1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 #include <linux/console.h> 60 #include <linux/kasan.h> 61 62 #include <asm/sections.h> 63 64 #include "lockdep_internals.h" 65 #include "lock_events.h" 66 67 #include <trace/events/lock.h> 68 69 #ifdef CONFIG_PROVE_LOCKING 70 static int prove_locking = 1; 71 module_param(prove_locking, int, 0644); 72 #else 73 #define prove_locking 0 74 #endif 75 76 #ifdef CONFIG_LOCK_STAT 77 static int lock_stat = 1; 78 module_param(lock_stat, int, 0644); 79 #else 80 #define lock_stat 0 81 #endif 82 83 #ifdef CONFIG_SYSCTL 84 static const struct ctl_table kern_lockdep_table[] = { 85 #ifdef CONFIG_PROVE_LOCKING 86 { 87 .procname = "prove_locking", 88 .data = &prove_locking, 89 .maxlen = sizeof(int), 90 .mode = 0644, 91 .proc_handler = proc_dointvec, 92 }, 93 #endif /* CONFIG_PROVE_LOCKING */ 94 #ifdef CONFIG_LOCK_STAT 95 { 96 .procname = "lock_stat", 97 .data = &lock_stat, 98 .maxlen = sizeof(int), 99 .mode = 0644, 100 .proc_handler = proc_dointvec, 101 }, 102 #endif /* CONFIG_LOCK_STAT */ 103 }; 104 105 static __init int kernel_lockdep_sysctls_init(void) 106 { 107 register_sysctl_init("kernel", kern_lockdep_table); 108 return 0; 109 } 110 late_initcall(kernel_lockdep_sysctls_init); 111 #endif /* CONFIG_SYSCTL */ 112 113 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 114 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 115 116 static __always_inline bool lockdep_enabled(void) 117 { 118 if (!debug_locks) 119 return false; 120 121 if (this_cpu_read(lockdep_recursion)) 122 return false; 123 124 if (current->lockdep_recursion) 125 return false; 126 127 return true; 128 } 129 130 /* 131 * lockdep_lock: protects the lockdep graph, the hashes and the 132 * class/list/hash allocators. 133 * 134 * This is one of the rare exceptions where it's justified 135 * to use a raw spinlock - we really dont want the spinlock 136 * code to recurse back into the lockdep code... 137 */ 138 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 139 static struct task_struct *__owner; 140 141 static inline void lockdep_lock(void) 142 { 143 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 144 145 __this_cpu_inc(lockdep_recursion); 146 arch_spin_lock(&__lock); 147 __owner = current; 148 } 149 150 static inline void lockdep_unlock(void) 151 { 152 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 153 154 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 155 return; 156 157 __owner = NULL; 158 arch_spin_unlock(&__lock); 159 __this_cpu_dec(lockdep_recursion); 160 } 161 162 #ifdef CONFIG_PROVE_LOCKING 163 static inline bool lockdep_assert_locked(void) 164 { 165 return DEBUG_LOCKS_WARN_ON(__owner != current); 166 } 167 #endif 168 169 static struct task_struct *lockdep_selftest_task_struct; 170 171 172 static int graph_lock(void) 173 { 174 lockdep_lock(); 175 lockevent_inc(lockdep_lock); 176 /* 177 * Make sure that if another CPU detected a bug while 178 * walking the graph we dont change it (while the other 179 * CPU is busy printing out stuff with the graph lock 180 * dropped already) 181 */ 182 if (!debug_locks) { 183 lockdep_unlock(); 184 return 0; 185 } 186 return 1; 187 } 188 189 static inline void graph_unlock(void) 190 { 191 lockdep_unlock(); 192 } 193 194 /* 195 * Turn lock debugging off and return with 0 if it was off already, 196 * and also release the graph lock: 197 */ 198 static inline int debug_locks_off_graph_unlock(void) 199 { 200 int ret = debug_locks_off(); 201 202 lockdep_unlock(); 203 204 return ret; 205 } 206 207 unsigned long nr_list_entries; 208 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 209 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 210 211 /* 212 * All data structures here are protected by the global debug_lock. 213 * 214 * nr_lock_classes is the number of elements of lock_classes[] that is 215 * in use. 216 */ 217 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 218 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 219 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 220 unsigned long nr_lock_classes; 221 unsigned long nr_zapped_classes; 222 unsigned long max_lock_class_idx; 223 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 224 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 225 226 static inline struct lock_class *hlock_class(struct held_lock *hlock) 227 { 228 unsigned int class_idx = hlock->class_idx; 229 230 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 231 barrier(); 232 233 if (!test_bit(class_idx, lock_classes_in_use)) { 234 /* 235 * Someone passed in garbage, we give up. 236 */ 237 DEBUG_LOCKS_WARN_ON(1); 238 return NULL; 239 } 240 241 /* 242 * At this point, if the passed hlock->class_idx is still garbage, 243 * we just have to live with it 244 */ 245 return lock_classes + class_idx; 246 } 247 248 #ifdef CONFIG_LOCK_STAT 249 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 250 251 static inline u64 lockstat_clock(void) 252 { 253 return local_clock(); 254 } 255 256 static int lock_point(unsigned long points[], unsigned long ip) 257 { 258 int i; 259 260 for (i = 0; i < LOCKSTAT_POINTS; i++) { 261 if (points[i] == 0) { 262 points[i] = ip; 263 break; 264 } 265 if (points[i] == ip) 266 break; 267 } 268 269 return i; 270 } 271 272 static void lock_time_inc(struct lock_time *lt, u64 time) 273 { 274 if (time > lt->max) 275 lt->max = time; 276 277 if (time < lt->min || !lt->nr) 278 lt->min = time; 279 280 lt->total += time; 281 lt->nr++; 282 } 283 284 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 285 { 286 if (!src->nr) 287 return; 288 289 if (src->max > dst->max) 290 dst->max = src->max; 291 292 if (src->min < dst->min || !dst->nr) 293 dst->min = src->min; 294 295 dst->total += src->total; 296 dst->nr += src->nr; 297 } 298 299 struct lock_class_stats lock_stats(struct lock_class *class) 300 { 301 struct lock_class_stats stats; 302 int cpu, i; 303 304 memset(&stats, 0, sizeof(struct lock_class_stats)); 305 for_each_possible_cpu(cpu) { 306 struct lock_class_stats *pcs = 307 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 308 309 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 310 stats.contention_point[i] += pcs->contention_point[i]; 311 312 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 313 stats.contending_point[i] += pcs->contending_point[i]; 314 315 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 316 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 317 318 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 319 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 320 321 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 322 stats.bounces[i] += pcs->bounces[i]; 323 } 324 325 return stats; 326 } 327 328 void clear_lock_stats(struct lock_class *class) 329 { 330 int cpu; 331 332 for_each_possible_cpu(cpu) { 333 struct lock_class_stats *cpu_stats = 334 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 335 336 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 337 } 338 memset(class->contention_point, 0, sizeof(class->contention_point)); 339 memset(class->contending_point, 0, sizeof(class->contending_point)); 340 } 341 342 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 343 { 344 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 345 } 346 347 static void lock_release_holdtime(struct held_lock *hlock) 348 { 349 struct lock_class_stats *stats; 350 u64 holdtime; 351 352 if (!lock_stat) 353 return; 354 355 holdtime = lockstat_clock() - hlock->holdtime_stamp; 356 357 stats = get_lock_stats(hlock_class(hlock)); 358 if (hlock->read) 359 lock_time_inc(&stats->read_holdtime, holdtime); 360 else 361 lock_time_inc(&stats->write_holdtime, holdtime); 362 } 363 #else 364 static inline void lock_release_holdtime(struct held_lock *hlock) 365 { 366 } 367 #endif 368 369 /* 370 * We keep a global list of all lock classes. The list is only accessed with 371 * the lockdep spinlock lock held. free_lock_classes is a list with free 372 * elements. These elements are linked together by the lock_entry member in 373 * struct lock_class. 374 */ 375 static LIST_HEAD(all_lock_classes); 376 static LIST_HEAD(free_lock_classes); 377 378 /** 379 * struct pending_free - information about data structures about to be freed 380 * @zapped: Head of a list with struct lock_class elements. 381 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 382 * are about to be freed. 383 */ 384 struct pending_free { 385 struct list_head zapped; 386 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 387 }; 388 389 /** 390 * struct delayed_free - data structures used for delayed freeing 391 * 392 * A data structure for delayed freeing of data structures that may be 393 * accessed by RCU readers at the time these were freed. 394 * 395 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 396 * @index: Index of @pf to which freed data structures are added. 397 * @scheduled: Whether or not an RCU callback has been scheduled. 398 * @pf: Array with information about data structures about to be freed. 399 */ 400 static struct delayed_free { 401 struct rcu_head rcu_head; 402 int index; 403 int scheduled; 404 struct pending_free pf[2]; 405 } delayed_free; 406 407 /* 408 * The lockdep classes are in a hash-table as well, for fast lookup: 409 */ 410 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 411 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 412 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 413 #define classhashentry(key) (classhash_table + __classhashfn((key))) 414 415 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 416 417 /* 418 * We put the lock dependency chains into a hash-table as well, to cache 419 * their existence: 420 */ 421 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 422 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 423 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 424 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 425 426 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 427 428 /* 429 * the id of held_lock 430 */ 431 static inline u16 hlock_id(struct held_lock *hlock) 432 { 433 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 434 435 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 436 } 437 438 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id) 439 { 440 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 441 } 442 443 /* 444 * The hash key of the lock dependency chains is a hash itself too: 445 * it's a hash of all locks taken up to that lock, including that lock. 446 * It's a 64-bit hash, because it's important for the keys to be 447 * unique. 448 */ 449 static inline u64 iterate_chain_key(u64 key, u32 idx) 450 { 451 u32 k0 = key, k1 = key >> 32; 452 453 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 454 455 return k0 | (u64)k1 << 32; 456 } 457 458 void lockdep_init_task(struct task_struct *task) 459 { 460 task->lockdep_depth = 0; /* no locks held yet */ 461 task->curr_chain_key = INITIAL_CHAIN_KEY; 462 task->lockdep_recursion = 0; 463 } 464 465 static __always_inline void lockdep_recursion_inc(void) 466 { 467 __this_cpu_inc(lockdep_recursion); 468 } 469 470 static __always_inline void lockdep_recursion_finish(void) 471 { 472 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 473 __this_cpu_write(lockdep_recursion, 0); 474 } 475 476 void lockdep_set_selftest_task(struct task_struct *task) 477 { 478 lockdep_selftest_task_struct = task; 479 } 480 481 /* 482 * Debugging switches: 483 */ 484 485 #define VERBOSE 0 486 #define VERY_VERBOSE 0 487 488 #if VERBOSE 489 # define HARDIRQ_VERBOSE 1 490 # define SOFTIRQ_VERBOSE 1 491 #else 492 # define HARDIRQ_VERBOSE 0 493 # define SOFTIRQ_VERBOSE 0 494 #endif 495 496 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 497 /* 498 * Quick filtering for interesting events: 499 */ 500 static int class_filter(struct lock_class *class) 501 { 502 #if 0 503 /* Example */ 504 if (class->name_version == 1 && 505 !strcmp(class->name, "lockname")) 506 return 1; 507 if (class->name_version == 1 && 508 !strcmp(class->name, "&struct->lockfield")) 509 return 1; 510 #endif 511 /* Filter everything else. 1 would be to allow everything else */ 512 return 0; 513 } 514 #endif 515 516 static int verbose(struct lock_class *class) 517 { 518 #if VERBOSE 519 return class_filter(class); 520 #endif 521 return 0; 522 } 523 524 static void print_lockdep_off(const char *bug_msg) 525 { 526 printk(KERN_DEBUG "%s\n", bug_msg); 527 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 528 #ifdef CONFIG_LOCK_STAT 529 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 530 #endif 531 } 532 533 unsigned long nr_stack_trace_entries; 534 535 #ifdef CONFIG_PROVE_LOCKING 536 /** 537 * struct lock_trace - single stack backtrace 538 * @hash_entry: Entry in a stack_trace_hash[] list. 539 * @hash: jhash() of @entries. 540 * @nr_entries: Number of entries in @entries. 541 * @entries: Actual stack backtrace. 542 */ 543 struct lock_trace { 544 struct hlist_node hash_entry; 545 u32 hash; 546 u32 nr_entries; 547 unsigned long entries[] __aligned(sizeof(unsigned long)); 548 }; 549 #define LOCK_TRACE_SIZE_IN_LONGS \ 550 (sizeof(struct lock_trace) / sizeof(unsigned long)) 551 /* 552 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 553 */ 554 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 555 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 556 557 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 558 { 559 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 560 memcmp(t1->entries, t2->entries, 561 t1->nr_entries * sizeof(t1->entries[0])) == 0; 562 } 563 564 static struct lock_trace *save_trace(void) 565 { 566 struct lock_trace *trace, *t2; 567 struct hlist_head *hash_head; 568 u32 hash; 569 int max_entries; 570 571 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 572 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 573 574 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 575 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 576 LOCK_TRACE_SIZE_IN_LONGS; 577 578 if (max_entries <= 0) { 579 if (!debug_locks_off_graph_unlock()) 580 return NULL; 581 582 nbcon_cpu_emergency_enter(); 583 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 584 dump_stack(); 585 nbcon_cpu_emergency_exit(); 586 587 return NULL; 588 } 589 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 590 591 hash = jhash(trace->entries, trace->nr_entries * 592 sizeof(trace->entries[0]), 0); 593 trace->hash = hash; 594 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 595 hlist_for_each_entry(t2, hash_head, hash_entry) { 596 if (traces_identical(trace, t2)) 597 return t2; 598 } 599 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 600 hlist_add_head(&trace->hash_entry, hash_head); 601 602 return trace; 603 } 604 605 /* Return the number of stack traces in the stack_trace[] array. */ 606 u64 lockdep_stack_trace_count(void) 607 { 608 struct lock_trace *trace; 609 u64 c = 0; 610 int i; 611 612 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 613 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 614 c++; 615 } 616 } 617 618 return c; 619 } 620 621 /* Return the number of stack hash chains that have at least one stack trace. */ 622 u64 lockdep_stack_hash_count(void) 623 { 624 u64 c = 0; 625 int i; 626 627 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 628 if (!hlist_empty(&stack_trace_hash[i])) 629 c++; 630 631 return c; 632 } 633 #endif 634 635 unsigned int nr_hardirq_chains; 636 unsigned int nr_softirq_chains; 637 unsigned int nr_process_chains; 638 unsigned int max_lockdep_depth; 639 640 #ifdef CONFIG_DEBUG_LOCKDEP 641 /* 642 * Various lockdep statistics: 643 */ 644 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 645 #endif 646 647 #ifdef CONFIG_PROVE_LOCKING 648 /* 649 * Locking printouts: 650 */ 651 652 #define __USAGE(__STATE) \ 653 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 654 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 655 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 656 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 657 658 static const char *usage_str[] = 659 { 660 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 661 #include "lockdep_states.h" 662 #undef LOCKDEP_STATE 663 [LOCK_USED] = "INITIAL USE", 664 [LOCK_USED_READ] = "INITIAL READ USE", 665 /* abused as string storage for verify_lock_unused() */ 666 [LOCK_USAGE_STATES] = "IN-NMI", 667 }; 668 #endif 669 670 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 671 { 672 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 673 } 674 675 static inline unsigned long lock_flag(enum lock_usage_bit bit) 676 { 677 return 1UL << bit; 678 } 679 680 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 681 { 682 /* 683 * The usage character defaults to '.' (i.e., irqs disabled and not in 684 * irq context), which is the safest usage category. 685 */ 686 char c = '.'; 687 688 /* 689 * The order of the following usage checks matters, which will 690 * result in the outcome character as follows: 691 * 692 * - '+': irq is enabled and not in irq context 693 * - '-': in irq context and irq is disabled 694 * - '?': in irq context and irq is enabled 695 */ 696 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 697 c = '+'; 698 if (class->usage_mask & lock_flag(bit)) 699 c = '?'; 700 } else if (class->usage_mask & lock_flag(bit)) 701 c = '-'; 702 703 return c; 704 } 705 706 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 707 { 708 int i = 0; 709 710 #define LOCKDEP_STATE(__STATE) \ 711 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 712 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 713 #include "lockdep_states.h" 714 #undef LOCKDEP_STATE 715 716 usage[i] = '\0'; 717 } 718 719 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 720 { 721 char str[KSYM_NAME_LEN]; 722 const char *name; 723 724 name = class->name; 725 if (!name) { 726 name = __get_key_name(class->key, str); 727 printk(KERN_CONT "%s", name); 728 } else { 729 printk(KERN_CONT "%s", name); 730 if (class->name_version > 1) 731 printk(KERN_CONT "#%d", class->name_version); 732 if (class->subclass) 733 printk(KERN_CONT "/%d", class->subclass); 734 if (hlock && class->print_fn) 735 class->print_fn(hlock->instance); 736 } 737 } 738 739 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 740 { 741 char usage[LOCK_USAGE_CHARS]; 742 743 get_usage_chars(class, usage); 744 745 printk(KERN_CONT " ("); 746 __print_lock_name(hlock, class); 747 printk(KERN_CONT "){%s}-{%d:%d}", usage, 748 class->wait_type_outer ?: class->wait_type_inner, 749 class->wait_type_inner); 750 } 751 752 static void print_lockdep_cache(struct lockdep_map *lock) 753 { 754 const char *name; 755 char str[KSYM_NAME_LEN]; 756 757 name = lock->name; 758 if (!name) 759 name = __get_key_name(lock->key->subkeys, str); 760 761 printk(KERN_CONT "%s", name); 762 } 763 764 static void print_lock(struct held_lock *hlock) 765 { 766 /* 767 * We can be called locklessly through debug_show_all_locks() so be 768 * extra careful, the hlock might have been released and cleared. 769 * 770 * If this indeed happens, lets pretend it does not hurt to continue 771 * to print the lock unless the hlock class_idx does not point to a 772 * registered class. The rationale here is: since we don't attempt 773 * to distinguish whether we are in this situation, if it just 774 * happened we can't count on class_idx to tell either. 775 */ 776 struct lock_class *lock = hlock_class(hlock); 777 778 if (!lock) { 779 printk(KERN_CONT "<RELEASED>\n"); 780 return; 781 } 782 783 printk(KERN_CONT "%px", hlock->instance); 784 print_lock_name(hlock, lock); 785 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 786 } 787 788 static void lockdep_print_held_locks(struct task_struct *p) 789 { 790 int i, depth = READ_ONCE(p->lockdep_depth); 791 792 if (!depth) 793 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 794 else 795 printk("%d lock%s held by %s/%d:\n", depth, 796 str_plural(depth), p->comm, task_pid_nr(p)); 797 /* 798 * It's not reliable to print a task's held locks if it's not sleeping 799 * and it's not the current task. 800 */ 801 if (p != current && task_is_running(p)) 802 return; 803 for (i = 0; i < depth; i++) { 804 printk(" #%d: ", i); 805 print_lock(p->held_locks + i); 806 } 807 } 808 809 static void print_kernel_ident(void) 810 { 811 printk("%s %.*s %s\n", init_utsname()->release, 812 (int)strcspn(init_utsname()->version, " "), 813 init_utsname()->version, 814 print_tainted()); 815 } 816 817 static int very_verbose(struct lock_class *class) 818 { 819 #if VERY_VERBOSE 820 return class_filter(class); 821 #endif 822 return 0; 823 } 824 825 /* 826 * Is this the address of a static object: 827 */ 828 #ifdef __KERNEL__ 829 static int static_obj(const void *obj) 830 { 831 unsigned long addr = (unsigned long) obj; 832 833 if (is_kernel_core_data(addr)) 834 return 1; 835 836 /* 837 * keys are allowed in the __ro_after_init section. 838 */ 839 if (is_kernel_rodata(addr)) 840 return 1; 841 842 /* 843 * in initdata section and used during bootup only? 844 * NOTE: On some platforms the initdata section is 845 * outside of the _stext ... _end range. 846 */ 847 if (system_state < SYSTEM_FREEING_INITMEM && 848 init_section_contains((void *)addr, 1)) 849 return 1; 850 851 /* 852 * in-kernel percpu var? 853 */ 854 if (is_kernel_percpu_address(addr)) 855 return 1; 856 857 /* 858 * module static or percpu var? 859 */ 860 return is_module_address(addr) || is_module_percpu_address(addr); 861 } 862 #endif 863 864 /* 865 * To make lock name printouts unique, we calculate a unique 866 * class->name_version generation counter. The caller must hold the graph 867 * lock. 868 */ 869 static int count_matching_names(struct lock_class *new_class) 870 { 871 struct lock_class *class; 872 int count = 0; 873 874 if (!new_class->name) 875 return 0; 876 877 list_for_each_entry(class, &all_lock_classes, lock_entry) { 878 if (new_class->key - new_class->subclass == class->key) 879 return class->name_version; 880 if (class->name && !strcmp(class->name, new_class->name)) 881 count = max(count, class->name_version); 882 } 883 884 return count + 1; 885 } 886 887 /* used from NMI context -- must be lockless */ 888 static noinstr struct lock_class * 889 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 890 { 891 struct lockdep_subclass_key *key; 892 struct hlist_head *hash_head; 893 struct lock_class *class; 894 895 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 896 instrumentation_begin(); 897 debug_locks_off(); 898 nbcon_cpu_emergency_enter(); 899 printk(KERN_ERR 900 "BUG: looking up invalid subclass: %u\n", subclass); 901 printk(KERN_ERR 902 "turning off the locking correctness validator.\n"); 903 dump_stack(); 904 nbcon_cpu_emergency_exit(); 905 instrumentation_end(); 906 return NULL; 907 } 908 909 /* 910 * If it is not initialised then it has never been locked, 911 * so it won't be present in the hash table. 912 */ 913 if (unlikely(!lock->key)) 914 return NULL; 915 916 /* 917 * NOTE: the class-key must be unique. For dynamic locks, a static 918 * lock_class_key variable is passed in through the mutex_init() 919 * (or spin_lock_init()) call - which acts as the key. For static 920 * locks we use the lock object itself as the key. 921 */ 922 BUILD_BUG_ON(sizeof(struct lock_class_key) > 923 sizeof(struct lockdep_map)); 924 925 key = lock->key->subkeys + subclass; 926 927 hash_head = classhashentry(key); 928 929 /* 930 * We do an RCU walk of the hash, see lockdep_free_key_range(). 931 */ 932 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 933 return NULL; 934 935 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 936 if (class->key == key) { 937 /* 938 * Huh! same key, different name? Did someone trample 939 * on some memory? We're most confused. 940 */ 941 WARN_ONCE(class->name != lock->name && 942 lock->key != &__lockdep_no_validate__, 943 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 944 lock->name, lock->key, class->name); 945 return class; 946 } 947 } 948 949 return NULL; 950 } 951 952 /* 953 * Static locks do not have their class-keys yet - for them the key is 954 * the lock object itself. If the lock is in the per cpu area, the 955 * canonical address of the lock (per cpu offset removed) is used. 956 */ 957 static bool assign_lock_key(struct lockdep_map *lock) 958 { 959 unsigned long can_addr, addr = (unsigned long)lock; 960 961 #ifdef __KERNEL__ 962 /* 963 * lockdep_free_key_range() assumes that struct lock_class_key 964 * objects do not overlap. Since we use the address of lock 965 * objects as class key for static objects, check whether the 966 * size of lock_class_key objects does not exceed the size of 967 * the smallest lock object. 