bfs_init_root(lock, hlock_class(hlock)); 1690 lock->only_xr = (hlock->read != 0); 1691 } 1692 1693 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1694 { 1695 if (!lock || !lock->parent) 1696 return NULL; 1697 1698 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1699 &lock->entry, struct lock_list, entry); 1700 } 1701 1702 /* 1703 * Breadth-First Search to find a strong path in the dependency graph. 1704 * 1705 * @source_entry: the source of the path we are searching for. 1706 * @data: data used for the second parameter of @match function 1707 * @match: match function for the search 1708 * @target_entry: pointer to the target of a matched path 1709 * @offset: the offset to struct lock_class to determine whether it is 1710 * locks_after or locks_before 1711 * 1712 * We may have multiple edges (considering different kinds of dependencies, 1713 * e.g. ER and SN) between two nodes in the dependency graph. But 1714 * only the strong dependency path in the graph is relevant to deadlocks. A 1715 * strong dependency path is a dependency path that doesn't have two adjacent 1716 * dependencies as -(*R)-> -(S*)->, please see: 1717 * 1718 * Documentation/locking/lockdep-design.rst 1719 * 1720 * for more explanation of the definition of strong dependency paths 1721 * 1722 * In __bfs(), we only traverse in the strong dependency path: 1723 * 1724 * In lock_list::only_xr, we record whether the previous dependency only 1725 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1726 * filter out any -(S*)-> in the current dependency and after that, the 1727 * ->only_xr is set according to whether we only have -(*R)-> left. 1728 */ 1729 static enum bfs_result __bfs(struct lock_list *source_entry, 1730 void *data, 1731 bool (*match)(struct lock_list *entry, void *data), 1732 bool (*skip)(struct lock_list *entry, void *data), 1733 struct lock_list **target_entry, 1734 int offset) 1735 { 1736 struct circular_queue *cq = &lock_cq; 1737 struct lock_list *lock = NULL; 1738 struct lock_list *entry; 1739 struct list_head *head; 1740 unsigned int cq_depth; 1741 bool first; 1742 1743 lockdep_assert_locked(); 1744 1745 __cq_init(cq); 1746 __cq_enqueue(cq, source_entry); 1747 1748 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1749 if (!lock->class) 1750 return BFS_EINVALIDNODE; 1751 1752 /* 1753 * Step 1: check whether we already finish on this one. 1754 * 1755 * If we have visited all the dependencies from this @lock to 1756 * others (iow, if we have visited all lock_list entries in 1757 * @lock->class->locks_{after,before}) we skip, otherwise go 1758 * and visit all the dependencies in the list and mark this 1759 * list accessed. 1760 */ 1761 if (lock_accessed(lock)) 1762 continue; 1763 else 1764 mark_lock_accessed(lock); 1765 1766 /* 1767 * Step 2: check whether prev dependency and this form a strong 1768 * dependency path. 1769 */ 1770 if (lock->parent) { /* Parent exists, check prev dependency */ 1771 u8 dep = lock->dep; 1772 bool prev_only_xr = lock->parent->only_xr; 1773 1774 /* 1775 * Mask out all -(S*)-> if we only have *R in previous 1776 * step, because -(*R)-> -(S*)-> don't make up a strong 1777 * dependency. 1778 */ 1779 if (prev_only_xr) 1780 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1781 1782 /* If nothing left, we skip */ 1783 if (!dep) 1784 continue; 1785 1786 /* If there are only -(*R)-> left, set that for the next step */ 1787 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1788 } 1789 1790 /* 1791 * Step 3: we haven't visited this and there is a strong 1792 * dependency path to this, so check with @match. 1793 * If @skip is provide and returns true, we skip this 1794 * lock (and any path this lock is in). 1795 */ 1796 if (skip && skip(lock, data)) 1797 continue; 1798 1799 if (match(lock, data)) { 1800 *target_entry = lock; 1801 return BFS_RMATCH; 1802 } 1803 1804 /* 1805 * Step 4: if not match, expand the path by adding the 1806 * forward or backwards dependencies in the search 1807 * 1808 */ 1809 first = true; 1810 head = get_dep_list(lock, offset); 1811 list_for_each_entry_rcu(entry, head, entry) { 1812 visit_lock_entry(entry, lock); 1813 1814 /* 1815 * Note we only enqueue the first of the list into the 1816 * queue, because we can always find a sibling 1817 * dependency from one (see __bfs_next()), as a result 1818 * the space of queue is saved. 1819 */ 1820 if (!first) 1821 continue; 1822 1823 first = false; 1824 1825 if (__cq_enqueue(cq, entry)) 1826 return BFS_EQUEUEFULL; 1827 1828 cq_depth = __cq_get_elem_count(cq); 1829 if (max_bfs_queue_depth < cq_depth) 1830 max_bfs_queue_depth = cq_depth; 1831 } 1832 } 1833 1834 return BFS_RNOMATCH; 1835 } 1836 1837 static inline enum bfs_result 1838 __bfs_forwards(struct lock_list *src_entry, 1839 void *data, 1840 bool (*match)(struct lock_list *entry, void *data), 1841 bool (*skip)(struct lock_list *entry, void *data), 1842 struct lock_list **target_entry) 1843 { 1844 return __bfs(src_entry, data, match, skip, target_entry, 1845 offsetof(struct lock_class, locks_after)); 1846 1847 } 1848 1849 static inline enum bfs_result 1850 __bfs_backwards(struct lock_list *src_entry, 1851 void *data, 1852 bool (*match)(struct lock_list *entry, void *data), 1853 bool (*skip)(struct lock_list *entry, void *data), 1854 struct lock_list **target_entry) 1855 { 1856 return __bfs(src_entry, data, match, skip, target_entry, 1857 offsetof(struct lock_class, locks_before)); 1858 1859 } 1860 1861 static void print_lock_trace(const struct lock_trace *trace, 1862 unsigned int spaces) 1863 { 1864 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1865 } 1866 1867 /* 1868 * Print a dependency chain entry (this is only done when a deadlock 1869 * has been detected): 1870 */ 1871 static noinline void 1872 print_circular_bug_entry(struct lock_list *target, int depth) 1873 { 1874 if (debug_locks_silent) 1875 return; 1876 printk("\n-> #%u", depth); 1877 print_lock_name(NULL, target->class); 1878 printk(KERN_CONT ":\n"); 1879 print_lock_trace(target->trace, 6); 1880 } 1881 1882 static void 1883 print_circular_lock_scenario(struct held_lock *src, 1884 struct held_lock *tgt, 1885 struct lock_list *prt) 1886 { 1887 struct lock_class *source = hlock_class(src); 1888 struct lock_class *target = hlock_class(tgt); 1889 struct lock_class *parent = prt->class; 1890 int src_read = src->read; 1891 int tgt_read = tgt->read; 1892 1893 /* 1894 * A direct locking problem where unsafe_class lock is taken 1895 * directly by safe_class lock, then all we need to show 1896 * is the deadlock scenario, as it is obvious that the 1897 * unsafe lock is taken under the safe lock. 1898 * 1899 * But if there is a chain instead, where the safe lock takes 1900 * an intermediate lock (middle_class) where this lock is 1901 * not the same as the safe lock, then the lock chain is 1902 * used to describe the problem. Otherwise we would need 1903 * to show a different CPU case for each link in the chain 1904 * from the safe_class lock to the unsafe_class lock. 1905 */ 1906 if (parent != source) { 1907 printk("Chain exists of:\n "); 1908 __print_lock_name(src, source); 1909 printk(KERN_CONT " --> "); 1910 __print_lock_name(NULL, parent); 1911 printk(KERN_CONT " --> "); 1912 __print_lock_name(tgt, target); 1913 printk(KERN_CONT "\n\n"); 1914 } 1915 1916 printk(" Possible unsafe locking scenario:\n\n"); 1917 printk(" CPU0 CPU1\n"); 1918 printk(" ---- ----\n"); 1919 if (tgt_read != 0) 1920 printk(" rlock("); 1921 else 1922 printk(" lock("); 1923 __print_lock_name(tgt, target); 1924 printk(KERN_CONT ");\n"); 1925 printk(" lock("); 1926 __print_lock_name(NULL, parent); 1927 printk(KERN_CONT ");\n"); 1928 printk(" lock("); 1929 __print_lock_name(tgt, target); 1930 printk(KERN_CONT ");\n"); 1931 if (src_read != 0) 1932 printk(" rlock("); 1933 else if (src->sync) 1934 printk(" sync("); 1935 else 1936 printk(" lock("); 1937 __print_lock_name(src, source); 1938 printk(KERN_CONT ");\n"); 1939 printk("\n *** DEADLOCK ***\n\n"); 1940 } 1941 1942 /* 1943 * When a circular dependency is detected, print the 1944 * header first: 1945 */ 1946 static noinline void 1947 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1948 struct held_lock *check_src, 1949 struct held_lock *check_tgt) 1950 { 1951 struct task_struct *curr = current; 1952 1953 if (debug_locks_silent) 1954 return; 1955 1956 pr_warn("\n"); 1957 pr_warn("======================================================\n"); 1958 pr_warn("WARNING: possible circular locking dependency detected\n"); 1959 print_kernel_ident(); 1960 pr_warn("------------------------------------------------------\n"); 1961 pr_warn("%s/%d is trying to acquire lock:\n", 1962 curr->comm, task_pid_nr(curr)); 1963 print_lock(check_src); 1964 1965 pr_warn("\nbut task is already holding lock:\n"); 1966 1967 print_lock(check_tgt); 1968 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1969 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1970 1971 print_circular_bug_entry(entry, depth); 1972 } 1973 1974 /* 1975 * We are about to add A -> B into the dependency graph, and in __bfs() a 1976 * strong dependency path A -> .. -> B is found: hlock_class equals 1977 * entry->class. 1978 * 1979 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1980 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1981 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1982 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1983 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1984 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1985 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1986 * 1987 * We need to make sure both the start and the end of A -> .. -> B is not 1988 * weaker than A -> B. For the start part, please see the comment in 1989 * check_redundant(). For the end part, we need: 1990 * 1991 * Either 1992 * 1993 * a) A -> B is -(*R)-> (everything is not weaker than that) 1994 * 1995 * or 1996 * 1997 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1998 * 1999 */ 2000 static inline bool hlock_equal(struct lock_list *entry, void *data) 2001 { 2002 struct held_lock *hlock = (struct held_lock *)data; 2003 2004 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2005 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2006 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2007 } 2008 2009 /* 2010 * We are about to add B -> A into the dependency graph, and in __bfs() a 2011 * strong dependency path A -> .. -> B is found: hlock_class equals 2012 * entry->class. 2013 * 2014 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2015 * dependency cycle, that means: 2016 * 2017 * Either 2018 * 2019 * a) B -> A is -(E*)-> 2020 * 2021 * or 2022 * 2023 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2024 * 2025 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2026 */ 2027 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2028 { 2029 struct held_lock *hlock = (struct held_lock *)data; 2030 2031 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2032 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2033 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2034 } 2035 2036 static noinline void print_circular_bug(struct lock_list *this, 2037 struct lock_list *target, 2038 struct held_lock *check_src, 2039 struct held_lock *check_tgt) 2040 { 2041 struct task_struct *curr = current; 2042 struct lock_list *parent; 2043 struct lock_list *first_parent; 2044 int depth; 2045 2046 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2047 return; 2048 2049 this->trace = save_trace(); 2050 if (!this->trace) 2051 return; 2052 2053 depth = get_lock_depth(target); 2054 2055 nbcon_cpu_emergency_enter(); 2056 2057 print_circular_bug_header(target, depth, check_src, check_tgt); 2058 2059 parent = get_lock_parent(target); 2060 first_parent = parent; 2061 2062 while (parent) { 2063 print_circular_bug_entry(parent, --depth); 2064 parent = get_lock_parent(parent); 2065 } 2066 2067 printk("\nother info that might help us debug this:\n\n"); 2068 print_circular_lock_scenario(check_src, check_tgt, 2069 first_parent); 2070 2071 lockdep_print_held_locks(curr); 2072 2073 printk("\nstack backtrace:\n"); 2074 dump_stack(); 2075 2076 nbcon_cpu_emergency_exit(); 2077 } 2078 2079 static noinline void print_bfs_bug(int ret) 2080 { 2081 if (!debug_locks_off_graph_unlock()) 2082 return; 2083 2084 /* 2085 * Breadth-first-search failed, graph got corrupted? 2086 */ 2087 WARN(1, "lockdep bfs error:%d\n", ret); 2088 } 2089 2090 static bool noop_count(struct lock_list *entry, void *data) 2091 { 2092 (*(unsigned long *)data)++; 2093 return false; 2094 } 2095 2096 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2097 { 2098 unsigned long count = 0; 2099 struct lock_list *target_entry; 2100 2101 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2102 2103 return count; 2104 } 2105 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2106 { 2107 unsigned long ret, flags; 2108 struct lock_list this; 2109 2110 __bfs_init_root(&this, class); 2111 2112 raw_local_irq_save(flags); 2113 lockdep_lock(); 2114 ret = __lockdep_count_forward_deps(&this); 2115 lockdep_unlock(); 2116 raw_local_irq_restore(flags); 2117 2118 return ret; 2119 } 2120 2121 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2122 { 2123 unsigned long count = 0; 2124 struct lock_list *target_entry; 2125 2126 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2127 2128 return count; 2129 } 2130 2131 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2132 { 2133 unsigned long ret, flags; 2134 struct lock_list this; 2135 2136 __bfs_init_root(&this, class); 2137 2138 raw_local_irq_save(flags); 2139 lockdep_lock(); 2140 ret = __lockdep_count_backward_deps(&this); 2141 lockdep_unlock(); 2142 raw_local_irq_restore(flags); 2143 2144 return ret; 2145 } 2146 2147 /* 2148 * Check that the dependency graph starting at <src> can lead to 2149 * <target> or not. 2150 */ 2151 static noinline enum bfs_result 2152 check_path(struct held_lock *target, struct lock_list *src_entry, 2153 bool (*match)(struct lock_list *entry, void *data), 2154 bool (*skip)(struct lock_list *entry, void *data), 2155 struct lock_list **target_entry) 2156 { 2157 enum bfs_result ret; 2158 2159 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2160 2161 if (unlikely(bfs_error(ret))) 2162 print_bfs_bug(ret); 2163 2164 return ret; 2165 } 2166 2167 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2168 2169 /* 2170 * Prove that the dependency graph starting at <src> can not 2171 * lead to <target>. If it can, there is a circle when adding 2172 * <target> -> <src> dependency. 2173 * 2174 * Print an error and return BFS_RMATCH if it does. 2175 */ 2176 static noinline enum bfs_result 2177 check_noncircular(struct held_lock *src, struct held_lock *target, 2178 struct lock_trace **const trace) 2179 { 2180 enum bfs_result ret; 2181 struct lock_list *target_entry; 2182 struct lock_list src_entry; 2183 2184 bfs_init_root(&src_entry, src); 2185 2186 debug_atomic_inc(nr_cyclic_checks); 2187 2188 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2189 2190 if (unlikely(ret == BFS_RMATCH)) { 2191 if (!*trace) { 2192 /* 2193 * If save_trace fails here, the printing might 2194 * trigger a WARN but because of the !nr_entries it 2195 * should not do bad things. 2196 */ 2197 *trace = save_trace(); 2198 } 2199 2200 if (src->class_idx == target->class_idx) 2201 print_deadlock_bug(current, src, target); 2202 else 2203 print_circular_bug(&src_entry, target_entry, src, target); 2204 } 2205 2206 return ret; 2207 } 2208 2209 #ifdef CONFIG_TRACE_IRQFLAGS 2210 2211 /* 2212 * Forwards and backwards subgraph searching, for the purposes of 2213 * proving that two subgraphs can be connected by a new dependency 2214 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2215 * 2216 * A irq safe->unsafe deadlock happens with the following conditions: 2217 * 2218 * 1) We have a strong dependency path A -> ... -> B 2219 * 2220 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2221 * irq can create a new dependency B -> A (consider the case that a holder 2222 * of B gets interrupted by an irq whose handler will try to acquire A). 2223 * 2224 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2225 * strong circle: 2226 * 2227 * For the usage bits of B: 2228 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2229 * ENABLED_IRQ usage suffices. 2230 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2231 * ENABLED_IRQ_*_READ usage suffices. 2232 * 2233 * For the usage bits of A: 2234 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2235 * USED_IN_IRQ usage suffices. 2236 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2237 * USED_IN_IRQ_*_READ usage suffices. 2238 */ 2239 2240 /* 2241 * There is a strong dependency path in the dependency graph: A -> B, and now 2242 * we need to decide which usage bit of A should be accumulated to detect 2243 * safe->unsafe bugs. 2244 * 2245 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2246 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2247 * 2248 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2249 * path, any usage of A should be considered. Otherwise, we should only 2250 * consider _READ usage. 2251 */ 2252 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2253 { 2254 if (!entry->only_xr) 2255 *(unsigned long *)mask |= entry->class->usage_mask; 2256 else /* Mask out _READ usage bits */ 2257 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2258 2259 return false; 2260 } 2261 2262 /* 2263 * There is a strong dependency path in the dependency graph: A -> B, and now 2264 * we need to decide which usage bit of B conflicts with the usage bits of A, 2265 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2266 * 2267 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2268 * path, any usage of B should be considered. Otherwise, we should only 2269 * consider _READ usage. 2270 */ 2271 static inline bool usage_match(struct lock_list *entry, void *mask) 2272 { 2273 if (!entry->only_xr) 2274 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2275 else /* Mask out _READ usage bits */ 2276 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2277 } 2278 2279 static inline bool usage_skip(struct lock_list *entry, void *mask) 2280 { 2281 if (entry->class->lock_type == LD_LOCK_NORMAL) 2282 return false; 2283 2284 /* 2285 * Skip local_lock() for irq inversion detection. 2286 * 2287 * For !RT, local_lock() is not a real lock, so it won't carry any 2288 * dependency. 