1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 60 #include <asm/sections.h> 61 62 #include "lockdep_internals.h" 63 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 static int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 static int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_lockdep_table[] = { 82 #ifdef CONFIG_PROVE_LOCKING 83 { 84 .procname = "prove_locking", 85 .data = &prove_locking, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec, 89 }, 90 #endif /* CONFIG_PROVE_LOCKING */ 91 #ifdef CONFIG_LOCK_STAT 92 { 93 .procname = "lock_stat", 94 .data = &lock_stat, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec, 98 }, 99 #endif /* CONFIG_LOCK_STAT */ 100 }; 101 102 static __init int kernel_lockdep_sysctls_init(void) 103 { 104 register_sysctl_init("kernel", kern_lockdep_table); 105 return 0; 106 } 107 late_initcall(kernel_lockdep_sysctls_init); 108 #endif /* CONFIG_SYSCTL */ 109 110 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 112 113 static __always_inline bool lockdep_enabled(void) 114 { 115 if (!debug_locks) 116 return false; 117 118 if (this_cpu_read(lockdep_recursion)) 119 return false; 120 121 if (current->lockdep_recursion) 122 return false; 123 124 return true; 125 } 126 127 /* 128 * lockdep_lock: protects the lockdep graph, the hashes and the 129 * class/list/hash allocators. 130 * 131 * This is one of the rare exceptions where it's justified 132 * to use a raw spinlock - we really dont want the spinlock 133 * code to recurse back into the lockdep code... 134 */ 135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 136 static struct task_struct *__owner; 137 138 static inline void lockdep_lock(void) 139 { 140 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 141 142 __this_cpu_inc(lockdep_recursion); 143 arch_spin_lock(&__lock); 144 __owner = current; 145 } 146 147 static inline void lockdep_unlock(void) 148 { 149 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 150 151 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 152 return; 153 154 __owner = NULL; 155 arch_spin_unlock(&__lock); 156 __this_cpu_dec(lockdep_recursion); 157 } 158 159 static inline bool lockdep_assert_locked(void) 160 { 161 return DEBUG_LOCKS_WARN_ON(__owner != current); 162 } 163 164 static struct task_struct *lockdep_selftest_task_struct; 165 166 167 static int graph_lock(void) 168 { 169 lockdep_lock(); 170 /* 171 * Make sure that if another CPU detected a bug while 172 * walking the graph we dont change it (while the other 173 * CPU is busy printing out stuff with the graph lock 174 * dropped already) 175 */ 176 if (!debug_locks) { 177 lockdep_unlock(); 178 return 0; 179 } 180 return 1; 181 } 182 183 static inline void graph_unlock(void) 184 { 185 lockdep_unlock(); 186 } 187 188 /* 189 * Turn lock debugging off and return with 0 if it was off already, 190 * and also release the graph lock: 191 */ 192 static inline int debug_locks_off_graph_unlock(void) 193 { 194 int ret = debug_locks_off(); 195 196 lockdep_unlock(); 197 198 return ret; 199 } 200 201 unsigned long nr_list_entries; 202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 204 205 /* 206 * All data structures here are protected by the global debug_lock. 207 * 208 * nr_lock_classes is the number of elements of lock_classes[] that is 209 * in use. 210 */ 211 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 212 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 214 unsigned long nr_lock_classes; 215 unsigned long nr_zapped_classes; 216 unsigned long max_lock_class_idx; 217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 219 220 static inline struct lock_class *hlock_class(struct held_lock *hlock) 221 { 222 unsigned int class_idx = hlock->class_idx; 223 224 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 225 barrier(); 226 227 if (!test_bit(class_idx, lock_classes_in_use)) { 228 /* 229 * Someone passed in garbage, we give up. 230 */ 231 DEBUG_LOCKS_WARN_ON(1); 232 return NULL; 233 } 234 235 /* 236 * At this point, if the passed hlock->class_idx is still garbage, 237 * we just have to live with it 238 */ 239 return lock_classes + class_idx; 240 } 241 242 #ifdef CONFIG_LOCK_STAT 243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 244 245 static inline u64 lockstat_clock(void) 246 { 247 return local_clock(); 248 } 249 250 static int lock_point(unsigned long points[], unsigned long ip) 251 { 252 int i; 253 254 for (i = 0; i < LOCKSTAT_POINTS; i++) { 255 if (points[i] == 0) { 256 points[i] = ip; 257 break; 258 } 259 if (points[i] == ip) 260 break; 261 } 262 263 return i; 264 } 265 266 static void lock_time_inc(struct lock_time *lt, u64 time) 267 { 268 if (time > lt->max) 269 lt->max = time; 270 271 if (time < lt->min || !lt->nr) 272 lt->min = time; 273 274 lt->total += time; 275 lt->nr++; 276 } 277 278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 279 { 280 if (!src->nr) 281 return; 282 283 if (src->max > dst->max) 284 dst->max = src->max; 285 286 if (src->min < dst->min || !dst->nr) 287 dst->min = src->min; 288 289 dst->total += src->total; 290 dst->nr += src->nr; 291 } 292 293 struct lock_class_stats lock_stats(struct lock_class *class) 294 { 295 struct lock_class_stats stats; 296 int cpu, i; 297 298 memset(&stats, 0, sizeof(struct lock_class_stats)); 299 for_each_possible_cpu(cpu) { 300 struct lock_class_stats *pcs = 301 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 302 303 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 304 stats.contention_point[i] += pcs->contention_point[i]; 305 306 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 307 stats.contending_point[i] += pcs->contending_point[i]; 308 309 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 310 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 311 312 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 313 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 314 315 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 316 stats.bounces[i] += pcs->bounces[i]; 317 } 318 319 return stats; 320 } 321 322 void clear_lock_stats(struct lock_class *class) 323 { 324 int cpu; 325 326 for_each_possible_cpu(cpu) { 327 struct lock_class_stats *cpu_stats = 328 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 329 330 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 331 } 332 memset(class->contention_point, 0, sizeof(class->contention_point)); 333 memset(class->contending_point, 0, sizeof(class->contending_point)); 334 } 335 336 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 337 { 338 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 339 } 340 341 static void lock_release_holdtime(struct held_lock *hlock) 342 { 343 struct lock_class_stats *stats; 344 u64 holdtime; 345 346 if (!lock_stat) 347 return; 348 349 holdtime = lockstat_clock() - hlock->holdtime_stamp; 350 351 stats = get_lock_stats(hlock_class(hlock)); 352 if (hlock->read) 353 lock_time_inc(&stats->read_holdtime, holdtime); 354 else 355 lock_time_inc(&stats->write_holdtime, holdtime); 356 } 357 #else 358 static inline void lock_release_holdtime(struct held_lock *hlock) 359 { 360 } 361 #endif 362 363 /* 364 * We keep a global list of all lock classes. The list is only accessed with 365 * the lockdep spinlock lock held. free_lock_classes is a list with free 366 * elements. These elements are linked together by the lock_entry member in 367 * struct lock_class. 368 */ 369 static LIST_HEAD(all_lock_classes); 370 static LIST_HEAD(free_lock_classes); 371 372 /** 373 * struct pending_free - information about data structures about to be freed 374 * @zapped: Head of a list with struct lock_class elements. 375 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 376 * are about to be freed. 377 */ 378 struct pending_free { 379 struct list_head zapped; 380 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 381 }; 382 383 /** 384 * struct delayed_free - data structures used for delayed freeing 385 * 386 * A data structure for delayed freeing of data structures that may be 387 * accessed by RCU readers at the time these were freed. 388 * 389 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 390 * @index: Index of @pf to which freed data structures are added. 391 * @scheduled: Whether or not an RCU callback has been scheduled. 392 * @pf: Array with information about data structures about to be freed. 393 */ 394 static struct delayed_free { 395 struct rcu_head rcu_head; 396 int index; 397 int scheduled; 398 struct pending_free pf[2]; 399 } delayed_free; 400 401 /* 402 * The lockdep classes are in a hash-table as well, for fast lookup: 403 */ 404 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 405 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 406 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 407 #define classhashentry(key) (classhash_table + __classhashfn((key))) 408 409 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 410 411 /* 412 * We put the lock dependency chains into a hash-table as well, to cache 413 * their existence: 414 */ 415 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 416 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 417 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 418 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 419 420 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 421 422 /* 423 * the id of held_lock 424 */ 425 static inline u16 hlock_id(struct held_lock *hlock) 426 { 427 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 428 429 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 430 } 431 432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 433 { 434 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 435 } 436 437 /* 438 * The hash key of the lock dependency chains is a hash itself too: 439 * it's a hash of all locks taken up to that lock, including that lock. 440 * It's a 64-bit hash, because it's important for the keys to be 441 * unique. 442 */ 443 static inline u64 iterate_chain_key(u64 key, u32 idx) 444 { 445 u32 k0 = key, k1 = key >> 32; 446 447 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 448 449 return k0 | (u64)k1 << 32; 450 } 451 452 void lockdep_init_task(struct task_struct *task) 453 { 454 task->lockdep_depth = 0; /* no locks held yet */ 455 task->curr_chain_key = INITIAL_CHAIN_KEY; 456 task->lockdep_recursion = 0; 457 } 458 459 static __always_inline void lockdep_recursion_inc(void) 460 { 461 __this_cpu_inc(lockdep_recursion); 462 } 463 464 static __always_inline void lockdep_recursion_finish(void) 465 { 466 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 467 __this_cpu_write(lockdep_recursion, 0); 468 } 469 470 void lockdep_set_selftest_task(struct task_struct *task) 471 { 472 lockdep_selftest_task_struct = task; 473 } 474 475 /* 476 * Debugging switches: 477 */ 478 479 #define VERBOSE 0 480 #define VERY_VERBOSE 0 481 482 #if VERBOSE 483 # define HARDIRQ_VERBOSE 1 484 # define SOFTIRQ_VERBOSE 1 485 #else 486 # define HARDIRQ_VERBOSE 0 487 # define SOFTIRQ_VERBOSE 0 488 #endif 489 490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 491 /* 492 * Quick filtering for interesting events: 493 */ 494 static int class_filter(struct lock_class *class) 495 { 496 #if 0 497 /* Example */ 498 if (class->name_version == 1 && 499 !strcmp(class->name, "lockname")) 500 return 1; 501 if (class->name_version == 1 && 502 !strcmp(class->name, "&struct->lockfield")) 503 return 1; 504 #endif 505 /* Filter everything else. 1 would be to allow everything else */ 506 return 0; 507 } 508 #endif 509 510 static int verbose(struct lock_class *class) 511 { 512 #if VERBOSE 513 return class_filter(class); 514 #endif 515 return 0; 516 } 517 518 static void print_lockdep_off(const char *bug_msg) 519 { 520 printk(KERN_DEBUG "%s\n", bug_msg); 521 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 522 #ifdef CONFIG_LOCK_STAT 523 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 524 #endif 525 } 526 527 unsigned long nr_stack_trace_entries; 528 529 #ifdef CONFIG_PROVE_LOCKING 530 /** 531 * struct lock_trace - single stack backtrace 532 * @hash_entry: Entry in a stack_trace_hash[] list. 533 * @hash: jhash() of @entries. 534 * @nr_entries: Number of entries in @entries. 535 * @entries: Actual stack backtrace. 536 */ 537 struct lock_trace { 538 struct hlist_node hash_entry; 539 u32 hash; 540 u32 nr_entries; 541 unsigned long entries[] __aligned(sizeof(unsigned long)); 542 }; 543 #define LOCK_TRACE_SIZE_IN_LONGS \ 544 (sizeof(struct lock_trace) / sizeof(unsigned long)) 545 /* 546 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 547 */ 548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 550 551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 552 { 553 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 554 memcmp(t1->entries, t2->entries, 555 t1->nr_entries * sizeof(t1->entries[0])) == 0; 556 } 557 558 static struct lock_trace *save_trace(void) 559 { 560 struct lock_trace *trace, *t2; 561 struct hlist_head *hash_head; 562 u32 hash; 563 int max_entries; 564 565 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 566 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 567 568 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 569 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 570 LOCK_TRACE_SIZE_IN_LONGS; 571 572 if (max_entries <= 0) { 573 if (!debug_locks_off_graph_unlock()) 574 return NULL; 575 576 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 577 dump_stack(); 578 579 return NULL; 580 } 581 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 582 583 hash = jhash(trace->entries, trace->nr_entries * 584 sizeof(trace->entries[0]), 0); 585 trace->hash = hash; 586 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 587 hlist_for_each_entry(t2, hash_head, hash_entry) { 588 if (traces_identical(trace, t2)) 589 return t2; 590 } 591 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 592 hlist_add_head(&trace->hash_entry, hash_head); 593 594 return trace; 595 } 596 597 /* Return the number of stack traces in the stack_trace[] array. */ 598 u64 lockdep_stack_trace_count(void) 599 { 600 struct lock_trace *trace; 601 u64 c = 0; 602 int i; 603 604 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 605 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 606 c++; 607 } 608 } 609 610 return c; 611 } 612 613 /* Return the number of stack hash chains that have at least one stack trace. */ 614 u64 lockdep_stack_hash_count(void) 615 { 616 u64 c = 0; 617 int i; 618 619 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 620 if (!hlist_empty(&stack_trace_hash[i])) 621 c++; 622 623 return c; 624 } 625 #endif 626 627 unsigned int nr_hardirq_chains; 628 unsigned int nr_softirq_chains; 629 unsigned int nr_process_chains; 630 unsigned int max_lockdep_depth; 631 632 #ifdef CONFIG_DEBUG_LOCKDEP 633 /* 634 * Various lockdep statistics: 635 */ 636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 637 #endif 638 639 #ifdef CONFIG_PROVE_LOCKING 640 /* 641 * Locking printouts: 642 */ 643 644 #define __USAGE(__STATE) \ 645 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 646 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 647 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 648 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 649 650 static const char *usage_str[] = 651 { 652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 653 #include "lockdep_states.h" 654 #undef LOCKDEP_STATE 655 [LOCK_USED] = "INITIAL USE", 656 [LOCK_USED_READ] = "INITIAL READ USE", 657 /* abused as string storage for verify_lock_unused() */ 658 [LOCK_USAGE_STATES] = "IN-NMI", 659 }; 660 #endif 661 662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 663 { 664 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 665 } 666 667 static inline unsigned long lock_flag(enum lock_usage_bit bit) 668 { 669 return 1UL << bit; 670 } 671 672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 673 { 674 /* 675 * The usage character defaults to '.' (i.e., irqs disabled and not in 676 * irq context), which is the safest usage category. 677 */ 678 char c = '.'; 679 680 /* 681 * The order of the following usage checks matters, which will 682 * result in the outcome character as follows: 683 * 684 * - '+': irq is enabled and not in irq context 685 * - '-': in irq context and irq is disabled 686 * - '?': in irq context and irq is enabled 687 */ 688 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 689 c = '+'; 690 if (class->usage_mask & lock_flag(bit)) 691 c = '?'; 692 } else if (class->usage_mask & lock_flag(bit)) 693 c = '-'; 694 695 return c; 696 } 697 698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 699 { 700 int i = 0; 701 702 #define LOCKDEP_STATE(__STATE) \ 703 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 705 #include "lockdep_states.h" 706 #undef LOCKDEP_STATE 707 708 usage[i] = '\0'; 709 } 710 711 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 712 { 713 char str[KSYM_NAME_LEN]; 714 const char *name; 715 716 name = class->name; 717 if (!name) { 718 name = __get_key_name(class->key, str); 719 printk(KERN_CONT "%s", name); 720 } else { 721 printk(KERN_CONT "%s", name); 722 if (class->name_version > 1) 723 printk(KERN_CONT "#%d", class->name_version); 724 if (class->subclass) 725 printk(KERN_CONT "/%d", class->subclass); 726 if (hlock && class->print_fn) 727 class->print_fn(hlock->instance); 728 } 729 } 730 731 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 732 { 733 char usage[LOCK_USAGE_CHARS]; 734 735 get_usage_chars(class, usage); 736 737 printk(KERN_CONT " ("); 738 __print_lock_name(hlock, class); 739 printk(KERN_CONT "){%s}-{%d:%d}", usage, 740 class->wait_type_outer ?: class->wait_type_inner, 741 class->wait_type_inner); 742 } 743 744 static void print_lockdep_cache(struct lockdep_map *lock) 745 { 746 const char *name; 747 char str[KSYM_NAME_LEN]; 748 749 name = lock->name; 750 if (!name) 751 name = __get_key_name(lock->key->subkeys, str); 752 753 printk(KERN_CONT "%s", name); 754 } 755 756 static void print_lock(struct held_lock *hlock) 757 { 758 /* 759 * We can be called locklessly through debug_show_all_locks() so be 760 * extra careful, the hlock might have been released and cleared. 761 * 762 * If this indeed happens, lets pretend it does not hurt to continue 763 * to print the lock unless the hlock class_idx does not point to a 764 * registered class. The rationale here is: since we don't attempt 765 * to distinguish whether we are in this situation, if it just 766 * happened we can't count on class_idx to tell either. 767 */ 768 struct lock_class *lock = hlock_class(hlock); 769 770 if (!lock) { 771 printk(KERN_CONT "<RELEASED>\n"); 772 return; 773 } 774 775 printk(KERN_CONT "%px", hlock->instance); 776 print_lock_name(hlock, lock); 777 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 778 } 779 780 static void lockdep_print_held_locks(struct task_struct *p) 781 { 782 int i, depth = READ_ONCE(p->lockdep_depth); 783 784 if (!depth) 785 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 786 else 787 printk("%d lock%s held by %s/%d:\n", depth, 788 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 789 /* 790 * It's not reliable to print a task's held locks if it's not sleeping 791 * and it's not the current task. 792 */ 793 if (p != current && task_is_running(p)) 794 return; 795 for (i = 0; i < depth; i++) { 796 printk(" #%d: ", i); 797 print_lock(p->held_locks + i); 798 } 799 } 800 801 static void print_kernel_ident(void) 802 { 803 printk("%s %.*s %s\n", init_utsname()->release, 804 (int)strcspn(init_utsname()->version, " "), 805 init_utsname()->version, 806 print_tainted()); 807 } 808 809 static int very_verbose(struct lock_class *class) 810 { 811 #if VERY_VERBOSE 812 return class_filter(class); 813 #endif 814 return 0; 815 } 816 817 /* 818 * Is this the address of a static object: 819 */ 820 #ifdef __KERNEL__ 821 static int static_obj(const void *obj) 822 { 823 unsigned long addr = (unsigned long) obj; 824 825 if (is_kernel_core_data(addr)) 826 return 1; 827 828 /* 829 * keys are allowed in the __ro_after_init section. 830 */ 831 if (is_kernel_rodata(addr)) 832 return 1; 833 834 /* 835 * in initdata section and used during bootup only? 836 * NOTE: On some platforms the initdata section is 837 * outside of the _stext ... _end range. 838 */ 839 if (system_state < SYSTEM_FREEING_INITMEM && 840 init_section_contains((void *)addr, 1)) 841 return 1; 842 843 /* 844 * in-kernel percpu var? 845 */ 846 if (is_kernel_percpu_address(addr)) 847 return 1; 848 849 /* 850 * module static or percpu var? 851 */ 852 return is_module_address(addr) || is_module_percpu_address(addr); 853 } 854 #endif 855 856 /* 857 * To make lock name printouts unique, we calculate a unique 858 * class->name_version generation counter. The caller must hold the graph 859 * lock. 860 */ 861 static int count_matching_names(struct lock_class *new_class) 862 { 863 struct lock_class *class; 864 int count = 0; 865 866 if (!new_class->name) 867 return 0; 868 869 list_for_each_entry(class, &all_lock_classes, lock_entry) { 870 if (new_class->key - new_class->subclass == class->key) 871 return class->name_version; 872 if (class->name && !strcmp(class->name, new_class->name)) 873 count = max(count, class->name_version); 874 } 875 876 return count + 1; 877 } 878 879 /* used from NMI context -- must be lockless */ 880 static noinstr struct lock_class * 881 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 882 { 883 struct lockdep_subclass_key *key; 884 struct hlist_head *hash_head; 885 struct lock_class *class; 886 887 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 888 instrumentation_begin(); 889 debug_locks_off(); 890 printk(KERN_ERR 891 "BUG: looking up invalid subclass: %u\n", subclass); 892 printk(KERN_ERR 893 "turning off the locking correctness validator.\n"); 894 dump_stack(); 895 instrumentation_end(); 896 return NULL; 897 } 898 899 /* 900 * If it is not initialised then it has never been locked, 901 * so it won't be present in the hash table. 902 */ 903 if (unlikely(!lock->key)) 904 return NULL; 905 906 /* 907 * NOTE: the class-key must be unique. For dynamic locks, a static 908 * lock_class_key variable is passed in through the mutex_init() 909 * (or spin_lock_init()) call - which acts as the key. For static 910 * locks we use the lock object itself as the key. 911 */ 912 BUILD_BUG_ON(sizeof(struct lock_class_key) > 913 sizeof(struct lockdep_map)); 914 915 key = lock->key->subkeys + subclass; 916 917 hash_head = classhashentry(key); 918 919 /* 920 * We do an RCU walk of the hash, see lockdep_free_key_range(). 921 */ 922 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 923 return NULL; 924 925 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 926 if (class->key == key) { 927 /* 928 * Huh! same key, different name? Did someone trample 929 * on some memory? We're most confused. 930 */ 931 WARN_ONCE(class->name != lock->name && 932 lock->key != &__lockdep_no_validate__, 933 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 934 lock->name, lock->key, class->name); 935 return class; 936 } 937 } 938 939 return NULL; 940 } 941 942 /* 943 * Static locks do not have their class-keys yet - for them the key is 944 * the lock object itself. If the lock is in the per cpu area, the 945 * canonical address of the lock (per cpu offset removed) is used. 946 */ 947 static bool assign_lock_key(struct lockdep_map *lock) 948 { 949 unsigned long can_addr, addr = (unsigned long)lock; 950 951 #ifdef __KERNEL__ 952 /* 953 * lockdep_free_key_range() assumes that struct lock_class_key 954 * objects do not overlap. Since we use the address of lock 955 * objects as class key for static objects, check whether the 956 * size of lock_class_key objects does not exceed the size of 957 * the smallest lock object. 