968 */ 969 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 970 #endif 971 972 if (__is_kernel_percpu_address(addr, &can_addr)) 973 lock->key = (void *)can_addr; 974 else if (__is_module_percpu_address(addr, &can_addr)) 975 lock->key = (void *)can_addr; 976 else if (static_obj(lock)) 977 lock->key = (void *)lock; 978 else { 979 /* Debug-check: all keys must be persistent! */ 980 debug_locks_off(); 981 nbcon_cpu_emergency_enter(); 982 pr_err("INFO: trying to register non-static key.\n"); 983 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 984 pr_err("you didn't initialize this object before use?\n"); 985 pr_err("turning off the locking correctness validator.\n"); 986 dump_stack(); 987 nbcon_cpu_emergency_exit(); 988 return false; 989 } 990 991 return true; 992 } 993 994 #ifdef CONFIG_DEBUG_LOCKDEP 995 996 /* Check whether element @e occurs in list @h */ 997 static bool in_list(struct list_head *e, struct list_head *h) 998 { 999 struct list_head *f; 1000 1001 list_for_each(f, h) { 1002 if (e == f) 1003 return true; 1004 } 1005 1006 return false; 1007 } 1008 1009 /* 1010 * Check whether entry @e occurs in any of the locks_after or locks_before 1011 * lists. 1012 */ 1013 static bool in_any_class_list(struct list_head *e) 1014 { 1015 struct lock_class *class; 1016 int i; 1017 1018 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1019 class = &lock_classes[i]; 1020 if (in_list(e, &class->locks_after) || 1021 in_list(e, &class->locks_before)) 1022 return true; 1023 } 1024 return false; 1025 } 1026 1027 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1028 { 1029 struct lock_list *e; 1030 1031 list_for_each_entry(e, h, entry) { 1032 if (e->links_to != c) { 1033 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1034 c->name ? : "(?)", 1035 (unsigned long)(e - list_entries), 1036 e->links_to && e->links_to->name ? 1037 e->links_to->name : "(?)", 1038 e->class && e->class->name ? e->class->name : 1039 "(?)"); 1040 return false; 1041 } 1042 } 1043 return true; 1044 } 1045 1046 #ifdef CONFIG_PROVE_LOCKING 1047 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1048 #endif 1049 1050 static bool check_lock_chain_key(struct lock_chain *chain) 1051 { 1052 #ifdef CONFIG_PROVE_LOCKING 1053 u64 chain_key = INITIAL_CHAIN_KEY; 1054 int i; 1055 1056 for (i = chain->base; i < chain->base + chain->depth; i++) 1057 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1058 /* 1059 * The 'unsigned long long' casts avoid that a compiler warning 1060 * is reported when building tools/lib/lockdep. 1061 */ 1062 if (chain->chain_key != chain_key) { 1063 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1064 (unsigned long long)(chain - lock_chains), 1065 (unsigned long long)chain->chain_key, 1066 (unsigned long long)chain_key); 1067 return false; 1068 } 1069 #endif 1070 return true; 1071 } 1072 1073 static bool in_any_zapped_class_list(struct lock_class *class) 1074 { 1075 struct pending_free *pf; 1076 int i; 1077 1078 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1079 if (in_list(&class->lock_entry, &pf->zapped)) 1080 return true; 1081 } 1082 1083 return false; 1084 } 1085 1086 static bool __check_data_structures(void) 1087 { 1088 struct lock_class *class; 1089 struct lock_chain *chain; 1090 struct hlist_head *head; 1091 struct lock_list *e; 1092 int i; 1093 1094 /* Check whether all classes occur in a lock list. */ 1095 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1096 class = &lock_classes[i]; 1097 if (!in_list(&class->lock_entry, &all_lock_classes) && 1098 !in_list(&class->lock_entry, &free_lock_classes) && 1099 !in_any_zapped_class_list(class)) { 1100 printk(KERN_INFO "class %px/%s is not in any class list\n", 1101 class, class->name ? : "(?)"); 1102 return false; 1103 } 1104 } 1105 1106 /* Check whether all classes have valid lock lists. */ 1107 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1108 class = &lock_classes[i]; 1109 if (!class_lock_list_valid(class, &class->locks_before)) 1110 return false; 1111 if (!class_lock_list_valid(class, &class->locks_after)) 1112 return false; 1113 } 1114 1115 /* Check the chain_key of all lock chains. */ 1116 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1117 head = chainhash_table + i; 1118 hlist_for_each_entry_rcu(chain, head, entry) { 1119 if (!check_lock_chain_key(chain)) 1120 return false; 1121 } 1122 } 1123 1124 /* 1125 * Check whether all list entries that are in use occur in a class 1126 * lock list. 1127 */ 1128 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1129 e = list_entries + i; 1130 if (!in_any_class_list(&e->entry)) { 1131 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1132 (unsigned int)(e - list_entries), 1133 e->class->name ? : "(?)", 1134 e->links_to->name ? : "(?)"); 1135 return false; 1136 } 1137 } 1138 1139 /* 1140 * Check whether all list entries that are not in use do not occur in 1141 * a class lock list. 1142 */ 1143 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1144 e = list_entries + i; 1145 if (in_any_class_list(&e->entry)) { 1146 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1147 (unsigned int)(e - list_entries), 1148 e->class && e->class->name ? e->class->name : 1149 "(?)", 1150 e->links_to && e->links_to->name ? 1151 e->links_to->name : "(?)"); 1152 return false; 1153 } 1154 } 1155 1156 return true; 1157 } 1158 1159 int check_consistency = 0; 1160 module_param(check_consistency, int, 0644); 1161 1162 static void check_data_structures(void) 1163 { 1164 static bool once = false; 1165 1166 if (check_consistency && !once) { 1167 if (!__check_data_structures()) { 1168 once = true; 1169 WARN_ON(once); 1170 } 1171 } 1172 } 1173 1174 #else /* CONFIG_DEBUG_LOCKDEP */ 1175 1176 static inline void check_data_structures(void) { } 1177 1178 #endif /* CONFIG_DEBUG_LOCKDEP */ 1179 1180 static void init_chain_block_buckets(void); 1181 1182 /* 1183 * Initialize the lock_classes[] array elements, the free_lock_classes list 1184 * and also the delayed_free structure. 1185 */ 1186 static void init_data_structures_once(void) 1187 { 1188 static bool __read_mostly ds_initialized, rcu_head_initialized; 1189 int i; 1190 1191 if (likely(rcu_head_initialized)) 1192 return; 1193 1194 if (system_state >= SYSTEM_SCHEDULING) { 1195 init_rcu_head(&delayed_free.rcu_head); 1196 rcu_head_initialized = true; 1197 } 1198 1199 if (ds_initialized) 1200 return; 1201 1202 ds_initialized = true; 1203 1204 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1205 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1206 1207 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1208 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1209 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1210 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1211 } 1212 init_chain_block_buckets(); 1213 } 1214 1215 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1216 { 1217 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1218 1219 return lock_keys_hash + hash; 1220 } 1221 1222 /* Register a dynamically allocated key. */ 1223 void lockdep_register_key(struct lock_class_key *key) 1224 { 1225 struct hlist_head *hash_head; 1226 struct lock_class_key *k; 1227 unsigned long flags; 1228 1229 if (WARN_ON_ONCE(static_obj(key))) 1230 return; 1231 hash_head = keyhashentry(key); 1232 1233 raw_local_irq_save(flags); 1234 if (!graph_lock()) 1235 goto restore_irqs; 1236 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1237 if (WARN_ON_ONCE(k == key)) 1238 goto out_unlock; 1239 } 1240 hlist_add_head_rcu(&key->hash_entry, hash_head); 1241 out_unlock: 1242 graph_unlock(); 1243 restore_irqs: 1244 raw_local_irq_restore(flags); 1245 } 1246 EXPORT_SYMBOL_GPL(lockdep_register_key); 1247 1248 /* Check whether a key has been registered as a dynamic key. */ 1249 static bool is_dynamic_key(const struct lock_class_key *key) 1250 { 1251 struct hlist_head *hash_head; 1252 struct lock_class_key *k; 1253 bool found = false; 1254 1255 if (WARN_ON_ONCE(static_obj(key))) 1256 return false; 1257 1258 /* 1259 * If lock debugging is disabled lock_keys_hash[] may contain 1260 * pointers to memory that has already been freed. Avoid triggering 1261 * a use-after-free in that case by returning early. 1262 */ 1263 if (!debug_locks) 1264 return true; 1265 1266 hash_head = keyhashentry(key); 1267 1268 rcu_read_lock(); 1269 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1270 if (k == key) { 1271 found = true; 1272 break; 1273 } 1274 } 1275 rcu_read_unlock(); 1276 1277 return found; 1278 } 1279 1280 /* 1281 * Register a lock's class in the hash-table, if the class is not present 1282 * yet. Otherwise we look it up. We cache the result in the lock object 1283 * itself, so actual lookup of the hash should be once per lock object. 1284 */ 1285 static struct lock_class * 1286 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1287 { 1288 struct lockdep_subclass_key *key; 1289 struct hlist_head *hash_head; 1290 struct lock_class *class; 1291 int idx; 1292 1293 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1294 1295 class = look_up_lock_class(lock, subclass); 1296 if (likely(class)) 1297 goto out_set_class_cache; 1298 1299 if (!lock->key) { 1300 if (!assign_lock_key(lock)) 1301 return NULL; 1302 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1303 return NULL; 1304 } 1305 1306 key = lock->key->subkeys + subclass; 1307 hash_head = classhashentry(key); 1308 1309 if (!graph_lock()) { 1310 return NULL; 1311 } 1312 /* 1313 * We have to do the hash-walk again, to avoid races 1314 * with another CPU: 1315 */ 1316 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1317 if (class->key == key) 1318 goto out_unlock_set; 1319 } 1320 1321 init_data_structures_once(); 1322 1323 /* Allocate a new lock class and add it to the hash. */ 1324 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1325 lock_entry); 1326 if (!class) { 1327 if (!debug_locks_off_graph_unlock()) { 1328 return NULL; 1329 } 1330 1331 nbcon_cpu_emergency_enter(); 1332 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1333 dump_stack(); 1334 nbcon_cpu_emergency_exit(); 1335 return NULL; 1336 } 1337 nr_lock_classes++; 1338 __set_bit(class - lock_classes, lock_classes_in_use); 1339 debug_atomic_inc(nr_unused_locks); 1340 class->key = key; 1341 class->name = lock->name; 1342 class->subclass = subclass; 1343 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1344 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1345 class->name_version = count_matching_names(class); 1346 class->wait_type_inner = lock->wait_type_inner; 1347 class->wait_type_outer = lock->wait_type_outer; 1348 class->lock_type = lock->lock_type; 1349 /* 1350 * We use RCU's safe list-add method to make 1351 * parallel walking of the hash-list safe: 1352 */ 1353 hlist_add_head_rcu(&class->hash_entry, hash_head); 1354 /* 1355 * Remove the class from the free list and add it to the global list 1356 * of classes. 1357 */ 1358 list_move_tail(&class->lock_entry, &all_lock_classes); 1359 idx = class - lock_classes; 1360 if (idx > max_lock_class_idx) 1361 max_lock_class_idx = idx; 1362 1363 if (verbose(class)) { 1364 graph_unlock(); 1365 1366 nbcon_cpu_emergency_enter(); 1367 printk("\nnew class %px: %s", class->key, class->name); 1368 if (class->name_version > 1) 1369 printk(KERN_CONT "#%d", class->name_version); 1370 printk(KERN_CONT "\n"); 1371 dump_stack(); 1372 nbcon_cpu_emergency_exit(); 1373 1374 if (!graph_lock()) { 1375 return NULL; 1376 } 1377 } 1378 out_unlock_set: 1379 graph_unlock(); 1380 1381 out_set_class_cache: 1382 if (!subclass || force) 1383 lock->class_cache[0] = class; 1384 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1385 lock->class_cache[subclass] = class; 1386 1387 /* 1388 * Hash collision, did we smoke some? We found a class with a matching 1389 * hash but the subclass -- which is hashed in -- didn't match. 1390 */ 1391 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1392 return NULL; 1393 1394 return class; 1395 } 1396 1397 #ifdef CONFIG_PROVE_LOCKING 1398 /* 1399 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1400 * with NULL on failure) 1401 */ 1402 static struct lock_list *alloc_list_entry(void) 1403 { 1404 int idx = find_first_zero_bit(list_entries_in_use, 1405 ARRAY_SIZE(list_entries)); 1406 1407 if (idx >= ARRAY_SIZE(list_entries)) { 1408 if (!debug_locks_off_graph_unlock()) 1409 return NULL; 1410 1411 nbcon_cpu_emergency_enter(); 1412 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1413 dump_stack(); 1414 nbcon_cpu_emergency_exit(); 1415 return NULL; 1416 } 1417 nr_list_entries++; 1418 __set_bit(idx, list_entries_in_use); 1419 return list_entries + idx; 1420 } 1421 1422 /* 1423 * Add a new dependency to the head of the list: 1424 */ 1425 static int add_lock_to_list(struct lock_class *this, 1426 struct lock_class *links_to, struct list_head *head, 1427 u16 distance, u8 dep, 1428 const struct lock_trace *trace) 1429 { 1430 struct lock_list *entry; 1431 /* 1432 * Lock not present yet - get a new dependency struct and 1433 * add it to the list: 1434 */ 1435 entry = alloc_list_entry(); 1436 if (!entry) 1437 return 0; 1438 1439 entry->class = this; 1440 entry->links_to = links_to; 1441 entry->dep = dep; 1442 entry->distance = distance; 1443 entry->trace = trace; 1444 /* 1445 * Both allocation and removal are done under the graph lock; but 1446 * iteration is under RCU-sched; see look_up_lock_class() and 1447 * lockdep_free_key_range(). 1448 */ 1449 list_add_tail_rcu(&entry->entry, head); 1450 1451 return 1; 1452 } 1453 1454 /* 1455 * For good efficiency of modular, we use power of 2 1456 */ 1457 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1458 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1459 1460 /* 1461 * The circular_queue and helpers are used to implement graph 1462 * breadth-first search (BFS) algorithm, by which we can determine 1463 * whether there is a path from a lock to another. In deadlock checks, 1464 * a path from the next lock to be acquired to a previous held lock 1465 * indicates that adding the <prev> -> <next> lock dependency will 1466 * produce a circle in the graph. Breadth-first search instead of 1467 * depth-first search is used in order to find the shortest (circular) 1468 * path. 1469 */ 1470 struct circular_queue { 1471 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1472 unsigned int front, rear; 1473 }; 1474 1475 static struct circular_queue lock_cq; 1476 1477 unsigned int max_bfs_queue_depth; 1478 1479 static unsigned int lockdep_dependency_gen_id; 1480 1481 static inline void __cq_init(struct circular_queue *cq) 1482 { 1483 cq->front = cq->rear = 0; 1484 lockdep_dependency_gen_id++; 1485 } 1486 1487 static inline int __cq_empty(struct circular_queue *cq) 1488 { 1489 return (cq->front == cq->rear); 1490 } 1491 1492 static inline int __cq_full(struct circular_queue *cq) 1493 { 1494 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1495 } 1496 1497 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1498 { 1499 if (__cq_full(cq)) 1500 return -1; 1501 1502 cq->element[cq->rear] = elem; 1503 cq->rear = (cq->rear + 1) & CQ_MASK; 1504 return 0; 1505 } 1506 1507 /* 1508 * Dequeue an element from the circular_queue, return a lock_list if 1509 * the queue is not empty, or NULL if otherwise. 1510 */ 1511 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1512 { 1513 struct lock_list * lock; 1514 1515 if (__cq_empty(cq)) 1516 return NULL; 1517 1518 lock = cq->element[cq->front]; 1519 cq->front = (cq->front + 1) & CQ_MASK; 1520 1521 return lock; 1522 } 1523 1524 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1525 { 1526 return (cq->rear - cq->front) & CQ_MASK; 1527 } 1528 1529 static inline void mark_lock_accessed(struct lock_list *lock) 1530 { 1531 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1532 } 1533 1534 static inline void visit_lock_entry(struct lock_list *lock, 1535 struct lock_list *parent) 1536 { 1537 lock->parent = parent; 1538 } 1539 1540 static inline unsigned long lock_accessed(struct lock_list *lock) 1541 { 1542 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1543 } 1544 1545 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1546 { 1547 return child->parent; 1548 } 1549 1550 static inline int get_lock_depth(struct lock_list *child) 1551 { 1552 int depth = 0; 1553 struct lock_list *parent; 1554 1555 while ((parent = get_lock_parent(child))) { 1556 child = parent; 1557 depth++; 1558 } 1559 return depth; 1560 } 1561 1562 /* 1563 * Return the forward or backward dependency list. 1564 * 1565 * @lock: the lock_list to get its class's dependency list 1566 * @offset: the offset to struct lock_class to determine whether it is 1567 * locks_after or locks_before 1568 */ 1569 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1570 { 1571 void *lock_class = lock->class; 1572 1573 return lock_class + offset; 1574 } 1575 /* 1576 * Return values of a bfs search: 1577 * 1578 * BFS_E* indicates an error 1579 * BFS_R* indicates a result (match or not) 1580 * 1581 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1582 * 1583 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1584 * 1585 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1586 * *@target_entry. 1587 * 1588 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1589 * _unchanged_. 1590 */ 1591 enum bfs_result { 1592 BFS_EINVALIDNODE = -2, 1593 BFS_EQUEUEFULL = -1, 1594 BFS_RMATCH = 0, 1595 BFS_RNOMATCH = 1, 1596 }; 1597 1598 /* 1599 * bfs_result < 0 means error 1600 */ 1601 static inline bool bfs_error(enum bfs_result res) 1602 { 1603 return res < 0; 1604 } 1605 1606 /* 1607 * DEP_*_BIT in lock_list::dep 1608 * 1609 * For dependency @prev -> @next: 1610 * 1611 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1612 * (->read == 2) 1613 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1614 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1615 * EN: @prev is exclusive locker and @next is non-recursive locker 1616 * 1617 * Note that we define the value of DEP_*_BITs so that: 1618 * bit0 is prev->read == 0 1619 * bit1 is next->read != 2 1620 */ 1621 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1622 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1623 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1624 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1625 1626 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1627 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1628 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1629 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1630 1631 static inline unsigned int 1632 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1633 { 1634 return (prev->read == 0) + ((next->read != 2) << 1); 1635 } 1636 1637 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1638 { 1639 return 1U << __calc_dep_bit(prev, next); 1640 } 1641 1642 /* 1643 * calculate the dep_bit for backwards edges. We care about whether @prev is 1644 * shared and whether @next is recursive. 1645 */ 1646 static inline unsigned int 1647 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1648 { 1649 return (next->read != 2) + ((prev->read == 0) << 1); 1650 } 1651 1652 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1653 { 1654 return 1U << __calc_dep_bitb(prev, next); 1655 } 1656 1657 /* 1658 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1659 * search. 1660 */ 1661 static inline void __bfs_init_root(struct lock_list *lock, 1662 struct lock_class *class) 1663 { 1664 lock->class = class; 1665 lock->parent = NULL; 1666 lock->only_xr = 0; 1667 } 1668 1669 /* 1670 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1671 * root for a BFS search. 1672 * 1673 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1674 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1675 * and -(S*)->. 1676 */ 1677 static inline void bfs_init_root(struct lock_list *lock, 1678 struct held_lock *hlock) 1679 { 1680 __bfs_init_root(lock, hlock_class(hlock)); 1681 lock->only_xr = (hlock->read == 2); 1682 } 1683 1684 /* 1685 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1686 * 1687 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1688 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1689 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1690 */ 1691 static inline void bfs_init_rootb(struct lock_list *lock, 1692 struct held_lock *hlock) 1693 { 1694 __bfs_init_root(lock, hlock_class(hlock)); 1695 lock->only_xr = (hlock->read != 0); 1696 } 1697 1698 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1699 { 1700 if (!lock || !lock->parent) 1701 return NULL; 1702 1703 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1704 &lock->entry, struct lock_list, entry); 1705 } 1706 1707 /* 1708 * Breadth-First Search to find a strong path in the dependency graph. 1709 * 1710 * @source_entry: the source of the path we are searching for. 1711 * @data: data used for the second parameter of @match function 1712 * @match: match function for the search 1713 * @target_entry: pointer to the target of a matched path 1714 * @offset: the offset to struct lock_class to determine whether it is 1715 * locks_after or locks_before 1716 * 1717 * We may have multiple edges (considering different kinds of dependencies, 1718 * e.g. ER and SN) between two nodes in the dependency graph. But 1719 * only the strong dependency path in the graph is relevant to deadlocks. A 1720 * strong dependency path is a dependency path that doesn't have two adjacent 1721 * dependencies as -(*R)-> -(S*)->, please see: 1722 * 1723 * Documentation/locking/lockdep-design.rst 1724 * 1725 * for more explanation of the definition of strong dependency paths 1726 * 1727 * In __bfs(), we only traverse in the strong dependency path: 1728 * 1729 * In lock_list::only_xr, we record whether the previous dependency only 1730 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1731 * filter out any -(S*)-> in the current dependency and after that, the 1732 * ->only_xr is set according to whether we only have -(*R)-> left. 1733 */ 1734 static enum bfs_result __bfs(struct lock_list *source_entry, 1735 void *data, 1736 bool (*match)(struct lock_list *entry, void *data), 1737 bool (*skip)(struct lock_list *entry, void *data), 1738 struct lock_list **target_entry, 1739 int offset) 1740 { 1741 struct circular_queue *cq = &lock_cq; 1742 struct lock_list *lock = NULL; 1743 struct lock_list *entry; 1744 struct list_head *head; 1745 unsigned int cq_depth; 1746 bool first; 1747 1748 lockdep_assert_locked(); 1749 1750 __cq_init(cq); 1751 __cq_enqueue(cq, source_entry); 1752 1753 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1754 if (!lock->class) 1755 return BFS_EINVALIDNODE; 1756 1757 /* 1758 * Step 1: check whether we already finish on this one. 1759 * 1760 * If we have visited all the dependencies from this @lock to 1761 * others (iow, if we have visited all lock_list entries in 1762 * @lock->class->locks_{after,before}) we skip, otherwise go 1763 * and visit all the dependencies in the list and mark this 1764 * list accessed. 1765 */ 1766 if (lock_accessed(lock)) 1767 continue; 1768 else 1769 mark_lock_accessed(lock); 1770 1771 /* 1772 * Step 2: check whether prev dependency and this form a strong 1773 * dependency path. 1774 */ 1775 if (lock->parent) { /* Parent exists, check prev dependency */ 1776 u8 dep = lock->dep; 1777 bool prev_only_xr = lock->parent->only_xr; 1778 1779 /* 1780 * Mask out all -(S*)-> if we only have *R in previous 1781 * step, because -(*R)-> -(S*)-> don't make up a strong 1782 * dependency. 1783 */ 1784 if (prev_only_xr) 1785 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1786 1787 /* If nothing left, we skip */ 1788 if (!dep) 1789 continue; 1790 1791 /* If there are only -(*R)-> left, set that for the next step */ 1792 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1793 } 1794 1795 /* 1796 * Step 3: we haven't visited this and there is a strong 1797 * dependency path to this, so check with @match. 1798 * If @skip is provide and returns true, we skip this 1799 * lock (and any path this lock is in). 