1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 static int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 static int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 #ifdef CONFIG_SYSCTL 80 static struct ctl_table kern_lockdep_table[] = { 81 #ifdef CONFIG_PROVE_LOCKING 82 { 83 .procname = "prove_locking", 84 .data = &prove_locking, 85 .maxlen = sizeof(int), 86 .mode = 0644, 87 .proc_handler = proc_dointvec, 88 }, 89 #endif /* CONFIG_PROVE_LOCKING */ 90 #ifdef CONFIG_LOCK_STAT 91 { 92 .procname = "lock_stat", 93 .data = &lock_stat, 94 .maxlen = sizeof(int), 95 .mode = 0644, 96 .proc_handler = proc_dointvec, 97 }, 98 #endif /* CONFIG_LOCK_STAT */ 99 { } 100 }; 101 102 static __init int kernel_lockdep_sysctls_init(void) 103 { 104 register_sysctl_init("kernel", kern_lockdep_table); 105 return 0; 106 } 107 late_initcall(kernel_lockdep_sysctls_init); 108 #endif /* CONFIG_SYSCTL */ 109 110 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 112 113 static __always_inline bool lockdep_enabled(void) 114 { 115 if (!debug_locks) 116 return false; 117 118 if (this_cpu_read(lockdep_recursion)) 119 return false; 120 121 if (current->lockdep_recursion) 122 return false; 123 124 return true; 125 } 126 127 /* 128 * lockdep_lock: protects the lockdep graph, the hashes and the 129 * class/list/hash allocators. 130 * 131 * This is one of the rare exceptions where it's justified 132 * to use a raw spinlock - we really dont want the spinlock 133 * code to recurse back into the lockdep code... 134 */ 135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 136 static struct task_struct *__owner; 137 138 static inline void lockdep_lock(void) 139 { 140 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 141 142 __this_cpu_inc(lockdep_recursion); 143 arch_spin_lock(&__lock); 144 __owner = current; 145 } 146 147 static inline void lockdep_unlock(void) 148 { 149 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 150 151 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 152 return; 153 154 __owner = NULL; 155 arch_spin_unlock(&__lock); 156 __this_cpu_dec(lockdep_recursion); 157 } 158 159 static inline bool lockdep_assert_locked(void) 160 { 161 return DEBUG_LOCKS_WARN_ON(__owner != current); 162 } 163 164 static struct task_struct *lockdep_selftest_task_struct; 165 166 167 static int graph_lock(void) 168 { 169 lockdep_lock(); 170 /* 171 * Make sure that if another CPU detected a bug while 172 * walking the graph we dont change it (while the other 173 * CPU is busy printing out stuff with the graph lock 174 * dropped already) 175 */ 176 if (!debug_locks) { 177 lockdep_unlock(); 178 return 0; 179 } 180 return 1; 181 } 182 183 static inline void graph_unlock(void) 184 { 185 lockdep_unlock(); 186 } 187 188 /* 189 * Turn lock debugging off and return with 0 if it was off already, 190 * and also release the graph lock: 191 */ 192 static inline int debug_locks_off_graph_unlock(void) 193 { 194 int ret = debug_locks_off(); 195 196 lockdep_unlock(); 197 198 return ret; 199 } 200 201 unsigned long nr_list_entries; 202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 204 205 /* 206 * All data structures here are protected by the global debug_lock. 207 * 208 * nr_lock_classes is the number of elements of lock_classes[] that is 209 * in use. 210 */ 211 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 212 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 214 unsigned long nr_lock_classes; 215 unsigned long nr_zapped_classes; 216 unsigned long max_lock_class_idx; 217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 219 220 static inline struct lock_class *hlock_class(struct held_lock *hlock) 221 { 222 unsigned int class_idx = hlock->class_idx; 223 224 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 225 barrier(); 226 227 if (!test_bit(class_idx, lock_classes_in_use)) { 228 /* 229 * Someone passed in garbage, we give up. 230 */ 231 DEBUG_LOCKS_WARN_ON(1); 232 return NULL; 233 } 234 235 /* 236 * At this point, if the passed hlock->class_idx is still garbage, 237 * we just have to live with it 238 */ 239 return lock_classes + class_idx; 240 } 241 242 #ifdef CONFIG_LOCK_STAT 243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 244 245 static inline u64 lockstat_clock(void) 246 { 247 return local_clock(); 248 } 249 250 static int lock_point(unsigned long points[], unsigned long ip) 251 { 252 int i; 253 254 for (i = 0; i < LOCKSTAT_POINTS; i++) { 255 if (points[i] == 0) { 256 points[i] = ip; 257 break; 258 } 259 if (points[i] == ip) 260 break; 261 } 262 263 return i; 264 } 265 266 static void lock_time_inc(struct lock_time *lt, u64 time) 267 { 268 if (time > lt->max) 269 lt->max = time; 270 271 if (time < lt->min || !lt->nr) 272 lt->min = time; 273 274 lt->total += time; 275 lt->nr++; 276 } 277 278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 279 { 280 if (!src->nr) 281 return; 282 283 if (src->max > dst->max) 284 dst->max = src->max; 285 286 if (src->min < dst->min || !dst->nr) 287 dst->min = src->min; 288 289 dst->total += src->total; 290 dst->nr += src->nr; 291 } 292 293 struct lock_class_stats lock_stats(struct lock_class *class) 294 { 295 struct lock_class_stats stats; 296 int cpu, i; 297 298 memset(&stats, 0, sizeof(struct lock_class_stats)); 299 for_each_possible_cpu(cpu) { 300 struct lock_class_stats *pcs = 301 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 302 303 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 304 stats.contention_point[i] += pcs->contention_point[i]; 305 306 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 307 stats.contending_point[i] += pcs->contending_point[i]; 308 309 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 310 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 311 312 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 313 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 314 315 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 316 stats.bounces[i] += pcs->bounces[i]; 317 } 318 319 return stats; 320 } 321 322 void clear_lock_stats(struct lock_class *class) 323 { 324 int cpu; 325 326 for_each_possible_cpu(cpu) { 327 struct lock_class_stats *cpu_stats = 328 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 329 330 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 331 } 332 memset(class->contention_point, 0, sizeof(class->contention_point)); 333 memset(class->contending_point, 0, sizeof(class->contending_point)); 334 } 335 336 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 337 { 338 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 339 } 340 341 static void lock_release_holdtime(struct held_lock *hlock) 342 { 343 struct lock_class_stats *stats; 344 u64 holdtime; 345 346 if (!lock_stat) 347 return; 348 349 holdtime = lockstat_clock() - hlock->holdtime_stamp; 350 351 stats = get_lock_stats(hlock_class(hlock)); 352 if (hlock->read) 353 lock_time_inc(&stats->read_holdtime, holdtime); 354 else 355 lock_time_inc(&stats->write_holdtime, holdtime); 356 } 357 #else 358 static inline void lock_release_holdtime(struct held_lock *hlock) 359 { 360 } 361 #endif 362 363 /* 364 * We keep a global list of all lock classes. The list is only accessed with 365 * the lockdep spinlock lock held. free_lock_classes is a list with free 366 * elements. These elements are linked together by the lock_entry member in 367 * struct lock_class. 368 */ 369 static LIST_HEAD(all_lock_classes); 370 static LIST_HEAD(free_lock_classes); 371 372 /** 373 * struct pending_free - information about data structures about to be freed 374 * @zapped: Head of a list with struct lock_class elements. 375 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 376 * are about to be freed. 377 */ 378 struct pending_free { 379 struct list_head zapped; 380 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 381 }; 382 383 /** 384 * struct delayed_free - data structures used for delayed freeing 385 * 386 * A data structure for delayed freeing of data structures that may be 387 * accessed by RCU readers at the time these were freed. 388 * 389 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 390 * @index: Index of @pf to which freed data structures are added. 391 * @scheduled: Whether or not an RCU callback has been scheduled. 392 * @pf: Array with information about data structures about to be freed. 393 */ 394 static struct delayed_free { 395 struct rcu_head rcu_head; 396 int index; 397 int scheduled; 398 struct pending_free pf[2]; 399 } delayed_free; 400 401 /* 402 * The lockdep classes are in a hash-table as well, for fast lookup: 403 */ 404 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 405 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 406 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 407 #define classhashentry(key) (classhash_table + __classhashfn((key))) 408 409 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 410 411 /* 412 * We put the lock dependency chains into a hash-table as well, to cache 413 * their existence: 414 */ 415 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 416 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 417 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 418 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 419 420 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 421 422 /* 423 * the id of held_lock 424 */ 425 static inline u16 hlock_id(struct held_lock *hlock) 426 { 427 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 428 429 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 430 } 431 432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 433 { 434 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 435 } 436 437 /* 438 * The hash key of the lock dependency chains is a hash itself too: 439 * it's a hash of all locks taken up to that lock, including that lock. 440 * It's a 64-bit hash, because it's important for the keys to be 441 * unique. 442 */ 443 static inline u64 iterate_chain_key(u64 key, u32 idx) 444 { 445 u32 k0 = key, k1 = key >> 32; 446 447 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 448 449 return k0 | (u64)k1 << 32; 450 } 451 452 void lockdep_init_task(struct task_struct *task) 453 { 454 task->lockdep_depth = 0; /* no locks held yet */ 455 task->curr_chain_key = INITIAL_CHAIN_KEY; 456 task->lockdep_recursion = 0; 457 } 458 459 static __always_inline void lockdep_recursion_inc(void) 460 { 461 __this_cpu_inc(lockdep_recursion); 462 } 463 464 static __always_inline void lockdep_recursion_finish(void) 465 { 466 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 467 __this_cpu_write(lockdep_recursion, 0); 468 } 469 470 void lockdep_set_selftest_task(struct task_struct *task) 471 { 472 lockdep_selftest_task_struct = task; 473 } 474 475 /* 476 * Debugging switches: 477 */ 478 479 #define VERBOSE 0 480 #define VERY_VERBOSE 0 481 482 #if VERBOSE 483 # define HARDIRQ_VERBOSE 1 484 # define SOFTIRQ_VERBOSE 1 485 #else 486 # define HARDIRQ_VERBOSE 0 487 # define SOFTIRQ_VERBOSE 0 488 #endif 489 490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 491 /* 492 * Quick filtering for interesting events: 493 */ 494 static int class_filter(struct lock_class *class) 495 { 496 #if 0 497 /* Example */ 498 if (class->name_version == 1 && 499 !strcmp(class->name, "lockname")) 500 return 1; 501 if (class->name_version == 1 && 502 !strcmp(class->name, "&struct->lockfield")) 503 return 1; 504 #endif 505 /* Filter everything else. 1 would be to allow everything else */ 506 return 0; 507 } 508 #endif 509 510 static int verbose(struct lock_class *class) 511 { 512 #if VERBOSE 513 return class_filter(class); 514 #endif 515 return 0; 516 } 517 518 static void print_lockdep_off(const char *bug_msg) 519 { 520 printk(KERN_DEBUG "%s\n", bug_msg); 521 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 522 #ifdef CONFIG_LOCK_STAT 523 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 524 #endif 525 } 526 527 unsigned long nr_stack_trace_entries; 528 529 #ifdef CONFIG_PROVE_LOCKING 530 /** 531 * struct lock_trace - single stack backtrace 532 * @hash_entry: Entry in a stack_trace_hash[] list. 533 * @hash: jhash() of @entries. 534 * @nr_entries: Number of entries in @entries. 535 * @entries: Actual stack backtrace. 536 */ 537 struct lock_trace { 538 struct hlist_node hash_entry; 539 u32 hash; 540 u32 nr_entries; 541 unsigned long entries[] __aligned(sizeof(unsigned long)); 542 }; 543 #define LOCK_TRACE_SIZE_IN_LONGS \ 544 (sizeof(struct lock_trace) / sizeof(unsigned long)) 545 /* 546 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 547 */ 548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 550 551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 552 { 553 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 554 memcmp(t1->entries, t2->entries, 555 t1->nr_entries * sizeof(t1->entries[0])) == 0; 556 } 557 558 static struct lock_trace *save_trace(void) 559 { 560 struct lock_trace *trace, *t2; 561 struct hlist_head *hash_head; 562 u32 hash; 563 int max_entries; 564 565 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 566 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 567 568 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 569 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 570 LOCK_TRACE_SIZE_IN_LONGS; 571 572 if (max_entries <= 0) { 573 if (!debug_locks_off_graph_unlock()) 574 return NULL; 575 576 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 577 dump_stack(); 578 579 return NULL; 580 } 581 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 582 583 hash = jhash(trace->entries, trace->nr_entries * 584 sizeof(trace->entries[0]), 0); 585 trace->hash = hash; 586 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 587 hlist_for_each_entry(t2, hash_head, hash_entry) { 588 if (traces_identical(trace, t2)) 589 return t2; 590 } 591 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 592 hlist_add_head(&trace->hash_entry, hash_head); 593 594 return trace; 595 } 596 597 /* Return the number of stack traces in the stack_trace[] array. */ 598 u64 lockdep_stack_trace_count(void) 599 { 600 struct lock_trace *trace; 601 u64 c = 0; 602 int i; 603 604 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 605 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 606 c++; 607 } 608 } 609 610 return c; 611 } 612 613 /* Return the number of stack hash chains that have at least one stack trace. */ 614 u64 lockdep_stack_hash_count(void) 615 { 616 u64 c = 0; 617 int i; 618 619 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 620 if (!hlist_empty(&stack_trace_hash[i])) 621 c++; 622 623 return c; 624 } 625 #endif 626 627 unsigned int nr_hardirq_chains; 628 unsigned int nr_softirq_chains; 629 unsigned int nr_process_chains; 630 unsigned int max_lockdep_depth; 631 632 #ifdef CONFIG_DEBUG_LOCKDEP 633 /* 634 * Various lockdep statistics: 635 */ 636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 637 #endif 638 639 #ifdef CONFIG_PROVE_LOCKING 640 /* 641 * Locking printouts: 642 */ 643 644 #define __USAGE(__STATE) \ 645 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 646 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 647 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 648 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 649 650 static const char *usage_str[] = 651 { 652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 653 #include "lockdep_states.h" 654 #undef LOCKDEP_STATE 655 [LOCK_USED] = "INITIAL USE", 656 [LOCK_USED_READ] = "INITIAL READ USE", 657 /* abused as string storage for verify_lock_unused() */ 658 [LOCK_USAGE_STATES] = "IN-NMI", 659 }; 660 #endif 661 662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 663 { 664 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 665 } 666 667 static inline unsigned long lock_flag(enum lock_usage_bit bit) 668 { 669 return 1UL << bit; 670 } 671 672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 673 { 674 /* 675 * The usage character defaults to '.' (i.e., irqs disabled and not in 676 * irq context), which is the safest usage category. 677 */ 678 char c = '.'; 679 680 /* 681 * The order of the following usage checks matters, which will 682 * result in the outcome character as follows: 683 * 684 * - '+': irq is enabled and not in irq context 685 * - '-': in irq context and irq is disabled 686 * - '?': in irq context and irq is enabled 687 */ 688 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 689 c = '+'; 690 if (class->usage_mask & lock_flag(bit)) 691 c = '?'; 692 } else if (class->usage_mask & lock_flag(bit)) 693 c = '-'; 694 695 return c; 696 } 697 698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 699 { 700 int i = 0; 701 702 #define LOCKDEP_STATE(__STATE) \ 703 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 705 #include "lockdep_states.h" 706 #undef LOCKDEP_STATE 707 708 usage[i] = '\0'; 709 } 710 711 static void __print_lock_name(struct lock_class *class) 712 { 713 char str[KSYM_NAME_LEN]; 714 const char *name; 715 716 name = class->name; 717 if (!name) { 718 name = __get_key_name(class->key, str); 719 printk(KERN_CONT "%s", name); 720 } else { 721 printk(KERN_CONT "%s", name); 722 if (class->name_version > 1) 723 printk(KERN_CONT "#%d", class->name_version); 724 if (class->subclass) 725 printk(KERN_CONT "/%d", class->subclass); 726 } 727 } 728 729 static void print_lock_name(struct lock_class *class) 730 { 731 char usage[LOCK_USAGE_CHARS]; 732 733 get_usage_chars(class, usage); 734 735 printk(KERN_CONT " ("); 736 __print_lock_name(class); 737 printk(KERN_CONT "){%s}-{%d:%d}", usage, 738 class->wait_type_outer ?: class->wait_type_inner, 739 class->wait_type_inner); 740 } 741 742 static void print_lockdep_cache(struct lockdep_map *lock) 743 { 744 const char *name; 745 char str[KSYM_NAME_LEN]; 746 747 name = lock->name; 748 if (!name) 749 name = __get_key_name(lock->key->subkeys, str); 750 751 printk(KERN_CONT "%s", name); 752 } 753 754 static void print_lock(struct held_lock *hlock) 755 { 756 /* 757 * We can be called locklessly through debug_show_all_locks() so be 758 * extra careful, the hlock might have been released and cleared. 759 * 760 * If this indeed happens, lets pretend it does not hurt to continue 761 * to print the lock unless the hlock class_idx does not point to a 762 * registered class. The rationale here is: since we don't attempt 763 * to distinguish whether we are in this situation, if it just 764 * happened we can't count on class_idx to tell either. 765 */ 766 struct lock_class *lock = hlock_class(hlock); 767 768 if (!lock) { 769 printk(KERN_CONT "<RELEASED>\n"); 770 return; 771 } 772 773 printk(KERN_CONT "%px", hlock->instance); 774 print_lock_name(lock); 775 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 776 } 777 778 static void lockdep_print_held_locks(struct task_struct *p) 779 { 780 int i, depth = READ_ONCE(p->lockdep_depth); 781 782 if (!depth) 783 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 784 else 785 printk("%d lock%s held by %s/%d:\n", depth, 786 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 787 /* 788 * It's not reliable to print a task's held locks if it's not sleeping 789 * and it's not the current task. 790 */ 791 if (p != current && task_is_running(p)) 792 return; 793 for (i = 0; i < depth; i++) { 794 printk(" #%d: ", i); 795 print_lock(p->held_locks + i); 796 } 797 } 798 799 static void print_kernel_ident(void) 800 { 801 printk("%s %.*s %s\n", init_utsname()->release, 802 (int)strcspn(init_utsname()->version, " "), 803 init_utsname()->version, 804 print_tainted()); 805 } 806 807 static int very_verbose(struct lock_class *class) 808 { 809 #if VERY_VERBOSE 810 return class_filter(class); 811 #endif 812 return 0; 813 } 814 815 /* 816 * Is this the address of a static object: 817 */ 818 #ifdef __KERNEL__ 819 /* 820 * Check if an address is part of freed initmem. After initmem is freed, 821 * memory can be allocated from it, and such allocations would then have 822 * addresses within the range [_stext, _end]. 823 */ 824 #ifndef arch_is_kernel_initmem_freed 825 static int arch_is_kernel_initmem_freed(unsigned long addr) 826 { 827 if (system_state < SYSTEM_FREEING_INITMEM) 828 return 0; 829 830 return init_section_contains((void *)addr, 1); 831 } 832 #endif 833 834 static int static_obj(const void *obj) 835 { 836 unsigned long start = (unsigned long) &_stext, 837 end = (unsigned long) &_end, 838 addr = (unsigned long) obj; 839 840 if (arch_is_kernel_initmem_freed(addr)) 841 return 0; 842 843 /* 844 * static variable? 845 */ 846 if ((addr >= start) && (addr < end)) 847 return 1; 848 849 /* 850 * in-kernel percpu var? 851 */ 852 if (is_kernel_percpu_address(addr)) 853 return 1; 854 855 /* 856 * module static or percpu var? 857 */ 858 return is_module_address(addr) || is_module_percpu_address(addr); 859 } 860 #endif 861 862 /* 863 * To make lock name printouts unique, we calculate a unique 864 * class->name_version generation counter. The caller must hold the graph 865 * lock. 866 */ 867 static int count_matching_names(struct lock_class *new_class) 868 { 869 struct lock_class *class; 870 int count = 0; 871 872 if (!new_class->name) 873 return 0; 874 875 list_for_each_entry(class, &all_lock_classes, lock_entry) { 876 if (new_class->key - new_class->subclass == class->key) 877 return class->name_version; 878 if (class->name && !strcmp(class->name, new_class->name)) 879 count = max(count, class->name_version); 880 } 881 882 return count + 1; 883 } 884 885 /* used from NMI context -- must be lockless */ 886 static noinstr struct lock_class * 887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 888 { 889 struct lockdep_subclass_key *key; 890 struct hlist_head *hash_head; 891 struct lock_class *class; 892 893 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 894 instrumentation_begin(); 895 debug_locks_off(); 896 printk(KERN_ERR 897 "BUG: looking up invalid subclass: %u\n", subclass); 898 printk(KERN_ERR 899 "turning off the locking correctness validator.