958 */ 959 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 960 #endif 961 962 if (__is_kernel_percpu_address(addr, &can_addr)) 963 lock->key = (void *)can_addr; 964 else if (__is_module_percpu_address(addr, &can_addr)) 965 lock->key = (void *)can_addr; 966 else if (static_obj(lock)) 967 lock->key = (void *)lock; 968 else { 969 /* Debug-check: all keys must be persistent! */ 970 debug_locks_off(); 971 pr_err("INFO: trying to register non-static key.\n"); 972 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 973 pr_err("you didn't initialize this object before use?\n"); 974 pr_err("turning off the locking correctness validator.\n"); 975 dump_stack(); 976 return false; 977 } 978 979 return true; 980 } 981 982 #ifdef CONFIG_DEBUG_LOCKDEP 983 984 /* Check whether element @e occurs in list @h */ 985 static bool in_list(struct list_head *e, struct list_head *h) 986 { 987 struct list_head *f; 988 989 list_for_each(f, h) { 990 if (e == f) 991 return true; 992 } 993 994 return false; 995 } 996 997 /* 998 * Check whether entry @e occurs in any of the locks_after or locks_before 999 * lists. 1000 */ 1001 static bool in_any_class_list(struct list_head *e) 1002 { 1003 struct lock_class *class; 1004 int i; 1005 1006 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1007 class = &lock_classes[i]; 1008 if (in_list(e, &class->locks_after) || 1009 in_list(e, &class->locks_before)) 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1016 { 1017 struct lock_list *e; 1018 1019 list_for_each_entry(e, h, entry) { 1020 if (e->links_to != c) { 1021 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1022 c->name ? : "(?)", 1023 (unsigned long)(e - list_entries), 1024 e->links_to && e->links_to->name ? 1025 e->links_to->name : "(?)", 1026 e->class && e->class->name ? e->class->name : 1027 "(?)"); 1028 return false; 1029 } 1030 } 1031 return true; 1032 } 1033 1034 #ifdef CONFIG_PROVE_LOCKING 1035 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1036 #endif 1037 1038 static bool check_lock_chain_key(struct lock_chain *chain) 1039 { 1040 #ifdef CONFIG_PROVE_LOCKING 1041 u64 chain_key = INITIAL_CHAIN_KEY; 1042 int i; 1043 1044 for (i = chain->base; i < chain->base + chain->depth; i++) 1045 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1046 /* 1047 * The 'unsigned long long' casts avoid that a compiler warning 1048 * is reported when building tools/lib/lockdep. 1049 */ 1050 if (chain->chain_key != chain_key) { 1051 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1052 (unsigned long long)(chain - lock_chains), 1053 (unsigned long long)chain->chain_key, 1054 (unsigned long long)chain_key); 1055 return false; 1056 } 1057 #endif 1058 return true; 1059 } 1060 1061 static bool in_any_zapped_class_list(struct lock_class *class) 1062 { 1063 struct pending_free *pf; 1064 int i; 1065 1066 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1067 if (in_list(&class->lock_entry, &pf->zapped)) 1068 return true; 1069 } 1070 1071 return false; 1072 } 1073 1074 static bool __check_data_structures(void) 1075 { 1076 struct lock_class *class; 1077 struct lock_chain *chain; 1078 struct hlist_head *head; 1079 struct lock_list *e; 1080 int i; 1081 1082 /* Check whether all classes occur in a lock list. */ 1083 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1084 class = &lock_classes[i]; 1085 if (!in_list(&class->lock_entry, &all_lock_classes) && 1086 !in_list(&class->lock_entry, &free_lock_classes) && 1087 !in_any_zapped_class_list(class)) { 1088 printk(KERN_INFO "class %px/%s is not in any class list\n", 1089 class, class->name ? : "(?)"); 1090 return false; 1091 } 1092 } 1093 1094 /* Check whether all classes have valid lock lists. */ 1095 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1096 class = &lock_classes[i]; 1097 if (!class_lock_list_valid(class, &class->locks_before)) 1098 return false; 1099 if (!class_lock_list_valid(class, &class->locks_after)) 1100 return false; 1101 } 1102 1103 /* Check the chain_key of all lock chains. */ 1104 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1105 head = chainhash_table + i; 1106 hlist_for_each_entry_rcu(chain, head, entry) { 1107 if (!check_lock_chain_key(chain)) 1108 return false; 1109 } 1110 } 1111 1112 /* 1113 * Check whether all list entries that are in use occur in a class 1114 * lock list. 1115 */ 1116 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1117 e = list_entries + i; 1118 if (!in_any_class_list(&e->entry)) { 1119 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1120 (unsigned int)(e - list_entries), 1121 e->class->name ? : "(?)", 1122 e->links_to->name ? : "(?)"); 1123 return false; 1124 } 1125 } 1126 1127 /* 1128 * Check whether all list entries that are not in use do not occur in 1129 * a class lock list. 1130 */ 1131 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1132 e = list_entries + i; 1133 if (in_any_class_list(&e->entry)) { 1134 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1135 (unsigned int)(e - list_entries), 1136 e->class && e->class->name ? e->class->name : 1137 "(?)", 1138 e->links_to && e->links_to->name ? 1139 e->links_to->name : "(?)"); 1140 return false; 1141 } 1142 } 1143 1144 return true; 1145 } 1146 1147 int check_consistency = 0; 1148 module_param(check_consistency, int, 0644); 1149 1150 static void check_data_structures(void) 1151 { 1152 static bool once = false; 1153 1154 if (check_consistency && !once) { 1155 if (!__check_data_structures()) { 1156 once = true; 1157 WARN_ON(once); 1158 } 1159 } 1160 } 1161 1162 #else /* CONFIG_DEBUG_LOCKDEP */ 1163 1164 static inline void check_data_structures(void) { } 1165 1166 #endif /* CONFIG_DEBUG_LOCKDEP */ 1167 1168 static void init_chain_block_buckets(void); 1169 1170 /* 1171 * Initialize the lock_classes[] array elements, the free_lock_classes list 1172 * and also the delayed_free structure. 1173 */ 1174 static void init_data_structures_once(void) 1175 { 1176 static bool __read_mostly ds_initialized, rcu_head_initialized; 1177 int i; 1178 1179 if (likely(rcu_head_initialized)) 1180 return; 1181 1182 if (system_state >= SYSTEM_SCHEDULING) { 1183 init_rcu_head(&delayed_free.rcu_head); 1184 rcu_head_initialized = true; 1185 } 1186 1187 if (ds_initialized) 1188 return; 1189 1190 ds_initialized = true; 1191 1192 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1193 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1194 1195 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1196 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1197 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1198 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1199 } 1200 init_chain_block_buckets(); 1201 } 1202 1203 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1204 { 1205 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1206 1207 return lock_keys_hash + hash; 1208 } 1209 1210 /* Register a dynamically allocated key. */ 1211 void lockdep_register_key(struct lock_class_key *key) 1212 { 1213 struct hlist_head *hash_head; 1214 struct lock_class_key *k; 1215 unsigned long flags; 1216 1217 if (WARN_ON_ONCE(static_obj(key))) 1218 return; 1219 hash_head = keyhashentry(key); 1220 1221 raw_local_irq_save(flags); 1222 if (!graph_lock()) 1223 goto restore_irqs; 1224 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1225 if (WARN_ON_ONCE(k == key)) 1226 goto out_unlock; 1227 } 1228 hlist_add_head_rcu(&key->hash_entry, hash_head); 1229 out_unlock: 1230 graph_unlock(); 1231 restore_irqs: 1232 raw_local_irq_restore(flags); 1233 } 1234 EXPORT_SYMBOL_GPL(lockdep_register_key); 1235 1236 /* Check whether a key has been registered as a dynamic key. */ 1237 static bool is_dynamic_key(const struct lock_class_key *key) 1238 { 1239 struct hlist_head *hash_head; 1240 struct lock_class_key *k; 1241 bool found = false; 1242 1243 if (WARN_ON_ONCE(static_obj(key))) 1244 return false; 1245 1246 /* 1247 * If lock debugging is disabled lock_keys_hash[] may contain 1248 * pointers to memory that has already been freed. Avoid triggering 1249 * a use-after-free in that case by returning early. 1250 */ 1251 if (!debug_locks) 1252 return true; 1253 1254 hash_head = keyhashentry(key); 1255 1256 rcu_read_lock(); 1257 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1258 if (k == key) { 1259 found = true; 1260 break; 1261 } 1262 } 1263 rcu_read_unlock(); 1264 1265 return found; 1266 } 1267 1268 /* 1269 * Register a lock's class in the hash-table, if the class is not present 1270 * yet. Otherwise we look it up. We cache the result in the lock object 1271 * itself, so actual lookup of the hash should be once per lock object. 1272 */ 1273 static struct lock_class * 1274 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1275 { 1276 struct lockdep_subclass_key *key; 1277 struct hlist_head *hash_head; 1278 struct lock_class *class; 1279 int idx; 1280 1281 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1282 1283 class = look_up_lock_class(lock, subclass); 1284 if (likely(class)) 1285 goto out_set_class_cache; 1286 1287 if (!lock->key) { 1288 if (!assign_lock_key(lock)) 1289 return NULL; 1290 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1291 return NULL; 1292 } 1293 1294 key = lock->key->subkeys + subclass; 1295 hash_head = classhashentry(key); 1296 1297 if (!graph_lock()) { 1298 return NULL; 1299 } 1300 /* 1301 * We have to do the hash-walk again, to avoid races 1302 * with another CPU: 1303 */ 1304 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1305 if (class->key == key) 1306 goto out_unlock_set; 1307 } 1308 1309 init_data_structures_once(); 1310 1311 /* Allocate a new lock class and add it to the hash. */ 1312 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1313 lock_entry); 1314 if (!class) { 1315 if (!debug_locks_off_graph_unlock()) { 1316 return NULL; 1317 } 1318 1319 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1320 dump_stack(); 1321 return NULL; 1322 } 1323 nr_lock_classes++; 1324 __set_bit(class - lock_classes, lock_classes_in_use); 1325 debug_atomic_inc(nr_unused_locks); 1326 class->key = key; 1327 class->name = lock->name; 1328 class->subclass = subclass; 1329 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1330 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1331 class->name_version = count_matching_names(class); 1332 class->wait_type_inner = lock->wait_type_inner; 1333 class->wait_type_outer = lock->wait_type_outer; 1334 class->lock_type = lock->lock_type; 1335 /* 1336 * We use RCU's safe list-add method to make 1337 * parallel walking of the hash-list safe: 1338 */ 1339 hlist_add_head_rcu(&class->hash_entry, hash_head); 1340 /* 1341 * Remove the class from the free list and add it to the global list 1342 * of classes. 1343 */ 1344 list_move_tail(&class->lock_entry, &all_lock_classes); 1345 idx = class - lock_classes; 1346 if (idx > max_lock_class_idx) 1347 max_lock_class_idx = idx; 1348 1349 if (verbose(class)) { 1350 graph_unlock(); 1351 1352 printk("\nnew class %px: %s", class->key, class->name); 1353 if (class->name_version > 1) 1354 printk(KERN_CONT "#%d", class->name_version); 1355 printk(KERN_CONT "\n"); 1356 dump_stack(); 1357 1358 if (!graph_lock()) { 1359 return NULL; 1360 } 1361 } 1362 out_unlock_set: 1363 graph_unlock(); 1364 1365 out_set_class_cache: 1366 if (!subclass || force) 1367 lock->class_cache[0] = class; 1368 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1369 lock->class_cache[subclass] = class; 1370 1371 /* 1372 * Hash collision, did we smoke some? We found a class with a matching 1373 * hash but the subclass -- which is hashed in -- didn't match. 1374 */ 1375 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1376 return NULL; 1377 1378 return class; 1379 } 1380 1381 #ifdef CONFIG_PROVE_LOCKING 1382 /* 1383 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1384 * with NULL on failure) 1385 */ 1386 static struct lock_list *alloc_list_entry(void) 1387 { 1388 int idx = find_first_zero_bit(list_entries_in_use, 1389 ARRAY_SIZE(list_entries)); 1390 1391 if (idx >= ARRAY_SIZE(list_entries)) { 1392 if (!debug_locks_off_graph_unlock()) 1393 return NULL; 1394 1395 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1396 dump_stack(); 1397 return NULL; 1398 } 1399 nr_list_entries++; 1400 __set_bit(idx, list_entries_in_use); 1401 return list_entries + idx; 1402 } 1403 1404 /* 1405 * Add a new dependency to the head of the list: 1406 */ 1407 static int add_lock_to_list(struct lock_class *this, 1408 struct lock_class *links_to, struct list_head *head, 1409 u16 distance, u8 dep, 1410 const struct lock_trace *trace) 1411 { 1412 struct lock_list *entry; 1413 /* 1414 * Lock not present yet - get a new dependency struct and 1415 * add it to the list: 1416 */ 1417 entry = alloc_list_entry(); 1418 if (!entry) 1419 return 0; 1420 1421 entry->class = this; 1422 entry->links_to = links_to; 1423 entry->dep = dep; 1424 entry->distance = distance; 1425 entry->trace = trace; 1426 /* 1427 * Both allocation and removal are done under the graph lock; but 1428 * iteration is under RCU-sched; see look_up_lock_class() and 1429 * lockdep_free_key_range(). 1430 */ 1431 list_add_tail_rcu(&entry->entry, head); 1432 1433 return 1; 1434 } 1435 1436 /* 1437 * For good efficiency of modular, we use power of 2 1438 */ 1439 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1440 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1441 1442 /* 1443 * The circular_queue and helpers are used to implement graph 1444 * breadth-first search (BFS) algorithm, by which we can determine 1445 * whether there is a path from a lock to another. In deadlock checks, 1446 * a path from the next lock to be acquired to a previous held lock 1447 * indicates that adding the <prev> -> <next> lock dependency will 1448 * produce a circle in the graph. Breadth-first search instead of 1449 * depth-first search is used in order to find the shortest (circular) 1450 * path. 1451 */ 1452 struct circular_queue { 1453 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1454 unsigned int front, rear; 1455 }; 1456 1457 static struct circular_queue lock_cq; 1458 1459 unsigned int max_bfs_queue_depth; 1460 1461 static unsigned int lockdep_dependency_gen_id; 1462 1463 static inline void __cq_init(struct circular_queue *cq) 1464 { 1465 cq->front = cq->rear = 0; 1466 lockdep_dependency_gen_id++; 1467 } 1468 1469 static inline int __cq_empty(struct circular_queue *cq) 1470 { 1471 return (cq->front == cq->rear); 1472 } 1473 1474 static inline int __cq_full(struct circular_queue *cq) 1475 { 1476 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1477 } 1478 1479 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1480 { 1481 if (__cq_full(cq)) 1482 return -1; 1483 1484 cq->element[cq->rear] = elem; 1485 cq->rear = (cq->rear + 1) & CQ_MASK; 1486 return 0; 1487 } 1488 1489 /* 1490 * Dequeue an element from the circular_queue, return a lock_list if 1491 * the queue is not empty, or NULL if otherwise. 1492 */ 1493 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1494 { 1495 struct lock_list * lock; 1496 1497 if (__cq_empty(cq)) 1498 return NULL; 1499 1500 lock = cq->element[cq->front]; 1501 cq->front = (cq->front + 1) & CQ_MASK; 1502 1503 return lock; 1504 } 1505 1506 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1507 { 1508 return (cq->rear - cq->front) & CQ_MASK; 1509 } 1510 1511 static inline void mark_lock_accessed(struct lock_list *lock) 1512 { 1513 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1514 } 1515 1516 static inline void visit_lock_entry(struct lock_list *lock, 1517 struct lock_list *parent) 1518 { 1519 lock->parent = parent; 1520 } 1521 1522 static inline unsigned long lock_accessed(struct lock_list *lock) 1523 { 1524 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1525 } 1526 1527 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1528 { 1529 return child->parent; 1530 } 1531 1532 static inline int get_lock_depth(struct lock_list *child) 1533 { 1534 int depth = 0; 1535 struct lock_list *parent; 1536 1537 while ((parent = get_lock_parent(child))) { 1538 child = parent; 1539 depth++; 1540 } 1541 return depth; 1542 } 1543 1544 /* 1545 * Return the forward or backward dependency list. 1546 * 1547 * @lock: the lock_list to get its class's dependency list 1548 * @offset: the offset to struct lock_class to determine whether it is 1549 * locks_after or locks_before 1550 */ 1551 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1552 { 1553 void *lock_class = lock->class; 1554 1555 return lock_class + offset; 1556 } 1557 /* 1558 * Return values of a bfs search: 1559 * 1560 * BFS_E* indicates an error 1561 * BFS_R* indicates a result (match or not) 1562 * 1563 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1564 * 1565 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1566 * 1567 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1568 * *@target_entry. 1569 * 1570 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1571 * _unchanged_. 1572 */ 1573 enum bfs_result { 1574 BFS_EINVALIDNODE = -2, 1575 BFS_EQUEUEFULL = -1, 1576 BFS_RMATCH = 0, 1577 BFS_RNOMATCH = 1, 1578 }; 1579 1580 /* 1581 * bfs_result < 0 means error 1582 */ 1583 static inline bool bfs_error(enum bfs_result res) 1584 { 1585 return res < 0; 1586 } 1587 1588 /* 1589 * DEP_*_BIT in lock_list::dep 1590 * 1591 * For dependency @prev -> @next: 1592 * 1593 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1594 * (->read == 2) 1595 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1596 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1597 * EN: @prev is exclusive locker and @next is non-recursive locker 1598 * 1599 * Note that we define the value of DEP_*_BITs so that: 1600 * bit0 is prev->read == 0 1601 * bit1 is next->read != 2 1602 */ 1603 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1604 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1605 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1606 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1607 1608 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1609 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1610 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1611 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1612 1613 static inline unsigned int 1614 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1615 { 1616 return (prev->read == 0) + ((next->read != 2) << 1); 1617 } 1618 1619 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1620 { 1621 return 1U << __calc_dep_bit(prev, next); 1622 } 1623 1624 /* 1625 * calculate the dep_bit for backwards edges. We care about whether @prev is 1626 * shared and whether @next is recursive. 1627 */ 1628 static inline unsigned int 1629 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1630 { 1631 return (next->read != 2) + ((prev->read == 0) << 1); 1632 } 1633 1634 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1635 { 1636 return 1U << __calc_dep_bitb(prev, next); 1637 } 1638 1639 /* 1640 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1641 * search. 1642 */ 1643 static inline void __bfs_init_root(struct lock_list *lock, 1644 struct lock_class *class) 1645 { 1646 lock->class = class; 1647 lock->parent = NULL; 1648 lock->only_xr = 0; 1649 } 1650 1651 /* 1652 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1653 * root for a BFS search. 1654 * 1655 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1656 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1657 * and -(S*)->. 1658 */ 1659 static inline void bfs_init_root(struct lock_list *lock, 1660 struct held_lock *hlock) 1661 { 1662 __bfs_init_root(lock, hlock_class(hlock)); 1663 lock->only_xr = (hlock->read == 2); 1664 } 1665 1666 /* 1667 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1668 * 1669 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1670 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1671 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1672 */ 1673 static inline void bfs_init_rootb(struct lock_list *lock, 1674 struct held_lock *hlock) 1675 { 1676 __bfs_init_root(lock, hlock_class(hlock)); 1677 lock->only_xr = (hlock->read != 0); 1678 } 1679 1680 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1681 { 1682 if (!lock || !lock->parent) 1683 return NULL; 1684 1685 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1686 &lock->entry, struct lock_list, entry); 1687 } 1688 1689 /* 1690 * Breadth-First Search to find a strong path in the dependency graph. 1691 * 1692 * @source_entry: the source of the path we are searching for. 1693 * @data: data used for the second parameter of @match function 1694 * @match: match function for the search 1695 * @target_entry: pointer to the target of a matched path 1696 * @offset: the offset to struct lock_class to determine whether it is 1697 * locks_after or locks_before 1698 * 1699 * We may have multiple edges (considering different kinds of dependencies, 1700 * e.g. ER and SN) between two nodes in the dependency graph. But 1701 * only the strong dependency path in the graph is relevant to deadlocks. A 1702 * strong dependency path is a dependency path that doesn't have two adjacent 1703 * dependencies as -(*R)-> -(S*)->, please see: 1704 * 1705 * Documentation/locking/lockdep-design.rst 1706 * 1707 * for more explanation of the definition of strong dependency paths 1708 * 1709 * In __bfs(), we only traverse in the strong dependency path: 1710 * 1711 * In lock_list::only_xr, we record whether the previous dependency only 1712 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1713 * filter out any -(S*)-> in the current dependency and after that, the 1714 * ->only_xr is set according to whether we only have -(*R)-> left. 1715 */ 1716 static enum bfs_result __bfs(struct lock_list *source_entry, 1717 void *data, 1718 bool (*match)(struct lock_list *entry, void *data), 1719 bool (*skip)(struct lock_list *entry, void *data), 1720 struct lock_list **target_entry, 1721 int offset) 1722 { 1723 struct circular_queue *cq = &lock_cq; 1724 struct lock_list *lock = NULL; 1725 struct lock_list *entry; 1726 struct list_head *head; 1727 unsigned int cq_depth; 1728 bool first; 1729 1730 lockdep_assert_locked(); 1731 1732 __cq_init(cq); 1733 __cq_enqueue(cq, source_entry); 1734 1735 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1736 if (!lock->class) 1737 return BFS_EINVALIDNODE; 1738 1739 /* 1740 * Step 1: check whether we already finish on this one. 1741 * 1742 * If we have visited all the dependencies from this @lock to 1743 * others (iow, if we have visited all lock_list entries in 1744 * @lock->class->locks_{after,before}) we skip, otherwise go 1745 * and visit all the dependencies in the list and mark this 1746 * list accessed. 1747 */ 1748 if (lock_accessed(lock)) 1749 continue; 1750 else 1751 mark_lock_accessed(lock); 1752 1753 /* 1754 * Step 2: check whether prev dependency and this form a strong 1755 * dependency path. 1756 */ 1757 if (lock->parent) { /* Parent exists, check prev dependency */ 1758 u8 dep = lock->dep; 1759 bool prev_only_xr = lock->parent->only_xr; 1760 1761 /* 1762 * Mask out all -(S*)-> if we only have *R in previous 1763 * step, because -(*R)-> -(S*)-> don't make up a strong 1764 * dependency. 1765 */ 1766 if (prev_only_xr) 1767 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1768 1769 /* If nothing left, we skip */ 1770 if (!dep) 1771 continue; 1772 1773 /* If there are only -(*R)-> left, set that for the next step */ 1774 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1775 } 1776 1777 /* 1778 * Step 3: we haven't visited this and there is a strong 1779 * dependency path to this, so check with @match. 1780 * If @skip is provide and returns true, we skip this 1781 * lock (and any path this lock is in). 