1800 */ 1801 if (skip && skip(lock, data)) 1802 continue; 1803 1804 if (match(lock, data)) { 1805 *target_entry = lock; 1806 return BFS_RMATCH; 1807 } 1808 1809 /* 1810 * Step 4: if not match, expand the path by adding the 1811 * forward or backwards dependencies in the search 1812 * 1813 */ 1814 first = true; 1815 head = get_dep_list(lock, offset); 1816 list_for_each_entry_rcu(entry, head, entry) { 1817 visit_lock_entry(entry, lock); 1818 1819 /* 1820 * Note we only enqueue the first of the list into the 1821 * queue, because we can always find a sibling 1822 * dependency from one (see __bfs_next()), as a result 1823 * the space of queue is saved. 1824 */ 1825 if (!first) 1826 continue; 1827 1828 first = false; 1829 1830 if (__cq_enqueue(cq, entry)) 1831 return BFS_EQUEUEFULL; 1832 1833 cq_depth = __cq_get_elem_count(cq); 1834 if (max_bfs_queue_depth < cq_depth) 1835 max_bfs_queue_depth = cq_depth; 1836 } 1837 } 1838 1839 return BFS_RNOMATCH; 1840 } 1841 1842 static inline enum bfs_result 1843 __bfs_forwards(struct lock_list *src_entry, 1844 void *data, 1845 bool (*match)(struct lock_list *entry, void *data), 1846 bool (*skip)(struct lock_list *entry, void *data), 1847 struct lock_list **target_entry) 1848 { 1849 return __bfs(src_entry, data, match, skip, target_entry, 1850 offsetof(struct lock_class, locks_after)); 1851 1852 } 1853 1854 static inline enum bfs_result 1855 __bfs_backwards(struct lock_list *src_entry, 1856 void *data, 1857 bool (*match)(struct lock_list *entry, void *data), 1858 bool (*skip)(struct lock_list *entry, void *data), 1859 struct lock_list **target_entry) 1860 { 1861 return __bfs(src_entry, data, match, skip, target_entry, 1862 offsetof(struct lock_class, locks_before)); 1863 1864 } 1865 1866 static void print_lock_trace(const struct lock_trace *trace, 1867 unsigned int spaces) 1868 { 1869 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1870 } 1871 1872 /* 1873 * Print a dependency chain entry (this is only done when a deadlock 1874 * has been detected): 1875 */ 1876 static noinline void 1877 print_circular_bug_entry(struct lock_list *target, int depth) 1878 { 1879 if (debug_locks_silent) 1880 return; 1881 printk("\n-> #%u", depth); 1882 print_lock_name(NULL, target->class); 1883 printk(KERN_CONT ":\n"); 1884 print_lock_trace(target->trace, 6); 1885 } 1886 1887 static void 1888 print_circular_lock_scenario(struct held_lock *src, 1889 struct held_lock *tgt, 1890 struct lock_list *prt) 1891 { 1892 struct lock_class *source = hlock_class(src); 1893 struct lock_class *target = hlock_class(tgt); 1894 struct lock_class *parent = prt->class; 1895 int src_read = src->read; 1896 int tgt_read = tgt->read; 1897 1898 /* 1899 * A direct locking problem where unsafe_class lock is taken 1900 * directly by safe_class lock, then all we need to show 1901 * is the deadlock scenario, as it is obvious that the 1902 * unsafe lock is taken under the safe lock. 1903 * 1904 * But if there is a chain instead, where the safe lock takes 1905 * an intermediate lock (middle_class) where this lock is 1906 * not the same as the safe lock, then the lock chain is 1907 * used to describe the problem. Otherwise we would need 1908 * to show a different CPU case for each link in the chain 1909 * from the safe_class lock to the unsafe_class lock. 1910 */ 1911 if (parent != source) { 1912 printk("Chain exists of:\n "); 1913 __print_lock_name(src, source); 1914 printk(KERN_CONT " --> "); 1915 __print_lock_name(NULL, parent); 1916 printk(KERN_CONT " --> "); 1917 __print_lock_name(tgt, target); 1918 printk(KERN_CONT "\n\n"); 1919 } 1920 1921 printk(" Possible unsafe locking scenario:\n\n"); 1922 printk(" CPU0 CPU1\n"); 1923 printk(" ---- ----\n"); 1924 if (tgt_read != 0) 1925 printk(" rlock("); 1926 else 1927 printk(" lock("); 1928 __print_lock_name(tgt, target); 1929 printk(KERN_CONT ");\n"); 1930 printk(" lock("); 1931 __print_lock_name(NULL, parent); 1932 printk(KERN_CONT ");\n"); 1933 printk(" lock("); 1934 __print_lock_name(tgt, target); 1935 printk(KERN_CONT ");\n"); 1936 if (src_read != 0) 1937 printk(" rlock("); 1938 else if (src->sync) 1939 printk(" sync("); 1940 else 1941 printk(" lock("); 1942 __print_lock_name(src, source); 1943 printk(KERN_CONT ");\n"); 1944 printk("\n *** DEADLOCK ***\n\n"); 1945 } 1946 1947 /* 1948 * When a circular dependency is detected, print the 1949 * header first: 1950 */ 1951 static noinline void 1952 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1953 struct held_lock *check_src, 1954 struct held_lock *check_tgt) 1955 { 1956 struct task_struct *curr = current; 1957 1958 if (debug_locks_silent) 1959 return; 1960 1961 pr_warn("\n"); 1962 pr_warn("======================================================\n"); 1963 pr_warn("WARNING: possible circular locking dependency detected\n"); 1964 print_kernel_ident(); 1965 pr_warn("------------------------------------------------------\n"); 1966 pr_warn("%s/%d is trying to acquire lock:\n", 1967 curr->comm, task_pid_nr(curr)); 1968 print_lock(check_src); 1969 1970 pr_warn("\nbut task is already holding lock:\n"); 1971 1972 print_lock(check_tgt); 1973 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1974 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1975 1976 print_circular_bug_entry(entry, depth); 1977 } 1978 1979 /* 1980 * We are about to add A -> B into the dependency graph, and in __bfs() a 1981 * strong dependency path A -> .. -> B is found: hlock_class equals 1982 * entry->class. 1983 * 1984 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1985 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1986 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1987 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1988 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1989 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1990 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1991 * 1992 * We need to make sure both the start and the end of A -> .. -> B is not 1993 * weaker than A -> B. For the start part, please see the comment in 1994 * check_redundant(). For the end part, we need: 1995 * 1996 * Either 1997 * 1998 * a) A -> B is -(*R)-> (everything is not weaker than that) 1999 * 2000 * or 2001 * 2002 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 2003 * 2004 */ 2005 static inline bool hlock_equal(struct lock_list *entry, void *data) 2006 { 2007 struct held_lock *hlock = (struct held_lock *)data; 2008 2009 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2010 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2011 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2012 } 2013 2014 /* 2015 * We are about to add B -> A into the dependency graph, and in __bfs() a 2016 * strong dependency path A -> .. -> B is found: hlock_class equals 2017 * entry->class. 2018 * 2019 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2020 * dependency cycle, that means: 2021 * 2022 * Either 2023 * 2024 * a) B -> A is -(E*)-> 2025 * 2026 * or 2027 * 2028 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2029 * 2030 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2031 */ 2032 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2033 { 2034 struct held_lock *hlock = (struct held_lock *)data; 2035 2036 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2037 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2038 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2039 } 2040 2041 static noinline void print_circular_bug(struct lock_list *this, 2042 struct lock_list *target, 2043 struct held_lock *check_src, 2044 struct held_lock *check_tgt) 2045 { 2046 struct task_struct *curr = current; 2047 struct lock_list *parent; 2048 struct lock_list *first_parent; 2049 int depth; 2050 2051 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2052 return; 2053 2054 this->trace = save_trace(); 2055 if (!this->trace) 2056 return; 2057 2058 depth = get_lock_depth(target); 2059 2060 nbcon_cpu_emergency_enter(); 2061 2062 print_circular_bug_header(target, depth, check_src, check_tgt); 2063 2064 parent = get_lock_parent(target); 2065 first_parent = parent; 2066 2067 while (parent) { 2068 print_circular_bug_entry(parent, --depth); 2069 parent = get_lock_parent(parent); 2070 } 2071 2072 printk("\nother info that might help us debug this:\n\n"); 2073 print_circular_lock_scenario(check_src, check_tgt, 2074 first_parent); 2075 2076 lockdep_print_held_locks(curr); 2077 2078 printk("\nstack backtrace:\n"); 2079 dump_stack(); 2080 2081 nbcon_cpu_emergency_exit(); 2082 } 2083 2084 static noinline void print_bfs_bug(int ret) 2085 { 2086 if (!debug_locks_off_graph_unlock()) 2087 return; 2088 2089 /* 2090 * Breadth-first-search failed, graph got corrupted? 2091 */ 2092 if (ret == BFS_EQUEUEFULL) 2093 pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n"); 2094 2095 WARN(1, "lockdep bfs error:%d\n", ret); 2096 } 2097 2098 static bool noop_count(struct lock_list *entry, void *data) 2099 { 2100 (*(unsigned long *)data)++; 2101 return false; 2102 } 2103 2104 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2105 { 2106 unsigned long count = 0; 2107 struct lock_list *target_entry; 2108 2109 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2110 2111 return count; 2112 } 2113 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2114 { 2115 unsigned long ret, flags; 2116 struct lock_list this; 2117 2118 __bfs_init_root(&this, class); 2119 2120 raw_local_irq_save(flags); 2121 lockdep_lock(); 2122 ret = __lockdep_count_forward_deps(&this); 2123 lockdep_unlock(); 2124 raw_local_irq_restore(flags); 2125 2126 return ret; 2127 } 2128 2129 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2130 { 2131 unsigned long count = 0; 2132 struct lock_list *target_entry; 2133 2134 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2135 2136 return count; 2137 } 2138 2139 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2140 { 2141 unsigned long ret, flags; 2142 struct lock_list this; 2143 2144 __bfs_init_root(&this, class); 2145 2146 raw_local_irq_save(flags); 2147 lockdep_lock(); 2148 ret = __lockdep_count_backward_deps(&this); 2149 lockdep_unlock(); 2150 raw_local_irq_restore(flags); 2151 2152 return ret; 2153 } 2154 2155 /* 2156 * Check that the dependency graph starting at <src> can lead to 2157 * <target> or not. 2158 */ 2159 static noinline enum bfs_result 2160 check_path(struct held_lock *target, struct lock_list *src_entry, 2161 bool (*match)(struct lock_list *entry, void *data), 2162 bool (*skip)(struct lock_list *entry, void *data), 2163 struct lock_list **target_entry) 2164 { 2165 enum bfs_result ret; 2166 2167 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2168 2169 if (unlikely(bfs_error(ret))) 2170 print_bfs_bug(ret); 2171 2172 return ret; 2173 } 2174 2175 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2176 2177 /* 2178 * Prove that the dependency graph starting at <src> can not 2179 * lead to <target>. If it can, there is a circle when adding 2180 * <target> -> <src> dependency. 2181 * 2182 * Print an error and return BFS_RMATCH if it does. 2183 */ 2184 static noinline enum bfs_result 2185 check_noncircular(struct held_lock *src, struct held_lock *target, 2186 struct lock_trace **const trace) 2187 { 2188 enum bfs_result ret; 2189 struct lock_list *target_entry; 2190 struct lock_list src_entry; 2191 2192 bfs_init_root(&src_entry, src); 2193 2194 debug_atomic_inc(nr_cyclic_checks); 2195 2196 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2197 2198 if (unlikely(ret == BFS_RMATCH)) { 2199 if (!*trace) { 2200 /* 2201 * If save_trace fails here, the printing might 2202 * trigger a WARN but because of the !nr_entries it 2203 * should not do bad things. 2204 */ 2205 *trace = save_trace(); 2206 } 2207 2208 if (src->class_idx == target->class_idx) 2209 print_deadlock_bug(current, src, target); 2210 else 2211 print_circular_bug(&src_entry, target_entry, src, target); 2212 } 2213 2214 return ret; 2215 } 2216 2217 #ifdef CONFIG_TRACE_IRQFLAGS 2218 2219 /* 2220 * Forwards and backwards subgraph searching, for the purposes of 2221 * proving that two subgraphs can be connected by a new dependency 2222 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2223 * 2224 * A irq safe->unsafe deadlock happens with the following conditions: 2225 * 2226 * 1) We have a strong dependency path A -> ... -> B 2227 * 2228 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2229 * irq can create a new dependency B -> A (consider the case that a holder 2230 * of B gets interrupted by an irq whose handler will try to acquire A). 2231 * 2232 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2233 * strong circle: 2234 * 2235 * For the usage bits of B: 2236 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2237 * ENABLED_IRQ usage suffices. 2238 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2239 * ENABLED_IRQ_*_READ usage suffices. 2240 * 2241 * For the usage bits of A: 2242 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2243 * USED_IN_IRQ usage suffices. 2244 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2245 * USED_IN_IRQ_*_READ usage suffices. 2246 */ 2247 2248 /* 2249 * There is a strong dependency path in the dependency graph: A -> B, and now 2250 * we need to decide which usage bit of A should be accumulated to detect 2251 * safe->unsafe bugs. 2252 * 2253 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2254 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2255 * 2256 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2257 * path, any usage of A should be considered. Otherwise, we should only 2258 * consider _READ usage. 2259 */ 2260 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2261 { 2262 if (!entry->only_xr) 2263 *(unsigned long *)mask |= entry->class->usage_mask; 2264 else /* Mask out _READ usage bits */ 2265 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2266 2267 return false; 2268 } 2269 2270 /* 2271 * There is a strong dependency path in the dependency graph: A -> B, and now 2272 * we need to decide which usage bit of B conflicts with the usage bits of A, 2273 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2274 * 2275 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2276 * path, any usage of B should be considered. Otherwise, we should only 2277 * consider _READ usage. 2278 */ 2279 static inline bool usage_match(struct lock_list *entry, void *mask) 2280 { 2281 if (!entry->only_xr) 2282 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2283 else /* Mask out _READ usage bits */ 2284 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2285 } 2286 2287 static inline bool usage_skip(struct lock_list *entry, void *mask) 2288 { 2289 if (entry->class->lock_type == LD_LOCK_NORMAL) 2290 return false; 2291 2292 /* 2293 * Skip local_lock() for irq inversion detection. 2294 * 2295 * For !RT, local_lock() is not a real lock, so it won't carry any 2296 * dependency. 2297 * 2298 * For RT, an irq inversion happens when we have lock A and B, and on 2299 * some CPU we can have: 2300 * 2301 * lock(A); 2302 * <interrupted> 2303 * lock(B); 2304 * 2305 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2306 * 2307 * Now we prove local_lock() cannot exist in that dependency. First we 2308 * have the observation for any lock chain L1 -> ... -> Ln, for any 2309 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2310 * wait context check will complain. And since B is not a sleep lock, 2311 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2312 * local_lock() is 3, which is greater than 2, therefore there is no 2313 * way the local_lock() exists in the dependency B -> ... -> A. 2314 * 2315 * As a result, we will skip local_lock(), when we search for irq 2316 * inversion bugs. 2317 */ 2318 if (entry->class->lock_type == LD_LOCK_PERCPU && 2319 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2320 return false; 2321 2322 /* 2323 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2324 * a lock and only used to override the wait_type. 2325 */ 2326 2327 return true; 2328 } 2329 2330 /* 2331 * Find a node in the forwards-direction dependency sub-graph starting 2332 * at @root->class that matches @bit. 2333 * 2334 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2335 * into *@target_entry. 2336 */ 2337 static enum bfs_result 2338 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2339 struct lock_list **target_entry) 2340 { 2341 enum bfs_result result; 2342 2343 debug_atomic_inc(nr_find_usage_forwards_checks); 2344 2345 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2346 2347 return result; 2348 } 2349 2350 /* 2351 * Find a node in the backwards-direction dependency sub-graph starting 2352 * at @root->class that matches @bit. 2353 */ 2354 static enum bfs_result 2355 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2356 struct lock_list **target_entry) 2357 { 2358 enum bfs_result result; 2359 2360 debug_atomic_inc(nr_find_usage_backwards_checks); 2361 2362 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2363 2364 return result; 2365 } 2366 2367 static void print_lock_class_header(struct lock_class *class, int depth) 2368 { 2369 int bit; 2370 2371 printk("%*s->", depth, ""); 2372 print_lock_name(NULL, class); 2373 #ifdef CONFIG_DEBUG_LOCKDEP 2374 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2375 #endif 2376 printk(KERN_CONT " {\n"); 2377 2378 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2379 if (class->usage_mask & (1 << bit)) { 2380 int len = depth; 2381 2382 len += printk("%*s %s", depth, "", usage_str[bit]); 2383 len += printk(KERN_CONT " at:\n"); 2384 print_lock_trace(class->usage_traces[bit], len); 2385 } 2386 } 2387 printk("%*s }\n", depth, ""); 2388 2389 printk("%*s ... key at: [<%px>] %pS\n", 2390 depth, "", class->key, class->key); 2391 } 2392 2393 /* 2394 * Dependency path printing: 2395 * 2396 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2397 * printing out each lock in the dependency path will help on understanding how 2398 * the deadlock could happen. Here are some details about dependency path 2399 * printing: 2400 * 2401 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2402 * for a lock dependency A -> B, there are two lock_lists: 2403 * 2404 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2405 * ->links_to is A. In this case, we can say the lock_list is 2406 * "A -> B" (forwards case). 2407 * 2408 * b) lock_list in the ->locks_before list of B, whose ->class is A 2409 * and ->links_to is B. In this case, we can say the lock_list is 2410 * "B <- A" (bacwards case). 2411 * 2412 * The ->trace of both a) and b) point to the call trace where B was 2413 * acquired with A held. 2414 * 2415 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2416 * represent a certain lock dependency, it only provides an initial entry 2417 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2418 * ->class is A, as a result BFS will search all dependencies starting with 2419 * A, e.g. A -> B or A -> C. 2420 * 2421 * The notation of a forwards helper lock_list is like "-> A", which means 2422 * we should search the forwards dependencies starting with "A", e.g A -> B 2423 * or A -> C. 2424 * 2425 * The notation of a bacwards helper lock_list is like "<- B", which means 2426 * we should search the backwards dependencies ending with "B", e.g. 2427 * B <- A or B <- C. 2428 */ 2429 2430 /* 2431 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2432 * 2433 * We have a lock dependency path as follow: 2434 * 2435 * @root @leaf 2436 * | | 2437 * V V 2438 * ->parent ->parent 2439 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2440 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2441 * 2442 * , so it's natural that we start from @leaf and print every ->class and 2443 * ->trace until we reach the @root. 2444 */ 2445 static void __used 2446 print_shortest_lock_dependencies(struct lock_list *leaf, 2447 struct lock_list *root) 2448 { 2449 struct lock_list *entry = leaf; 2450 int depth; 2451 2452 /*compute depth from generated tree by BFS*/ 2453 depth = get_lock_depth(leaf); 2454 2455 do { 2456 print_lock_class_header(entry->class, depth); 2457 printk("%*s ... acquired at:\n", depth, ""); 2458 print_lock_trace(entry->trace, 2); 2459 printk("\n"); 2460 2461 if (depth == 0 && (entry != root)) { 2462 printk("lockdep:%s bad path found in chain graph\n", __func__); 2463 break; 2464 } 2465 2466 entry = get_lock_parent(entry); 2467 depth--; 2468 } while (entry && (depth >= 0)); 2469 } 2470 2471 /* 2472 * printk the shortest lock dependencies from @leaf to @root. 2473 * 2474 * We have a lock dependency path (from a backwards search) as follow: 2475 * 2476 * @leaf @root 2477 * | | 2478 * V V 2479 * ->parent ->parent 2480 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2481 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2482 * 2483 * , so when we iterate from @leaf to @root, we actually print the lock 2484 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2485 * 2486 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2487 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2488 * trace of L1 in the dependency path, which is alright, because most of the 2489 * time we can figure out where L1 is held from the call trace of L2. 2490 */ 2491 static void __used 2492 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2493 struct lock_list *root) 2494 { 2495 struct lock_list *entry = leaf; 2496 const struct lock_trace *trace = NULL; 2497 int depth; 2498 2499 /*compute depth from generated tree by BFS*/ 2500 depth = get_lock_depth(leaf); 2501 2502 do { 2503 print_lock_class_header(entry->class, depth); 2504 if (trace) { 2505 printk("%*s ... acquired at:\n", depth, ""); 2506 print_lock_trace(trace, 2); 2507 printk("\n"); 2508 } 2509 2510 /* 2511 * Record the pointer to the trace for the next lock_list 2512 * entry, see the comments for the function. 