\n"); 900 dump_stack(); 901 instrumentation_end(); 902 return NULL; 903 } 904 905 /* 906 * If it is not initialised then it has never been locked, 907 * so it won't be present in the hash table. 908 */ 909 if (unlikely(!lock->key)) 910 return NULL; 911 912 /* 913 * NOTE: the class-key must be unique. For dynamic locks, a static 914 * lock_class_key variable is passed in through the mutex_init() 915 * (or spin_lock_init()) call - which acts as the key. For static 916 * locks we use the lock object itself as the key. 917 */ 918 BUILD_BUG_ON(sizeof(struct lock_class_key) > 919 sizeof(struct lockdep_map)); 920 921 key = lock->key->subkeys + subclass; 922 923 hash_head = classhashentry(key); 924 925 /* 926 * We do an RCU walk of the hash, see lockdep_free_key_range(). 927 */ 928 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 929 return NULL; 930 931 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 932 if (class->key == key) { 933 /* 934 * Huh! same key, different name? Did someone trample 935 * on some memory? We're most confused. 936 */ 937 WARN_ONCE(class->name != lock->name && 938 lock->key != &__lockdep_no_validate__, 939 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 940 lock->name, lock->key, class->name); 941 return class; 942 } 943 } 944 945 return NULL; 946 } 947 948 /* 949 * Static locks do not have their class-keys yet - for them the key is 950 * the lock object itself. If the lock is in the per cpu area, the 951 * canonical address of the lock (per cpu offset removed) is used. 952 */ 953 static bool assign_lock_key(struct lockdep_map *lock) 954 { 955 unsigned long can_addr, addr = (unsigned long)lock; 956 957 #ifdef __KERNEL__ 958 /* 959 * lockdep_free_key_range() assumes that struct lock_class_key 960 * objects do not overlap. Since we use the address of lock 961 * objects as class key for static objects, check whether the 962 * size of lock_class_key objects does not exceed the size of 963 * the smallest lock object. 964 */ 965 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 966 #endif 967 968 if (__is_kernel_percpu_address(addr, &can_addr)) 969 lock->key = (void *)can_addr; 970 else if (__is_module_percpu_address(addr, &can_addr)) 971 lock->key = (void *)can_addr; 972 else if (static_obj(lock)) 973 lock->key = (void *)lock; 974 else { 975 /* Debug-check: all keys must be persistent! */ 976 debug_locks_off(); 977 pr_err("INFO: trying to register non-static key.\n"); 978 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 979 pr_err("you didn't initialize this object before use?\n"); 980 pr_err("turning off the locking correctness validator.\n"); 981 dump_stack(); 982 return false; 983 } 984 985 return true; 986 } 987 988 #ifdef CONFIG_DEBUG_LOCKDEP 989 990 /* Check whether element @e occurs in list @h */ 991 static bool in_list(struct list_head *e, struct list_head *h) 992 { 993 struct list_head *f; 994 995 list_for_each(f, h) { 996 if (e == f) 997 return true; 998 } 999 1000 return false; 1001 } 1002 1003 /* 1004 * Check whether entry @e occurs in any of the locks_after or locks_before 1005 * lists. 1006 */ 1007 static bool in_any_class_list(struct list_head *e) 1008 { 1009 struct lock_class *class; 1010 int i; 1011 1012 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1013 class = &lock_classes[i]; 1014 if (in_list(e, &class->locks_after) || 1015 in_list(e, &class->locks_before)) 1016 return true; 1017 } 1018 return false; 1019 } 1020 1021 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1022 { 1023 struct lock_list *e; 1024 1025 list_for_each_entry(e, h, entry) { 1026 if (e->links_to != c) { 1027 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1028 c->name ? : "(?)", 1029 (unsigned long)(e - list_entries), 1030 e->links_to && e->links_to->name ? 1031 e->links_to->name : "(?)", 1032 e->class && e->class->name ? e->class->name : 1033 "(?)"); 1034 return false; 1035 } 1036 } 1037 return true; 1038 } 1039 1040 #ifdef CONFIG_PROVE_LOCKING 1041 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1042 #endif 1043 1044 static bool check_lock_chain_key(struct lock_chain *chain) 1045 { 1046 #ifdef CONFIG_PROVE_LOCKING 1047 u64 chain_key = INITIAL_CHAIN_KEY; 1048 int i; 1049 1050 for (i = chain->base; i < chain->base + chain->depth; i++) 1051 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1052 /* 1053 * The 'unsigned long long' casts avoid that a compiler warning 1054 * is reported when building tools/lib/lockdep. 1055 */ 1056 if (chain->chain_key != chain_key) { 1057 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1058 (unsigned long long)(chain - lock_chains), 1059 (unsigned long long)chain->chain_key, 1060 (unsigned long long)chain_key); 1061 return false; 1062 } 1063 #endif 1064 return true; 1065 } 1066 1067 static bool in_any_zapped_class_list(struct lock_class *class) 1068 { 1069 struct pending_free *pf; 1070 int i; 1071 1072 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1073 if (in_list(&class->lock_entry, &pf->zapped)) 1074 return true; 1075 } 1076 1077 return false; 1078 } 1079 1080 static bool __check_data_structures(void) 1081 { 1082 struct lock_class *class; 1083 struct lock_chain *chain; 1084 struct hlist_head *head; 1085 struct lock_list *e; 1086 int i; 1087 1088 /* Check whether all classes occur in a lock list. */ 1089 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1090 class = &lock_classes[i]; 1091 if (!in_list(&class->lock_entry, &all_lock_classes) && 1092 !in_list(&class->lock_entry, &free_lock_classes) && 1093 !in_any_zapped_class_list(class)) { 1094 printk(KERN_INFO "class %px/%s is not in any class list\n", 1095 class, class->name ? : "(?)"); 1096 return false; 1097 } 1098 } 1099 1100 /* Check whether all classes have valid lock lists. */ 1101 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1102 class = &lock_classes[i]; 1103 if (!class_lock_list_valid(class, &class->locks_before)) 1104 return false; 1105 if (!class_lock_list_valid(class, &class->locks_after)) 1106 return false; 1107 } 1108 1109 /* Check the chain_key of all lock chains. */ 1110 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1111 head = chainhash_table + i; 1112 hlist_for_each_entry_rcu(chain, head, entry) { 1113 if (!check_lock_chain_key(chain)) 1114 return false; 1115 } 1116 } 1117 1118 /* 1119 * Check whether all list entries that are in use occur in a class 1120 * lock list. 1121 */ 1122 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1123 e = list_entries + i; 1124 if (!in_any_class_list(&e->entry)) { 1125 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1126 (unsigned int)(e - list_entries), 1127 e->class->name ? : "(?)", 1128 e->links_to->name ? : "(?)"); 1129 return false; 1130 } 1131 } 1132 1133 /* 1134 * Check whether all list entries that are not in use do not occur in 1135 * a class lock list. 1136 */ 1137 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1138 e = list_entries + i; 1139 if (in_any_class_list(&e->entry)) { 1140 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1141 (unsigned int)(e - list_entries), 1142 e->class && e->class->name ? e->class->name : 1143 "(?)", 1144 e->links_to && e->links_to->name ? 1145 e->links_to->name : "(?)"); 1146 return false; 1147 } 1148 } 1149 1150 return true; 1151 } 1152 1153 int check_consistency = 0; 1154 module_param(check_consistency, int, 0644); 1155 1156 static void check_data_structures(void) 1157 { 1158 static bool once = false; 1159 1160 if (check_consistency && !once) { 1161 if (!__check_data_structures()) { 1162 once = true; 1163 WARN_ON(once); 1164 } 1165 } 1166 } 1167 1168 #else /* CONFIG_DEBUG_LOCKDEP */ 1169 1170 static inline void check_data_structures(void) { } 1171 1172 #endif /* CONFIG_DEBUG_LOCKDEP */ 1173 1174 static void init_chain_block_buckets(void); 1175 1176 /* 1177 * Initialize the lock_classes[] array elements, the free_lock_classes list 1178 * and also the delayed_free structure. 1179 */ 1180 static void init_data_structures_once(void) 1181 { 1182 static bool __read_mostly ds_initialized, rcu_head_initialized; 1183 int i; 1184 1185 if (likely(rcu_head_initialized)) 1186 return; 1187 1188 if (system_state >= SYSTEM_SCHEDULING) { 1189 init_rcu_head(&delayed_free.rcu_head); 1190 rcu_head_initialized = true; 1191 } 1192 1193 if (ds_initialized) 1194 return; 1195 1196 ds_initialized = true; 1197 1198 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1199 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1200 1201 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1202 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1203 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1205 } 1206 init_chain_block_buckets(); 1207 } 1208 1209 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1210 { 1211 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1212 1213 return lock_keys_hash + hash; 1214 } 1215 1216 /* Register a dynamically allocated key. */ 1217 void lockdep_register_key(struct lock_class_key *key) 1218 { 1219 struct hlist_head *hash_head; 1220 struct lock_class_key *k; 1221 unsigned long flags; 1222 1223 if (WARN_ON_ONCE(static_obj(key))) 1224 return; 1225 hash_head = keyhashentry(key); 1226 1227 raw_local_irq_save(flags); 1228 if (!graph_lock()) 1229 goto restore_irqs; 1230 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1231 if (WARN_ON_ONCE(k == key)) 1232 goto out_unlock; 1233 } 1234 hlist_add_head_rcu(&key->hash_entry, hash_head); 1235 out_unlock: 1236 graph_unlock(); 1237 restore_irqs: 1238 raw_local_irq_restore(flags); 1239 } 1240 EXPORT_SYMBOL_GPL(lockdep_register_key); 1241 1242 /* Check whether a key has been registered as a dynamic key. */ 1243 static bool is_dynamic_key(const struct lock_class_key *key) 1244 { 1245 struct hlist_head *hash_head; 1246 struct lock_class_key *k; 1247 bool found = false; 1248 1249 if (WARN_ON_ONCE(static_obj(key))) 1250 return false; 1251 1252 /* 1253 * If lock debugging is disabled lock_keys_hash[] may contain 1254 * pointers to memory that has already been freed. Avoid triggering 1255 * a use-after-free in that case by returning early. 1256 */ 1257 if (!debug_locks) 1258 return true; 1259 1260 hash_head = keyhashentry(key); 1261 1262 rcu_read_lock(); 1263 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1264 if (k == key) { 1265 found = true; 1266 break; 1267 } 1268 } 1269 rcu_read_unlock(); 1270 1271 return found; 1272 } 1273 1274 /* 1275 * Register a lock's class in the hash-table, if the class is not present 1276 * yet. Otherwise we look it up. We cache the result in the lock object 1277 * itself, so actual lookup of the hash should be once per lock object. 1278 */ 1279 static struct lock_class * 1280 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1281 { 1282 struct lockdep_subclass_key *key; 1283 struct hlist_head *hash_head; 1284 struct lock_class *class; 1285 int idx; 1286 1287 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1288 1289 class = look_up_lock_class(lock, subclass); 1290 if (likely(class)) 1291 goto out_set_class_cache; 1292 1293 if (!lock->key) { 1294 if (!assign_lock_key(lock)) 1295 return NULL; 1296 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1297 return NULL; 1298 } 1299 1300 key = lock->key->subkeys + subclass; 1301 hash_head = classhashentry(key); 1302 1303 if (!graph_lock()) { 1304 return NULL; 1305 } 1306 /* 1307 * We have to do the hash-walk again, to avoid races 1308 * with another CPU: 1309 */ 1310 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1311 if (class->key == key) 1312 goto out_unlock_set; 1313 } 1314 1315 init_data_structures_once(); 1316 1317 /* Allocate a new lock class and add it to the hash. */ 1318 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1319 lock_entry); 1320 if (!class) { 1321 if (!debug_locks_off_graph_unlock()) { 1322 return NULL; 1323 } 1324 1325 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1326 dump_stack(); 1327 return NULL; 1328 } 1329 nr_lock_classes++; 1330 __set_bit(class - lock_classes, lock_classes_in_use); 1331 debug_atomic_inc(nr_unused_locks); 1332 class->key = key; 1333 class->name = lock->name; 1334 class->subclass = subclass; 1335 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1336 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1337 class->name_version = count_matching_names(class); 1338 class->wait_type_inner = lock->wait_type_inner; 1339 class->wait_type_outer = lock->wait_type_outer; 1340 class->lock_type = lock->lock_type; 1341 /* 1342 * We use RCU's safe list-add method to make 1343 * parallel walking of the hash-list safe: 1344 */ 1345 hlist_add_head_rcu(&class->hash_entry, hash_head); 1346 /* 1347 * Remove the class from the free list and add it to the global list 1348 * of classes. 1349 */ 1350 list_move_tail(&class->lock_entry, &all_lock_classes); 1351 idx = class - lock_classes; 1352 if (idx > max_lock_class_idx) 1353 max_lock_class_idx = idx; 1354 1355 if (verbose(class)) { 1356 graph_unlock(); 1357 1358 printk("\nnew class %px: %s", class->key, class->name); 1359 if (class->name_version > 1) 1360 printk(KERN_CONT "#%d", class->name_version); 1361 printk(KERN_CONT "\n"); 1362 dump_stack(); 1363 1364 if (!graph_lock()) { 1365 return NULL; 1366 } 1367 } 1368 out_unlock_set: 1369 graph_unlock(); 1370 1371 out_set_class_cache: 1372 if (!subclass || force) 1373 lock->class_cache[0] = class; 1374 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1375 lock->class_cache[subclass] = class; 1376 1377 /* 1378 * Hash collision, did we smoke some? We found a class with a matching 1379 * hash but the subclass -- which is hashed in -- didn't match. 1380 */ 1381 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1382 return NULL; 1383 1384 return class; 1385 } 1386 1387 #ifdef CONFIG_PROVE_LOCKING 1388 /* 1389 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1390 * with NULL on failure) 1391 */ 1392 static struct lock_list *alloc_list_entry(void) 1393 { 1394 int idx = find_first_zero_bit(list_entries_in_use, 1395 ARRAY_SIZE(list_entries)); 1396 1397 if (idx >= ARRAY_SIZE(list_entries)) { 1398 if (!debug_locks_off_graph_unlock()) 1399 return NULL; 1400 1401 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1402 dump_stack(); 1403 return NULL; 1404 } 1405 nr_list_entries++; 1406 __set_bit(idx, list_entries_in_use); 1407 return list_entries + idx; 1408 } 1409 1410 /* 1411 * Add a new dependency to the head of the list: 1412 */ 1413 static int add_lock_to_list(struct lock_class *this, 1414 struct lock_class *links_to, struct list_head *head, 1415 u16 distance, u8 dep, 1416 const struct lock_trace *trace) 1417 { 1418 struct lock_list *entry; 1419 /* 1420 * Lock not present yet - get a new dependency struct and 1421 * add it to the list: 1422 */ 1423 entry = alloc_list_entry(); 1424 if (!entry) 1425 return 0; 1426 1427 entry->class = this; 1428 entry->links_to = links_to; 1429 entry->dep = dep; 1430 entry->distance = distance; 1431 entry->trace = trace; 1432 /* 1433 * Both allocation and removal are done under the graph lock; but 1434 * iteration is under RCU-sched; see look_up_lock_class() and 1435 * lockdep_free_key_range(). 1436 */ 1437 list_add_tail_rcu(&entry->entry, head); 1438 1439 return 1; 1440 } 1441 1442 /* 1443 * For good efficiency of modular, we use power of 2 1444 */ 1445 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1446 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1447 1448 /* 1449 * The circular_queue and helpers are used to implement graph 1450 * breadth-first search (BFS) algorithm, by which we can determine 1451 * whether there is a path from a lock to another. In deadlock checks, 1452 * a path from the next lock to be acquired to a previous held lock 1453 * indicates that adding the <prev> -> <next> lock dependency will 1454 * produce a circle in the graph. Breadth-first search instead of 1455 * depth-first search is used in order to find the shortest (circular) 1456 * path. 1457 */ 1458 struct circular_queue { 1459 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1460 unsigned int front, rear; 1461 }; 1462 1463 static struct circular_queue lock_cq; 1464 1465 unsigned int max_bfs_queue_depth; 1466 1467 static unsigned int lockdep_dependency_gen_id; 1468 1469 static inline void __cq_init(struct circular_queue *cq) 1470 { 1471 cq->front = cq->rear = 0; 1472 lockdep_dependency_gen_id++; 1473 } 1474 1475 static inline int __cq_empty(struct circular_queue *cq) 1476 { 1477 return (cq->front == cq->rear); 1478 } 1479 1480 static inline int __cq_full(struct circular_queue *cq) 1481 { 1482 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1483 } 1484 1485 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1486 { 1487 if (__cq_full(cq)) 1488 return -1; 1489 1490 cq->element[cq->rear] = elem; 1491 cq->rear = (cq->rear + 1) & CQ_MASK; 1492 return 0; 1493 } 1494 1495 /* 1496 * Dequeue an element from the circular_queue, return a lock_list if 1497 * the queue is not empty, or NULL if otherwise. 1498 */ 1499 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1500 { 1501 struct lock_list * lock; 1502 1503 if (__cq_empty(cq)) 1504 return NULL; 1505 1506 lock = cq->element[cq->front]; 1507 cq->front = (cq->front + 1) & CQ_MASK; 1508 1509 return lock; 1510 } 1511 1512 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1513 { 1514 return (cq->rear - cq->front) & CQ_MASK; 1515 } 1516 1517 static inline void mark_lock_accessed(struct lock_list *lock) 1518 { 1519 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1520 } 1521 1522 static inline void visit_lock_entry(struct lock_list *lock, 1523 struct lock_list *parent) 1524 { 1525 lock->parent = parent; 1526 } 1527 1528 static inline unsigned long lock_accessed(struct lock_list *lock) 1529 { 1530 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1531 } 1532 1533 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1534 { 1535 return child->parent; 1536 } 1537 1538 static inline int get_lock_depth(struct lock_list *child) 1539 { 1540 int depth = 0; 1541 struct lock_list *parent; 1542 1543 while ((parent = get_lock_parent(child))) { 1544 child = parent; 1545 depth++; 1546 } 1547 return depth; 1548 } 1549 1550 /* 1551 * Return the forward or backward dependency list. 1552 * 1553 * @lock: the lock_list to get its class's dependency list 1554 * @offset: the offset to struct lock_class to determine whether it is 1555 * locks_after or locks_before 1556 */ 1557 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1558 { 1559 void *lock_class = lock->class; 1560 1561 return lock_class + offset; 1562 } 1563 /* 1564 * Return values of a bfs search: 1565 * 1566 * BFS_E* indicates an error 1567 * BFS_R* indicates a result (match or not) 1568 * 1569 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1570 * 1571 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1572 * 1573 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1574 * *@target_entry. 1575 * 1576 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1577 * _unchanged_. 1578 */ 1579 enum bfs_result { 1580 BFS_EINVALIDNODE = -2, 1581 BFS_EQUEUEFULL = -1, 1582 BFS_RMATCH = 0, 1583 BFS_RNOMATCH = 1, 1584 }; 1585 1586 /* 1587 * bfs_result < 0 means error 1588 */ 1589 static inline bool bfs_error(enum bfs_result res) 1590 { 1591 return res < 0; 1592 } 1593 1594 /* 1595 * DEP_*_BIT in lock_list::dep 1596 * 1597 * For dependency @prev -> @next: 1598 * 1599 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1600 * (->read == 2) 1601 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1602 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1603 * EN: @prev is exclusive locker and @next is non-recursive locker 1604 * 1605 * Note that we define the value of DEP_*_BITs so that: 1606 * bit0 is prev->read == 0 1607 * bit1 is next->read != 2 1608 */ 1609 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1610 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1611 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1612 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1613 1614 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1615 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1616 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1617 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1618 1619 static inline unsigned int 1620 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1621 { 1622 return (prev->read == 0) + ((next->read != 2) << 1); 1623 } 1624 1625 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1626 { 1627 return 1U << __calc_dep_bit(prev, next); 1628 } 1629 1630 /* 1631 * calculate the dep_bit for backwards edges. We care about whether @prev is 1632 * shared and whether @next is recursive. 1633 */ 1634 static inline unsigned int 1635 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1636 { 1637 return (next->read != 2) + ((prev->read == 0) << 1); 1638 } 1639 1640 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1641 { 1642 return 1U << __calc_dep_bitb(prev, next); 1643 } 1644 1645 /* 1646 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1647 * search. 1648 */ 1649 static inline void __bfs_init_root(struct lock_list *lock, 1650 struct lock_class *class) 1651 { 1652 lock->class = class; 1653 lock->parent = NULL; 1654 lock->only_xr = 0; 1655 } 1656 1657 /* 1658 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1659 * root for a BFS search. 1660 * 1661 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1662 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1663 * and -(S*)->. 