1782 */ 1783 if (skip && skip(lock, data)) 1784 continue; 1785 1786 if (match(lock, data)) { 1787 *target_entry = lock; 1788 return BFS_RMATCH; 1789 } 1790 1791 /* 1792 * Step 4: if not match, expand the path by adding the 1793 * forward or backwards dependencies in the search 1794 * 1795 */ 1796 first = true; 1797 head = get_dep_list(lock, offset); 1798 list_for_each_entry_rcu(entry, head, entry) { 1799 visit_lock_entry(entry, lock); 1800 1801 /* 1802 * Note we only enqueue the first of the list into the 1803 * queue, because we can always find a sibling 1804 * dependency from one (see __bfs_next()), as a result 1805 * the space of queue is saved. 1806 */ 1807 if (!first) 1808 continue; 1809 1810 first = false; 1811 1812 if (__cq_enqueue(cq, entry)) 1813 return BFS_EQUEUEFULL; 1814 1815 cq_depth = __cq_get_elem_count(cq); 1816 if (max_bfs_queue_depth < cq_depth) 1817 max_bfs_queue_depth = cq_depth; 1818 } 1819 } 1820 1821 return BFS_RNOMATCH; 1822 } 1823 1824 static inline enum bfs_result 1825 __bfs_forwards(struct lock_list *src_entry, 1826 void *data, 1827 bool (*match)(struct lock_list *entry, void *data), 1828 bool (*skip)(struct lock_list *entry, void *data), 1829 struct lock_list **target_entry) 1830 { 1831 return __bfs(src_entry, data, match, skip, target_entry, 1832 offsetof(struct lock_class, locks_after)); 1833 1834 } 1835 1836 static inline enum bfs_result 1837 __bfs_backwards(struct lock_list *src_entry, 1838 void *data, 1839 bool (*match)(struct lock_list *entry, void *data), 1840 bool (*skip)(struct lock_list *entry, void *data), 1841 struct lock_list **target_entry) 1842 { 1843 return __bfs(src_entry, data, match, skip, target_entry, 1844 offsetof(struct lock_class, locks_before)); 1845 1846 } 1847 1848 static void print_lock_trace(const struct lock_trace *trace, 1849 unsigned int spaces) 1850 { 1851 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1852 } 1853 1854 /* 1855 * Print a dependency chain entry (this is only done when a deadlock 1856 * has been detected): 1857 */ 1858 static noinline void 1859 print_circular_bug_entry(struct lock_list *target, int depth) 1860 { 1861 if (debug_locks_silent) 1862 return; 1863 printk("\n-> #%u", depth); 1864 print_lock_name(NULL, target->class); 1865 printk(KERN_CONT ":\n"); 1866 print_lock_trace(target->trace, 6); 1867 } 1868 1869 static void 1870 print_circular_lock_scenario(struct held_lock *src, 1871 struct held_lock *tgt, 1872 struct lock_list *prt) 1873 { 1874 struct lock_class *source = hlock_class(src); 1875 struct lock_class *target = hlock_class(tgt); 1876 struct lock_class *parent = prt->class; 1877 int src_read = src->read; 1878 int tgt_read = tgt->read; 1879 1880 /* 1881 * A direct locking problem where unsafe_class lock is taken 1882 * directly by safe_class lock, then all we need to show 1883 * is the deadlock scenario, as it is obvious that the 1884 * unsafe lock is taken under the safe lock. 1885 * 1886 * But if there is a chain instead, where the safe lock takes 1887 * an intermediate lock (middle_class) where this lock is 1888 * not the same as the safe lock, then the lock chain is 1889 * used to describe the problem. Otherwise we would need 1890 * to show a different CPU case for each link in the chain 1891 * from the safe_class lock to the unsafe_class lock. 1892 */ 1893 if (parent != source) { 1894 printk("Chain exists of:\n "); 1895 __print_lock_name(src, source); 1896 printk(KERN_CONT " --> "); 1897 __print_lock_name(NULL, parent); 1898 printk(KERN_CONT " --> "); 1899 __print_lock_name(tgt, target); 1900 printk(KERN_CONT "\n\n"); 1901 } 1902 1903 printk(" Possible unsafe locking scenario:\n\n"); 1904 printk(" CPU0 CPU1\n"); 1905 printk(" ---- ----\n"); 1906 if (tgt_read != 0) 1907 printk(" rlock("); 1908 else 1909 printk(" lock("); 1910 __print_lock_name(tgt, target); 1911 printk(KERN_CONT ");\n"); 1912 printk(" lock("); 1913 __print_lock_name(NULL, parent); 1914 printk(KERN_CONT ");\n"); 1915 printk(" lock("); 1916 __print_lock_name(tgt, target); 1917 printk(KERN_CONT ");\n"); 1918 if (src_read != 0) 1919 printk(" rlock("); 1920 else if (src->sync) 1921 printk(" sync("); 1922 else 1923 printk(" lock("); 1924 __print_lock_name(src, source); 1925 printk(KERN_CONT ");\n"); 1926 printk("\n *** DEADLOCK ***\n\n"); 1927 } 1928 1929 /* 1930 * When a circular dependency is detected, print the 1931 * header first: 1932 */ 1933 static noinline void 1934 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1935 struct held_lock *check_src, 1936 struct held_lock *check_tgt) 1937 { 1938 struct task_struct *curr = current; 1939 1940 if (debug_locks_silent) 1941 return; 1942 1943 pr_warn("\n"); 1944 pr_warn("======================================================\n"); 1945 pr_warn("WARNING: possible circular locking dependency detected\n"); 1946 print_kernel_ident(); 1947 pr_warn("------------------------------------------------------\n"); 1948 pr_warn("%s/%d is trying to acquire lock:\n", 1949 curr->comm, task_pid_nr(curr)); 1950 print_lock(check_src); 1951 1952 pr_warn("\nbut task is already holding lock:\n"); 1953 1954 print_lock(check_tgt); 1955 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1956 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1957 1958 print_circular_bug_entry(entry, depth); 1959 } 1960 1961 /* 1962 * We are about to add A -> B into the dependency graph, and in __bfs() a 1963 * strong dependency path A -> .. -> B is found: hlock_class equals 1964 * entry->class. 1965 * 1966 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1967 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1968 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1969 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1970 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1971 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1972 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1973 * 1974 * We need to make sure both the start and the end of A -> .. -> B is not 1975 * weaker than A -> B. For the start part, please see the comment in 1976 * check_redundant(). For the end part, we need: 1977 * 1978 * Either 1979 * 1980 * a) A -> B is -(*R)-> (everything is not weaker than that) 1981 * 1982 * or 1983 * 1984 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1985 * 1986 */ 1987 static inline bool hlock_equal(struct lock_list *entry, void *data) 1988 { 1989 struct held_lock *hlock = (struct held_lock *)data; 1990 1991 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1992 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1993 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1994 } 1995 1996 /* 1997 * We are about to add B -> A into the dependency graph, and in __bfs() a 1998 * strong dependency path A -> .. -> B is found: hlock_class equals 1999 * entry->class. 2000 * 2001 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2002 * dependency cycle, that means: 2003 * 2004 * Either 2005 * 2006 * a) B -> A is -(E*)-> 2007 * 2008 * or 2009 * 2010 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2011 * 2012 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2013 */ 2014 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2015 { 2016 struct held_lock *hlock = (struct held_lock *)data; 2017 2018 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2019 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2020 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2021 } 2022 2023 static noinline void print_circular_bug(struct lock_list *this, 2024 struct lock_list *target, 2025 struct held_lock *check_src, 2026 struct held_lock *check_tgt) 2027 { 2028 struct task_struct *curr = current; 2029 struct lock_list *parent; 2030 struct lock_list *first_parent; 2031 int depth; 2032 2033 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2034 return; 2035 2036 this->trace = save_trace(); 2037 if (!this->trace) 2038 return; 2039 2040 depth = get_lock_depth(target); 2041 2042 print_circular_bug_header(target, depth, check_src, check_tgt); 2043 2044 parent = get_lock_parent(target); 2045 first_parent = parent; 2046 2047 while (parent) { 2048 print_circular_bug_entry(parent, --depth); 2049 parent = get_lock_parent(parent); 2050 } 2051 2052 printk("\nother info that might help us debug this:\n\n"); 2053 print_circular_lock_scenario(check_src, check_tgt, 2054 first_parent); 2055 2056 lockdep_print_held_locks(curr); 2057 2058 printk("\nstack backtrace:\n"); 2059 dump_stack(); 2060 } 2061 2062 static noinline void print_bfs_bug(int ret) 2063 { 2064 if (!debug_locks_off_graph_unlock()) 2065 return; 2066 2067 /* 2068 * Breadth-first-search failed, graph got corrupted? 2069 */ 2070 WARN(1, "lockdep bfs error:%d\n", ret); 2071 } 2072 2073 static bool noop_count(struct lock_list *entry, void *data) 2074 { 2075 (*(unsigned long *)data)++; 2076 return false; 2077 } 2078 2079 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2080 { 2081 unsigned long count = 0; 2082 struct lock_list *target_entry; 2083 2084 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2085 2086 return count; 2087 } 2088 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2089 { 2090 unsigned long ret, flags; 2091 struct lock_list this; 2092 2093 __bfs_init_root(&this, class); 2094 2095 raw_local_irq_save(flags); 2096 lockdep_lock(); 2097 ret = __lockdep_count_forward_deps(&this); 2098 lockdep_unlock(); 2099 raw_local_irq_restore(flags); 2100 2101 return ret; 2102 } 2103 2104 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2105 { 2106 unsigned long count = 0; 2107 struct lock_list *target_entry; 2108 2109 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2110 2111 return count; 2112 } 2113 2114 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2115 { 2116 unsigned long ret, flags; 2117 struct lock_list this; 2118 2119 __bfs_init_root(&this, class); 2120 2121 raw_local_irq_save(flags); 2122 lockdep_lock(); 2123 ret = __lockdep_count_backward_deps(&this); 2124 lockdep_unlock(); 2125 raw_local_irq_restore(flags); 2126 2127 return ret; 2128 } 2129 2130 /* 2131 * Check that the dependency graph starting at <src> can lead to 2132 * <target> or not. 2133 */ 2134 static noinline enum bfs_result 2135 check_path(struct held_lock *target, struct lock_list *src_entry, 2136 bool (*match)(struct lock_list *entry, void *data), 2137 bool (*skip)(struct lock_list *entry, void *data), 2138 struct lock_list **target_entry) 2139 { 2140 enum bfs_result ret; 2141 2142 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2143 2144 if (unlikely(bfs_error(ret))) 2145 print_bfs_bug(ret); 2146 2147 return ret; 2148 } 2149 2150 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2151 2152 /* 2153 * Prove that the dependency graph starting at <src> can not 2154 * lead to <target>. If it can, there is a circle when adding 2155 * <target> -> <src> dependency. 2156 * 2157 * Print an error and return BFS_RMATCH if it does. 2158 */ 2159 static noinline enum bfs_result 2160 check_noncircular(struct held_lock *src, struct held_lock *target, 2161 struct lock_trace **const trace) 2162 { 2163 enum bfs_result ret; 2164 struct lock_list *target_entry; 2165 struct lock_list src_entry; 2166 2167 bfs_init_root(&src_entry, src); 2168 2169 debug_atomic_inc(nr_cyclic_checks); 2170 2171 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2172 2173 if (unlikely(ret == BFS_RMATCH)) { 2174 if (!*trace) { 2175 /* 2176 * If save_trace fails here, the printing might 2177 * trigger a WARN but because of the !nr_entries it 2178 * should not do bad things. 2179 */ 2180 *trace = save_trace(); 2181 } 2182 2183 if (src->class_idx == target->class_idx) 2184 print_deadlock_bug(current, src, target); 2185 else 2186 print_circular_bug(&src_entry, target_entry, src, target); 2187 } 2188 2189 return ret; 2190 } 2191 2192 #ifdef CONFIG_TRACE_IRQFLAGS 2193 2194 /* 2195 * Forwards and backwards subgraph searching, for the purposes of 2196 * proving that two subgraphs can be connected by a new dependency 2197 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2198 * 2199 * A irq safe->unsafe deadlock happens with the following conditions: 2200 * 2201 * 1) We have a strong dependency path A -> ... -> B 2202 * 2203 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2204 * irq can create a new dependency B -> A (consider the case that a holder 2205 * of B gets interrupted by an irq whose handler will try to acquire A). 2206 * 2207 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2208 * strong circle: 2209 * 2210 * For the usage bits of B: 2211 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2212 * ENABLED_IRQ usage suffices. 2213 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2214 * ENABLED_IRQ_*_READ usage suffices. 2215 * 2216 * For the usage bits of A: 2217 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2218 * USED_IN_IRQ usage suffices. 2219 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2220 * USED_IN_IRQ_*_READ usage suffices. 2221 */ 2222 2223 /* 2224 * There is a strong dependency path in the dependency graph: A -> B, and now 2225 * we need to decide which usage bit of A should be accumulated to detect 2226 * safe->unsafe bugs. 2227 * 2228 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2229 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2230 * 2231 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2232 * path, any usage of A should be considered. Otherwise, we should only 2233 * consider _READ usage. 2234 */ 2235 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2236 { 2237 if (!entry->only_xr) 2238 *(unsigned long *)mask |= entry->class->usage_mask; 2239 else /* Mask out _READ usage bits */ 2240 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2241 2242 return false; 2243 } 2244 2245 /* 2246 * There is a strong dependency path in the dependency graph: A -> B, and now 2247 * we need to decide which usage bit of B conflicts with the usage bits of A, 2248 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2249 * 2250 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2251 * path, any usage of B should be considered. Otherwise, we should only 2252 * consider _READ usage. 2253 */ 2254 static inline bool usage_match(struct lock_list *entry, void *mask) 2255 { 2256 if (!entry->only_xr) 2257 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2258 else /* Mask out _READ usage bits */ 2259 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2260 } 2261 2262 static inline bool usage_skip(struct lock_list *entry, void *mask) 2263 { 2264 if (entry->class->lock_type == LD_LOCK_NORMAL) 2265 return false; 2266 2267 /* 2268 * Skip local_lock() for irq inversion detection. 2269 * 2270 * For !RT, local_lock() is not a real lock, so it won't carry any 2271 * dependency. 2272 * 2273 * For RT, an irq inversion happens when we have lock A and B, and on 2274 * some CPU we can have: 2275 * 2276 * lock(A); 2277 * <interrupted> 2278 * lock(B); 2279 * 2280 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2281 * 2282 * Now we prove local_lock() cannot exist in that dependency. First we 2283 * have the observation for any lock chain L1 -> ... -> Ln, for any 2284 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2285 * wait context check will complain. And since B is not a sleep lock, 2286 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2287 * local_lock() is 3, which is greater than 2, therefore there is no 2288 * way the local_lock() exists in the dependency B -> ... -> A. 2289 * 2290 * As a result, we will skip local_lock(), when we search for irq 2291 * inversion bugs. 2292 */ 2293 if (entry->class->lock_type == LD_LOCK_PERCPU && 2294 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2295 return false; 2296 2297 /* 2298 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2299 * a lock and only used to override the wait_type. 2300 */ 2301 2302 return true; 2303 } 2304 2305 /* 2306 * Find a node in the forwards-direction dependency sub-graph starting 2307 * at @root->class that matches @bit. 2308 * 2309 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2310 * into *@target_entry. 2311 */ 2312 static enum bfs_result 2313 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2314 struct lock_list **target_entry) 2315 { 2316 enum bfs_result result; 2317 2318 debug_atomic_inc(nr_find_usage_forwards_checks); 2319 2320 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2321 2322 return result; 2323 } 2324 2325 /* 2326 * Find a node in the backwards-direction dependency sub-graph starting 2327 * at @root->class that matches @bit. 2328 */ 2329 static enum bfs_result 2330 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2331 struct lock_list **target_entry) 2332 { 2333 enum bfs_result result; 2334 2335 debug_atomic_inc(nr_find_usage_backwards_checks); 2336 2337 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2338 2339 return result; 2340 } 2341 2342 static void print_lock_class_header(struct lock_class *class, int depth) 2343 { 2344 int bit; 2345 2346 printk("%*s->", depth, ""); 2347 print_lock_name(NULL, class); 2348 #ifdef CONFIG_DEBUG_LOCKDEP 2349 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2350 #endif 2351 printk(KERN_CONT " {\n"); 2352 2353 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2354 if (class->usage_mask & (1 << bit)) { 2355 int len = depth; 2356 2357 len += printk("%*s %s", depth, "", usage_str[bit]); 2358 len += printk(KERN_CONT " at:\n"); 2359 print_lock_trace(class->usage_traces[bit], len); 2360 } 2361 } 2362 printk("%*s }\n", depth, ""); 2363 2364 printk("%*s ... key at: [<%px>] %pS\n", 2365 depth, "", class->key, class->key); 2366 } 2367 2368 /* 2369 * Dependency path printing: 2370 * 2371 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2372 * printing out each lock in the dependency path will help on understanding how 2373 * the deadlock could happen. Here are some details about dependency path 2374 * printing: 2375 * 2376 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2377 * for a lock dependency A -> B, there are two lock_lists: 2378 * 2379 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2380 * ->links_to is A. In this case, we can say the lock_list is 2381 * "A -> B" (forwards case). 2382 * 2383 * b) lock_list in the ->locks_before list of B, whose ->class is A 2384 * and ->links_to is B. In this case, we can say the lock_list is 2385 * "B <- A" (bacwards case). 2386 * 2387 * The ->trace of both a) and b) point to the call trace where B was 2388 * acquired with A held. 2389 * 2390 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2391 * represent a certain lock dependency, it only provides an initial entry 2392 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2393 * ->class is A, as a result BFS will search all dependencies starting with 2394 * A, e.g. A -> B or A -> C. 2395 * 2396 * The notation of a forwards helper lock_list is like "-> A", which means 2397 * we should search the forwards dependencies starting with "A", e.g A -> B 2398 * or A -> C. 2399 * 2400 * The notation of a bacwards helper lock_list is like "<- B", which means 2401 * we should search the backwards dependencies ending with "B", e.g. 2402 * B <- A or B <- C. 2403 */ 2404 2405 /* 2406 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2407 * 2408 * We have a lock dependency path as follow: 2409 * 2410 * @root @leaf 2411 * | | 2412 * V V 2413 * ->parent ->parent 2414 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2415 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2416 * 2417 * , so it's natural that we start from @leaf and print every ->class and 2418 * ->trace until we reach the @root. 2419 */ 2420 static void __used 2421 print_shortest_lock_dependencies(struct lock_list *leaf, 2422 struct lock_list *root) 2423 { 2424 struct lock_list *entry = leaf; 2425 int depth; 2426 2427 /*compute depth from generated tree by BFS*/ 2428 depth = get_lock_depth(leaf); 2429 2430 do { 2431 print_lock_class_header(entry->class, depth); 2432 printk("%*s ... acquired at:\n", depth, ""); 2433 print_lock_trace(entry->trace, 2); 2434 printk("\n"); 2435 2436 if (depth == 0 && (entry != root)) { 2437 printk("lockdep:%s bad path found in chain graph\n", __func__); 2438 break; 2439 } 2440 2441 entry = get_lock_parent(entry); 2442 depth--; 2443 } while (entry && (depth >= 0)); 2444 } 2445 2446 /* 2447 * printk the shortest lock dependencies from @leaf to @root. 2448 * 2449 * We have a lock dependency path (from a backwards search) as follow: 2450 * 2451 * @leaf @root 2452 * | | 2453 * V V 2454 * ->parent ->parent 2455 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2456 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2457 * 2458 * , so when we iterate from @leaf to @root, we actually print the lock 2459 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2460 * 2461 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2462 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2463 * trace of L1 in the dependency path, which is alright, because most of the 2464 * time we can figure out where L1 is held from the call trace of L2. 2465 */ 2466 static void __used 2467 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2468 struct lock_list *root) 2469 { 2470 struct lock_list *entry = leaf; 2471 const struct lock_trace *trace = NULL; 2472 int depth; 2473 2474 /*compute depth from generated tree by BFS*/ 2475 depth = get_lock_depth(leaf); 2476 2477 do { 2478 print_lock_class_header(entry->class, depth); 2479 if (trace) { 2480 printk("%*s ... acquired at:\n", depth, ""); 2481 print_lock_trace(trace, 2); 2482 printk("\n"); 2483 } 2484 2485 /* 2486 * Record the pointer to the trace for the next lock_list 2487 * entry, see the comments for the function. 