2289 * 2290 * For RT, an irq inversion happens when we have lock A and B, and on 2291 * some CPU we can have: 2292 * 2293 * lock(A); 2294 * <interrupted> 2295 * lock(B); 2296 * 2297 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2298 * 2299 * Now we prove local_lock() cannot exist in that dependency. First we 2300 * have the observation for any lock chain L1 -> ... -> Ln, for any 2301 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2302 * wait context check will complain. And since B is not a sleep lock, 2303 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2304 * local_lock() is 3, which is greater than 2, therefore there is no 2305 * way the local_lock() exists in the dependency B -> ... -> A. 2306 * 2307 * As a result, we will skip local_lock(), when we search for irq 2308 * inversion bugs. 2309 */ 2310 if (entry->class->lock_type == LD_LOCK_PERCPU && 2311 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2312 return false; 2313 2314 /* 2315 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2316 * a lock and only used to override the wait_type. 2317 */ 2318 2319 return true; 2320 } 2321 2322 /* 2323 * Find a node in the forwards-direction dependency sub-graph starting 2324 * at @root->class that matches @bit. 2325 * 2326 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2327 * into *@target_entry. 2328 */ 2329 static enum bfs_result 2330 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2331 struct lock_list **target_entry) 2332 { 2333 enum bfs_result result; 2334 2335 debug_atomic_inc(nr_find_usage_forwards_checks); 2336 2337 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2338 2339 return result; 2340 } 2341 2342 /* 2343 * Find a node in the backwards-direction dependency sub-graph starting 2344 * at @root->class that matches @bit. 2345 */ 2346 static enum bfs_result 2347 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2348 struct lock_list **target_entry) 2349 { 2350 enum bfs_result result; 2351 2352 debug_atomic_inc(nr_find_usage_backwards_checks); 2353 2354 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2355 2356 return result; 2357 } 2358 2359 static void print_lock_class_header(struct lock_class *class, int depth) 2360 { 2361 int bit; 2362 2363 printk("%*s->", depth, ""); 2364 print_lock_name(NULL, class); 2365 #ifdef CONFIG_DEBUG_LOCKDEP 2366 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2367 #endif 2368 printk(KERN_CONT " {\n"); 2369 2370 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2371 if (class->usage_mask & (1 << bit)) { 2372 int len = depth; 2373 2374 len += printk("%*s %s", depth, "", usage_str[bit]); 2375 len += printk(KERN_CONT " at:\n"); 2376 print_lock_trace(class->usage_traces[bit], len); 2377 } 2378 } 2379 printk("%*s }\n", depth, ""); 2380 2381 printk("%*s ... key at: [<%px>] %pS\n", 2382 depth, "", class->key, class->key); 2383 } 2384 2385 /* 2386 * Dependency path printing: 2387 * 2388 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2389 * printing out each lock in the dependency path will help on understanding how 2390 * the deadlock could happen. Here are some details about dependency path 2391 * printing: 2392 * 2393 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2394 * for a lock dependency A -> B, there are two lock_lists: 2395 * 2396 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2397 * ->links_to is A. In this case, we can say the lock_list is 2398 * "A -> B" (forwards case). 2399 * 2400 * b) lock_list in the ->locks_before list of B, whose ->class is A 2401 * and ->links_to is B. In this case, we can say the lock_list is 2402 * "B <- A" (bacwards case). 2403 * 2404 * The ->trace of both a) and b) point to the call trace where B was 2405 * acquired with A held. 2406 * 2407 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2408 * represent a certain lock dependency, it only provides an initial entry 2409 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2410 * ->class is A, as a result BFS will search all dependencies starting with 2411 * A, e.g. A -> B or A -> C. 2412 * 2413 * The notation of a forwards helper lock_list is like "-> A", which means 2414 * we should search the forwards dependencies starting with "A", e.g A -> B 2415 * or A -> C. 2416 * 2417 * The notation of a bacwards helper lock_list is like "<- B", which means 2418 * we should search the backwards dependencies ending with "B", e.g. 2419 * B <- A or B <- C. 2420 */ 2421 2422 /* 2423 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2424 * 2425 * We have a lock dependency path as follow: 2426 * 2427 * @root @leaf 2428 * | | 2429 * V V 2430 * ->parent ->parent 2431 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2432 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2433 * 2434 * , so it's natural that we start from @leaf and print every ->class and 2435 * ->trace until we reach the @root. 2436 */ 2437 static void __used 2438 print_shortest_lock_dependencies(struct lock_list *leaf, 2439 struct lock_list *root) 2440 { 2441 struct lock_list *entry = leaf; 2442 int depth; 2443 2444 /*compute depth from generated tree by BFS*/ 2445 depth = get_lock_depth(leaf); 2446 2447 do { 2448 print_lock_class_header(entry->class, depth); 2449 printk("%*s ... acquired at:\n", depth, ""); 2450 print_lock_trace(entry->trace, 2); 2451 printk("\n"); 2452 2453 if (depth == 0 && (entry != root)) { 2454 printk("lockdep:%s bad path found in chain graph\n", __func__); 2455 break; 2456 } 2457 2458 entry = get_lock_parent(entry); 2459 depth--; 2460 } while (entry && (depth >= 0)); 2461 } 2462 2463 /* 2464 * printk the shortest lock dependencies from @leaf to @root. 2465 * 2466 * We have a lock dependency path (from a backwards search) as follow: 2467 * 2468 * @leaf @root 2469 * | | 2470 * V V 2471 * ->parent ->parent 2472 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2473 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2474 * 2475 * , so when we iterate from @leaf to @root, we actually print the lock 2476 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2477 * 2478 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2479 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2480 * trace of L1 in the dependency path, which is alright, because most of the 2481 * time we can figure out where L1 is held from the call trace of L2. 2482 */ 2483 static void __used 2484 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2485 struct lock_list *root) 2486 { 2487 struct lock_list *entry = leaf; 2488 const struct lock_trace *trace = NULL; 2489 int depth; 2490 2491 /*compute depth from generated tree by BFS*/ 2492 depth = get_lock_depth(leaf); 2493 2494 do { 2495 print_lock_class_header(entry->class, depth); 2496 if (trace) { 2497 printk("%*s ... acquired at:\n", depth, ""); 2498 print_lock_trace(trace, 2); 2499 printk("\n"); 2500 } 2501 2502 /* 2503 * Record the pointer to the trace for the next lock_list 2504 * entry, see the comments for the function. 2505 */ 2506 trace = entry->trace; 2507 2508 if (depth == 0 && (entry != root)) { 2509 printk("lockdep:%s bad path found in chain graph\n", __func__); 2510 break; 2511 } 2512 2513 entry = get_lock_parent(entry); 2514 depth--; 2515 } while (entry && (depth >= 0)); 2516 } 2517 2518 static void 2519 print_irq_lock_scenario(struct lock_list *safe_entry, 2520 struct lock_list *unsafe_entry, 2521 struct lock_class *prev_class, 2522 struct lock_class *next_class) 2523 { 2524 struct lock_class *safe_class = safe_entry->class; 2525 struct lock_class *unsafe_class = unsafe_entry->class; 2526 struct lock_class *middle_class = prev_class; 2527 2528 if (middle_class == safe_class) 2529 middle_class = next_class; 2530 2531 /* 2532 * A direct locking problem where unsafe_class lock is taken 2533 * directly by safe_class lock, then all we need to show 2534 * is the deadlock scenario, as it is obvious that the 2535 * unsafe lock is taken under the safe lock. 2536 * 2537 * But if there is a chain instead, where the safe lock takes 2538 * an intermediate lock (middle_class) where this lock is 2539 * not the same as the safe lock, then the lock chain is 2540 * used to describe the problem. Otherwise we would need 2541 * to show a different CPU case for each link in the chain 2542 * from the safe_class lock to the unsafe_class lock. 2543 */ 2544 if (middle_class != unsafe_class) { 2545 printk("Chain exists of:\n "); 2546 __print_lock_name(NULL, safe_class); 2547 printk(KERN_CONT " --> "); 2548 __print_lock_name(NULL, middle_class); 2549 printk(KERN_CONT " --> "); 2550 __print_lock_name(NULL, unsafe_class); 2551 printk(KERN_CONT "\n\n"); 2552 } 2553 2554 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2555 printk(" CPU0 CPU1\n"); 2556 printk(" ---- ----\n"); 2557 printk(" lock("); 2558 __print_lock_name(NULL, unsafe_class); 2559 printk(KERN_CONT ");\n"); 2560 printk(" local_irq_disable();\n"); 2561 printk(" lock("); 2562 __print_lock_name(NULL, safe_class); 2563 printk(KERN_CONT ");\n"); 2564 printk(" lock("); 2565 __print_lock_name(NULL, middle_class); 2566 printk(KERN_CONT ");\n"); 2567 printk(" <Interrupt>\n"); 2568 printk(" lock("); 2569 __print_lock_name(NULL, safe_class); 2570 printk(KERN_CONT ");\n"); 2571 printk("\n *** DEADLOCK ***\n\n"); 2572 } 2573 2574 static void 2575 print_bad_irq_dependency(struct task_struct *curr, 2576 struct lock_list *prev_root, 2577 struct lock_list *next_root, 2578 struct lock_list *backwards_entry, 2579 struct lock_list *forwards_entry, 2580 struct held_lock *prev, 2581 struct held_lock *next, 2582 enum lock_usage_bit bit1, 2583 enum lock_usage_bit bit2, 2584 const char *irqclass) 2585 { 2586 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2587 return; 2588 2589 nbcon_cpu_emergency_enter(); 2590 2591 pr_warn("\n"); 2592 pr_warn("=====================================================\n"); 2593 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2594 irqclass, irqclass); 2595 print_kernel_ident(); 2596 pr_warn("-----------------------------------------------------\n"); 2597 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2598 curr->comm, task_pid_nr(curr), 2599 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2600 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2601 lockdep_hardirqs_enabled(), 2602 curr->softirqs_enabled); 2603 print_lock(next); 2604 2605 pr_warn("\nand this task is already holding:\n"); 2606 print_lock(prev); 2607 pr_warn("which would create a new lock dependency:\n"); 2608 print_lock_name(prev, hlock_class(prev)); 2609 pr_cont(" ->"); 2610 print_lock_name(next, hlock_class(next)); 2611 pr_cont("\n"); 2612 2613 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2614 irqclass); 2615 print_lock_name(NULL, backwards_entry->class); 2616 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2617 2618 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2619 2620 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2621 print_lock_name(NULL, forwards_entry->class); 2622 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2623 pr_warn("..."); 2624 2625 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2626 2627 pr_warn("\nother info that might help us debug this:\n\n"); 2628 print_irq_lock_scenario(backwards_entry, forwards_entry, 2629 hlock_class(prev), hlock_class(next)); 2630 2631 lockdep_print_held_locks(curr); 2632 2633 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2634 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2635 2636 pr_warn("\nthe dependencies between the lock to be acquired"); 2637 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2638 next_root->trace = save_trace(); 2639 if (!next_root->trace) 2640 goto out; 2641 print_shortest_lock_dependencies(forwards_entry, next_root); 2642 2643 pr_warn("\nstack backtrace:\n"); 2644 dump_stack(); 2645 out: 2646 nbcon_cpu_emergency_exit(); 2647 } 2648 2649 static const char *state_names[] = { 2650 #define LOCKDEP_STATE(__STATE) \ 2651 __stringify(__STATE), 2652 #include "lockdep_states.h" 2653 #undef LOCKDEP_STATE 2654 }; 2655 2656 static const char *state_rnames[] = { 2657 #define LOCKDEP_STATE(__STATE) \ 2658 __stringify(__STATE)"-READ", 2659 #include "lockdep_states.h" 2660 #undef LOCKDEP_STATE 2661 }; 2662 2663 static inline const char *state_name(enum lock_usage_bit bit) 2664 { 2665 if (bit & LOCK_USAGE_READ_MASK) 2666 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2667 else 2668 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2669 } 2670 2671 /* 2672 * The bit number is encoded like: 2673 * 2674 * bit0: 0 exclusive, 1 read lock 2675 * bit1: 0 used in irq, 1 irq enabled 2676 * bit2-n: state 2677 */ 2678 static int exclusive_bit(int new_bit) 2679 { 2680 int state = new_bit & LOCK_USAGE_STATE_MASK; 2681 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2682 2683 /* 2684 * keep state, bit flip the direction and strip read. 2685 */ 2686 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2687 } 2688 2689 /* 2690 * Observe that when given a bitmask where each bitnr is encoded as above, a 2691 * right shift of the mask transforms the individual bitnrs as -1 and 2692 * conversely, a left shift transforms into +1 for the individual bitnrs. 2693 * 2694 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2695 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2696 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2697 * 2698 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2699 * 2700 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2701 * all bits set) and recompose with bitnr1 flipped. 2702 */ 2703 static unsigned long invert_dir_mask(unsigned long mask) 2704 { 2705 unsigned long excl = 0; 2706 2707 /* Invert dir */ 2708 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2709 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2710 2711 return excl; 2712 } 2713 2714 /* 2715 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2716 * usage may cause deadlock too, for example: 2717 * 2718 * P1 P2 2719 * <irq disabled> 2720 * write_lock(l1); <irq enabled> 2721 * read_lock(l2); 2722 * write_lock(l2); 2723 * <in irq> 2724 * read_lock(l1); 2725 * 2726 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2727 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2728 * deadlock. 2729 * 2730 * In fact, all of the following cases may cause deadlocks: 2731 * 2732 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2733 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2734 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2735 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2736 * 2737 * As a result, to calculate the "exclusive mask", first we invert the 2738 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2739 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2740 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2741 */ 2742 static unsigned long exclusive_mask(unsigned long mask) 2743 { 2744 unsigned long excl = invert_dir_mask(mask); 2745 2746 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2747 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2748 2749 return excl; 2750 } 2751 2752 /* 2753 * Retrieve the _possible_ original mask to which @mask is 2754 * exclusive. Ie: this is the opposite of exclusive_mask(). 2755 * Note that 2 possible original bits can match an exclusive 2756 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2757 * cleared. So both are returned for each exclusive bit. 2758 */ 2759 static unsigned long original_mask(unsigned long mask) 2760 { 2761 unsigned long excl = invert_dir_mask(mask); 2762 2763 /* Include read in existing usages */ 2764 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2765 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2766 2767 return excl; 2768 } 2769 2770 /* 2771 * Find the first pair of bit match between an original 2772 * usage mask and an exclusive usage mask. 2773 */ 2774 static int find_exclusive_match(unsigned long mask, 2775 unsigned long excl_mask, 2776 enum lock_usage_bit *bitp, 2777 enum lock_usage_bit *excl_bitp) 2778 { 2779 int bit, excl, excl_read; 2780 2781 for_each_set_bit(bit, &mask, LOCK_USED) { 2782 /* 2783 * exclusive_bit() strips the read bit, however, 2784 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2785 * to search excl | LOCK_USAGE_READ_MASK as well. 2786 */ 2787 excl = exclusive_bit(bit); 2788 excl_read = excl | LOCK_USAGE_READ_MASK; 2789 if (excl_mask & lock_flag(excl)) { 2790 *bitp = bit; 2791 *excl_bitp = excl; 2792 return 0; 2793 } else if (excl_mask & lock_flag(excl_read)) { 2794 *bitp = bit; 2795 *excl_bitp = excl_read; 2796 return 0; 2797 } 2798 } 2799 return -1; 2800 } 2801 2802 /* 2803 * Prove that the new dependency does not connect a hardirq-safe(-read) 2804 * lock with a hardirq-unsafe lock - to achieve this we search 2805 * the backwards-subgraph starting at <prev>, and the 2806 * forwards-subgraph starting at <next>: 2807 */ 2808 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2809 struct held_lock *next) 2810 { 2811 unsigned long usage_mask = 0, forward_mask, backward_mask; 2812 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2813 struct lock_list *target_entry1; 2814 struct lock_list *target_entry; 2815 struct lock_list this, that; 2816 enum bfs_result ret; 2817 2818 /* 2819 * Step 1: gather all hard/soft IRQs usages backward in an 2820 * accumulated usage mask. 2821 */ 2822 bfs_init_rootb(&this, prev); 2823 2824 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2825 if (bfs_error(ret)) { 2826 print_bfs_bug(ret); 2827 return 0; 2828 } 2829 2830 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2831 if (!usage_mask) 2832 return 1; 2833 2834 /* 2835 * Step 2: find exclusive uses forward that match the previous 2836 * backward accumulated mask. 2837 */ 2838 forward_mask = exclusive_mask(usage_mask); 2839 2840 bfs_init_root(&that, next); 2841 2842 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2843 if (bfs_error(ret)) { 2844 print_bfs_bug(ret); 2845 return 0; 2846 } 2847 if (ret == BFS_RNOMATCH) 2848 return 1; 2849 2850 /* 2851 * Step 3: we found a bad match! Now retrieve a lock from the backward 2852 * list whose usage mask matches the exclusive usage mask from the 2853 * lock found on the forward list. 2854 * 2855 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2856 * the follow case: 2857 * 2858 * When trying to add A -> B to the graph, we find that there is a 2859 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2860 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2861 * invert bits of M's usage_mask, we will find another lock N that is 2862 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2863 * cause a inversion deadlock. 