1664 */ 1665 static inline void bfs_init_root(struct lock_list *lock, 1666 struct held_lock *hlock) 1667 { 1668 __bfs_init_root(lock, hlock_class(hlock)); 1669 lock->only_xr = (hlock->read == 2); 1670 } 1671 1672 /* 1673 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1674 * 1675 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1676 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1677 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1678 */ 1679 static inline void bfs_init_rootb(struct lock_list *lock, 1680 struct held_lock *hlock) 1681 { 1682 __bfs_init_root(lock, hlock_class(hlock)); 1683 lock->only_xr = (hlock->read != 0); 1684 } 1685 1686 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1687 { 1688 if (!lock || !lock->parent) 1689 return NULL; 1690 1691 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1692 &lock->entry, struct lock_list, entry); 1693 } 1694 1695 /* 1696 * Breadth-First Search to find a strong path in the dependency graph. 1697 * 1698 * @source_entry: the source of the path we are searching for. 1699 * @data: data used for the second parameter of @match function 1700 * @match: match function for the search 1701 * @target_entry: pointer to the target of a matched path 1702 * @offset: the offset to struct lock_class to determine whether it is 1703 * locks_after or locks_before 1704 * 1705 * We may have multiple edges (considering different kinds of dependencies, 1706 * e.g. ER and SN) between two nodes in the dependency graph. But 1707 * only the strong dependency path in the graph is relevant to deadlocks. A 1708 * strong dependency path is a dependency path that doesn't have two adjacent 1709 * dependencies as -(*R)-> -(S*)->, please see: 1710 * 1711 * Documentation/locking/lockdep-design.rst 1712 * 1713 * for more explanation of the definition of strong dependency paths 1714 * 1715 * In __bfs(), we only traverse in the strong dependency path: 1716 * 1717 * In lock_list::only_xr, we record whether the previous dependency only 1718 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1719 * filter out any -(S*)-> in the current dependency and after that, the 1720 * ->only_xr is set according to whether we only have -(*R)-> left. 1721 */ 1722 static enum bfs_result __bfs(struct lock_list *source_entry, 1723 void *data, 1724 bool (*match)(struct lock_list *entry, void *data), 1725 bool (*skip)(struct lock_list *entry, void *data), 1726 struct lock_list **target_entry, 1727 int offset) 1728 { 1729 struct circular_queue *cq = &lock_cq; 1730 struct lock_list *lock = NULL; 1731 struct lock_list *entry; 1732 struct list_head *head; 1733 unsigned int cq_depth; 1734 bool first; 1735 1736 lockdep_assert_locked(); 1737 1738 __cq_init(cq); 1739 __cq_enqueue(cq, source_entry); 1740 1741 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1742 if (!lock->class) 1743 return BFS_EINVALIDNODE; 1744 1745 /* 1746 * Step 1: check whether we already finish on this one. 1747 * 1748 * If we have visited all the dependencies from this @lock to 1749 * others (iow, if we have visited all lock_list entries in 1750 * @lock->class->locks_{after,before}) we skip, otherwise go 1751 * and visit all the dependencies in the list and mark this 1752 * list accessed. 1753 */ 1754 if (lock_accessed(lock)) 1755 continue; 1756 else 1757 mark_lock_accessed(lock); 1758 1759 /* 1760 * Step 2: check whether prev dependency and this form a strong 1761 * dependency path. 1762 */ 1763 if (lock->parent) { /* Parent exists, check prev dependency */ 1764 u8 dep = lock->dep; 1765 bool prev_only_xr = lock->parent->only_xr; 1766 1767 /* 1768 * Mask out all -(S*)-> if we only have *R in previous 1769 * step, because -(*R)-> -(S*)-> don't make up a strong 1770 * dependency. 1771 */ 1772 if (prev_only_xr) 1773 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1774 1775 /* If nothing left, we skip */ 1776 if (!dep) 1777 continue; 1778 1779 /* If there are only -(*R)-> left, set that for the next step */ 1780 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1781 } 1782 1783 /* 1784 * Step 3: we haven't visited this and there is a strong 1785 * dependency path to this, so check with @match. 1786 * If @skip is provide and returns true, we skip this 1787 * lock (and any path this lock is in). 1788 */ 1789 if (skip && skip(lock, data)) 1790 continue; 1791 1792 if (match(lock, data)) { 1793 *target_entry = lock; 1794 return BFS_RMATCH; 1795 } 1796 1797 /* 1798 * Step 4: if not match, expand the path by adding the 1799 * forward or backwards dependencies in the search 1800 * 1801 */ 1802 first = true; 1803 head = get_dep_list(lock, offset); 1804 list_for_each_entry_rcu(entry, head, entry) { 1805 visit_lock_entry(entry, lock); 1806 1807 /* 1808 * Note we only enqueue the first of the list into the 1809 * queue, because we can always find a sibling 1810 * dependency from one (see __bfs_next()), as a result 1811 * the space of queue is saved. 1812 */ 1813 if (!first) 1814 continue; 1815 1816 first = false; 1817 1818 if (__cq_enqueue(cq, entry)) 1819 return BFS_EQUEUEFULL; 1820 1821 cq_depth = __cq_get_elem_count(cq); 1822 if (max_bfs_queue_depth < cq_depth) 1823 max_bfs_queue_depth = cq_depth; 1824 } 1825 } 1826 1827 return BFS_RNOMATCH; 1828 } 1829 1830 static inline enum bfs_result 1831 __bfs_forwards(struct lock_list *src_entry, 1832 void *data, 1833 bool (*match)(struct lock_list *entry, void *data), 1834 bool (*skip)(struct lock_list *entry, void *data), 1835 struct lock_list **target_entry) 1836 { 1837 return __bfs(src_entry, data, match, skip, target_entry, 1838 offsetof(struct lock_class, locks_after)); 1839 1840 } 1841 1842 static inline enum bfs_result 1843 __bfs_backwards(struct lock_list *src_entry, 1844 void *data, 1845 bool (*match)(struct lock_list *entry, void *data), 1846 bool (*skip)(struct lock_list *entry, void *data), 1847 struct lock_list **target_entry) 1848 { 1849 return __bfs(src_entry, data, match, skip, target_entry, 1850 offsetof(struct lock_class, locks_before)); 1851 1852 } 1853 1854 static void print_lock_trace(const struct lock_trace *trace, 1855 unsigned int spaces) 1856 { 1857 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1858 } 1859 1860 /* 1861 * Print a dependency chain entry (this is only done when a deadlock 1862 * has been detected): 1863 */ 1864 static noinline void 1865 print_circular_bug_entry(struct lock_list *target, int depth) 1866 { 1867 if (debug_locks_silent) 1868 return; 1869 printk("\n-> #%u", depth); 1870 print_lock_name(target->class); 1871 printk(KERN_CONT ":\n"); 1872 print_lock_trace(target->trace, 6); 1873 } 1874 1875 static void 1876 print_circular_lock_scenario(struct held_lock *src, 1877 struct held_lock *tgt, 1878 struct lock_list *prt) 1879 { 1880 struct lock_class *source = hlock_class(src); 1881 struct lock_class *target = hlock_class(tgt); 1882 struct lock_class *parent = prt->class; 1883 1884 /* 1885 * A direct locking problem where unsafe_class lock is taken 1886 * directly by safe_class lock, then all we need to show 1887 * is the deadlock scenario, as it is obvious that the 1888 * unsafe lock is taken under the safe lock. 1889 * 1890 * But if there is a chain instead, where the safe lock takes 1891 * an intermediate lock (middle_class) where this lock is 1892 * not the same as the safe lock, then the lock chain is 1893 * used to describe the problem. Otherwise we would need 1894 * to show a different CPU case for each link in the chain 1895 * from the safe_class lock to the unsafe_class lock. 1896 */ 1897 if (parent != source) { 1898 printk("Chain exists of:\n "); 1899 __print_lock_name(source); 1900 printk(KERN_CONT " --> "); 1901 __print_lock_name(parent); 1902 printk(KERN_CONT " --> "); 1903 __print_lock_name(target); 1904 printk(KERN_CONT "\n\n"); 1905 } 1906 1907 printk(" Possible unsafe locking scenario:\n\n"); 1908 printk(" CPU0 CPU1\n"); 1909 printk(" ---- ----\n"); 1910 printk(" lock("); 1911 __print_lock_name(target); 1912 printk(KERN_CONT ");\n"); 1913 printk(" lock("); 1914 __print_lock_name(parent); 1915 printk(KERN_CONT ");\n"); 1916 printk(" lock("); 1917 __print_lock_name(target); 1918 printk(KERN_CONT ");\n"); 1919 printk(" lock("); 1920 __print_lock_name(source); 1921 printk(KERN_CONT ");\n"); 1922 printk("\n *** DEADLOCK ***\n\n"); 1923 } 1924 1925 /* 1926 * When a circular dependency is detected, print the 1927 * header first: 1928 */ 1929 static noinline void 1930 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1931 struct held_lock *check_src, 1932 struct held_lock *check_tgt) 1933 { 1934 struct task_struct *curr = current; 1935 1936 if (debug_locks_silent) 1937 return; 1938 1939 pr_warn("\n"); 1940 pr_warn("======================================================\n"); 1941 pr_warn("WARNING: possible circular locking dependency detected\n"); 1942 print_kernel_ident(); 1943 pr_warn("------------------------------------------------------\n"); 1944 pr_warn("%s/%d is trying to acquire lock:\n", 1945 curr->comm, task_pid_nr(curr)); 1946 print_lock(check_src); 1947 1948 pr_warn("\nbut task is already holding lock:\n"); 1949 1950 print_lock(check_tgt); 1951 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1952 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1953 1954 print_circular_bug_entry(entry, depth); 1955 } 1956 1957 /* 1958 * We are about to add A -> B into the dependency graph, and in __bfs() a 1959 * strong dependency path A -> .. -> B is found: hlock_class equals 1960 * entry->class. 1961 * 1962 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1963 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1964 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1965 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1966 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1967 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1968 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1969 * 1970 * We need to make sure both the start and the end of A -> .. -> B is not 1971 * weaker than A -> B. For the start part, please see the comment in 1972 * check_redundant(). For the end part, we need: 1973 * 1974 * Either 1975 * 1976 * a) A -> B is -(*R)-> (everything is not weaker than that) 1977 * 1978 * or 1979 * 1980 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1981 * 1982 */ 1983 static inline bool hlock_equal(struct lock_list *entry, void *data) 1984 { 1985 struct held_lock *hlock = (struct held_lock *)data; 1986 1987 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1988 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1989 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1990 } 1991 1992 /* 1993 * We are about to add B -> A into the dependency graph, and in __bfs() a 1994 * strong dependency path A -> .. -> B is found: hlock_class equals 1995 * entry->class. 1996 * 1997 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1998 * dependency cycle, that means: 1999 * 2000 * Either 2001 * 2002 * a) B -> A is -(E*)-> 2003 * 2004 * or 2005 * 2006 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2007 * 2008 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2009 */ 2010 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2011 { 2012 struct held_lock *hlock = (struct held_lock *)data; 2013 2014 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2015 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2016 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2017 } 2018 2019 static noinline void print_circular_bug(struct lock_list *this, 2020 struct lock_list *target, 2021 struct held_lock *check_src, 2022 struct held_lock *check_tgt) 2023 { 2024 struct task_struct *curr = current; 2025 struct lock_list *parent; 2026 struct lock_list *first_parent; 2027 int depth; 2028 2029 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2030 return; 2031 2032 this->trace = save_trace(); 2033 if (!this->trace) 2034 return; 2035 2036 depth = get_lock_depth(target); 2037 2038 print_circular_bug_header(target, depth, check_src, check_tgt); 2039 2040 parent = get_lock_parent(target); 2041 first_parent = parent; 2042 2043 while (parent) { 2044 print_circular_bug_entry(parent, --depth); 2045 parent = get_lock_parent(parent); 2046 } 2047 2048 printk("\nother info that might help us debug this:\n\n"); 2049 print_circular_lock_scenario(check_src, check_tgt, 2050 first_parent); 2051 2052 lockdep_print_held_locks(curr); 2053 2054 printk("\nstack backtrace:\n"); 2055 dump_stack(); 2056 } 2057 2058 static noinline void print_bfs_bug(int ret) 2059 { 2060 if (!debug_locks_off_graph_unlock()) 2061 return; 2062 2063 /* 2064 * Breadth-first-search failed, graph got corrupted? 2065 */ 2066 WARN(1, "lockdep bfs error:%d\n", ret); 2067 } 2068 2069 static bool noop_count(struct lock_list *entry, void *data) 2070 { 2071 (*(unsigned long *)data)++; 2072 return false; 2073 } 2074 2075 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2076 { 2077 unsigned long count = 0; 2078 struct lock_list *target_entry; 2079 2080 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2081 2082 return count; 2083 } 2084 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2085 { 2086 unsigned long ret, flags; 2087 struct lock_list this; 2088 2089 __bfs_init_root(&this, class); 2090 2091 raw_local_irq_save(flags); 2092 lockdep_lock(); 2093 ret = __lockdep_count_forward_deps(&this); 2094 lockdep_unlock(); 2095 raw_local_irq_restore(flags); 2096 2097 return ret; 2098 } 2099 2100 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2101 { 2102 unsigned long count = 0; 2103 struct lock_list *target_entry; 2104 2105 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2106 2107 return count; 2108 } 2109 2110 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2111 { 2112 unsigned long ret, flags; 2113 struct lock_list this; 2114 2115 __bfs_init_root(&this, class); 2116 2117 raw_local_irq_save(flags); 2118 lockdep_lock(); 2119 ret = __lockdep_count_backward_deps(&this); 2120 lockdep_unlock(); 2121 raw_local_irq_restore(flags); 2122 2123 return ret; 2124 } 2125 2126 /* 2127 * Check that the dependency graph starting at <src> can lead to 2128 * <target> or not. 2129 */ 2130 static noinline enum bfs_result 2131 check_path(struct held_lock *target, struct lock_list *src_entry, 2132 bool (*match)(struct lock_list *entry, void *data), 2133 bool (*skip)(struct lock_list *entry, void *data), 2134 struct lock_list **target_entry) 2135 { 2136 enum bfs_result ret; 2137 2138 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2139 2140 if (unlikely(bfs_error(ret))) 2141 print_bfs_bug(ret); 2142 2143 return ret; 2144 } 2145 2146 /* 2147 * Prove that the dependency graph starting at <src> can not 2148 * lead to <target>. If it can, there is a circle when adding 2149 * <target> -> <src> dependency. 2150 * 2151 * Print an error and return BFS_RMATCH if it does. 2152 */ 2153 static noinline enum bfs_result 2154 check_noncircular(struct held_lock *src, struct held_lock *target, 2155 struct lock_trace **const trace) 2156 { 2157 enum bfs_result ret; 2158 struct lock_list *target_entry; 2159 struct lock_list src_entry; 2160 2161 bfs_init_root(&src_entry, src); 2162 2163 debug_atomic_inc(nr_cyclic_checks); 2164 2165 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2166 2167 if (unlikely(ret == BFS_RMATCH)) { 2168 if (!*trace) { 2169 /* 2170 * If save_trace fails here, the printing might 2171 * trigger a WARN but because of the !nr_entries it 2172 * should not do bad things. 2173 */ 2174 *trace = save_trace(); 2175 } 2176 2177 print_circular_bug(&src_entry, target_entry, src, target); 2178 } 2179 2180 return ret; 2181 } 2182 2183 #ifdef CONFIG_TRACE_IRQFLAGS 2184 2185 /* 2186 * Forwards and backwards subgraph searching, for the purposes of 2187 * proving that two subgraphs can be connected by a new dependency 2188 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2189 * 2190 * A irq safe->unsafe deadlock happens with the following conditions: 2191 * 2192 * 1) We have a strong dependency path A -> ... -> B 2193 * 2194 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2195 * irq can create a new dependency B -> A (consider the case that a holder 2196 * of B gets interrupted by an irq whose handler will try to acquire A). 2197 * 2198 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2199 * strong circle: 2200 * 2201 * For the usage bits of B: 2202 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2203 * ENABLED_IRQ usage suffices. 2204 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2205 * ENABLED_IRQ_*_READ usage suffices. 2206 * 2207 * For the usage bits of A: 2208 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2209 * USED_IN_IRQ usage suffices. 2210 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2211 * USED_IN_IRQ_*_READ usage suffices. 2212 */ 2213 2214 /* 2215 * There is a strong dependency path in the dependency graph: A -> B, and now 2216 * we need to decide which usage bit of A should be accumulated to detect 2217 * safe->unsafe bugs. 2218 * 2219 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2220 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2221 * 2222 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2223 * path, any usage of A should be considered. Otherwise, we should only 2224 * consider _READ usage. 2225 */ 2226 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2227 { 2228 if (!entry->only_xr) 2229 *(unsigned long *)mask |= entry->class->usage_mask; 2230 else /* Mask out _READ usage bits */ 2231 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2232 2233 return false; 2234 } 2235 2236 /* 2237 * There is a strong dependency path in the dependency graph: A -> B, and now 2238 * we need to decide which usage bit of B conflicts with the usage bits of A, 2239 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2240 * 2241 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2242 * path, any usage of B should be considered. Otherwise, we should only 2243 * consider _READ usage. 2244 */ 2245 static inline bool usage_match(struct lock_list *entry, void *mask) 2246 { 2247 if (!entry->only_xr) 2248 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2249 else /* Mask out _READ usage bits */ 2250 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2251 } 2252 2253 static inline bool usage_skip(struct lock_list *entry, void *mask) 2254 { 2255 /* 2256 * Skip local_lock() for irq inversion detection. 2257 * 2258 * For !RT, local_lock() is not a real lock, so it won't carry any 2259 * dependency. 2260 * 2261 * For RT, an irq inversion happens when we have lock A and B, and on 2262 * some CPU we can have: 2263 * 2264 * lock(A); 2265 * <interrupted> 2266 * lock(B); 2267 * 2268 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2269 * 2270 * Now we prove local_lock() cannot exist in that dependency. First we 2271 * have the observation for any lock chain L1 -> ... -> Ln, for any 2272 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2273 * wait context check will complain. And since B is not a sleep lock, 2274 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2275 * local_lock() is 3, which is greater than 2, therefore there is no 2276 * way the local_lock() exists in the dependency B -> ... -> A. 2277 * 2278 * As a result, we will skip local_lock(), when we search for irq 2279 * inversion bugs. 2280 */ 2281 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2282 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2283 return false; 2284 2285 return true; 2286 } 2287 2288 return false; 2289 } 2290 2291 /* 2292 * Find a node in the forwards-direction dependency sub-graph starting 2293 * at @root->class that matches @bit. 2294 * 2295 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2296 * into *@target_entry. 2297 */ 2298 static enum bfs_result 2299 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2300 struct lock_list **target_entry) 2301 { 2302 enum bfs_result result; 2303 2304 debug_atomic_inc(nr_find_usage_forwards_checks); 2305 2306 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2307 2308 return result; 2309 } 2310 2311 /* 2312 * Find a node in the backwards-direction dependency sub-graph starting 2313 * at @root->class that matches @bit. 2314 */ 2315 static enum bfs_result 2316 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2317 struct lock_list **target_entry) 2318 { 2319 enum bfs_result result; 2320 2321 debug_atomic_inc(nr_find_usage_backwards_checks); 2322 2323 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2324 2325 return result; 2326 } 2327 2328 static void print_lock_class_header(struct lock_class *class, int depth) 2329 { 2330 int bit; 2331 2332 printk("%*s->", depth, ""); 2333 print_lock_name(class); 2334 #ifdef CONFIG_DEBUG_LOCKDEP 2335 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2336 #endif 2337 printk(KERN_CONT " {\n"); 2338 2339 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2340 if (class->usage_mask & (1 << bit)) { 2341 int len = depth; 2342 2343 len += printk("%*s %s", depth, "", usage_str[bit]); 2344 len += printk(KERN_CONT " at:\n"); 2345 print_lock_trace(class->usage_traces[bit], len); 2346 } 2347 } 2348 printk("%*s }\n", depth, ""); 2349 2350 printk("%*s ... key at: [<%px>] %pS\n", 2351 depth, "", class->key, class->key); 2352 } 2353 2354 /* 2355 * Dependency path printing: 2356 * 2357 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2358 * printing out each lock in the dependency path will help on understanding how 2359 * the deadlock could happen. Here are some details about dependency path 2360 * printing: 2361 * 2362 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2363 * for a lock dependency A -> B, there are two lock_lists: 2364 * 2365 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2366 * ->links_to is A. In this case, we can say the lock_list is 2367 * "A -> B" (forwards case). 2368 * 2369 * b) lock_list in the ->locks_before list of B, whose ->class is A 2370 * and ->links_to is B. In this case, we can say the lock_list is 2371 * "B <- A" (bacwards case). 