2488 */ 2489 trace = entry->trace; 2490 2491 if (depth == 0 && (entry != root)) { 2492 printk("lockdep:%s bad path found in chain graph\n", __func__); 2493 break; 2494 } 2495 2496 entry = get_lock_parent(entry); 2497 depth--; 2498 } while (entry && (depth >= 0)); 2499 } 2500 2501 static void 2502 print_irq_lock_scenario(struct lock_list *safe_entry, 2503 struct lock_list *unsafe_entry, 2504 struct lock_class *prev_class, 2505 struct lock_class *next_class) 2506 { 2507 struct lock_class *safe_class = safe_entry->class; 2508 struct lock_class *unsafe_class = unsafe_entry->class; 2509 struct lock_class *middle_class = prev_class; 2510 2511 if (middle_class == safe_class) 2512 middle_class = next_class; 2513 2514 /* 2515 * A direct locking problem where unsafe_class lock is taken 2516 * directly by safe_class lock, then all we need to show 2517 * is the deadlock scenario, as it is obvious that the 2518 * unsafe lock is taken under the safe lock. 2519 * 2520 * But if there is a chain instead, where the safe lock takes 2521 * an intermediate lock (middle_class) where this lock is 2522 * not the same as the safe lock, then the lock chain is 2523 * used to describe the problem. Otherwise we would need 2524 * to show a different CPU case for each link in the chain 2525 * from the safe_class lock to the unsafe_class lock. 2526 */ 2527 if (middle_class != unsafe_class) { 2528 printk("Chain exists of:\n "); 2529 __print_lock_name(NULL, safe_class); 2530 printk(KERN_CONT " --> "); 2531 __print_lock_name(NULL, middle_class); 2532 printk(KERN_CONT " --> "); 2533 __print_lock_name(NULL, unsafe_class); 2534 printk(KERN_CONT "\n\n"); 2535 } 2536 2537 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2538 printk(" CPU0 CPU1\n"); 2539 printk(" ---- ----\n"); 2540 printk(" lock("); 2541 __print_lock_name(NULL, unsafe_class); 2542 printk(KERN_CONT ");\n"); 2543 printk(" local_irq_disable();\n"); 2544 printk(" lock("); 2545 __print_lock_name(NULL, safe_class); 2546 printk(KERN_CONT ");\n"); 2547 printk(" lock("); 2548 __print_lock_name(NULL, middle_class); 2549 printk(KERN_CONT ");\n"); 2550 printk(" <Interrupt>\n"); 2551 printk(" lock("); 2552 __print_lock_name(NULL, safe_class); 2553 printk(KERN_CONT ");\n"); 2554 printk("\n *** DEADLOCK ***\n\n"); 2555 } 2556 2557 static void 2558 print_bad_irq_dependency(struct task_struct *curr, 2559 struct lock_list *prev_root, 2560 struct lock_list *next_root, 2561 struct lock_list *backwards_entry, 2562 struct lock_list *forwards_entry, 2563 struct held_lock *prev, 2564 struct held_lock *next, 2565 enum lock_usage_bit bit1, 2566 enum lock_usage_bit bit2, 2567 const char *irqclass) 2568 { 2569 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2570 return; 2571 2572 pr_warn("\n"); 2573 pr_warn("=====================================================\n"); 2574 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2575 irqclass, irqclass); 2576 print_kernel_ident(); 2577 pr_warn("-----------------------------------------------------\n"); 2578 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2579 curr->comm, task_pid_nr(curr), 2580 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2581 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2582 lockdep_hardirqs_enabled(), 2583 curr->softirqs_enabled); 2584 print_lock(next); 2585 2586 pr_warn("\nand this task is already holding:\n"); 2587 print_lock(prev); 2588 pr_warn("which would create a new lock dependency:\n"); 2589 print_lock_name(prev, hlock_class(prev)); 2590 pr_cont(" ->"); 2591 print_lock_name(next, hlock_class(next)); 2592 pr_cont("\n"); 2593 2594 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2595 irqclass); 2596 print_lock_name(NULL, backwards_entry->class); 2597 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2598 2599 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2600 2601 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2602 print_lock_name(NULL, forwards_entry->class); 2603 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2604 pr_warn("..."); 2605 2606 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2607 2608 pr_warn("\nother info that might help us debug this:\n\n"); 2609 print_irq_lock_scenario(backwards_entry, forwards_entry, 2610 hlock_class(prev), hlock_class(next)); 2611 2612 lockdep_print_held_locks(curr); 2613 2614 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2615 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2616 2617 pr_warn("\nthe dependencies between the lock to be acquired"); 2618 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2619 next_root->trace = save_trace(); 2620 if (!next_root->trace) 2621 return; 2622 print_shortest_lock_dependencies(forwards_entry, next_root); 2623 2624 pr_warn("\nstack backtrace:\n"); 2625 dump_stack(); 2626 } 2627 2628 static const char *state_names[] = { 2629 #define LOCKDEP_STATE(__STATE) \ 2630 __stringify(__STATE), 2631 #include "lockdep_states.h" 2632 #undef LOCKDEP_STATE 2633 }; 2634 2635 static const char *state_rnames[] = { 2636 #define LOCKDEP_STATE(__STATE) \ 2637 __stringify(__STATE)"-READ", 2638 #include "lockdep_states.h" 2639 #undef LOCKDEP_STATE 2640 }; 2641 2642 static inline const char *state_name(enum lock_usage_bit bit) 2643 { 2644 if (bit & LOCK_USAGE_READ_MASK) 2645 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2646 else 2647 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2648 } 2649 2650 /* 2651 * The bit number is encoded like: 2652 * 2653 * bit0: 0 exclusive, 1 read lock 2654 * bit1: 0 used in irq, 1 irq enabled 2655 * bit2-n: state 2656 */ 2657 static int exclusive_bit(int new_bit) 2658 { 2659 int state = new_bit & LOCK_USAGE_STATE_MASK; 2660 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2661 2662 /* 2663 * keep state, bit flip the direction and strip read. 2664 */ 2665 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2666 } 2667 2668 /* 2669 * Observe that when given a bitmask where each bitnr is encoded as above, a 2670 * right shift of the mask transforms the individual bitnrs as -1 and 2671 * conversely, a left shift transforms into +1 for the individual bitnrs. 2672 * 2673 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2674 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2675 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2676 * 2677 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2678 * 2679 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2680 * all bits set) and recompose with bitnr1 flipped. 2681 */ 2682 static unsigned long invert_dir_mask(unsigned long mask) 2683 { 2684 unsigned long excl = 0; 2685 2686 /* Invert dir */ 2687 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2688 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2689 2690 return excl; 2691 } 2692 2693 /* 2694 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2695 * usage may cause deadlock too, for example: 2696 * 2697 * P1 P2 2698 * <irq disabled> 2699 * write_lock(l1); <irq enabled> 2700 * read_lock(l2); 2701 * write_lock(l2); 2702 * <in irq> 2703 * read_lock(l1); 2704 * 2705 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2706 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2707 * deadlock. 2708 * 2709 * In fact, all of the following cases may cause deadlocks: 2710 * 2711 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2712 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2713 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2714 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2715 * 2716 * As a result, to calculate the "exclusive mask", first we invert the 2717 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2718 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2719 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2720 */ 2721 static unsigned long exclusive_mask(unsigned long mask) 2722 { 2723 unsigned long excl = invert_dir_mask(mask); 2724 2725 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2726 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2727 2728 return excl; 2729 } 2730 2731 /* 2732 * Retrieve the _possible_ original mask to which @mask is 2733 * exclusive. Ie: this is the opposite of exclusive_mask(). 2734 * Note that 2 possible original bits can match an exclusive 2735 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2736 * cleared. So both are returned for each exclusive bit. 2737 */ 2738 static unsigned long original_mask(unsigned long mask) 2739 { 2740 unsigned long excl = invert_dir_mask(mask); 2741 2742 /* Include read in existing usages */ 2743 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2744 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2745 2746 return excl; 2747 } 2748 2749 /* 2750 * Find the first pair of bit match between an original 2751 * usage mask and an exclusive usage mask. 2752 */ 2753 static int find_exclusive_match(unsigned long mask, 2754 unsigned long excl_mask, 2755 enum lock_usage_bit *bitp, 2756 enum lock_usage_bit *excl_bitp) 2757 { 2758 int bit, excl, excl_read; 2759 2760 for_each_set_bit(bit, &mask, LOCK_USED) { 2761 /* 2762 * exclusive_bit() strips the read bit, however, 2763 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2764 * to search excl | LOCK_USAGE_READ_MASK as well. 2765 */ 2766 excl = exclusive_bit(bit); 2767 excl_read = excl | LOCK_USAGE_READ_MASK; 2768 if (excl_mask & lock_flag(excl)) { 2769 *bitp = bit; 2770 *excl_bitp = excl; 2771 return 0; 2772 } else if (excl_mask & lock_flag(excl_read)) { 2773 *bitp = bit; 2774 *excl_bitp = excl_read; 2775 return 0; 2776 } 2777 } 2778 return -1; 2779 } 2780 2781 /* 2782 * Prove that the new dependency does not connect a hardirq-safe(-read) 2783 * lock with a hardirq-unsafe lock - to achieve this we search 2784 * the backwards-subgraph starting at <prev>, and the 2785 * forwards-subgraph starting at <next>: 2786 */ 2787 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2788 struct held_lock *next) 2789 { 2790 unsigned long usage_mask = 0, forward_mask, backward_mask; 2791 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2792 struct lock_list *target_entry1; 2793 struct lock_list *target_entry; 2794 struct lock_list this, that; 2795 enum bfs_result ret; 2796 2797 /* 2798 * Step 1: gather all hard/soft IRQs usages backward in an 2799 * accumulated usage mask. 2800 */ 2801 bfs_init_rootb(&this, prev); 2802 2803 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2804 if (bfs_error(ret)) { 2805 print_bfs_bug(ret); 2806 return 0; 2807 } 2808 2809 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2810 if (!usage_mask) 2811 return 1; 2812 2813 /* 2814 * Step 2: find exclusive uses forward that match the previous 2815 * backward accumulated mask. 2816 */ 2817 forward_mask = exclusive_mask(usage_mask); 2818 2819 bfs_init_root(&that, next); 2820 2821 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2822 if (bfs_error(ret)) { 2823 print_bfs_bug(ret); 2824 return 0; 2825 } 2826 if (ret == BFS_RNOMATCH) 2827 return 1; 2828 2829 /* 2830 * Step 3: we found a bad match! Now retrieve a lock from the backward 2831 * list whose usage mask matches the exclusive usage mask from the 2832 * lock found on the forward list. 2833 * 2834 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2835 * the follow case: 2836 * 2837 * When trying to add A -> B to the graph, we find that there is a 2838 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2839 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2840 * invert bits of M's usage_mask, we will find another lock N that is 2841 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2842 * cause a inversion deadlock. 2843 */ 2844 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2845 2846 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2847 if (bfs_error(ret)) { 2848 print_bfs_bug(ret); 2849 return 0; 2850 } 2851 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2852 return 1; 2853 2854 /* 2855 * Step 4: narrow down to a pair of incompatible usage bits 2856 * and report it. 2857 */ 2858 ret = find_exclusive_match(target_entry->class->usage_mask, 2859 target_entry1->class->usage_mask, 2860 &backward_bit, &forward_bit); 2861 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2862 return 1; 2863 2864 print_bad_irq_dependency(curr, &this, &that, 2865 target_entry, target_entry1, 2866 prev, next, 2867 backward_bit, forward_bit, 2868 state_name(backward_bit)); 2869 2870 return 0; 2871 } 2872 2873 #else 2874 2875 static inline int check_irq_usage(struct task_struct *curr, 2876 struct held_lock *prev, struct held_lock *next) 2877 { 2878 return 1; 2879 } 2880 2881 static inline bool usage_skip(struct lock_list *entry, void *mask) 2882 { 2883 return false; 2884 } 2885 2886 #endif /* CONFIG_TRACE_IRQFLAGS */ 2887 2888 #ifdef CONFIG_LOCKDEP_SMALL 2889 /* 2890 * Check that the dependency graph starting at <src> can lead to 2891 * <target> or not. If it can, <src> -> <target> dependency is already 2892 * in the graph. 2893 * 2894 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2895 * any error appears in the bfs search. 2896 */ 2897 static noinline enum bfs_result 2898 check_redundant(struct held_lock *src, struct held_lock *target) 2899 { 2900 enum bfs_result ret; 2901 struct lock_list *target_entry; 2902 struct lock_list src_entry; 2903 2904 bfs_init_root(&src_entry, src); 2905 /* 2906 * Special setup for check_redundant(). 2907 * 2908 * To report redundant, we need to find a strong dependency path that 2909 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2910 * we need to let __bfs() only search for a path starting at a -(E*)->, 2911 * we achieve this by setting the initial node's ->only_xr to true in 2912 * that case. And if <prev> is S, we set initial ->only_xr to false 2913 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2914 */ 2915 src_entry.only_xr = src->read == 0; 2916 2917 debug_atomic_inc(nr_redundant_checks); 2918 2919 /* 2920 * Note: we skip local_lock() for redundant check, because as the 2921 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2922 * the same. 2923 */ 2924 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2925 2926 if (ret == BFS_RMATCH) 2927 debug_atomic_inc(nr_redundant); 2928 2929 return ret; 2930 } 2931 2932 #else 2933 2934 static inline enum bfs_result 2935 check_redundant(struct held_lock *src, struct held_lock *target) 2936 { 2937 return BFS_RNOMATCH; 2938 } 2939 2940 #endif 2941 2942 static void inc_chains(int irq_context) 2943 { 2944 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2945 nr_hardirq_chains++; 2946 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2947 nr_softirq_chains++; 2948 else 2949 nr_process_chains++; 2950 } 2951 2952 static void dec_chains(int irq_context) 2953 { 2954 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2955 nr_hardirq_chains--; 2956 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2957 nr_softirq_chains--; 2958 else 2959 nr_process_chains--; 2960 } 2961 2962 static void 2963 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2964 { 2965 struct lock_class *next = hlock_class(nxt); 2966 struct lock_class *prev = hlock_class(prv); 2967 2968 printk(" Possible unsafe locking scenario:\n\n"); 2969 printk(" CPU0\n"); 2970 printk(" ----\n"); 2971 printk(" lock("); 2972 __print_lock_name(prv, prev); 2973 printk(KERN_CONT ");\n"); 2974 printk(" lock("); 2975 __print_lock_name(nxt, next); 2976 printk(KERN_CONT ");\n"); 2977 printk("\n *** DEADLOCK ***\n\n"); 2978 printk(" May be due to missing lock nesting notation\n\n"); 2979 } 2980 2981 static void 2982 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2983 struct held_lock *next) 2984 { 2985 struct lock_class *class = hlock_class(prev); 2986 2987 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2988 return; 2989 2990 pr_warn("\n"); 2991 pr_warn("============================================\n"); 2992 pr_warn("WARNING: possible recursive locking detected\n"); 2993 print_kernel_ident(); 2994 pr_warn("--------------------------------------------\n"); 2995 pr_warn("%s/%d is trying to acquire lock:\n", 2996 curr->comm, task_pid_nr(curr)); 2997 print_lock(next); 2998 pr_warn("\nbut task is already holding lock:\n"); 2999 print_lock(prev); 3000 3001 if (class->cmp_fn) { 3002 pr_warn("and the lock comparison function returns %i:\n", 3003 class->cmp_fn(prev->instance, next->instance)); 3004 } 3005 3006 pr_warn("\nother info that might help us debug this:\n"); 3007 print_deadlock_scenario(next, prev); 3008 lockdep_print_held_locks(curr); 3009 3010 pr_warn("\nstack backtrace:\n"); 3011 dump_stack(); 3012 } 3013 3014 /* 3015 * Check whether we are holding such a class already. 3016 * 3017 * (Note that this has to be done separately, because the graph cannot 3018 * detect such classes of deadlocks.) 3019 * 3020 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3021 * lock class is held but nest_lock is also held, i.e. we rely on the 3022 * nest_lock to avoid the deadlock. 3023 */ 3024 static int 3025 check_deadlock(struct task_struct *curr, struct held_lock *next) 3026 { 3027 struct lock_class *class; 3028 struct held_lock *prev; 3029 struct held_lock *nest = NULL; 3030 int i; 3031 3032 for (i = 0; i < curr->lockdep_depth; i++) { 3033 prev = curr->held_locks + i; 3034 3035 if (prev->instance == next->nest_lock) 3036 nest = prev; 3037 3038 if (hlock_class(prev) != hlock_class(next)) 3039 continue; 3040 3041 /* 3042 * Allow read-after-read recursion of the same 3043 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3044 */ 3045 if ((next->read == 2) && prev->read) 3046 continue; 3047 3048 class = hlock_class(prev); 3049 3050 if (class->cmp_fn && 3051 class->cmp_fn(prev->instance, next->instance) < 0) 3052 continue; 3053 3054 /* 3055 * We're holding the nest_lock, which serializes this lock's 3056 * nesting behaviour. 3057 */ 3058 if (nest) 3059 return 2; 3060 3061 print_deadlock_bug(curr, prev, next); 3062 return 0; 3063 } 3064 return 1; 3065 } 3066 3067 /* 3068 * There was a chain-cache miss, and we are about to add a new dependency 3069 * to a previous lock. We validate the following rules: 3070 * 3071 * - would the adding of the <prev> -> <next> dependency create a 3072 * circular dependency in the graph? [== circular deadlock] 3073 * 3074 * - does the new prev->next dependency connect any hardirq-safe lock 3075 * (in the full backwards-subgraph starting at <prev>) with any 3076 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3077 * <next>)? [== illegal lock inversion with hardirq contexts] 3078 * 3079 * - does the new prev->next dependency connect any softirq-safe lock 3080 * (in the full backwards-subgraph starting at <prev>) with any 3081 * softirq-unsafe lock (in the full forwards-subgraph starting at 3082 * <next>)? [== illegal lock inversion with softirq contexts] 3083 * 3084 * any of these scenarios could lead to a deadlock. 3085 * 3086 * Then if all the validations pass, we add the forwards and backwards 3087 * dependency. 3088 */ 3089 static int 3090 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3091 struct held_lock *next, u16 distance, 3092 struct lock_trace **const trace) 3093 { 3094 struct lock_list *entry; 3095 enum bfs_result ret; 3096 3097 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3098 /* 3099 * The warning statements below may trigger a use-after-free 3100 * of the class name. It is better to trigger a use-after free 3101 * and to have the class name most of the time instead of not 3102 * having the class name available. 3103 */ 3104 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3105 "Detected use-after-free of lock class %px/%s\n", 3106 hlock_class(prev), 3107 hlock_class(prev)->name); 3108 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3109 "Detected use-after-free of lock class %px/%s\n", 3110 hlock_class(next), 3111 hlock_class(next)->name); 3112 return 2; 3113 } 3114 3115 if (prev->class_idx == next->class_idx) { 3116 struct lock_class *class = hlock_class(prev); 3117 3118 if (class->cmp_fn && 3119 class->cmp_fn(prev->instance, next->instance) < 0) 3120 return 2; 3121 } 3122 3123 /* 3124 * Prove that the new <prev> -> <next> dependency would not 3125 * create a circular dependency in the graph. (We do this by 3126 * a breadth-first search into the graph starting at <next>, 3127 * and check whether we can reach <prev>.) 3128 * 3129 * The search is limited by the size of the circular queue (i.e., 3130 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3131 * in the graph whose neighbours are to be checked. 3132 */ 3133 ret = check_noncircular(next, prev, trace); 3134 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3135 return 0; 3136 3137 if (!check_irq_usage(curr, prev, next)) 3138 return 0; 3139 3140 /* 3141 * Is the <prev> -> <next> dependency already present? 3142 * 3143 * (this may occur even though this is a new chain: consider 3144 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3145 * chains - the second one will be new, but L1 already has 3146 * L2 added to its dependency list, due to the first chain.) 3147 */ 3148 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3149 if (entry->class == hlock_class(next)) { 3150 if (distance == 1) 3151 entry->distance = 1; 3152 entry->dep |= calc_dep(prev, next); 3153 3154 /* 3155 * Also, update the reverse dependency in @next's 3156 * ->locks_before list. 3157 * 3158 * Here we reuse @entry as the cursor, which is fine 3159 * because we won't go to the next iteration of the 3160 * outer loop: 3161 * 3162 * For normal cases, we return in the inner loop. 3163 * 3164 * If we fail to return, we have inconsistency, i.e. 3165 * <prev>::locks_after contains <next> while 3166 * <next>::locks_before doesn't contain <prev>. In 3167 * that case, we return after the inner and indicate 3168 * something is wrong. 3169 */ 3170 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3171 if (entry->class == hlock_class(prev)) { 3172 if (distance == 1) 3173 entry->distance = 1; 3174 entry->dep |= calc_depb(prev, next); 3175 return 1; 3176 } 3177 } 3178 3179 /* <prev> is not found in <next>::locks_before */ 3180 return 0; 3181 } 3182 } 3183 3184 /* 3185 * Is the <prev> -> <next> link redundant? 3186 */ 3187 ret = check_redundant(prev, next); 3188 if (bfs_error(ret)) 3189 return 0; 3190 else if (ret == BFS_RMATCH) 3191 return 2; 3192 3193 if (!*trace) { 3194 *trace = save_trace(); 3195 if (!*trace) 3196 return 0; 3197 } 3198 3199 /* 3200 * Ok, all validations passed, add the new lock 3201 * to the previous lock's dependency list: 3202 */ 3203 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3204 &hlock_class(prev)->locks_after, distance, 3205 calc_dep(prev, next), *trace); 3206 3207 if (!ret) 3208 return 0; 3209 3210 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3211 &hlock_class(next)->locks_before, distance, 3212 calc_depb(prev, next), *trace); 3213 if (!ret) 3214 return 0; 3215 3216 return 2; 3217 } 3218 3219 /* 3220 * Add the dependency to all directly-previous locks that are 'relevant'. 3221 * The ones that are relevant are (in increasing distance from curr): 3222 * all consecutive trylock entries and the final non-trylock entry - or 3223 * the end of this context's lock-chain - whichever comes first. 3224 */ 3225 static int 3226 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3227 { 3228 struct lock_trace *trace = NULL; 3229 int depth = curr->lockdep_depth; 3230 struct held_lock *hlock; 3231 3232 /* 3233 * Debugging checks. 3234 * 3235 * Depth must not be zero for a non-head lock: 3236 */ 3237 if (!depth) 3238 goto out_bug; 3239 /* 3240 * At least two relevant locks must exist for this 3241 * to be a head: 3242 */ 3243 if (curr->held_locks[depth].irq_context != 3244 curr->held_locks[depth-1].irq_context) 3245 goto out_bug; 3246 3247 for (;;) { 3248 u16 distance = curr->lockdep_depth - depth + 1; 3249 hlock = curr->held_locks + depth - 1; 3250 3251 if (hlock->check) { 3252 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3253 if (!ret) 3254 return 0; 3255 3256 /* 3257 * Stop after the first non-trylock entry, 3258 * as non-trylock entries have added their 3259 * own direct dependencies already, so this 3260 * lock is connected to them indirectly: 3261 */ 3262 if (!hlock->trylock) 3263 break; 3264 } 3265 3266 depth--; 3267 /* 3268 * End of lock-stack? 3269 */ 3270 if (!depth) 3271 break; 3272 /* 3273 * Stop the search if we cross into another context: 3274 */ 3275 if (curr->held_locks[depth].irq_context != 3276 curr->held_locks[depth-1].irq_context) 3277 break; 3278 } 3279 return 1; 3280 out_bug: 3281 if (!debug_locks_off_graph_unlock()) 3282 return 0; 3283 3284 /* 3285 * Clearly we all shouldn't be here, but since we made it we 3286 * can reliable say we messed up our state. See the above two 3287 * gotos for reasons why we could possibly end up here. 3288 */ 3289 WARN_ON(1); 3290 3291 return 0; 3292 } 3293 3294 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3295 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3296 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3297 unsigned long nr_zapped_lock_chains; 3298 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3299 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3300 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3301 3302 /* 3303 * The first 2 chain_hlocks entries in the chain block in the bucket 3304 * list contains the following meta data: 3305 * 3306 * entry[0]: 3307 * Bit 15 - always set to 1 (it is not a class index) 3308 * Bits 0-14 - upper 15 bits of the next block index 3309 * entry[1] - lower 16 bits of next block index 3310 * 3311 * A next block index of all 1 bits means it is the end of the list. 3312 * 3313 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3314 * the chain block size: 3315 * 3316 * entry[2] - upper 16 bits of the chain block size 3317 * entry[3] - lower 16 bits of the chain block size 3318 */ 3319 #define MAX_CHAIN_BUCKETS 16 3320 #define CHAIN_BLK_FLAG (1U << 15) 3321 #define CHAIN_BLK_LIST_END 0xFFFFU 3322 3323 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3324 3325 static inline int size_to_bucket(int size) 3326 { 3327 if (size > MAX_CHAIN_BUCKETS) 3328 return 0; 3329 3330 return size - 1; 3331 } 3332 3333 /* 3334 * Iterate all the chain blocks in a bucket. 