2513 */ 2514 trace = entry->trace; 2515 2516 if (depth == 0 && (entry != root)) { 2517 printk("lockdep:%s bad path found in chain graph\n", __func__); 2518 break; 2519 } 2520 2521 entry = get_lock_parent(entry); 2522 depth--; 2523 } while (entry && (depth >= 0)); 2524 } 2525 2526 static void 2527 print_irq_lock_scenario(struct lock_list *safe_entry, 2528 struct lock_list *unsafe_entry, 2529 struct lock_class *prev_class, 2530 struct lock_class *next_class) 2531 { 2532 struct lock_class *safe_class = safe_entry->class; 2533 struct lock_class *unsafe_class = unsafe_entry->class; 2534 struct lock_class *middle_class = prev_class; 2535 2536 if (middle_class == safe_class) 2537 middle_class = next_class; 2538 2539 /* 2540 * A direct locking problem where unsafe_class lock is taken 2541 * directly by safe_class lock, then all we need to show 2542 * is the deadlock scenario, as it is obvious that the 2543 * unsafe lock is taken under the safe lock. 2544 * 2545 * But if there is a chain instead, where the safe lock takes 2546 * an intermediate lock (middle_class) where this lock is 2547 * not the same as the safe lock, then the lock chain is 2548 * used to describe the problem. Otherwise we would need 2549 * to show a different CPU case for each link in the chain 2550 * from the safe_class lock to the unsafe_class lock. 2551 */ 2552 if (middle_class != unsafe_class) { 2553 printk("Chain exists of:\n "); 2554 __print_lock_name(NULL, safe_class); 2555 printk(KERN_CONT " --> "); 2556 __print_lock_name(NULL, middle_class); 2557 printk(KERN_CONT " --> "); 2558 __print_lock_name(NULL, unsafe_class); 2559 printk(KERN_CONT "\n\n"); 2560 } 2561 2562 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2563 printk(" CPU0 CPU1\n"); 2564 printk(" ---- ----\n"); 2565 printk(" lock("); 2566 __print_lock_name(NULL, unsafe_class); 2567 printk(KERN_CONT ");\n"); 2568 printk(" local_irq_disable();\n"); 2569 printk(" lock("); 2570 __print_lock_name(NULL, safe_class); 2571 printk(KERN_CONT ");\n"); 2572 printk(" lock("); 2573 __print_lock_name(NULL, middle_class); 2574 printk(KERN_CONT ");\n"); 2575 printk(" <Interrupt>\n"); 2576 printk(" lock("); 2577 __print_lock_name(NULL, safe_class); 2578 printk(KERN_CONT ");\n"); 2579 printk("\n *** DEADLOCK ***\n\n"); 2580 } 2581 2582 static void 2583 print_bad_irq_dependency(struct task_struct *curr, 2584 struct lock_list *prev_root, 2585 struct lock_list *next_root, 2586 struct lock_list *backwards_entry, 2587 struct lock_list *forwards_entry, 2588 struct held_lock *prev, 2589 struct held_lock *next, 2590 enum lock_usage_bit bit1, 2591 enum lock_usage_bit bit2, 2592 const char *irqclass) 2593 { 2594 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2595 return; 2596 2597 nbcon_cpu_emergency_enter(); 2598 2599 pr_warn("\n"); 2600 pr_warn("=====================================================\n"); 2601 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2602 irqclass, irqclass); 2603 print_kernel_ident(); 2604 pr_warn("-----------------------------------------------------\n"); 2605 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2606 curr->comm, task_pid_nr(curr), 2607 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2608 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2609 lockdep_hardirqs_enabled(), 2610 curr->softirqs_enabled); 2611 print_lock(next); 2612 2613 pr_warn("\nand this task is already holding:\n"); 2614 print_lock(prev); 2615 pr_warn("which would create a new lock dependency:\n"); 2616 print_lock_name(prev, hlock_class(prev)); 2617 pr_cont(" ->"); 2618 print_lock_name(next, hlock_class(next)); 2619 pr_cont("\n"); 2620 2621 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2622 irqclass); 2623 print_lock_name(NULL, backwards_entry->class); 2624 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2625 2626 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2627 2628 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2629 print_lock_name(NULL, forwards_entry->class); 2630 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2631 pr_warn("..."); 2632 2633 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2634 2635 pr_warn("\nother info that might help us debug this:\n\n"); 2636 print_irq_lock_scenario(backwards_entry, forwards_entry, 2637 hlock_class(prev), hlock_class(next)); 2638 2639 lockdep_print_held_locks(curr); 2640 2641 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2642 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2643 2644 pr_warn("\nthe dependencies between the lock to be acquired"); 2645 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2646 next_root->trace = save_trace(); 2647 if (!next_root->trace) 2648 goto out; 2649 print_shortest_lock_dependencies(forwards_entry, next_root); 2650 2651 pr_warn("\nstack backtrace:\n"); 2652 dump_stack(); 2653 out: 2654 nbcon_cpu_emergency_exit(); 2655 } 2656 2657 static const char *state_names[] = { 2658 #define LOCKDEP_STATE(__STATE) \ 2659 __stringify(__STATE), 2660 #include "lockdep_states.h" 2661 #undef LOCKDEP_STATE 2662 }; 2663 2664 static const char *state_rnames[] = { 2665 #define LOCKDEP_STATE(__STATE) \ 2666 __stringify(__STATE)"-READ", 2667 #include "lockdep_states.h" 2668 #undef LOCKDEP_STATE 2669 }; 2670 2671 static inline const char *state_name(enum lock_usage_bit bit) 2672 { 2673 if (bit & LOCK_USAGE_READ_MASK) 2674 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2675 else 2676 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2677 } 2678 2679 /* 2680 * The bit number is encoded like: 2681 * 2682 * bit0: 0 exclusive, 1 read lock 2683 * bit1: 0 used in irq, 1 irq enabled 2684 * bit2-n: state 2685 */ 2686 static int exclusive_bit(int new_bit) 2687 { 2688 int state = new_bit & LOCK_USAGE_STATE_MASK; 2689 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2690 2691 /* 2692 * keep state, bit flip the direction and strip read. 2693 */ 2694 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2695 } 2696 2697 /* 2698 * Observe that when given a bitmask where each bitnr is encoded as above, a 2699 * right shift of the mask transforms the individual bitnrs as -1 and 2700 * conversely, a left shift transforms into +1 for the individual bitnrs. 2701 * 2702 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2703 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2704 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2705 * 2706 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2707 * 2708 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2709 * all bits set) and recompose with bitnr1 flipped. 2710 */ 2711 static unsigned long invert_dir_mask(unsigned long mask) 2712 { 2713 unsigned long excl = 0; 2714 2715 /* Invert dir */ 2716 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2717 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2718 2719 return excl; 2720 } 2721 2722 /* 2723 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2724 * usage may cause deadlock too, for example: 2725 * 2726 * P1 P2 2727 * <irq disabled> 2728 * write_lock(l1); <irq enabled> 2729 * read_lock(l2); 2730 * write_lock(l2); 2731 * <in irq> 2732 * read_lock(l1); 2733 * 2734 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2735 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2736 * deadlock. 2737 * 2738 * In fact, all of the following cases may cause deadlocks: 2739 * 2740 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2741 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2742 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2743 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2744 * 2745 * As a result, to calculate the "exclusive mask", first we invert the 2746 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2747 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2748 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2749 */ 2750 static unsigned long exclusive_mask(unsigned long mask) 2751 { 2752 unsigned long excl = invert_dir_mask(mask); 2753 2754 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2755 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2756 2757 return excl; 2758 } 2759 2760 /* 2761 * Retrieve the _possible_ original mask to which @mask is 2762 * exclusive. Ie: this is the opposite of exclusive_mask(). 2763 * Note that 2 possible original bits can match an exclusive 2764 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2765 * cleared. So both are returned for each exclusive bit. 2766 */ 2767 static unsigned long original_mask(unsigned long mask) 2768 { 2769 unsigned long excl = invert_dir_mask(mask); 2770 2771 /* Include read in existing usages */ 2772 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2773 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2774 2775 return excl; 2776 } 2777 2778 /* 2779 * Find the first pair of bit match between an original 2780 * usage mask and an exclusive usage mask. 2781 */ 2782 static int find_exclusive_match(unsigned long mask, 2783 unsigned long excl_mask, 2784 enum lock_usage_bit *bitp, 2785 enum lock_usage_bit *excl_bitp) 2786 { 2787 int bit, excl, excl_read; 2788 2789 for_each_set_bit(bit, &mask, LOCK_USED) { 2790 /* 2791 * exclusive_bit() strips the read bit, however, 2792 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2793 * to search excl | LOCK_USAGE_READ_MASK as well. 2794 */ 2795 excl = exclusive_bit(bit); 2796 excl_read = excl | LOCK_USAGE_READ_MASK; 2797 if (excl_mask & lock_flag(excl)) { 2798 *bitp = bit; 2799 *excl_bitp = excl; 2800 return 0; 2801 } else if (excl_mask & lock_flag(excl_read)) { 2802 *bitp = bit; 2803 *excl_bitp = excl_read; 2804 return 0; 2805 } 2806 } 2807 return -1; 2808 } 2809 2810 /* 2811 * Prove that the new dependency does not connect a hardirq-safe(-read) 2812 * lock with a hardirq-unsafe lock - to achieve this we search 2813 * the backwards-subgraph starting at <prev>, and the 2814 * forwards-subgraph starting at <next>: 2815 */ 2816 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2817 struct held_lock *next) 2818 { 2819 unsigned long usage_mask = 0, forward_mask, backward_mask; 2820 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2821 struct lock_list *target_entry1; 2822 struct lock_list *target_entry; 2823 struct lock_list this, that; 2824 enum bfs_result ret; 2825 2826 /* 2827 * Step 1: gather all hard/soft IRQs usages backward in an 2828 * accumulated usage mask. 2829 */ 2830 bfs_init_rootb(&this, prev); 2831 2832 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2833 if (bfs_error(ret)) { 2834 print_bfs_bug(ret); 2835 return 0; 2836 } 2837 2838 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2839 if (!usage_mask) 2840 return 1; 2841 2842 /* 2843 * Step 2: find exclusive uses forward that match the previous 2844 * backward accumulated mask. 2845 */ 2846 forward_mask = exclusive_mask(usage_mask); 2847 2848 bfs_init_root(&that, next); 2849 2850 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2851 if (bfs_error(ret)) { 2852 print_bfs_bug(ret); 2853 return 0; 2854 } 2855 if (ret == BFS_RNOMATCH) 2856 return 1; 2857 2858 /* 2859 * Step 3: we found a bad match! Now retrieve a lock from the backward 2860 * list whose usage mask matches the exclusive usage mask from the 2861 * lock found on the forward list. 2862 * 2863 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2864 * the follow case: 2865 * 2866 * When trying to add A -> B to the graph, we find that there is a 2867 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2868 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2869 * invert bits of M's usage_mask, we will find another lock N that is 2870 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2871 * cause a inversion deadlock. 2872 */ 2873 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2874 2875 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2876 if (bfs_error(ret)) { 2877 print_bfs_bug(ret); 2878 return 0; 2879 } 2880 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2881 return 1; 2882 2883 /* 2884 * Step 4: narrow down to a pair of incompatible usage bits 2885 * and report it. 2886 */ 2887 ret = find_exclusive_match(target_entry->class->usage_mask, 2888 target_entry1->class->usage_mask, 2889 &backward_bit, &forward_bit); 2890 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2891 return 1; 2892 2893 print_bad_irq_dependency(curr, &this, &that, 2894 target_entry, target_entry1, 2895 prev, next, 2896 backward_bit, forward_bit, 2897 state_name(backward_bit)); 2898 2899 return 0; 2900 } 2901 2902 #else 2903 2904 static inline int check_irq_usage(struct task_struct *curr, 2905 struct held_lock *prev, struct held_lock *next) 2906 { 2907 return 1; 2908 } 2909 2910 static inline bool usage_skip(struct lock_list *entry, void *mask) 2911 { 2912 return false; 2913 } 2914 2915 #endif /* CONFIG_TRACE_IRQFLAGS */ 2916 2917 #ifdef CONFIG_LOCKDEP_SMALL 2918 /* 2919 * Check that the dependency graph starting at <src> can lead to 2920 * <target> or not. If it can, <src> -> <target> dependency is already 2921 * in the graph. 2922 * 2923 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2924 * any error appears in the bfs search. 2925 */ 2926 static noinline enum bfs_result 2927 check_redundant(struct held_lock *src, struct held_lock *target) 2928 { 2929 enum bfs_result ret; 2930 struct lock_list *target_entry; 2931 struct lock_list src_entry; 2932 2933 bfs_init_root(&src_entry, src); 2934 /* 2935 * Special setup for check_redundant(). 2936 * 2937 * To report redundant, we need to find a strong dependency path that 2938 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2939 * we need to let __bfs() only search for a path starting at a -(E*)->, 2940 * we achieve this by setting the initial node's ->only_xr to true in 2941 * that case. And if <prev> is S, we set initial ->only_xr to false 2942 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2943 */ 2944 src_entry.only_xr = src->read == 0; 2945 2946 debug_atomic_inc(nr_redundant_checks); 2947 2948 /* 2949 * Note: we skip local_lock() for redundant check, because as the 2950 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2951 * the same. 2952 */ 2953 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2954 2955 if (ret == BFS_RMATCH) 2956 debug_atomic_inc(nr_redundant); 2957 2958 return ret; 2959 } 2960 2961 #else 2962 2963 static inline enum bfs_result 2964 check_redundant(struct held_lock *src, struct held_lock *target) 2965 { 2966 return BFS_RNOMATCH; 2967 } 2968 2969 #endif 2970 2971 static void inc_chains(int irq_context) 2972 { 2973 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2974 nr_hardirq_chains++; 2975 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2976 nr_softirq_chains++; 2977 else 2978 nr_process_chains++; 2979 } 2980 2981 static void dec_chains(int irq_context) 2982 { 2983 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2984 nr_hardirq_chains--; 2985 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2986 nr_softirq_chains--; 2987 else 2988 nr_process_chains--; 2989 } 2990 2991 static void 2992 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2993 { 2994 struct lock_class *next = hlock_class(nxt); 2995 struct lock_class *prev = hlock_class(prv); 2996 2997 printk(" Possible unsafe locking scenario:\n\n"); 2998 printk(" CPU0\n"); 2999 printk(" ----\n"); 3000 printk(" lock("); 3001 __print_lock_name(prv, prev); 3002 printk(KERN_CONT ");\n"); 3003 printk(" lock("); 3004 __print_lock_name(nxt, next); 3005 printk(KERN_CONT ");\n"); 3006 printk("\n *** DEADLOCK ***\n\n"); 3007 printk(" May be due to missing lock nesting notation\n\n"); 3008 } 3009 3010 static void 3011 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 3012 struct held_lock *next) 3013 { 3014 struct lock_class *class = hlock_class(prev); 3015 3016 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3017 return; 3018 3019 nbcon_cpu_emergency_enter(); 3020 3021 pr_warn("\n"); 3022 pr_warn("============================================\n"); 3023 pr_warn("WARNING: possible recursive locking detected\n"); 3024 print_kernel_ident(); 3025 pr_warn("--------------------------------------------\n"); 3026 pr_warn("%s/%d is trying to acquire lock:\n", 3027 curr->comm, task_pid_nr(curr)); 3028 print_lock(next); 3029 pr_warn("\nbut task is already holding lock:\n"); 3030 print_lock(prev); 3031 3032 if (class->cmp_fn) { 3033 pr_warn("and the lock comparison function returns %i:\n", 3034 class->cmp_fn(prev->instance, next->instance)); 3035 } 3036 3037 pr_warn("\nother info that might help us debug this:\n"); 3038 print_deadlock_scenario(next, prev); 3039 lockdep_print_held_locks(curr); 3040 3041 pr_warn("\nstack backtrace:\n"); 3042 dump_stack(); 3043 3044 nbcon_cpu_emergency_exit(); 3045 } 3046 3047 /* 3048 * Check whether we are holding such a class already. 3049 * 3050 * (Note that this has to be done separately, because the graph cannot 3051 * detect such classes of deadlocks.) 3052 * 3053 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3054 * lock class is held but nest_lock is also held, i.e. we rely on the 3055 * nest_lock to avoid the deadlock. 3056 */ 3057 static int 3058 check_deadlock(struct task_struct *curr, struct held_lock *next) 3059 { 3060 struct lock_class *class; 3061 struct held_lock *prev; 3062 struct held_lock *nest = NULL; 3063 int i; 3064 3065 for (i = 0; i < curr->lockdep_depth; i++) { 3066 prev = curr->held_locks + i; 3067 3068 if (prev->instance == next->nest_lock) 3069 nest = prev; 3070 3071 if (hlock_class(prev) != hlock_class(next)) 3072 continue; 3073 3074 /* 3075 * Allow read-after-read recursion of the same 3076 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3077 */ 3078 if ((next->read == 2) && prev->read) 3079 continue; 3080 3081 class = hlock_class(prev); 3082 3083 if (class->cmp_fn && 3084 class->cmp_fn(prev->instance, next->instance) < 0) 3085 continue; 3086 3087 /* 3088 * We're holding the nest_lock, which serializes this lock's 3089 * nesting behaviour. 3090 */ 3091 if (nest) 3092 return 2; 3093 3094 print_deadlock_bug(curr, prev, next); 3095 return 0; 3096 } 3097 return 1; 3098 } 3099 3100 /* 3101 * There was a chain-cache miss, and we are about to add a new dependency 3102 * to a previous lock. We validate the following rules: 3103 * 3104 * - would the adding of the <prev> -> <next> dependency create a 3105 * circular dependency in the graph? [== circular deadlock] 3106 * 3107 * - does the new prev->next dependency connect any hardirq-safe lock 3108 * (in the full backwards-subgraph starting at <prev>) with any 3109 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3110 * <next>)? [== illegal lock inversion with hardirq contexts] 3111 * 3112 * - does the new prev->next dependency connect any softirq-safe lock 3113 * (in the full backwards-subgraph starting at <prev>) with any 3114 * softirq-unsafe lock (in the full forwards-subgraph starting at 3115 * <next>)? [== illegal lock inversion with softirq contexts] 3116 * 3117 * any of these scenarios could lead to a deadlock. 3118 * 3119 * Then if all the validations pass, we add the forwards and backwards 3120 * dependency. 3121 */ 3122 static int 3123 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3124 struct held_lock *next, u16 distance, 3125 struct lock_trace **const trace) 3126 { 3127 struct lock_list *entry; 3128 enum bfs_result ret; 3129 3130 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3131 /* 3132 * The warning statements below may trigger a use-after-free 3133 * of the class name. It is better to trigger a use-after free 3134 * and to have the class name most of the time instead of not 3135 * having the class name available. 3136 */ 3137 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3138 "Detected use-after-free of lock class %px/%s\n", 3139 hlock_class(prev), 3140 hlock_class(prev)->name); 3141 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3142 "Detected use-after-free of lock class %px/%s\n", 3143 hlock_class(next), 3144 hlock_class(next)->name); 3145 return 2; 3146 } 3147 3148 if (prev->class_idx == next->class_idx) { 3149 struct lock_class *class = hlock_class(prev); 3150 3151 if (class->cmp_fn && 3152 class->cmp_fn(prev->instance, next->instance) < 0) 3153 return 2; 3154 } 3155 3156 /* 3157 * Prove that the new <prev> -> <next> dependency would not 3158 * create a circular dependency in the graph. (We do this by 3159 * a breadth-first search into the graph starting at <next>, 3160 * and check whether we can reach <prev>.) 3161 * 3162 * The search is limited by the size of the circular queue (i.e., 3163 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3164 * in the graph whose neighbours are to be checked. 3165 */ 3166 ret = check_noncircular(next, prev, trace); 3167 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3168 return 0; 3169 3170 if (!check_irq_usage(curr, prev, next)) 3171 return 0; 3172 3173 /* 3174 * Is the <prev> -> <next> dependency already present? 3175 * 3176 * (this may occur even though this is a new chain: consider 3177 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3178 * chains - the second one will be new, but L1 already has 3179 * L2 added to its dependency list, due to the first chain.) 3180 */ 3181 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3182 if (entry->class == hlock_class(next)) { 3183 if (distance == 1) 3184 entry->distance = 1; 3185 entry->dep |= calc_dep(prev, next); 3186 3187 /* 3188 * Also, update the reverse dependency in @next's 3189 * ->locks_before list. 3190 * 3191 * Here we reuse @entry as the cursor, which is fine 3192 * because we won't go to the next iteration of the 3193 * outer loop: 3194 * 3195 * For normal cases, we return in the inner loop. 3196 * 3197 * If we fail to return, we have inconsistency, i.e. 3198 * <prev>::locks_after contains <next> while 3199 * <next>::locks_before doesn't contain <prev>. In 3200 * that case, we return after the inner and indicate 3201 * something is wrong. 3202 */ 3203 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3204 if (entry->class == hlock_class(prev)) { 3205 if (distance == 1) 3206 entry->distance = 1; 3207 entry->dep |= calc_depb(prev, next); 3208 return 1; 3209 } 3210 } 3211 3212 /* <prev> is not found in <next>::locks_before */ 3213 return 0; 3214 } 3215 } 3216 3217 /* 3218 * Is the <prev> -> <next> link redundant? 3219 */ 3220 ret = check_redundant(prev, next); 3221 if (bfs_error(ret)) 3222 return 0; 3223 else if (ret == BFS_RMATCH) 3224 return 2; 3225 3226 if (!*trace) { 3227 *trace = save_trace(); 3228 if (!*trace) 3229 return 0; 3230 } 3231 3232 /* 3233 * Ok, all validations passed, add the new lock 3234 * to the previous lock's dependency list: 3235 */ 3236 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3237 &hlock_class(prev)->locks_after, distance, 3238 calc_dep(prev, next), *trace); 3239 3240 if (!ret) 3241 return 0; 3242 3243 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3244 &hlock_class(next)->locks_before, distance, 3245 calc_depb(prev, next), *trace); 3246 if (!ret) 3247 return 0; 3248 3249 return 2; 3250 } 3251 3252 /* 3253 * Add the dependency to all directly-previous locks that are 'relevant'. 3254 * The ones that are relevant are (in increasing distance from curr): 3255 * all consecutive trylock entries and the final non-trylock entry - or 3256 * the end of this context's lock-chain - whichever comes first. 3257 */ 3258 static int 3259 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3260 { 3261 struct lock_trace *trace = NULL; 3262 int depth = curr->lockdep_depth; 3263 struct held_lock *hlock; 3264 3265 /* 3266 * Debugging checks. 3267 * 3268 * Depth must not be zero for a non-head lock: 3269 */ 3270 if (!depth) 3271 goto out_bug; 3272 /* 3273 * At least two relevant locks must exist for this 3274 * to be a head: 3275 */ 3276 if (curr->held_locks[depth].irq_context != 3277 curr->held_locks[depth-1].irq_context) 3278 goto out_bug; 3279 3280 for (;;) { 3281 u16 distance = curr->lockdep_depth - depth + 1; 3282 hlock = curr->held_locks + depth - 1; 3283 3284 if (hlock->check) { 3285 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3286 if (!ret) 3287 return 0; 3288 3289 /* 3290 * Stop after the first non-trylock entry, 3291 * as non-trylock entries have added their 3292 * own direct dependencies already, so this 3293 * lock is connected to them indirectly: 3294 */ 3295 if (!hlock->trylock) 3296 break; 3297 } 3298 3299 depth--; 3300 /* 3301 * End of lock-stack? 3302 */ 3303 if (!depth) 3304 break; 3305 /* 3306 * Stop the search if we cross into another context: 3307 */ 3308 if (curr->held_locks[depth].irq_context != 3309 curr->held_locks[depth-1].irq_context) 3310 break; 3311 } 3312 return 1; 3313 out_bug: 3314 if (!debug_locks_off_graph_unlock()) 3315 return 0; 3316 3317 /* 3318 * Clearly we all shouldn't be here, but since we made it we 3319 * can reliable say we messed up our state. See the above two 3320 * gotos for reasons why we could possibly end up here. 3321 */ 3322 WARN_ON(1); 3323 3324 return 0; 3325 } 3326 3327 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3328 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3329 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3330 unsigned long nr_zapped_lock_chains; 3331 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3332 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3333 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3334 3335 /* 3336 * The first 2 chain_hlocks entries in the chain block in the bucket 3337 * list contains the following meta data: 3338 * 3339 * entry[0]: 3340 * Bit 15 - always set to 1 (it is not a class index) 3341 * Bits 0-14 - upper 15 bits of the next block index 3342 * entry[1] - lower 16 bits of next block index 3343 * 3344 * A next block index of all 1 bits means it is the end of the list. 3345 * 3346 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3347 * the chain block size: 3348 * 3349 * entry[2] - upper 16 bits of the chain block size 3350 * entry[3] - lower 16 bits of the chain block size 3351 */ 3352 #define MAX_CHAIN_BUCKETS 16 3353 #define CHAIN_BLK_FLAG (1U << 15) 3354 #define CHAIN_BLK_LIST_END 0xFFFFU 3355 3356 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3357 3358 static inline int size_to_bucket(int size) 3359 { 3360 if (size > MAX_CHAIN_BUCKETS) 3361 return 0; 3362 3363 return size - 1; 3364 } 3365 3366 /* 3367 * Iterate all the chain blocks in a bucket. 