2372 * 2373 * The ->trace of both a) and b) point to the call trace where B was 2374 * acquired with A held. 2375 * 2376 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2377 * represent a certain lock dependency, it only provides an initial entry 2378 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2379 * ->class is A, as a result BFS will search all dependencies starting with 2380 * A, e.g. A -> B or A -> C. 2381 * 2382 * The notation of a forwards helper lock_list is like "-> A", which means 2383 * we should search the forwards dependencies starting with "A", e.g A -> B 2384 * or A -> C. 2385 * 2386 * The notation of a bacwards helper lock_list is like "<- B", which means 2387 * we should search the backwards dependencies ending with "B", e.g. 2388 * B <- A or B <- C. 2389 */ 2390 2391 /* 2392 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2393 * 2394 * We have a lock dependency path as follow: 2395 * 2396 * @root @leaf 2397 * | | 2398 * V V 2399 * ->parent ->parent 2400 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2401 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2402 * 2403 * , so it's natural that we start from @leaf and print every ->class and 2404 * ->trace until we reach the @root. 2405 */ 2406 static void __used 2407 print_shortest_lock_dependencies(struct lock_list *leaf, 2408 struct lock_list *root) 2409 { 2410 struct lock_list *entry = leaf; 2411 int depth; 2412 2413 /*compute depth from generated tree by BFS*/ 2414 depth = get_lock_depth(leaf); 2415 2416 do { 2417 print_lock_class_header(entry->class, depth); 2418 printk("%*s ... acquired at:\n", depth, ""); 2419 print_lock_trace(entry->trace, 2); 2420 printk("\n"); 2421 2422 if (depth == 0 && (entry != root)) { 2423 printk("lockdep:%s bad path found in chain graph\n", __func__); 2424 break; 2425 } 2426 2427 entry = get_lock_parent(entry); 2428 depth--; 2429 } while (entry && (depth >= 0)); 2430 } 2431 2432 /* 2433 * printk the shortest lock dependencies from @leaf to @root. 2434 * 2435 * We have a lock dependency path (from a backwards search) as follow: 2436 * 2437 * @leaf @root 2438 * | | 2439 * V V 2440 * ->parent ->parent 2441 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2442 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2443 * 2444 * , so when we iterate from @leaf to @root, we actually print the lock 2445 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2446 * 2447 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2448 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2449 * trace of L1 in the dependency path, which is alright, because most of the 2450 * time we can figure out where L1 is held from the call trace of L2. 2451 */ 2452 static void __used 2453 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2454 struct lock_list *root) 2455 { 2456 struct lock_list *entry = leaf; 2457 const struct lock_trace *trace = NULL; 2458 int depth; 2459 2460 /*compute depth from generated tree by BFS*/ 2461 depth = get_lock_depth(leaf); 2462 2463 do { 2464 print_lock_class_header(entry->class, depth); 2465 if (trace) { 2466 printk("%*s ... acquired at:\n", depth, ""); 2467 print_lock_trace(trace, 2); 2468 printk("\n"); 2469 } 2470 2471 /* 2472 * Record the pointer to the trace for the next lock_list 2473 * entry, see the comments for the function. 2474 */ 2475 trace = entry->trace; 2476 2477 if (depth == 0 && (entry != root)) { 2478 printk("lockdep:%s bad path found in chain graph\n", __func__); 2479 break; 2480 } 2481 2482 entry = get_lock_parent(entry); 2483 depth--; 2484 } while (entry && (depth >= 0)); 2485 } 2486 2487 static void 2488 print_irq_lock_scenario(struct lock_list *safe_entry, 2489 struct lock_list *unsafe_entry, 2490 struct lock_class *prev_class, 2491 struct lock_class *next_class) 2492 { 2493 struct lock_class *safe_class = safe_entry->class; 2494 struct lock_class *unsafe_class = unsafe_entry->class; 2495 struct lock_class *middle_class = prev_class; 2496 2497 if (middle_class == safe_class) 2498 middle_class = next_class; 2499 2500 /* 2501 * A direct locking problem where unsafe_class lock is taken 2502 * directly by safe_class lock, then all we need to show 2503 * is the deadlock scenario, as it is obvious that the 2504 * unsafe lock is taken under the safe lock. 2505 * 2506 * But if there is a chain instead, where the safe lock takes 2507 * an intermediate lock (middle_class) where this lock is 2508 * not the same as the safe lock, then the lock chain is 2509 * used to describe the problem. Otherwise we would need 2510 * to show a different CPU case for each link in the chain 2511 * from the safe_class lock to the unsafe_class lock. 2512 */ 2513 if (middle_class != unsafe_class) { 2514 printk("Chain exists of:\n "); 2515 __print_lock_name(safe_class); 2516 printk(KERN_CONT " --> "); 2517 __print_lock_name(middle_class); 2518 printk(KERN_CONT " --> "); 2519 __print_lock_name(unsafe_class); 2520 printk(KERN_CONT "\n\n"); 2521 } 2522 2523 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2524 printk(" CPU0 CPU1\n"); 2525 printk(" ---- ----\n"); 2526 printk(" lock("); 2527 __print_lock_name(unsafe_class); 2528 printk(KERN_CONT ");\n"); 2529 printk(" local_irq_disable();\n"); 2530 printk(" lock("); 2531 __print_lock_name(safe_class); 2532 printk(KERN_CONT ");\n"); 2533 printk(" lock("); 2534 __print_lock_name(middle_class); 2535 printk(KERN_CONT ");\n"); 2536 printk(" <Interrupt>\n"); 2537 printk(" lock("); 2538 __print_lock_name(safe_class); 2539 printk(KERN_CONT ");\n"); 2540 printk("\n *** DEADLOCK ***\n\n"); 2541 } 2542 2543 static void 2544 print_bad_irq_dependency(struct task_struct *curr, 2545 struct lock_list *prev_root, 2546 struct lock_list *next_root, 2547 struct lock_list *backwards_entry, 2548 struct lock_list *forwards_entry, 2549 struct held_lock *prev, 2550 struct held_lock *next, 2551 enum lock_usage_bit bit1, 2552 enum lock_usage_bit bit2, 2553 const char *irqclass) 2554 { 2555 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2556 return; 2557 2558 pr_warn("\n"); 2559 pr_warn("=====================================================\n"); 2560 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2561 irqclass, irqclass); 2562 print_kernel_ident(); 2563 pr_warn("-----------------------------------------------------\n"); 2564 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2565 curr->comm, task_pid_nr(curr), 2566 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2567 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2568 lockdep_hardirqs_enabled(), 2569 curr->softirqs_enabled); 2570 print_lock(next); 2571 2572 pr_warn("\nand this task is already holding:\n"); 2573 print_lock(prev); 2574 pr_warn("which would create a new lock dependency:\n"); 2575 print_lock_name(hlock_class(prev)); 2576 pr_cont(" ->"); 2577 print_lock_name(hlock_class(next)); 2578 pr_cont("\n"); 2579 2580 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2581 irqclass); 2582 print_lock_name(backwards_entry->class); 2583 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2584 2585 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2586 2587 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2588 print_lock_name(forwards_entry->class); 2589 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2590 pr_warn("..."); 2591 2592 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2593 2594 pr_warn("\nother info that might help us debug this:\n\n"); 2595 print_irq_lock_scenario(backwards_entry, forwards_entry, 2596 hlock_class(prev), hlock_class(next)); 2597 2598 lockdep_print_held_locks(curr); 2599 2600 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2601 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2602 2603 pr_warn("\nthe dependencies between the lock to be acquired"); 2604 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2605 next_root->trace = save_trace(); 2606 if (!next_root->trace) 2607 return; 2608 print_shortest_lock_dependencies(forwards_entry, next_root); 2609 2610 pr_warn("\nstack backtrace:\n"); 2611 dump_stack(); 2612 } 2613 2614 static const char *state_names[] = { 2615 #define LOCKDEP_STATE(__STATE) \ 2616 __stringify(__STATE), 2617 #include "lockdep_states.h" 2618 #undef LOCKDEP_STATE 2619 }; 2620 2621 static const char *state_rnames[] = { 2622 #define LOCKDEP_STATE(__STATE) \ 2623 __stringify(__STATE)"-READ", 2624 #include "lockdep_states.h" 2625 #undef LOCKDEP_STATE 2626 }; 2627 2628 static inline const char *state_name(enum lock_usage_bit bit) 2629 { 2630 if (bit & LOCK_USAGE_READ_MASK) 2631 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2632 else 2633 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2634 } 2635 2636 /* 2637 * The bit number is encoded like: 2638 * 2639 * bit0: 0 exclusive, 1 read lock 2640 * bit1: 0 used in irq, 1 irq enabled 2641 * bit2-n: state 2642 */ 2643 static int exclusive_bit(int new_bit) 2644 { 2645 int state = new_bit & LOCK_USAGE_STATE_MASK; 2646 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2647 2648 /* 2649 * keep state, bit flip the direction and strip read. 2650 */ 2651 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2652 } 2653 2654 /* 2655 * Observe that when given a bitmask where each bitnr is encoded as above, a 2656 * right shift of the mask transforms the individual bitnrs as -1 and 2657 * conversely, a left shift transforms into +1 for the individual bitnrs. 2658 * 2659 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2660 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2661 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2662 * 2663 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2664 * 2665 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2666 * all bits set) and recompose with bitnr1 flipped. 2667 */ 2668 static unsigned long invert_dir_mask(unsigned long mask) 2669 { 2670 unsigned long excl = 0; 2671 2672 /* Invert dir */ 2673 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2674 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2675 2676 return excl; 2677 } 2678 2679 /* 2680 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2681 * usage may cause deadlock too, for example: 2682 * 2683 * P1 P2 2684 * <irq disabled> 2685 * write_lock(l1); <irq enabled> 2686 * read_lock(l2); 2687 * write_lock(l2); 2688 * <in irq> 2689 * read_lock(l1); 2690 * 2691 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2692 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2693 * deadlock. 2694 * 2695 * In fact, all of the following cases may cause deadlocks: 2696 * 2697 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2698 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2699 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2700 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2701 * 2702 * As a result, to calculate the "exclusive mask", first we invert the 2703 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2704 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2705 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2706 */ 2707 static unsigned long exclusive_mask(unsigned long mask) 2708 { 2709 unsigned long excl = invert_dir_mask(mask); 2710 2711 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2712 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2713 2714 return excl; 2715 } 2716 2717 /* 2718 * Retrieve the _possible_ original mask to which @mask is 2719 * exclusive. Ie: this is the opposite of exclusive_mask(). 2720 * Note that 2 possible original bits can match an exclusive 2721 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2722 * cleared. So both are returned for each exclusive bit. 2723 */ 2724 static unsigned long original_mask(unsigned long mask) 2725 { 2726 unsigned long excl = invert_dir_mask(mask); 2727 2728 /* Include read in existing usages */ 2729 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2730 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2731 2732 return excl; 2733 } 2734 2735 /* 2736 * Find the first pair of bit match between an original 2737 * usage mask and an exclusive usage mask. 2738 */ 2739 static int find_exclusive_match(unsigned long mask, 2740 unsigned long excl_mask, 2741 enum lock_usage_bit *bitp, 2742 enum lock_usage_bit *excl_bitp) 2743 { 2744 int bit, excl, excl_read; 2745 2746 for_each_set_bit(bit, &mask, LOCK_USED) { 2747 /* 2748 * exclusive_bit() strips the read bit, however, 2749 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2750 * to search excl | LOCK_USAGE_READ_MASK as well. 2751 */ 2752 excl = exclusive_bit(bit); 2753 excl_read = excl | LOCK_USAGE_READ_MASK; 2754 if (excl_mask & lock_flag(excl)) { 2755 *bitp = bit; 2756 *excl_bitp = excl; 2757 return 0; 2758 } else if (excl_mask & lock_flag(excl_read)) { 2759 *bitp = bit; 2760 *excl_bitp = excl_read; 2761 return 0; 2762 } 2763 } 2764 return -1; 2765 } 2766 2767 /* 2768 * Prove that the new dependency does not connect a hardirq-safe(-read) 2769 * lock with a hardirq-unsafe lock - to achieve this we search 2770 * the backwards-subgraph starting at <prev>, and the 2771 * forwards-subgraph starting at <next>: 2772 */ 2773 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2774 struct held_lock *next) 2775 { 2776 unsigned long usage_mask = 0, forward_mask, backward_mask; 2777 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2778 struct lock_list *target_entry1; 2779 struct lock_list *target_entry; 2780 struct lock_list this, that; 2781 enum bfs_result ret; 2782 2783 /* 2784 * Step 1: gather all hard/soft IRQs usages backward in an 2785 * accumulated usage mask. 2786 */ 2787 bfs_init_rootb(&this, prev); 2788 2789 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2790 if (bfs_error(ret)) { 2791 print_bfs_bug(ret); 2792 return 0; 2793 } 2794 2795 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2796 if (!usage_mask) 2797 return 1; 2798 2799 /* 2800 * Step 2: find exclusive uses forward that match the previous 2801 * backward accumulated mask. 2802 */ 2803 forward_mask = exclusive_mask(usage_mask); 2804 2805 bfs_init_root(&that, next); 2806 2807 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2808 if (bfs_error(ret)) { 2809 print_bfs_bug(ret); 2810 return 0; 2811 } 2812 if (ret == BFS_RNOMATCH) 2813 return 1; 2814 2815 /* 2816 * Step 3: we found a bad match! Now retrieve a lock from the backward 2817 * list whose usage mask matches the exclusive usage mask from the 2818 * lock found on the forward list. 2819 * 2820 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2821 * the follow case: 2822 * 2823 * When trying to add A -> B to the graph, we find that there is a 2824 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2825 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2826 * invert bits of M's usage_mask, we will find another lock N that is 2827 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2828 * cause a inversion deadlock. 2829 */ 2830 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2831 2832 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2833 if (bfs_error(ret)) { 2834 print_bfs_bug(ret); 2835 return 0; 2836 } 2837 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2838 return 1; 2839 2840 /* 2841 * Step 4: narrow down to a pair of incompatible usage bits 2842 * and report it. 2843 */ 2844 ret = find_exclusive_match(target_entry->class->usage_mask, 2845 target_entry1->class->usage_mask, 2846 &backward_bit, &forward_bit); 2847 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2848 return 1; 2849 2850 print_bad_irq_dependency(curr, &this, &that, 2851 target_entry, target_entry1, 2852 prev, next, 2853 backward_bit, forward_bit, 2854 state_name(backward_bit)); 2855 2856 return 0; 2857 } 2858 2859 #else 2860 2861 static inline int check_irq_usage(struct task_struct *curr, 2862 struct held_lock *prev, struct held_lock *next) 2863 { 2864 return 1; 2865 } 2866 2867 static inline bool usage_skip(struct lock_list *entry, void *mask) 2868 { 2869 return false; 2870 } 2871 2872 #endif /* CONFIG_TRACE_IRQFLAGS */ 2873 2874 #ifdef CONFIG_LOCKDEP_SMALL 2875 /* 2876 * Check that the dependency graph starting at <src> can lead to 2877 * <target> or not. If it can, <src> -> <target> dependency is already 2878 * in the graph. 2879 * 2880 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2881 * any error appears in the bfs search. 2882 */ 2883 static noinline enum bfs_result 2884 check_redundant(struct held_lock *src, struct held_lock *target) 2885 { 2886 enum bfs_result ret; 2887 struct lock_list *target_entry; 2888 struct lock_list src_entry; 2889 2890 bfs_init_root(&src_entry, src); 2891 /* 2892 * Special setup for check_redundant(). 2893 * 2894 * To report redundant, we need to find a strong dependency path that 2895 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2896 * we need to let __bfs() only search for a path starting at a -(E*)->, 2897 * we achieve this by setting the initial node's ->only_xr to true in 2898 * that case. And if <prev> is S, we set initial ->only_xr to false 2899 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2900 */ 2901 src_entry.only_xr = src->read == 0; 2902 2903 debug_atomic_inc(nr_redundant_checks); 2904 2905 /* 2906 * Note: we skip local_lock() for redundant check, because as the 2907 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2908 * the same. 2909 */ 2910 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2911 2912 if (ret == BFS_RMATCH) 2913 debug_atomic_inc(nr_redundant); 2914 2915 return ret; 2916 } 2917 2918 #else 2919 2920 static inline enum bfs_result 2921 check_redundant(struct held_lock *src, struct held_lock *target) 2922 { 2923 return BFS_RNOMATCH; 2924 } 2925 2926 #endif 2927 2928 static void inc_chains(int irq_context) 2929 { 2930 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2931 nr_hardirq_chains++; 2932 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2933 nr_softirq_chains++; 2934 else 2935 nr_process_chains++; 2936 } 2937 2938 static void dec_chains(int irq_context) 2939 { 2940 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2941 nr_hardirq_chains--; 2942 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2943 nr_softirq_chains--; 2944 else 2945 nr_process_chains--; 2946 } 2947 2948 static void 2949 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2950 { 2951 struct lock_class *next = hlock_class(nxt); 2952 struct lock_class *prev = hlock_class(prv); 2953 2954 printk(" Possible unsafe locking scenario:\n\n"); 2955 printk(" CPU0\n"); 2956 printk(" ----\n"); 2957 printk(" lock("); 2958 __print_lock_name(prev); 2959 printk(KERN_CONT ");\n"); 2960 printk(" lock("); 2961 __print_lock_name(next); 2962 printk(KERN_CONT ");\n"); 2963 printk("\n *** DEADLOCK ***\n\n"); 2964 printk(" May be due to missing lock nesting notation\n\n"); 2965 } 2966 2967 static void 2968 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2969 struct held_lock *next) 2970 { 2971 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2972 return; 2973 2974 pr_warn("\n"); 2975 pr_warn("============================================\n"); 2976 pr_warn("WARNING: possible recursive locking detected\n"); 2977 print_kernel_ident(); 2978 pr_warn("--------------------------------------------\n"); 2979 pr_warn("%s/%d is trying to acquire lock:\n", 2980 curr->comm, task_pid_nr(curr)); 2981 print_lock(next); 2982 pr_warn("\nbut task is already holding lock:\n"); 2983 print_lock(prev); 2984 2985 pr_warn("\nother info that might help us debug this:\n"); 2986 print_deadlock_scenario(next, prev); 2987 lockdep_print_held_locks(curr); 2988 2989 pr_warn("\nstack backtrace:\n"); 2990 dump_stack(); 2991 } 2992 2993 /* 2994 * Check whether we are holding such a class already. 2995 * 2996 * (Note that this has to be done separately, because the graph cannot 2997 * detect such classes of deadlocks.) 2998 * 2999 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3000 * lock class is held but nest_lock is also held, i.e. we rely on the 3001 * nest_lock to avoid the deadlock. 3002 */ 3003 static int 3004 check_deadlock(struct task_struct *curr, struct held_lock *next) 3005 { 3006 struct held_lock *prev; 3007 struct held_lock *nest = NULL; 3008 int i; 3009 3010 for (i = 0; i < curr->lockdep_depth; i++) { 3011 prev = curr->held_locks + i; 3012 3013 if (prev->instance == next->nest_lock) 3014 nest = prev; 3015 3016 if (hlock_class(prev) != hlock_class(next)) 3017 continue; 3018 3019 /* 3020 * Allow read-after-read recursion of the same 3021 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3022 */ 3023 if ((next->read == 2) && prev->read) 3024 continue; 3025 3026 /* 3027 * We're holding the nest_lock, which serializes this lock's 3028 * nesting behaviour. 3029 */ 3030 if (nest) 3031 return 2; 3032 3033 print_deadlock_bug(curr, prev, next); 3034 return 0; 3035 } 3036 return 1; 3037 } 3038 3039 /* 3040 * There was a chain-cache miss, and we are about to add a new dependency 3041 * to a previous lock. We validate the following rules: 3042 * 3043 * - would the adding of the <prev> -> <next> dependency create a 3044 * circular dependency in the graph? [== circular deadlock] 3045 * 3046 * - does the new prev->next dependency connect any hardirq-safe lock 3047 * (in the full backwards-subgraph starting at <prev>) with any 3048 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3049 * <next>)? [== illegal lock inversion with hardirq contexts] 3050 * 3051 * - does the new prev->next dependency connect any softirq-safe lock 3052 * (in the full backwards-subgraph starting at <prev>) with any 3053 * softirq-unsafe lock (in the full forwards-subgraph starting at 3054 * <next>)? [== illegal lock inversion with softirq contexts] 3055 * 3056 * any of these scenarios could lead to a deadlock. 3057 * 3058 * Then if all the validations pass, we add the forwards and backwards 3059 * dependency. 3060 */ 3061 static int 3062 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3063 struct held_lock *next, u16 distance, 3064 struct lock_trace **const trace) 3065 { 3066 struct lock_list *entry; 3067 enum bfs_result ret; 3068 3069 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3070 /* 3071 * The warning statements below may trigger a use-after-free 3072 * of the class name. It is better to trigger a use-after free 3073 * and to have the class name most of the time instead of not 3074 * having the class name available. 