2864 */ 2865 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2866 2867 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2868 if (bfs_error(ret)) { 2869 print_bfs_bug(ret); 2870 return 0; 2871 } 2872 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2873 return 1; 2874 2875 /* 2876 * Step 4: narrow down to a pair of incompatible usage bits 2877 * and report it. 2878 */ 2879 ret = find_exclusive_match(target_entry->class->usage_mask, 2880 target_entry1->class->usage_mask, 2881 &backward_bit, &forward_bit); 2882 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2883 return 1; 2884 2885 print_bad_irq_dependency(curr, &this, &that, 2886 target_entry, target_entry1, 2887 prev, next, 2888 backward_bit, forward_bit, 2889 state_name(backward_bit)); 2890 2891 return 0; 2892 } 2893 2894 #else 2895 2896 static inline int check_irq_usage(struct task_struct *curr, 2897 struct held_lock *prev, struct held_lock *next) 2898 { 2899 return 1; 2900 } 2901 2902 static inline bool usage_skip(struct lock_list *entry, void *mask) 2903 { 2904 return false; 2905 } 2906 2907 #endif /* CONFIG_TRACE_IRQFLAGS */ 2908 2909 #ifdef CONFIG_LOCKDEP_SMALL 2910 /* 2911 * Check that the dependency graph starting at <src> can lead to 2912 * <target> or not. If it can, <src> -> <target> dependency is already 2913 * in the graph. 2914 * 2915 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2916 * any error appears in the bfs search. 2917 */ 2918 static noinline enum bfs_result 2919 check_redundant(struct held_lock *src, struct held_lock *target) 2920 { 2921 enum bfs_result ret; 2922 struct lock_list *target_entry; 2923 struct lock_list src_entry; 2924 2925 bfs_init_root(&src_entry, src); 2926 /* 2927 * Special setup for check_redundant(). 2928 * 2929 * To report redundant, we need to find a strong dependency path that 2930 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2931 * we need to let __bfs() only search for a path starting at a -(E*)->, 2932 * we achieve this by setting the initial node's ->only_xr to true in 2933 * that case. And if <prev> is S, we set initial ->only_xr to false 2934 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2935 */ 2936 src_entry.only_xr = src->read == 0; 2937 2938 debug_atomic_inc(nr_redundant_checks); 2939 2940 /* 2941 * Note: we skip local_lock() for redundant check, because as the 2942 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2943 * the same. 2944 */ 2945 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2946 2947 if (ret == BFS_RMATCH) 2948 debug_atomic_inc(nr_redundant); 2949 2950 return ret; 2951 } 2952 2953 #else 2954 2955 static inline enum bfs_result 2956 check_redundant(struct held_lock *src, struct held_lock *target) 2957 { 2958 return BFS_RNOMATCH; 2959 } 2960 2961 #endif 2962 2963 static void inc_chains(int irq_context) 2964 { 2965 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2966 nr_hardirq_chains++; 2967 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2968 nr_softirq_chains++; 2969 else 2970 nr_process_chains++; 2971 } 2972 2973 static void dec_chains(int irq_context) 2974 { 2975 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2976 nr_hardirq_chains--; 2977 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2978 nr_softirq_chains--; 2979 else 2980 nr_process_chains--; 2981 } 2982 2983 static void 2984 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2985 { 2986 struct lock_class *next = hlock_class(nxt); 2987 struct lock_class *prev = hlock_class(prv); 2988 2989 printk(" Possible unsafe locking scenario:\n\n"); 2990 printk(" CPU0\n"); 2991 printk(" ----\n"); 2992 printk(" lock("); 2993 __print_lock_name(prv, prev); 2994 printk(KERN_CONT ");\n"); 2995 printk(" lock("); 2996 __print_lock_name(nxt, next); 2997 printk(KERN_CONT ");\n"); 2998 printk("\n *** DEADLOCK ***\n\n"); 2999 printk(" May be due to missing lock nesting notation\n\n"); 3000 } 3001 3002 static void 3003 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 3004 struct held_lock *next) 3005 { 3006 struct lock_class *class = hlock_class(prev); 3007 3008 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3009 return; 3010 3011 nbcon_cpu_emergency_enter(); 3012 3013 pr_warn("\n"); 3014 pr_warn("============================================\n"); 3015 pr_warn("WARNING: possible recursive locking detected\n"); 3016 print_kernel_ident(); 3017 pr_warn("--------------------------------------------\n"); 3018 pr_warn("%s/%d is trying to acquire lock:\n", 3019 curr->comm, task_pid_nr(curr)); 3020 print_lock(next); 3021 pr_warn("\nbut task is already holding lock:\n"); 3022 print_lock(prev); 3023 3024 if (class->cmp_fn) { 3025 pr_warn("and the lock comparison function returns %i:\n", 3026 class->cmp_fn(prev->instance, next->instance)); 3027 } 3028 3029 pr_warn("\nother info that might help us debug this:\n"); 3030 print_deadlock_scenario(next, prev); 3031 lockdep_print_held_locks(curr); 3032 3033 pr_warn("\nstack backtrace:\n"); 3034 dump_stack(); 3035 3036 nbcon_cpu_emergency_exit(); 3037 } 3038 3039 /* 3040 * Check whether we are holding such a class already. 3041 * 3042 * (Note that this has to be done separately, because the graph cannot 3043 * detect such classes of deadlocks.) 3044 * 3045 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3046 * lock class is held but nest_lock is also held, i.e. we rely on the 3047 * nest_lock to avoid the deadlock. 3048 */ 3049 static int 3050 check_deadlock(struct task_struct *curr, struct held_lock *next) 3051 { 3052 struct lock_class *class; 3053 struct held_lock *prev; 3054 struct held_lock *nest = NULL; 3055 int i; 3056 3057 for (i = 0; i < curr->lockdep_depth; i++) { 3058 prev = curr->held_locks + i; 3059 3060 if (prev->instance == next->nest_lock) 3061 nest = prev; 3062 3063 if (hlock_class(prev) != hlock_class(next)) 3064 continue; 3065 3066 /* 3067 * Allow read-after-read recursion of the same 3068 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3069 */ 3070 if ((next->read == 2) && prev->read) 3071 continue; 3072 3073 class = hlock_class(prev); 3074 3075 if (class->cmp_fn && 3076 class->cmp_fn(prev->instance, next->instance) < 0) 3077 continue; 3078 3079 /* 3080 * We're holding the nest_lock, which serializes this lock's 3081 * nesting behaviour. 3082 */ 3083 if (nest) 3084 return 2; 3085 3086 print_deadlock_bug(curr, prev, next); 3087 return 0; 3088 } 3089 return 1; 3090 } 3091 3092 /* 3093 * There was a chain-cache miss, and we are about to add a new dependency 3094 * to a previous lock. We validate the following rules: 3095 * 3096 * - would the adding of the <prev> -> <next> dependency create a 3097 * circular dependency in the graph? [== circular deadlock] 3098 * 3099 * - does the new prev->next dependency connect any hardirq-safe lock 3100 * (in the full backwards-subgraph starting at <prev>) with any 3101 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3102 * <next>)? [== illegal lock inversion with hardirq contexts] 3103 * 3104 * - does the new prev->next dependency connect any softirq-safe lock 3105 * (in the full backwards-subgraph starting at <prev>) with any 3106 * softirq-unsafe lock (in the full forwards-subgraph starting at 3107 * <next>)? [== illegal lock inversion with softirq contexts] 3108 * 3109 * any of these scenarios could lead to a deadlock. 3110 * 3111 * Then if all the validations pass, we add the forwards and backwards 3112 * dependency. 3113 */ 3114 static int 3115 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3116 struct held_lock *next, u16 distance, 3117 struct lock_trace **const trace) 3118 { 3119 struct lock_list *entry; 3120 enum bfs_result ret; 3121 3122 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3123 /* 3124 * The warning statements below may trigger a use-after-free 3125 * of the class name. It is better to trigger a use-after free 3126 * and to have the class name most of the time instead of not 3127 * having the class name available. 3128 */ 3129 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3130 "Detected use-after-free of lock class %px/%s\n", 3131 hlock_class(prev), 3132 hlock_class(prev)->name); 3133 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3134 "Detected use-after-free of lock class %px/%s\n", 3135 hlock_class(next), 3136 hlock_class(next)->name); 3137 return 2; 3138 } 3139 3140 if (prev->class_idx == next->class_idx) { 3141 struct lock_class *class = hlock_class(prev); 3142 3143 if (class->cmp_fn && 3144 class->cmp_fn(prev->instance, next->instance) < 0) 3145 return 2; 3146 } 3147 3148 /* 3149 * Prove that the new <prev> -> <next> dependency would not 3150 * create a circular dependency in the graph. (We do this by 3151 * a breadth-first search into the graph starting at <next>, 3152 * and check whether we can reach <prev>.) 3153 * 3154 * The search is limited by the size of the circular queue (i.e., 3155 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3156 * in the graph whose neighbours are to be checked. 3157 */ 3158 ret = check_noncircular(next, prev, trace); 3159 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3160 return 0; 3161 3162 if (!check_irq_usage(curr, prev, next)) 3163 return 0; 3164 3165 /* 3166 * Is the <prev> -> <next> dependency already present? 3167 * 3168 * (this may occur even though this is a new chain: consider 3169 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3170 * chains - the second one will be new, but L1 already has 3171 * L2 added to its dependency list, due to the first chain.) 3172 */ 3173 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3174 if (entry->class == hlock_class(next)) { 3175 if (distance == 1) 3176 entry->distance = 1; 3177 entry->dep |= calc_dep(prev, next); 3178 3179 /* 3180 * Also, update the reverse dependency in @next's 3181 * ->locks_before list. 3182 * 3183 * Here we reuse @entry as the cursor, which is fine 3184 * because we won't go to the next iteration of the 3185 * outer loop: 3186 * 3187 * For normal cases, we return in the inner loop. 3188 * 3189 * If we fail to return, we have inconsistency, i.e. 3190 * <prev>::locks_after contains <next> while 3191 * <next>::locks_before doesn't contain <prev>. In 3192 * that case, we return after the inner and indicate 3193 * something is wrong. 3194 */ 3195 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3196 if (entry->class == hlock_class(prev)) { 3197 if (distance == 1) 3198 entry->distance = 1; 3199 entry->dep |= calc_depb(prev, next); 3200 return 1; 3201 } 3202 } 3203 3204 /* <prev> is not found in <next>::locks_before */ 3205 return 0; 3206 } 3207 } 3208 3209 /* 3210 * Is the <prev> -> <next> link redundant? 3211 */ 3212 ret = check_redundant(prev, next); 3213 if (bfs_error(ret)) 3214 return 0; 3215 else if (ret == BFS_RMATCH) 3216 return 2; 3217 3218 if (!*trace) { 3219 *trace = save_trace(); 3220 if (!*trace) 3221 return 0; 3222 } 3223 3224 /* 3225 * Ok, all validations passed, add the new lock 3226 * to the previous lock's dependency list: 3227 */ 3228 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3229 &hlock_class(prev)->locks_after, distance, 3230 calc_dep(prev, next), *trace); 3231 3232 if (!ret) 3233 return 0; 3234 3235 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3236 &hlock_class(next)->locks_before, distance, 3237 calc_depb(prev, next), *trace); 3238 if (!ret) 3239 return 0; 3240 3241 return 2; 3242 } 3243 3244 /* 3245 * Add the dependency to all directly-previous locks that are 'relevant'. 3246 * The ones that are relevant are (in increasing distance from curr): 3247 * all consecutive trylock entries and the final non-trylock entry - or 3248 * the end of this context's lock-chain - whichever comes first. 3249 */ 3250 static int 3251 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3252 { 3253 struct lock_trace *trace = NULL; 3254 int depth = curr->lockdep_depth; 3255 struct held_lock *hlock; 3256 3257 /* 3258 * Debugging checks. 3259 * 3260 * Depth must not be zero for a non-head lock: 3261 */ 3262 if (!depth) 3263 goto out_bug; 3264 /* 3265 * At least two relevant locks must exist for this 3266 * to be a head: 3267 */ 3268 if (curr->held_locks[depth].irq_context != 3269 curr->held_locks[depth-1].irq_context) 3270 goto out_bug; 3271 3272 for (;;) { 3273 u16 distance = curr->lockdep_depth - depth + 1; 3274 hlock = curr->held_locks + depth - 1; 3275 3276 if (hlock->check) { 3277 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3278 if (!ret) 3279 return 0; 3280 3281 /* 3282 * Stop after the first non-trylock entry, 3283 * as non-trylock entries have added their 3284 * own direct dependencies already, so this 3285 * lock is connected to them indirectly: 3286 */ 3287 if (!hlock->trylock) 3288 break; 3289 } 3290 3291 depth--; 3292 /* 3293 * End of lock-stack? 3294 */ 3295 if (!depth) 3296 break; 3297 /* 3298 * Stop the search if we cross into another context: 3299 */ 3300 if (curr->held_locks[depth].irq_context != 3301 curr->held_locks[depth-1].irq_context) 3302 break; 3303 } 3304 return 1; 3305 out_bug: 3306 if (!debug_locks_off_graph_unlock()) 3307 return 0; 3308 3309 /* 3310 * Clearly we all shouldn't be here, but since we made it we 3311 * can reliable say we messed up our state. See the above two 3312 * gotos for reasons why we could possibly end up here. 3313 */ 3314 WARN_ON(1); 3315 3316 return 0; 3317 } 3318 3319 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3320 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3321 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3322 unsigned long nr_zapped_lock_chains; 3323 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3324 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3325 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3326 3327 /* 3328 * The first 2 chain_hlocks entries in the chain block in the bucket 3329 * list contains the following meta data: 3330 * 3331 * entry[0]: 3332 * Bit 15 - always set to 1 (it is not a class index) 3333 * Bits 0-14 - upper 15 bits of the next block index 3334 * entry[1] - lower 16 bits of next block index 3335 * 3336 * A next block index of all 1 bits means it is the end of the list. 3337 * 3338 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3339 * the chain block size: 3340 * 3341 * entry[2] - upper 16 bits of the chain block size 3342 * entry[3] - lower 16 bits of the chain block size 3343 */ 3344 #define MAX_CHAIN_BUCKETS 16 3345 #define CHAIN_BLK_FLAG (1U << 15) 3346 #define CHAIN_BLK_LIST_END 0xFFFFU 3347 3348 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3349 3350 static inline int size_to_bucket(int size) 3351 { 3352 if (size > MAX_CHAIN_BUCKETS) 3353 return 0; 3354 3355 return size - 1; 3356 } 3357 3358 /* 3359 * Iterate all the chain blocks in a bucket. 3360 */ 3361 #define for_each_chain_block(bucket, prev, curr) \ 3362 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3363 (curr) >= 0; \ 3364 (prev) = (curr), (curr) = chain_block_next(curr)) 3365 3366 /* 3367 * next block or -1 3368 */ 3369 static inline int chain_block_next(int offset) 3370 { 3371 int next = chain_hlocks[offset]; 3372 3373 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3374 3375 if (next == CHAIN_BLK_LIST_END) 3376 return -1; 3377 3378 next &= ~CHAIN_BLK_FLAG; 3379 next <<= 16; 3380 next |= chain_hlocks[offset + 1]; 3381 3382 return next; 3383 } 3384 3385 /* 3386 * bucket-0 only 3387 */ 3388 static inline int chain_block_size(int offset) 3389 { 3390 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3391 } 3392 3393 static inline void init_chain_block(int offset, int next, int bucket, int size) 3394 { 3395 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3396 chain_hlocks[offset + 1] = (u16)next; 3397 3398 if (size && !bucket) { 3399 chain_hlocks[offset + 2] = size >> 16; 3400 chain_hlocks[offset + 3] = (u16)size; 3401 } 3402 } 3403 3404 static inline void add_chain_block(int offset, int size) 3405 { 3406 int bucket = size_to_bucket(size); 3407 int next = chain_block_buckets[bucket]; 3408 int prev, curr; 3409 3410 if (unlikely(size < 2)) { 3411 /* 3412 * We can't store single entries on the freelist. Leak them. 3413 * 3414 * One possible way out would be to uniquely mark them, other 3415 * than with CHAIN_BLK_FLAG, such that we can recover them when 3416 * the block before it is re-added. 3417 */ 3418 if (size) 3419 nr_lost_chain_hlocks++; 3420 return; 3421 } 3422 3423 nr_free_chain_hlocks += size; 3424 if (!bucket) { 3425 nr_large_chain_blocks++; 3426 3427 /* 3428 * Variable sized, sort large to small. 3429 */ 3430 for_each_chain_block(0, prev, curr) { 3431 if (size >= chain_block_size(curr)) 3432 break; 3433 } 3434 init_chain_block(offset, curr, 0, size); 3435 if (prev < 0) 3436 chain_block_buckets[0] = offset; 3437 else 3438 init_chain_block(prev, offset, 0, 0); 3439 return; 3440 } 3441 /* 3442 * Fixed size, add to head. 3443 */ 3444 init_chain_block(offset, next, bucket, size); 3445 chain_block_buckets[bucket] = offset; 3446 } 3447 3448 /* 3449 * Only the first block in the list can be deleted. 3450 * 3451 * For the variable size bucket[0], the first block (the largest one) is 3452 * returned, broken up and put back into the pool. So if a chain block of 3453 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3454 * queued up after the primordial chain block and never be used until the 3455 * hlock entries in the primordial chain block is almost used up. That 3456 * causes fragmentation and reduce allocation efficiency. That can be 3457 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3458 */ 3459 static inline void del_chain_block(int bucket, int size, int next) 3460 { 3461 nr_free_chain_hlocks -= size; 3462 chain_block_buckets[bucket] = next; 3463 3464 if (!bucket) 3465 nr_large_chain_blocks--; 3466 } 3467 3468 static void init_chain_block_buckets(void) 3469 { 3470 int i; 3471 3472 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3473 chain_block_buckets[i] = -1; 3474 3475 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3476 } 3477 3478 /* 3479 * Return offset of a chain block of the right size or -1 if not found. 3480 * 3481 * Fairly simple worst-fit allocator with the addition of a number of size 3482 * specific free lists. 