3335 */ 3336 #define for_each_chain_block(bucket, prev, curr) \ 3337 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3338 (curr) >= 0; \ 3339 (prev) = (curr), (curr) = chain_block_next(curr)) 3340 3341 /* 3342 * next block or -1 3343 */ 3344 static inline int chain_block_next(int offset) 3345 { 3346 int next = chain_hlocks[offset]; 3347 3348 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3349 3350 if (next == CHAIN_BLK_LIST_END) 3351 return -1; 3352 3353 next &= ~CHAIN_BLK_FLAG; 3354 next <<= 16; 3355 next |= chain_hlocks[offset + 1]; 3356 3357 return next; 3358 } 3359 3360 /* 3361 * bucket-0 only 3362 */ 3363 static inline int chain_block_size(int offset) 3364 { 3365 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3366 } 3367 3368 static inline void init_chain_block(int offset, int next, int bucket, int size) 3369 { 3370 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3371 chain_hlocks[offset + 1] = (u16)next; 3372 3373 if (size && !bucket) { 3374 chain_hlocks[offset + 2] = size >> 16; 3375 chain_hlocks[offset + 3] = (u16)size; 3376 } 3377 } 3378 3379 static inline void add_chain_block(int offset, int size) 3380 { 3381 int bucket = size_to_bucket(size); 3382 int next = chain_block_buckets[bucket]; 3383 int prev, curr; 3384 3385 if (unlikely(size < 2)) { 3386 /* 3387 * We can't store single entries on the freelist. Leak them. 3388 * 3389 * One possible way out would be to uniquely mark them, other 3390 * than with CHAIN_BLK_FLAG, such that we can recover them when 3391 * the block before it is re-added. 3392 */ 3393 if (size) 3394 nr_lost_chain_hlocks++; 3395 return; 3396 } 3397 3398 nr_free_chain_hlocks += size; 3399 if (!bucket) { 3400 nr_large_chain_blocks++; 3401 3402 /* 3403 * Variable sized, sort large to small. 3404 */ 3405 for_each_chain_block(0, prev, curr) { 3406 if (size >= chain_block_size(curr)) 3407 break; 3408 } 3409 init_chain_block(offset, curr, 0, size); 3410 if (prev < 0) 3411 chain_block_buckets[0] = offset; 3412 else 3413 init_chain_block(prev, offset, 0, 0); 3414 return; 3415 } 3416 /* 3417 * Fixed size, add to head. 3418 */ 3419 init_chain_block(offset, next, bucket, size); 3420 chain_block_buckets[bucket] = offset; 3421 } 3422 3423 /* 3424 * Only the first block in the list can be deleted. 3425 * 3426 * For the variable size bucket[0], the first block (the largest one) is 3427 * returned, broken up and put back into the pool. So if a chain block of 3428 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3429 * queued up after the primordial chain block and never be used until the 3430 * hlock entries in the primordial chain block is almost used up. That 3431 * causes fragmentation and reduce allocation efficiency. That can be 3432 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3433 */ 3434 static inline void del_chain_block(int bucket, int size, int next) 3435 { 3436 nr_free_chain_hlocks -= size; 3437 chain_block_buckets[bucket] = next; 3438 3439 if (!bucket) 3440 nr_large_chain_blocks--; 3441 } 3442 3443 static void init_chain_block_buckets(void) 3444 { 3445 int i; 3446 3447 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3448 chain_block_buckets[i] = -1; 3449 3450 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3451 } 3452 3453 /* 3454 * Return offset of a chain block of the right size or -1 if not found. 3455 * 3456 * Fairly simple worst-fit allocator with the addition of a number of size 3457 * specific free lists. 3458 */ 3459 static int alloc_chain_hlocks(int req) 3460 { 3461 int bucket, curr, size; 3462 3463 /* 3464 * We rely on the MSB to act as an escape bit to denote freelist 3465 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3466 */ 3467 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3468 3469 init_data_structures_once(); 3470 3471 if (nr_free_chain_hlocks < req) 3472 return -1; 3473 3474 /* 3475 * We require a minimum of 2 (u16) entries to encode a freelist 3476 * 'pointer'. 3477 */ 3478 req = max(req, 2); 3479 bucket = size_to_bucket(req); 3480 curr = chain_block_buckets[bucket]; 3481 3482 if (bucket) { 3483 if (curr >= 0) { 3484 del_chain_block(bucket, req, chain_block_next(curr)); 3485 return curr; 3486 } 3487 /* Try bucket 0 */ 3488 curr = chain_block_buckets[0]; 3489 } 3490 3491 /* 3492 * The variable sized freelist is sorted by size; the first entry is 3493 * the largest. Use it if it fits. 3494 */ 3495 if (curr >= 0) { 3496 size = chain_block_size(curr); 3497 if (likely(size >= req)) { 3498 del_chain_block(0, size, chain_block_next(curr)); 3499 if (size > req) 3500 add_chain_block(curr + req, size - req); 3501 return curr; 3502 } 3503 } 3504 3505 /* 3506 * Last resort, split a block in a larger sized bucket. 3507 */ 3508 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3509 bucket = size_to_bucket(size); 3510 curr = chain_block_buckets[bucket]; 3511 if (curr < 0) 3512 continue; 3513 3514 del_chain_block(bucket, size, chain_block_next(curr)); 3515 add_chain_block(curr + req, size - req); 3516 return curr; 3517 } 3518 3519 return -1; 3520 } 3521 3522 static inline void free_chain_hlocks(int base, int size) 3523 { 3524 add_chain_block(base, max(size, 2)); 3525 } 3526 3527 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3528 { 3529 u16 chain_hlock = chain_hlocks[chain->base + i]; 3530 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3531 3532 return lock_classes + class_idx; 3533 } 3534 3535 /* 3536 * Returns the index of the first held_lock of the current chain 3537 */ 3538 static inline int get_first_held_lock(struct task_struct *curr, 3539 struct held_lock *hlock) 3540 { 3541 int i; 3542 struct held_lock *hlock_curr; 3543 3544 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3545 hlock_curr = curr->held_locks + i; 3546 if (hlock_curr->irq_context != hlock->irq_context) 3547 break; 3548 3549 } 3550 3551 return ++i; 3552 } 3553 3554 #ifdef CONFIG_DEBUG_LOCKDEP 3555 /* 3556 * Returns the next chain_key iteration 3557 */ 3558 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3559 { 3560 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3561 3562 printk(" hlock_id:%d -> chain_key:%016Lx", 3563 (unsigned int)hlock_id, 3564 (unsigned long long)new_chain_key); 3565 return new_chain_key; 3566 } 3567 3568 static void 3569 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3570 { 3571 struct held_lock *hlock; 3572 u64 chain_key = INITIAL_CHAIN_KEY; 3573 int depth = curr->lockdep_depth; 3574 int i = get_first_held_lock(curr, hlock_next); 3575 3576 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3577 hlock_next->irq_context); 3578 for (; i < depth; i++) { 3579 hlock = curr->held_locks + i; 3580 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3581 3582 print_lock(hlock); 3583 } 3584 3585 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3586 print_lock(hlock_next); 3587 } 3588 3589 static void print_chain_keys_chain(struct lock_chain *chain) 3590 { 3591 int i; 3592 u64 chain_key = INITIAL_CHAIN_KEY; 3593 u16 hlock_id; 3594 3595 printk("depth: %u\n", chain->depth); 3596 for (i = 0; i < chain->depth; i++) { 3597 hlock_id = chain_hlocks[chain->base + i]; 3598 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3599 3600 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3601 printk("\n"); 3602 } 3603 } 3604 3605 static void print_collision(struct task_struct *curr, 3606 struct held_lock *hlock_next, 3607 struct lock_chain *chain) 3608 { 3609 pr_warn("\n"); 3610 pr_warn("============================\n"); 3611 pr_warn("WARNING: chain_key collision\n"); 3612 print_kernel_ident(); 3613 pr_warn("----------------------------\n"); 3614 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3615 pr_warn("Hash chain already cached but the contents don't match!\n"); 3616 3617 pr_warn("Held locks:"); 3618 print_chain_keys_held_locks(curr, hlock_next); 3619 3620 pr_warn("Locks in cached chain:"); 3621 print_chain_keys_chain(chain); 3622 3623 pr_warn("\nstack backtrace:\n"); 3624 dump_stack(); 3625 } 3626 #endif 3627 3628 /* 3629 * Checks whether the chain and the current held locks are consistent 3630 * in depth and also in content. If they are not it most likely means 3631 * that there was a collision during the calculation of the chain_key. 3632 * Returns: 0 not passed, 1 passed 3633 */ 3634 static int check_no_collision(struct task_struct *curr, 3635 struct held_lock *hlock, 3636 struct lock_chain *chain) 3637 { 3638 #ifdef CONFIG_DEBUG_LOCKDEP 3639 int i, j, id; 3640 3641 i = get_first_held_lock(curr, hlock); 3642 3643 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3644 print_collision(curr, hlock, chain); 3645 return 0; 3646 } 3647 3648 for (j = 0; j < chain->depth - 1; j++, i++) { 3649 id = hlock_id(&curr->held_locks[i]); 3650 3651 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3652 print_collision(curr, hlock, chain); 3653 return 0; 3654 } 3655 } 3656 #endif 3657 return 1; 3658 } 3659 3660 /* 3661 * Given an index that is >= -1, return the index of the next lock chain. 3662 * Return -2 if there is no next lock chain. 3663 */ 3664 long lockdep_next_lockchain(long i) 3665 { 3666 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3667 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3668 } 3669 3670 unsigned long lock_chain_count(void) 3671 { 3672 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3673 } 3674 3675 /* Must be called with the graph lock held. */ 3676 static struct lock_chain *alloc_lock_chain(void) 3677 { 3678 int idx = find_first_zero_bit(lock_chains_in_use, 3679 ARRAY_SIZE(lock_chains)); 3680 3681 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3682 return NULL; 3683 __set_bit(idx, lock_chains_in_use); 3684 return lock_chains + idx; 3685 } 3686 3687 /* 3688 * Adds a dependency chain into chain hashtable. And must be called with 3689 * graph_lock held. 3690 * 3691 * Return 0 if fail, and graph_lock is released. 3692 * Return 1 if succeed, with graph_lock held. 3693 */ 3694 static inline int add_chain_cache(struct task_struct *curr, 3695 struct held_lock *hlock, 3696 u64 chain_key) 3697 { 3698 struct hlist_head *hash_head = chainhashentry(chain_key); 3699 struct lock_chain *chain; 3700 int i, j; 3701 3702 /* 3703 * The caller must hold the graph lock, ensure we've got IRQs 3704 * disabled to make this an IRQ-safe lock.. for recursion reasons 3705 * lockdep won't complain about its own locking errors. 3706 */ 3707 if (lockdep_assert_locked()) 3708 return 0; 3709 3710 chain = alloc_lock_chain(); 3711 if (!chain) { 3712 if (!debug_locks_off_graph_unlock()) 3713 return 0; 3714 3715 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3716 dump_stack(); 3717 return 0; 3718 } 3719 chain->chain_key = chain_key; 3720 chain->irq_context = hlock->irq_context; 3721 i = get_first_held_lock(curr, hlock); 3722 chain->depth = curr->lockdep_depth + 1 - i; 3723 3724 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3725 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3726 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3727 3728 j = alloc_chain_hlocks(chain->depth); 3729 if (j < 0) { 3730 if (!debug_locks_off_graph_unlock()) 3731 return 0; 3732 3733 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3734 dump_stack(); 3735 return 0; 3736 } 3737 3738 chain->base = j; 3739 for (j = 0; j < chain->depth - 1; j++, i++) { 3740 int lock_id = hlock_id(curr->held_locks + i); 3741 3742 chain_hlocks[chain->base + j] = lock_id; 3743 } 3744 chain_hlocks[chain->base + j] = hlock_id(hlock); 3745 hlist_add_head_rcu(&chain->entry, hash_head); 3746 debug_atomic_inc(chain_lookup_misses); 3747 inc_chains(chain->irq_context); 3748 3749 return 1; 3750 } 3751 3752 /* 3753 * Look up a dependency chain. Must be called with either the graph lock or 3754 * the RCU read lock held. 3755 */ 3756 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3757 { 3758 struct hlist_head *hash_head = chainhashentry(chain_key); 3759 struct lock_chain *chain; 3760 3761 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3762 if (READ_ONCE(chain->chain_key) == chain_key) { 3763 debug_atomic_inc(chain_lookup_hits); 3764 return chain; 3765 } 3766 } 3767 return NULL; 3768 } 3769 3770 /* 3771 * If the key is not present yet in dependency chain cache then 3772 * add it and return 1 - in this case the new dependency chain is 3773 * validated. If the key is already hashed, return 0. 3774 * (On return with 1 graph_lock is held.) 3775 */ 3776 static inline int lookup_chain_cache_add(struct task_struct *curr, 3777 struct held_lock *hlock, 3778 u64 chain_key) 3779 { 3780 struct lock_class *class = hlock_class(hlock); 3781 struct lock_chain *chain = lookup_chain_cache(chain_key); 3782 3783 if (chain) { 3784 cache_hit: 3785 if (!check_no_collision(curr, hlock, chain)) 3786 return 0; 3787 3788 if (very_verbose(class)) { 3789 printk("\nhash chain already cached, key: " 3790 "%016Lx tail class: [%px] %s\n", 3791 (unsigned long long)chain_key, 3792 class->key, class->name); 3793 } 3794 3795 return 0; 3796 } 3797 3798 if (very_verbose(class)) { 3799 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3800 (unsigned long long)chain_key, class->key, class->name); 3801 } 3802 3803 if (!graph_lock()) 3804 return 0; 3805 3806 /* 3807 * We have to walk the chain again locked - to avoid duplicates: 3808 */ 3809 chain = lookup_chain_cache(chain_key); 3810 if (chain) { 3811 graph_unlock(); 3812 goto cache_hit; 3813 } 3814 3815 if (!add_chain_cache(curr, hlock, chain_key)) 3816 return 0; 3817 3818 return 1; 3819 } 3820 3821 static int validate_chain(struct task_struct *curr, 3822 struct held_lock *hlock, 3823 int chain_head, u64 chain_key) 3824 { 3825 /* 3826 * Trylock needs to maintain the stack of held locks, but it 3827 * does not add new dependencies, because trylock can be done 3828 * in any order. 3829 * 3830 * We look up the chain_key and do the O(N^2) check and update of 3831 * the dependencies only if this is a new dependency chain. 3832 * (If lookup_chain_cache_add() return with 1 it acquires 3833 * graph_lock for us) 3834 */ 3835 if (!hlock->trylock && hlock->check && 3836 lookup_chain_cache_add(curr, hlock, chain_key)) { 3837 /* 3838 * Check whether last held lock: 3839 * 3840 * - is irq-safe, if this lock is irq-unsafe 3841 * - is softirq-safe, if this lock is hardirq-unsafe 3842 * 3843 * And check whether the new lock's dependency graph 3844 * could lead back to the previous lock: 3845 * 3846 * - within the current held-lock stack 3847 * - across our accumulated lock dependency records 3848 * 3849 * any of these scenarios could lead to a deadlock. 3850 */ 3851 /* 3852 * The simple case: does the current hold the same lock 3853 * already? 3854 */ 3855 int ret = check_deadlock(curr, hlock); 3856 3857 if (!ret) 3858 return 0; 3859 /* 3860 * Add dependency only if this lock is not the head 3861 * of the chain, and if the new lock introduces no more 3862 * lock dependency (because we already hold a lock with the 3863 * same lock class) nor deadlock (because the nest_lock 3864 * serializes nesting locks), see the comments for 3865 * check_deadlock(). 3866 */ 3867 if (!chain_head && ret != 2) { 3868 if (!check_prevs_add(curr, hlock)) 3869 return 0; 3870 } 3871 3872 graph_unlock(); 3873 } else { 3874 /* after lookup_chain_cache_add(): */ 3875 if (unlikely(!debug_locks)) 3876 return 0; 3877 } 3878 3879 return 1; 3880 } 3881 #else 3882 static inline int validate_chain(struct task_struct *curr, 3883 struct held_lock *hlock, 3884 int chain_head, u64 chain_key) 3885 { 3886 return 1; 3887 } 3888 3889 static void init_chain_block_buckets(void) { } 3890 #endif /* CONFIG_PROVE_LOCKING */ 3891 3892 /* 3893 * We are building curr_chain_key incrementally, so double-check 3894 * it from scratch, to make sure that it's done correctly: 3895 */ 3896 static void check_chain_key(struct task_struct *curr) 3897 { 3898 #ifdef CONFIG_DEBUG_LOCKDEP 3899 struct held_lock *hlock, *prev_hlock = NULL; 3900 unsigned int i; 3901 u64 chain_key = INITIAL_CHAIN_KEY; 3902 3903 for (i = 0; i < curr->lockdep_depth; i++) { 3904 hlock = curr->held_locks + i; 3905 if (chain_key != hlock->prev_chain_key) { 3906 debug_locks_off(); 3907 /* 3908 * We got mighty confused, our chain keys don't match 3909 * with what we expect, someone trample on our task state? 3910 */ 3911 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3912 curr->lockdep_depth, i, 3913 (unsigned long long)chain_key, 3914 (unsigned long long)hlock->prev_chain_key); 3915 return; 3916 } 3917 3918 /* 3919 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3920 * it registered lock class index? 3921 */ 3922 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3923 return; 3924 3925 if (prev_hlock && (prev_hlock->irq_context != 3926 hlock->irq_context)) 3927 chain_key = INITIAL_CHAIN_KEY; 3928 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3929 prev_hlock = hlock; 3930 } 3931 if (chain_key != curr->curr_chain_key) { 3932 debug_locks_off(); 3933 /* 3934 * More smoking hash instead of calculating it, damn see these 3935 * numbers float.. I bet that a pink elephant stepped on my memory. 3936 */ 3937 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3938 curr->lockdep_depth, i, 3939 (unsigned long long)chain_key, 3940 (unsigned long long)curr->curr_chain_key); 3941 } 3942 #endif 3943 } 3944 3945 #ifdef CONFIG_PROVE_LOCKING 3946 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3947 enum lock_usage_bit new_bit); 3948 3949 static void print_usage_bug_scenario(struct held_lock *lock) 3950 { 3951 struct lock_class *class = hlock_class(lock); 3952 3953 printk(" Possible unsafe locking scenario:\n\n"); 3954 printk(" CPU0\n"); 3955 printk(" ----\n"); 3956 printk(" lock("); 3957 __print_lock_name(lock, class); 3958 printk(KERN_CONT ");\n"); 3959 printk(" <Interrupt>\n"); 3960 printk(" lock("); 3961 __print_lock_name(lock, class); 3962 printk(KERN_CONT ");\n"); 3963 printk("\n *** DEADLOCK ***\n\n"); 3964 } 3965 3966 static void 3967 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3968 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3969 { 3970 if (!debug_locks_off() || debug_locks_silent) 3971 return; 3972 3973 pr_warn("\n"); 3974 pr_warn("================================\n"); 3975 pr_warn("WARNING: inconsistent lock state\n"); 3976 print_kernel_ident(); 3977 pr_warn("--------------------------------\n"); 3978 3979 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3980 usage_str[prev_bit], usage_str[new_bit]); 3981 3982 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3983 curr->comm, task_pid_nr(curr), 3984 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3985 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3986 lockdep_hardirqs_enabled(), 3987 lockdep_softirqs_enabled(curr)); 3988 print_lock(this); 3989 3990 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3991 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3992 3993 print_irqtrace_events(curr); 3994 pr_warn("\nother info that might help us debug this:\n"); 3995 print_usage_bug_scenario(this); 3996 3997 lockdep_print_held_locks(curr); 3998 3999 pr_warn("\nstack backtrace:\n"); 4000 dump_stack(); 4001 } 4002 4003 /* 4004 * Print out an error if an invalid bit is set: 4005 */ 4006 static inline int 4007 valid_state(struct task_struct *curr, struct held_lock *this, 4008 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4009 { 4010 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4011 graph_unlock(); 4012 print_usage_bug(curr, this, bad_bit, new_bit); 4013 return 0; 4014 } 4015 return 1; 4016 } 4017 4018 4019 /* 4020 * print irq inversion bug: 4021 */ 4022 static void 4023 print_irq_inversion_bug(struct task_struct *curr, 4024 struct lock_list *root, struct lock_list *other, 4025 struct held_lock *this, int forwards, 4026 const char *irqclass) 4027 { 4028 struct lock_list *entry = other; 4029 struct lock_list *middle = NULL; 4030 int depth; 4031 4032 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4033 return; 4034 4035 pr_warn("\n"); 4036 pr_warn("========================================================\n"); 4037 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4038 print_kernel_ident(); 4039 pr_warn("--------------------------------------------------------\n"); 4040 pr_warn("%s/%d just changed the state of lock:\n", 4041 curr->comm, task_pid_nr(curr)); 4042 print_lock(this); 4043 if (forwards) 4044 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4045 else 4046 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4047 print_lock_name(NULL, other->class); 4048 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4049 4050 pr_warn("\nother info that might help us debug this:\n"); 4051 4052 /* Find a middle lock (if one exists) */ 4053 depth = get_lock_depth(other); 4054 do { 4055 if (depth == 0 && (entry != root)) { 4056 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4057 break; 4058 } 4059 middle = entry; 4060 entry = get_lock_parent(entry); 4061 depth--; 4062 } while (entry && entry != root && (depth >= 0)); 4063 if (forwards) 4064 print_irq_lock_scenario(root, other, 4065 middle ? middle->class : root->class, other->class); 4066 else 4067 print_irq_lock_scenario(other, root, 4068 middle ? middle->class : other->class, root->class); 4069 4070 lockdep_print_held_locks(curr); 4071 4072 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4073 root->trace = save_trace(); 4074 if (!root->trace) 4075 return; 4076 print_shortest_lock_dependencies(other, root); 4077 4078 pr_warn("\nstack backtrace:\n"); 4079 dump_stack(); 4080 } 4081 4082 /* 4083 * Prove that in the forwards-direction subgraph starting at <this> 4084 * there is no lock matching <mask>: 4085 */ 4086 static int 4087 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4088 enum lock_usage_bit bit) 4089 { 4090 enum bfs_result ret; 4091 struct lock_list root; 4092 struct lock_list *target_entry; 4093 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4094 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4095 4096 bfs_init_root(&root, this); 4097 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4098 if (bfs_error(ret)) { 4099 print_bfs_bug(ret); 4100 return 0; 4101 } 4102 if (ret == BFS_RNOMATCH) 4103 return 1; 4104 4105 /* Check whether write or read usage is the match */ 4106 if (target_entry->class->usage_mask & lock_flag(bit)) { 4107 print_irq_inversion_bug(curr, &root, target_entry, 4108 this, 1, state_name(bit)); 4109 } else { 4110 print_irq_inversion_bug(curr, &root, target_entry, 4111 this, 1, state_name(read_bit)); 4112 } 4113 4114 return 0; 4115 } 4116 4117 /* 4118 * Prove that in the backwards-direction subgraph starting at <this> 4119 * there is no lock matching <mask>: 4120 */ 4121 static int 4122 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4123 enum lock_usage_bit bit) 4124 { 4125 enum bfs_result ret; 4126 struct lock_list root; 4127 struct lock_list *target_entry; 4128 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4129 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4130 4131 bfs_init_rootb(&root, this); 4132 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4133 if (bfs_error(ret)) { 4134 print_bfs_bug(ret); 4135 return 0; 4136 } 4137 if (ret == BFS_RNOMATCH) 4138 return 1; 4139 4140 /* Check whether write or read usage is the match */ 4141 if (target_entry->class->usage_mask & lock_flag(bit)) { 4142 print_irq_inversion_bug(curr, &root, target_entry, 4143 this, 0, state_name(bit)); 4144 } else { 4145 print_irq_inversion_bug(curr, &root, target_entry, 4146 this, 0, state_name(read_bit)); 4147 } 4148 4149 return 0; 4150 } 4151 4152 void print_irqtrace_events(struct task_struct *curr) 4153 { 4154 const struct irqtrace_events *trace = &curr->irqtrace; 4155 4156 printk("irq event stamp: %u\n", trace->irq_events); 4157 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4158 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4159 (void *)trace->hardirq_enable_ip); 4160 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4161 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4162 (void *)trace->hardirq_disable_ip); 4163 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4164 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4165 (void *)trace->softirq_enable_ip); 4166 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4167 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4168 (void *)trace->softirq_disable_ip); 4169 } 4170 4171 static int HARDIRQ_verbose(struct lock_class *class) 4172 { 4173 #if HARDIRQ_VERBOSE 4174 return class_filter(class); 4175 #endif 4176 return 0; 4177 } 4178 4179 static int SOFTIRQ_verbose(struct lock_class *class) 4180 { 4181 #if SOFTIRQ_VERBOSE 4182 return class_filter(class); 4183 #endif 4184 return 0; 4185 } 4186 4187 static int (*state_verbose_f[])(struct lock_class *class) = { 4188 #define LOCKDEP_STATE(__STATE) \ 4189 __STATE##_verbose, 4190 #include "lockdep_states.h" 4191 #undef LOCKDEP_STATE 4192 }; 4193 4194 static inline int state_verbose(enum lock_usage_bit bit, 4195 struct lock_class *class) 4196 { 4197 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4198 } 4199 4200 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4201 enum lock_usage_bit bit, const char *name); 4202 4203 static int 4204 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4205 enum lock_usage_bit new_bit) 4206 { 4207 int excl_bit = exclusive_bit(new_bit); 4208 int read = new_bit & LOCK_USAGE_READ_MASK; 4209 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4210 4211 /* 4212 * Validate that this particular lock does not have conflicting 4213 * usage states. 