3075 */ 3076 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3077 "Detected use-after-free of lock class %px/%s\n", 3078 hlock_class(prev), 3079 hlock_class(prev)->name); 3080 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3081 "Detected use-after-free of lock class %px/%s\n", 3082 hlock_class(next), 3083 hlock_class(next)->name); 3084 return 2; 3085 } 3086 3087 /* 3088 * Prove that the new <prev> -> <next> dependency would not 3089 * create a circular dependency in the graph. (We do this by 3090 * a breadth-first search into the graph starting at <next>, 3091 * and check whether we can reach <prev>.) 3092 * 3093 * The search is limited by the size of the circular queue (i.e., 3094 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3095 * in the graph whose neighbours are to be checked. 3096 */ 3097 ret = check_noncircular(next, prev, trace); 3098 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3099 return 0; 3100 3101 if (!check_irq_usage(curr, prev, next)) 3102 return 0; 3103 3104 /* 3105 * Is the <prev> -> <next> dependency already present? 3106 * 3107 * (this may occur even though this is a new chain: consider 3108 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3109 * chains - the second one will be new, but L1 already has 3110 * L2 added to its dependency list, due to the first chain.) 3111 */ 3112 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3113 if (entry->class == hlock_class(next)) { 3114 if (distance == 1) 3115 entry->distance = 1; 3116 entry->dep |= calc_dep(prev, next); 3117 3118 /* 3119 * Also, update the reverse dependency in @next's 3120 * ->locks_before list. 3121 * 3122 * Here we reuse @entry as the cursor, which is fine 3123 * because we won't go to the next iteration of the 3124 * outer loop: 3125 * 3126 * For normal cases, we return in the inner loop. 3127 * 3128 * If we fail to return, we have inconsistency, i.e. 3129 * <prev>::locks_after contains <next> while 3130 * <next>::locks_before doesn't contain <prev>. In 3131 * that case, we return after the inner and indicate 3132 * something is wrong. 3133 */ 3134 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3135 if (entry->class == hlock_class(prev)) { 3136 if (distance == 1) 3137 entry->distance = 1; 3138 entry->dep |= calc_depb(prev, next); 3139 return 1; 3140 } 3141 } 3142 3143 /* <prev> is not found in <next>::locks_before */ 3144 return 0; 3145 } 3146 } 3147 3148 /* 3149 * Is the <prev> -> <next> link redundant? 3150 */ 3151 ret = check_redundant(prev, next); 3152 if (bfs_error(ret)) 3153 return 0; 3154 else if (ret == BFS_RMATCH) 3155 return 2; 3156 3157 if (!*trace) { 3158 *trace = save_trace(); 3159 if (!*trace) 3160 return 0; 3161 } 3162 3163 /* 3164 * Ok, all validations passed, add the new lock 3165 * to the previous lock's dependency list: 3166 */ 3167 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3168 &hlock_class(prev)->locks_after, distance, 3169 calc_dep(prev, next), *trace); 3170 3171 if (!ret) 3172 return 0; 3173 3174 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3175 &hlock_class(next)->locks_before, distance, 3176 calc_depb(prev, next), *trace); 3177 if (!ret) 3178 return 0; 3179 3180 return 2; 3181 } 3182 3183 /* 3184 * Add the dependency to all directly-previous locks that are 'relevant'. 3185 * The ones that are relevant are (in increasing distance from curr): 3186 * all consecutive trylock entries and the final non-trylock entry - or 3187 * the end of this context's lock-chain - whichever comes first. 3188 */ 3189 static int 3190 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3191 { 3192 struct lock_trace *trace = NULL; 3193 int depth = curr->lockdep_depth; 3194 struct held_lock *hlock; 3195 3196 /* 3197 * Debugging checks. 3198 * 3199 * Depth must not be zero for a non-head lock: 3200 */ 3201 if (!depth) 3202 goto out_bug; 3203 /* 3204 * At least two relevant locks must exist for this 3205 * to be a head: 3206 */ 3207 if (curr->held_locks[depth].irq_context != 3208 curr->held_locks[depth-1].irq_context) 3209 goto out_bug; 3210 3211 for (;;) { 3212 u16 distance = curr->lockdep_depth - depth + 1; 3213 hlock = curr->held_locks + depth - 1; 3214 3215 if (hlock->check) { 3216 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3217 if (!ret) 3218 return 0; 3219 3220 /* 3221 * Stop after the first non-trylock entry, 3222 * as non-trylock entries have added their 3223 * own direct dependencies already, so this 3224 * lock is connected to them indirectly: 3225 */ 3226 if (!hlock->trylock) 3227 break; 3228 } 3229 3230 depth--; 3231 /* 3232 * End of lock-stack? 3233 */ 3234 if (!depth) 3235 break; 3236 /* 3237 * Stop the search if we cross into another context: 3238 */ 3239 if (curr->held_locks[depth].irq_context != 3240 curr->held_locks[depth-1].irq_context) 3241 break; 3242 } 3243 return 1; 3244 out_bug: 3245 if (!debug_locks_off_graph_unlock()) 3246 return 0; 3247 3248 /* 3249 * Clearly we all shouldn't be here, but since we made it we 3250 * can reliable say we messed up our state. See the above two 3251 * gotos for reasons why we could possibly end up here. 3252 */ 3253 WARN_ON(1); 3254 3255 return 0; 3256 } 3257 3258 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3259 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3260 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3261 unsigned long nr_zapped_lock_chains; 3262 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3263 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3264 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3265 3266 /* 3267 * The first 2 chain_hlocks entries in the chain block in the bucket 3268 * list contains the following meta data: 3269 * 3270 * entry[0]: 3271 * Bit 15 - always set to 1 (it is not a class index) 3272 * Bits 0-14 - upper 15 bits of the next block index 3273 * entry[1] - lower 16 bits of next block index 3274 * 3275 * A next block index of all 1 bits means it is the end of the list. 3276 * 3277 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3278 * the chain block size: 3279 * 3280 * entry[2] - upper 16 bits of the chain block size 3281 * entry[3] - lower 16 bits of the chain block size 3282 */ 3283 #define MAX_CHAIN_BUCKETS 16 3284 #define CHAIN_BLK_FLAG (1U << 15) 3285 #define CHAIN_BLK_LIST_END 0xFFFFU 3286 3287 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3288 3289 static inline int size_to_bucket(int size) 3290 { 3291 if (size > MAX_CHAIN_BUCKETS) 3292 return 0; 3293 3294 return size - 1; 3295 } 3296 3297 /* 3298 * Iterate all the chain blocks in a bucket. 3299 */ 3300 #define for_each_chain_block(bucket, prev, curr) \ 3301 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3302 (curr) >= 0; \ 3303 (prev) = (curr), (curr) = chain_block_next(curr)) 3304 3305 /* 3306 * next block or -1 3307 */ 3308 static inline int chain_block_next(int offset) 3309 { 3310 int next = chain_hlocks[offset]; 3311 3312 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3313 3314 if (next == CHAIN_BLK_LIST_END) 3315 return -1; 3316 3317 next &= ~CHAIN_BLK_FLAG; 3318 next <<= 16; 3319 next |= chain_hlocks[offset + 1]; 3320 3321 return next; 3322 } 3323 3324 /* 3325 * bucket-0 only 3326 */ 3327 static inline int chain_block_size(int offset) 3328 { 3329 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3330 } 3331 3332 static inline void init_chain_block(int offset, int next, int bucket, int size) 3333 { 3334 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3335 chain_hlocks[offset + 1] = (u16)next; 3336 3337 if (size && !bucket) { 3338 chain_hlocks[offset + 2] = size >> 16; 3339 chain_hlocks[offset + 3] = (u16)size; 3340 } 3341 } 3342 3343 static inline void add_chain_block(int offset, int size) 3344 { 3345 int bucket = size_to_bucket(size); 3346 int next = chain_block_buckets[bucket]; 3347 int prev, curr; 3348 3349 if (unlikely(size < 2)) { 3350 /* 3351 * We can't store single entries on the freelist. Leak them. 3352 * 3353 * One possible way out would be to uniquely mark them, other 3354 * than with CHAIN_BLK_FLAG, such that we can recover them when 3355 * the block before it is re-added. 3356 */ 3357 if (size) 3358 nr_lost_chain_hlocks++; 3359 return; 3360 } 3361 3362 nr_free_chain_hlocks += size; 3363 if (!bucket) { 3364 nr_large_chain_blocks++; 3365 3366 /* 3367 * Variable sized, sort large to small. 3368 */ 3369 for_each_chain_block(0, prev, curr) { 3370 if (size >= chain_block_size(curr)) 3371 break; 3372 } 3373 init_chain_block(offset, curr, 0, size); 3374 if (prev < 0) 3375 chain_block_buckets[0] = offset; 3376 else 3377 init_chain_block(prev, offset, 0, 0); 3378 return; 3379 } 3380 /* 3381 * Fixed size, add to head. 3382 */ 3383 init_chain_block(offset, next, bucket, size); 3384 chain_block_buckets[bucket] = offset; 3385 } 3386 3387 /* 3388 * Only the first block in the list can be deleted. 3389 * 3390 * For the variable size bucket[0], the first block (the largest one) is 3391 * returned, broken up and put back into the pool. So if a chain block of 3392 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3393 * queued up after the primordial chain block and never be used until the 3394 * hlock entries in the primordial chain block is almost used up. That 3395 * causes fragmentation and reduce allocation efficiency. That can be 3396 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3397 */ 3398 static inline void del_chain_block(int bucket, int size, int next) 3399 { 3400 nr_free_chain_hlocks -= size; 3401 chain_block_buckets[bucket] = next; 3402 3403 if (!bucket) 3404 nr_large_chain_blocks--; 3405 } 3406 3407 static void init_chain_block_buckets(void) 3408 { 3409 int i; 3410 3411 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3412 chain_block_buckets[i] = -1; 3413 3414 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3415 } 3416 3417 /* 3418 * Return offset of a chain block of the right size or -1 if not found. 3419 * 3420 * Fairly simple worst-fit allocator with the addition of a number of size 3421 * specific free lists. 3422 */ 3423 static int alloc_chain_hlocks(int req) 3424 { 3425 int bucket, curr, size; 3426 3427 /* 3428 * We rely on the MSB to act as an escape bit to denote freelist 3429 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3430 */ 3431 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3432 3433 init_data_structures_once(); 3434 3435 if (nr_free_chain_hlocks < req) 3436 return -1; 3437 3438 /* 3439 * We require a minimum of 2 (u16) entries to encode a freelist 3440 * 'pointer'. 3441 */ 3442 req = max(req, 2); 3443 bucket = size_to_bucket(req); 3444 curr = chain_block_buckets[bucket]; 3445 3446 if (bucket) { 3447 if (curr >= 0) { 3448 del_chain_block(bucket, req, chain_block_next(curr)); 3449 return curr; 3450 } 3451 /* Try bucket 0 */ 3452 curr = chain_block_buckets[0]; 3453 } 3454 3455 /* 3456 * The variable sized freelist is sorted by size; the first entry is 3457 * the largest. Use it if it fits. 3458 */ 3459 if (curr >= 0) { 3460 size = chain_block_size(curr); 3461 if (likely(size >= req)) { 3462 del_chain_block(0, size, chain_block_next(curr)); 3463 add_chain_block(curr + req, size - req); 3464 return curr; 3465 } 3466 } 3467 3468 /* 3469 * Last resort, split a block in a larger sized bucket. 3470 */ 3471 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3472 bucket = size_to_bucket(size); 3473 curr = chain_block_buckets[bucket]; 3474 if (curr < 0) 3475 continue; 3476 3477 del_chain_block(bucket, size, chain_block_next(curr)); 3478 add_chain_block(curr + req, size - req); 3479 return curr; 3480 } 3481 3482 return -1; 3483 } 3484 3485 static inline void free_chain_hlocks(int base, int size) 3486 { 3487 add_chain_block(base, max(size, 2)); 3488 } 3489 3490 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3491 { 3492 u16 chain_hlock = chain_hlocks[chain->base + i]; 3493 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3494 3495 return lock_classes + class_idx; 3496 } 3497 3498 /* 3499 * Returns the index of the first held_lock of the current chain 3500 */ 3501 static inline int get_first_held_lock(struct task_struct *curr, 3502 struct held_lock *hlock) 3503 { 3504 int i; 3505 struct held_lock *hlock_curr; 3506 3507 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3508 hlock_curr = curr->held_locks + i; 3509 if (hlock_curr->irq_context != hlock->irq_context) 3510 break; 3511 3512 } 3513 3514 return ++i; 3515 } 3516 3517 #ifdef CONFIG_DEBUG_LOCKDEP 3518 /* 3519 * Returns the next chain_key iteration 3520 */ 3521 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3522 { 3523 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3524 3525 printk(" hlock_id:%d -> chain_key:%016Lx", 3526 (unsigned int)hlock_id, 3527 (unsigned long long)new_chain_key); 3528 return new_chain_key; 3529 } 3530 3531 static void 3532 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3533 { 3534 struct held_lock *hlock; 3535 u64 chain_key = INITIAL_CHAIN_KEY; 3536 int depth = curr->lockdep_depth; 3537 int i = get_first_held_lock(curr, hlock_next); 3538 3539 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3540 hlock_next->irq_context); 3541 for (; i < depth; i++) { 3542 hlock = curr->held_locks + i; 3543 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3544 3545 print_lock(hlock); 3546 } 3547 3548 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3549 print_lock(hlock_next); 3550 } 3551 3552 static void print_chain_keys_chain(struct lock_chain *chain) 3553 { 3554 int i; 3555 u64 chain_key = INITIAL_CHAIN_KEY; 3556 u16 hlock_id; 3557 3558 printk("depth: %u\n", chain->depth); 3559 for (i = 0; i < chain->depth; i++) { 3560 hlock_id = chain_hlocks[chain->base + i]; 3561 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3562 3563 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3564 printk("\n"); 3565 } 3566 } 3567 3568 static void print_collision(struct task_struct *curr, 3569 struct held_lock *hlock_next, 3570 struct lock_chain *chain) 3571 { 3572 pr_warn("\n"); 3573 pr_warn("============================\n"); 3574 pr_warn("WARNING: chain_key collision\n"); 3575 print_kernel_ident(); 3576 pr_warn("----------------------------\n"); 3577 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3578 pr_warn("Hash chain already cached but the contents don't match!\n"); 3579 3580 pr_warn("Held locks:"); 3581 print_chain_keys_held_locks(curr, hlock_next); 3582 3583 pr_warn("Locks in cached chain:"); 3584 print_chain_keys_chain(chain); 3585 3586 pr_warn("\nstack backtrace:\n"); 3587 dump_stack(); 3588 } 3589 #endif 3590 3591 /* 3592 * Checks whether the chain and the current held locks are consistent 3593 * in depth and also in content. If they are not it most likely means 3594 * that there was a collision during the calculation of the chain_key. 3595 * Returns: 0 not passed, 1 passed 3596 */ 3597 static int check_no_collision(struct task_struct *curr, 3598 struct held_lock *hlock, 3599 struct lock_chain *chain) 3600 { 3601 #ifdef CONFIG_DEBUG_LOCKDEP 3602 int i, j, id; 3603 3604 i = get_first_held_lock(curr, hlock); 3605 3606 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3607 print_collision(curr, hlock, chain); 3608 return 0; 3609 } 3610 3611 for (j = 0; j < chain->depth - 1; j++, i++) { 3612 id = hlock_id(&curr->held_locks[i]); 3613 3614 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3615 print_collision(curr, hlock, chain); 3616 return 0; 3617 } 3618 } 3619 #endif 3620 return 1; 3621 } 3622 3623 /* 3624 * Given an index that is >= -1, return the index of the next lock chain. 3625 * Return -2 if there is no next lock chain. 3626 */ 3627 long lockdep_next_lockchain(long i) 3628 { 3629 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3630 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3631 } 3632 3633 unsigned long lock_chain_count(void) 3634 { 3635 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3636 } 3637 3638 /* Must be called with the graph lock held. */ 3639 static struct lock_chain *alloc_lock_chain(void) 3640 { 3641 int idx = find_first_zero_bit(lock_chains_in_use, 3642 ARRAY_SIZE(lock_chains)); 3643 3644 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3645 return NULL; 3646 __set_bit(idx, lock_chains_in_use); 3647 return lock_chains + idx; 3648 } 3649 3650 /* 3651 * Adds a dependency chain into chain hashtable. And must be called with 3652 * graph_lock held. 3653 * 3654 * Return 0 if fail, and graph_lock is released. 3655 * Return 1 if succeed, with graph_lock held. 3656 */ 3657 static inline int add_chain_cache(struct task_struct *curr, 3658 struct held_lock *hlock, 3659 u64 chain_key) 3660 { 3661 struct hlist_head *hash_head = chainhashentry(chain_key); 3662 struct lock_chain *chain; 3663 int i, j; 3664 3665 /* 3666 * The caller must hold the graph lock, ensure we've got IRQs 3667 * disabled to make this an IRQ-safe lock.. for recursion reasons 3668 * lockdep won't complain about its own locking errors. 3669 */ 3670 if (lockdep_assert_locked()) 3671 return 0; 3672 3673 chain = alloc_lock_chain(); 3674 if (!chain) { 3675 if (!debug_locks_off_graph_unlock()) 3676 return 0; 3677 3678 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3679 dump_stack(); 3680 return 0; 3681 } 3682 chain->chain_key = chain_key; 3683 chain->irq_context = hlock->irq_context; 3684 i = get_first_held_lock(curr, hlock); 3685 chain->depth = curr->lockdep_depth + 1 - i; 3686 3687 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3688 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3689 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3690 3691 j = alloc_chain_hlocks(chain->depth); 3692 if (j < 0) { 3693 if (!debug_locks_off_graph_unlock()) 3694 return 0; 3695 3696 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3697 dump_stack(); 3698 return 0; 3699 } 3700 3701 chain->base = j; 3702 for (j = 0; j < chain->depth - 1; j++, i++) { 3703 int lock_id = hlock_id(curr->held_locks + i); 3704 3705 chain_hlocks[chain->base + j] = lock_id; 3706 } 3707 chain_hlocks[chain->base + j] = hlock_id(hlock); 3708 hlist_add_head_rcu(&chain->entry, hash_head); 3709 debug_atomic_inc(chain_lookup_misses); 3710 inc_chains(chain->irq_context); 3711 3712 return 1; 3713 } 3714 3715 /* 3716 * Look up a dependency chain. Must be called with either the graph lock or 3717 * the RCU read lock held. 3718 */ 3719 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3720 { 3721 struct hlist_head *hash_head = chainhashentry(chain_key); 3722 struct lock_chain *chain; 3723 3724 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3725 if (READ_ONCE(chain->chain_key) == chain_key) { 3726 debug_atomic_inc(chain_lookup_hits); 3727 return chain; 3728 } 3729 } 3730 return NULL; 3731 } 3732 3733 /* 3734 * If the key is not present yet in dependency chain cache then 3735 * add it and return 1 - in this case the new dependency chain is 3736 * validated. If the key is already hashed, return 0. 3737 * (On return with 1 graph_lock is held.) 3738 */ 3739 static inline int lookup_chain_cache_add(struct task_struct *curr, 3740 struct held_lock *hlock, 3741 u64 chain_key) 3742 { 3743 struct lock_class *class = hlock_class(hlock); 3744 struct lock_chain *chain = lookup_chain_cache(chain_key); 3745 3746 if (chain) { 3747 cache_hit: 3748 if (!check_no_collision(curr, hlock, chain)) 3749 return 0; 3750 3751 if (very_verbose(class)) { 3752 printk("\nhash chain already cached, key: " 3753 "%016Lx tail class: [%px] %s\n", 3754 (unsigned long long)chain_key, 3755 class->key, class->name); 3756 } 3757 3758 return 0; 3759 } 3760 3761 if (very_verbose(class)) { 3762 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3763 (unsigned long long)chain_key, class->key, class->name); 3764 } 3765 3766 if (!graph_lock()) 3767 return 0; 3768 3769 /* 3770 * We have to walk the chain again locked - to avoid duplicates: 3771 */ 3772 chain = lookup_chain_cache(chain_key); 3773 if (chain) { 3774 graph_unlock(); 3775 goto cache_hit; 3776 } 3777 3778 if (!add_chain_cache(curr, hlock, chain_key)) 3779 return 0; 3780 3781 return 1; 3782 } 3783 3784 static int validate_chain(struct task_struct *curr, 3785 struct held_lock *hlock, 3786 int chain_head, u64 chain_key) 3787 { 3788 /* 3789 * Trylock needs to maintain the stack of held locks, but it 3790 * does not add new dependencies, because trylock can be done 3791 * in any order. 3792 * 3793 * We look up the chain_key and do the O(N^2) check and update of 3794 * the dependencies only if this is a new dependency chain. 3795 * (If lookup_chain_cache_add() return with 1 it acquires 3796 * graph_lock for us) 3797 */ 3798 if (!hlock->trylock && hlock->check && 3799 lookup_chain_cache_add(curr, hlock, chain_key)) { 3800 /* 3801 * Check whether last held lock: 3802 * 3803 * - is irq-safe, if this lock is irq-unsafe 3804 * - is softirq-safe, if this lock is hardirq-unsafe 3805 * 3806 * And check whether the new lock's dependency graph 3807 * could lead back to the previous lock: 3808 * 3809 * - within the current held-lock stack 3810 * - across our accumulated lock dependency records 3811 * 3812 * any of these scenarios could lead to a deadlock. 3813 */ 3814 /* 3815 * The simple case: does the current hold the same lock 3816 * already? 3817 */ 3818 int ret = check_deadlock(curr, hlock); 3819 3820 if (!ret) 3821 return 0; 3822 /* 3823 * Add dependency only if this lock is not the head 3824 * of the chain, and if the new lock introduces no more 3825 * lock dependency (because we already hold a lock with the 3826 * same lock class) nor deadlock (because the nest_lock 3827 * serializes nesting locks), see the comments for 3828 * check_deadlock(). 