3368 */ 3369 #define for_each_chain_block(bucket, prev, curr) \ 3370 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3371 (curr) >= 0; \ 3372 (prev) = (curr), (curr) = chain_block_next(curr)) 3373 3374 /* 3375 * next block or -1 3376 */ 3377 static inline int chain_block_next(int offset) 3378 { 3379 int next = chain_hlocks[offset]; 3380 3381 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3382 3383 if (next == CHAIN_BLK_LIST_END) 3384 return -1; 3385 3386 next &= ~CHAIN_BLK_FLAG; 3387 next <<= 16; 3388 next |= chain_hlocks[offset + 1]; 3389 3390 return next; 3391 } 3392 3393 /* 3394 * bucket-0 only 3395 */ 3396 static inline int chain_block_size(int offset) 3397 { 3398 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3399 } 3400 3401 static inline void init_chain_block(int offset, int next, int bucket, int size) 3402 { 3403 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3404 chain_hlocks[offset + 1] = (u16)next; 3405 3406 if (size && !bucket) { 3407 chain_hlocks[offset + 2] = size >> 16; 3408 chain_hlocks[offset + 3] = (u16)size; 3409 } 3410 } 3411 3412 static inline void add_chain_block(int offset, int size) 3413 { 3414 int bucket = size_to_bucket(size); 3415 int next = chain_block_buckets[bucket]; 3416 int prev, curr; 3417 3418 if (unlikely(size < 2)) { 3419 /* 3420 * We can't store single entries on the freelist. Leak them. 3421 * 3422 * One possible way out would be to uniquely mark them, other 3423 * than with CHAIN_BLK_FLAG, such that we can recover them when 3424 * the block before it is re-added. 3425 */ 3426 if (size) 3427 nr_lost_chain_hlocks++; 3428 return; 3429 } 3430 3431 nr_free_chain_hlocks += size; 3432 if (!bucket) { 3433 nr_large_chain_blocks++; 3434 3435 /* 3436 * Variable sized, sort large to small. 3437 */ 3438 for_each_chain_block(0, prev, curr) { 3439 if (size >= chain_block_size(curr)) 3440 break; 3441 } 3442 init_chain_block(offset, curr, 0, size); 3443 if (prev < 0) 3444 chain_block_buckets[0] = offset; 3445 else 3446 init_chain_block(prev, offset, 0, 0); 3447 return; 3448 } 3449 /* 3450 * Fixed size, add to head. 3451 */ 3452 init_chain_block(offset, next, bucket, size); 3453 chain_block_buckets[bucket] = offset; 3454 } 3455 3456 /* 3457 * Only the first block in the list can be deleted. 3458 * 3459 * For the variable size bucket[0], the first block (the largest one) is 3460 * returned, broken up and put back into the pool. So if a chain block of 3461 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3462 * queued up after the primordial chain block and never be used until the 3463 * hlock entries in the primordial chain block is almost used up. That 3464 * causes fragmentation and reduce allocation efficiency. That can be 3465 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3466 */ 3467 static inline void del_chain_block(int bucket, int size, int next) 3468 { 3469 nr_free_chain_hlocks -= size; 3470 chain_block_buckets[bucket] = next; 3471 3472 if (!bucket) 3473 nr_large_chain_blocks--; 3474 } 3475 3476 static void init_chain_block_buckets(void) 3477 { 3478 int i; 3479 3480 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3481 chain_block_buckets[i] = -1; 3482 3483 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3484 } 3485 3486 /* 3487 * Return offset of a chain block of the right size or -1 if not found. 3488 * 3489 * Fairly simple worst-fit allocator with the addition of a number of size 3490 * specific free lists. 3491 */ 3492 static int alloc_chain_hlocks(int req) 3493 { 3494 int bucket, curr, size; 3495 3496 /* 3497 * We rely on the MSB to act as an escape bit to denote freelist 3498 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3499 */ 3500 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3501 3502 init_data_structures_once(); 3503 3504 if (nr_free_chain_hlocks < req) 3505 return -1; 3506 3507 /* 3508 * We require a minimum of 2 (u16) entries to encode a freelist 3509 * 'pointer'. 3510 */ 3511 req = max(req, 2); 3512 bucket = size_to_bucket(req); 3513 curr = chain_block_buckets[bucket]; 3514 3515 if (bucket) { 3516 if (curr >= 0) { 3517 del_chain_block(bucket, req, chain_block_next(curr)); 3518 return curr; 3519 } 3520 /* Try bucket 0 */ 3521 curr = chain_block_buckets[0]; 3522 } 3523 3524 /* 3525 * The variable sized freelist is sorted by size; the first entry is 3526 * the largest. Use it if it fits. 3527 */ 3528 if (curr >= 0) { 3529 size = chain_block_size(curr); 3530 if (likely(size >= req)) { 3531 del_chain_block(0, size, chain_block_next(curr)); 3532 if (size > req) 3533 add_chain_block(curr + req, size - req); 3534 return curr; 3535 } 3536 } 3537 3538 /* 3539 * Last resort, split a block in a larger sized bucket. 3540 */ 3541 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3542 bucket = size_to_bucket(size); 3543 curr = chain_block_buckets[bucket]; 3544 if (curr < 0) 3545 continue; 3546 3547 del_chain_block(bucket, size, chain_block_next(curr)); 3548 add_chain_block(curr + req, size - req); 3549 return curr; 3550 } 3551 3552 return -1; 3553 } 3554 3555 static inline void free_chain_hlocks(int base, int size) 3556 { 3557 add_chain_block(base, max(size, 2)); 3558 } 3559 3560 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3561 { 3562 u16 chain_hlock = chain_hlocks[chain->base + i]; 3563 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3564 3565 return lock_classes + class_idx; 3566 } 3567 3568 /* 3569 * Returns the index of the first held_lock of the current chain 3570 */ 3571 static inline int get_first_held_lock(struct task_struct *curr, 3572 struct held_lock *hlock) 3573 { 3574 int i; 3575 struct held_lock *hlock_curr; 3576 3577 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3578 hlock_curr = curr->held_locks + i; 3579 if (hlock_curr->irq_context != hlock->irq_context) 3580 break; 3581 3582 } 3583 3584 return ++i; 3585 } 3586 3587 #ifdef CONFIG_DEBUG_LOCKDEP 3588 /* 3589 * Returns the next chain_key iteration 3590 */ 3591 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3592 { 3593 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3594 3595 printk(" hlock_id:%d -> chain_key:%016Lx", 3596 (unsigned int)hlock_id, 3597 (unsigned long long)new_chain_key); 3598 return new_chain_key; 3599 } 3600 3601 static void 3602 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3603 { 3604 struct held_lock *hlock; 3605 u64 chain_key = INITIAL_CHAIN_KEY; 3606 int depth = curr->lockdep_depth; 3607 int i = get_first_held_lock(curr, hlock_next); 3608 3609 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3610 hlock_next->irq_context); 3611 for (; i < depth; i++) { 3612 hlock = curr->held_locks + i; 3613 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3614 3615 print_lock(hlock); 3616 } 3617 3618 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3619 print_lock(hlock_next); 3620 } 3621 3622 static void print_chain_keys_chain(struct lock_chain *chain) 3623 { 3624 int i; 3625 u64 chain_key = INITIAL_CHAIN_KEY; 3626 u16 hlock_id; 3627 3628 printk("depth: %u\n", chain->depth); 3629 for (i = 0; i < chain->depth; i++) { 3630 hlock_id = chain_hlocks[chain->base + i]; 3631 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3632 3633 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3634 printk("\n"); 3635 } 3636 } 3637 3638 static void print_collision(struct task_struct *curr, 3639 struct held_lock *hlock_next, 3640 struct lock_chain *chain) 3641 { 3642 nbcon_cpu_emergency_enter(); 3643 3644 pr_warn("\n"); 3645 pr_warn("============================\n"); 3646 pr_warn("WARNING: chain_key collision\n"); 3647 print_kernel_ident(); 3648 pr_warn("----------------------------\n"); 3649 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3650 pr_warn("Hash chain already cached but the contents don't match!\n"); 3651 3652 pr_warn("Held locks:"); 3653 print_chain_keys_held_locks(curr, hlock_next); 3654 3655 pr_warn("Locks in cached chain:"); 3656 print_chain_keys_chain(chain); 3657 3658 pr_warn("\nstack backtrace:\n"); 3659 dump_stack(); 3660 3661 nbcon_cpu_emergency_exit(); 3662 } 3663 #endif 3664 3665 /* 3666 * Checks whether the chain and the current held locks are consistent 3667 * in depth and also in content. If they are not it most likely means 3668 * that there was a collision during the calculation of the chain_key. 3669 * Returns: 0 not passed, 1 passed 3670 */ 3671 static int check_no_collision(struct task_struct *curr, 3672 struct held_lock *hlock, 3673 struct lock_chain *chain) 3674 { 3675 #ifdef CONFIG_DEBUG_LOCKDEP 3676 int i, j, id; 3677 3678 i = get_first_held_lock(curr, hlock); 3679 3680 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3681 print_collision(curr, hlock, chain); 3682 return 0; 3683 } 3684 3685 for (j = 0; j < chain->depth - 1; j++, i++) { 3686 id = hlock_id(&curr->held_locks[i]); 3687 3688 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3689 print_collision(curr, hlock, chain); 3690 return 0; 3691 } 3692 } 3693 #endif 3694 return 1; 3695 } 3696 3697 /* 3698 * Given an index that is >= -1, return the index of the next lock chain. 3699 * Return -2 if there is no next lock chain. 3700 */ 3701 long lockdep_next_lockchain(long i) 3702 { 3703 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3704 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3705 } 3706 3707 unsigned long lock_chain_count(void) 3708 { 3709 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3710 } 3711 3712 /* Must be called with the graph lock held. */ 3713 static struct lock_chain *alloc_lock_chain(void) 3714 { 3715 int idx = find_first_zero_bit(lock_chains_in_use, 3716 ARRAY_SIZE(lock_chains)); 3717 3718 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3719 return NULL; 3720 __set_bit(idx, lock_chains_in_use); 3721 return lock_chains + idx; 3722 } 3723 3724 /* 3725 * Adds a dependency chain into chain hashtable. And must be called with 3726 * graph_lock held. 3727 * 3728 * Return 0 if fail, and graph_lock is released. 3729 * Return 1 if succeed, with graph_lock held. 3730 */ 3731 static inline int add_chain_cache(struct task_struct *curr, 3732 struct held_lock *hlock, 3733 u64 chain_key) 3734 { 3735 struct hlist_head *hash_head = chainhashentry(chain_key); 3736 struct lock_chain *chain; 3737 int i, j; 3738 3739 /* 3740 * The caller must hold the graph lock, ensure we've got IRQs 3741 * disabled to make this an IRQ-safe lock.. for recursion reasons 3742 * lockdep won't complain about its own locking errors. 3743 */ 3744 if (lockdep_assert_locked()) 3745 return 0; 3746 3747 chain = alloc_lock_chain(); 3748 if (!chain) { 3749 if (!debug_locks_off_graph_unlock()) 3750 return 0; 3751 3752 nbcon_cpu_emergency_enter(); 3753 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3754 dump_stack(); 3755 nbcon_cpu_emergency_exit(); 3756 return 0; 3757 } 3758 chain->chain_key = chain_key; 3759 chain->irq_context = hlock->irq_context; 3760 i = get_first_held_lock(curr, hlock); 3761 chain->depth = curr->lockdep_depth + 1 - i; 3762 3763 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3764 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3765 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3766 3767 j = alloc_chain_hlocks(chain->depth); 3768 if (j < 0) { 3769 if (!debug_locks_off_graph_unlock()) 3770 return 0; 3771 3772 nbcon_cpu_emergency_enter(); 3773 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3774 dump_stack(); 3775 nbcon_cpu_emergency_exit(); 3776 return 0; 3777 } 3778 3779 chain->base = j; 3780 for (j = 0; j < chain->depth - 1; j++, i++) { 3781 int lock_id = hlock_id(curr->held_locks + i); 3782 3783 chain_hlocks[chain->base + j] = lock_id; 3784 } 3785 chain_hlocks[chain->base + j] = hlock_id(hlock); 3786 hlist_add_head_rcu(&chain->entry, hash_head); 3787 debug_atomic_inc(chain_lookup_misses); 3788 inc_chains(chain->irq_context); 3789 3790 return 1; 3791 } 3792 3793 /* 3794 * Look up a dependency chain. Must be called with either the graph lock or 3795 * the RCU read lock held. 3796 */ 3797 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3798 { 3799 struct hlist_head *hash_head = chainhashentry(chain_key); 3800 struct lock_chain *chain; 3801 3802 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3803 if (READ_ONCE(chain->chain_key) == chain_key) { 3804 debug_atomic_inc(chain_lookup_hits); 3805 return chain; 3806 } 3807 } 3808 return NULL; 3809 } 3810 3811 /* 3812 * If the key is not present yet in dependency chain cache then 3813 * add it and return 1 - in this case the new dependency chain is 3814 * validated. If the key is already hashed, return 0. 3815 * (On return with 1 graph_lock is held.) 3816 */ 3817 static inline int lookup_chain_cache_add(struct task_struct *curr, 3818 struct held_lock *hlock, 3819 u64 chain_key) 3820 { 3821 struct lock_class *class = hlock_class(hlock); 3822 struct lock_chain *chain = lookup_chain_cache(chain_key); 3823 3824 if (chain) { 3825 cache_hit: 3826 if (!check_no_collision(curr, hlock, chain)) 3827 return 0; 3828 3829 if (very_verbose(class)) { 3830 printk("\nhash chain already cached, key: " 3831 "%016Lx tail class: [%px] %s\n", 3832 (unsigned long long)chain_key, 3833 class->key, class->name); 3834 } 3835 3836 return 0; 3837 } 3838 3839 if (very_verbose(class)) { 3840 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3841 (unsigned long long)chain_key, class->key, class->name); 3842 } 3843 3844 if (!graph_lock()) 3845 return 0; 3846 3847 /* 3848 * We have to walk the chain again locked - to avoid duplicates: 3849 */ 3850 chain = lookup_chain_cache(chain_key); 3851 if (chain) { 3852 graph_unlock(); 3853 goto cache_hit; 3854 } 3855 3856 if (!add_chain_cache(curr, hlock, chain_key)) 3857 return 0; 3858 3859 return 1; 3860 } 3861 3862 static int validate_chain(struct task_struct *curr, 3863 struct held_lock *hlock, 3864 int chain_head, u64 chain_key) 3865 { 3866 /* 3867 * Trylock needs to maintain the stack of held locks, but it 3868 * does not add new dependencies, because trylock can be done 3869 * in any order. 3870 * 3871 * We look up the chain_key and do the O(N^2) check and update of 3872 * the dependencies only if this is a new dependency chain. 3873 * (If lookup_chain_cache_add() return with 1 it acquires 3874 * graph_lock for us) 3875 */ 3876 if (!hlock->trylock && hlock->check && 3877 lookup_chain_cache_add(curr, hlock, chain_key)) { 3878 /* 3879 * Check whether last held lock: 3880 * 3881 * - is irq-safe, if this lock is irq-unsafe 3882 * - is softirq-safe, if this lock is hardirq-unsafe 3883 * 3884 * And check whether the new lock's dependency graph 3885 * could lead back to the previous lock: 3886 * 3887 * - within the current held-lock stack 3888 * - across our accumulated lock dependency records 3889 * 3890 * any of these scenarios could lead to a deadlock. 3891 */ 3892 /* 3893 * The simple case: does the current hold the same lock 3894 * already? 3895 */ 3896 int ret = check_deadlock(curr, hlock); 3897 3898 if (!ret) 3899 return 0; 3900 /* 3901 * Add dependency only if this lock is not the head 3902 * of the chain, and if the new lock introduces no more 3903 * lock dependency (because we already hold a lock with the 3904 * same lock class) nor deadlock (because the nest_lock 3905 * serializes nesting locks), see the comments for 3906 * check_deadlock(). 3907 */ 3908 if (!chain_head && ret != 2) { 3909 if (!check_prevs_add(curr, hlock)) 3910 return 0; 3911 } 3912 3913 graph_unlock(); 3914 } else { 3915 /* after lookup_chain_cache_add(): */ 3916 if (unlikely(!debug_locks)) 3917 return 0; 3918 } 3919 3920 return 1; 3921 } 3922 #else 3923 static inline int validate_chain(struct task_struct *curr, 3924 struct held_lock *hlock, 3925 int chain_head, u64 chain_key) 3926 { 3927 return 1; 3928 } 3929 3930 static void init_chain_block_buckets(void) { } 3931 #endif /* CONFIG_PROVE_LOCKING */ 3932 3933 /* 3934 * We are building curr_chain_key incrementally, so double-check 3935 * it from scratch, to make sure that it's done correctly: 3936 */ 3937 static void check_chain_key(struct task_struct *curr) 3938 { 3939 #ifdef CONFIG_DEBUG_LOCKDEP 3940 struct held_lock *hlock, *prev_hlock = NULL; 3941 unsigned int i; 3942 u64 chain_key = INITIAL_CHAIN_KEY; 3943 3944 for (i = 0; i < curr->lockdep_depth; i++) { 3945 hlock = curr->held_locks + i; 3946 if (chain_key != hlock->prev_chain_key) { 3947 debug_locks_off(); 3948 /* 3949 * We got mighty confused, our chain keys don't match 3950 * with what we expect, someone trample on our task state? 3951 */ 3952 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3953 curr->lockdep_depth, i, 3954 (unsigned long long)chain_key, 3955 (unsigned long long)hlock->prev_chain_key); 3956 return; 3957 } 3958 3959 /* 3960 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3961 * it registered lock class index? 3962 */ 3963 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3964 return; 3965 3966 if (prev_hlock && (prev_hlock->irq_context != 3967 hlock->irq_context)) 3968 chain_key = INITIAL_CHAIN_KEY; 3969 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3970 prev_hlock = hlock; 3971 } 3972 if (chain_key != curr->curr_chain_key) { 3973 debug_locks_off(); 3974 /* 3975 * More smoking hash instead of calculating it, damn see these 3976 * numbers float.. I bet that a pink elephant stepped on my memory. 3977 */ 3978 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3979 curr->lockdep_depth, i, 3980 (unsigned long long)chain_key, 3981 (unsigned long long)curr->curr_chain_key); 3982 } 3983 #endif 3984 } 3985 3986 #ifdef CONFIG_PROVE_LOCKING 3987 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3988 enum lock_usage_bit new_bit); 3989 3990 static void print_usage_bug_scenario(struct held_lock *lock) 3991 { 3992 struct lock_class *class = hlock_class(lock); 3993 3994 printk(" Possible unsafe locking scenario:\n\n"); 3995 printk(" CPU0\n"); 3996 printk(" ----\n"); 3997 printk(" lock("); 3998 __print_lock_name(lock, class); 3999 printk(KERN_CONT ");\n"); 4000 printk(" <Interrupt>\n"); 4001 printk(" lock("); 4002 __print_lock_name(lock, class); 4003 printk(KERN_CONT ");\n"); 4004 printk("\n *** DEADLOCK ***\n\n"); 4005 } 4006 4007 static void 4008 print_usage_bug(struct task_struct *curr, struct held_lock *this, 4009 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 4010 { 4011 if (!debug_locks_off() || debug_locks_silent) 4012 return; 4013 4014 nbcon_cpu_emergency_enter(); 4015 4016 pr_warn("\n"); 4017 pr_warn("================================\n"); 4018 pr_warn("WARNING: inconsistent lock state\n"); 4019 print_kernel_ident(); 4020 pr_warn("--------------------------------\n"); 4021 4022 pr_warn("inconsistent {%s} -> {%s} usage.\n", 4023 usage_str[prev_bit], usage_str[new_bit]); 4024 4025 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 4026 curr->comm, task_pid_nr(curr), 4027 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 4028 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 4029 lockdep_hardirqs_enabled(), 4030 lockdep_softirqs_enabled(curr)); 4031 print_lock(this); 4032 4033 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 4034 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 4035 4036 print_irqtrace_events(curr); 4037 pr_warn("\nother info that might help us debug this:\n"); 4038 print_usage_bug_scenario(this); 4039 4040 lockdep_print_held_locks(curr); 4041 4042 pr_warn("\nstack backtrace:\n"); 4043 dump_stack(); 4044 4045 nbcon_cpu_emergency_exit(); 4046 } 4047 4048 /* 4049 * Print out an error if an invalid bit is set: 4050 */ 4051 static inline int 4052 valid_state(struct task_struct *curr, struct held_lock *this, 4053 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4054 { 4055 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4056 graph_unlock(); 4057 print_usage_bug(curr, this, bad_bit, new_bit); 4058 return 0; 4059 } 4060 return 1; 4061 } 4062 4063 4064 /* 4065 * print irq inversion bug: 4066 */ 4067 static void 4068 print_irq_inversion_bug(struct task_struct *curr, 4069 struct lock_list *root, struct lock_list *other, 4070 struct held_lock *this, int forwards, 4071 const char *irqclass) 4072 { 4073 struct lock_list *entry = other; 4074 struct lock_list *middle = NULL; 4075 int depth; 4076 4077 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4078 return; 4079 4080 nbcon_cpu_emergency_enter(); 4081 4082 pr_warn("\n"); 4083 pr_warn("========================================================\n"); 4084 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4085 print_kernel_ident(); 4086 pr_warn("--------------------------------------------------------\n"); 4087 pr_warn("%s/%d just changed the state of lock:\n", 4088 curr->comm, task_pid_nr(curr)); 4089 print_lock(this); 4090 if (forwards) 4091 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4092 else 4093 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4094 print_lock_name(NULL, other->class); 4095 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4096 4097 pr_warn("\nother info that might help us debug this:\n"); 4098 4099 /* Find a middle lock (if one exists) */ 4100 depth = get_lock_depth(other); 4101 do { 4102 if (depth == 0 && (entry != root)) { 4103 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4104 break; 4105 } 4106 middle = entry; 4107 entry = get_lock_parent(entry); 4108 depth--; 4109 } while (entry && entry != root && (depth >= 0)); 4110 if (forwards) 4111 print_irq_lock_scenario(root, other, 4112 middle ? middle->class : root->class, other->class); 4113 else 4114 print_irq_lock_scenario(other, root, 4115 middle ? middle->class : other->class, root->class); 4116 4117 lockdep_print_held_locks(curr); 4118 4119 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4120 root->trace = save_trace(); 4121 if (!root->trace) 4122 goto out; 4123 print_shortest_lock_dependencies(other, root); 4124 4125 pr_warn("\nstack backtrace:\n"); 4126 dump_stack(); 4127 out: 4128 nbcon_cpu_emergency_exit(); 4129 } 4130 4131 /* 4132 * Prove that in the forwards-direction subgraph starting at <this> 4133 * there is no lock matching <mask>: 4134 */ 4135 static int 4136 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4137 enum lock_usage_bit bit) 4138 { 4139 enum bfs_result ret; 4140 struct lock_list root; 4141 struct lock_list *target_entry; 4142 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4143 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4144 4145 bfs_init_root(&root, this); 4146 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4147 if (bfs_error(ret)) { 4148 print_bfs_bug(ret); 4149 return 0; 4150 } 4151 if (ret == BFS_RNOMATCH) 4152 return 1; 4153 4154 /* Check whether write or read usage is the match */ 4155 if (target_entry->class->usage_mask & lock_flag(bit)) { 4156 print_irq_inversion_bug(curr, &root, target_entry, 4157 this, 1, state_name(bit)); 4158 } else { 4159 print_irq_inversion_bug(curr, &root, target_entry, 4160 this, 1, state_name(read_bit)); 4161 } 4162 4163 return 0; 4164 } 4165 4166 /* 4167 * Prove that in the backwards-direction subgraph starting at <this> 4168 * there is no lock matching <mask>: 4169 */ 4170 static int 4171 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4172 enum lock_usage_bit bit) 4173 { 4174 enum bfs_result ret; 4175 struct lock_list root; 4176 struct lock_list *target_entry; 4177 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4178 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4179 4180 bfs_init_rootb(&root, this); 4181 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4182 if (bfs_error(ret)) { 4183 print_bfs_bug(ret); 4184 return 0; 4185 } 4186 if (ret == BFS_RNOMATCH) 4187 return 1; 4188 4189 /* Check whether write or read usage is the match */ 4190 if (target_entry->class->usage_mask & lock_flag(bit)) { 4191 print_irq_inversion_bug(curr, &root, target_entry, 4192 this, 0, state_name(bit)); 4193 } else { 4194 print_irq_inversion_bug(curr, &root, target_entry, 4195 this, 0, state_name(read_bit)); 4196 } 4197 4198 return 0; 4199 } 4200 4201 void print_irqtrace_events(struct task_struct *curr) 4202 { 4203 const struct irqtrace_events *trace = &curr->irqtrace; 4204 4205 nbcon_cpu_emergency_enter(); 4206 4207 printk("irq event stamp: %u\n", trace->irq_events); 4208 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4209 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4210 (void *)trace->hardirq_enable_ip); 4211 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4212 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4213 (void *)trace->hardirq_disable_ip); 4214 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4215 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4216 (void *)trace->softirq_enable_ip); 4217 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4218 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4219 (void *)trace->softirq_disable_ip); 4220 4221 nbcon_cpu_emergency_exit(); 4222 } 4223 4224 static int HARDIRQ_verbose(struct lock_class *class) 4225 { 4226 #if HARDIRQ_VERBOSE 4227 return class_filter(class); 4228 #endif 4229 return 0; 4230 } 4231 4232 static int SOFTIRQ_verbose(struct lock_class *class) 4233 { 4234 #if SOFTIRQ_VERBOSE 4235 return class_filter(class); 4236 #endif 4237 return 0; 4238 } 4239 4240 static int (*state_verbose_f[])(struct lock_class *class) = { 4241 #define LOCKDEP_STATE(__STATE) \ 4242 __STATE##_verbose, 4243 #include "lockdep_states.h" 4244 #undef LOCKDEP_STATE 4245 }; 4246 4247 static inline int state_verbose(enum lock_usage_bit bit, 4248 struct lock_class *class) 4249 { 4250 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4251 } 4252 4253 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4254 enum lock_usage_bit bit, const char *name); 4255 4256 static int 4257 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4258 enum lock_usage_bit new_bit) 4259 { 4260 int excl_bit = exclusive_bit(new_bit); 4261 int read = new_bit & LOCK_USAGE_READ_MASK; 4262 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4263 4264 /* 4265 * Validate that this particular lock does not have conflicting 4266 * usage states. 