3483 */ 3484 static int alloc_chain_hlocks(int req) 3485 { 3486 int bucket, curr, size; 3487 3488 /* 3489 * We rely on the MSB to act as an escape bit to denote freelist 3490 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3491 */ 3492 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3493 3494 init_data_structures_once(); 3495 3496 if (nr_free_chain_hlocks < req) 3497 return -1; 3498 3499 /* 3500 * We require a minimum of 2 (u16) entries to encode a freelist 3501 * 'pointer'. 3502 */ 3503 req = max(req, 2); 3504 bucket = size_to_bucket(req); 3505 curr = chain_block_buckets[bucket]; 3506 3507 if (bucket) { 3508 if (curr >= 0) { 3509 del_chain_block(bucket, req, chain_block_next(curr)); 3510 return curr; 3511 } 3512 /* Try bucket 0 */ 3513 curr = chain_block_buckets[0]; 3514 } 3515 3516 /* 3517 * The variable sized freelist is sorted by size; the first entry is 3518 * the largest. Use it if it fits. 3519 */ 3520 if (curr >= 0) { 3521 size = chain_block_size(curr); 3522 if (likely(size >= req)) { 3523 del_chain_block(0, size, chain_block_next(curr)); 3524 if (size > req) 3525 add_chain_block(curr + req, size - req); 3526 return curr; 3527 } 3528 } 3529 3530 /* 3531 * Last resort, split a block in a larger sized bucket. 3532 */ 3533 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3534 bucket = size_to_bucket(size); 3535 curr = chain_block_buckets[bucket]; 3536 if (curr < 0) 3537 continue; 3538 3539 del_chain_block(bucket, size, chain_block_next(curr)); 3540 add_chain_block(curr + req, size - req); 3541 return curr; 3542 } 3543 3544 return -1; 3545 } 3546 3547 static inline void free_chain_hlocks(int base, int size) 3548 { 3549 add_chain_block(base, max(size, 2)); 3550 } 3551 3552 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3553 { 3554 u16 chain_hlock = chain_hlocks[chain->base + i]; 3555 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3556 3557 return lock_classes + class_idx; 3558 } 3559 3560 /* 3561 * Returns the index of the first held_lock of the current chain 3562 */ 3563 static inline int get_first_held_lock(struct task_struct *curr, 3564 struct held_lock *hlock) 3565 { 3566 int i; 3567 struct held_lock *hlock_curr; 3568 3569 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3570 hlock_curr = curr->held_locks + i; 3571 if (hlock_curr->irq_context != hlock->irq_context) 3572 break; 3573 3574 } 3575 3576 return ++i; 3577 } 3578 3579 #ifdef CONFIG_DEBUG_LOCKDEP 3580 /* 3581 * Returns the next chain_key iteration 3582 */ 3583 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3584 { 3585 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3586 3587 printk(" hlock_id:%d -> chain_key:%016Lx", 3588 (unsigned int)hlock_id, 3589 (unsigned long long)new_chain_key); 3590 return new_chain_key; 3591 } 3592 3593 static void 3594 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3595 { 3596 struct held_lock *hlock; 3597 u64 chain_key = INITIAL_CHAIN_KEY; 3598 int depth = curr->lockdep_depth; 3599 int i = get_first_held_lock(curr, hlock_next); 3600 3601 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3602 hlock_next->irq_context); 3603 for (; i < depth; i++) { 3604 hlock = curr->held_locks + i; 3605 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3606 3607 print_lock(hlock); 3608 } 3609 3610 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3611 print_lock(hlock_next); 3612 } 3613 3614 static void print_chain_keys_chain(struct lock_chain *chain) 3615 { 3616 int i; 3617 u64 chain_key = INITIAL_CHAIN_KEY; 3618 u16 hlock_id; 3619 3620 printk("depth: %u\n", chain->depth); 3621 for (i = 0; i < chain->depth; i++) { 3622 hlock_id = chain_hlocks[chain->base + i]; 3623 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3624 3625 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3626 printk("\n"); 3627 } 3628 } 3629 3630 static void print_collision(struct task_struct *curr, 3631 struct held_lock *hlock_next, 3632 struct lock_chain *chain) 3633 { 3634 nbcon_cpu_emergency_enter(); 3635 3636 pr_warn("\n"); 3637 pr_warn("============================\n"); 3638 pr_warn("WARNING: chain_key collision\n"); 3639 print_kernel_ident(); 3640 pr_warn("----------------------------\n"); 3641 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3642 pr_warn("Hash chain already cached but the contents don't match!\n"); 3643 3644 pr_warn("Held locks:"); 3645 print_chain_keys_held_locks(curr, hlock_next); 3646 3647 pr_warn("Locks in cached chain:"); 3648 print_chain_keys_chain(chain); 3649 3650 pr_warn("\nstack backtrace:\n"); 3651 dump_stack(); 3652 3653 nbcon_cpu_emergency_exit(); 3654 } 3655 #endif 3656 3657 /* 3658 * Checks whether the chain and the current held locks are consistent 3659 * in depth and also in content. If they are not it most likely means 3660 * that there was a collision during the calculation of the chain_key. 3661 * Returns: 0 not passed, 1 passed 3662 */ 3663 static int check_no_collision(struct task_struct *curr, 3664 struct held_lock *hlock, 3665 struct lock_chain *chain) 3666 { 3667 #ifdef CONFIG_DEBUG_LOCKDEP 3668 int i, j, id; 3669 3670 i = get_first_held_lock(curr, hlock); 3671 3672 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3673 print_collision(curr, hlock, chain); 3674 return 0; 3675 } 3676 3677 for (j = 0; j < chain->depth - 1; j++, i++) { 3678 id = hlock_id(&curr->held_locks[i]); 3679 3680 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3681 print_collision(curr, hlock, chain); 3682 return 0; 3683 } 3684 } 3685 #endif 3686 return 1; 3687 } 3688 3689 /* 3690 * Given an index that is >= -1, return the index of the next lock chain. 3691 * Return -2 if there is no next lock chain. 3692 */ 3693 long lockdep_next_lockchain(long i) 3694 { 3695 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3696 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3697 } 3698 3699 unsigned long lock_chain_count(void) 3700 { 3701 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3702 } 3703 3704 /* Must be called with the graph lock held. */ 3705 static struct lock_chain *alloc_lock_chain(void) 3706 { 3707 int idx = find_first_zero_bit(lock_chains_in_use, 3708 ARRAY_SIZE(lock_chains)); 3709 3710 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3711 return NULL; 3712 __set_bit(idx, lock_chains_in_use); 3713 return lock_chains + idx; 3714 } 3715 3716 /* 3717 * Adds a dependency chain into chain hashtable. And must be called with 3718 * graph_lock held. 3719 * 3720 * Return 0 if fail, and graph_lock is released. 3721 * Return 1 if succeed, with graph_lock held. 3722 */ 3723 static inline int add_chain_cache(struct task_struct *curr, 3724 struct held_lock *hlock, 3725 u64 chain_key) 3726 { 3727 struct hlist_head *hash_head = chainhashentry(chain_key); 3728 struct lock_chain *chain; 3729 int i, j; 3730 3731 /* 3732 * The caller must hold the graph lock, ensure we've got IRQs 3733 * disabled to make this an IRQ-safe lock.. for recursion reasons 3734 * lockdep won't complain about its own locking errors. 3735 */ 3736 if (lockdep_assert_locked()) 3737 return 0; 3738 3739 chain = alloc_lock_chain(); 3740 if (!chain) { 3741 if (!debug_locks_off_graph_unlock()) 3742 return 0; 3743 3744 nbcon_cpu_emergency_enter(); 3745 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3746 dump_stack(); 3747 nbcon_cpu_emergency_exit(); 3748 return 0; 3749 } 3750 chain->chain_key = chain_key; 3751 chain->irq_context = hlock->irq_context; 3752 i = get_first_held_lock(curr, hlock); 3753 chain->depth = curr->lockdep_depth + 1 - i; 3754 3755 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3756 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3757 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3758 3759 j = alloc_chain_hlocks(chain->depth); 3760 if (j < 0) { 3761 if (!debug_locks_off_graph_unlock()) 3762 return 0; 3763 3764 nbcon_cpu_emergency_enter(); 3765 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3766 dump_stack(); 3767 nbcon_cpu_emergency_exit(); 3768 return 0; 3769 } 3770 3771 chain->base = j; 3772 for (j = 0; j < chain->depth - 1; j++, i++) { 3773 int lock_id = hlock_id(curr->held_locks + i); 3774 3775 chain_hlocks[chain->base + j] = lock_id; 3776 } 3777 chain_hlocks[chain->base + j] = hlock_id(hlock); 3778 hlist_add_head_rcu(&chain->entry, hash_head); 3779 debug_atomic_inc(chain_lookup_misses); 3780 inc_chains(chain->irq_context); 3781 3782 return 1; 3783 } 3784 3785 /* 3786 * Look up a dependency chain. Must be called with either the graph lock or 3787 * the RCU read lock held. 3788 */ 3789 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3790 { 3791 struct hlist_head *hash_head = chainhashentry(chain_key); 3792 struct lock_chain *chain; 3793 3794 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3795 if (READ_ONCE(chain->chain_key) == chain_key) { 3796 debug_atomic_inc(chain_lookup_hits); 3797 return chain; 3798 } 3799 } 3800 return NULL; 3801 } 3802 3803 /* 3804 * If the key is not present yet in dependency chain cache then 3805 * add it and return 1 - in this case the new dependency chain is 3806 * validated. If the key is already hashed, return 0. 3807 * (On return with 1 graph_lock is held.) 3808 */ 3809 static inline int lookup_chain_cache_add(struct task_struct *curr, 3810 struct held_lock *hlock, 3811 u64 chain_key) 3812 { 3813 struct lock_class *class = hlock_class(hlock); 3814 struct lock_chain *chain = lookup_chain_cache(chain_key); 3815 3816 if (chain) { 3817 cache_hit: 3818 if (!check_no_collision(curr, hlock, chain)) 3819 return 0; 3820 3821 if (very_verbose(class)) { 3822 printk("\nhash chain already cached, key: " 3823 "%016Lx tail class: [%px] %s\n", 3824 (unsigned long long)chain_key, 3825 class->key, class->name); 3826 } 3827 3828 return 0; 3829 } 3830 3831 if (very_verbose(class)) { 3832 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3833 (unsigned long long)chain_key, class->key, class->name); 3834 } 3835 3836 if (!graph_lock()) 3837 return 0; 3838 3839 /* 3840 * We have to walk the chain again locked - to avoid duplicates: 3841 */ 3842 chain = lookup_chain_cache(chain_key); 3843 if (chain) { 3844 graph_unlock(); 3845 goto cache_hit; 3846 } 3847 3848 if (!add_chain_cache(curr, hlock, chain_key)) 3849 return 0; 3850 3851 return 1; 3852 } 3853 3854 static int validate_chain(struct task_struct *curr, 3855 struct held_lock *hlock, 3856 int chain_head, u64 chain_key) 3857 { 3858 /* 3859 * Trylock needs to maintain the stack of held locks, but it 3860 * does not add new dependencies, because trylock can be done 3861 * in any order. 3862 * 3863 * We look up the chain_key and do the O(N^2) check and update of 3864 * the dependencies only if this is a new dependency chain. 3865 * (If lookup_chain_cache_add() return with 1 it acquires 3866 * graph_lock for us) 3867 */ 3868 if (!hlock->trylock && hlock->check && 3869 lookup_chain_cache_add(curr, hlock, chain_key)) { 3870 /* 3871 * Check whether last held lock: 3872 * 3873 * - is irq-safe, if this lock is irq-unsafe 3874 * - is softirq-safe, if this lock is hardirq-unsafe 3875 * 3876 * And check whether the new lock's dependency graph 3877 * could lead back to the previous lock: 3878 * 3879 * - within the current held-lock stack 3880 * - across our accumulated lock dependency records 3881 * 3882 * any of these scenarios could lead to a deadlock. 3883 */ 3884 /* 3885 * The simple case: does the current hold the same lock 3886 * already? 3887 */ 3888 int ret = check_deadlock(curr, hlock); 3889 3890 if (!ret) 3891 return 0; 3892 /* 3893 * Add dependency only if this lock is not the head 3894 * of the chain, and if the new lock introduces no more 3895 * lock dependency (because we already hold a lock with the 3896 * same lock class) nor deadlock (because the nest_lock 3897 * serializes nesting locks), see the comments for 3898 * check_deadlock(). 3899 */ 3900 if (!chain_head && ret != 2) { 3901 if (!check_prevs_add(curr, hlock)) 3902 return 0; 3903 } 3904 3905 graph_unlock(); 3906 } else { 3907 /* after lookup_chain_cache_add(): */ 3908 if (unlikely(!debug_locks)) 3909 return 0; 3910 } 3911 3912 return 1; 3913 } 3914 #else 3915 static inline int validate_chain(struct task_struct *curr, 3916 struct held_lock *hlock, 3917 int chain_head, u64 chain_key) 3918 { 3919 return 1; 3920 } 3921 3922 static void init_chain_block_buckets(void) { } 3923 #endif /* CONFIG_PROVE_LOCKING */ 3924 3925 /* 3926 * We are building curr_chain_key incrementally, so double-check 3927 * it from scratch, to make sure that it's done correctly: 3928 */ 3929 static void check_chain_key(struct task_struct *curr) 3930 { 3931 #ifdef CONFIG_DEBUG_LOCKDEP 3932 struct held_lock *hlock, *prev_hlock = NULL; 3933 unsigned int i; 3934 u64 chain_key = INITIAL_CHAIN_KEY; 3935 3936 for (i = 0; i < curr->lockdep_depth; i++) { 3937 hlock = curr->held_locks + i; 3938 if (chain_key != hlock->prev_chain_key) { 3939 debug_locks_off(); 3940 /* 3941 * We got mighty confused, our chain keys don't match 3942 * with what we expect, someone trample on our task state? 3943 */ 3944 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3945 curr->lockdep_depth, i, 3946 (unsigned long long)chain_key, 3947 (unsigned long long)hlock->prev_chain_key); 3948 return; 3949 } 3950 3951 /* 3952 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3953 * it registered lock class index? 3954 */ 3955 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3956 return; 3957 3958 if (prev_hlock && (prev_hlock->irq_context != 3959 hlock->irq_context)) 3960 chain_key = INITIAL_CHAIN_KEY; 3961 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3962 prev_hlock = hlock; 3963 } 3964 if (chain_key != curr->curr_chain_key) { 3965 debug_locks_off(); 3966 /* 3967 * More smoking hash instead of calculating it, damn see these 3968 * numbers float.. I bet that a pink elephant stepped on my memory. 3969 */ 3970 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3971 curr->lockdep_depth, i, 3972 (unsigned long long)chain_key, 3973 (unsigned long long)curr->curr_chain_key); 3974 } 3975 #endif 3976 } 3977 3978 #ifdef CONFIG_PROVE_LOCKING 3979 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3980 enum lock_usage_bit new_bit); 3981 3982 static void print_usage_bug_scenario(struct held_lock *lock) 3983 { 3984 struct lock_class *class = hlock_class(lock); 3985 3986 printk(" Possible unsafe locking scenario:\n\n"); 3987 printk(" CPU0\n"); 3988 printk(" ----\n"); 3989 printk(" lock("); 3990 __print_lock_name(lock, class); 3991 printk(KERN_CONT ");\n"); 3992 printk(" <Interrupt>\n"); 3993 printk(" lock("); 3994 __print_lock_name(lock, class); 3995 printk(KERN_CONT ");\n"); 3996 printk("\n *** DEADLOCK ***\n\n"); 3997 } 3998 3999 static void 4000 print_usage_bug(struct task_struct *curr, struct held_lock *this, 4001 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 4002 { 4003 if (!debug_locks_off() || debug_locks_silent) 4004 return; 4005 4006 nbcon_cpu_emergency_enter(); 4007 4008 pr_warn("\n"); 4009 pr_warn("================================\n"); 4010 pr_warn("WARNING: inconsistent lock state\n"); 4011 print_kernel_ident(); 4012 pr_warn("--------------------------------\n"); 4013 4014 pr_warn("inconsistent {%s} -> {%s} usage.\n", 4015 usage_str[prev_bit], usage_str[new_bit]); 4016 4017 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 4018 curr->comm, task_pid_nr(curr), 4019 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 4020 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 4021 lockdep_hardirqs_enabled(), 4022 lockdep_softirqs_enabled(curr)); 4023 print_lock(this); 4024 4025 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 4026 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 4027 4028 print_irqtrace_events(curr); 4029 pr_warn("\nother info that might help us debug this:\n"); 4030 print_usage_bug_scenario(this); 4031 4032 lockdep_print_held_locks(curr); 4033 4034 pr_warn("\nstack backtrace:\n"); 4035 dump_stack(); 4036 4037 nbcon_cpu_emergency_exit(); 4038 } 4039 4040 /* 4041 * Print out an error if an invalid bit is set: 4042 */ 4043 static inline int 4044 valid_state(struct task_struct *curr, struct held_lock *this, 4045 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4046 { 4047 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4048 graph_unlock(); 4049 print_usage_bug(curr, this, bad_bit, new_bit); 4050 return 0; 4051 } 4052 return 1; 4053 } 4054 4055 4056 /* 4057 * print irq inversion bug: 4058 */ 4059 static void 4060 print_irq_inversion_bug(struct task_struct *curr, 4061 struct lock_list *root, struct lock_list *other, 4062 struct held_lock *this, int forwards, 4063 const char *irqclass) 4064 { 4065 struct lock_list *entry = other; 4066 struct lock_list *middle = NULL; 4067 int depth; 4068 4069 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4070 return; 4071 4072 nbcon_cpu_emergency_enter(); 4073 4074 pr_warn("\n"); 4075 pr_warn("========================================================\n"); 4076 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4077 print_kernel_ident(); 4078 pr_warn("--------------------------------------------------------\n"); 4079 pr_warn("%s/%d just changed the state of lock:\n", 4080 curr->comm, task_pid_nr(curr)); 4081 print_lock(this); 4082 if (forwards) 4083 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4084 else 4085 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4086 print_lock_name(NULL, other->class); 4087 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4088 4089 pr_warn("\nother info that might help us debug this:\n"); 4090 4091 /* Find a middle lock (if one exists) */ 4092 depth = get_lock_depth(other); 4093 do { 4094 if (depth == 0 && (entry != root)) { 4095 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4096 break; 4097 } 4098 middle = entry; 4099 entry = get_lock_parent(entry); 4100 depth--; 4101 } while (entry && entry != root && (depth >= 0)); 4102 if (forwards) 4103 print_irq_lock_scenario(root, other, 4104 middle ? middle->class : root->class, other->class); 4105 else 4106 print_irq_lock_scenario(other, root, 4107 middle ? middle->class : other->class, root->class); 4108 4109 lockdep_print_held_locks(curr); 4110 4111 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4112 root->trace = save_trace(); 4113 if (!root->trace) 4114 goto out; 4115 print_shortest_lock_dependencies(other, root); 4116 4117 pr_warn("\nstack backtrace:\n"); 4118 dump_stack(); 4119 out: 4120 nbcon_cpu_emergency_exit(); 4121 } 4122 4123 /* 4124 * Prove that in the forwards-direction subgraph starting at <this> 4125 * there is no lock matching <mask>: 4126 */ 4127 static int 4128 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4129 enum lock_usage_bit bit) 4130 { 4131 enum bfs_result ret; 4132 struct lock_list root; 4133 struct