3829 */ 3830 if (!chain_head && ret != 2) { 3831 if (!check_prevs_add(curr, hlock)) 3832 return 0; 3833 } 3834 3835 graph_unlock(); 3836 } else { 3837 /* after lookup_chain_cache_add(): */ 3838 if (unlikely(!debug_locks)) 3839 return 0; 3840 } 3841 3842 return 1; 3843 } 3844 #else 3845 static inline int validate_chain(struct task_struct *curr, 3846 struct held_lock *hlock, 3847 int chain_head, u64 chain_key) 3848 { 3849 return 1; 3850 } 3851 3852 static void init_chain_block_buckets(void) { } 3853 #endif /* CONFIG_PROVE_LOCKING */ 3854 3855 /* 3856 * We are building curr_chain_key incrementally, so double-check 3857 * it from scratch, to make sure that it's done correctly: 3858 */ 3859 static void check_chain_key(struct task_struct *curr) 3860 { 3861 #ifdef CONFIG_DEBUG_LOCKDEP 3862 struct held_lock *hlock, *prev_hlock = NULL; 3863 unsigned int i; 3864 u64 chain_key = INITIAL_CHAIN_KEY; 3865 3866 for (i = 0; i < curr->lockdep_depth; i++) { 3867 hlock = curr->held_locks + i; 3868 if (chain_key != hlock->prev_chain_key) { 3869 debug_locks_off(); 3870 /* 3871 * We got mighty confused, our chain keys don't match 3872 * with what we expect, someone trample on our task state? 3873 */ 3874 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3875 curr->lockdep_depth, i, 3876 (unsigned long long)chain_key, 3877 (unsigned long long)hlock->prev_chain_key); 3878 return; 3879 } 3880 3881 /* 3882 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3883 * it registered lock class index? 3884 */ 3885 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3886 return; 3887 3888 if (prev_hlock && (prev_hlock->irq_context != 3889 hlock->irq_context)) 3890 chain_key = INITIAL_CHAIN_KEY; 3891 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3892 prev_hlock = hlock; 3893 } 3894 if (chain_key != curr->curr_chain_key) { 3895 debug_locks_off(); 3896 /* 3897 * More smoking hash instead of calculating it, damn see these 3898 * numbers float.. I bet that a pink elephant stepped on my memory. 3899 */ 3900 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3901 curr->lockdep_depth, i, 3902 (unsigned long long)chain_key, 3903 (unsigned long long)curr->curr_chain_key); 3904 } 3905 #endif 3906 } 3907 3908 #ifdef CONFIG_PROVE_LOCKING 3909 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3910 enum lock_usage_bit new_bit); 3911 3912 static void print_usage_bug_scenario(struct held_lock *lock) 3913 { 3914 struct lock_class *class = hlock_class(lock); 3915 3916 printk(" Possible unsafe locking scenario:\n\n"); 3917 printk(" CPU0\n"); 3918 printk(" ----\n"); 3919 printk(" lock("); 3920 __print_lock_name(class); 3921 printk(KERN_CONT ");\n"); 3922 printk(" <Interrupt>\n"); 3923 printk(" lock("); 3924 __print_lock_name(class); 3925 printk(KERN_CONT ");\n"); 3926 printk("\n *** DEADLOCK ***\n\n"); 3927 } 3928 3929 static void 3930 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3931 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3932 { 3933 if (!debug_locks_off() || debug_locks_silent) 3934 return; 3935 3936 pr_warn("\n"); 3937 pr_warn("================================\n"); 3938 pr_warn("WARNING: inconsistent lock state\n"); 3939 print_kernel_ident(); 3940 pr_warn("--------------------------------\n"); 3941 3942 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3943 usage_str[prev_bit], usage_str[new_bit]); 3944 3945 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3946 curr->comm, task_pid_nr(curr), 3947 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3948 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3949 lockdep_hardirqs_enabled(), 3950 lockdep_softirqs_enabled(curr)); 3951 print_lock(this); 3952 3953 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3954 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3955 3956 print_irqtrace_events(curr); 3957 pr_warn("\nother info that might help us debug this:\n"); 3958 print_usage_bug_scenario(this); 3959 3960 lockdep_print_held_locks(curr); 3961 3962 pr_warn("\nstack backtrace:\n"); 3963 dump_stack(); 3964 } 3965 3966 /* 3967 * Print out an error if an invalid bit is set: 3968 */ 3969 static inline int 3970 valid_state(struct task_struct *curr, struct held_lock *this, 3971 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3972 { 3973 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3974 graph_unlock(); 3975 print_usage_bug(curr, this, bad_bit, new_bit); 3976 return 0; 3977 } 3978 return 1; 3979 } 3980 3981 3982 /* 3983 * print irq inversion bug: 3984 */ 3985 static void 3986 print_irq_inversion_bug(struct task_struct *curr, 3987 struct lock_list *root, struct lock_list *other, 3988 struct held_lock *this, int forwards, 3989 const char *irqclass) 3990 { 3991 struct lock_list *entry = other; 3992 struct lock_list *middle = NULL; 3993 int depth; 3994 3995 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3996 return; 3997 3998 pr_warn("\n"); 3999 pr_warn("========================================================\n"); 4000 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4001 print_kernel_ident(); 4002 pr_warn("--------------------------------------------------------\n"); 4003 pr_warn("%s/%d just changed the state of lock:\n", 4004 curr->comm, task_pid_nr(curr)); 4005 print_lock(this); 4006 if (forwards) 4007 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4008 else 4009 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4010 print_lock_name(other->class); 4011 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4012 4013 pr_warn("\nother info that might help us debug this:\n"); 4014 4015 /* Find a middle lock (if one exists) */ 4016 depth = get_lock_depth(other); 4017 do { 4018 if (depth == 0 && (entry != root)) { 4019 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4020 break; 4021 } 4022 middle = entry; 4023 entry = get_lock_parent(entry); 4024 depth--; 4025 } while (entry && entry != root && (depth >= 0)); 4026 if (forwards) 4027 print_irq_lock_scenario(root, other, 4028 middle ? middle->class : root->class, other->class); 4029 else 4030 print_irq_lock_scenario(other, root, 4031 middle ? middle->class : other->class, root->class); 4032 4033 lockdep_print_held_locks(curr); 4034 4035 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4036 root->trace = save_trace(); 4037 if (!root->trace) 4038 return; 4039 print_shortest_lock_dependencies(other, root); 4040 4041 pr_warn("\nstack backtrace:\n"); 4042 dump_stack(); 4043 } 4044 4045 /* 4046 * Prove that in the forwards-direction subgraph starting at <this> 4047 * there is no lock matching <mask>: 4048 */ 4049 static int 4050 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4051 enum lock_usage_bit bit) 4052 { 4053 enum bfs_result ret; 4054 struct lock_list root; 4055 struct lock_list *target_entry; 4056 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4057 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4058 4059 bfs_init_root(&root, this); 4060 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4061 if (bfs_error(ret)) { 4062 print_bfs_bug(ret); 4063 return 0; 4064 } 4065 if (ret == BFS_RNOMATCH) 4066 return 1; 4067 4068 /* Check whether write or read usage is the match */ 4069 if (target_entry->class->usage_mask & lock_flag(bit)) { 4070 print_irq_inversion_bug(curr, &root, target_entry, 4071 this, 1, state_name(bit)); 4072 } else { 4073 print_irq_inversion_bug(curr, &root, target_entry, 4074 this, 1, state_name(read_bit)); 4075 } 4076 4077 return 0; 4078 } 4079 4080 /* 4081 * Prove that in the backwards-direction subgraph starting at <this> 4082 * there is no lock matching <mask>: 4083 */ 4084 static int 4085 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4086 enum lock_usage_bit bit) 4087 { 4088 enum bfs_result ret; 4089 struct lock_list root; 4090 struct lock_list *target_entry; 4091 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4092 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4093 4094 bfs_init_rootb(&root, this); 4095 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4096 if (bfs_error(ret)) { 4097 print_bfs_bug(ret); 4098 return 0; 4099 } 4100 if (ret == BFS_RNOMATCH) 4101 return 1; 4102 4103 /* Check whether write or read usage is the match */ 4104 if (target_entry->class->usage_mask & lock_flag(bit)) { 4105 print_irq_inversion_bug(curr, &root, target_entry, 4106 this, 0, state_name(bit)); 4107 } else { 4108 print_irq_inversion_bug(curr, &root, target_entry, 4109 this, 0, state_name(read_bit)); 4110 } 4111 4112 return 0; 4113 } 4114 4115 void print_irqtrace_events(struct task_struct *curr) 4116 { 4117 const struct irqtrace_events *trace = &curr->irqtrace; 4118 4119 printk("irq event stamp: %u\n", trace->irq_events); 4120 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4121 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4122 (void *)trace->hardirq_enable_ip); 4123 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4124 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4125 (void *)trace->hardirq_disable_ip); 4126 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4127 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4128 (void *)trace->softirq_enable_ip); 4129 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4130 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4131 (void *)trace->softirq_disable_ip); 4132 } 4133 4134 static int HARDIRQ_verbose(struct lock_class *class) 4135 { 4136 #if HARDIRQ_VERBOSE 4137 return class_filter(class); 4138 #endif 4139 return 0; 4140 } 4141 4142 static int SOFTIRQ_verbose(struct lock_class *class) 4143 { 4144 #if SOFTIRQ_VERBOSE 4145 return class_filter(class); 4146 #endif 4147 return 0; 4148 } 4149 4150 static int (*state_verbose_f[])(struct lock_class *class) = { 4151 #define LOCKDEP_STATE(__STATE) \ 4152 __STATE##_verbose, 4153 #include "lockdep_states.h" 4154 #undef LOCKDEP_STATE 4155 }; 4156 4157 static inline int state_verbose(enum lock_usage_bit bit, 4158 struct lock_class *class) 4159 { 4160 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4161 } 4162 4163 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4164 enum lock_usage_bit bit, const char *name); 4165 4166 static int 4167 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4168 enum lock_usage_bit new_bit) 4169 { 4170 int excl_bit = exclusive_bit(new_bit); 4171 int read = new_bit & LOCK_USAGE_READ_MASK; 4172 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4173 4174 /* 4175 * Validate that this particular lock does not have conflicting 4176 * usage states. 4177 */ 4178 if (!valid_state(curr, this, new_bit, excl_bit)) 4179 return 0; 4180 4181 /* 4182 * Check for read in write conflicts 4183 */ 4184 if (!read && !valid_state(curr, this, new_bit, 4185 excl_bit + LOCK_USAGE_READ_MASK)) 4186 return 0; 4187 4188 4189 /* 4190 * Validate that the lock dependencies don't have conflicting usage 4191 * states. 4192 */ 4193 if (dir) { 4194 /* 4195 * mark ENABLED has to look backwards -- to ensure no dependee 4196 * has USED_IN state, which, again, would allow recursion deadlocks. 4197 */ 4198 if (!check_usage_backwards(curr, this, excl_bit)) 4199 return 0; 4200 } else { 4201 /* 4202 * mark USED_IN has to look forwards -- to ensure no dependency 4203 * has ENABLED state, which would allow recursion deadlocks. 4204 */ 4205 if (!check_usage_forwards(curr, this, excl_bit)) 4206 return 0; 4207 } 4208 4209 if (state_verbose(new_bit, hlock_class(this))) 4210 return 2; 4211 4212 return 1; 4213 } 4214 4215 /* 4216 * Mark all held locks with a usage bit: 4217 */ 4218 static int 4219 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4220 { 4221 struct held_lock *hlock; 4222 int i; 4223 4224 for (i = 0; i < curr->lockdep_depth; i++) { 4225 enum lock_usage_bit hlock_bit = base_bit; 4226 hlock = curr->held_locks + i; 4227 4228 if (hlock->read) 4229 hlock_bit += LOCK_USAGE_READ_MASK; 4230 4231 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4232 4233 if (!hlock->check) 4234 continue; 4235 4236 if (!mark_lock(curr, hlock, hlock_bit)) 4237 return 0; 4238 } 4239 4240 return 1; 4241 } 4242 4243 /* 4244 * Hardirqs will be enabled: 4245 */ 4246 static void __trace_hardirqs_on_caller(void) 4247 { 4248 struct task_struct *curr = current; 4249 4250 /* 4251 * We are going to turn hardirqs on, so set the 4252 * usage bit for all held locks: 4253 */ 4254 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4255 return; 4256 /* 4257 * If we have softirqs enabled, then set the usage 4258 * bit for all held locks. (disabled hardirqs prevented 4259 * this bit from being set before) 4260 */ 4261 if (curr->softirqs_enabled) 4262 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4263 } 4264 4265 /** 4266 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4267 * 4268 * Invoked before a possible transition to RCU idle from exit to user or 4269 * guest mode. This ensures that all RCU operations are done before RCU 4270 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4271 * invoked to set the final state. 4272 */ 4273 void lockdep_hardirqs_on_prepare(void) 4274 { 4275 if (unlikely(!debug_locks)) 4276 return; 4277 4278 /* 4279 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4280 */ 4281 if (unlikely(in_nmi())) 4282 return; 4283 4284 if (unlikely(this_cpu_read(lockdep_recursion))) 4285 return; 4286 4287 if (unlikely(lockdep_hardirqs_enabled())) { 4288 /* 4289 * Neither irq nor preemption are disabled here 4290 * so this is racy by nature but losing one hit 4291 * in a stat is not a big deal. 4292 */ 4293 __debug_atomic_inc(redundant_hardirqs_on); 4294 return; 4295 } 4296 4297 /* 4298 * We're enabling irqs and according to our state above irqs weren't 4299 * already enabled, yet we find the hardware thinks they are in fact 4300 * enabled.. someone messed up their IRQ state tracing. 4301 */ 4302 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4303 return; 4304 4305 /* 4306 * See the fine text that goes along with this variable definition. 4307 */ 4308 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4309 return; 4310 4311 /* 4312 * Can't allow enabling interrupts while in an interrupt handler, 4313 * that's general bad form and such. Recursion, limited stack etc.. 4314 */ 4315 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4316 return; 4317 4318 current->hardirq_chain_key = current->curr_chain_key; 4319 4320 lockdep_recursion_inc(); 4321 __trace_hardirqs_on_caller(); 4322 lockdep_recursion_finish(); 4323 } 4324 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4325 4326 void noinstr lockdep_hardirqs_on(unsigned long ip) 4327 { 4328 struct irqtrace_events *trace = ¤t->irqtrace; 4329 4330 if (unlikely(!debug_locks)) 4331 return; 4332 4333 /* 4334 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4335 * tracking state and hardware state are out of sync. 4336 * 4337 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4338 * and not rely on hardware state like normal interrupts. 4339 */ 4340 if (unlikely(in_nmi())) { 4341 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4342 return; 4343 4344 /* 4345 * Skip: 4346 * - recursion check, because NMI can hit lockdep; 4347 * - hardware state check, because above; 4348 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4349 */ 4350 goto skip_checks; 4351 } 4352 4353 if (unlikely(this_cpu_read(lockdep_recursion))) 4354 return; 4355 4356 if (lockdep_hardirqs_enabled()) { 4357 /* 4358 * Neither irq nor preemption are disabled here 4359 * so this is racy by nature but losing one hit 4360 * in a stat is not a big deal. 4361 */ 4362 __debug_atomic_inc(redundant_hardirqs_on); 4363 return; 4364 } 4365 4366 /* 4367 * We're enabling irqs and according to our state above irqs weren't 4368 * already enabled, yet we find the hardware thinks they are in fact 4369 * enabled.. someone messed up their IRQ state tracing. 4370 */ 4371 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4372 return; 4373 4374 /* 4375 * Ensure the lock stack remained unchanged between 4376 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4377 */ 4378 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4379 current->curr_chain_key); 4380 4381 skip_checks: 4382 /* we'll do an OFF -> ON transition: */ 4383 __this_cpu_write(hardirqs_enabled, 1); 4384 trace->hardirq_enable_ip = ip; 4385 trace->hardirq_enable_event = ++trace->irq_events; 4386 debug_atomic_inc(hardirqs_on_events); 4387 } 4388 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4389 4390 /* 4391 * Hardirqs were disabled: 4392 */ 4393 void noinstr lockdep_hardirqs_off(unsigned long ip) 4394 { 4395 if (unlikely(!debug_locks)) 4396 return; 4397 4398 /* 4399 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4400 * they will restore the software state. This ensures the software 4401 * state is consistent inside NMIs as well. 4402 */ 4403 if (in_nmi()) { 4404 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4405 return; 4406 } else if (__this_cpu_read(lockdep_recursion)) 4407 return; 4408 4409 /* 4410 * So we're supposed to get called after you mask local IRQs, but for 4411 * some reason the hardware doesn't quite think you did a proper job. 4412 */ 4413 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4414 return; 4415 4416 if (lockdep_hardirqs_enabled()) { 4417 struct irqtrace_events *trace = ¤t->irqtrace; 4418 4419 /* 4420 * We have done an ON -> OFF transition: 4421 */ 4422 __this_cpu_write(hardirqs_enabled, 0); 4423 trace->hardirq_disable_ip = ip; 4424 trace->hardirq_disable_event = ++trace->irq_events; 4425 debug_atomic_inc(hardirqs_off_events); 4426 } else { 4427 debug_atomic_inc(redundant_hardirqs_off); 4428 } 4429 } 4430 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4431 4432 /* 4433 * Softirqs will be enabled: 4434 */ 4435 void lockdep_softirqs_on(unsigned long ip) 4436 { 4437 struct irqtrace_events *trace = ¤t->irqtrace; 4438 4439 if (unlikely(!lockdep_enabled())) 4440 return; 4441 4442 /* 4443 * We fancy IRQs being disabled here, see softirq.c, avoids 4444 * funny state and nesting things. 4445 */ 4446 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4447 return; 4448 4449 if (current->softirqs_enabled) { 4450 debug_atomic_inc(redundant_softirqs_on); 4451 return; 4452 } 4453 4454 lockdep_recursion_inc(); 4455 /* 4456 * We'll do an OFF -> ON transition: 4457 */ 4458 current->softirqs_enabled = 1; 4459 trace->softirq_enable_ip = ip; 4460 trace->softirq_enable_event = ++trace->irq_events; 4461 debug_atomic_inc(softirqs_on_events); 4462 /* 4463 * We are going to turn softirqs on, so set the 4464 * usage bit for all held locks, if hardirqs are 4465 * enabled too: 4466 */ 4467 if (lockdep_hardirqs_enabled()) 4468 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4469 lockdep_recursion_finish(); 4470 } 4471 4472 /* 4473 * Softirqs were disabled: 4474 */ 4475 void lockdep_softirqs_off(unsigned long ip) 4476 { 4477 if (unlikely(!lockdep_enabled())) 4478 return; 4479 4480 /* 4481 * We fancy IRQs being disabled here, see softirq.c 4482 */ 4483 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4484 return; 4485 4486 if (current->softirqs_enabled) { 4487 struct irqtrace_events *trace = ¤t->irqtrace; 4488 4489 /* 4490 * We have done an ON -> OFF transition: 4491 */ 4492 current->softirqs_enabled = 0; 4493 trace->softirq_disable_ip = ip; 4494 trace->softirq_disable_event = ++trace->irq_events; 4495 debug_atomic_inc(softirqs_off_events); 4496 /* 4497 * Whoops, we wanted softirqs off, so why aren't they? 4498 */ 4499 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4500 } else 4501 debug_atomic_inc(redundant_softirqs_off); 4502 } 4503 4504 static int 4505 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4506 { 4507 if (!check) 4508 goto lock_used; 4509 4510 /* 4511 * If non-trylock use in a hardirq or softirq context, then 4512 * mark the lock as used in these contexts: 4513 */ 4514 if (!hlock->trylock) { 4515 if (hlock->read) { 4516 if (lockdep_hardirq_context()) 4517 if (!mark_lock(curr, hlock, 4518 LOCK_USED_IN_HARDIRQ_READ)) 4519 return 0; 4520 if (curr->softirq_context) 4521 if (!mark_lock(curr, hlock, 4522 LOCK_USED_IN_SOFTIRQ_READ)) 4523 return 0; 4524 } else { 4525 if (lockdep_hardirq_context()) 4526 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4527 return 0; 4528 if (curr->softirq_context) 4529 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4530 return 0; 4531 } 4532 } 4533 if (!hlock->hardirqs_off) { 4534 if (hlock->read) { 4535 if (!mark_lock(curr, hlock, 4536 LOCK_ENABLED_HARDIRQ_READ)) 4537 return 0; 4538 if (curr->softirqs_enabled) 4539 if (!mark_lock(curr, hlock, 4540 LOCK_ENABLED_SOFTIRQ_READ)) 4541 return 0; 4542 } else { 4543 if (!mark_lock(curr, hlock, 4544 LOCK_ENABLED_HARDIRQ)) 4545 return 0; 4546 if (curr->softirqs_enabled) 4547 if (!mark_lock(curr, hlock, 4548 LOCK_ENABLED_SOFTIRQ)) 4549 return 0; 4550 } 4551 } 4552 4553 lock_used: 4554 /* mark it as used: */ 4555 if (!mark_lock(curr, hlock, LOCK_USED)) 4556 return 0; 4557 4558 return 1; 4559 } 4560 4561 static inline unsigned int task_irq_context(struct task_struct *task) 4562 { 4563 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4564 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4565 } 4566 4567 static int separate_irq_context(struct task_struct *curr, 4568 struct held_lock *hlock) 4569 { 4570 unsigned int depth = curr->lockdep_depth; 4571 4572 /* 4573 * Keep track of points where we cross into an interrupt context: 4574 */ 4575 if (depth) { 4576 struct held_lock *prev_hlock; 4577 4578 prev_hlock = curr->held_locks + depth-1; 4579 /* 4580 * If we cross into another context, reset the 4581 * hash key (this also prevents the checking and the 4582 * adding of the dependency to 'prev'): 4583 */ 4584 if (prev_hlock->irq_context != hlock->irq_context) 4585 return 1; 4586 } 4587 return 0; 4588 } 4589 4590 /* 4591 * Mark a lock with a usage bit, and validate the state transition: 4592 */ 4593 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4594 enum lock_usage_bit new_bit) 4595 { 4596 unsigned int new_mask, ret = 1; 4597 4598 if (new_bit >= LOCK_USAGE_STATES) { 4599 DEBUG_LOCKS_WARN_ON(1); 4600 return 0; 4601 } 4602 4603 if (new_bit == LOCK_USED && this->read) 4604 new_bit = LOCK_USED_READ; 4605 4606 new_mask = 1 << new_bit; 4607 4608 /* 4609 * If already set then do not dirty the cacheline, 4610 * nor do any checks: 4611 */ 4612 if (likely(hlock_class(this)->usage_mask & new_mask)) 4613 return 1; 4614 4615 if (!graph_lock()) 4616 return 0; 4617 /* 4618 * Make sure we didn't race: 4619 */ 4620 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4621 goto unlock; 4622 4623 if (!hlock_class(this)->usage_mask) 4624 debug_atomic_dec(nr_unused_locks); 4625 4626 hlock_class(this)->usage_mask |= new_mask; 4627 4628 if (new_bit < LOCK_TRACE_STATES) { 4629 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4630 return 0; 4631 } 4632 4633 if (new_bit < LOCK_USED) { 4634 ret = mark_lock_irq(curr, this, new_bit); 4635 if (!ret) 4636 return 0; 4637 } 4638 4639 unlock: 4640 graph_unlock(); 4641 4642 /* 4643 * We must printk outside of the graph_lock: 4644 */ 4645 if (ret == 2) { 4646 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4647 print_lock(this); 4648 print_irqtrace_events(curr); 4649 dump_stack(); 4650 } 4651 4652 return ret; 4653 } 4654 4655 static inline short task_wait_context(struct task_struct *curr) 4656 { 4657 /* 4658 * Set appropriate wait type for the context; for IRQs we have to take 4659 * into account force_irqthread as that is implied by PREEMPT_RT. 4660 */ 4661 if (lockdep_hardirq_context()) { 4662 /* 4663 * Check if force_irqthreads will run us threaded. 