4267 */ 4268 if (!valid_state(curr, this, new_bit, excl_bit)) 4269 return 0; 4270 4271 /* 4272 * Check for read in write conflicts 4273 */ 4274 if (!read && !valid_state(curr, this, new_bit, 4275 excl_bit + LOCK_USAGE_READ_MASK)) 4276 return 0; 4277 4278 4279 /* 4280 * Validate that the lock dependencies don't have conflicting usage 4281 * states. 4282 */ 4283 if (dir) { 4284 /* 4285 * mark ENABLED has to look backwards -- to ensure no dependee 4286 * has USED_IN state, which, again, would allow recursion deadlocks. 4287 */ 4288 if (!check_usage_backwards(curr, this, excl_bit)) 4289 return 0; 4290 } else { 4291 /* 4292 * mark USED_IN has to look forwards -- to ensure no dependency 4293 * has ENABLED state, which would allow recursion deadlocks. 4294 */ 4295 if (!check_usage_forwards(curr, this, excl_bit)) 4296 return 0; 4297 } 4298 4299 if (state_verbose(new_bit, hlock_class(this))) 4300 return 2; 4301 4302 return 1; 4303 } 4304 4305 /* 4306 * Mark all held locks with a usage bit: 4307 */ 4308 static int 4309 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4310 { 4311 struct held_lock *hlock; 4312 int i; 4313 4314 for (i = 0; i < curr->lockdep_depth; i++) { 4315 enum lock_usage_bit hlock_bit = base_bit; 4316 hlock = curr->held_locks + i; 4317 4318 if (hlock->read) 4319 hlock_bit += LOCK_USAGE_READ_MASK; 4320 4321 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4322 4323 if (!hlock->check) 4324 continue; 4325 4326 if (!mark_lock(curr, hlock, hlock_bit)) 4327 return 0; 4328 } 4329 4330 return 1; 4331 } 4332 4333 /* 4334 * Hardirqs will be enabled: 4335 */ 4336 static void __trace_hardirqs_on_caller(void) 4337 { 4338 struct task_struct *curr = current; 4339 4340 /* 4341 * We are going to turn hardirqs on, so set the 4342 * usage bit for all held locks: 4343 */ 4344 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4345 return; 4346 /* 4347 * If we have softirqs enabled, then set the usage 4348 * bit for all held locks. (disabled hardirqs prevented 4349 * this bit from being set before) 4350 */ 4351 if (curr->softirqs_enabled) 4352 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4353 } 4354 4355 /** 4356 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4357 * 4358 * Invoked before a possible transition to RCU idle from exit to user or 4359 * guest mode. This ensures that all RCU operations are done before RCU 4360 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4361 * invoked to set the final state. 4362 */ 4363 void lockdep_hardirqs_on_prepare(void) 4364 { 4365 if (unlikely(!debug_locks)) 4366 return; 4367 4368 /* 4369 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4370 */ 4371 if (unlikely(in_nmi())) 4372 return; 4373 4374 if (unlikely(this_cpu_read(lockdep_recursion))) 4375 return; 4376 4377 if (unlikely(lockdep_hardirqs_enabled())) { 4378 /* 4379 * Neither irq nor preemption are disabled here 4380 * so this is racy by nature but losing one hit 4381 * in a stat is not a big deal. 4382 */ 4383 __debug_atomic_inc(redundant_hardirqs_on); 4384 return; 4385 } 4386 4387 /* 4388 * We're enabling irqs and according to our state above irqs weren't 4389 * already enabled, yet we find the hardware thinks they are in fact 4390 * enabled.. someone messed up their IRQ state tracing. 4391 */ 4392 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4393 return; 4394 4395 /* 4396 * See the fine text that goes along with this variable definition. 4397 */ 4398 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4399 return; 4400 4401 /* 4402 * Can't allow enabling interrupts while in an interrupt handler, 4403 * that's general bad form and such. Recursion, limited stack etc.. 4404 */ 4405 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4406 return; 4407 4408 current->hardirq_chain_key = current->curr_chain_key; 4409 4410 lockdep_recursion_inc(); 4411 __trace_hardirqs_on_caller(); 4412 lockdep_recursion_finish(); 4413 } 4414 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4415 4416 void noinstr lockdep_hardirqs_on(unsigned long ip) 4417 { 4418 struct irqtrace_events *trace = ¤t->irqtrace; 4419 4420 if (unlikely(!debug_locks)) 4421 return; 4422 4423 /* 4424 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4425 * tracking state and hardware state are out of sync. 4426 * 4427 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4428 * and not rely on hardware state like normal interrupts. 4429 */ 4430 if (unlikely(in_nmi())) { 4431 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4432 return; 4433 4434 /* 4435 * Skip: 4436 * - recursion check, because NMI can hit lockdep; 4437 * - hardware state check, because above; 4438 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4439 */ 4440 goto skip_checks; 4441 } 4442 4443 if (unlikely(this_cpu_read(lockdep_recursion))) 4444 return; 4445 4446 if (lockdep_hardirqs_enabled()) { 4447 /* 4448 * Neither irq nor preemption are disabled here 4449 * so this is racy by nature but losing one hit 4450 * in a stat is not a big deal. 4451 */ 4452 __debug_atomic_inc(redundant_hardirqs_on); 4453 return; 4454 } 4455 4456 /* 4457 * We're enabling irqs and according to our state above irqs weren't 4458 * already enabled, yet we find the hardware thinks they are in fact 4459 * enabled.. someone messed up their IRQ state tracing. 4460 */ 4461 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4462 return; 4463 4464 /* 4465 * Ensure the lock stack remained unchanged between 4466 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4467 */ 4468 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4469 current->curr_chain_key); 4470 4471 skip_checks: 4472 /* we'll do an OFF -> ON transition: */ 4473 __this_cpu_write(hardirqs_enabled, 1); 4474 trace->hardirq_enable_ip = ip; 4475 trace->hardirq_enable_event = ++trace->irq_events; 4476 debug_atomic_inc(hardirqs_on_events); 4477 } 4478 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4479 4480 /* 4481 * Hardirqs were disabled: 4482 */ 4483 void noinstr lockdep_hardirqs_off(unsigned long ip) 4484 { 4485 if (unlikely(!debug_locks)) 4486 return; 4487 4488 /* 4489 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4490 * they will restore the software state. This ensures the software 4491 * state is consistent inside NMIs as well. 4492 */ 4493 if (in_nmi()) { 4494 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4495 return; 4496 } else if (__this_cpu_read(lockdep_recursion)) 4497 return; 4498 4499 /* 4500 * So we're supposed to get called after you mask local IRQs, but for 4501 * some reason the hardware doesn't quite think you did a proper job. 4502 */ 4503 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4504 return; 4505 4506 if (lockdep_hardirqs_enabled()) { 4507 struct irqtrace_events *trace = ¤t->irqtrace; 4508 4509 /* 4510 * We have done an ON -> OFF transition: 4511 */ 4512 __this_cpu_write(hardirqs_enabled, 0); 4513 trace->hardirq_disable_ip = ip; 4514 trace->hardirq_disable_event = ++trace->irq_events; 4515 debug_atomic_inc(hardirqs_off_events); 4516 } else { 4517 debug_atomic_inc(redundant_hardirqs_off); 4518 } 4519 } 4520 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4521 4522 /* 4523 * Softirqs will be enabled: 4524 */ 4525 void lockdep_softirqs_on(unsigned long ip) 4526 { 4527 struct irqtrace_events *trace = ¤t->irqtrace; 4528 4529 if (unlikely(!lockdep_enabled())) 4530 return; 4531 4532 /* 4533 * We fancy IRQs being disabled here, see softirq.c, avoids 4534 * funny state and nesting things. 4535 */ 4536 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4537 return; 4538 4539 if (current->softirqs_enabled) { 4540 debug_atomic_inc(redundant_softirqs_on); 4541 return; 4542 } 4543 4544 lockdep_recursion_inc(); 4545 /* 4546 * We'll do an OFF -> ON transition: 4547 */ 4548 current->softirqs_enabled = 1; 4549 trace->softirq_enable_ip = ip; 4550 trace->softirq_enable_event = ++trace->irq_events; 4551 debug_atomic_inc(softirqs_on_events); 4552 /* 4553 * We are going to turn softirqs on, so set the 4554 * usage bit for all held locks, if hardirqs are 4555 * enabled too: 4556 */ 4557 if (lockdep_hardirqs_enabled()) 4558 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4559 lockdep_recursion_finish(); 4560 } 4561 4562 /* 4563 * Softirqs were disabled: 4564 */ 4565 void lockdep_softirqs_off(unsigned long ip) 4566 { 4567 if (unlikely(!lockdep_enabled())) 4568 return; 4569 4570 /* 4571 * We fancy IRQs being disabled here, see softirq.c 4572 */ 4573 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4574 return; 4575 4576 if (current->softirqs_enabled) { 4577 struct irqtrace_events *trace = ¤t->irqtrace; 4578 4579 /* 4580 * We have done an ON -> OFF transition: 4581 */ 4582 current->softirqs_enabled = 0; 4583 trace->softirq_disable_ip = ip; 4584 trace->softirq_disable_event = ++trace->irq_events; 4585 debug_atomic_inc(softirqs_off_events); 4586 /* 4587 * Whoops, we wanted softirqs off, so why aren't they? 4588 */ 4589 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4590 } else 4591 debug_atomic_inc(redundant_softirqs_off); 4592 } 4593 4594 /** 4595 * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped 4596 * 4597 * @cpu: index of offlined CPU 4598 * @idle: task pointer for offlined CPU's idle thread 4599 * 4600 * Invoked after the CPU is dead. Ensures that the tracing infrastructure 4601 * is left in a suitable state for the CPU to be subsequently brought 4602 * online again. 4603 */ 4604 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle) 4605 { 4606 if (unlikely(!debug_locks)) 4607 return; 4608 4609 if (unlikely(per_cpu(hardirqs_enabled, cpu))) { 4610 pr_warn("CPU %u left hardirqs enabled!", cpu); 4611 if (idle) 4612 print_irqtrace_events(idle); 4613 /* Clean it up for when the CPU comes online again. */ 4614 per_cpu(hardirqs_enabled, cpu) = 0; 4615 } 4616 } 4617 4618 static int 4619 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4620 { 4621 if (!check) 4622 goto lock_used; 4623 4624 /* 4625 * If non-trylock use in a hardirq or softirq context, then 4626 * mark the lock as used in these contexts: 4627 */ 4628 if (!hlock->trylock) { 4629 if (hlock->read) { 4630 if (lockdep_hardirq_context()) 4631 if (!mark_lock(curr, hlock, 4632 LOCK_USED_IN_HARDIRQ_READ)) 4633 return 0; 4634 if (curr->softirq_context) 4635 if (!mark_lock(curr, hlock, 4636 LOCK_USED_IN_SOFTIRQ_READ)) 4637 return 0; 4638 } else { 4639 if (lockdep_hardirq_context()) 4640 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4641 return 0; 4642 if (curr->softirq_context) 4643 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4644 return 0; 4645 } 4646 } 4647 4648 /* 4649 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4650 * creates no critical section and no extra dependency can be introduced 4651 * by interrupts 4652 */ 4653 if (!hlock->hardirqs_off && !hlock->sync) { 4654 if (hlock->read) { 4655 if (!mark_lock(curr, hlock, 4656 LOCK_ENABLED_HARDIRQ_READ)) 4657 return 0; 4658 if (curr->softirqs_enabled) 4659 if (!mark_lock(curr, hlock, 4660 LOCK_ENABLED_SOFTIRQ_READ)) 4661 return 0; 4662 } else { 4663 if (!mark_lock(curr, hlock, 4664 LOCK_ENABLED_HARDIRQ)) 4665 return 0; 4666 if (curr->softirqs_enabled) 4667 if (!mark_lock(curr, hlock, 4668 LOCK_ENABLED_SOFTIRQ)) 4669 return 0; 4670 } 4671 } 4672 4673 lock_used: 4674 /* mark it as used: */ 4675 if (!mark_lock(curr, hlock, LOCK_USED)) 4676 return 0; 4677 4678 return 1; 4679 } 4680 4681 static inline unsigned int task_irq_context(struct task_struct *task) 4682 { 4683 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4684 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4685 } 4686 4687 static int separate_irq_context(struct task_struct *curr, 4688 struct held_lock *hlock) 4689 { 4690 unsigned int depth = curr->lockdep_depth; 4691 4692 /* 4693 * Keep track of points where we cross into an interrupt context: 4694 */ 4695 if (depth) { 4696 struct held_lock *prev_hlock; 4697 4698 prev_hlock = curr->held_locks + depth-1; 4699 /* 4700 * If we cross into another context, reset the 4701 * hash key (this also prevents the checking and the 4702 * adding of the dependency to 'prev'): 4703 */ 4704 if (prev_hlock->irq_context != hlock->irq_context) 4705 return 1; 4706 } 4707 return 0; 4708 } 4709 4710 /* 4711 * Mark a lock with a usage bit, and validate the state transition: 4712 */ 4713 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4714 enum lock_usage_bit new_bit) 4715 { 4716 unsigned int new_mask, ret = 1; 4717 4718 if (new_bit >= LOCK_USAGE_STATES) { 4719 DEBUG_LOCKS_WARN_ON(1); 4720 return 0; 4721 } 4722 4723 if (new_bit == LOCK_USED && this->read) 4724 new_bit = LOCK_USED_READ; 4725 4726 new_mask = 1 << new_bit; 4727 4728 /* 4729 * If already set then do not dirty the cacheline, 4730 * nor do any checks: 4731 */ 4732 if (likely(hlock_class(this)->usage_mask & new_mask)) 4733 return 1; 4734 4735 if (!graph_lock()) 4736 return 0; 4737 /* 4738 * Make sure we didn't race: 4739 */ 4740 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4741 goto unlock; 4742 4743 if (!hlock_class(this)->usage_mask) 4744 debug_atomic_dec(nr_unused_locks); 4745 4746 hlock_class(this)->usage_mask |= new_mask; 4747 4748 if (new_bit < LOCK_TRACE_STATES) { 4749 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4750 return 0; 4751 } 4752 4753 if (new_bit < LOCK_USED) { 4754 ret = mark_lock_irq(curr, this, new_bit); 4755 if (!ret) 4756 return 0; 4757 } 4758 4759 unlock: 4760 graph_unlock(); 4761 4762 /* 4763 * We must printk outside of the graph_lock: 4764 */ 4765 if (ret == 2) { 4766 nbcon_cpu_emergency_enter(); 4767 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4768 print_lock(this); 4769 print_irqtrace_events(curr); 4770 dump_stack(); 4771 nbcon_cpu_emergency_exit(); 4772 } 4773 4774 return ret; 4775 } 4776 4777 static inline short task_wait_context(struct task_struct *curr) 4778 { 4779 /* 4780 * Set appropriate wait type for the context; for IRQs we have to take 4781 * into account force_irqthread as that is implied by PREEMPT_RT. 4782 */ 4783 if (lockdep_hardirq_context()) { 4784 /* 4785 * Check if force_irqthreads will run us threaded. 4786 */ 4787 if (curr->hardirq_threaded || curr->irq_config) 4788 return LD_WAIT_CONFIG; 4789 4790 return LD_WAIT_SPIN; 4791 } else if (curr->softirq_context) { 4792 /* 4793 * Softirqs are always threaded. 4794 */ 4795 return LD_WAIT_CONFIG; 4796 } 4797 4798 return LD_WAIT_MAX; 4799 } 4800 4801 static int 4802 print_lock_invalid_wait_context(struct task_struct *curr, 4803 struct held_lock *hlock) 4804 { 4805 short curr_inner; 4806 4807 if (!debug_locks_off()) 4808 return 0; 4809 if (debug_locks_silent) 4810 return 0; 4811 4812 nbcon_cpu_emergency_enter(); 4813 4814 pr_warn("\n"); 4815 pr_warn("=============================\n"); 4816 pr_warn("[ BUG: Invalid wait context ]\n"); 4817 print_kernel_ident(); 4818 pr_warn("-----------------------------\n"); 4819 4820 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4821 print_lock(hlock); 4822 4823 pr_warn("other info that might help us debug this:\n"); 4824 4825 curr_inner = task_wait_context(curr); 4826 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4827 4828 lockdep_print_held_locks(curr); 4829 4830 pr_warn("stack backtrace:\n"); 4831 dump_stack(); 4832 4833 nbcon_cpu_emergency_exit(); 4834 4835 return 0; 4836 } 4837 4838 /* 4839 * Verify the wait_type context. 4840 * 4841 * This check validates we take locks in the right wait-type order; that is it 4842 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4843 * acquire spinlocks inside raw_spinlocks and the sort. 4844 * 4845 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4846 * can be taken from (pretty much) any context but also has constraints. 4847 * However when taken in a stricter environment the RCU lock does not loosen 4848 * the constraints. 4849 * 4850 * Therefore we must look for the strictest environment in the lock stack and 4851 * compare that to the lock we're trying to acquire. 4852 */ 4853 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4854 { 4855 u8 next_inner = hlock_class(next)->wait_type_inner; 4856 u8 next_outer = hlock_class(next)->wait_type_outer; 4857 u8 curr_inner; 4858 int depth; 4859 4860 if (!next_inner || next->trylock) 4861 return 0; 4862 4863 if (!next_outer) 4864 next_outer = next_inner; 4865 4866 /* 4867 * Find start of current irq_context.. 4868 */ 4869 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4870 struct held_lock *prev = curr->held_locks + depth; 4871 if (prev->irq_context != next->irq_context) 4872 break; 4873 } 4874 depth++; 4875 4876 curr_inner = task_wait_context(curr); 4877 4878 for (; depth < curr->lockdep_depth; depth++) { 4879 struct held_lock *prev = curr->held_locks + depth; 4880 struct lock_class *class = hlock_class(prev); 4881 u8 prev_inner = class->wait_type_inner; 4882 4883 if (prev_inner) { 4884 /* 4885 * We can have a bigger inner than a previous one 4886 * when outer is smaller than inner, as with RCU. 4887 * 4888 * Also due to trylocks. 4889 */ 4890 curr_inner = min(curr_inner, prev_inner); 4891 4892 /* 4893 * Allow override for annotations -- this is typically 4894 * only valid/needed for code that only exists when 4895 * CONFIG_PREEMPT_RT=n. 4896 */ 4897 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4898 curr_inner = prev_inner; 4899 } 4900 } 4901 4902 if (next_outer > curr_inner) 4903 return print_lock_invalid_wait_context(curr, next); 4904 4905 return 0; 4906 } 4907 4908 #else /* CONFIG_PROVE_LOCKING */ 4909 4910 static inline int 4911 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4912 { 4913 return 1; 4914 } 4915 4916 static inline unsigned int task_irq_context(struct task_struct *task) 4917 { 4918 return 0; 4919 } 4920 4921 static inline int separate_irq_context(struct task_struct *curr, 4922 struct held_lock *hlock) 4923 { 4924 return 0; 4925 } 4926 4927 static inline int check_wait_context(struct task_struct *curr, 4928 struct held_lock *next) 4929 { 4930 return 0; 4931 } 4932 4933 #endif /* CONFIG_PROVE_LOCKING */ 4934 4935 /* 4936 * Initialize a lock instance's lock-class mapping info: 4937 */ 4938 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4939 struct lock_class_key *key, int subclass, 4940 u8 inner, u8 outer, u8 lock_type) 4941 { 4942 int i; 4943 4944 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4945 lock->class_cache[i] = NULL; 4946 4947 #ifdef CONFIG_LOCK_STAT 4948 lock->cpu = raw_smp_processor_id(); 4949 #endif 4950 4951 /* 4952 * Can't be having no nameless bastards around this place! 4953 */ 4954 if (DEBUG_LOCKS_WARN_ON(!name)) { 4955 lock->name = "NULL"; 4956 return; 4957 } 4958 4959 lock->name = name; 4960 4961 lock->wait_type_outer = outer; 4962 lock->wait_type_inner = inner; 4963 lock->lock_type = lock_type; 4964 4965 /* 4966 * No key, no joy, we need to hash something. 4967 */ 4968 if (DEBUG_LOCKS_WARN_ON(!key)) 4969 return; 4970 /* 4971 * Sanity check, the lock-class key must either have been allocated 4972 * statically or must have been registered as a dynamic key. 4973 */ 4974 if (!static_obj(key) && !is_dynamic_key(key)) { 4975 if (debug_locks) 4976 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4977 DEBUG_LOCKS_WARN_ON(1); 4978 return; 4979 } 4980 lock->key = key; 4981 4982 if (unlikely(!debug_locks)) 4983 return; 4984 4985 if (subclass) { 4986 unsigned long flags; 4987 4988 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4989 return; 4990 4991 raw_local_irq_save(flags); 4992 lockdep_recursion_inc(); 4993 register_lock_class(lock, subclass, 1); 4994 lockdep_recursion_finish(); 4995 raw_local_irq_restore(flags); 4996 } 4997 } 4998 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4999 5000 struct lock_class_key __lockdep_no_validate__; 5001 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 5002 5003 struct lock_class_key __lockdep_no_track__; 5004 EXPORT_SYMBOL_GPL(__lockdep_no_track__); 5005 5006 #ifdef CONFIG_PROVE_LOCKING 5007 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 5008 lock_print_fn print_fn) 5009 { 5010 struct lock_class *class = lock->class_cache[0]; 5011 unsigned long flags; 5012 5013 raw_local_irq_save(flags); 5014 lockdep_recursion_inc(); 5015 5016 if (!class) 5017 class = register_lock_class(lock, 0, 0); 5018 5019 if (class) { 5020 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 5021 WARN_ON(class->print_fn && class->print_fn != print_fn); 5022 5023 class->cmp_fn = cmp_fn; 5024 class->print_fn = print_fn; 5025 } 5026 5027 lockdep_recursion_finish(); 5028 raw_local_irq_restore(flags); 5029 } 5030 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 5031 #endif 5032 5033 static void 5034 print_lock_nested_lock_not_held(struct task_struct *curr, 5035 struct held_lock *hlock) 5036 { 5037 if (!debug_locks_off()) 5038 return; 5039 if (debug_locks_silent) 5040 return; 5041 5042 nbcon_cpu_emergency_enter(); 5043 5044 pr_warn("\n"); 5045 pr_warn("==================================\n"); 5046 pr_warn("WARNING: Nested lock was not taken\n"); 5047 print_kernel_ident(); 5048 pr_warn("----------------------------------\n"); 5049 5050 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 5051 print_lock(hlock); 5052 5053 pr_warn("\nbut this task is not holding:\n"); 5054 pr_warn("%s\n", hlock->nest_lock->name); 5055 5056 pr_warn("\nstack backtrace:\n"); 5057 dump_stack(); 5058 5059 pr_warn("\nother info that might help us debug this:\n"); 5060 lockdep_print_held_locks(curr); 5061 5062 pr_warn("\nstack backtrace:\n"); 5063 dump_stack(); 5064 5065 nbcon_cpu_emergency_exit(); 5066 } 5067 5068 static int __lock_is_held(const struct lockdep_map *lock, int read); 5069 5070 /* 5071 * This gets called for every mutex_lock*()/spin_lock*() operation. 5072 * We maintain the dependency maps and validate the locking attempt: 5073 * 5074 * The callers must make sure that IRQs are disabled before calling it, 5075 * otherwise we could get an interrupt which would want to take locks, 5076 * which would end up in lockdep again. 5077 */ 5078 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5079 int trylock, int read, int check, int hardirqs_off, 5080 struct lockdep_map *nest_lock, unsigned long ip, 5081 int references, int pin_count, int sync) 5082 { 5083 struct task_struct *curr = current; 5084 struct lock_class *class = NULL; 5085 struct held_lock *hlock; 5086 unsigned int depth; 5087 int chain_head = 0; 5088 int class_idx; 5089 u64 chain_key; 5090 5091 if (unlikely(!debug_locks)) 5092 return 0; 5093 5094 if (unlikely(lock->key == &__lockdep_no_track__)) 5095 return 0; 5096 5097 lockevent_inc(lockdep_acquire); 5098 5099 if (!prove_locking || lock->key == &__lockdep_no_validate__) { 5100 check = 0; 5101 lockevent_inc(lockdep_nocheck); 5102 } 5103 5104 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5105 class = lock->class_cache[subclass]; 5106 /* 5107 * Not cached? 5108 */ 5109 if (unlikely(!class)) { 5110 class = register_lock_class(lock, subclass, 0); 5111 if (!class) 5112 return 0; 5113 } 5114 5115 debug_class_ops_inc(class); 5116 5117 if (very_verbose(class)) { 5118 nbcon_cpu_emergency_enter(); 5119 printk("\nacquire class [%px] %s", class->key, class->name); 5120 if (class->name_version > 1) 5121 printk(KERN_CONT "#%d", class->name_version); 5122 printk(KERN_CONT "\n"); 5123 dump_stack(); 5124 nbcon_cpu_emergency_exit(); 5125 } 5126 5127 /* 5128 * Add the lock to the list of currently held locks. 