4214 */ 4215 if (!valid_state(curr, this, new_bit, excl_bit)) 4216 return 0; 4217 4218 /* 4219 * Check for read in write conflicts 4220 */ 4221 if (!read && !valid_state(curr, this, new_bit, 4222 excl_bit + LOCK_USAGE_READ_MASK)) 4223 return 0; 4224 4225 4226 /* 4227 * Validate that the lock dependencies don't have conflicting usage 4228 * states. 4229 */ 4230 if (dir) { 4231 /* 4232 * mark ENABLED has to look backwards -- to ensure no dependee 4233 * has USED_IN state, which, again, would allow recursion deadlocks. 4234 */ 4235 if (!check_usage_backwards(curr, this, excl_bit)) 4236 return 0; 4237 } else { 4238 /* 4239 * mark USED_IN has to look forwards -- to ensure no dependency 4240 * has ENABLED state, which would allow recursion deadlocks. 4241 */ 4242 if (!check_usage_forwards(curr, this, excl_bit)) 4243 return 0; 4244 } 4245 4246 if (state_verbose(new_bit, hlock_class(this))) 4247 return 2; 4248 4249 return 1; 4250 } 4251 4252 /* 4253 * Mark all held locks with a usage bit: 4254 */ 4255 static int 4256 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4257 { 4258 struct held_lock *hlock; 4259 int i; 4260 4261 for (i = 0; i < curr->lockdep_depth; i++) { 4262 enum lock_usage_bit hlock_bit = base_bit; 4263 hlock = curr->held_locks + i; 4264 4265 if (hlock->read) 4266 hlock_bit += LOCK_USAGE_READ_MASK; 4267 4268 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4269 4270 if (!hlock->check) 4271 continue; 4272 4273 if (!mark_lock(curr, hlock, hlock_bit)) 4274 return 0; 4275 } 4276 4277 return 1; 4278 } 4279 4280 /* 4281 * Hardirqs will be enabled: 4282 */ 4283 static void __trace_hardirqs_on_caller(void) 4284 { 4285 struct task_struct *curr = current; 4286 4287 /* 4288 * We are going to turn hardirqs on, so set the 4289 * usage bit for all held locks: 4290 */ 4291 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4292 return; 4293 /* 4294 * If we have softirqs enabled, then set the usage 4295 * bit for all held locks. (disabled hardirqs prevented 4296 * this bit from being set before) 4297 */ 4298 if (curr->softirqs_enabled) 4299 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4300 } 4301 4302 /** 4303 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4304 * 4305 * Invoked before a possible transition to RCU idle from exit to user or 4306 * guest mode. This ensures that all RCU operations are done before RCU 4307 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4308 * invoked to set the final state. 4309 */ 4310 void lockdep_hardirqs_on_prepare(void) 4311 { 4312 if (unlikely(!debug_locks)) 4313 return; 4314 4315 /* 4316 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4317 */ 4318 if (unlikely(in_nmi())) 4319 return; 4320 4321 if (unlikely(this_cpu_read(lockdep_recursion))) 4322 return; 4323 4324 if (unlikely(lockdep_hardirqs_enabled())) { 4325 /* 4326 * Neither irq nor preemption are disabled here 4327 * so this is racy by nature but losing one hit 4328 * in a stat is not a big deal. 4329 */ 4330 __debug_atomic_inc(redundant_hardirqs_on); 4331 return; 4332 } 4333 4334 /* 4335 * We're enabling irqs and according to our state above irqs weren't 4336 * already enabled, yet we find the hardware thinks they are in fact 4337 * enabled.. someone messed up their IRQ state tracing. 4338 */ 4339 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4340 return; 4341 4342 /* 4343 * See the fine text that goes along with this variable definition. 4344 */ 4345 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4346 return; 4347 4348 /* 4349 * Can't allow enabling interrupts while in an interrupt handler, 4350 * that's general bad form and such. Recursion, limited stack etc.. 4351 */ 4352 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4353 return; 4354 4355 current->hardirq_chain_key = current->curr_chain_key; 4356 4357 lockdep_recursion_inc(); 4358 __trace_hardirqs_on_caller(); 4359 lockdep_recursion_finish(); 4360 } 4361 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4362 4363 void noinstr lockdep_hardirqs_on(unsigned long ip) 4364 { 4365 struct irqtrace_events *trace = ¤t->irqtrace; 4366 4367 if (unlikely(!debug_locks)) 4368 return; 4369 4370 /* 4371 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4372 * tracking state and hardware state are out of sync. 4373 * 4374 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4375 * and not rely on hardware state like normal interrupts. 4376 */ 4377 if (unlikely(in_nmi())) { 4378 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4379 return; 4380 4381 /* 4382 * Skip: 4383 * - recursion check, because NMI can hit lockdep; 4384 * - hardware state check, because above; 4385 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4386 */ 4387 goto skip_checks; 4388 } 4389 4390 if (unlikely(this_cpu_read(lockdep_recursion))) 4391 return; 4392 4393 if (lockdep_hardirqs_enabled()) { 4394 /* 4395 * Neither irq nor preemption are disabled here 4396 * so this is racy by nature but losing one hit 4397 * in a stat is not a big deal. 4398 */ 4399 __debug_atomic_inc(redundant_hardirqs_on); 4400 return; 4401 } 4402 4403 /* 4404 * We're enabling irqs and according to our state above irqs weren't 4405 * already enabled, yet we find the hardware thinks they are in fact 4406 * enabled.. someone messed up their IRQ state tracing. 4407 */ 4408 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4409 return; 4410 4411 /* 4412 * Ensure the lock stack remained unchanged between 4413 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4414 */ 4415 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4416 current->curr_chain_key); 4417 4418 skip_checks: 4419 /* we'll do an OFF -> ON transition: */ 4420 __this_cpu_write(hardirqs_enabled, 1); 4421 trace->hardirq_enable_ip = ip; 4422 trace->hardirq_enable_event = ++trace->irq_events; 4423 debug_atomic_inc(hardirqs_on_events); 4424 } 4425 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4426 4427 /* 4428 * Hardirqs were disabled: 4429 */ 4430 void noinstr lockdep_hardirqs_off(unsigned long ip) 4431 { 4432 if (unlikely(!debug_locks)) 4433 return; 4434 4435 /* 4436 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4437 * they will restore the software state. This ensures the software 4438 * state is consistent inside NMIs as well. 4439 */ 4440 if (in_nmi()) { 4441 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4442 return; 4443 } else if (__this_cpu_read(lockdep_recursion)) 4444 return; 4445 4446 /* 4447 * So we're supposed to get called after you mask local IRQs, but for 4448 * some reason the hardware doesn't quite think you did a proper job. 4449 */ 4450 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4451 return; 4452 4453 if (lockdep_hardirqs_enabled()) { 4454 struct irqtrace_events *trace = ¤t->irqtrace; 4455 4456 /* 4457 * We have done an ON -> OFF transition: 4458 */ 4459 __this_cpu_write(hardirqs_enabled, 0); 4460 trace->hardirq_disable_ip = ip; 4461 trace->hardirq_disable_event = ++trace->irq_events; 4462 debug_atomic_inc(hardirqs_off_events); 4463 } else { 4464 debug_atomic_inc(redundant_hardirqs_off); 4465 } 4466 } 4467 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4468 4469 /* 4470 * Softirqs will be enabled: 4471 */ 4472 void lockdep_softirqs_on(unsigned long ip) 4473 { 4474 struct irqtrace_events *trace = ¤t->irqtrace; 4475 4476 if (unlikely(!lockdep_enabled())) 4477 return; 4478 4479 /* 4480 * We fancy IRQs being disabled here, see softirq.c, avoids 4481 * funny state and nesting things. 4482 */ 4483 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4484 return; 4485 4486 if (current->softirqs_enabled) { 4487 debug_atomic_inc(redundant_softirqs_on); 4488 return; 4489 } 4490 4491 lockdep_recursion_inc(); 4492 /* 4493 * We'll do an OFF -> ON transition: 4494 */ 4495 current->softirqs_enabled = 1; 4496 trace->softirq_enable_ip = ip; 4497 trace->softirq_enable_event = ++trace->irq_events; 4498 debug_atomic_inc(softirqs_on_events); 4499 /* 4500 * We are going to turn softirqs on, so set the 4501 * usage bit for all held locks, if hardirqs are 4502 * enabled too: 4503 */ 4504 if (lockdep_hardirqs_enabled()) 4505 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4506 lockdep_recursion_finish(); 4507 } 4508 4509 /* 4510 * Softirqs were disabled: 4511 */ 4512 void lockdep_softirqs_off(unsigned long ip) 4513 { 4514 if (unlikely(!lockdep_enabled())) 4515 return; 4516 4517 /* 4518 * We fancy IRQs being disabled here, see softirq.c 4519 */ 4520 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4521 return; 4522 4523 if (current->softirqs_enabled) { 4524 struct irqtrace_events *trace = ¤t->irqtrace; 4525 4526 /* 4527 * We have done an ON -> OFF transition: 4528 */ 4529 current->softirqs_enabled = 0; 4530 trace->softirq_disable_ip = ip; 4531 trace->softirq_disable_event = ++trace->irq_events; 4532 debug_atomic_inc(softirqs_off_events); 4533 /* 4534 * Whoops, we wanted softirqs off, so why aren't they? 4535 */ 4536 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4537 } else 4538 debug_atomic_inc(redundant_softirqs_off); 4539 } 4540 4541 static int 4542 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4543 { 4544 if (!check) 4545 goto lock_used; 4546 4547 /* 4548 * If non-trylock use in a hardirq or softirq context, then 4549 * mark the lock as used in these contexts: 4550 */ 4551 if (!hlock->trylock) { 4552 if (hlock->read) { 4553 if (lockdep_hardirq_context()) 4554 if (!mark_lock(curr, hlock, 4555 LOCK_USED_IN_HARDIRQ_READ)) 4556 return 0; 4557 if (curr->softirq_context) 4558 if (!mark_lock(curr, hlock, 4559 LOCK_USED_IN_SOFTIRQ_READ)) 4560 return 0; 4561 } else { 4562 if (lockdep_hardirq_context()) 4563 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4564 return 0; 4565 if (curr->softirq_context) 4566 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4567 return 0; 4568 } 4569 } 4570 4571 /* 4572 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4573 * creates no critical section and no extra dependency can be introduced 4574 * by interrupts 4575 */ 4576 if (!hlock->hardirqs_off && !hlock->sync) { 4577 if (hlock->read) { 4578 if (!mark_lock(curr, hlock, 4579 LOCK_ENABLED_HARDIRQ_READ)) 4580 return 0; 4581 if (curr->softirqs_enabled) 4582 if (!mark_lock(curr, hlock, 4583 LOCK_ENABLED_SOFTIRQ_READ)) 4584 return 0; 4585 } else { 4586 if (!mark_lock(curr, hlock, 4587 LOCK_ENABLED_HARDIRQ)) 4588 return 0; 4589 if (curr->softirqs_enabled) 4590 if (!mark_lock(curr, hlock, 4591 LOCK_ENABLED_SOFTIRQ)) 4592 return 0; 4593 } 4594 } 4595 4596 lock_used: 4597 /* mark it as used: */ 4598 if (!mark_lock(curr, hlock, LOCK_USED)) 4599 return 0; 4600 4601 return 1; 4602 } 4603 4604 static inline unsigned int task_irq_context(struct task_struct *task) 4605 { 4606 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4607 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4608 } 4609 4610 static int separate_irq_context(struct task_struct *curr, 4611 struct held_lock *hlock) 4612 { 4613 unsigned int depth = curr->lockdep_depth; 4614 4615 /* 4616 * Keep track of points where we cross into an interrupt context: 4617 */ 4618 if (depth) { 4619 struct held_lock *prev_hlock; 4620 4621 prev_hlock = curr->held_locks + depth-1; 4622 /* 4623 * If we cross into another context, reset the 4624 * hash key (this also prevents the checking and the 4625 * adding of the dependency to 'prev'): 4626 */ 4627 if (prev_hlock->irq_context != hlock->irq_context) 4628 return 1; 4629 } 4630 return 0; 4631 } 4632 4633 /* 4634 * Mark a lock with a usage bit, and validate the state transition: 4635 */ 4636 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4637 enum lock_usage_bit new_bit) 4638 { 4639 unsigned int new_mask, ret = 1; 4640 4641 if (new_bit >= LOCK_USAGE_STATES) { 4642 DEBUG_LOCKS_WARN_ON(1); 4643 return 0; 4644 } 4645 4646 if (new_bit == LOCK_USED && this->read) 4647 new_bit = LOCK_USED_READ; 4648 4649 new_mask = 1 << new_bit; 4650 4651 /* 4652 * If already set then do not dirty the cacheline, 4653 * nor do any checks: 4654 */ 4655 if (likely(hlock_class(this)->usage_mask & new_mask)) 4656 return 1; 4657 4658 if (!graph_lock()) 4659 return 0; 4660 /* 4661 * Make sure we didn't race: 4662 */ 4663 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4664 goto unlock; 4665 4666 if (!hlock_class(this)->usage_mask) 4667 debug_atomic_dec(nr_unused_locks); 4668 4669 hlock_class(this)->usage_mask |= new_mask; 4670 4671 if (new_bit < LOCK_TRACE_STATES) { 4672 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4673 return 0; 4674 } 4675 4676 if (new_bit < LOCK_USED) { 4677 ret = mark_lock_irq(curr, this, new_bit); 4678 if (!ret) 4679 return 0; 4680 } 4681 4682 unlock: 4683 graph_unlock(); 4684 4685 /* 4686 * We must printk outside of the graph_lock: 4687 */ 4688 if (ret == 2) { 4689 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4690 print_lock(this); 4691 print_irqtrace_events(curr); 4692 dump_stack(); 4693 } 4694 4695 return ret; 4696 } 4697 4698 static inline short task_wait_context(struct task_struct *curr) 4699 { 4700 /* 4701 * Set appropriate wait type for the context; for IRQs we have to take 4702 * into account force_irqthread as that is implied by PREEMPT_RT. 4703 */ 4704 if (lockdep_hardirq_context()) { 4705 /* 4706 * Check if force_irqthreads will run us threaded. 4707 */ 4708 if (curr->hardirq_threaded || curr->irq_config) 4709 return LD_WAIT_CONFIG; 4710 4711 return LD_WAIT_SPIN; 4712 } else if (curr->softirq_context) { 4713 /* 4714 * Softirqs are always threaded. 4715 */ 4716 return LD_WAIT_CONFIG; 4717 } 4718 4719 return LD_WAIT_MAX; 4720 } 4721 4722 static int 4723 print_lock_invalid_wait_context(struct task_struct *curr, 4724 struct held_lock *hlock) 4725 { 4726 short curr_inner; 4727 4728 if (!debug_locks_off()) 4729 return 0; 4730 if (debug_locks_silent) 4731 return 0; 4732 4733 pr_warn("\n"); 4734 pr_warn("=============================\n"); 4735 pr_warn("[ BUG: Invalid wait context ]\n"); 4736 print_kernel_ident(); 4737 pr_warn("-----------------------------\n"); 4738 4739 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4740 print_lock(hlock); 4741 4742 pr_warn("other info that might help us debug this:\n"); 4743 4744 curr_inner = task_wait_context(curr); 4745 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4746 4747 lockdep_print_held_locks(curr); 4748 4749 pr_warn("stack backtrace:\n"); 4750 dump_stack(); 4751 4752 return 0; 4753 } 4754 4755 /* 4756 * Verify the wait_type context. 4757 * 4758 * This check validates we take locks in the right wait-type order; that is it 4759 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4760 * acquire spinlocks inside raw_spinlocks and the sort. 4761 * 4762 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4763 * can be taken from (pretty much) any context but also has constraints. 4764 * However when taken in a stricter environment the RCU lock does not loosen 4765 * the constraints. 4766 * 4767 * Therefore we must look for the strictest environment in the lock stack and 4768 * compare that to the lock we're trying to acquire. 4769 */ 4770 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4771 { 4772 u8 next_inner = hlock_class(next)->wait_type_inner; 4773 u8 next_outer = hlock_class(next)->wait_type_outer; 4774 u8 curr_inner; 4775 int depth; 4776 4777 if (!next_inner || next->trylock) 4778 return 0; 4779 4780 if (!next_outer) 4781 next_outer = next_inner; 4782 4783 /* 4784 * Find start of current irq_context.. 4785 */ 4786 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4787 struct held_lock *prev = curr->held_locks + depth; 4788 if (prev->irq_context != next->irq_context) 4789 break; 4790 } 4791 depth++; 4792 4793 curr_inner = task_wait_context(curr); 4794 4795 for (; depth < curr->lockdep_depth; depth++) { 4796 struct held_lock *prev = curr->held_locks + depth; 4797 struct lock_class *class = hlock_class(prev); 4798 u8 prev_inner = class->wait_type_inner; 4799 4800 if (prev_inner) { 4801 /* 4802 * We can have a bigger inner than a previous one 4803 * when outer is smaller than inner, as with RCU. 4804 * 4805 * Also due to trylocks. 4806 */ 4807 curr_inner = min(curr_inner, prev_inner); 4808 4809 /* 4810 * Allow override for annotations -- this is typically 4811 * only valid/needed for code that only exists when 4812 * CONFIG_PREEMPT_RT=n. 4813 */ 4814 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4815 curr_inner = prev_inner; 4816 } 4817 } 4818 4819 if (next_outer > curr_inner) 4820 return print_lock_invalid_wait_context(curr, next); 4821 4822 return 0; 4823 } 4824 4825 #else /* CONFIG_PROVE_LOCKING */ 4826 4827 static inline int 4828 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4829 { 4830 return 1; 4831 } 4832 4833 static inline unsigned int task_irq_context(struct task_struct *task) 4834 { 4835 return 0; 4836 } 4837 4838 static inline int separate_irq_context(struct task_struct *curr, 4839 struct held_lock *hlock) 4840 { 4841 return 0; 4842 } 4843 4844 static inline int check_wait_context(struct task_struct *curr, 4845 struct held_lock *next) 4846 { 4847 return 0; 4848 } 4849 4850 #endif /* CONFIG_PROVE_LOCKING */ 4851 4852 /* 4853 * Initialize a lock instance's lock-class mapping info: 4854 */ 4855 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4856 struct lock_class_key *key, int subclass, 4857 u8 inner, u8 outer, u8 lock_type) 4858 { 4859 int i; 4860 4861 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4862 lock->class_cache[i] = NULL; 4863 4864 #ifdef CONFIG_LOCK_STAT 4865 lock->cpu = raw_smp_processor_id(); 4866 #endif 4867 4868 /* 4869 * Can't be having no nameless bastards around this place! 4870 */ 4871 if (DEBUG_LOCKS_WARN_ON(!name)) { 4872 lock->name = "NULL"; 4873 return; 4874 } 4875 4876 lock->name = name; 4877 4878 lock->wait_type_outer = outer; 4879 lock->wait_type_inner = inner; 4880 lock->lock_type = lock_type; 4881 4882 /* 4883 * No key, no joy, we need to hash something. 4884 */ 4885 if (DEBUG_LOCKS_WARN_ON(!key)) 4886 return; 4887 /* 4888 * Sanity check, the lock-class key must either have been allocated 4889 * statically or must have been registered as a dynamic key. 4890 */ 4891 if (!static_obj(key) && !is_dynamic_key(key)) { 4892 if (debug_locks) 4893 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4894 DEBUG_LOCKS_WARN_ON(1); 4895 return; 4896 } 4897 lock->key = key; 4898 4899 if (unlikely(!debug_locks)) 4900 return; 4901 4902 if (subclass) { 4903 unsigned long flags; 4904 4905 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4906 return; 4907 4908 raw_local_irq_save(flags); 4909 lockdep_recursion_inc(); 4910 register_lock_class(lock, subclass, 1); 4911 lockdep_recursion_finish(); 4912 raw_local_irq_restore(flags); 4913 } 4914 } 4915 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4916 4917 struct lock_class_key __lockdep_no_validate__; 4918 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4919 4920 struct lock_class_key __lockdep_no_track__; 4921 EXPORT_SYMBOL_GPL(__lockdep_no_track__); 4922 4923 #ifdef CONFIG_PROVE_LOCKING 4924 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 4925 lock_print_fn print_fn) 4926 { 4927 struct lock_class *class = lock->class_cache[0]; 4928 unsigned long flags; 4929 4930 raw_local_irq_save(flags); 4931 lockdep_recursion_inc(); 4932 4933 if (!class) 4934 class = register_lock_class(lock, 0, 0); 4935 4936 if (class) { 4937 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 4938 WARN_ON(class->print_fn && class->print_fn != print_fn); 4939 4940 class->cmp_fn = cmp_fn; 4941 class->print_fn = print_fn; 4942 } 4943 4944 lockdep_recursion_finish(); 4945 raw_local_irq_restore(flags); 4946 } 4947 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 4948 #endif 4949 4950 static void 4951 print_lock_nested_lock_not_held(struct task_struct *curr, 4952 struct held_lock *hlock) 4953 { 4954 if (!debug_locks_off()) 4955 return; 4956 if (debug_locks_silent) 4957 return; 4958 4959 pr_warn("\n"); 4960 pr_warn("==================================\n"); 4961 pr_warn("WARNING: Nested lock was not taken\n"); 4962 print_kernel_ident(); 4963 pr_warn("----------------------------------\n"); 4964 4965 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4966 print_lock(hlock); 4967 4968 pr_warn("\nbut this task is not holding:\n"); 4969 pr_warn("%s\n", hlock->nest_lock->name); 4970 4971 pr_warn("\nstack backtrace:\n"); 4972 dump_stack(); 4973 4974 pr_warn("\nother info that might help us debug this:\n"); 4975 lockdep_print_held_locks(curr); 4976 4977 pr_warn("\nstack backtrace:\n"); 4978 dump_stack(); 4979 } 4980 4981 static int __lock_is_held(const struct lockdep_map *lock, int read); 4982 4983 /* 4984 * This gets called for every mutex_lock*()/spin_lock*() operation. 4985 * We maintain the dependency maps and validate the locking attempt: 4986 * 4987 * The callers must make sure that IRQs are disabled before calling it, 4988 * otherwise we could get an interrupt which would want to take locks, 4989 * which would end up in lockdep again. 4990 */ 4991 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4992 int trylock, int read, int check, int hardirqs_off, 4993 struct lockdep_map *nest_lock, unsigned long ip, 4994 int references, int pin_count, int sync) 4995 { 4996 struct task_struct *curr = current; 4997 struct lock_class *class = NULL; 4998 struct held_lock *hlock; 4999 unsigned int depth; 5000 int chain_head = 0; 5001 int class_idx; 5002 u64 chain_key; 5003 5004 if (unlikely(!debug_locks)) 5005 return 0; 5006 5007 if (unlikely(lock->key == &__lockdep_no_track__)) 5008 return 0; 5009 5010 if (!prove_locking || lock->key == &__lockdep_no_validate__) 5011 check = 0; 5012 5013 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5014 class = lock->class_cache[subclass]; 5015 /* 5016 * Not cached? 