4664 */ 4665 if (curr->hardirq_threaded || curr->irq_config) 4666 return LD_WAIT_CONFIG; 4667 4668 return LD_WAIT_SPIN; 4669 } else if (curr->softirq_context) { 4670 /* 4671 * Softirqs are always threaded. 4672 */ 4673 return LD_WAIT_CONFIG; 4674 } 4675 4676 return LD_WAIT_MAX; 4677 } 4678 4679 static int 4680 print_lock_invalid_wait_context(struct task_struct *curr, 4681 struct held_lock *hlock) 4682 { 4683 short curr_inner; 4684 4685 if (!debug_locks_off()) 4686 return 0; 4687 if (debug_locks_silent) 4688 return 0; 4689 4690 pr_warn("\n"); 4691 pr_warn("=============================\n"); 4692 pr_warn("[ BUG: Invalid wait context ]\n"); 4693 print_kernel_ident(); 4694 pr_warn("-----------------------------\n"); 4695 4696 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4697 print_lock(hlock); 4698 4699 pr_warn("other info that might help us debug this:\n"); 4700 4701 curr_inner = task_wait_context(curr); 4702 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4703 4704 lockdep_print_held_locks(curr); 4705 4706 pr_warn("stack backtrace:\n"); 4707 dump_stack(); 4708 4709 return 0; 4710 } 4711 4712 /* 4713 * Verify the wait_type context. 4714 * 4715 * This check validates we take locks in the right wait-type order; that is it 4716 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4717 * acquire spinlocks inside raw_spinlocks and the sort. 4718 * 4719 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4720 * can be taken from (pretty much) any context but also has constraints. 4721 * However when taken in a stricter environment the RCU lock does not loosen 4722 * the constraints. 4723 * 4724 * Therefore we must look for the strictest environment in the lock stack and 4725 * compare that to the lock we're trying to acquire. 4726 */ 4727 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4728 { 4729 u8 next_inner = hlock_class(next)->wait_type_inner; 4730 u8 next_outer = hlock_class(next)->wait_type_outer; 4731 u8 curr_inner; 4732 int depth; 4733 4734 if (!next_inner || next->trylock) 4735 return 0; 4736 4737 if (!next_outer) 4738 next_outer = next_inner; 4739 4740 /* 4741 * Find start of current irq_context.. 4742 */ 4743 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4744 struct held_lock *prev = curr->held_locks + depth; 4745 if (prev->irq_context != next->irq_context) 4746 break; 4747 } 4748 depth++; 4749 4750 curr_inner = task_wait_context(curr); 4751 4752 for (; depth < curr->lockdep_depth; depth++) { 4753 struct held_lock *prev = curr->held_locks + depth; 4754 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4755 4756 if (prev_inner) { 4757 /* 4758 * We can have a bigger inner than a previous one 4759 * when outer is smaller than inner, as with RCU. 4760 * 4761 * Also due to trylocks. 4762 */ 4763 curr_inner = min(curr_inner, prev_inner); 4764 } 4765 } 4766 4767 if (next_outer > curr_inner) 4768 return print_lock_invalid_wait_context(curr, next); 4769 4770 return 0; 4771 } 4772 4773 #else /* CONFIG_PROVE_LOCKING */ 4774 4775 static inline int 4776 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4777 { 4778 return 1; 4779 } 4780 4781 static inline unsigned int task_irq_context(struct task_struct *task) 4782 { 4783 return 0; 4784 } 4785 4786 static inline int separate_irq_context(struct task_struct *curr, 4787 struct held_lock *hlock) 4788 { 4789 return 0; 4790 } 4791 4792 static inline int check_wait_context(struct task_struct *curr, 4793 struct held_lock *next) 4794 { 4795 return 0; 4796 } 4797 4798 #endif /* CONFIG_PROVE_LOCKING */ 4799 4800 /* 4801 * Initialize a lock instance's lock-class mapping info: 4802 */ 4803 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4804 struct lock_class_key *key, int subclass, 4805 u8 inner, u8 outer, u8 lock_type) 4806 { 4807 int i; 4808 4809 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4810 lock->class_cache[i] = NULL; 4811 4812 #ifdef CONFIG_LOCK_STAT 4813 lock->cpu = raw_smp_processor_id(); 4814 #endif 4815 4816 /* 4817 * Can't be having no nameless bastards around this place! 4818 */ 4819 if (DEBUG_LOCKS_WARN_ON(!name)) { 4820 lock->name = "NULL"; 4821 return; 4822 } 4823 4824 lock->name = name; 4825 4826 lock->wait_type_outer = outer; 4827 lock->wait_type_inner = inner; 4828 lock->lock_type = lock_type; 4829 4830 /* 4831 * No key, no joy, we need to hash something. 4832 */ 4833 if (DEBUG_LOCKS_WARN_ON(!key)) 4834 return; 4835 /* 4836 * Sanity check, the lock-class key must either have been allocated 4837 * statically or must have been registered as a dynamic key. 4838 */ 4839 if (!static_obj(key) && !is_dynamic_key(key)) { 4840 if (debug_locks) 4841 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4842 DEBUG_LOCKS_WARN_ON(1); 4843 return; 4844 } 4845 lock->key = key; 4846 4847 if (unlikely(!debug_locks)) 4848 return; 4849 4850 if (subclass) { 4851 unsigned long flags; 4852 4853 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4854 return; 4855 4856 raw_local_irq_save(flags); 4857 lockdep_recursion_inc(); 4858 register_lock_class(lock, subclass, 1); 4859 lockdep_recursion_finish(); 4860 raw_local_irq_restore(flags); 4861 } 4862 } 4863 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4864 4865 struct lock_class_key __lockdep_no_validate__; 4866 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4867 4868 static void 4869 print_lock_nested_lock_not_held(struct task_struct *curr, 4870 struct held_lock *hlock) 4871 { 4872 if (!debug_locks_off()) 4873 return; 4874 if (debug_locks_silent) 4875 return; 4876 4877 pr_warn("\n"); 4878 pr_warn("==================================\n"); 4879 pr_warn("WARNING: Nested lock was not taken\n"); 4880 print_kernel_ident(); 4881 pr_warn("----------------------------------\n"); 4882 4883 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4884 print_lock(hlock); 4885 4886 pr_warn("\nbut this task is not holding:\n"); 4887 pr_warn("%s\n", hlock->nest_lock->name); 4888 4889 pr_warn("\nstack backtrace:\n"); 4890 dump_stack(); 4891 4892 pr_warn("\nother info that might help us debug this:\n"); 4893 lockdep_print_held_locks(curr); 4894 4895 pr_warn("\nstack backtrace:\n"); 4896 dump_stack(); 4897 } 4898 4899 static int __lock_is_held(const struct lockdep_map *lock, int read); 4900 4901 /* 4902 * This gets called for every mutex_lock*()/spin_lock*() operation. 4903 * We maintain the dependency maps and validate the locking attempt: 4904 * 4905 * The callers must make sure that IRQs are disabled before calling it, 4906 * otherwise we could get an interrupt which would want to take locks, 4907 * which would end up in lockdep again. 4908 */ 4909 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4910 int trylock, int read, int check, int hardirqs_off, 4911 struct lockdep_map *nest_lock, unsigned long ip, 4912 int references, int pin_count) 4913 { 4914 struct task_struct *curr = current; 4915 struct lock_class *class = NULL; 4916 struct held_lock *hlock; 4917 unsigned int depth; 4918 int chain_head = 0; 4919 int class_idx; 4920 u64 chain_key; 4921 4922 if (unlikely(!debug_locks)) 4923 return 0; 4924 4925 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4926 check = 0; 4927 4928 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4929 class = lock->class_cache[subclass]; 4930 /* 4931 * Not cached? 4932 */ 4933 if (unlikely(!class)) { 4934 class = register_lock_class(lock, subclass, 0); 4935 if (!class) 4936 return 0; 4937 } 4938 4939 debug_class_ops_inc(class); 4940 4941 if (very_verbose(class)) { 4942 printk("\nacquire class [%px] %s", class->key, class->name); 4943 if (class->name_version > 1) 4944 printk(KERN_CONT "#%d", class->name_version); 4945 printk(KERN_CONT "\n"); 4946 dump_stack(); 4947 } 4948 4949 /* 4950 * Add the lock to the list of currently held locks. 4951 * (we dont increase the depth just yet, up until the 4952 * dependency checks are done) 4953 */ 4954 depth = curr->lockdep_depth; 4955 /* 4956 * Ran out of static storage for our per-task lock stack again have we? 4957 */ 4958 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4959 return 0; 4960 4961 class_idx = class - lock_classes; 4962 4963 if (depth) { /* we're holding locks */ 4964 hlock = curr->held_locks + depth - 1; 4965 if (hlock->class_idx == class_idx && nest_lock) { 4966 if (!references) 4967 references++; 4968 4969 if (!hlock->references) 4970 hlock->references++; 4971 4972 hlock->references += references; 4973 4974 /* Overflow */ 4975 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4976 return 0; 4977 4978 return 2; 4979 } 4980 } 4981 4982 hlock = curr->held_locks + depth; 4983 /* 4984 * Plain impossible, we just registered it and checked it weren't no 4985 * NULL like.. I bet this mushroom I ate was good! 4986 */ 4987 if (DEBUG_LOCKS_WARN_ON(!class)) 4988 return 0; 4989 hlock->class_idx = class_idx; 4990 hlock->acquire_ip = ip; 4991 hlock->instance = lock; 4992 hlock->nest_lock = nest_lock; 4993 hlock->irq_context = task_irq_context(curr); 4994 hlock->trylock = trylock; 4995 hlock->read = read; 4996 hlock->check = check; 4997 hlock->hardirqs_off = !!hardirqs_off; 4998 hlock->references = references; 4999 #ifdef CONFIG_LOCK_STAT 5000 hlock->waittime_stamp = 0; 5001 hlock->holdtime_stamp = lockstat_clock(); 5002 #endif 5003 hlock->pin_count = pin_count; 5004 5005 if (check_wait_context(curr, hlock)) 5006 return 0; 5007 5008 /* Initialize the lock usage bit */ 5009 if (!mark_usage(curr, hlock, check)) 5010 return 0; 5011 5012 /* 5013 * Calculate the chain hash: it's the combined hash of all the 5014 * lock keys along the dependency chain. We save the hash value 5015 * at every step so that we can get the current hash easily 5016 * after unlock. The chain hash is then used to cache dependency 5017 * results. 5018 * 5019 * The 'key ID' is what is the most compact key value to drive 5020 * the hash, not class->key. 5021 */ 5022 /* 5023 * Whoops, we did it again.. class_idx is invalid. 5024 */ 5025 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5026 return 0; 5027 5028 chain_key = curr->curr_chain_key; 5029 if (!depth) { 5030 /* 5031 * How can we have a chain hash when we ain't got no keys?! 5032 */ 5033 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5034 return 0; 5035 chain_head = 1; 5036 } 5037 5038 hlock->prev_chain_key = chain_key; 5039 if (separate_irq_context(curr, hlock)) { 5040 chain_key = INITIAL_CHAIN_KEY; 5041 chain_head = 1; 5042 } 5043 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5044 5045 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5046 print_lock_nested_lock_not_held(curr, hlock); 5047 return 0; 5048 } 5049 5050 if (!debug_locks_silent) { 5051 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5052 WARN_ON_ONCE(!hlock_class(hlock)->key); 5053 } 5054 5055 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5056 return 0; 5057 5058 curr->curr_chain_key = chain_key; 5059 curr->lockdep_depth++; 5060 check_chain_key(curr); 5061 #ifdef CONFIG_DEBUG_LOCKDEP 5062 if (unlikely(!debug_locks)) 5063 return 0; 5064 #endif 5065 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5066 debug_locks_off(); 5067 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5068 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5069 curr->lockdep_depth, MAX_LOCK_DEPTH); 5070 5071 lockdep_print_held_locks(current); 5072 debug_show_all_locks(); 5073 dump_stack(); 5074 5075 return 0; 5076 } 5077 5078 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5079 max_lockdep_depth = curr->lockdep_depth; 5080 5081 return 1; 5082 } 5083 5084 static void print_unlock_imbalance_bug(struct task_struct *curr, 5085 struct lockdep_map *lock, 5086 unsigned long ip) 5087 { 5088 if (!debug_locks_off()) 5089 return; 5090 if (debug_locks_silent) 5091 return; 5092 5093 pr_warn("\n"); 5094 pr_warn("=====================================\n"); 5095 pr_warn("WARNING: bad unlock balance detected!\n"); 5096 print_kernel_ident(); 5097 pr_warn("-------------------------------------\n"); 5098 pr_warn("%s/%d is trying to release lock (", 5099 curr->comm, task_pid_nr(curr)); 5100 print_lockdep_cache(lock); 5101 pr_cont(") at:\n"); 5102 print_ip_sym(KERN_WARNING, ip); 5103 pr_warn("but there are no more locks to release!\n"); 5104 pr_warn("\nother info that might help us debug this:\n"); 5105 lockdep_print_held_locks(curr); 5106 5107 pr_warn("\nstack backtrace:\n"); 5108 dump_stack(); 5109 } 5110 5111 static noinstr int match_held_lock(const struct held_lock *hlock, 5112 const struct lockdep_map *lock) 5113 { 5114 if (hlock->instance == lock) 5115 return 1; 5116 5117 if (hlock->references) { 5118 const struct lock_class *class = lock->class_cache[0]; 5119 5120 if (!class) 5121 class = look_up_lock_class(lock, 0); 5122 5123 /* 5124 * If look_up_lock_class() failed to find a class, we're trying 5125 * to test if we hold a lock that has never yet been acquired. 5126 * Clearly if the lock hasn't been acquired _ever_, we're not 5127 * holding it either, so report failure. 5128 */ 5129 if (!class) 5130 return 0; 5131 5132 /* 5133 * References, but not a lock we're actually ref-counting? 5134 * State got messed up, follow the sites that change ->references 5135 * and try to make sense of it. 5136 */ 5137 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5138 return 0; 5139 5140 if (hlock->class_idx == class - lock_classes) 5141 return 1; 5142 } 5143 5144 return 0; 5145 } 5146 5147 /* @depth must not be zero */ 5148 static struct held_lock *find_held_lock(struct task_struct *curr, 5149 struct lockdep_map *lock, 5150 unsigned int depth, int *idx) 5151 { 5152 struct held_lock *ret, *hlock, *prev_hlock; 5153 int i; 5154 5155 i = depth - 1; 5156 hlock = curr->held_locks + i; 5157 ret = hlock; 5158 if (match_held_lock(hlock, lock)) 5159 goto out; 5160 5161 ret = NULL; 5162 for (i--, prev_hlock = hlock--; 5163 i >= 0; 5164 i--, prev_hlock = hlock--) { 5165 /* 5166 * We must not cross into another context: 5167 */ 5168 if (prev_hlock->irq_context != hlock->irq_context) { 5169 ret = NULL; 5170 break; 5171 } 5172 if (match_held_lock(hlock, lock)) { 5173 ret = hlock; 5174 break; 5175 } 5176 } 5177 5178 out: 5179 *idx = i; 5180 return ret; 5181 } 5182 5183 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5184 int idx, unsigned int *merged) 5185 { 5186 struct held_lock *hlock; 5187 int first_idx = idx; 5188 5189 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5190 return 0; 5191 5192 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5193 switch (__lock_acquire(hlock->instance, 5194 hlock_class(hlock)->subclass, 5195 hlock->trylock, 5196 hlock->read, hlock->check, 5197 hlock->hardirqs_off, 5198 hlock->nest_lock, hlock->acquire_ip, 5199 hlock->references, hlock->pin_count)) { 5200 case 0: 5201 return 1; 5202 case 1: 5203 break; 5204 case 2: 5205 *merged += (idx == first_idx); 5206 break; 5207 default: 5208 WARN_ON(1); 5209 return 0; 5210 } 5211 } 5212 return 0; 5213 } 5214 5215 static int 5216 __lock_set_class(struct lockdep_map *lock, const char *name, 5217 struct lock_class_key *key, unsigned int subclass, 5218 unsigned long ip) 5219 { 5220 struct task_struct *curr = current; 5221 unsigned int depth, merged = 0; 5222 struct held_lock *hlock; 5223 struct lock_class *class; 5224 int i; 5225 5226 if (unlikely(!debug_locks)) 5227 return 0; 5228 5229 depth = curr->lockdep_depth; 5230 /* 5231 * This function is about (re)setting the class of a held lock, 5232 * yet we're not actually holding any locks. Naughty user! 5233 */ 5234 if (DEBUG_LOCKS_WARN_ON(!depth)) 5235 return 0; 5236 5237 hlock = find_held_lock(curr, lock, depth, &i); 5238 if (!hlock) { 5239 print_unlock_imbalance_bug(curr, lock, ip); 5240 return 0; 5241 } 5242 5243 lockdep_init_map_type(lock, name, key, 0, 5244 lock->wait_type_inner, 5245 lock->wait_type_outer, 5246 lock->lock_type); 5247 class = register_lock_class(lock, subclass, 0); 5248 hlock->class_idx = class - lock_classes; 5249 5250 curr->lockdep_depth = i; 5251 curr->curr_chain_key = hlock->prev_chain_key; 5252 5253 if (reacquire_held_locks(curr, depth, i, &merged)) 5254 return 0; 5255 5256 /* 5257 * I took it apart and put it back together again, except now I have 5258 * these 'spare' parts.. where shall I put them. 5259 */ 5260 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5261 return 0; 5262 return 1; 5263 } 5264 5265 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5266 { 5267 struct task_struct *curr = current; 5268 unsigned int depth, merged = 0; 5269 struct held_lock *hlock; 5270 int i; 5271 5272 if (unlikely(!debug_locks)) 5273 return 0; 5274 5275 depth = curr->lockdep_depth; 5276 /* 5277 * This function is about (re)setting the class of a held lock, 5278 * yet we're not actually holding any locks. Naughty user! 5279 */ 5280 if (DEBUG_LOCKS_WARN_ON(!depth)) 5281 return 0; 5282 5283 hlock = find_held_lock(curr, lock, depth, &i); 5284 if (!hlock) { 5285 print_unlock_imbalance_bug(curr, lock, ip); 5286 return 0; 5287 } 5288 5289 curr->lockdep_depth = i; 5290 curr->curr_chain_key = hlock->prev_chain_key; 5291 5292 WARN(hlock->read, "downgrading a read lock"); 5293 hlock->read = 1; 5294 hlock->acquire_ip = ip; 5295 5296 if (reacquire_held_locks(curr, depth, i, &merged)) 5297 return 0; 5298 5299 /* Merging can't happen with unchanged classes.. */ 5300 if (DEBUG_LOCKS_WARN_ON(merged)) 5301 return 0; 5302 5303 /* 5304 * I took it apart and put it back together again, except now I have 5305 * these 'spare' parts.. where shall I put them. 5306 */ 5307 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5308 return 0; 5309 5310 return 1; 5311 } 5312 5313 /* 5314 * Remove the lock from the list of currently held locks - this gets 5315 * called on mutex_unlock()/spin_unlock*() (or on a failed 5316 * mutex_lock_interruptible()). 5317 */ 5318 static int 5319 __lock_release(struct lockdep_map *lock, unsigned long ip) 5320 { 5321 struct task_struct *curr = current; 5322 unsigned int depth, merged = 1; 5323 struct held_lock *hlock; 5324 int i; 5325 5326 if (unlikely(!debug_locks)) 5327 return 0; 5328 5329 depth = curr->lockdep_depth; 5330 /* 5331 * So we're all set to release this lock.. wait what lock? We don't 5332 * own any locks, you've been drinking again? 5333 */ 5334 if (depth <= 0) { 5335 print_unlock_imbalance_bug(curr, lock, ip); 5336 return 0; 5337 } 5338 5339 /* 5340 * Check whether the lock exists in the current stack 5341 * of held locks: 5342 */ 5343 hlock = find_held_lock(curr, lock, depth, &i); 5344 if (!hlock) { 5345 print_unlock_imbalance_bug(curr, lock, ip); 5346 return 0; 5347 } 5348 5349 if (hlock->instance == lock) 5350 lock_release_holdtime(hlock); 5351 5352 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5353 5354 if (hlock->references) { 5355 hlock->references--; 5356 if (hlock->references) { 5357 /* 5358 * We had, and after removing one, still have 5359 * references, the current lock stack is still 5360 * valid. We're done! 5361 */ 5362 return 1; 5363 } 5364 } 5365 5366 /* 5367 * We have the right lock to unlock, 'hlock' points to it. 5368 * Now we remove it from the stack, and add back the other 5369 * entries (if any), recalculating the hash along the way: 5370 */ 5371 5372 curr->lockdep_depth = i; 5373 curr->curr_chain_key = hlock->prev_chain_key; 5374 5375 /* 5376 * The most likely case is when the unlock is on the innermost 5377 * lock. In this case, we are done! 5378 */ 5379 if (i == depth-1) 5380 return 1; 5381 5382 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5383 return 0; 5384 5385 /* 5386 * We had N bottles of beer on the wall, we drank one, but now 5387 * there's not N-1 bottles of beer left on the wall... 5388 * Pouring two of the bottles together is acceptable. 5389 */ 5390 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5391 5392 /* 5393 * Since reacquire_held_locks() would have called check_chain_key() 5394 * indirectly via __lock_acquire(), we don't need to do it again 5395 * on return. 5396 */ 5397 return 0; 5398 } 5399 5400 static __always_inline 5401 int __lock_is_held(const struct lockdep_map *lock, int read) 5402 { 5403 struct task_struct *curr = current; 5404 int i; 5405 5406 for (i = 0; i < curr->lockdep_depth; i++) { 5407 struct held_lock *hlock = curr->held_locks + i; 5408 5409 if (match_held_lock(hlock, lock)) { 5410 if (read == -1 || !!hlock->read == read) 5411 return LOCK_STATE_HELD; 5412 5413 return LOCK_STATE_NOT_HELD; 5414 } 5415 } 5416 5417 return LOCK_STATE_NOT_HELD; 5418 } 5419 5420 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5421 { 5422 struct pin_cookie cookie = NIL_COOKIE; 5423 struct task_struct *curr = current; 5424 int i; 5425 5426 if (unlikely(!debug_locks)) 5427 return cookie; 5428 5429 for (i = 0; i < curr->lockdep_depth; i++) { 5430 struct held_lock *hlock = curr->held_locks + i; 5431 5432 if (match_held_lock(hlock, lock)) { 5433 /* 5434 * Grab 16bits of randomness; this is sufficient to not 5435 * be guessable and still allows some pin nesting in 5436 * our u32 pin_count. 