lock_list *target_entry; 4134 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4135 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4136 4137 bfs_init_root(&root, this); 4138 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4139 if (bfs_error(ret)) { 4140 print_bfs_bug(ret); 4141 return 0; 4142 } 4143 if (ret == BFS_RNOMATCH) 4144 return 1; 4145 4146 /* Check whether write or read usage is the match */ 4147 if (target_entry->class->usage_mask & lock_flag(bit)) { 4148 print_irq_inversion_bug(curr, &root, target_entry, 4149 this, 1, state_name(bit)); 4150 } else { 4151 print_irq_inversion_bug(curr, &root, target_entry, 4152 this, 1, state_name(read_bit)); 4153 } 4154 4155 return 0; 4156 } 4157 4158 /* 4159 * Prove that in the backwards-direction subgraph starting at <this> 4160 * there is no lock matching <mask>: 4161 */ 4162 static int 4163 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4164 enum lock_usage_bit bit) 4165 { 4166 enum bfs_result ret; 4167 struct lock_list root; 4168 struct lock_list *target_entry; 4169 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4170 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4171 4172 bfs_init_rootb(&root, this); 4173 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4174 if (bfs_error(ret)) { 4175 print_bfs_bug(ret); 4176 return 0; 4177 } 4178 if (ret == BFS_RNOMATCH) 4179 return 1; 4180 4181 /* Check whether write or read usage is the match */ 4182 if (target_entry->class->usage_mask & lock_flag(bit)) { 4183 print_irq_inversion_bug(curr, &root, target_entry, 4184 this, 0, state_name(bit)); 4185 } else { 4186 print_irq_inversion_bug(curr, &root, target_entry, 4187 this, 0, state_name(read_bit)); 4188 } 4189 4190 return 0; 4191 } 4192 4193 void print_irqtrace_events(struct task_struct *curr) 4194 { 4195 const struct irqtrace_events *trace = &curr->irqtrace; 4196 4197 nbcon_cpu_emergency_enter(); 4198 4199 printk("irq event stamp: %u\n", trace->irq_events); 4200 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4201 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4202 (void *)trace->hardirq_enable_ip); 4203 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4204 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4205 (void *)trace->hardirq_disable_ip); 4206 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4207 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4208 (void *)trace->softirq_enable_ip); 4209 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4210 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4211 (void *)trace->softirq_disable_ip); 4212 4213 nbcon_cpu_emergency_exit(); 4214 } 4215 4216 static int HARDIRQ_verbose(struct lock_class *class) 4217 { 4218 #if HARDIRQ_VERBOSE 4219 return class_filter(class); 4220 #endif 4221 return 0; 4222 } 4223 4224 static int SOFTIRQ_verbose(struct lock_class *class) 4225 { 4226 #if SOFTIRQ_VERBOSE 4227 return class_filter(class); 4228 #endif 4229 return 0; 4230 } 4231 4232 static int (*state_verbose_f[])(struct lock_class *class) = { 4233 #define LOCKDEP_STATE(__STATE) \ 4234 __STATE##_verbose, 4235 #include "lockdep_states.h" 4236 #undef LOCKDEP_STATE 4237 }; 4238 4239 static inline int state_verbose(enum lock_usage_bit bit, 4240 struct lock_class *class) 4241 { 4242 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4243 } 4244 4245 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4246 enum lock_usage_bit bit, const char *name); 4247 4248 static int 4249 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4250 enum lock_usage_bit new_bit) 4251 { 4252 int excl_bit = exclusive_bit(new_bit); 4253 int read = new_bit & LOCK_USAGE_READ_MASK; 4254 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4255 4256 /* 4257 * Validate that this particular lock does not have conflicting 4258 * usage states. 4259 */ 4260 if (!valid_state(curr, this, new_bit, excl_bit)) 4261 return 0; 4262 4263 /* 4264 * Check for read in write conflicts 4265 */ 4266 if (!read && !valid_state(curr, this, new_bit, 4267 excl_bit + LOCK_USAGE_READ_MASK)) 4268 return 0; 4269 4270 4271 /* 4272 * Validate that the lock dependencies don't have conflicting usage 4273 * states. 4274 */ 4275 if (dir) { 4276 /* 4277 * mark ENABLED has to look backwards -- to ensure no dependee 4278 * has USED_IN state, which, again, would allow recursion deadlocks. 4279 */ 4280 if (!check_usage_backwards(curr, this, excl_bit)) 4281 return 0; 4282 } else { 4283 /* 4284 * mark USED_IN has to look forwards -- to ensure no dependency 4285 * has ENABLED state, which would allow recursion deadlocks. 4286 */ 4287 if (!check_usage_forwards(curr, this, excl_bit)) 4288 return 0; 4289 } 4290 4291 if (state_verbose(new_bit, hlock_class(this))) 4292 return 2; 4293 4294 return 1; 4295 } 4296 4297 /* 4298 * Mark all held locks with a usage bit: 4299 */ 4300 static int 4301 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4302 { 4303 struct held_lock *hlock; 4304 int i; 4305 4306 for (i = 0; i < curr->lockdep_depth; i++) { 4307 enum lock_usage_bit hlock_bit = base_bit; 4308 hlock = curr->held_locks + i; 4309 4310 if (hlock->read) 4311 hlock_bit += LOCK_USAGE_READ_MASK; 4312 4313 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4314 4315 if (!hlock->check) 4316 continue; 4317 4318 if (!mark_lock(curr, hlock, hlock_bit)) 4319 return 0; 4320 } 4321 4322 return 1; 4323 } 4324 4325 /* 4326 * Hardirqs will be enabled: 4327 */ 4328 static void __trace_hardirqs_on_caller(void) 4329 { 4330 struct task_struct *curr = current; 4331 4332 /* 4333 * We are going to turn hardirqs on, so set the 4334 * usage bit for all held locks: 4335 */ 4336 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4337 return; 4338 /* 4339 * If we have softirqs enabled, then set the usage 4340 * bit for all held locks. (disabled hardirqs prevented 4341 * this bit from being set before) 4342 */ 4343 if (curr->softirqs_enabled) 4344 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4345 } 4346 4347 /** 4348 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4349 * 4350 * Invoked before a possible transition to RCU idle from exit to user or 4351 * guest mode. This ensures that all RCU operations are done before RCU 4352 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4353 * invoked to set the final state. 4354 */ 4355 void lockdep_hardirqs_on_prepare(void) 4356 { 4357 if (unlikely(!debug_locks)) 4358 return; 4359 4360 /* 4361 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4362 */ 4363 if (unlikely(in_nmi())) 4364 return; 4365 4366 if (unlikely(this_cpu_read(lockdep_recursion))) 4367 return; 4368 4369 if (unlikely(lockdep_hardirqs_enabled())) { 4370 /* 4371 * Neither irq nor preemption are disabled here 4372 * so this is racy by nature but losing one hit 4373 * in a stat is not a big deal. 4374 */ 4375 __debug_atomic_inc(redundant_hardirqs_on); 4376 return; 4377 } 4378 4379 /* 4380 * We're enabling irqs and according to our state above irqs weren't 4381 * already enabled, yet we find the hardware thinks they are in fact 4382 * enabled.. someone messed up their IRQ state tracing. 4383 */ 4384 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4385 return; 4386 4387 /* 4388 * See the fine text that goes along with this variable definition. 4389 */ 4390 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4391 return; 4392 4393 /* 4394 * Can't allow enabling interrupts while in an interrupt handler, 4395 * that's general bad form and such. Recursion, limited stack etc.. 4396 */ 4397 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4398 return; 4399 4400 current->hardirq_chain_key = current->curr_chain_key; 4401 4402 lockdep_recursion_inc(); 4403 __trace_hardirqs_on_caller(); 4404 lockdep_recursion_finish(); 4405 } 4406 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4407 4408 void noinstr lockdep_hardirqs_on(unsigned long ip) 4409 { 4410 struct irqtrace_events *trace = ¤t->irqtrace; 4411 4412 if (unlikely(!debug_locks)) 4413 return; 4414 4415 /* 4416 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4417 * tracking state and hardware state are out of sync. 4418 * 4419 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4420 * and not rely on hardware state like normal interrupts. 4421 */ 4422 if (unlikely(in_nmi())) { 4423 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4424 return; 4425 4426 /* 4427 * Skip: 4428 * - recursion check, because NMI can hit lockdep; 4429 * - hardware state check, because above; 4430 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4431 */ 4432 goto skip_checks; 4433 } 4434 4435 if (unlikely(this_cpu_read(lockdep_recursion))) 4436 return; 4437 4438 if (lockdep_hardirqs_enabled()) { 4439 /* 4440 * Neither irq nor preemption are disabled here 4441 * so this is racy by nature but losing one hit 4442 * in a stat is not a big deal. 4443 */ 4444 __debug_atomic_inc(redundant_hardirqs_on); 4445 return; 4446 } 4447 4448 /* 4449 * We're enabling irqs and according to our state above irqs weren't 4450 * already enabled, yet we find the hardware thinks they are in fact 4451 * enabled.. someone messed up their IRQ state tracing. 4452 */ 4453 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4454 return; 4455 4456 /* 4457 * Ensure the lock stack remained unchanged between 4458 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4459 */ 4460 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4461 current->curr_chain_key); 4462 4463 skip_checks: 4464 /* we'll do an OFF -> ON transition: */ 4465 __this_cpu_write(hardirqs_enabled, 1); 4466 trace->hardirq_enable_ip = ip; 4467 trace->hardirq_enable_event = ++trace->irq_events; 4468 debug_atomic_inc(hardirqs_on_events); 4469 } 4470 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4471 4472 /* 4473 * Hardirqs were disabled: 4474 */ 4475 void noinstr lockdep_hardirqs_off(unsigned long ip) 4476 { 4477 if (unlikely(!debug_locks)) 4478 return; 4479 4480 /* 4481 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4482 * they will restore the software state. This ensures the software 4483 * state is consistent inside NMIs as well. 4484 */ 4485 if (in_nmi()) { 4486 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4487 return; 4488 } else if (__this_cpu_read(lockdep_recursion)) 4489 return; 4490 4491 /* 4492 * So we're supposed to get called after you mask local IRQs, but for 4493 * some reason the hardware doesn't quite think you did a proper job. 4494 */ 4495 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4496 return; 4497 4498 if (lockdep_hardirqs_enabled()) { 4499 struct irqtrace_events *trace = ¤t->irqtrace; 4500 4501 /* 4502 * We have done an ON -> OFF transition: 4503 */ 4504 __this_cpu_write(hardirqs_enabled, 0); 4505 trace->hardirq_disable_ip = ip; 4506 trace->hardirq_disable_event = ++trace->irq_events; 4507 debug_atomic_inc(hardirqs_off_events); 4508 } else { 4509 debug_atomic_inc(redundant_hardirqs_off); 4510 } 4511 } 4512 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4513 4514 /* 4515 * Softirqs will be enabled: 4516 */ 4517 void lockdep_softirqs_on(unsigned long ip) 4518 { 4519 struct irqtrace_events *trace = ¤t->irqtrace; 4520 4521 if (unlikely(!lockdep_enabled())) 4522 return; 4523 4524 /* 4525 * We fancy IRQs being disabled here, see softirq.c, avoids 4526 * funny state and nesting things. 4527 */ 4528 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4529 return; 4530 4531 if (current->softirqs_enabled) { 4532 debug_atomic_inc(redundant_softirqs_on); 4533 return; 4534 } 4535 4536 lockdep_recursion_inc(); 4537 /* 4538 * We'll do an OFF -> ON transition: 4539 */ 4540 current->softirqs_enabled = 1; 4541 trace->softirq_enable_ip = ip; 4542 trace->softirq_enable_event = ++trace->irq_events; 4543 debug_atomic_inc(softirqs_on_events); 4544 /* 4545 * We are going to turn softirqs on, so set the 4546 * usage bit for all held locks, if hardirqs are 4547 * enabled too: 4548 */ 4549 if (lockdep_hardirqs_enabled()) 4550 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4551 lockdep_recursion_finish(); 4552 } 4553 4554 /* 4555 * Softirqs were disabled: 4556 */ 4557 void lockdep_softirqs_off(unsigned long ip) 4558 { 4559 if (unlikely(!lockdep_enabled())) 4560 return; 4561 4562 /* 4563 * We fancy IRQs being disabled here, see softirq.c 4564 */ 4565 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4566 return; 4567 4568 if (current->softirqs_enabled) { 4569 struct irqtrace_events *trace = ¤t->irqtrace; 4570 4571 /* 4572 * We have done an ON -> OFF transition: 4573 */ 4574 current->softirqs_enabled = 0; 4575 trace->softirq_disable_ip = ip; 4576 trace->softirq_disable_event = ++trace->irq_events; 4577 debug_atomic_inc(softirqs_off_events); 4578 /* 4579 * Whoops, we wanted softirqs off, so why aren't they? 4580 */ 4581 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4582 } else 4583 debug_atomic_inc(redundant_softirqs_off); 4584 } 4585 4586 static int 4587 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4588 { 4589 if (!check) 4590 goto lock_used; 4591 4592 /* 4593 * If non-trylock use in a hardirq or softirq context, then 4594 * mark the lock as used in these contexts: 4595 */ 4596 if (!hlock->trylock) { 4597 if (hlock->read) { 4598 if (lockdep_hardirq_context()) 4599 if (!mark_lock(curr, hlock, 4600 LOCK_USED_IN_HARDIRQ_READ)) 4601 return 0; 4602 if (curr->softirq_context) 4603 if (!mark_lock(curr, hlock, 4604 LOCK_USED_IN_SOFTIRQ_READ)) 4605 return 0; 4606 } else { 4607 if (lockdep_hardirq_context()) 4608 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4609 return 0; 4610 if (curr->softirq_context) 4611 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4612 return 0; 4613 } 4614 } 4615 4616 /* 4617 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4618 * creates no critical section and no extra dependency can be introduced 4619 * by interrupts 4620 */ 4621 if (!hlock->hardirqs_off && !hlock->sync) { 4622 if (hlock->read) { 4623 if (!mark_lock(curr, hlock, 4624 LOCK_ENABLED_HARDIRQ_READ)) 4625 return 0; 4626 if (curr->softirqs_enabled) 4627 if (!mark_lock(curr, hlock, 4628 LOCK_ENABLED_SOFTIRQ_READ)) 4629 return 0; 4630 } else { 4631 if (!mark_lock(curr, hlock, 4632 LOCK_ENABLED_HARDIRQ)) 4633 return 0; 4634 if (curr->softirqs_enabled) 4635 if (!mark_lock(curr, hlock, 4636 LOCK_ENABLED_SOFTIRQ)) 4637 return 0; 4638 } 4639 } 4640 4641 lock_used: 4642 /* mark it as used: */ 4643 if (!mark_lock(curr, hlock, LOCK_USED)) 4644 return 0; 4645 4646 return 1; 4647 } 4648 4649 static inline unsigned int task_irq_context(struct task_struct *task) 4650 { 4651 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4652 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4653 } 4654 4655 static int separate_irq_context(struct task_struct *curr, 4656 struct held_lock *hlock) 4657 { 4658 unsigned int depth = curr->lockdep_depth; 4659 4660 /* 4661 * Keep track of points where we cross into an interrupt context: 4662 */ 4663 if (depth) { 4664 struct held_lock *prev_hlock; 4665 4666 prev_hlock = curr->held_locks + depth-1; 4667 /* 4668 * If we cross into another context, reset the 4669 * hash key (this also prevents the checking and the 4670 * adding of the dependency to 'prev'): 4671 */ 4672 if (prev_hlock->irq_context != hlock->irq_context) 4673 return 1; 4674 } 4675 return 0; 4676 } 4677 4678 /* 4679 * Mark a lock with a usage bit, and validate the state transition: 4680 */ 4681 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4682 enum lock_usage_bit new_bit) 4683 { 4684 unsigned int new_mask, ret = 1; 4685 4686 if (new_bit >= LOCK_USAGE_STATES) { 4687 DEBUG_LOCKS_WARN_ON(1); 4688 return 0; 4689 } 4690 4691 if (new_bit == LOCK_USED && this->read) 4692 new_bit = LOCK_USED_READ; 4693 4694 new_mask = 1 << new_bit; 4695 4696 /* 4697 * If already set then do not dirty the cacheline, 4698 * nor do any checks: 4699 */ 4700 if (likely(hlock_class(this)->usage_mask & new_mask)) 4701 return 1; 4702 4703 if (!graph_lock()) 4704 return 0; 4705 /* 4706 * Make sure we didn't race: 4707 */ 4708 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4709 goto unlock; 4710 4711 if (!hlock_class(this)->usage_mask) 4712 debug_atomic_dec(nr_unused_locks); 4713 4714 hlock_class(this)->usage_mask |= new_mask; 4715 4716 if (new_bit < LOCK_TRACE_STATES) { 4717 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4718 return 0; 4719 } 4720 4721 if (new_bit < LOCK_USED) { 4722 ret = mark_lock_irq(curr, this, new_bit); 4723 if (!ret) 4724 return 0; 4725 } 4726 4727 unlock: 4728 graph_unlock(); 4729 4730 /* 4731 * We must printk outside of the graph_lock: 4732 */ 4733 if (ret == 2) { 4734 nbcon_cpu_emergency_enter(); 4735 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4736 print_lock(this); 4737 print_irqtrace_events(curr); 4738 dump_stack(); 4739 nbcon_cpu_emergency_exit(); 4740 } 4741 4742 return ret; 4743 } 4744 4745 static inline short task_wait_context(struct task_struct *curr) 4746 { 4747 /* 4748 * Set appropriate wait type for the context; for IRQs we have to take 4749 * into account force_irqthread as that is implied by PREEMPT_RT. 4750 */ 4751 if (lockdep_hardirq_context()) { 4752 /* 4753 * Check if force_irqthreads will run us threaded. 4754 */ 4755 if (curr->hardirq_threaded || curr->irq_config) 4756 return LD_WAIT_CONFIG; 4757 4758 return LD_WAIT_SPIN; 4759 } else if (curr->softirq_context) { 4760 /* 4761 * Softirqs are always threaded. 4762 */ 4763 return LD_WAIT_CONFIG; 4764 } 4765 4766 return LD_WAIT_MAX; 4767 } 4768 4769 static int 4770 print_lock_invalid_wait_context(struct task_struct *curr, 4771 struct held_lock *hlock) 4772 { 4773 short curr_inner; 4774 4775 if (!debug_locks_off()) 4776 return 0; 4777 if (debug_locks_silent) 4778 return 0; 4779 4780 nbcon_cpu_emergency_enter(); 4781 4782 pr_warn("\n"); 4783 pr_warn("=============================\n"); 4784 pr_warn("[ BUG: Invalid wait context ]\n"); 4785 print_kernel_ident(); 4786 pr_warn("-----------------------------\n"); 4787 4788 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4789 print_lock(hlock); 4790 4791 pr_warn("other info that might help us debug this:\n"); 4792 4793 curr_inner = task_wait_context(curr); 4794 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4795 4796 lockdep_print_held_locks(curr); 4797 4798 pr_warn("stack backtrace:\n"); 4799 dump_stack(); 4800 4801 nbcon_cpu_emergency_exit(); 4802 4803 return 0; 4804 } 4805 4806 /* 4807 * Verify the wait_type context. 