5017 */ 5018 if (unlikely(!class)) { 5019 class = register_lock_class(lock, subclass, 0); 5020 if (!class) 5021 return 0; 5022 } 5023 5024 debug_class_ops_inc(class); 5025 5026 if (very_verbose(class)) { 5027 printk("\nacquire class [%px] %s", class->key, class->name); 5028 if (class->name_version > 1) 5029 printk(KERN_CONT "#%d", class->name_version); 5030 printk(KERN_CONT "\n"); 5031 dump_stack(); 5032 } 5033 5034 /* 5035 * Add the lock to the list of currently held locks. 5036 * (we dont increase the depth just yet, up until the 5037 * dependency checks are done) 5038 */ 5039 depth = curr->lockdep_depth; 5040 /* 5041 * Ran out of static storage for our per-task lock stack again have we? 5042 */ 5043 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5044 return 0; 5045 5046 class_idx = class - lock_classes; 5047 5048 if (depth && !sync) { 5049 /* we're holding locks and the new held lock is not a sync */ 5050 hlock = curr->held_locks + depth - 1; 5051 if (hlock->class_idx == class_idx && nest_lock) { 5052 if (!references) 5053 references++; 5054 5055 if (!hlock->references) 5056 hlock->references++; 5057 5058 hlock->references += references; 5059 5060 /* Overflow */ 5061 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5062 return 0; 5063 5064 return 2; 5065 } 5066 } 5067 5068 hlock = curr->held_locks + depth; 5069 /* 5070 * Plain impossible, we just registered it and checked it weren't no 5071 * NULL like.. I bet this mushroom I ate was good! 5072 */ 5073 if (DEBUG_LOCKS_WARN_ON(!class)) 5074 return 0; 5075 hlock->class_idx = class_idx; 5076 hlock->acquire_ip = ip; 5077 hlock->instance = lock; 5078 hlock->nest_lock = nest_lock; 5079 hlock->irq_context = task_irq_context(curr); 5080 hlock->trylock = trylock; 5081 hlock->read = read; 5082 hlock->check = check; 5083 hlock->sync = !!sync; 5084 hlock->hardirqs_off = !!hardirqs_off; 5085 hlock->references = references; 5086 #ifdef CONFIG_LOCK_STAT 5087 hlock->waittime_stamp = 0; 5088 hlock->holdtime_stamp = lockstat_clock(); 5089 #endif 5090 hlock->pin_count = pin_count; 5091 5092 if (check_wait_context(curr, hlock)) 5093 return 0; 5094 5095 /* Initialize the lock usage bit */ 5096 if (!mark_usage(curr, hlock, check)) 5097 return 0; 5098 5099 /* 5100 * Calculate the chain hash: it's the combined hash of all the 5101 * lock keys along the dependency chain. We save the hash value 5102 * at every step so that we can get the current hash easily 5103 * after unlock. The chain hash is then used to cache dependency 5104 * results. 5105 * 5106 * The 'key ID' is what is the most compact key value to drive 5107 * the hash, not class->key. 5108 */ 5109 /* 5110 * Whoops, we did it again.. class_idx is invalid. 5111 */ 5112 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5113 return 0; 5114 5115 chain_key = curr->curr_chain_key; 5116 if (!depth) { 5117 /* 5118 * How can we have a chain hash when we ain't got no keys?! 5119 */ 5120 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5121 return 0; 5122 chain_head = 1; 5123 } 5124 5125 hlock->prev_chain_key = chain_key; 5126 if (separate_irq_context(curr, hlock)) { 5127 chain_key = INITIAL_CHAIN_KEY; 5128 chain_head = 1; 5129 } 5130 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5131 5132 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5133 print_lock_nested_lock_not_held(curr, hlock); 5134 return 0; 5135 } 5136 5137 if (!debug_locks_silent) { 5138 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5139 WARN_ON_ONCE(!hlock_class(hlock)->key); 5140 } 5141 5142 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5143 return 0; 5144 5145 /* For lock_sync(), we are done here since no actual critical section */ 5146 if (hlock->sync) 5147 return 1; 5148 5149 curr->curr_chain_key = chain_key; 5150 curr->lockdep_depth++; 5151 check_chain_key(curr); 5152 #ifdef CONFIG_DEBUG_LOCKDEP 5153 if (unlikely(!debug_locks)) 5154 return 0; 5155 #endif 5156 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5157 debug_locks_off(); 5158 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5159 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5160 curr->lockdep_depth, MAX_LOCK_DEPTH); 5161 5162 lockdep_print_held_locks(current); 5163 debug_show_all_locks(); 5164 dump_stack(); 5165 5166 return 0; 5167 } 5168 5169 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5170 max_lockdep_depth = curr->lockdep_depth; 5171 5172 return 1; 5173 } 5174 5175 static void print_unlock_imbalance_bug(struct task_struct *curr, 5176 struct lockdep_map *lock, 5177 unsigned long ip) 5178 { 5179 if (!debug_locks_off()) 5180 return; 5181 if (debug_locks_silent) 5182 return; 5183 5184 pr_warn("\n"); 5185 pr_warn("=====================================\n"); 5186 pr_warn("WARNING: bad unlock balance detected!\n"); 5187 print_kernel_ident(); 5188 pr_warn("-------------------------------------\n"); 5189 pr_warn("%s/%d is trying to release lock (", 5190 curr->comm, task_pid_nr(curr)); 5191 print_lockdep_cache(lock); 5192 pr_cont(") at:\n"); 5193 print_ip_sym(KERN_WARNING, ip); 5194 pr_warn("but there are no more locks to release!\n"); 5195 pr_warn("\nother info that might help us debug this:\n"); 5196 lockdep_print_held_locks(curr); 5197 5198 pr_warn("\nstack backtrace:\n"); 5199 dump_stack(); 5200 } 5201 5202 static noinstr int match_held_lock(const struct held_lock *hlock, 5203 const struct lockdep_map *lock) 5204 { 5205 if (hlock->instance == lock) 5206 return 1; 5207 5208 if (hlock->references) { 5209 const struct lock_class *class = lock->class_cache[0]; 5210 5211 if (!class) 5212 class = look_up_lock_class(lock, 0); 5213 5214 /* 5215 * If look_up_lock_class() failed to find a class, we're trying 5216 * to test if we hold a lock that has never yet been acquired. 5217 * Clearly if the lock hasn't been acquired _ever_, we're not 5218 * holding it either, so report failure. 5219 */ 5220 if (!class) 5221 return 0; 5222 5223 /* 5224 * References, but not a lock we're actually ref-counting? 5225 * State got messed up, follow the sites that change ->references 5226 * and try to make sense of it. 5227 */ 5228 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5229 return 0; 5230 5231 if (hlock->class_idx == class - lock_classes) 5232 return 1; 5233 } 5234 5235 return 0; 5236 } 5237 5238 /* @depth must not be zero */ 5239 static struct held_lock *find_held_lock(struct task_struct *curr, 5240 struct lockdep_map *lock, 5241 unsigned int depth, int *idx) 5242 { 5243 struct held_lock *ret, *hlock, *prev_hlock; 5244 int i; 5245 5246 i = depth - 1; 5247 hlock = curr->held_locks + i; 5248 ret = hlock; 5249 if (match_held_lock(hlock, lock)) 5250 goto out; 5251 5252 ret = NULL; 5253 for (i--, prev_hlock = hlock--; 5254 i >= 0; 5255 i--, prev_hlock = hlock--) { 5256 /* 5257 * We must not cross into another context: 5258 */ 5259 if (prev_hlock->irq_context != hlock->irq_context) { 5260 ret = NULL; 5261 break; 5262 } 5263 if (match_held_lock(hlock, lock)) { 5264 ret = hlock; 5265 break; 5266 } 5267 } 5268 5269 out: 5270 *idx = i; 5271 return ret; 5272 } 5273 5274 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5275 int idx, unsigned int *merged) 5276 { 5277 struct held_lock *hlock; 5278 int first_idx = idx; 5279 5280 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5281 return 0; 5282 5283 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5284 switch (__lock_acquire(hlock->instance, 5285 hlock_class(hlock)->subclass, 5286 hlock->trylock, 5287 hlock->read, hlock->check, 5288 hlock->hardirqs_off, 5289 hlock->nest_lock, hlock->acquire_ip, 5290 hlock->references, hlock->pin_count, 0)) { 5291 case 0: 5292 return 1; 5293 case 1: 5294 break; 5295 case 2: 5296 *merged += (idx == first_idx); 5297 break; 5298 default: 5299 WARN_ON(1); 5300 return 0; 5301 } 5302 } 5303 return 0; 5304 } 5305 5306 static int 5307 __lock_set_class(struct lockdep_map *lock, const char *name, 5308 struct lock_class_key *key, unsigned int subclass, 5309 unsigned long ip) 5310 { 5311 struct task_struct *curr = current; 5312 unsigned int depth, merged = 0; 5313 struct held_lock *hlock; 5314 struct lock_class *class; 5315 int i; 5316 5317 if (unlikely(!debug_locks)) 5318 return 0; 5319 5320 depth = curr->lockdep_depth; 5321 /* 5322 * This function is about (re)setting the class of a held lock, 5323 * yet we're not actually holding any locks. Naughty user! 5324 */ 5325 if (DEBUG_LOCKS_WARN_ON(!depth)) 5326 return 0; 5327 5328 hlock = find_held_lock(curr, lock, depth, &i); 5329 if (!hlock) { 5330 print_unlock_imbalance_bug(curr, lock, ip); 5331 return 0; 5332 } 5333 5334 lockdep_init_map_type(lock, name, key, 0, 5335 lock->wait_type_inner, 5336 lock->wait_type_outer, 5337 lock->lock_type); 5338 class = register_lock_class(lock, subclass, 0); 5339 hlock->class_idx = class - lock_classes; 5340 5341 curr->lockdep_depth = i; 5342 curr->curr_chain_key = hlock->prev_chain_key; 5343 5344 if (reacquire_held_locks(curr, depth, i, &merged)) 5345 return 0; 5346 5347 /* 5348 * I took it apart and put it back together again, except now I have 5349 * these 'spare' parts.. where shall I put them. 5350 */ 5351 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5352 return 0; 5353 return 1; 5354 } 5355 5356 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5357 { 5358 struct task_struct *curr = current; 5359 unsigned int depth, merged = 0; 5360 struct held_lock *hlock; 5361 int i; 5362 5363 if (unlikely(!debug_locks)) 5364 return 0; 5365 5366 depth = curr->lockdep_depth; 5367 /* 5368 * This function is about (re)setting the class of a held lock, 5369 * yet we're not actually holding any locks. Naughty user! 5370 */ 5371 if (DEBUG_LOCKS_WARN_ON(!depth)) 5372 return 0; 5373 5374 hlock = find_held_lock(curr, lock, depth, &i); 5375 if (!hlock) { 5376 print_unlock_imbalance_bug(curr, lock, ip); 5377 return 0; 5378 } 5379 5380 curr->lockdep_depth = i; 5381 curr->curr_chain_key = hlock->prev_chain_key; 5382 5383 WARN(hlock->read, "downgrading a read lock"); 5384 hlock->read = 1; 5385 hlock->acquire_ip = ip; 5386 5387 if (reacquire_held_locks(curr, depth, i, &merged)) 5388 return 0; 5389 5390 /* Merging can't happen with unchanged classes.. */ 5391 if (DEBUG_LOCKS_WARN_ON(merged)) 5392 return 0; 5393 5394 /* 5395 * I took it apart and put it back together again, except now I have 5396 * these 'spare' parts.. where shall I put them. 5397 */ 5398 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5399 return 0; 5400 5401 return 1; 5402 } 5403 5404 /* 5405 * Remove the lock from the list of currently held locks - this gets 5406 * called on mutex_unlock()/spin_unlock*() (or on a failed 5407 * mutex_lock_interruptible()). 5408 */ 5409 static int 5410 __lock_release(struct lockdep_map *lock, unsigned long ip) 5411 { 5412 struct task_struct *curr = current; 5413 unsigned int depth, merged = 1; 5414 struct held_lock *hlock; 5415 int i; 5416 5417 if (unlikely(!debug_locks)) 5418 return 0; 5419 5420 depth = curr->lockdep_depth; 5421 /* 5422 * So we're all set to release this lock.. wait what lock? We don't 5423 * own any locks, you've been drinking again? 5424 */ 5425 if (depth <= 0) { 5426 print_unlock_imbalance_bug(curr, lock, ip); 5427 return 0; 5428 } 5429 5430 /* 5431 * Check whether the lock exists in the current stack 5432 * of held locks: 5433 */ 5434 hlock = find_held_lock(curr, lock, depth, &i); 5435 if (!hlock) { 5436 print_unlock_imbalance_bug(curr, lock, ip); 5437 return 0; 5438 } 5439 5440 if (hlock->instance == lock) 5441 lock_release_holdtime(hlock); 5442 5443 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5444 5445 if (hlock->references) { 5446 hlock->references--; 5447 if (hlock->references) { 5448 /* 5449 * We had, and after removing one, still have 5450 * references, the current lock stack is still 5451 * valid. We're done! 5452 */ 5453 return 1; 5454 } 5455 } 5456 5457 /* 5458 * We have the right lock to unlock, 'hlock' points to it. 5459 * Now we remove it from the stack, and add back the other 5460 * entries (if any), recalculating the hash along the way: 5461 */ 5462 5463 curr->lockdep_depth = i; 5464 curr->curr_chain_key = hlock->prev_chain_key; 5465 5466 /* 5467 * The most likely case is when the unlock is on the innermost 5468 * lock. In this case, we are done! 5469 */ 5470 if (i == depth-1) 5471 return 1; 5472 5473 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5474 return 0; 5475 5476 /* 5477 * We had N bottles of beer on the wall, we drank one, but now 5478 * there's not N-1 bottles of beer left on the wall... 5479 * Pouring two of the bottles together is acceptable. 5480 */ 5481 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5482 5483 /* 5484 * Since reacquire_held_locks() would have called check_chain_key() 5485 * indirectly via __lock_acquire(), we don't need to do it again 5486 * on return. 5487 */ 5488 return 0; 5489 } 5490 5491 static __always_inline 5492 int __lock_is_held(const struct lockdep_map *lock, int read) 5493 { 5494 struct task_struct *curr = current; 5495 int i; 5496 5497 for (i = 0; i < curr->lockdep_depth; i++) { 5498 struct held_lock *hlock = curr->held_locks + i; 5499 5500 if (match_held_lock(hlock, lock)) { 5501 if (read == -1 || !!hlock->read == read) 5502 return LOCK_STATE_HELD; 5503 5504 return LOCK_STATE_NOT_HELD; 5505 } 5506 } 5507 5508 return LOCK_STATE_NOT_HELD; 5509 } 5510 5511 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5512 { 5513 struct pin_cookie cookie = NIL_COOKIE; 5514 struct task_struct *curr = current; 5515 int i; 5516 5517 if (unlikely(!debug_locks)) 5518 return cookie; 5519 5520 for (i = 0; i < curr->lockdep_depth; i++) { 5521 struct held_lock *hlock = curr->held_locks + i; 5522 5523 if (match_held_lock(hlock, lock)) { 5524 /* 5525 * Grab 16bits of randomness; this is sufficient to not 5526 * be guessable and still allows some pin nesting in 5527 * our u32 pin_count. 5528 */ 5529 cookie.val = 1 + (sched_clock() & 0xffff); 5530 hlock->pin_count += cookie.val; 5531 return cookie; 5532 } 5533 } 5534 5535 WARN(1, "pinning an unheld lock\n"); 5536 return cookie; 5537 } 5538 5539 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5540 { 5541 struct task_struct *curr = current; 5542 int i; 5543 5544 if (unlikely(!debug_locks)) 5545 return; 5546 5547 for (i = 0; i < curr->lockdep_depth; i++) { 5548 struct held_lock *hlock = curr->held_locks + i; 5549 5550 if (match_held_lock(hlock, lock)) { 5551 hlock->pin_count += cookie.val; 5552 return; 5553 } 5554 } 5555 5556 WARN(1, "pinning an unheld lock\n"); 5557 } 5558 5559 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5560 { 5561 struct task_struct *curr = current; 5562 int i; 5563 5564 if (unlikely(!debug_locks)) 5565 return; 5566 5567 for (i = 0; i < curr->lockdep_depth; i++) { 5568 struct held_lock *hlock = curr->held_locks + i; 5569 5570 if (match_held_lock(hlock, lock)) { 5571 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5572 return; 5573 5574 hlock->pin_count -= cookie.val; 5575 5576 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5577 hlock->pin_count = 0; 5578 5579 return; 5580 } 5581 } 5582 5583 WARN(1, "unpinning an unheld lock\n"); 5584 } 5585 5586 /* 5587 * Check whether we follow the irq-flags state precisely: 5588 */ 5589 static noinstr void check_flags(unsigned long flags) 5590 { 5591 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5592 if (!debug_locks) 5593 return; 5594 5595 /* Get the warning out.. */ 5596 instrumentation_begin(); 5597 5598 if (irqs_disabled_flags(flags)) { 5599 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5600 printk("possible reason: unannotated irqs-off.\n"); 5601 } 5602 } else { 5603 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5604 printk("possible reason: unannotated irqs-on.\n"); 5605 } 5606 } 5607 5608 #ifndef CONFIG_PREEMPT_RT 5609 /* 5610 * We dont accurately track softirq state in e.g. 5611 * hardirq contexts (such as on 4KSTACKS), so only 5612 * check if not in hardirq contexts: 5613 */ 5614 if (!hardirq_count()) { 5615 if (softirq_count()) { 5616 /* like the above, but with softirqs */ 5617 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5618 } else { 5619 /* lick the above, does it taste good? */ 5620 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5621 } 5622 } 5623 #endif 5624 5625 if (!debug_locks) 5626 print_irqtrace_events(current); 5627 5628 instrumentation_end(); 5629 #endif 5630 } 5631 5632 void lock_set_class(struct lockdep_map *lock, const char *name, 5633 struct lock_class_key *key, unsigned int subclass, 5634 unsigned long ip) 5635 { 5636 unsigned long flags; 5637 5638 if (unlikely(!lockdep_enabled())) 5639 return; 5640 5641 raw_local_irq_save(flags); 5642 lockdep_recursion_inc(); 5643 check_flags(flags); 5644 if (__lock_set_class(lock, name, key, subclass, ip)) 5645 check_chain_key(current); 5646 lockdep_recursion_finish(); 5647 raw_local_irq_restore(flags); 5648 } 5649 EXPORT_SYMBOL_GPL(lock_set_class); 5650 5651 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5652 { 5653 unsigned long flags; 5654 5655 if (unlikely(!lockdep_enabled())) 5656 return; 5657 5658 raw_local_irq_save(flags); 5659 lockdep_recursion_inc(); 5660 check_flags(flags); 5661 if (__lock_downgrade(lock, ip)) 5662 check_chain_key(current); 5663 lockdep_recursion_finish(); 5664 raw_local_irq_restore(flags); 5665 } 5666 EXPORT_SYMBOL_GPL(lock_downgrade); 5667 5668 /* NMI context !!! */ 5669 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5670 { 5671 #ifdef CONFIG_PROVE_LOCKING 5672 struct lock_class *class = look_up_lock_class(lock, subclass); 5673 unsigned long mask = LOCKF_USED; 5674 5675 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5676 if (!class) 5677 return; 5678 5679 /* 5680 * READ locks only conflict with USED, such that if we only ever use 5681 * READ locks, there is no deadlock possible -- RCU. 5682 */ 5683 if (!hlock->read) 5684 mask |= LOCKF_USED_READ; 5685 5686 if (!(class->usage_mask & mask)) 5687 return; 5688 5689 hlock->class_idx = class - lock_classes; 5690 5691 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5692 #endif 5693 } 5694 5695 static bool lockdep_nmi(void) 5696 { 5697 if (raw_cpu_read(lockdep_recursion)) 5698 return false; 5699 5700 if (!in_nmi()) 5701 return false; 5702 5703 return true; 5704 } 5705 5706 /* 5707 * read_lock() is recursive if: 5708 * 1. We force lockdep think this way in selftests or 5709 * 2. The implementation is not queued read/write lock or 5710 * 3. The locker is at an in_interrupt() context. 5711 */ 5712 bool read_lock_is_recursive(void) 5713 { 5714 return force_read_lock_recursive || 5715 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5716 in_interrupt(); 5717 } 5718 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5719 5720 /* 5721 * We are not always called with irqs disabled - do that here, 5722 * and also avoid lockdep recursion: 5723 */ 5724 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5725 int trylock, int read, int check, 5726 struct lockdep_map *nest_lock, unsigned long ip) 5727 { 5728 unsigned long flags; 5729 5730 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5731 5732 if (!debug_locks) 5733 return; 5734 5735 if (unlikely(!lockdep_enabled())) { 5736 /* XXX allow trylock from NMI ?!? */ 5737 if (lockdep_nmi() && !trylock) { 5738 struct held_lock hlock; 5739 5740 hlock.acquire_ip = ip; 5741 hlock.instance = lock; 5742 hlock.nest_lock = nest_lock; 5743 hlock.irq_context = 2; // XXX 5744 hlock.trylock = trylock; 5745 hlock.read = read; 5746 hlock.check = check; 5747 hlock.hardirqs_off = true; 5748 hlock.references = 0; 5749 5750 verify_lock_unused(lock, &hlock, subclass); 5751 } 5752 return; 5753 } 5754 5755 raw_local_irq_save(flags); 5756 check_flags(flags); 5757 5758 lockdep_recursion_inc(); 5759 __lock_acquire(lock, subclass, trylock, read, check, 5760 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5761 lockdep_recursion_finish(); 5762 raw_local_irq_restore(flags); 5763 } 5764 EXPORT_SYMBOL_GPL(lock_acquire); 5765 5766 void lock_release(struct lockdep_map *lock, unsigned long ip) 5767 { 5768 unsigned long flags; 5769 5770 trace_lock_release(lock, ip); 5771 5772 if (unlikely(!lockdep_enabled() || 5773 lock->key == &__lockdep_no_track__)) 5774 return; 5775 5776 raw_local_irq_save(flags); 5777 check_flags(flags); 5778 5779 lockdep_recursion_inc(); 5780 if (__lock_release(lock, ip)) 5781 check_chain_key(current); 5782 lockdep_recursion_finish(); 5783 raw_local_irq_restore(flags); 5784 } 5785 EXPORT_SYMBOL_GPL(lock_release); 5786 5787 /* 5788 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5789 * 5790 * No actual critical section is created by the APIs annotated with this: these 5791 * APIs are used to wait for one or multiple critical sections (on other CPUs 5792 * or threads), and it means that calling these APIs inside these critical 5793 * sections is potential deadlock. 5794 */ 5795 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5796 int check, struct lockdep_map *nest_lock, unsigned long ip) 5797 { 5798 unsigned long flags; 5799 5800 if (unlikely(!lockdep_enabled())) 5801 return; 5802 5803 raw_local_irq_save(flags); 5804 check_flags(flags); 5805 5806 lockdep_recursion_inc(); 5807 __lock_acquire(lock, subclass, 0, read, check, 5808 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5809 check_chain_key(current); 5810 lockdep_recursion_finish(); 5811 raw_local_irq_restore(flags); 5812 } 5813 EXPORT_SYMBOL_GPL(lock_sync); 5814 5815 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5816 { 5817 unsigned long flags; 5818 int ret = LOCK_STATE_NOT_HELD; 5819 5820 /* 5821 * Avoid false negative lockdep_assert_held() and 5822 * lockdep_assert_not_held(). 5823 */ 5824 if (unlikely(!lockdep_enabled())) 5825 return LOCK_STATE_UNKNOWN; 5826 5827 raw_local_irq_save(flags); 5828 check_flags(flags); 5829 5830 lockdep_recursion_inc(); 5831 ret = __lock_is_held(lock, read); 5832 lockdep_recursion_finish(); 5833 raw_local_irq_restore(flags); 5834 5835 return ret; 5836 } 5837 EXPORT_SYMBOL_GPL(lock_is_held_type); 5838 NOKPROBE_SYMBOL(lock_is_held_type); 5839 5840 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5841 { 5842 struct pin_cookie cookie = NIL_COOKIE; 5843 unsigned long flags; 5844 5845 if (unlikely(!lockdep_enabled())) 5846 return cookie; 5847 5848 raw_local_irq_save(flags); 5849 check_flags(flags); 5850 5851 lockdep_recursion_inc(); 5852 cookie = __lock_pin_lock(lock); 5853 lockdep_recursion_finish(); 5854 raw_local_irq_restore(flags); 5855 5856 return cookie; 5857 } 5858 EXPORT_SYMBOL_GPL(lock_pin_lock); 5859 5860 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5861 { 5862 unsigned long flags; 5863 5864 if (unlikely(!lockdep_enabled())) 5865 return; 5866 5867 raw_local_irq_save(flags); 5868 check_flags(flags); 5869 5870 lockdep_recursion_inc(); 5871 __lock_repin_lock(lock, cookie); 5872 lockdep_recursion_finish(); 5873 raw_local_irq_restore(flags); 5874 } 5875 EXPORT_SYMBOL_GPL(lock_repin_lock); 5876 5877 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5878 { 5879 unsigned long flags; 5880 5881 if (unlikely(!lockdep_enabled())) 5882 return; 5883 5884 raw_local_irq_save(flags); 5885 check_flags(flags); 5886 5887 lockdep_recursion_inc(); 5888 __lock_unpin_lock(lock, cookie); 5889 lockdep_recursion_finish(); 5890 raw_local_irq_restore(flags); 5891 } 5892 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5893 5894 #ifdef CONFIG_LOCK_STAT 5895 static void print_lock_contention_bug(struct task_struct *curr, 5896 struct lockdep_map *lock, 5897 unsigned long ip) 5898 { 5899 if (!debug_locks_off()) 5900 return; 5901 if (debug_locks_silent) 5902 return; 5903 5904 pr_warn("\n"); 5905 pr_warn("=================================\n"); 5906 pr_warn("WARNING: bad contention detected!