5129 * (we dont increase the depth just yet, up until the 5130 * dependency checks are done) 5131 */ 5132 depth = curr->lockdep_depth; 5133 /* 5134 * Ran out of static storage for our per-task lock stack again have we? 5135 */ 5136 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5137 return 0; 5138 5139 class_idx = class - lock_classes; 5140 5141 if (depth && !sync) { 5142 /* we're holding locks and the new held lock is not a sync */ 5143 hlock = curr->held_locks + depth - 1; 5144 if (hlock->class_idx == class_idx && nest_lock) { 5145 if (!references) 5146 references++; 5147 5148 if (!hlock->references) 5149 hlock->references++; 5150 5151 hlock->references += references; 5152 5153 /* Overflow */ 5154 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5155 return 0; 5156 5157 return 2; 5158 } 5159 } 5160 5161 hlock = curr->held_locks + depth; 5162 /* 5163 * Plain impossible, we just registered it and checked it weren't no 5164 * NULL like.. I bet this mushroom I ate was good! 5165 */ 5166 if (DEBUG_LOCKS_WARN_ON(!class)) 5167 return 0; 5168 hlock->class_idx = class_idx; 5169 hlock->acquire_ip = ip; 5170 hlock->instance = lock; 5171 hlock->nest_lock = nest_lock; 5172 hlock->irq_context = task_irq_context(curr); 5173 hlock->trylock = trylock; 5174 hlock->read = read; 5175 hlock->check = check; 5176 hlock->sync = !!sync; 5177 hlock->hardirqs_off = !!hardirqs_off; 5178 hlock->references = references; 5179 #ifdef CONFIG_LOCK_STAT 5180 hlock->waittime_stamp = 0; 5181 hlock->holdtime_stamp = lockstat_clock(); 5182 #endif 5183 hlock->pin_count = pin_count; 5184 5185 if (check_wait_context(curr, hlock)) 5186 return 0; 5187 5188 /* Initialize the lock usage bit */ 5189 if (!mark_usage(curr, hlock, check)) 5190 return 0; 5191 5192 /* 5193 * Calculate the chain hash: it's the combined hash of all the 5194 * lock keys along the dependency chain. We save the hash value 5195 * at every step so that we can get the current hash easily 5196 * after unlock. The chain hash is then used to cache dependency 5197 * results. 5198 * 5199 * The 'key ID' is what is the most compact key value to drive 5200 * the hash, not class->key. 5201 */ 5202 /* 5203 * Whoops, we did it again.. class_idx is invalid. 5204 */ 5205 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5206 return 0; 5207 5208 chain_key = curr->curr_chain_key; 5209 if (!depth) { 5210 /* 5211 * How can we have a chain hash when we ain't got no keys?! 5212 */ 5213 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5214 return 0; 5215 chain_head = 1; 5216 } 5217 5218 hlock->prev_chain_key = chain_key; 5219 if (separate_irq_context(curr, hlock)) { 5220 chain_key = INITIAL_CHAIN_KEY; 5221 chain_head = 1; 5222 } 5223 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5224 5225 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5226 print_lock_nested_lock_not_held(curr, hlock); 5227 return 0; 5228 } 5229 5230 if (!debug_locks_silent) { 5231 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5232 WARN_ON_ONCE(!hlock_class(hlock)->key); 5233 } 5234 5235 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5236 return 0; 5237 5238 /* For lock_sync(), we are done here since no actual critical section */ 5239 if (hlock->sync) 5240 return 1; 5241 5242 curr->curr_chain_key = chain_key; 5243 curr->lockdep_depth++; 5244 check_chain_key(curr); 5245 #ifdef CONFIG_DEBUG_LOCKDEP 5246 if (unlikely(!debug_locks)) 5247 return 0; 5248 #endif 5249 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5250 debug_locks_off(); 5251 nbcon_cpu_emergency_enter(); 5252 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5253 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5254 curr->lockdep_depth, MAX_LOCK_DEPTH); 5255 5256 lockdep_print_held_locks(current); 5257 debug_show_all_locks(); 5258 dump_stack(); 5259 nbcon_cpu_emergency_exit(); 5260 5261 return 0; 5262 } 5263 5264 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5265 max_lockdep_depth = curr->lockdep_depth; 5266 5267 return 1; 5268 } 5269 5270 static void print_unlock_imbalance_bug(struct task_struct *curr, 5271 struct lockdep_map *lock, 5272 unsigned long ip) 5273 { 5274 if (!debug_locks_off()) 5275 return; 5276 if (debug_locks_silent) 5277 return; 5278 5279 nbcon_cpu_emergency_enter(); 5280 5281 pr_warn("\n"); 5282 pr_warn("=====================================\n"); 5283 pr_warn("WARNING: bad unlock balance detected!\n"); 5284 print_kernel_ident(); 5285 pr_warn("-------------------------------------\n"); 5286 pr_warn("%s/%d is trying to release lock (", 5287 curr->comm, task_pid_nr(curr)); 5288 print_lockdep_cache(lock); 5289 pr_cont(") at:\n"); 5290 print_ip_sym(KERN_WARNING, ip); 5291 pr_warn("but there are no more locks to release!\n"); 5292 pr_warn("\nother info that might help us debug this:\n"); 5293 lockdep_print_held_locks(curr); 5294 5295 pr_warn("\nstack backtrace:\n"); 5296 dump_stack(); 5297 5298 nbcon_cpu_emergency_exit(); 5299 } 5300 5301 static noinstr int match_held_lock(const struct held_lock *hlock, 5302 const struct lockdep_map *lock) 5303 { 5304 if (hlock->instance == lock) 5305 return 1; 5306 5307 if (hlock->references) { 5308 const struct lock_class *class = lock->class_cache[0]; 5309 5310 if (!class) 5311 class = look_up_lock_class(lock, 0); 5312 5313 /* 5314 * If look_up_lock_class() failed to find a class, we're trying 5315 * to test if we hold a lock that has never yet been acquired. 5316 * Clearly if the lock hasn't been acquired _ever_, we're not 5317 * holding it either, so report failure. 5318 */ 5319 if (!class) 5320 return 0; 5321 5322 /* 5323 * References, but not a lock we're actually ref-counting? 5324 * State got messed up, follow the sites that change ->references 5325 * and try to make sense of it. 5326 */ 5327 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5328 return 0; 5329 5330 if (hlock->class_idx == class - lock_classes) 5331 return 1; 5332 } 5333 5334 return 0; 5335 } 5336 5337 /* @depth must not be zero */ 5338 static struct held_lock *find_held_lock(struct task_struct *curr, 5339 struct lockdep_map *lock, 5340 unsigned int depth, int *idx) 5341 { 5342 struct held_lock *ret, *hlock, *prev_hlock; 5343 int i; 5344 5345 i = depth - 1; 5346 hlock = curr->held_locks + i; 5347 ret = hlock; 5348 if (match_held_lock(hlock, lock)) 5349 goto out; 5350 5351 ret = NULL; 5352 for (i--, prev_hlock = hlock--; 5353 i >= 0; 5354 i--, prev_hlock = hlock--) { 5355 /* 5356 * We must not cross into another context: 5357 */ 5358 if (prev_hlock->irq_context != hlock->irq_context) { 5359 ret = NULL; 5360 break; 5361 } 5362 if (match_held_lock(hlock, lock)) { 5363 ret = hlock; 5364 break; 5365 } 5366 } 5367 5368 out: 5369 *idx = i; 5370 return ret; 5371 } 5372 5373 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5374 int idx, unsigned int *merged) 5375 { 5376 struct held_lock *hlock; 5377 int first_idx = idx; 5378 5379 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5380 return 0; 5381 5382 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5383 switch (__lock_acquire(hlock->instance, 5384 hlock_class(hlock)->subclass, 5385 hlock->trylock, 5386 hlock->read, hlock->check, 5387 hlock->hardirqs_off, 5388 hlock->nest_lock, hlock->acquire_ip, 5389 hlock->references, hlock->pin_count, 0)) { 5390 case 0: 5391 return 1; 5392 case 1: 5393 break; 5394 case 2: 5395 *merged += (idx == first_idx); 5396 break; 5397 default: 5398 WARN_ON(1); 5399 return 0; 5400 } 5401 } 5402 return 0; 5403 } 5404 5405 static int 5406 __lock_set_class(struct lockdep_map *lock, const char *name, 5407 struct lock_class_key *key, unsigned int subclass, 5408 unsigned long ip) 5409 { 5410 struct task_struct *curr = current; 5411 unsigned int depth, merged = 0; 5412 struct held_lock *hlock; 5413 struct lock_class *class; 5414 int i; 5415 5416 if (unlikely(!debug_locks)) 5417 return 0; 5418 5419 depth = curr->lockdep_depth; 5420 /* 5421 * This function is about (re)setting the class of a held lock, 5422 * yet we're not actually holding any locks. Naughty user! 5423 */ 5424 if (DEBUG_LOCKS_WARN_ON(!depth)) 5425 return 0; 5426 5427 hlock = find_held_lock(curr, lock, depth, &i); 5428 if (!hlock) { 5429 print_unlock_imbalance_bug(curr, lock, ip); 5430 return 0; 5431 } 5432 5433 lockdep_init_map_type(lock, name, key, 0, 5434 lock->wait_type_inner, 5435 lock->wait_type_outer, 5436 lock->lock_type); 5437 class = register_lock_class(lock, subclass, 0); 5438 hlock->class_idx = class - lock_classes; 5439 5440 curr->lockdep_depth = i; 5441 curr->curr_chain_key = hlock->prev_chain_key; 5442 5443 if (reacquire_held_locks(curr, depth, i, &merged)) 5444 return 0; 5445 5446 /* 5447 * I took it apart and put it back together again, except now I have 5448 * these 'spare' parts.. where shall I put them. 5449 */ 5450 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5451 return 0; 5452 return 1; 5453 } 5454 5455 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5456 { 5457 struct task_struct *curr = current; 5458 unsigned int depth, merged = 0; 5459 struct held_lock *hlock; 5460 int i; 5461 5462 if (unlikely(!debug_locks)) 5463 return 0; 5464 5465 depth = curr->lockdep_depth; 5466 /* 5467 * This function is about (re)setting the class of a held lock, 5468 * yet we're not actually holding any locks. Naughty user! 5469 */ 5470 if (DEBUG_LOCKS_WARN_ON(!depth)) 5471 return 0; 5472 5473 hlock = find_held_lock(curr, lock, depth, &i); 5474 if (!hlock) { 5475 print_unlock_imbalance_bug(curr, lock, ip); 5476 return 0; 5477 } 5478 5479 curr->lockdep_depth = i; 5480 curr->curr_chain_key = hlock->prev_chain_key; 5481 5482 WARN(hlock->read, "downgrading a read lock"); 5483 hlock->read = 1; 5484 hlock->acquire_ip = ip; 5485 5486 if (reacquire_held_locks(curr, depth, i, &merged)) 5487 return 0; 5488 5489 /* Merging can't happen with unchanged classes.. */ 5490 if (DEBUG_LOCKS_WARN_ON(merged)) 5491 return 0; 5492 5493 /* 5494 * I took it apart and put it back together again, except now I have 5495 * these 'spare' parts.. where shall I put them. 5496 */ 5497 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5498 return 0; 5499 5500 return 1; 5501 } 5502 5503 /* 5504 * Remove the lock from the list of currently held locks - this gets 5505 * called on mutex_unlock()/spin_unlock*() (or on a failed 5506 * mutex_lock_interruptible()). 5507 */ 5508 static int 5509 __lock_release(struct lockdep_map *lock, unsigned long ip) 5510 { 5511 struct task_struct *curr = current; 5512 unsigned int depth, merged = 1; 5513 struct held_lock *hlock; 5514 int i; 5515 5516 if (unlikely(!debug_locks)) 5517 return 0; 5518 5519 depth = curr->lockdep_depth; 5520 /* 5521 * So we're all set to release this lock.. wait what lock? We don't 5522 * own any locks, you've been drinking again? 5523 */ 5524 if (depth <= 0) { 5525 print_unlock_imbalance_bug(curr, lock, ip); 5526 return 0; 5527 } 5528 5529 /* 5530 * Check whether the lock exists in the current stack 5531 * of held locks: 5532 */ 5533 hlock = find_held_lock(curr, lock, depth, &i); 5534 if (!hlock) { 5535 print_unlock_imbalance_bug(curr, lock, ip); 5536 return 0; 5537 } 5538 5539 if (hlock->instance == lock) 5540 lock_release_holdtime(hlock); 5541 5542 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5543 5544 if (hlock->references) { 5545 hlock->references--; 5546 if (hlock->references) { 5547 /* 5548 * We had, and after removing one, still have 5549 * references, the current lock stack is still 5550 * valid. We're done! 5551 */ 5552 return 1; 5553 } 5554 } 5555 5556 /* 5557 * We have the right lock to unlock, 'hlock' points to it. 5558 * Now we remove it from the stack, and add back the other 5559 * entries (if any), recalculating the hash along the way: 5560 */ 5561 5562 curr->lockdep_depth = i; 5563 curr->curr_chain_key = hlock->prev_chain_key; 5564 5565 /* 5566 * The most likely case is when the unlock is on the innermost 5567 * lock. In this case, we are done! 5568 */ 5569 if (i == depth-1) 5570 return 1; 5571 5572 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5573 return 0; 5574 5575 /* 5576 * We had N bottles of beer on the wall, we drank one, but now 5577 * there's not N-1 bottles of beer left on the wall... 5578 * Pouring two of the bottles together is acceptable. 5579 */ 5580 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5581 5582 /* 5583 * Since reacquire_held_locks() would have called check_chain_key() 5584 * indirectly via __lock_acquire(), we don't need to do it again 5585 * on return. 5586 */ 5587 return 0; 5588 } 5589 5590 static __always_inline 5591 int __lock_is_held(const struct lockdep_map *lock, int read) 5592 { 5593 struct task_struct *curr = current; 5594 int i; 5595 5596 for (i = 0; i < curr->lockdep_depth; i++) { 5597 struct held_lock *hlock = curr->held_locks + i; 5598 5599 if (match_held_lock(hlock, lock)) { 5600 if (read == -1 || !!hlock->read == read) 5601 return LOCK_STATE_HELD; 5602 5603 return LOCK_STATE_NOT_HELD; 5604 } 5605 } 5606 5607 return LOCK_STATE_NOT_HELD; 5608 } 5609 5610 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5611 { 5612 struct pin_cookie cookie = NIL_COOKIE; 5613 struct task_struct *curr = current; 5614 int i; 5615 5616 if (unlikely(!debug_locks)) 5617 return cookie; 5618 5619 for (i = 0; i < curr->lockdep_depth; i++) { 5620 struct held_lock *hlock = curr->held_locks + i; 5621 5622 if (match_held_lock(hlock, lock)) { 5623 /* 5624 * Grab 16bits of randomness; this is sufficient to not 5625 * be guessable and still allows some pin nesting in 5626 * our u32 pin_count. 5627 */ 5628 cookie.val = 1 + (sched_clock() & 0xffff); 5629 hlock->pin_count += cookie.val; 5630 return cookie; 5631 } 5632 } 5633 5634 WARN(1, "pinning an unheld lock\n"); 5635 return cookie; 5636 } 5637 5638 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5639 { 5640 struct task_struct *curr = current; 5641 int i; 5642 5643 if (unlikely(!debug_locks)) 5644 return; 5645 5646 for (i = 0; i < curr->lockdep_depth; i++) { 5647 struct held_lock *hlock = curr->held_locks + i; 5648 5649 if (match_held_lock(hlock, lock)) { 5650 hlock->pin_count += cookie.val; 5651 return; 5652 } 5653 } 5654 5655 WARN(1, "pinning an unheld lock\n"); 5656 } 5657 5658 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5659 { 5660 struct task_struct *curr = current; 5661 int i; 5662 5663 if (unlikely(!debug_locks)) 5664 return; 5665 5666 for (i = 0; i < curr->lockdep_depth; i++) { 5667 struct held_lock *hlock = curr->held_locks + i; 5668 5669 if (match_held_lock(hlock, lock)) { 5670 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5671 return; 5672 5673 hlock->pin_count -= cookie.val; 5674 5675 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5676 hlock->pin_count = 0; 5677 5678 return; 5679 } 5680 } 5681 5682 WARN(1, "unpinning an unheld lock\n"); 5683 } 5684 5685 /* 5686 * Check whether we follow the irq-flags state precisely: 5687 */ 5688 static noinstr void check_flags(unsigned long flags) 5689 { 5690 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5691 if (!debug_locks) 5692 return; 5693 5694 /* Get the warning out.. */ 5695 instrumentation_begin(); 5696 5697 if (irqs_disabled_flags(flags)) { 5698 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5699 printk("possible reason: unannotated irqs-off.\n"); 5700 } 5701 } else { 5702 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5703 printk("possible reason: unannotated irqs-on.\n"); 5704 } 5705 } 5706 5707 #ifndef CONFIG_PREEMPT_RT 5708 /* 5709 * We dont accurately track softirq state in e.g. 5710 * hardirq contexts (such as on 4KSTACKS), so only 5711 * check if not in hardirq contexts: 5712 */ 5713 if (!hardirq_count()) { 5714 if (softirq_count()) { 5715 /* like the above, but with softirqs */ 5716 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5717 } else { 5718 /* lick the above, does it taste good? */ 5719 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5720 } 5721 } 5722 #endif 5723 5724 if (!debug_locks) 5725 print_irqtrace_events(current); 5726 5727 instrumentation_end(); 5728 #endif 5729 } 5730 5731 void lock_set_class(struct lockdep_map *lock, const char *name, 5732 struct lock_class_key *key, unsigned int subclass, 5733 unsigned long ip) 5734 { 5735 unsigned long flags; 5736 5737 if (unlikely(!lockdep_enabled())) 5738 return; 5739 5740 raw_local_irq_save(flags); 5741 lockdep_recursion_inc(); 5742 check_flags(flags); 5743 if (__lock_set_class(lock, name, key, subclass, ip)) 5744 check_chain_key(current); 5745 lockdep_recursion_finish(); 5746 raw_local_irq_restore(flags); 5747 } 5748 EXPORT_SYMBOL_GPL(lock_set_class); 5749 5750 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5751 { 5752 unsigned long flags; 5753 5754 if (unlikely(!lockdep_enabled())) 5755 return; 5756 5757 raw_local_irq_save(flags); 5758 lockdep_recursion_inc(); 5759 check_flags(flags); 5760 if (__lock_downgrade(lock, ip)) 5761 check_chain_key(current); 5762 lockdep_recursion_finish(); 5763 raw_local_irq_restore(flags); 5764 } 5765 EXPORT_SYMBOL_GPL(lock_downgrade); 5766 5767 /* NMI context !!! */ 5768 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5769 { 5770 #ifdef CONFIG_PROVE_LOCKING 5771 struct lock_class *class = look_up_lock_class(lock, subclass); 5772 unsigned long mask = LOCKF_USED; 5773 5774 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5775 if (!class) 5776 return; 5777 5778 /* 5779 * READ locks only conflict with USED, such that if we only ever use 5780 * READ locks, there is no deadlock possible -- RCU. 5781 */ 5782 if (!hlock->read) 5783 mask |= LOCKF_USED_READ; 5784 5785 if (!(class->usage_mask & mask)) 5786 return; 5787 5788 hlock->class_idx = class - lock_classes; 5789 5790 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5791 #endif 5792 } 5793 5794 static bool lockdep_nmi(void) 5795 { 5796 if (raw_cpu_read(lockdep_recursion)) 5797 return false; 5798 5799 if (!in_nmi()) 5800 return false; 5801 5802 return true; 5803 } 5804 5805 /* 5806 * read_lock() is recursive if: 5807 * 1. We force lockdep think this way in selftests or 5808 * 2. The implementation is not queued read/write lock or 5809 * 3. The locker is at an in_interrupt() context. 5810 */ 5811 bool read_lock_is_recursive(void) 5812 { 5813 return force_read_lock_recursive || 5814 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5815 in_interrupt(); 5816 } 5817 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5818 5819 /* 5820 * We are not always called with irqs disabled - do that here, 5821 * and also avoid lockdep recursion: 5822 */ 5823 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5824 int trylock, int read, int check, 5825 struct lockdep_map *nest_lock, unsigned long ip) 5826 { 5827 unsigned long flags; 5828 5829 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5830 5831 if (!debug_locks) 5832 return; 5833 5834 /* 5835 * As KASAN instrumentation is disabled and lock_acquire() is usually 5836 * the first lockdep call when a task tries to acquire a lock, add 5837 * kasan_check_byte() here to check for use-after-free and other 5838 * memory errors. 5839 */ 5840 kasan_check_byte(lock); 5841 5842 if (unlikely(!lockdep_enabled())) { 5843 /* XXX allow trylock from NMI ?!? */ 5844 if (lockdep_nmi() && !trylock) { 5845 struct held_lock hlock; 5846 5847 hlock.acquire_ip = ip; 5848 hlock.instance = lock; 5849 hlock.nest_lock = nest_lock; 5850 hlock.irq_context = 2; // XXX 5851 hlock.trylock = trylock; 5852 hlock.read = read; 5853 hlock.check = check; 5854 hlock.hardirqs_off = true; 5855 hlock.references = 0; 5856 5857 verify_lock_unused(lock, &hlock, subclass); 5858 } 5859 return; 5860 } 5861 5862 raw_local_irq_save(flags); 5863 check_flags(flags); 5864 5865 lockdep_recursion_inc(); 5866 __lock_acquire(lock, subclass, trylock, read, check, 5867 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5868 lockdep_recursion_finish(); 5869 raw_local_irq_restore(flags); 5870 } 5871 EXPORT_SYMBOL_GPL(lock_acquire); 5872 5873 void lock_release(struct lockdep_map *lock, unsigned long ip) 5874 { 5875 unsigned long flags; 5876 5877 trace_lock_release(lock, ip); 5878 5879 if (unlikely(!lockdep_enabled() || 5880 lock->key == &__lockdep_no_track__)) 5881 return; 5882 5883 raw_local_irq_save(flags); 5884 check_flags(flags); 5885 5886 lockdep_recursion_inc(); 5887 if (__lock_release(lock, ip)) 5888 check_chain_key(current); 5889 lockdep_recursion_finish(); 5890 raw_local_irq_restore(flags); 5891 } 5892 EXPORT_SYMBOL_GPL(lock_release); 5893 5894 /* 5895 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5896 * 5897 * No actual critical section is created by the APIs annotated with this: these 5898 * APIs are used to wait for one or multiple critical sections (on other CPUs 5899 * or threads), and it means that calling these APIs inside these critical 5900 * sections is potential deadlock. 5901 */ 5902 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5903 int check, struct lockdep_map *nest_lock, unsigned long ip) 5904 { 5905 unsigned long flags; 5906 5907 if (unlikely(!lockdep_enabled())) 5908 return; 5909 5910 raw_local_irq_save(flags); 5911 check_flags(flags); 5912 5913 lockdep_recursion_inc(); 5914 __lock_acquire(lock, subclass, 0, read, check, 5915 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5916 check_chain_key(current); 5917 lockdep_recursion_finish(); 5918 raw_local_irq_restore(flags); 5919 } 5920 EXPORT_SYMBOL_GPL(lock_sync); 5921 5922 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5923 { 5924 unsigned long flags; 5925 int ret = LOCK_STATE_NOT_HELD; 5926 5927 /* 5928 * Avoid false negative lockdep_assert_held() and 5929 * lockdep_assert_not_held(). 5930 */ 5931 if (unlikely(!lockdep_enabled())) 5932 return LOCK_STATE_UNKNOWN; 5933 5934 raw_local_irq_save(flags); 5935 check_flags(flags); 5936 5937 lockdep_recursion_inc(); 5938 ret = __lock_is_held(lock, read); 5939 lockdep_recursion_finish(); 5940 raw_local_irq_restore(flags); 5941 5942 return ret; 5943 } 5944 EXPORT_SYMBOL_GPL(lock_is_held_type); 5945 NOKPROBE_SYMBOL(lock_is_held_type); 5946 5947 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5948 { 5949 struct pin_cookie cookie = NIL_COOKIE; 5950 unsigned long flags; 5951 5952 if (unlikely(!lockdep_enabled())) 5953 return cookie; 5954 5955 raw_local_irq_save(flags); 5956 check_flags(flags); 5957 5958 lockdep_recursion_inc(); 5959 cookie = __lock_pin_lock(lock); 5960 lockdep_recursion_finish(); 5961 raw_local_irq_restore(flags); 5962 5963 return cookie; 5964 } 5965 EXPORT_SYMBOL_GPL(lock_pin_lock); 5966 5967 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5968 { 5969 unsigned long flags; 5970 5971 if (unlikely(!lockdep_enabled())) 5972 return; 5973 5974 raw_local_irq_save(flags); 5975 check_flags(flags); 5976 5977 lockdep_recursion_inc(); 5978 __lock_repin_lock(lock, cookie); 5979 lockdep_recursion_finish(); 5980 raw_local_irq_restore(flags); 5981 } 5982 EXPORT_SYMBOL_GPL(lock_repin_lock); 5983 5984 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5985 { 5986 unsigned long flags; 5987 5988 if (unlikely(!lockdep_enabled())) 5989 return; 5990 5991 raw_local_irq_save(flags); 5992 check_flags(flags); 5993 5994 lockdep_recursion_inc(); 5995 __lock_unpin_lock(lock, cookie); 5996 lockdep_recursion_finish(); 5997 raw_local_irq_restore(flags); 5998 } 5999 EXPORT_SYMBOL_GPL(lock_unpin_lock); 6000 6001 #ifdef CONFIG_LOCK_STAT 6002 static void print_lock_contention_bug(struct task_struct *curr, 6003 struct lockdep_map *lock, 6004 unsigned long ip) 6005 { 6006 if (!debug_locks_off()) 6007 return; 6008 if (debug_locks_silent) 6009 return; 6010 6011 nbcon_cpu_emergency_enter(); 6012 6013 pr_warn("\n"); 6014 pr_warn("=================================\n"); 6015 pr_warn("WARNING: bad contention detected!\n"); 6016 print_kernel_ident(); 6017 pr_warn("---------------------------------\n"); 6018 pr_warn("%s/%d is trying to contend lock (", 6019 curr->comm, task_pid_nr(curr)); 6020 print_lockdep_cache(lock); 6021 pr_cont(") at:\n"); 6022 print_ip_sym(KERN_WARNING, ip); 6023 pr_warn("but there are no locks held!