4808 * 4809 * This check validates we take locks in the right wait-type order; that is it 4810 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4811 * acquire spinlocks inside raw_spinlocks and the sort. 4812 * 4813 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4814 * can be taken from (pretty much) any context but also has constraints. 4815 * However when taken in a stricter environment the RCU lock does not loosen 4816 * the constraints. 4817 * 4818 * Therefore we must look for the strictest environment in the lock stack and 4819 * compare that to the lock we're trying to acquire. 4820 */ 4821 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4822 { 4823 u8 next_inner = hlock_class(next)->wait_type_inner; 4824 u8 next_outer = hlock_class(next)->wait_type_outer; 4825 u8 curr_inner; 4826 int depth; 4827 4828 if (!next_inner || next->trylock) 4829 return 0; 4830 4831 if (!next_outer) 4832 next_outer = next_inner; 4833 4834 /* 4835 * Find start of current irq_context.. 4836 */ 4837 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4838 struct held_lock *prev = curr->held_locks + depth; 4839 if (prev->irq_context != next->irq_context) 4840 break; 4841 } 4842 depth++; 4843 4844 curr_inner = task_wait_context(curr); 4845 4846 for (; depth < curr->lockdep_depth; depth++) { 4847 struct held_lock *prev = curr->held_locks + depth; 4848 struct lock_class *class = hlock_class(prev); 4849 u8 prev_inner = class->wait_type_inner; 4850 4851 if (prev_inner) { 4852 /* 4853 * We can have a bigger inner than a previous one 4854 * when outer is smaller than inner, as with RCU. 4855 * 4856 * Also due to trylocks. 4857 */ 4858 curr_inner = min(curr_inner, prev_inner); 4859 4860 /* 4861 * Allow override for annotations -- this is typically 4862 * only valid/needed for code that only exists when 4863 * CONFIG_PREEMPT_RT=n. 4864 */ 4865 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4866 curr_inner = prev_inner; 4867 } 4868 } 4869 4870 if (next_outer > curr_inner) 4871 return print_lock_invalid_wait_context(curr, next); 4872 4873 return 0; 4874 } 4875 4876 #else /* CONFIG_PROVE_LOCKING */ 4877 4878 static inline int 4879 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4880 { 4881 return 1; 4882 } 4883 4884 static inline unsigned int task_irq_context(struct task_struct *task) 4885 { 4886 return 0; 4887 } 4888 4889 static inline int separate_irq_context(struct task_struct *curr, 4890 struct held_lock *hlock) 4891 { 4892 return 0; 4893 } 4894 4895 static inline int check_wait_context(struct task_struct *curr, 4896 struct held_lock *next) 4897 { 4898 return 0; 4899 } 4900 4901 #endif /* CONFIG_PROVE_LOCKING */ 4902 4903 /* 4904 * Initialize a lock instance's lock-class mapping info: 4905 */ 4906 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4907 struct lock_class_key *key, int subclass, 4908 u8 inner, u8 outer, u8 lock_type) 4909 { 4910 int i; 4911 4912 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4913 lock->class_cache[i] = NULL; 4914 4915 #ifdef CONFIG_LOCK_STAT 4916 lock->cpu = raw_smp_processor_id(); 4917 #endif 4918 4919 /* 4920 * Can't be having no nameless bastards around this place! 4921 */ 4922 if (DEBUG_LOCKS_WARN_ON(!name)) { 4923 lock->name = "NULL"; 4924 return; 4925 } 4926 4927 lock->name = name; 4928 4929 lock->wait_type_outer = outer; 4930 lock->wait_type_inner = inner; 4931 lock->lock_type = lock_type; 4932 4933 /* 4934 * No key, no joy, we need to hash something. 4935 */ 4936 if (DEBUG_LOCKS_WARN_ON(!key)) 4937 return; 4938 /* 4939 * Sanity check, the lock-class key must either have been allocated 4940 * statically or must have been registered as a dynamic key. 4941 */ 4942 if (!static_obj(key) && !is_dynamic_key(key)) { 4943 if (debug_locks) 4944 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4945 DEBUG_LOCKS_WARN_ON(1); 4946 return; 4947 } 4948 lock->key = key; 4949 4950 if (unlikely(!debug_locks)) 4951 return; 4952 4953 if (subclass) { 4954 unsigned long flags; 4955 4956 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4957 return; 4958 4959 raw_local_irq_save(flags); 4960 lockdep_recursion_inc(); 4961 register_lock_class(lock, subclass, 1); 4962 lockdep_recursion_finish(); 4963 raw_local_irq_restore(flags); 4964 } 4965 } 4966 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4967 4968 struct lock_class_key __lockdep_no_validate__; 4969 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4970 4971 struct lock_class_key __lockdep_no_track__; 4972 EXPORT_SYMBOL_GPL(__lockdep_no_track__); 4973 4974 #ifdef CONFIG_PROVE_LOCKING 4975 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 4976 lock_print_fn print_fn) 4977 { 4978 struct lock_class *class = lock->class_cache[0]; 4979 unsigned long flags; 4980 4981 raw_local_irq_save(flags); 4982 lockdep_recursion_inc(); 4983 4984 if (!class) 4985 class = register_lock_class(lock, 0, 0); 4986 4987 if (class) { 4988 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 4989 WARN_ON(class->print_fn && class->print_fn != print_fn); 4990 4991 class->cmp_fn = cmp_fn; 4992 class->print_fn = print_fn; 4993 } 4994 4995 lockdep_recursion_finish(); 4996 raw_local_irq_restore(flags); 4997 } 4998 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 4999 #endif 5000 5001 static void 5002 print_lock_nested_lock_not_held(struct task_struct *curr, 5003 struct held_lock *hlock) 5004 { 5005 if (!debug_locks_off()) 5006 return; 5007 if (debug_locks_silent) 5008 return; 5009 5010 nbcon_cpu_emergency_enter(); 5011 5012 pr_warn("\n"); 5013 pr_warn("==================================\n"); 5014 pr_warn("WARNING: Nested lock was not taken\n"); 5015 print_kernel_ident(); 5016 pr_warn("----------------------------------\n"); 5017 5018 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 5019 print_lock(hlock); 5020 5021 pr_warn("\nbut this task is not holding:\n"); 5022 pr_warn("%s\n", hlock->nest_lock->name); 5023 5024 pr_warn("\nstack backtrace:\n"); 5025 dump_stack(); 5026 5027 pr_warn("\nother info that might help us debug this:\n"); 5028 lockdep_print_held_locks(curr); 5029 5030 pr_warn("\nstack backtrace:\n"); 5031 dump_stack(); 5032 5033 nbcon_cpu_emergency_exit(); 5034 } 5035 5036 static int __lock_is_held(const struct lockdep_map *lock, int read); 5037 5038 /* 5039 * This gets called for every mutex_lock*()/spin_lock*() operation. 5040 * We maintain the dependency maps and validate the locking attempt: 5041 * 5042 * The callers must make sure that IRQs are disabled before calling it, 5043 * otherwise we could get an interrupt which would want to take locks, 5044 * which would end up in lockdep again. 5045 */ 5046 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5047 int trylock, int read, int check, int hardirqs_off, 5048 struct lockdep_map *nest_lock, unsigned long ip, 5049 int references, int pin_count, int sync) 5050 { 5051 struct task_struct *curr = current; 5052 struct lock_class *class = NULL; 5053 struct held_lock *hlock; 5054 unsigned int depth; 5055 int chain_head = 0; 5056 int class_idx; 5057 u64 chain_key; 5058 5059 if (unlikely(!debug_locks)) 5060 return 0; 5061 5062 if (unlikely(lock->key == &__lockdep_no_track__)) 5063 return 0; 5064 5065 if (!prove_locking || lock->key == &__lockdep_no_validate__) 5066 check = 0; 5067 5068 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5069 class = lock->class_cache[subclass]; 5070 /* 5071 * Not cached? 5072 */ 5073 if (unlikely(!class)) { 5074 class = register_lock_class(lock, subclass, 0); 5075 if (!class) 5076 return 0; 5077 } 5078 5079 debug_class_ops_inc(class); 5080 5081 if (very_verbose(class)) { 5082 nbcon_cpu_emergency_enter(); 5083 printk("\nacquire class [%px] %s", class->key, class->name); 5084 if (class->name_version > 1) 5085 printk(KERN_CONT "#%d", class->name_version); 5086 printk(KERN_CONT "\n"); 5087 dump_stack(); 5088 nbcon_cpu_emergency_exit(); 5089 } 5090 5091 /* 5092 * Add the lock to the list of currently held locks. 5093 * (we dont increase the depth just yet, up until the 5094 * dependency checks are done) 5095 */ 5096 depth = curr->lockdep_depth; 5097 /* 5098 * Ran out of static storage for our per-task lock stack again have we? 5099 */ 5100 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5101 return 0; 5102 5103 class_idx = class - lock_classes; 5104 5105 if (depth && !sync) { 5106 /* we're holding locks and the new held lock is not a sync */ 5107 hlock = curr->held_locks + depth - 1; 5108 if (hlock->class_idx == class_idx && nest_lock) { 5109 if (!references) 5110 references++; 5111 5112 if (!hlock->references) 5113 hlock->references++; 5114 5115 hlock->references += references; 5116 5117 /* Overflow */ 5118 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5119 return 0; 5120 5121 return 2; 5122 } 5123 } 5124 5125 hlock = curr->held_locks + depth; 5126 /* 5127 * Plain impossible, we just registered it and checked it weren't no 5128 * NULL like.. I bet this mushroom I ate was good! 5129 */ 5130 if (DEBUG_LOCKS_WARN_ON(!class)) 5131 return 0; 5132 hlock->class_idx = class_idx; 5133 hlock->acquire_ip = ip; 5134 hlock->instance = lock; 5135 hlock->nest_lock = nest_lock; 5136 hlock->irq_context = task_irq_context(curr); 5137 hlock->trylock = trylock; 5138 hlock->read = read; 5139 hlock->check = check; 5140 hlock->sync = !!sync; 5141 hlock->hardirqs_off = !!hardirqs_off; 5142 hlock->references = references; 5143 #ifdef CONFIG_LOCK_STAT 5144 hlock->waittime_stamp = 0; 5145 hlock->holdtime_stamp = lockstat_clock(); 5146 #endif 5147 hlock->pin_count = pin_count; 5148 5149 if (check_wait_context(curr, hlock)) 5150 return 0; 5151 5152 /* Initialize the lock usage bit */ 5153 if (!mark_usage(curr, hlock, check)) 5154 return 0; 5155 5156 /* 5157 * Calculate the chain hash: it's the combined hash of all the 5158 * lock keys along the dependency chain. We save the hash value 5159 * at every step so that we can get the current hash easily 5160 * after unlock. The chain hash is then used to cache dependency 5161 * results. 5162 * 5163 * The 'key ID' is what is the most compact key value to drive 5164 * the hash, not class->key. 5165 */ 5166 /* 5167 * Whoops, we did it again.. class_idx is invalid. 5168 */ 5169 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5170 return 0; 5171 5172 chain_key = curr->curr_chain_key; 5173 if (!depth) { 5174 /* 5175 * How can we have a chain hash when we ain't got no keys?! 5176 */ 5177 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5178 return 0; 5179 chain_head = 1; 5180 } 5181 5182 hlock->prev_chain_key = chain_key; 5183 if (separate_irq_context(curr, hlock)) { 5184 chain_key = INITIAL_CHAIN_KEY; 5185 chain_head = 1; 5186 } 5187 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5188 5189 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5190 print_lock_nested_lock_not_held(curr, hlock); 5191 return 0; 5192 } 5193 5194 if (!debug_locks_silent) { 5195 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5196 WARN_ON_ONCE(!hlock_class(hlock)->key); 5197 } 5198 5199 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5200 return 0; 5201 5202 /* For lock_sync(), we are done here since no actual critical section */ 5203 if (hlock->sync) 5204 return 1; 5205 5206 curr->curr_chain_key = chain_key; 5207 curr->lockdep_depth++; 5208 check_chain_key(curr); 5209 #ifdef CONFIG_DEBUG_LOCKDEP 5210 if (unlikely(!debug_locks)) 5211 return 0; 5212 #endif 5213 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5214 debug_locks_off(); 5215 nbcon_cpu_emergency_enter(); 5216 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5217 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5218 curr->lockdep_depth, MAX_LOCK_DEPTH); 5219 5220 lockdep_print_held_locks(current); 5221 debug_show_all_locks(); 5222 dump_stack(); 5223 nbcon_cpu_emergency_exit(); 5224 5225 return 0; 5226 } 5227 5228 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5229 max_lockdep_depth = curr->lockdep_depth; 5230 5231 return 1; 5232 } 5233 5234 static void print_unlock_imbalance_bug(struct task_struct *curr, 5235 struct lockdep_map *lock, 5236 unsigned long ip) 5237 { 5238 if (!debug_locks_off()) 5239 return; 5240 if (debug_locks_silent) 5241 return; 5242 5243 nbcon_cpu_emergency_enter(); 5244 5245 pr_warn("\n"); 5246 pr_warn("=====================================\n"); 5247 pr_warn("WARNING: bad unlock balance detected!\n"); 5248 print_kernel_ident(); 5249 pr_warn("-------------------------------------\n"); 5250 pr_warn("%s/%d is trying to release lock (", 5251 curr->comm, task_pid_nr(curr)); 5252 print_lockdep_cache(lock); 5253 pr_cont(") at:\n"); 5254 print_ip_sym(KERN_WARNING, ip); 5255 pr_warn("but there are no more locks to release!\n"); 5256 pr_warn("\nother info that might help us debug this:\n"); 5257 lockdep_print_held_locks(curr); 5258 5259 pr_warn("\nstack backtrace:\n"); 5260 dump_stack(); 5261 5262 nbcon_cpu_emergency_exit(); 5263 } 5264 5265 static noinstr int match_held_lock(const struct held_lock *hlock, 5266 const struct lockdep_map *lock) 5267 { 5268 if (hlock->instance == lock) 5269 return 1; 5270 5271 if (hlock->references) { 5272 const struct lock_class *class = lock->class_cache[0]; 5273 5274 if (!class) 5275 class = look_up_lock_class(lock, 0); 5276 5277 /* 5278 * If look_up_lock_class() failed to find a class, we're trying 5279 * to test if we hold a lock that has never yet been acquired. 5280 * Clearly if the lock hasn't been acquired _ever_, we're not 5281 * holding it either, so report failure. 5282 */ 5283 if (!class) 5284 return 0; 5285 5286 /* 5287 * References, but not a lock we're actually ref-counting? 5288 * State got messed up, follow the sites that change ->references 5289 * and try to make sense of it. 5290 */ 5291 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5292 return 0; 5293 5294 if (hlock->class_idx == class - lock_classes) 5295 return 1; 5296 } 5297 5298 return 0; 5299 } 5300 5301 /* @depth must not be zero */ 5302 static struct held_lock *find_held_lock(struct task_struct *curr, 5303 struct lockdep_map *lock, 5304 unsigned int depth, int *idx) 5305 { 5306 struct held_lock *ret, *hlock, *prev_hlock; 5307 int i; 5308 5309 i = depth - 1; 5310 hlock = curr->held_locks + i; 5311 ret = hlock; 5312 if (match_held_lock(hlock, lock)) 5313 goto out; 5314 5315 ret = NULL; 5316 for (i--, prev_hlock = hlock--; 5317 i >= 0; 5318 i--, prev_hlock = hlock--) { 5319 /* 5320 * We must not cross into another context: 5321 */ 5322 if (prev_hlock->irq_context != hlock->irq_context) { 5323 ret = NULL; 5324 break; 5325 } 5326 if (match_held_lock(hlock, lock)) { 5327 ret = hlock; 5328 break; 5329 } 5330 } 5331 5332 out: 5333 *idx = i; 5334 return ret; 5335 } 5336 5337 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5338 int idx, unsigned int *merged) 5339 { 5340 struct held_lock *hlock; 5341 int first_idx = idx; 5342 5343 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5344 return 0; 5345 5346 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5347 switch (__lock_acquire(hlock->instance, 5348 hlock_class(hlock)->subclass, 5349 hlock->trylock, 5350 hlock->read, hlock->check, 5351 hlock->hardirqs_off, 5352 hlock->nest_lock, hlock->acquire_ip, 5353 hlock->references, hlock->pin_count, 0)) { 5354 case 0: 5355 return 1; 5356 case 1: 5357 break; 5358 case 2: 5359 *merged += (idx == first_idx); 5360 break; 5361 default: 5362 WARN_ON(1); 5363 return 0; 5364 } 5365 } 5366 return 0; 5367 } 5368 5369 static int 5370 __lock_set_class(struct lockdep_map *lock, const char *name, 5371 struct lock_class_key *key, unsigned int subclass, 5372 unsigned long ip) 5373 { 5374 struct task_struct *curr = current; 5375 unsigned int depth, merged = 0; 5376 struct held_lock *hlock; 5377 struct lock_class *class; 5378 int i; 5379 5380 if (unlikely(!debug_locks)) 5381 return 0; 5382 5383 depth = curr->lockdep_depth; 5384 /* 5385 * This function is about (re)setting the class of a held lock, 5386 * yet we're not actually holding any locks. Naughty user! 5387 */ 5388 if (DEBUG_LOCKS_WARN_ON(!depth)) 5389 return 0; 5390 5391 hlock = find_held_lock(curr, lock, depth, &i); 5392 if (!hlock) { 5393 print_unlock_imbalance_bug(curr, lock, ip); 5394 return 0; 5395 } 5396 5397 lockdep_init_map_type(lock, name, key, 0, 5398 lock->wait_type_inner, 5399 lock->wait_type_outer, 5400 lock->lock_type); 5401 class = register_lock_class(lock, subclass, 0); 5402 hlock->class_idx = class - lock_classes; 5403 5404 curr->lockdep_depth = i; 5405 curr->curr_chain_key = hlock->prev_chain_key; 5406 5407 if (reacquire_held_locks(curr, depth, i, &merged)) 5408 return 0; 5409 5410 /* 5411 * I took it apart and put it back together again, except now I have 5412 * these 'spare' parts.. where shall I put them. 5413 */ 5414 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5415 return 0; 5416 return 1; 5417 } 5418 5419 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5420 { 5421 struct task_struct *curr = current; 5422 unsigned int depth, merged = 0; 5423 struct held_lock *hlock; 5424 int i; 5425 5426 if (unlikely(!debug_locks)) 5427 return 0; 5428 5429 depth = curr->lockdep_depth; 5430 /* 5431 * This function is about (re)setting the class of a held lock, 5432 * yet we're not actually holding any locks. Naughty user! 5433 */ 5434 if (DEBUG_LOCKS_WARN_ON(!depth)) 5435 return 0; 5436 5437 hlock = find_held_lock(curr, lock, depth, &i); 5438 if (!hlock) { 5439 print_unlock_imbalance_bug(curr, lock, ip); 5440 return 0; 5441 } 5442 5443 curr->lockdep_depth = i; 5444 curr->curr_chain_key = hlock->prev_chain_key; 5445 5446 WARN(hlock->read, "downgrading a read lock"); 5447 hlock->read = 1; 5448 hlock->acquire_ip = ip; 5449 5450 if (reacquire_held_locks(curr, depth, i, &merged)) 5451 return 0; 5452 5453 /* Merging can't happen with unchanged classes.. */ 5454 if (DEBUG_LOCKS_WARN_ON(merged)) 5455 return 0; 5456 5457 /* 5458 * I took it apart and put it back together again, except now I have 5459 * these 'spare' parts.. where shall I put them. 5460 */ 5461 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5462 return 0; 5463 5464 return 1; 5465 } 5466 5467 /* 5468 * Remove the lock from the list of currently held locks - this gets 5469 * called on mutex_unlock()/spin_unlock*() (or on a failed 5470 * mutex_lock_interruptible()). 5471 */ 5472 static int 5473 __lock_release(struct lockdep_map *lock, unsigned long ip) 5474 { 5475 struct task_struct *curr = current; 5476 unsigned int depth, merged = 1; 5477 struct held_lock *hlock; 5478 int i; 5479 5480 if (unlikely(!debug_locks)) 5481 return 0; 5482 5483 depth = curr->lockdep_depth; 5484 /* 5485 * So we're all set to release this lock.. wait what lock? We don't 5486 * own any locks, you've been drinking again? 