\n"); 5907 print_kernel_ident(); 5908 pr_warn("---------------------------------\n"); 5909 pr_warn("%s/%d is trying to contend lock (", 5910 curr->comm, task_pid_nr(curr)); 5911 print_lockdep_cache(lock); 5912 pr_cont(") at:\n"); 5913 print_ip_sym(KERN_WARNING, ip); 5914 pr_warn("but there are no locks held!\n"); 5915 pr_warn("\nother info that might help us debug this:\n"); 5916 lockdep_print_held_locks(curr); 5917 5918 pr_warn("\nstack backtrace:\n"); 5919 dump_stack(); 5920 } 5921 5922 static void 5923 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5924 { 5925 struct task_struct *curr = current; 5926 struct held_lock *hlock; 5927 struct lock_class_stats *stats; 5928 unsigned int depth; 5929 int i, contention_point, contending_point; 5930 5931 depth = curr->lockdep_depth; 5932 /* 5933 * Whee, we contended on this lock, except it seems we're not 5934 * actually trying to acquire anything much at all.. 5935 */ 5936 if (DEBUG_LOCKS_WARN_ON(!depth)) 5937 return; 5938 5939 hlock = find_held_lock(curr, lock, depth, &i); 5940 if (!hlock) { 5941 print_lock_contention_bug(curr, lock, ip); 5942 return; 5943 } 5944 5945 if (hlock->instance != lock) 5946 return; 5947 5948 hlock->waittime_stamp = lockstat_clock(); 5949 5950 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5951 contending_point = lock_point(hlock_class(hlock)->contending_point, 5952 lock->ip); 5953 5954 stats = get_lock_stats(hlock_class(hlock)); 5955 if (contention_point < LOCKSTAT_POINTS) 5956 stats->contention_point[contention_point]++; 5957 if (contending_point < LOCKSTAT_POINTS) 5958 stats->contending_point[contending_point]++; 5959 if (lock->cpu != smp_processor_id()) 5960 stats->bounces[bounce_contended + !!hlock->read]++; 5961 } 5962 5963 static void 5964 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5965 { 5966 struct task_struct *curr = current; 5967 struct held_lock *hlock; 5968 struct lock_class_stats *stats; 5969 unsigned int depth; 5970 u64 now, waittime = 0; 5971 int i, cpu; 5972 5973 depth = curr->lockdep_depth; 5974 /* 5975 * Yay, we acquired ownership of this lock we didn't try to 5976 * acquire, how the heck did that happen? 5977 */ 5978 if (DEBUG_LOCKS_WARN_ON(!depth)) 5979 return; 5980 5981 hlock = find_held_lock(curr, lock, depth, &i); 5982 if (!hlock) { 5983 print_lock_contention_bug(curr, lock, _RET_IP_); 5984 return; 5985 } 5986 5987 if (hlock->instance != lock) 5988 return; 5989 5990 cpu = smp_processor_id(); 5991 if (hlock->waittime_stamp) { 5992 now = lockstat_clock(); 5993 waittime = now - hlock->waittime_stamp; 5994 hlock->holdtime_stamp = now; 5995 } 5996 5997 stats = get_lock_stats(hlock_class(hlock)); 5998 if (waittime) { 5999 if (hlock->read) 6000 lock_time_inc(&stats->read_waittime, waittime); 6001 else 6002 lock_time_inc(&stats->write_waittime, waittime); 6003 } 6004 if (lock->cpu != cpu) 6005 stats->bounces[bounce_acquired + !!hlock->read]++; 6006 6007 lock->cpu = cpu; 6008 lock->ip = ip; 6009 } 6010 6011 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6012 { 6013 unsigned long flags; 6014 6015 trace_lock_contended(lock, ip); 6016 6017 if (unlikely(!lock_stat || !lockdep_enabled())) 6018 return; 6019 6020 raw_local_irq_save(flags); 6021 check_flags(flags); 6022 lockdep_recursion_inc(); 6023 __lock_contended(lock, ip); 6024 lockdep_recursion_finish(); 6025 raw_local_irq_restore(flags); 6026 } 6027 EXPORT_SYMBOL_GPL(lock_contended); 6028 6029 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6030 { 6031 unsigned long flags; 6032 6033 trace_lock_acquired(lock, ip); 6034 6035 if (unlikely(!lock_stat || !lockdep_enabled())) 6036 return; 6037 6038 raw_local_irq_save(flags); 6039 check_flags(flags); 6040 lockdep_recursion_inc(); 6041 __lock_acquired(lock, ip); 6042 lockdep_recursion_finish(); 6043 raw_local_irq_restore(flags); 6044 } 6045 EXPORT_SYMBOL_GPL(lock_acquired); 6046 #endif 6047 6048 /* 6049 * Used by the testsuite, sanitize the validator state 6050 * after a simulated failure: 6051 */ 6052 6053 void lockdep_reset(void) 6054 { 6055 unsigned long flags; 6056 int i; 6057 6058 raw_local_irq_save(flags); 6059 lockdep_init_task(current); 6060 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6061 nr_hardirq_chains = 0; 6062 nr_softirq_chains = 0; 6063 nr_process_chains = 0; 6064 debug_locks = 1; 6065 for (i = 0; i < CHAINHASH_SIZE; i++) 6066 INIT_HLIST_HEAD(chainhash_table + i); 6067 raw_local_irq_restore(flags); 6068 } 6069 6070 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6071 static void remove_class_from_lock_chain(struct pending_free *pf, 6072 struct lock_chain *chain, 6073 struct lock_class *class) 6074 { 6075 #ifdef CONFIG_PROVE_LOCKING 6076 int i; 6077 6078 for (i = chain->base; i < chain->base + chain->depth; i++) { 6079 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6080 continue; 6081 /* 6082 * Each lock class occurs at most once in a lock chain so once 6083 * we found a match we can break out of this loop. 6084 */ 6085 goto free_lock_chain; 6086 } 6087 /* Since the chain has not been modified, return. */ 6088 return; 6089 6090 free_lock_chain: 6091 free_chain_hlocks(chain->base, chain->depth); 6092 /* Overwrite the chain key for concurrent RCU readers. */ 6093 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6094 dec_chains(chain->irq_context); 6095 6096 /* 6097 * Note: calling hlist_del_rcu() from inside a 6098 * hlist_for_each_entry_rcu() loop is safe. 6099 */ 6100 hlist_del_rcu(&chain->entry); 6101 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6102 nr_zapped_lock_chains++; 6103 #endif 6104 } 6105 6106 /* Must be called with the graph lock held. */ 6107 static void remove_class_from_lock_chains(struct pending_free *pf, 6108 struct lock_class *class) 6109 { 6110 struct lock_chain *chain; 6111 struct hlist_head *head; 6112 int i; 6113 6114 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6115 head = chainhash_table + i; 6116 hlist_for_each_entry_rcu(chain, head, entry) { 6117 remove_class_from_lock_chain(pf, chain, class); 6118 } 6119 } 6120 } 6121 6122 /* 6123 * Remove all references to a lock class. The caller must hold the graph lock. 6124 */ 6125 static void zap_class(struct pending_free *pf, struct lock_class *class) 6126 { 6127 struct lock_list *entry; 6128 int i; 6129 6130 WARN_ON_ONCE(!class->key); 6131 6132 /* 6133 * Remove all dependencies this lock is 6134 * involved in: 6135 */ 6136 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6137 entry = list_entries + i; 6138 if (entry->class != class && entry->links_to != class) 6139 continue; 6140 __clear_bit(i, list_entries_in_use); 6141 nr_list_entries--; 6142 list_del_rcu(&entry->entry); 6143 } 6144 if (list_empty(&class->locks_after) && 6145 list_empty(&class->locks_before)) { 6146 list_move_tail(&class->lock_entry, &pf->zapped); 6147 hlist_del_rcu(&class->hash_entry); 6148 WRITE_ONCE(class->key, NULL); 6149 WRITE_ONCE(class->name, NULL); 6150 nr_lock_classes--; 6151 __clear_bit(class - lock_classes, lock_classes_in_use); 6152 if (class - lock_classes == max_lock_class_idx) 6153 max_lock_class_idx--; 6154 } else { 6155 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6156 class->name); 6157 } 6158 6159 remove_class_from_lock_chains(pf, class); 6160 nr_zapped_classes++; 6161 } 6162 6163 static void reinit_class(struct lock_class *class) 6164 { 6165 WARN_ON_ONCE(!class->lock_entry.next); 6166 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6167 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6168 memset_startat(class, 0, key); 6169 WARN_ON_ONCE(!class->lock_entry.next); 6170 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6171 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6172 } 6173 6174 static inline int within(const void *addr, void *start, unsigned long size) 6175 { 6176 return addr >= start && addr < start + size; 6177 } 6178 6179 static bool inside_selftest(void) 6180 { 6181 return current == lockdep_selftest_task_struct; 6182 } 6183 6184 /* The caller must hold the graph lock. */ 6185 static struct pending_free *get_pending_free(void) 6186 { 6187 return delayed_free.pf + delayed_free.index; 6188 } 6189 6190 static void free_zapped_rcu(struct rcu_head *cb); 6191 6192 /* 6193 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6194 * the graph lock held. 6195 */ 6196 static void call_rcu_zapped(struct pending_free *pf) 6197 { 6198 WARN_ON_ONCE(inside_selftest()); 6199 6200 if (list_empty(&pf->zapped)) 6201 return; 6202 6203 if (delayed_free.scheduled) 6204 return; 6205 6206 delayed_free.scheduled = true; 6207 6208 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6209 delayed_free.index ^= 1; 6210 6211 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6212 } 6213 6214 /* The caller must hold the graph lock. May be called from RCU context. */ 6215 static void __free_zapped_classes(struct pending_free *pf) 6216 { 6217 struct lock_class *class; 6218 6219 check_data_structures(); 6220 6221 list_for_each_entry(class, &pf->zapped, lock_entry) 6222 reinit_class(class); 6223 6224 list_splice_init(&pf->zapped, &free_lock_classes); 6225 6226 #ifdef CONFIG_PROVE_LOCKING 6227 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6228 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6229 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6230 #endif 6231 } 6232 6233 static void free_zapped_rcu(struct rcu_head *ch) 6234 { 6235 struct pending_free *pf; 6236 unsigned long flags; 6237 6238 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6239 return; 6240 6241 raw_local_irq_save(flags); 6242 lockdep_lock(); 6243 6244 /* closed head */ 6245 pf = delayed_free.pf + (delayed_free.index ^ 1); 6246 __free_zapped_classes(pf); 6247 delayed_free.scheduled = false; 6248 6249 /* 6250 * If there's anything on the open list, close and start a new callback. 6251 */ 6252 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6253 6254 lockdep_unlock(); 6255 raw_local_irq_restore(flags); 6256 } 6257 6258 /* 6259 * Remove all lock classes from the class hash table and from the 6260 * all_lock_classes list whose key or name is in the address range [start, 6261 * start + size). Move these lock classes to the zapped_classes list. Must 6262 * be called with the graph lock held. 6263 */ 6264 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6265 unsigned long size) 6266 { 6267 struct lock_class *class; 6268 struct hlist_head *head; 6269 int i; 6270 6271 /* Unhash all classes that were created by a module. */ 6272 for (i = 0; i < CLASSHASH_SIZE; i++) { 6273 head = classhash_table + i; 6274 hlist_for_each_entry_rcu(class, head, hash_entry) { 6275 if (!within(class->key, start, size) && 6276 !within(class->name, start, size)) 6277 continue; 6278 zap_class(pf, class); 6279 } 6280 } 6281 } 6282 6283 /* 6284 * Used in module.c to remove lock classes from memory that is going to be 6285 * freed; and possibly re-used by other modules. 6286 * 6287 * We will have had one synchronize_rcu() before getting here, so we're 6288 * guaranteed nobody will look up these exact classes -- they're properly dead 6289 * but still allocated. 6290 */ 6291 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6292 { 6293 struct pending_free *pf; 6294 unsigned long flags; 6295 6296 init_data_structures_once(); 6297 6298 raw_local_irq_save(flags); 6299 lockdep_lock(); 6300 pf = get_pending_free(); 6301 __lockdep_free_key_range(pf, start, size); 6302 call_rcu_zapped(pf); 6303 lockdep_unlock(); 6304 raw_local_irq_restore(flags); 6305 6306 /* 6307 * Wait for any possible iterators from look_up_lock_class() to pass 6308 * before continuing to free the memory they refer to. 6309 */ 6310 synchronize_rcu(); 6311 } 6312 6313 /* 6314 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6315 * Ignores debug_locks. Must only be used by the lockdep selftests. 6316 */ 6317 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6318 { 6319 struct pending_free *pf = delayed_free.pf; 6320 unsigned long flags; 6321 6322 init_data_structures_once(); 6323 6324 raw_local_irq_save(flags); 6325 lockdep_lock(); 6326 __lockdep_free_key_range(pf, start, size); 6327 __free_zapped_classes(pf); 6328 lockdep_unlock(); 6329 raw_local_irq_restore(flags); 6330 } 6331 6332 void lockdep_free_key_range(void *start, unsigned long size) 6333 { 6334 init_data_structures_once(); 6335 6336 if (inside_selftest()) 6337 lockdep_free_key_range_imm(start, size); 6338 else 6339 lockdep_free_key_range_reg(start, size); 6340 } 6341 6342 /* 6343 * Check whether any element of the @lock->class_cache[] array refers to a 6344 * registered lock class. The caller must hold either the graph lock or the 6345 * RCU read lock. 6346 */ 6347 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6348 { 6349 struct lock_class *class; 6350 struct hlist_head *head; 6351 int i, j; 6352 6353 for (i = 0; i < CLASSHASH_SIZE; i++) { 6354 head = classhash_table + i; 6355 hlist_for_each_entry_rcu(class, head, hash_entry) { 6356 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6357 if (lock->class_cache[j] == class) 6358 return true; 6359 } 6360 } 6361 return false; 6362 } 6363 6364 /* The caller must hold the graph lock. Does not sleep. */ 6365 static void __lockdep_reset_lock(struct pending_free *pf, 6366 struct lockdep_map *lock) 6367 { 6368 struct lock_class *class; 6369 int j; 6370 6371 /* 6372 * Remove all classes this lock might have: 6373 */ 6374 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6375 /* 6376 * If the class exists we look it up and zap it: 6377 */ 6378 class = look_up_lock_class(lock, j); 6379 if (class) 6380 zap_class(pf, class); 6381 } 6382 /* 6383 * Debug check: in the end all mapped classes should 6384 * be gone. 6385 */ 6386 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6387 debug_locks_off(); 6388 } 6389 6390 /* 6391 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6392 * released data structures from RCU context. 6393 */ 6394 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6395 { 6396 struct pending_free *pf; 6397 unsigned long flags; 6398 int locked; 6399 6400 raw_local_irq_save(flags); 6401 locked = graph_lock(); 6402 if (!locked) 6403 goto out_irq; 6404 6405 pf = get_pending_free(); 6406 __lockdep_reset_lock(pf, lock); 6407 call_rcu_zapped(pf); 6408 6409 graph_unlock(); 6410 out_irq: 6411 raw_local_irq_restore(flags); 6412 } 6413 6414 /* 6415 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6416 * lockdep selftests. 6417 */ 6418 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6419 { 6420 struct pending_free *pf = delayed_free.pf; 6421 unsigned long flags; 6422 6423 raw_local_irq_save(flags); 6424 lockdep_lock(); 6425 __lockdep_reset_lock(pf, lock); 6426 __free_zapped_classes(pf); 6427 lockdep_unlock(); 6428 raw_local_irq_restore(flags); 6429 } 6430 6431 void lockdep_reset_lock(struct lockdep_map *lock) 6432 { 6433 init_data_structures_once(); 6434 6435 if (inside_selftest()) 6436 lockdep_reset_lock_imm(lock); 6437 else 6438 lockdep_reset_lock_reg(lock); 6439 } 6440 6441 /* 6442 * Unregister a dynamically allocated key. 6443 * 6444 * Unlike lockdep_register_key(), a search is always done to find a matching 6445 * key irrespective of debug_locks to avoid potential invalid access to freed 6446 * memory in lock_class entry. 6447 */ 6448 void lockdep_unregister_key(struct lock_class_key *key) 6449 { 6450 struct hlist_head *hash_head = keyhashentry(key); 6451 struct lock_class_key *k; 6452 struct pending_free *pf; 6453 unsigned long flags; 6454 bool found = false; 6455 6456 might_sleep(); 6457 6458 if (WARN_ON_ONCE(static_obj(key))) 6459 return; 6460 6461 raw_local_irq_save(flags); 6462 lockdep_lock(); 6463 6464 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6465 if (k == key) { 6466 hlist_del_rcu(&k->hash_entry); 6467 found = true; 6468 break; 6469 } 6470 } 6471 WARN_ON_ONCE(!found && debug_locks); 6472 if (found) { 6473 pf = get_pending_free(); 6474 __lockdep_free_key_range(pf, key, 1); 6475 call_rcu_zapped(pf); 6476 } 6477 lockdep_unlock(); 6478 raw_local_irq_restore(flags); 6479 6480 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6481 synchronize_rcu(); 6482 } 6483 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6484 6485 void __init lockdep_init(void) 6486 { 6487 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6488 6489 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6490 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6491 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6492 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6493 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6494 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6495 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6496 6497 printk(" memory used by lock dependency info: %zu kB\n", 6498 (sizeof(lock_classes) + 6499 sizeof(lock_classes_in_use) + 6500 sizeof(classhash_table) + 6501 sizeof(list_entries) + 6502 sizeof(list_entries_in_use) + 6503 sizeof(chainhash_table) + 6504 sizeof(delayed_free) 6505 #ifdef CONFIG_PROVE_LOCKING 6506 + sizeof(lock_cq) 6507 + sizeof(lock_chains) 6508 + sizeof(lock_chains_in_use) 6509 + sizeof(chain_hlocks) 6510 #endif 6511 ) / 1024 6512 ); 6513 6514 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6515 printk(" memory used for stack traces: %zu kB\n", 6516 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6517 ); 6518 #endif 6519 6520 printk(" per task-struct memory footprint: %zu bytes\n", 6521 sizeof(((struct task_struct *)NULL)->held_locks)); 6522 } 6523 6524 static void 6525 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6526 const void *mem_to, struct held_lock *hlock) 6527 { 6528 if (!debug_locks_off()) 6529 return; 6530 if (debug_locks_silent) 6531 return; 6532 6533 pr_warn("\n"); 6534 pr_warn("=========================\n"); 6535 pr_warn("WARNING: held lock freed!\n"); 6536 print_kernel_ident(); 6537 pr_warn("-------------------------\n"); 6538 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6539 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6540 print_lock(hlock); 6541 lockdep_print_held_locks(curr); 6542 6543 pr_warn("\nstack backtrace:\n"); 6544 dump_stack(); 6545 } 6546 6547 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6548 const void* lock_from, unsigned long lock_len) 6549 { 6550 return lock_from + lock_len <= mem_from || 6551 mem_from + mem_len <= lock_from; 6552 } 6553 6554 /* 6555 * Called when kernel memory is freed (or unmapped), or if a lock 6556 * is destroyed or reinitialized - this code checks whether there is 6557 * any held lock in the memory range of <from> to <to>: 6558 */ 6559 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6560 { 6561 struct task_struct *curr = current; 6562 struct held_lock *hlock; 6563 unsigned long flags; 6564 int i; 6565 6566 if (unlikely(!debug_locks)) 6567 return; 6568 6569 raw_local_irq_save(flags); 6570 for (i = 0; i < curr->lockdep_depth; i++) { 6571 hlock = curr->held_locks + i; 6572 6573 if (not_in_range(mem_from, mem_len, hlock->instance, 6574 sizeof(*hlock->instance))) 6575 continue; 6576 6577 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6578 break; 6579 } 6580 raw_local_irq_restore(flags); 6581 } 6582 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6583 6584 static void print_held_locks_bug(void) 6585 { 6586 if (!debug_locks_off()) 6587 return; 6588 if (debug_locks_silent) 6589 return; 6590 6591 pr_warn("\n"); 6592 pr_warn("====================================\n"); 6593 pr_warn("WARNING: %s/%d still has locks held!\n", 6594 current->comm, task_pid_nr(current)); 6595 print_kernel_ident(); 6596 pr_warn("------------------------------------\n"); 6597 lockdep_print_held_locks(current); 6598 pr_warn("\nstack backtrace:\n"); 6599 dump_stack(); 6600 } 6601 6602 void debug_check_no_locks_held(void) 6603 { 6604 if (unlikely(current->lockdep_depth > 0)) 6605 print_held_locks_bug(); 6606 } 6607 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6608 6609 #ifdef __KERNEL__ 6610 void debug_show_all_locks(void) 6611 { 6612 struct task_struct *g, *p; 6613 6614 if (unlikely(!debug_locks)) { 6615 pr_warn("INFO: lockdep is turned off.\n"); 6616 return; 6617 } 6618 pr_warn("\nShowing all locks held in the system:\n"); 6619 6620 rcu_read_lock(); 6621 for_each_process_thread(g, p) { 6622 if (!p->lockdep_depth) 6623 continue; 6624 lockdep_print_held_locks(p); 6625 touch_nmi_watchdog(); 6626 touch_all_softlockup_watchdogs(); 6627 } 6628 rcu_read_unlock(); 6629 6630 pr_warn("\n"); 6631 pr_warn("=============================================\n\n"); 6632 } 6633 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6634 #endif 6635 6636 /* 6637 * Careful: only use this function if you are sure that 6638 * the task cannot run in parallel! 6639 */ 6640 void debug_show_held_locks(struct task_struct *task) 6641 { 6642 if (unlikely(!debug_locks)) { 6643 printk("INFO: lockdep is turned off.\n"); 6644 return; 6645 } 6646 lockdep_print_held_locks(task); 6647 } 6648 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6649 6650 asmlinkage __visible void lockdep_sys_exit(void) 6651 { 6652 struct task_struct *curr = current; 6653 6654 if (unlikely(curr->lockdep_depth)) { 6655 if (!debug_locks_off()) 6656 return; 6657 pr_warn("\n"); 6658 pr_warn("================================================\n"); 6659 pr_warn("WARNING: lock held when returning to user space!\n"); 6660 print_kernel_ident(); 6661 pr_warn("------------------------------------------------\n"); 6662 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6663 curr->comm, curr->pid); 6664 lockdep_print_held_locks(curr); 6665 } 6666 6667 /* 6668 * The lock history for each syscall should be independent. So wipe the 6669 * slate clean on return to userspace. 6670 */ 6671 lockdep_invariant_state(false); 6672 } 6673 6674 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6675 { 6676 struct task_struct *curr = current; 6677 int dl = READ_ONCE(debug_locks); 6678 bool rcu = warn_rcu_enter(); 6679 6680 /* Note: the following can be executed concurrently, so be careful. */ 6681 pr_warn("\n"); 6682 pr_warn("=============================\n"); 6683 pr_warn("WARNING: suspicious RCU usage\n"); 6684 print_kernel_ident(); 6685 pr_warn("-----------------------------\n"); 6686 pr_warn("%s:%d %s!\n", file, line, s); 6687 pr_warn("\nother info that might help us debug this:\n\n"); 6688 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6689 !rcu_lockdep_current_cpu_online() 6690 ? "RCU used illegally from offline CPU!\n" 6691 : "", 6692 rcu_scheduler_active, dl, 6693 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6694 6695 /* 6696 * If a CPU is in the RCU-free window in idle (ie: in the section 6697 * between ct_idle_enter() and ct_idle_exit(), then RCU 6698 * considers that CPU to be in an "extended quiescent state", 6699 * which means that RCU will be completely ignoring that CPU. 6700 * Therefore, rcu_read_lock() and friends have absolutely no 6701 * effect on a CPU running in that state. In other words, even if 6702 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6703 * delete data structures out from under it. RCU really has no 6704 * choice here: we need to keep an RCU-free window in idle where 6705 * the CPU may possibly enter into low power mode. This way we can 6706 * notice an extended quiescent state to other CPUs that started a grace 6707 * period. Otherwise we would delay any grace period as long as we run 6708 * in the idle task. 6709 * 6710 * So complain bitterly if someone does call rcu_read_lock(), 6711 * rcu_read_lock_bh() and so on from extended quiescent states. 6712 */ 6713 if (!rcu_is_watching()) 6714 pr_warn("RCU used illegally from extended quiescent state!\n"); 6715 6716 lockdep_print_held_locks(curr); 6717 pr_warn("\nstack backtrace:\n"); 6718 dump_stack(); 6719 warn_rcu_exit(rcu); 6720 } 6721 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6722