\n"); 6024 pr_warn("\nother info that might help us debug this:\n"); 6025 lockdep_print_held_locks(curr); 6026 6027 pr_warn("\nstack backtrace:\n"); 6028 dump_stack(); 6029 6030 nbcon_cpu_emergency_exit(); 6031 } 6032 6033 static void 6034 __lock_contended(struct lockdep_map *lock, unsigned long ip) 6035 { 6036 struct task_struct *curr = current; 6037 struct held_lock *hlock; 6038 struct lock_class_stats *stats; 6039 unsigned int depth; 6040 int i, contention_point, contending_point; 6041 6042 depth = curr->lockdep_depth; 6043 /* 6044 * Whee, we contended on this lock, except it seems we're not 6045 * actually trying to acquire anything much at all.. 6046 */ 6047 if (DEBUG_LOCKS_WARN_ON(!depth)) 6048 return; 6049 6050 if (unlikely(lock->key == &__lockdep_no_track__)) 6051 return; 6052 6053 hlock = find_held_lock(curr, lock, depth, &i); 6054 if (!hlock) { 6055 print_lock_contention_bug(curr, lock, ip); 6056 return; 6057 } 6058 6059 if (hlock->instance != lock) 6060 return; 6061 6062 hlock->waittime_stamp = lockstat_clock(); 6063 6064 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 6065 contending_point = lock_point(hlock_class(hlock)->contending_point, 6066 lock->ip); 6067 6068 stats = get_lock_stats(hlock_class(hlock)); 6069 if (contention_point < LOCKSTAT_POINTS) 6070 stats->contention_point[contention_point]++; 6071 if (contending_point < LOCKSTAT_POINTS) 6072 stats->contending_point[contending_point]++; 6073 if (lock->cpu != smp_processor_id()) 6074 stats->bounces[bounce_contended + !!hlock->read]++; 6075 } 6076 6077 static void 6078 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 6079 { 6080 struct task_struct *curr = current; 6081 struct held_lock *hlock; 6082 struct lock_class_stats *stats; 6083 unsigned int depth; 6084 u64 now, waittime = 0; 6085 int i, cpu; 6086 6087 depth = curr->lockdep_depth; 6088 /* 6089 * Yay, we acquired ownership of this lock we didn't try to 6090 * acquire, how the heck did that happen? 6091 */ 6092 if (DEBUG_LOCKS_WARN_ON(!depth)) 6093 return; 6094 6095 if (unlikely(lock->key == &__lockdep_no_track__)) 6096 return; 6097 6098 hlock = find_held_lock(curr, lock, depth, &i); 6099 if (!hlock) { 6100 print_lock_contention_bug(curr, lock, _RET_IP_); 6101 return; 6102 } 6103 6104 if (hlock->instance != lock) 6105 return; 6106 6107 cpu = smp_processor_id(); 6108 if (hlock->waittime_stamp) { 6109 now = lockstat_clock(); 6110 waittime = now - hlock->waittime_stamp; 6111 hlock->holdtime_stamp = now; 6112 } 6113 6114 stats = get_lock_stats(hlock_class(hlock)); 6115 if (waittime) { 6116 if (hlock->read) 6117 lock_time_inc(&stats->read_waittime, waittime); 6118 else 6119 lock_time_inc(&stats->write_waittime, waittime); 6120 } 6121 if (lock->cpu != cpu) 6122 stats->bounces[bounce_acquired + !!hlock->read]++; 6123 6124 lock->cpu = cpu; 6125 lock->ip = ip; 6126 } 6127 6128 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6129 { 6130 unsigned long flags; 6131 6132 trace_lock_contended(lock, ip); 6133 6134 if (unlikely(!lock_stat || !lockdep_enabled())) 6135 return; 6136 6137 raw_local_irq_save(flags); 6138 check_flags(flags); 6139 lockdep_recursion_inc(); 6140 __lock_contended(lock, ip); 6141 lockdep_recursion_finish(); 6142 raw_local_irq_restore(flags); 6143 } 6144 EXPORT_SYMBOL_GPL(lock_contended); 6145 6146 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6147 { 6148 unsigned long flags; 6149 6150 trace_lock_acquired(lock, ip); 6151 6152 if (unlikely(!lock_stat || !lockdep_enabled())) 6153 return; 6154 6155 raw_local_irq_save(flags); 6156 check_flags(flags); 6157 lockdep_recursion_inc(); 6158 __lock_acquired(lock, ip); 6159 lockdep_recursion_finish(); 6160 raw_local_irq_restore(flags); 6161 } 6162 EXPORT_SYMBOL_GPL(lock_acquired); 6163 #endif 6164 6165 /* 6166 * Used by the testsuite, sanitize the validator state 6167 * after a simulated failure: 6168 */ 6169 6170 void lockdep_reset(void) 6171 { 6172 unsigned long flags; 6173 int i; 6174 6175 raw_local_irq_save(flags); 6176 lockdep_init_task(current); 6177 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6178 nr_hardirq_chains = 0; 6179 nr_softirq_chains = 0; 6180 nr_process_chains = 0; 6181 debug_locks = 1; 6182 for (i = 0; i < CHAINHASH_SIZE; i++) 6183 INIT_HLIST_HEAD(chainhash_table + i); 6184 raw_local_irq_restore(flags); 6185 } 6186 6187 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6188 static void remove_class_from_lock_chain(struct pending_free *pf, 6189 struct lock_chain *chain, 6190 struct lock_class *class) 6191 { 6192 #ifdef CONFIG_PROVE_LOCKING 6193 int i; 6194 6195 for (i = chain->base; i < chain->base + chain->depth; i++) { 6196 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6197 continue; 6198 /* 6199 * Each lock class occurs at most once in a lock chain so once 6200 * we found a match we can break out of this loop. 6201 */ 6202 goto free_lock_chain; 6203 } 6204 /* Since the chain has not been modified, return. */ 6205 return; 6206 6207 free_lock_chain: 6208 free_chain_hlocks(chain->base, chain->depth); 6209 /* Overwrite the chain key for concurrent RCU readers. */ 6210 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6211 dec_chains(chain->irq_context); 6212 6213 /* 6214 * Note: calling hlist_del_rcu() from inside a 6215 * hlist_for_each_entry_rcu() loop is safe. 6216 */ 6217 hlist_del_rcu(&chain->entry); 6218 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6219 nr_zapped_lock_chains++; 6220 #endif 6221 } 6222 6223 /* Must be called with the graph lock held. */ 6224 static void remove_class_from_lock_chains(struct pending_free *pf, 6225 struct lock_class *class) 6226 { 6227 struct lock_chain *chain; 6228 struct hlist_head *head; 6229 int i; 6230 6231 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6232 head = chainhash_table + i; 6233 hlist_for_each_entry_rcu(chain, head, entry) { 6234 remove_class_from_lock_chain(pf, chain, class); 6235 } 6236 } 6237 } 6238 6239 /* 6240 * Remove all references to a lock class. The caller must hold the graph lock. 6241 */ 6242 static void zap_class(struct pending_free *pf, struct lock_class *class) 6243 { 6244 struct lock_list *entry; 6245 int i; 6246 6247 WARN_ON_ONCE(!class->key); 6248 6249 /* 6250 * Remove all dependencies this lock is 6251 * involved in: 6252 */ 6253 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6254 entry = list_entries + i; 6255 if (entry->class != class && entry->links_to != class) 6256 continue; 6257 __clear_bit(i, list_entries_in_use); 6258 nr_list_entries--; 6259 list_del_rcu(&entry->entry); 6260 } 6261 if (list_empty(&class->locks_after) && 6262 list_empty(&class->locks_before)) { 6263 list_move_tail(&class->lock_entry, &pf->zapped); 6264 hlist_del_rcu(&class->hash_entry); 6265 WRITE_ONCE(class->key, NULL); 6266 WRITE_ONCE(class->name, NULL); 6267 /* Class allocated but not used, -1 in nr_unused_locks */ 6268 if (class->usage_mask == 0) 6269 debug_atomic_dec(nr_unused_locks); 6270 nr_lock_classes--; 6271 __clear_bit(class - lock_classes, lock_classes_in_use); 6272 if (class - lock_classes == max_lock_class_idx) 6273 max_lock_class_idx--; 6274 } else { 6275 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6276 class->name); 6277 } 6278 6279 remove_class_from_lock_chains(pf, class); 6280 nr_zapped_classes++; 6281 } 6282 6283 static void reinit_class(struct lock_class *class) 6284 { 6285 WARN_ON_ONCE(!class->lock_entry.next); 6286 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6287 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6288 memset_startat(class, 0, key); 6289 WARN_ON_ONCE(!class->lock_entry.next); 6290 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6291 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6292 } 6293 6294 static inline int within(const void *addr, void *start, unsigned long size) 6295 { 6296 return addr >= start && addr < start + size; 6297 } 6298 6299 static bool inside_selftest(void) 6300 { 6301 return current == lockdep_selftest_task_struct; 6302 } 6303 6304 /* The caller must hold the graph lock. */ 6305 static struct pending_free *get_pending_free(void) 6306 { 6307 return delayed_free.pf + delayed_free.index; 6308 } 6309 6310 static void free_zapped_rcu(struct rcu_head *cb); 6311 6312 /* 6313 * See if we need to queue an RCU callback, must called with 6314 * the lockdep lock held, returns false if either we don't have 6315 * any pending free or the callback is already scheduled. 6316 * Otherwise, a call_rcu() must follow this function call. 6317 */ 6318 static bool prepare_call_rcu_zapped(struct pending_free *pf) 6319 { 6320 WARN_ON_ONCE(inside_selftest()); 6321 6322 if (list_empty(&pf->zapped)) 6323 return false; 6324 6325 if (delayed_free.scheduled) 6326 return false; 6327 6328 delayed_free.scheduled = true; 6329 6330 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6331 delayed_free.index ^= 1; 6332 6333 return true; 6334 } 6335 6336 /* The caller must hold the graph lock. May be called from RCU context. */ 6337 static void __free_zapped_classes(struct pending_free *pf) 6338 { 6339 struct lock_class *class; 6340 6341 check_data_structures(); 6342 6343 list_for_each_entry(class, &pf->zapped, lock_entry) 6344 reinit_class(class); 6345 6346 list_splice_init(&pf->zapped, &free_lock_classes); 6347 6348 #ifdef CONFIG_PROVE_LOCKING 6349 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6350 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6351 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6352 #endif 6353 } 6354 6355 static void free_zapped_rcu(struct rcu_head *ch) 6356 { 6357 struct pending_free *pf; 6358 unsigned long flags; 6359 bool need_callback; 6360 6361 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6362 return; 6363 6364 raw_local_irq_save(flags); 6365 lockdep_lock(); 6366 6367 /* closed head */ 6368 pf = delayed_free.pf + (delayed_free.index ^ 1); 6369 __free_zapped_classes(pf); 6370 delayed_free.scheduled = false; 6371 need_callback = 6372 prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index); 6373 lockdep_unlock(); 6374 raw_local_irq_restore(flags); 6375 6376 /* 6377 * If there's pending free and its callback has not been scheduled, 6378 * queue an RCU callback. 6379 */ 6380 if (need_callback) 6381 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6382 6383 } 6384 6385 /* 6386 * Remove all lock classes from the class hash table and from the 6387 * all_lock_classes list whose key or name is in the address range [start, 6388 * start + size). Move these lock classes to the zapped_classes list. Must 6389 * be called with the graph lock held. 6390 */ 6391 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6392 unsigned long size) 6393 { 6394 struct lock_class *class; 6395 struct hlist_head *head; 6396 int i; 6397 6398 /* Unhash all classes that were created by a module. */ 6399 for (i = 0; i < CLASSHASH_SIZE; i++) { 6400 head = classhash_table + i; 6401 hlist_for_each_entry_rcu(class, head, hash_entry) { 6402 if (!within(class->key, start, size) && 6403 !within(class->name, start, size)) 6404 continue; 6405 zap_class(pf, class); 6406 } 6407 } 6408 } 6409 6410 /* 6411 * Used in module.c to remove lock classes from memory that is going to be 6412 * freed; and possibly re-used by other modules. 6413 * 6414 * We will have had one synchronize_rcu() before getting here, so we're 6415 * guaranteed nobody will look up these exact classes -- they're properly dead 6416 * but still allocated. 6417 */ 6418 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6419 { 6420 struct pending_free *pf; 6421 unsigned long flags; 6422 bool need_callback; 6423 6424 init_data_structures_once(); 6425 6426 raw_local_irq_save(flags); 6427 lockdep_lock(); 6428 pf = get_pending_free(); 6429 __lockdep_free_key_range(pf, start, size); 6430 need_callback = prepare_call_rcu_zapped(pf); 6431 lockdep_unlock(); 6432 raw_local_irq_restore(flags); 6433 if (need_callback) 6434 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6435 /* 6436 * Wait for any possible iterators from look_up_lock_class() to pass 6437 * before continuing to free the memory they refer to. 6438 */ 6439 synchronize_rcu(); 6440 } 6441 6442 /* 6443 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6444 * Ignores debug_locks. Must only be used by the lockdep selftests. 6445 */ 6446 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6447 { 6448 struct pending_free *pf = delayed_free.pf; 6449 unsigned long flags; 6450 6451 init_data_structures_once(); 6452 6453 raw_local_irq_save(flags); 6454 lockdep_lock(); 6455 __lockdep_free_key_range(pf, start, size); 6456 __free_zapped_classes(pf); 6457 lockdep_unlock(); 6458 raw_local_irq_restore(flags); 6459 } 6460 6461 void lockdep_free_key_range(void *start, unsigned long size) 6462 { 6463 init_data_structures_once(); 6464 6465 if (inside_selftest()) 6466 lockdep_free_key_range_imm(start, size); 6467 else 6468 lockdep_free_key_range_reg(start, size); 6469 } 6470 6471 /* 6472 * Check whether any element of the @lock->class_cache[] array refers to a 6473 * registered lock class. The caller must hold either the graph lock or the 6474 * RCU read lock. 6475 */ 6476 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6477 { 6478 struct lock_class *class; 6479 struct hlist_head *head; 6480 int i, j; 6481 6482 for (i = 0; i < CLASSHASH_SIZE; i++) { 6483 head = classhash_table + i; 6484 hlist_for_each_entry_rcu(class, head, hash_entry) { 6485 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6486 if (lock->class_cache[j] == class) 6487 return true; 6488 } 6489 } 6490 return false; 6491 } 6492 6493 /* The caller must hold the graph lock. Does not sleep. */ 6494 static void __lockdep_reset_lock(struct pending_free *pf, 6495 struct lockdep_map *lock) 6496 { 6497 struct lock_class *class; 6498 int j; 6499 6500 /* 6501 * Remove all classes this lock might have: 6502 */ 6503 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6504 /* 6505 * If the class exists we look it up and zap it: 6506 */ 6507 class = look_up_lock_class(lock, j); 6508 if (class) 6509 zap_class(pf, class); 6510 } 6511 /* 6512 * Debug check: in the end all mapped classes should 6513 * be gone. 6514 */ 6515 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6516 debug_locks_off(); 6517 } 6518 6519 /* 6520 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6521 * released data structures from RCU context. 6522 */ 6523 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6524 { 6525 struct pending_free *pf; 6526 unsigned long flags; 6527 int locked; 6528 bool need_callback = false; 6529 6530 raw_local_irq_save(flags); 6531 locked = graph_lock(); 6532 if (!locked) 6533 goto out_irq; 6534 6535 pf = get_pending_free(); 6536 __lockdep_reset_lock(pf, lock); 6537 need_callback = prepare_call_rcu_zapped(pf); 6538 6539 graph_unlock(); 6540 out_irq: 6541 raw_local_irq_restore(flags); 6542 if (need_callback) 6543 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6544 } 6545 6546 /* 6547 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6548 * lockdep selftests. 6549 */ 6550 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6551 { 6552 struct pending_free *pf = delayed_free.pf; 6553 unsigned long flags; 6554 6555 raw_local_irq_save(flags); 6556 lockdep_lock(); 6557 __lockdep_reset_lock(pf, lock); 6558 __free_zapped_classes(pf); 6559 lockdep_unlock(); 6560 raw_local_irq_restore(flags); 6561 } 6562 6563 void lockdep_reset_lock(struct lockdep_map *lock) 6564 { 6565 init_data_structures_once(); 6566 6567 if (inside_selftest()) 6568 lockdep_reset_lock_imm(lock); 6569 else 6570 lockdep_reset_lock_reg(lock); 6571 } 6572 6573 /* 6574 * Unregister a dynamically allocated key. 6575 * 6576 * Unlike lockdep_register_key(), a search is always done to find a matching 6577 * key irrespective of debug_locks to avoid potential invalid access to freed 6578 * memory in lock_class entry. 6579 */ 6580 void lockdep_unregister_key(struct lock_class_key *key) 6581 { 6582 struct hlist_head *hash_head = keyhashentry(key); 6583 struct lock_class_key *k; 6584 struct pending_free *pf; 6585 unsigned long flags; 6586 bool found = false; 6587 bool need_callback = false; 6588 6589 might_sleep(); 6590 6591 if (WARN_ON_ONCE(static_obj(key))) 6592 return; 6593 6594 raw_local_irq_save(flags); 6595 lockdep_lock(); 6596 6597 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6598 if (k == key) { 6599 hlist_del_rcu(&k->hash_entry); 6600 found = true; 6601 break; 6602 } 6603 } 6604 WARN_ON_ONCE(!found && debug_locks); 6605 if (found) { 6606 pf = get_pending_free(); 6607 __lockdep_free_key_range(pf, key, 1); 6608 need_callback = prepare_call_rcu_zapped(pf); 6609 } 6610 lockdep_unlock(); 6611 raw_local_irq_restore(flags); 6612 6613 if (need_callback) 6614 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6615 6616 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6617 synchronize_rcu(); 6618 } 6619 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6620 6621 void __init lockdep_init(void) 6622 { 6623 pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6624 6625 pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6626 pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6627 pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6628 pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6629 pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6630 pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6631 pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6632 6633 pr_info(" memory used by lock dependency info: %zu kB\n", 6634 (sizeof(lock_classes) + 6635 sizeof(lock_classes_in_use) + 6636 sizeof(classhash_table) + 6637 sizeof(list_entries) + 6638 sizeof(list_entries_in_use) + 6639 sizeof(chainhash_table) + 6640 sizeof(delayed_free) 6641 #ifdef CONFIG_PROVE_LOCKING 6642 + sizeof(lock_cq) 6643 + sizeof(lock_chains) 6644 + sizeof(lock_chains_in_use) 6645 + sizeof(chain_hlocks) 6646 #endif 6647 ) / 1024 6648 ); 6649 6650 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6651 pr_info(" memory used for stack traces: %zu kB\n", 6652 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6653 ); 6654 #endif 6655 6656 pr_info(" per task-struct memory footprint: %zu bytes\n", 6657 sizeof(((struct task_struct *)NULL)->held_locks)); 6658 } 6659 6660 static void 6661 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6662 const void *mem_to, struct held_lock *hlock) 6663 { 6664 if (!debug_locks_off()) 6665 return; 6666 if (debug_locks_silent) 6667 return; 6668 6669 nbcon_cpu_emergency_enter(); 6670 6671 pr_warn("\n"); 6672 pr_warn("=========================\n"); 6673 pr_warn("WARNING: held lock freed!\n"); 6674 print_kernel_ident(); 6675 pr_warn("-------------------------\n"); 6676 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6677 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6678 print_lock(hlock); 6679 lockdep_print_held_locks(curr); 6680 6681 pr_warn("\nstack backtrace:\n"); 6682 dump_stack(); 6683 6684 nbcon_cpu_emergency_exit(); 6685 } 6686 6687 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6688 const void* lock_from, unsigned long lock_len) 6689 { 6690 return lock_from + lock_len <= mem_from || 6691 mem_from + mem_len <= lock_from; 6692 } 6693 6694 /* 6695 * Called when kernel memory is freed (or unmapped), or if a lock 6696 * is destroyed or reinitialized - this code checks whether there is 6697 * any held lock in the memory range of <from> to <to>: 6698 */ 6699 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6700 { 6701 struct task_struct *curr = current; 6702 struct held_lock *hlock; 6703 unsigned long flags; 6704 int i; 6705 6706 if (unlikely(!debug_locks)) 6707 return; 6708 6709 raw_local_irq_save(flags); 6710 for (i = 0; i < curr->lockdep_depth; i++) { 6711 hlock = curr->held_locks + i; 6712 6713 if (not_in_range(mem_from, mem_len, hlock->instance, 6714 sizeof(*hlock->instance))) 6715 continue; 6716 6717 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6718 break; 6719 } 6720 raw_local_irq_restore(flags); 6721 } 6722 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6723 6724 static void print_held_locks_bug(void) 6725 { 6726 if (!debug_locks_off()) 6727 return; 6728 if (debug_locks_silent) 6729 return; 6730 6731 nbcon_cpu_emergency_enter(); 6732 6733 pr_warn("\n"); 6734 pr_warn("====================================\n"); 6735 pr_warn("WARNING: %s/%d still has locks held!\n", 6736 current->comm, task_pid_nr(current)); 6737 print_kernel_ident(); 6738 pr_warn("------------------------------------\n"); 6739 lockdep_print_held_locks(current); 6740 pr_warn("\nstack backtrace:\n"); 6741 dump_stack(); 6742 6743 nbcon_cpu_emergency_exit(); 6744 } 6745 6746 void debug_check_no_locks_held(void) 6747 { 6748 if (unlikely(current->lockdep_depth > 0)) 6749 print_held_locks_bug(); 6750 } 6751 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6752 6753 #ifdef __KERNEL__ 6754 void debug_show_all_locks(void) 6755 { 6756 struct task_struct *g, *p; 6757 6758 if (unlikely(!debug_locks)) { 6759 pr_warn("INFO: lockdep is turned off.\n"); 6760 return; 6761 } 6762 pr_warn("\nShowing all locks held in the system:\n"); 6763 6764 rcu_read_lock(); 6765 for_each_process_thread(g, p) { 6766 if (!p->lockdep_depth) 6767 continue; 6768 lockdep_print_held_locks(p); 6769 touch_nmi_watchdog(); 6770 touch_all_softlockup_watchdogs(); 6771 } 6772 rcu_read_unlock(); 6773 6774 pr_warn("\n"); 6775 pr_warn("=============================================\n\n"); 6776 } 6777 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6778 #endif 6779 6780 /* 6781 * Careful: only use this function if you are sure that 6782 * the task cannot run in parallel! 6783 */ 6784 void debug_show_held_locks(struct task_struct *task) 6785 { 6786 if (unlikely(!debug_locks)) { 6787 printk("INFO: lockdep is turned off.\n"); 6788 return; 6789 } 6790 lockdep_print_held_locks(task); 6791 } 6792 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6793 6794 asmlinkage __visible void lockdep_sys_exit(void) 6795 { 6796 struct task_struct *curr = current; 6797 6798 if (unlikely(curr->lockdep_depth)) { 6799 if (!debug_locks_off()) 6800 return; 6801 nbcon_cpu_emergency_enter(); 6802 pr_warn("\n"); 6803 pr_warn("================================================\n"); 6804 pr_warn("WARNING: lock held when returning to user space!\n"); 6805 print_kernel_ident(); 6806 pr_warn("------------------------------------------------\n"); 6807 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6808 curr->comm, curr->pid); 6809 lockdep_print_held_locks(curr); 6810 nbcon_cpu_emergency_exit(); 6811 } 6812 6813 /* 6814 * The lock history for each syscall should be independent. So wipe the 6815 * slate clean on return to userspace. 6816 */ 6817 lockdep_invariant_state(false); 6818 } 6819 6820 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6821 { 6822 struct task_struct *curr = current; 6823 int dl = READ_ONCE(debug_locks); 6824 bool rcu = warn_rcu_enter(); 6825 6826 /* Note: the following can be executed concurrently, so be careful. */ 6827 nbcon_cpu_emergency_enter(); 6828 pr_warn("\n"); 6829 pr_warn("=============================\n"); 6830 pr_warn("WARNING: suspicious RCU usage\n"); 6831 print_kernel_ident(); 6832 pr_warn("-----------------------------\n"); 6833 pr_warn("%s:%d %s!\n", file, line, s); 6834 pr_warn("\nother info that might help us debug this:\n\n"); 6835 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6836 !rcu_lockdep_current_cpu_online() 6837 ? "RCU used illegally from offline CPU!\n" 6838 : "", 6839 rcu_scheduler_active, dl, 6840 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6841 6842 /* 6843 * If a CPU is in the RCU-free window in idle (ie: in the section 6844 * between ct_idle_enter() and ct_idle_exit(), then RCU 6845 * considers that CPU to be in an "extended quiescent state", 6846 * which means that RCU will be completely ignoring that CPU. 6847 * Therefore, rcu_read_lock() and friends have absolutely no 6848 * effect on a CPU running in that state. In other words, even if 6849 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6850 * delete data structures out from under it. RCU really has no 6851 * choice here: we need to keep an RCU-free window in idle where 6852 * the CPU may possibly enter into low power mode. This way we can 6853 * notice an extended quiescent state to other CPUs that started a grace 6854 * period. Otherwise we would delay any grace period as long as we run 6855 * in the idle task. 6856 * 6857 * So complain bitterly if someone does call rcu_read_lock(), 6858 * rcu_read_lock_bh() and so on from extended quiescent states. 6859 */ 6860 if (!rcu_is_watching()) 6861 pr_warn("RCU used illegally from extended quiescent state!\n"); 6862 6863 lockdep_print_held_locks(curr); 6864 pr_warn("\nstack backtrace:\n"); 6865 dump_stack(); 6866 nbcon_cpu_emergency_exit(); 6867 warn_rcu_exit(rcu); 6868 } 6869 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6870