5487 */ 5488 if (depth <= 0) { 5489 print_unlock_imbalance_bug(curr, lock, ip); 5490 return 0; 5491 } 5492 5493 /* 5494 * Check whether the lock exists in the current stack 5495 * of held locks: 5496 */ 5497 hlock = find_held_lock(curr, lock, depth, &i); 5498 if (!hlock) { 5499 print_unlock_imbalance_bug(curr, lock, ip); 5500 return 0; 5501 } 5502 5503 if (hlock->instance == lock) 5504 lock_release_holdtime(hlock); 5505 5506 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5507 5508 if (hlock->references) { 5509 hlock->references--; 5510 if (hlock->references) { 5511 /* 5512 * We had, and after removing one, still have 5513 * references, the current lock stack is still 5514 * valid. We're done! 5515 */ 5516 return 1; 5517 } 5518 } 5519 5520 /* 5521 * We have the right lock to unlock, 'hlock' points to it. 5522 * Now we remove it from the stack, and add back the other 5523 * entries (if any), recalculating the hash along the way: 5524 */ 5525 5526 curr->lockdep_depth = i; 5527 curr->curr_chain_key = hlock->prev_chain_key; 5528 5529 /* 5530 * The most likely case is when the unlock is on the innermost 5531 * lock. In this case, we are done! 5532 */ 5533 if (i == depth-1) 5534 return 1; 5535 5536 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5537 return 0; 5538 5539 /* 5540 * We had N bottles of beer on the wall, we drank one, but now 5541 * there's not N-1 bottles of beer left on the wall... 5542 * Pouring two of the bottles together is acceptable. 5543 */ 5544 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5545 5546 /* 5547 * Since reacquire_held_locks() would have called check_chain_key() 5548 * indirectly via __lock_acquire(), we don't need to do it again 5549 * on return. 5550 */ 5551 return 0; 5552 } 5553 5554 static __always_inline 5555 int __lock_is_held(const struct lockdep_map *lock, int read) 5556 { 5557 struct task_struct *curr = current; 5558 int i; 5559 5560 for (i = 0; i < curr->lockdep_depth; i++) { 5561 struct held_lock *hlock = curr->held_locks + i; 5562 5563 if (match_held_lock(hlock, lock)) { 5564 if (read == -1 || !!hlock->read == read) 5565 return LOCK_STATE_HELD; 5566 5567 return LOCK_STATE_NOT_HELD; 5568 } 5569 } 5570 5571 return LOCK_STATE_NOT_HELD; 5572 } 5573 5574 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5575 { 5576 struct pin_cookie cookie = NIL_COOKIE; 5577 struct task_struct *curr = current; 5578 int i; 5579 5580 if (unlikely(!debug_locks)) 5581 return cookie; 5582 5583 for (i = 0; i < curr->lockdep_depth; i++) { 5584 struct held_lock *hlock = curr->held_locks + i; 5585 5586 if (match_held_lock(hlock, lock)) { 5587 /* 5588 * Grab 16bits of randomness; this is sufficient to not 5589 * be guessable and still allows some pin nesting in 5590 * our u32 pin_count. 5591 */ 5592 cookie.val = 1 + (sched_clock() & 0xffff); 5593 hlock->pin_count += cookie.val; 5594 return cookie; 5595 } 5596 } 5597 5598 WARN(1, "pinning an unheld lock\n"); 5599 return cookie; 5600 } 5601 5602 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5603 { 5604 struct task_struct *curr = current; 5605 int i; 5606 5607 if (unlikely(!debug_locks)) 5608 return; 5609 5610 for (i = 0; i < curr->lockdep_depth; i++) { 5611 struct held_lock *hlock = curr->held_locks + i; 5612 5613 if (match_held_lock(hlock, lock)) { 5614 hlock->pin_count += cookie.val; 5615 return; 5616 } 5617 } 5618 5619 WARN(1, "pinning an unheld lock\n"); 5620 } 5621 5622 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5623 { 5624 struct task_struct *curr = current; 5625 int i; 5626 5627 if (unlikely(!debug_locks)) 5628 return; 5629 5630 for (i = 0; i < curr->lockdep_depth; i++) { 5631 struct held_lock *hlock = curr->held_locks + i; 5632 5633 if (match_held_lock(hlock, lock)) { 5634 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5635 return; 5636 5637 hlock->pin_count -= cookie.val; 5638 5639 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5640 hlock->pin_count = 0; 5641 5642 return; 5643 } 5644 } 5645 5646 WARN(1, "unpinning an unheld lock\n"); 5647 } 5648 5649 /* 5650 * Check whether we follow the irq-flags state precisely: 5651 */ 5652 static noinstr void check_flags(unsigned long flags) 5653 { 5654 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5655 if (!debug_locks) 5656 return; 5657 5658 /* Get the warning out.. */ 5659 instrumentation_begin(); 5660 5661 if (irqs_disabled_flags(flags)) { 5662 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5663 printk("possible reason: unannotated irqs-off.\n"); 5664 } 5665 } else { 5666 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5667 printk("possible reason: unannotated irqs-on.\n"); 5668 } 5669 } 5670 5671 #ifndef CONFIG_PREEMPT_RT 5672 /* 5673 * We dont accurately track softirq state in e.g. 5674 * hardirq contexts (such as on 4KSTACKS), so only 5675 * check if not in hardirq contexts: 5676 */ 5677 if (!hardirq_count()) { 5678 if (softirq_count()) { 5679 /* like the above, but with softirqs */ 5680 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5681 } else { 5682 /* lick the above, does it taste good? */ 5683 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5684 } 5685 } 5686 #endif 5687 5688 if (!debug_locks) 5689 print_irqtrace_events(current); 5690 5691 instrumentation_end(); 5692 #endif 5693 } 5694 5695 void lock_set_class(struct lockdep_map *lock, const char *name, 5696 struct lock_class_key *key, unsigned int subclass, 5697 unsigned long ip) 5698 { 5699 unsigned long flags; 5700 5701 if (unlikely(!lockdep_enabled())) 5702 return; 5703 5704 raw_local_irq_save(flags); 5705 lockdep_recursion_inc(); 5706 check_flags(flags); 5707 if (__lock_set_class(lock, name, key, subclass, ip)) 5708 check_chain_key(current); 5709 lockdep_recursion_finish(); 5710 raw_local_irq_restore(flags); 5711 } 5712 EXPORT_SYMBOL_GPL(lock_set_class); 5713 5714 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5715 { 5716 unsigned long flags; 5717 5718 if (unlikely(!lockdep_enabled())) 5719 return; 5720 5721 raw_local_irq_save(flags); 5722 lockdep_recursion_inc(); 5723 check_flags(flags); 5724 if (__lock_downgrade(lock, ip)) 5725 check_chain_key(current); 5726 lockdep_recursion_finish(); 5727 raw_local_irq_restore(flags); 5728 } 5729 EXPORT_SYMBOL_GPL(lock_downgrade); 5730 5731 /* NMI context !!! */ 5732 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5733 { 5734 #ifdef CONFIG_PROVE_LOCKING 5735 struct lock_class *class = look_up_lock_class(lock, subclass); 5736 unsigned long mask = LOCKF_USED; 5737 5738 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5739 if (!class) 5740 return; 5741 5742 /* 5743 * READ locks only conflict with USED, such that if we only ever use 5744 * READ locks, there is no deadlock possible -- RCU. 5745 */ 5746 if (!hlock->read) 5747 mask |= LOCKF_USED_READ; 5748 5749 if (!(class->usage_mask & mask)) 5750 return; 5751 5752 hlock->class_idx = class - lock_classes; 5753 5754 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5755 #endif 5756 } 5757 5758 static bool lockdep_nmi(void) 5759 { 5760 if (raw_cpu_read(lockdep_recursion)) 5761 return false; 5762 5763 if (!in_nmi()) 5764 return false; 5765 5766 return true; 5767 } 5768 5769 /* 5770 * read_lock() is recursive if: 5771 * 1. We force lockdep think this way in selftests or 5772 * 2. The implementation is not queued read/write lock or 5773 * 3. The locker is at an in_interrupt() context. 5774 */ 5775 bool read_lock_is_recursive(void) 5776 { 5777 return force_read_lock_recursive || 5778 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5779 in_interrupt(); 5780 } 5781 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5782 5783 /* 5784 * We are not always called with irqs disabled - do that here, 5785 * and also avoid lockdep recursion: 5786 */ 5787 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5788 int trylock, int read, int check, 5789 struct lockdep_map *nest_lock, unsigned long ip) 5790 { 5791 unsigned long flags; 5792 5793 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5794 5795 if (!debug_locks) 5796 return; 5797 5798 if (unlikely(!lockdep_enabled())) { 5799 /* XXX allow trylock from NMI ?!? */ 5800 if (lockdep_nmi() && !trylock) { 5801 struct held_lock hlock; 5802 5803 hlock.acquire_ip = ip; 5804 hlock.instance = lock; 5805 hlock.nest_lock = nest_lock; 5806 hlock.irq_context = 2; // XXX 5807 hlock.trylock = trylock; 5808 hlock.read = read; 5809 hlock.check = check; 5810 hlock.hardirqs_off = true; 5811 hlock.references = 0; 5812 5813 verify_lock_unused(lock, &hlock, subclass); 5814 } 5815 return; 5816 } 5817 5818 raw_local_irq_save(flags); 5819 check_flags(flags); 5820 5821 lockdep_recursion_inc(); 5822 __lock_acquire(lock, subclass, trylock, read, check, 5823 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5824 lockdep_recursion_finish(); 5825 raw_local_irq_restore(flags); 5826 } 5827 EXPORT_SYMBOL_GPL(lock_acquire); 5828 5829 void lock_release(struct lockdep_map *lock, unsigned long ip) 5830 { 5831 unsigned long flags; 5832 5833 trace_lock_release(lock, ip); 5834 5835 if (unlikely(!lockdep_enabled() || 5836 lock->key == &__lockdep_no_track__)) 5837 return; 5838 5839 raw_local_irq_save(flags); 5840 check_flags(flags); 5841 5842 lockdep_recursion_inc(); 5843 if (__lock_release(lock, ip)) 5844 check_chain_key(current); 5845 lockdep_recursion_finish(); 5846 raw_local_irq_restore(flags); 5847 } 5848 EXPORT_SYMBOL_GPL(lock_release); 5849 5850 /* 5851 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5852 * 5853 * No actual critical section is created by the APIs annotated with this: these 5854 * APIs are used to wait for one or multiple critical sections (on other CPUs 5855 * or threads), and it means that calling these APIs inside these critical 5856 * sections is potential deadlock. 5857 */ 5858 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5859 int check, struct lockdep_map *nest_lock, unsigned long ip) 5860 { 5861 unsigned long flags; 5862 5863 if (unlikely(!lockdep_enabled())) 5864 return; 5865 5866 raw_local_irq_save(flags); 5867 check_flags(flags); 5868 5869 lockdep_recursion_inc(); 5870 __lock_acquire(lock, subclass, 0, read, check, 5871 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5872 check_chain_key(current); 5873 lockdep_recursion_finish(); 5874 raw_local_irq_restore(flags); 5875 } 5876 EXPORT_SYMBOL_GPL(lock_sync); 5877 5878 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5879 { 5880 unsigned long flags; 5881 int ret = LOCK_STATE_NOT_HELD; 5882 5883 /* 5884 * Avoid false negative lockdep_assert_held() and 5885 * lockdep_assert_not_held(). 5886 */ 5887 if (unlikely(!lockdep_enabled())) 5888 return LOCK_STATE_UNKNOWN; 5889 5890 raw_local_irq_save(flags); 5891 check_flags(flags); 5892 5893 lockdep_recursion_inc(); 5894 ret = __lock_is_held(lock, read); 5895 lockdep_recursion_finish(); 5896 raw_local_irq_restore(flags); 5897 5898 return ret; 5899 } 5900 EXPORT_SYMBOL_GPL(lock_is_held_type); 5901 NOKPROBE_SYMBOL(lock_is_held_type); 5902 5903 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5904 { 5905 struct pin_cookie cookie = NIL_COOKIE; 5906 unsigned long flags; 5907 5908 if (unlikely(!lockdep_enabled())) 5909 return cookie; 5910 5911 raw_local_irq_save(flags); 5912 check_flags(flags); 5913 5914 lockdep_recursion_inc(); 5915 cookie = __lock_pin_lock(lock); 5916 lockdep_recursion_finish(); 5917 raw_local_irq_restore(flags); 5918 5919 return cookie; 5920 } 5921 EXPORT_SYMBOL_GPL(lock_pin_lock); 5922 5923 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5924 { 5925 unsigned long flags; 5926 5927 if (unlikely(!lockdep_enabled())) 5928 return; 5929 5930 raw_local_irq_save(flags); 5931 check_flags(flags); 5932 5933 lockdep_recursion_inc(); 5934 __lock_repin_lock(lock, cookie); 5935 lockdep_recursion_finish(); 5936 raw_local_irq_restore(flags); 5937 } 5938 EXPORT_SYMBOL_GPL(lock_repin_lock); 5939 5940 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5941 { 5942 unsigned long flags; 5943 5944 if (unlikely(!lockdep_enabled())) 5945 return; 5946 5947 raw_local_irq_save(flags); 5948 check_flags(flags); 5949 5950 lockdep_recursion_inc(); 5951 __lock_unpin_lock(lock, cookie); 5952 lockdep_recursion_finish(); 5953 raw_local_irq_restore(flags); 5954 } 5955 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5956 5957 #ifdef CONFIG_LOCK_STAT 5958 static void print_lock_contention_bug(struct task_struct *curr, 5959 struct lockdep_map *lock, 5960 unsigned long ip) 5961 { 5962 if (!debug_locks_off()) 5963 return; 5964 if (debug_locks_silent) 5965 return; 5966 5967 nbcon_cpu_emergency_enter(); 5968 5969 pr_warn("\n"); 5970 pr_warn("=================================\n"); 5971 pr_warn("WARNING: bad contention detected!\n"); 5972 print_kernel_ident(); 5973 pr_warn("---------------------------------\n"); 5974 pr_warn("%s/%d is trying to contend lock (", 5975 curr->comm, task_pid_nr(curr)); 5976 print_lockdep_cache(lock); 5977 pr_cont(") at:\n"); 5978 print_ip_sym(KERN_WARNING, ip); 5979 pr_warn("but there are no locks held!\n"); 5980 pr_warn("\nother info that might help us debug this:\n"); 5981 lockdep_print_held_locks(curr); 5982 5983 pr_warn("\nstack backtrace:\n"); 5984 dump_stack(); 5985 5986 nbcon_cpu_emergency_exit(); 5987 } 5988 5989 static void 5990 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5991 { 5992 struct task_struct *curr = current; 5993 struct held_lock *hlock; 5994 struct lock_class_stats *stats; 5995 unsigned int depth; 5996 int i, contention_point, contending_point; 5997 5998 depth = curr->lockdep_depth; 5999 /* 6000 * Whee, we contended on this lock, except it seems we're not 6001 * actually trying to acquire anything much at all.. 6002 */ 6003 if (DEBUG_LOCKS_WARN_ON(!depth)) 6004 return; 6005 6006 if (unlikely(lock->key == &__lockdep_no_track__)) 6007 return; 6008 6009 hlock = find_held_lock(curr, lock, depth, &i); 6010 if (!hlock) { 6011 print_lock_contention_bug(curr, lock, ip); 6012 return; 6013 } 6014 6015 if (hlock->instance != lock) 6016 return; 6017 6018 hlock->waittime_stamp = lockstat_clock(); 6019 6020 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 6021 contending_point = lock_point(hlock_class(hlock)->contending_point, 6022 lock->ip); 6023 6024 stats = get_lock_stats(hlock_class(hlock)); 6025 if (contention_point < LOCKSTAT_POINTS) 6026 stats->contention_point[contention_point]++; 6027 if (contending_point < LOCKSTAT_POINTS) 6028 stats->contending_point[contending_point]++; 6029 if (lock->cpu != smp_processor_id()) 6030 stats->bounces[bounce_contended + !!hlock->read]++; 6031 } 6032 6033 static void 6034 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 6035 { 6036 struct task_struct *curr = current; 6037 struct held_lock *hlock; 6038 struct lock_class_stats *stats; 6039 unsigned int depth; 6040 u64 now, waittime = 0; 6041 int i, cpu; 6042 6043 depth = curr->lockdep_depth; 6044 /* 6045 * Yay, we acquired ownership of this lock we didn't try to 6046 * acquire, how the heck did that happen? 6047 */ 6048 if (DEBUG_LOCKS_WARN_ON(!depth)) 6049 return; 6050 6051 if (unlikely(lock->key == &__lockdep_no_track__)) 6052 return; 6053 6054 hlock = find_held_lock(curr, lock, depth, &i); 6055 if (!hlock) { 6056 print_lock_contention_bug(curr, lock, _RET_IP_); 6057 return; 6058 } 6059 6060 if (hlock->instance != lock) 6061 return; 6062 6063 cpu = smp_processor_id(); 6064 if (hlock->waittime_stamp) { 6065 now = lockstat_clock(); 6066 waittime = now - hlock->waittime_stamp; 6067 hlock->holdtime_stamp = now; 6068 } 6069 6070 stats = get_lock_stats(hlock_class(hlock)); 6071 if (waittime) { 6072 if (hlock->read) 6073 lock_time_inc(&stats->read_waittime, waittime); 6074 else 6075 lock_time_inc(&stats->write_waittime, waittime); 6076 } 6077 if (lock->cpu != cpu) 6078 stats->bounces[bounce_acquired + !!hlock->read]++; 6079 6080 lock->cpu = cpu; 6081 lock->ip = ip; 6082 } 6083 6084 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6085 { 6086 unsigned long flags; 6087 6088 trace_lock_contended(lock, ip); 6089 6090 if (unlikely(!lock_stat || !lockdep_enabled())) 6091 return; 6092 6093 raw_local_irq_save(flags); 6094 check_flags(flags); 6095 lockdep_recursion_inc(); 6096 __lock_contended(lock, ip); 6097 lockdep_recursion_finish(); 6098 raw_local_irq_restore(flags); 6099 } 6100 EXPORT_SYMBOL_GPL(lock_contended); 6101 6102 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6103 { 6104 unsigned long flags; 6105 6106 trace_lock_acquired(lock, ip); 6107 6108 if (unlikely(!lock_stat || !lockdep_enabled())) 6109 return; 6110 6111 raw_local_irq_save(flags); 6112 check_flags(flags); 6113 lockdep_recursion_inc(); 6114 __lock_acquired(lock, ip); 6115 lockdep_recursion_finish(); 6116 raw_local_irq_restore(flags); 6117 } 6118 EXPORT_SYMBOL_GPL(lock_acquired); 6119 #endif 6120 6121 /* 6122 * Used by the testsuite, sanitize the validator state 6123 * after a simulated failure: 6124 */ 6125 6126 void lockdep_reset(void) 6127 { 6128 unsigned long flags; 6129 int i; 6130 6131 raw_local_irq_save(flags); 6132 lockdep_init_task(current); 6133 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6134 nr_hardirq_chains = 0; 6135 nr_softirq_chains = 0; 6136 nr_process_chains = 0; 6137 debug_locks = 1; 6138 for (i = 0; i < CHAINHASH_SIZE; i++) 6139 INIT_HLIST_HEAD(chainhash_table + i); 6140 raw_local_irq_restore(flags); 6141 } 6142 6143 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6144 static void remove_class_from_lock_chain(struct pending_free *pf, 6145 struct lock_chain *chain, 6146 struct lock_class *class) 6147 { 6148 #ifdef CONFIG_PROVE_LOCKING 6149 int i; 6150 6151 for (i = chain->base; i < chain->base + chain->depth; i++) { 6152 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6153 continue; 6154 /* 6155 * Each lock class occurs at most once in a lock chain so once 6156 * we found a match we can break out of this loop. 6157 */ 6158 goto free_lock_chain; 6159 } 6160 /* Since the chain has not been modified, return. */ 6161 return; 6162 6163 free_lock_chain: 6164 free_chain_hlocks(chain->base, chain->depth); 6165 /* Overwrite the chain key for concurrent RCU readers. */ 6166 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6167 dec_chains(chain->irq_context); 6168 6169 /* 6170 * Note: calling hlist_del_rcu() from inside a 6171 * hlist_for_each_entry_rcu() loop is safe. 6172 */ 6173 hlist_del_rcu(&chain->entry); 6174 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6175 nr_zapped_lock_chains++; 6176 #endif 6177 } 6178 6179 /* Must be called with the graph lock held. */ 6180 static void remove_class_from_lock_chains(struct pending_free *pf, 6181 struct lock_class *class) 6182 { 6183 struct lock_chain *chain; 6184 struct hlist_head *head; 6185 int i; 6186 6187 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6188 head = chainhash_table + i; 6189 hlist_for_each_entry_rcu(chain, head, entry) { 6190 remove_class_from_lock_chain(pf, chain, class); 6191 } 6192 } 6193 } 6194 6195 /* 6196 * Remove all references to a lock class. The caller must hold the graph lock. 6197 */ 6198 static void zap_class(struct pending_free *pf, struct lock_class *class) 6199 { 6200 struct lock_list *entry; 6201 int i; 6202 6203 WARN_ON_ONCE(!class->key); 6204 6205 /* 6206 * Remove all dependencies this lock is 6207 * involved in: 6208 */ 6209 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6210 entry = list_entries + i; 6211 if (entry->class != class && entry->links_to != class) 6212 continue; 6213 __clear_bit(i, list_entries_in_use); 6214 nr_list_entries--; 6215 list_del_rcu(&entry->entry); 6216 } 6217 if (list_empty(&class->locks_after) && 6218 list_empty(&class->locks_before)) { 6219 list_move_tail(&class->lock_entry, &pf->zapped); 6220 hlist_del_rcu(&class->hash_entry); 6221 WRITE_ONCE(class->key, NULL); 6222 WRITE_ONCE(class->name, NULL); 6223 nr_lock_classes--; 6224 __clear_bit(class - lock_classes, lock_classes_in_use); 6225 if (class - lock_classes == max_lock_class_idx) 6226 max_lock_class_idx--; 6227 } else { 6228 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6229 class->name); 6230 } 6231 6232 remove_class_from_lock_chains(pf, class); 6233 nr_zapped_classes++; 6234 } 6235 6236 static void reinit_class(struct lock_class *class) 6237 { 6238 WARN_ON_ONCE(!class->lock_entry.next); 6239 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6240 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6241 memset_startat(class, 0, key); 6242 WARN_ON_ONCE(!class->lock_entry.next); 6243 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6244 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6245 } 6246 6247 static inline int within(const void *addr, void *start, unsigned long size) 6248 { 6249 return addr >= start && addr < start + size; 6250 } 6251 6252 static bool inside_selftest(void) 6253 { 6254 return current == lockdep_selftest_task_struct; 6255 } 6256 6257 /* The caller must hold the graph lock. */ 6258 static struct pending_free *get_pending_free(void) 6259 { 6260 return delayed_free.pf + delayed_free.index; 6261 } 6262 6263 static void free_zapped_rcu(struct rcu_head *cb); 6264 6265 /* 6266 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6267 * the graph lock held. 6268 */ 6269 static void call_rcu_zapped(struct pending_free *pf) 6270 { 6271 WARN_ON_ONCE(inside_selftest()); 6272 6273 if (list_empty(&pf->zapped)) 6274 return; 6275 6276 if (delayed_free.scheduled) 6277 return; 6278 6279 delayed_free.scheduled = true; 6280 6281 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6282 delayed_free.index ^= 1; 6283 6284 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6285 } 6286 6287 /* The caller must hold the graph lock. May be called from RCU context. */ 6288 static void __free_zapped_classes(struct pending_free *pf) 6289 { 6290 struct lock_class *class; 6291 6292 check_data_structures(); 6293 6294 list_for_each_entry(class, &pf->zapped, lock_entry) 6295 reinit_class(class); 6296 6297 list_splice_init(&pf->zapped, &free_lock_classes); 6298 6299 #ifdef CONFIG_PROVE_LOCKING 6300 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6301 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6302 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6303 #endif 6304 } 6305 6306 static void free_zapped_rcu(struct rcu_head *ch) 6307 { 6308 struct pending_free *pf; 6309 unsigned long flags; 6310 6311 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6312 return; 6313 6314 raw_local_irq_save(flags); 6315 lockdep_lock(); 6316 6317 /* closed head */ 6318 pf = delayed_free.pf + (delayed_free.index ^ 1); 6319 __free_zapped_classes(pf); 6320 delayed_free.scheduled = false; 6321 6322 /* 6323 * If there's anything on the open list, close and start a new callback. 6324 */ 6325 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6326 6327 lockdep_unlock(); 6328 raw_local_irq_restore(flags); 6329 } 6330 6331 /* 6332 * Remove all lock classes from the class hash table and from the 6333 * all_lock_classes list whose key or name is in the address range [start, 6334 * start + size). Move these lock classes to the zapped_classes list. Must 6335 * be called with the graph lock held. 6336 */ 6337 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6338 unsigned long size) 6339 { 6340 struct lock_class *class; 6341 struct hlist_head *head; 6342 int i; 6343 6344 /* Unhash all classes that were created by a module. */ 6345 for (i = 0; i < CLASSHASH_SIZE; i++) { 6346 head = classhash_table + i; 6347 hlist_for_each_entry_rcu(class, head, hash_entry) { 6348 if (!within(class->key, start, size) && 6349 !within(class->name, start, size)) 6350 continue; 6351 zap_class(pf, class); 6352 } 6353 } 6354 } 6355 6356 /* 6357 * Used in module.c to remove lock classes from memory that is going to be 6358 * freed; and possibly re-used by other modules. 6359 * 6360 * We will have had one synchronize_rcu() before getting here, so we're 6361 * guaranteed nobody will look up these exact classes -- they're properly dead 6362 * but still allocated. 6363 */ 6364 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6365 { 6366 struct pending_free *pf; 6367 unsigned long flags; 6368 6369 init_data_structures_once(); 6370 6371 raw_local_irq_save(flags); 6372 lockdep_lock(); 6373 pf = get_pending_free(); 6374 __lockdep_free_key_range(pf, start, size); 6375 call_rcu_zapped(pf); 6376 lockdep_unlock(); 6377 raw_local_irq_restore(flags); 6378 6379 /* 6380 * Wait for any possible iterators from look_up_lock_class() to pass 6381 * before continuing to free the memory they refer to. 6382 */ 6383 synchronize_rcu(); 6384 } 6385 6386 /* 6387 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6388 * Ignores debug_locks. Must only be used by the lockdep selftests. 6389 */ 6390 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6391 { 6392 struct pending_free *pf = delayed_free.pf; 6393 unsigned long flags; 6394 6395 init_data_structures_once(); 6396 6397 raw_local_irq_save(flags); 6398 lockdep_lock(); 6399 __lockdep_free_key_range(pf, start, size); 6400 __free_zapped_classes(pf); 6401 lockdep_unlock(); 6402 raw_local_irq_restore(flags); 6403 } 6404 6405 void lockdep_free_key_range(void *start, unsigned long size) 6406 { 6407 init_data_structures_once(); 6408 6409 if (inside_selftest()) 6410 lockdep_free_key_range_imm(start, size); 6411 else 6412 lockdep_free_key_range_reg(start, size); 6413 } 6414 6415 /* 6416 * Check whether any element of the @lock->class_cache[] array refers to a 6417 * registered lock class. The caller must hold either the graph lock or the 6418 * RCU read lock. 6419 */ 6420 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6421 { 6422 struct lock_class *class; 6423 struct hlist_head *head; 6424 int i, j; 6425 6426 for (i = 0; i < CLASSHASH_SIZE; i++) { 6427 head = classhash_table + i; 6428 hlist_for_each_entry_rcu(class, head, hash_entry) { 6429 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6430 if (lock->class_cache[j] == class) 6431 return true; 6432 } 6433 } 6434 return false; 6435 } 6436 6437 /* The caller must hold the graph lock. Does not sleep. */ 6438 static void __lockdep_reset_lock(struct pending_free *pf, 6439 struct lockdep_map *lock) 6440 { 6441 struct lock_class *class; 6442 int j; 6443 6444 /* 6445 * Remove all classes this lock might have: 6446 */ 6447 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6448 /* 6449 * If the class exists we look it up and zap it: 6450 */ 6451 class = look_up_lock_class(lock, j); 6452 if (class) 6453 zap_class(pf, class); 6454 } 6455 /* 6456 * Debug check: in the end all mapped classes should 6457 * be gone. 6458 */ 6459 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6460 debug_locks_off(); 6461 } 6462 6463 /* 6464 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6465 * released data structures from RCU context. 6466 */ 6467 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6468 { 6469 struct pending_free *pf; 6470 unsigned long flags; 6471 int locked; 6472 6473 raw_local_irq_save(flags); 6474 locked = graph_lock(); 6475 if (!locked) 6476 goto out_irq; 6477 6478 pf = get_pending_free(); 6479 __lockdep_reset_lock(pf, lock); 6480 call_rcu_zapped(pf); 6481 6482 graph_unlock(); 6483 out_irq: 6484 raw_local_irq_restore(flags); 6485 } 6486 6487 /* 6488 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6489 * lockdep selftests. 6490 */ 6491 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6492 { 6493 struct pending_free *pf = delayed_free.pf; 6494 unsigned long flags; 6495 6496 raw_local_irq_save(flags); 6497 lockdep_lock(); 6498 __lockdep_reset_lock(pf, lock); 6499 __free_zapped_classes(pf); 6500 lockdep_unlock(); 6501 raw_local_irq_restore(flags); 6502 } 6503 6504 void lockdep_reset_lock(struct lockdep_map *lock) 6505 { 6506 init_data_structures_once(); 6507 6508 if (inside_selftest()) 6509 lockdep_reset_lock_imm(lock); 6510 else 6511 lockdep_reset_lock_reg(lock); 6512 } 6513 6514 /* 6515 * Unregister a dynamically allocated key. 6516 * 6517 * Unlike lockdep_register_key(), a search is always done to find a matching 6518 * key irrespective of debug_locks to avoid potential invalid access to freed 6519 * memory in lock_class entry. 6520 */ 6521 void lockdep_unregister_key(struct lock_class_key *key) 6522 { 6523 struct hlist_head *hash_head = keyhashentry(key); 6524 struct lock_class_key *k; 6525 struct pending_free *pf; 6526 unsigned long flags; 6527 bool found = false; 6528 6529 might_sleep(); 6530 6531 if (WARN_ON_ONCE(static_obj(key))) 6532 return; 6533 6534 raw_local_irq_save(flags); 6535 lockdep_lock(); 6536 6537 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6538 if (k == key) { 6539 hlist_del_rcu(&k->hash_entry); 6540 found = true; 6541 break; 6542 } 6543 } 6544 WARN_ON_ONCE(!found && debug_locks); 6545 if (found) { 6546 pf = get_pending_free(); 6547 __lockdep_free_key_range(pf, key, 1); 6548 call_rcu_zapped(pf); 6549 } 6550 lockdep_unlock(); 6551 raw_local_irq_restore(flags); 6552 6553 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6554 synchronize_rcu(); 6555 } 6556 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6557 6558 void __init lockdep_init(void) 6559 { 6560 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6561 6562 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6563 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6564 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6565 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6566 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6567 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6568 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6569 6570 printk(" memory used by lock dependency info: %zu kB\n", 6571 (sizeof(lock_classes) + 6572 sizeof(lock_classes_in_use) + 6573 sizeof(classhash_table) + 6574 sizeof(list_entries) + 6575 sizeof(list_entries_in_use) + 6576 sizeof(chainhash_table) + 6577 sizeof(delayed_free) 6578 #ifdef CONFIG_PROVE_LOCKING 6579 + sizeof(lock_cq) 6580 + sizeof(lock_chains) 6581 + sizeof(lock_chains_in_use) 6582 + sizeof(chain_hlocks) 6583 #endif 6584 ) / 1024 6585 ); 6586 6587 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6588 printk(" memory used for stack traces: %zu kB\n", 6589 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6590 ); 6591 #endif 6592 6593 printk(" per task-struct memory footprint: %zu bytes\n", 6594 sizeof(((struct task_struct *)NULL)->held_locks)); 6595 } 6596 6597 static void 6598 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6599 const void *mem_to, struct held_lock *hlock) 6600 { 6601 if (!debug_locks_off()) 6602 return; 6603 if (debug_locks_silent) 6604 return; 6605 6606 nbcon_cpu_emergency_enter(); 6607 6608 pr_warn("\n"); 6609 pr_warn("=========================\n"); 6610 pr_warn("WARNING: held lock freed!\n"); 6611 print_kernel_ident(); 6612 pr_warn("-------------------------\n"); 6613 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6614 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6615 print_lock(hlock); 6616 lockdep_print_held_locks(curr); 6617 6618 pr_warn("\nstack backtrace:\n"); 6619 dump_stack(); 6620 6621 nbcon_cpu_emergency_exit(); 6622 } 6623 6624 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6625 const void* lock_from, unsigned long lock_len) 6626 { 6627 return lock_from + lock_len <= mem_from || 6628 mem_from + mem_len <= lock_from; 6629 } 6630 6631 /* 6632 * Called when kernel memory is freed (or unmapped), or if a lock 6633 * is destroyed or reinitialized - this code checks whether there is 6634 * any held lock in the memory range of <from> to <to>: 6635 */ 6636 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6637 { 6638 struct task_struct *curr = current; 6639 struct held_lock *hlock; 6640 unsigned long flags; 6641 int i; 6642 6643 if (unlikely(!debug_locks)) 6644 return; 6645 6646 raw_local_irq_save(flags); 6647 for (i = 0; i < curr->lockdep_depth; i++) { 6648 hlock = curr->held_locks + i; 6649 6650 if (not_in_range(mem_from, mem_len, hlock->instance, 6651 sizeof(*hlock->instance))) 6652 continue; 6653 6654 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6655 break; 6656 } 6657 raw_local_irq_restore(flags); 6658 } 6659 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6660 6661 static void print_held_locks_bug(void) 6662 { 6663 if (!debug_locks_off()) 6664 return; 6665 if (debug_locks_silent) 6666 return; 6667 6668 nbcon_cpu_emergency_enter(); 6669 6670 pr_warn("\n"); 6671 pr_warn("====================================\n"); 6672 pr_warn("WARNING: %s/%d still has locks held!\n", 6673 current->comm, task_pid_nr(current)); 6674 print_kernel_ident(); 6675 pr_warn("------------------------------------\n"); 6676 lockdep_print_held_locks(current); 6677 pr_warn("\nstack backtrace:\n"); 6678 dump_stack(); 6679 6680 nbcon_cpu_emergency_exit(); 6681 } 6682 6683 void debug_check_no_locks_held(void) 6684 { 6685 if (unlikely(current->lockdep_depth > 0)) 6686 print_held_locks_bug(); 6687 } 6688 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6689 6690 #ifdef __KERNEL__ 6691 void debug_show_all_locks(void) 6692 { 6693 struct task_struct *g, *p; 6694 6695 if (unlikely(!debug_locks)) { 6696 pr_warn("INFO: lockdep is turned off.\n"); 6697 return; 6698 } 6699 pr_warn("\nShowing all locks held in the system:\n"); 6700 6701 rcu_read_lock(); 6702 for_each_process_thread(g, p) { 6703 if (!p->lockdep_depth) 6704 continue; 6705 lockdep_print_held_locks(p); 6706 touch_nmi_watchdog(); 6707 touch_all_softlockup_watchdogs(); 6708 } 6709 rcu_read_unlock(); 6710 6711 pr_warn("\n"); 6712 pr_warn("=============================================\n\n"); 6713 } 6714 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6715 #endif 6716 6717 /* 6718 * Careful: only use this function if you are sure that 6719 * the task cannot run in parallel! 6720 */ 6721 void debug_show_held_locks(struct task_struct *task) 6722 { 6723 if (unlikely(!debug_locks)) { 6724 printk("INFO: lockdep is turned off.\n"); 6725 return; 6726 } 6727 lockdep_print_held_locks(task); 6728 } 6729 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6730 6731 asmlinkage __visible void lockdep_sys_exit(void) 6732 { 6733 struct task_struct *curr = current; 6734 6735 if (unlikely(curr->lockdep_depth)) { 6736 if (!debug_locks_off()) 6737 return; 6738 nbcon_cpu_emergency_enter(); 6739 pr_warn("\n"); 6740 pr_warn("================================================\n"); 6741 pr_warn("WARNING: lock held when returning to user space!\n"); 6742 print_kernel_ident(); 6743 pr_warn("------------------------------------------------\n"); 6744 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6745 curr->comm, curr->pid); 6746 lockdep_print_held_locks(curr); 6747 nbcon_cpu_emergency_exit(); 6748 } 6749 6750 /* 6751 * The lock history for each syscall should be independent. So wipe the 6752 * slate clean on return to userspace. 6753 */ 6754 lockdep_invariant_state(false); 6755 } 6756 6757 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6758 { 6759 struct task_struct *curr = current; 6760 int dl = READ_ONCE(debug_locks); 6761 bool rcu = warn_rcu_enter(); 6762 6763 /* Note: the following can be executed concurrently, so be careful. */ 6764 nbcon_cpu_emergency_enter(); 6765 pr_warn("\n"); 6766 pr_warn("=============================\n"); 6767 pr_warn("WARNING: suspicious RCU usage\n"); 6768 print_kernel_ident(); 6769 pr_warn("-----------------------------\n"); 6770 pr_warn("%s:%d %s!\n", file, line, s); 6771 pr_warn("\nother info that might help us debug this:\n\n"); 6772 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6773 !rcu_lockdep_current_cpu_online() 6774 ? "RCU used illegally from offline CPU!\n" 6775 : "", 6776 rcu_scheduler_active, dl, 6777 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6778 6779 /* 6780 * If a CPU is in the RCU-free window in idle (ie: in the section 6781 * between ct_idle_enter() and ct_idle_exit(), then RCU 6782 * considers that CPU to be in an "extended quiescent state", 6783 * which means that RCU will be completely ignoring that CPU. 6784 * Therefore, rcu_read_lock() and friends have absolutely no 6785 * effect on a CPU running in that state. In other words, even if 6786 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6787 * delete data structures out from under it. RCU really has no 6788 * choice here: we need to keep an RCU-free window in idle where 6789 * the CPU may possibly enter into low power mode. This way we can 6790 * notice an extended quiescent state to other CPUs that started a grace 6791 * period. Otherwise we would delay any grace period as long as we run 6792 * in the idle task. 6793 * 6794 * So complain bitterly if someone does call rcu_read_lock(), 6795 * rcu_read_lock_bh() and so on from extended quiescent states. 6796 */ 6797 if (!rcu_is_watching()) 6798 pr_warn("RCU used illegally from extended quiescent state!\n"); 6799 6800 lockdep_print_held_locks(curr); 6801 pr_warn("\nstack backtrace:\n"); 6802 dump_stack(); 6803 nbcon_cpu_emergency_exit(); 6804 warn_rcu_exit(rcu); 6805 } 6806 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6807