5437 */ 5438 cookie.val = 1 + (sched_clock() & 0xffff); 5439 hlock->pin_count += cookie.val; 5440 return cookie; 5441 } 5442 } 5443 5444 WARN(1, "pinning an unheld lock\n"); 5445 return cookie; 5446 } 5447 5448 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5449 { 5450 struct task_struct *curr = current; 5451 int i; 5452 5453 if (unlikely(!debug_locks)) 5454 return; 5455 5456 for (i = 0; i < curr->lockdep_depth; i++) { 5457 struct held_lock *hlock = curr->held_locks + i; 5458 5459 if (match_held_lock(hlock, lock)) { 5460 hlock->pin_count += cookie.val; 5461 return; 5462 } 5463 } 5464 5465 WARN(1, "pinning an unheld lock\n"); 5466 } 5467 5468 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5469 { 5470 struct task_struct *curr = current; 5471 int i; 5472 5473 if (unlikely(!debug_locks)) 5474 return; 5475 5476 for (i = 0; i < curr->lockdep_depth; i++) { 5477 struct held_lock *hlock = curr->held_locks + i; 5478 5479 if (match_held_lock(hlock, lock)) { 5480 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5481 return; 5482 5483 hlock->pin_count -= cookie.val; 5484 5485 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5486 hlock->pin_count = 0; 5487 5488 return; 5489 } 5490 } 5491 5492 WARN(1, "unpinning an unheld lock\n"); 5493 } 5494 5495 /* 5496 * Check whether we follow the irq-flags state precisely: 5497 */ 5498 static noinstr void check_flags(unsigned long flags) 5499 { 5500 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5501 if (!debug_locks) 5502 return; 5503 5504 /* Get the warning out.. */ 5505 instrumentation_begin(); 5506 5507 if (irqs_disabled_flags(flags)) { 5508 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5509 printk("possible reason: unannotated irqs-off.\n"); 5510 } 5511 } else { 5512 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5513 printk("possible reason: unannotated irqs-on.\n"); 5514 } 5515 } 5516 5517 #ifndef CONFIG_PREEMPT_RT 5518 /* 5519 * We dont accurately track softirq state in e.g. 5520 * hardirq contexts (such as on 4KSTACKS), so only 5521 * check if not in hardirq contexts: 5522 */ 5523 if (!hardirq_count()) { 5524 if (softirq_count()) { 5525 /* like the above, but with softirqs */ 5526 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5527 } else { 5528 /* lick the above, does it taste good? */ 5529 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5530 } 5531 } 5532 #endif 5533 5534 if (!debug_locks) 5535 print_irqtrace_events(current); 5536 5537 instrumentation_end(); 5538 #endif 5539 } 5540 5541 void lock_set_class(struct lockdep_map *lock, const char *name, 5542 struct lock_class_key *key, unsigned int subclass, 5543 unsigned long ip) 5544 { 5545 unsigned long flags; 5546 5547 if (unlikely(!lockdep_enabled())) 5548 return; 5549 5550 raw_local_irq_save(flags); 5551 lockdep_recursion_inc(); 5552 check_flags(flags); 5553 if (__lock_set_class(lock, name, key, subclass, ip)) 5554 check_chain_key(current); 5555 lockdep_recursion_finish(); 5556 raw_local_irq_restore(flags); 5557 } 5558 EXPORT_SYMBOL_GPL(lock_set_class); 5559 5560 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5561 { 5562 unsigned long flags; 5563 5564 if (unlikely(!lockdep_enabled())) 5565 return; 5566 5567 raw_local_irq_save(flags); 5568 lockdep_recursion_inc(); 5569 check_flags(flags); 5570 if (__lock_downgrade(lock, ip)) 5571 check_chain_key(current); 5572 lockdep_recursion_finish(); 5573 raw_local_irq_restore(flags); 5574 } 5575 EXPORT_SYMBOL_GPL(lock_downgrade); 5576 5577 /* NMI context !!! */ 5578 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5579 { 5580 #ifdef CONFIG_PROVE_LOCKING 5581 struct lock_class *class = look_up_lock_class(lock, subclass); 5582 unsigned long mask = LOCKF_USED; 5583 5584 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5585 if (!class) 5586 return; 5587 5588 /* 5589 * READ locks only conflict with USED, such that if we only ever use 5590 * READ locks, there is no deadlock possible -- RCU. 5591 */ 5592 if (!hlock->read) 5593 mask |= LOCKF_USED_READ; 5594 5595 if (!(class->usage_mask & mask)) 5596 return; 5597 5598 hlock->class_idx = class - lock_classes; 5599 5600 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5601 #endif 5602 } 5603 5604 static bool lockdep_nmi(void) 5605 { 5606 if (raw_cpu_read(lockdep_recursion)) 5607 return false; 5608 5609 if (!in_nmi()) 5610 return false; 5611 5612 return true; 5613 } 5614 5615 /* 5616 * read_lock() is recursive if: 5617 * 1. We force lockdep think this way in selftests or 5618 * 2. The implementation is not queued read/write lock or 5619 * 3. The locker is at an in_interrupt() context. 5620 */ 5621 bool read_lock_is_recursive(void) 5622 { 5623 return force_read_lock_recursive || 5624 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5625 in_interrupt(); 5626 } 5627 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5628 5629 /* 5630 * We are not always called with irqs disabled - do that here, 5631 * and also avoid lockdep recursion: 5632 */ 5633 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5634 int trylock, int read, int check, 5635 struct lockdep_map *nest_lock, unsigned long ip) 5636 { 5637 unsigned long flags; 5638 5639 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5640 5641 if (!debug_locks) 5642 return; 5643 5644 if (unlikely(!lockdep_enabled())) { 5645 /* XXX allow trylock from NMI ?!? */ 5646 if (lockdep_nmi() && !trylock) { 5647 struct held_lock hlock; 5648 5649 hlock.acquire_ip = ip; 5650 hlock.instance = lock; 5651 hlock.nest_lock = nest_lock; 5652 hlock.irq_context = 2; // XXX 5653 hlock.trylock = trylock; 5654 hlock.read = read; 5655 hlock.check = check; 5656 hlock.hardirqs_off = true; 5657 hlock.references = 0; 5658 5659 verify_lock_unused(lock, &hlock, subclass); 5660 } 5661 return; 5662 } 5663 5664 raw_local_irq_save(flags); 5665 check_flags(flags); 5666 5667 lockdep_recursion_inc(); 5668 __lock_acquire(lock, subclass, trylock, read, check, 5669 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5670 lockdep_recursion_finish(); 5671 raw_local_irq_restore(flags); 5672 } 5673 EXPORT_SYMBOL_GPL(lock_acquire); 5674 5675 void lock_release(struct lockdep_map *lock, unsigned long ip) 5676 { 5677 unsigned long flags; 5678 5679 trace_lock_release(lock, ip); 5680 5681 if (unlikely(!lockdep_enabled())) 5682 return; 5683 5684 raw_local_irq_save(flags); 5685 check_flags(flags); 5686 5687 lockdep_recursion_inc(); 5688 if (__lock_release(lock, ip)) 5689 check_chain_key(current); 5690 lockdep_recursion_finish(); 5691 raw_local_irq_restore(flags); 5692 } 5693 EXPORT_SYMBOL_GPL(lock_release); 5694 5695 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5696 { 5697 unsigned long flags; 5698 int ret = LOCK_STATE_NOT_HELD; 5699 5700 /* 5701 * Avoid false negative lockdep_assert_held() and 5702 * lockdep_assert_not_held(). 5703 */ 5704 if (unlikely(!lockdep_enabled())) 5705 return LOCK_STATE_UNKNOWN; 5706 5707 raw_local_irq_save(flags); 5708 check_flags(flags); 5709 5710 lockdep_recursion_inc(); 5711 ret = __lock_is_held(lock, read); 5712 lockdep_recursion_finish(); 5713 raw_local_irq_restore(flags); 5714 5715 return ret; 5716 } 5717 EXPORT_SYMBOL_GPL(lock_is_held_type); 5718 NOKPROBE_SYMBOL(lock_is_held_type); 5719 5720 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5721 { 5722 struct pin_cookie cookie = NIL_COOKIE; 5723 unsigned long flags; 5724 5725 if (unlikely(!lockdep_enabled())) 5726 return cookie; 5727 5728 raw_local_irq_save(flags); 5729 check_flags(flags); 5730 5731 lockdep_recursion_inc(); 5732 cookie = __lock_pin_lock(lock); 5733 lockdep_recursion_finish(); 5734 raw_local_irq_restore(flags); 5735 5736 return cookie; 5737 } 5738 EXPORT_SYMBOL_GPL(lock_pin_lock); 5739 5740 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5741 { 5742 unsigned long flags; 5743 5744 if (unlikely(!lockdep_enabled())) 5745 return; 5746 5747 raw_local_irq_save(flags); 5748 check_flags(flags); 5749 5750 lockdep_recursion_inc(); 5751 __lock_repin_lock(lock, cookie); 5752 lockdep_recursion_finish(); 5753 raw_local_irq_restore(flags); 5754 } 5755 EXPORT_SYMBOL_GPL(lock_repin_lock); 5756 5757 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5758 { 5759 unsigned long flags; 5760 5761 if (unlikely(!lockdep_enabled())) 5762 return; 5763 5764 raw_local_irq_save(flags); 5765 check_flags(flags); 5766 5767 lockdep_recursion_inc(); 5768 __lock_unpin_lock(lock, cookie); 5769 lockdep_recursion_finish(); 5770 raw_local_irq_restore(flags); 5771 } 5772 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5773 5774 #ifdef CONFIG_LOCK_STAT 5775 static void print_lock_contention_bug(struct task_struct *curr, 5776 struct lockdep_map *lock, 5777 unsigned long ip) 5778 { 5779 if (!debug_locks_off()) 5780 return; 5781 if (debug_locks_silent) 5782 return; 5783 5784 pr_warn("\n"); 5785 pr_warn("=================================\n"); 5786 pr_warn("WARNING: bad contention detected!\n"); 5787 print_kernel_ident(); 5788 pr_warn("---------------------------------\n"); 5789 pr_warn("%s/%d is trying to contend lock (", 5790 curr->comm, task_pid_nr(curr)); 5791 print_lockdep_cache(lock); 5792 pr_cont(") at:\n"); 5793 print_ip_sym(KERN_WARNING, ip); 5794 pr_warn("but there are no locks held!\n"); 5795 pr_warn("\nother info that might help us debug this:\n"); 5796 lockdep_print_held_locks(curr); 5797 5798 pr_warn("\nstack backtrace:\n"); 5799 dump_stack(); 5800 } 5801 5802 static void 5803 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5804 { 5805 struct task_struct *curr = current; 5806 struct held_lock *hlock; 5807 struct lock_class_stats *stats; 5808 unsigned int depth; 5809 int i, contention_point, contending_point; 5810 5811 depth = curr->lockdep_depth; 5812 /* 5813 * Whee, we contended on this lock, except it seems we're not 5814 * actually trying to acquire anything much at all.. 5815 */ 5816 if (DEBUG_LOCKS_WARN_ON(!depth)) 5817 return; 5818 5819 hlock = find_held_lock(curr, lock, depth, &i); 5820 if (!hlock) { 5821 print_lock_contention_bug(curr, lock, ip); 5822 return; 5823 } 5824 5825 if (hlock->instance != lock) 5826 return; 5827 5828 hlock->waittime_stamp = lockstat_clock(); 5829 5830 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5831 contending_point = lock_point(hlock_class(hlock)->contending_point, 5832 lock->ip); 5833 5834 stats = get_lock_stats(hlock_class(hlock)); 5835 if (contention_point < LOCKSTAT_POINTS) 5836 stats->contention_point[contention_point]++; 5837 if (contending_point < LOCKSTAT_POINTS) 5838 stats->contending_point[contending_point]++; 5839 if (lock->cpu != smp_processor_id()) 5840 stats->bounces[bounce_contended + !!hlock->read]++; 5841 } 5842 5843 static void 5844 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5845 { 5846 struct task_struct *curr = current; 5847 struct held_lock *hlock; 5848 struct lock_class_stats *stats; 5849 unsigned int depth; 5850 u64 now, waittime = 0; 5851 int i, cpu; 5852 5853 depth = curr->lockdep_depth; 5854 /* 5855 * Yay, we acquired ownership of this lock we didn't try to 5856 * acquire, how the heck did that happen? 5857 */ 5858 if (DEBUG_LOCKS_WARN_ON(!depth)) 5859 return; 5860 5861 hlock = find_held_lock(curr, lock, depth, &i); 5862 if (!hlock) { 5863 print_lock_contention_bug(curr, lock, _RET_IP_); 5864 return; 5865 } 5866 5867 if (hlock->instance != lock) 5868 return; 5869 5870 cpu = smp_processor_id(); 5871 if (hlock->waittime_stamp) { 5872 now = lockstat_clock(); 5873 waittime = now - hlock->waittime_stamp; 5874 hlock->holdtime_stamp = now; 5875 } 5876 5877 stats = get_lock_stats(hlock_class(hlock)); 5878 if (waittime) { 5879 if (hlock->read) 5880 lock_time_inc(&stats->read_waittime, waittime); 5881 else 5882 lock_time_inc(&stats->write_waittime, waittime); 5883 } 5884 if (lock->cpu != cpu) 5885 stats->bounces[bounce_acquired + !!hlock->read]++; 5886 5887 lock->cpu = cpu; 5888 lock->ip = ip; 5889 } 5890 5891 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5892 { 5893 unsigned long flags; 5894 5895 trace_lock_contended(lock, ip); 5896 5897 if (unlikely(!lock_stat || !lockdep_enabled())) 5898 return; 5899 5900 raw_local_irq_save(flags); 5901 check_flags(flags); 5902 lockdep_recursion_inc(); 5903 __lock_contended(lock, ip); 5904 lockdep_recursion_finish(); 5905 raw_local_irq_restore(flags); 5906 } 5907 EXPORT_SYMBOL_GPL(lock_contended); 5908 5909 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5910 { 5911 unsigned long flags; 5912 5913 trace_lock_acquired(lock, ip); 5914 5915 if (unlikely(!lock_stat || !lockdep_enabled())) 5916 return; 5917 5918 raw_local_irq_save(flags); 5919 check_flags(flags); 5920 lockdep_recursion_inc(); 5921 __lock_acquired(lock, ip); 5922 lockdep_recursion_finish(); 5923 raw_local_irq_restore(flags); 5924 } 5925 EXPORT_SYMBOL_GPL(lock_acquired); 5926 #endif 5927 5928 /* 5929 * Used by the testsuite, sanitize the validator state 5930 * after a simulated failure: 5931 */ 5932 5933 void lockdep_reset(void) 5934 { 5935 unsigned long flags; 5936 int i; 5937 5938 raw_local_irq_save(flags); 5939 lockdep_init_task(current); 5940 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5941 nr_hardirq_chains = 0; 5942 nr_softirq_chains = 0; 5943 nr_process_chains = 0; 5944 debug_locks = 1; 5945 for (i = 0; i < CHAINHASH_SIZE; i++) 5946 INIT_HLIST_HEAD(chainhash_table + i); 5947 raw_local_irq_restore(flags); 5948 } 5949 5950 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5951 static void remove_class_from_lock_chain(struct pending_free *pf, 5952 struct lock_chain *chain, 5953 struct lock_class *class) 5954 { 5955 #ifdef CONFIG_PROVE_LOCKING 5956 int i; 5957 5958 for (i = chain->base; i < chain->base + chain->depth; i++) { 5959 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5960 continue; 5961 /* 5962 * Each lock class occurs at most once in a lock chain so once 5963 * we found a match we can break out of this loop. 5964 */ 5965 goto free_lock_chain; 5966 } 5967 /* Since the chain has not been modified, return. */ 5968 return; 5969 5970 free_lock_chain: 5971 free_chain_hlocks(chain->base, chain->depth); 5972 /* Overwrite the chain key for concurrent RCU readers. */ 5973 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5974 dec_chains(chain->irq_context); 5975 5976 /* 5977 * Note: calling hlist_del_rcu() from inside a 5978 * hlist_for_each_entry_rcu() loop is safe. 5979 */ 5980 hlist_del_rcu(&chain->entry); 5981 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5982 nr_zapped_lock_chains++; 5983 #endif 5984 } 5985 5986 /* Must be called with the graph lock held. */ 5987 static void remove_class_from_lock_chains(struct pending_free *pf, 5988 struct lock_class *class) 5989 { 5990 struct lock_chain *chain; 5991 struct hlist_head *head; 5992 int i; 5993 5994 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5995 head = chainhash_table + i; 5996 hlist_for_each_entry_rcu(chain, head, entry) { 5997 remove_class_from_lock_chain(pf, chain, class); 5998 } 5999 } 6000 } 6001 6002 /* 6003 * Remove all references to a lock class. The caller must hold the graph lock. 6004 */ 6005 static void zap_class(struct pending_free *pf, struct lock_class *class) 6006 { 6007 struct lock_list *entry; 6008 int i; 6009 6010 WARN_ON_ONCE(!class->key); 6011 6012 /* 6013 * Remove all dependencies this lock is 6014 * involved in: 6015 */ 6016 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6017 entry = list_entries + i; 6018 if (entry->class != class && entry->links_to != class) 6019 continue; 6020 __clear_bit(i, list_entries_in_use); 6021 nr_list_entries--; 6022 list_del_rcu(&entry->entry); 6023 } 6024 if (list_empty(&class->locks_after) && 6025 list_empty(&class->locks_before)) { 6026 list_move_tail(&class->lock_entry, &pf->zapped); 6027 hlist_del_rcu(&class->hash_entry); 6028 WRITE_ONCE(class->key, NULL); 6029 WRITE_ONCE(class->name, NULL); 6030 nr_lock_classes--; 6031 __clear_bit(class - lock_classes, lock_classes_in_use); 6032 if (class - lock_classes == max_lock_class_idx) 6033 max_lock_class_idx--; 6034 } else { 6035 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6036 class->name); 6037 } 6038 6039 remove_class_from_lock_chains(pf, class); 6040 nr_zapped_classes++; 6041 } 6042 6043 static void reinit_class(struct lock_class *class) 6044 { 6045 WARN_ON_ONCE(!class->lock_entry.next); 6046 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6047 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6048 memset_startat(class, 0, key); 6049 WARN_ON_ONCE(!class->lock_entry.next); 6050 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6051 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6052 } 6053 6054 static inline int within(const void *addr, void *start, unsigned long size) 6055 { 6056 return addr >= start && addr < start + size; 6057 } 6058 6059 static bool inside_selftest(void) 6060 { 6061 return current == lockdep_selftest_task_struct; 6062 } 6063 6064 /* The caller must hold the graph lock. */ 6065 static struct pending_free *get_pending_free(void) 6066 { 6067 return delayed_free.pf + delayed_free.index; 6068 } 6069 6070 static void free_zapped_rcu(struct rcu_head *cb); 6071 6072 /* 6073 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6074 * the graph lock held. 6075 */ 6076 static void call_rcu_zapped(struct pending_free *pf) 6077 { 6078 WARN_ON_ONCE(inside_selftest()); 6079 6080 if (list_empty(&pf->zapped)) 6081 return; 6082 6083 if (delayed_free.scheduled) 6084 return; 6085 6086 delayed_free.scheduled = true; 6087 6088 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6089 delayed_free.index ^= 1; 6090 6091 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6092 } 6093 6094 /* The caller must hold the graph lock. May be called from RCU context. */ 6095 static void __free_zapped_classes(struct pending_free *pf) 6096 { 6097 struct lock_class *class; 6098 6099 check_data_structures(); 6100 6101 list_for_each_entry(class, &pf->zapped, lock_entry) 6102 reinit_class(class); 6103 6104 list_splice_init(&pf->zapped, &free_lock_classes); 6105 6106 #ifdef CONFIG_PROVE_LOCKING 6107 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6108 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6109 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6110 #endif 6111 } 6112 6113 static void free_zapped_rcu(struct rcu_head *ch) 6114 { 6115 struct pending_free *pf; 6116 unsigned long flags; 6117 6118 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6119 return; 6120 6121 raw_local_irq_save(flags); 6122 lockdep_lock(); 6123 6124 /* closed head */ 6125 pf = delayed_free.pf + (delayed_free.index ^ 1); 6126 __free_zapped_classes(pf); 6127 delayed_free.scheduled = false; 6128 6129 /* 6130 * If there's anything on the open list, close and start a new callback. 6131 */ 6132 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6133 6134 lockdep_unlock(); 6135 raw_local_irq_restore(flags); 6136 } 6137 6138 /* 6139 * Remove all lock classes from the class hash table and from the 6140 * all_lock_classes list whose key or name is in the address range [start, 6141 * start + size). Move these lock classes to the zapped_classes list. Must 6142 * be called with the graph lock held. 6143 */ 6144 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6145 unsigned long size) 6146 { 6147 struct lock_class *class; 6148 struct hlist_head *head; 6149 int i; 6150 6151 /* Unhash all classes that were created by a module. */ 6152 for (i = 0; i < CLASSHASH_SIZE; i++) { 6153 head = classhash_table + i; 6154 hlist_for_each_entry_rcu(class, head, hash_entry) { 6155 if (!within(class->key, start, size) && 6156 !within(class->name, start, size)) 6157 continue; 6158 zap_class(pf, class); 6159 } 6160 } 6161 } 6162 6163 /* 6164 * Used in module.c to remove lock classes from memory that is going to be 6165 * freed; and possibly re-used by other modules. 6166 * 6167 * We will have had one synchronize_rcu() before getting here, so we're 6168 * guaranteed nobody will look up these exact classes -- they're properly dead 6169 * but still allocated. 6170 */ 6171 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6172 { 6173 struct pending_free *pf; 6174 unsigned long flags; 6175 6176 init_data_structures_once(); 6177 6178 raw_local_irq_save(flags); 6179 lockdep_lock(); 6180 pf = get_pending_free(); 6181 __lockdep_free_key_range(pf, start, size); 6182 call_rcu_zapped(pf); 6183 lockdep_unlock(); 6184 raw_local_irq_restore(flags); 6185 6186 /* 6187 * Wait for any possible iterators from look_up_lock_class() to pass 6188 * before continuing to free the memory they refer to. 6189 */ 6190 synchronize_rcu(); 6191 } 6192 6193 /* 6194 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6195 * Ignores debug_locks. Must only be used by the lockdep selftests. 6196 */ 6197 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6198 { 6199 struct pending_free *pf = delayed_free.pf; 6200 unsigned long flags; 6201 6202 init_data_structures_once(); 6203 6204 raw_local_irq_save(flags); 6205 lockdep_lock(); 6206 __lockdep_free_key_range(pf, start, size); 6207 __free_zapped_classes(pf); 6208 lockdep_unlock(); 6209 raw_local_irq_restore(flags); 6210 } 6211 6212 void lockdep_free_key_range(void *start, unsigned long size) 6213 { 6214 init_data_structures_once(); 6215 6216 if (inside_selftest()) 6217 lockdep_free_key_range_imm(start, size); 6218 else 6219 lockdep_free_key_range_reg(start, size); 6220 } 6221 6222 /* 6223 * Check whether any element of the @lock->class_cache[] array refers to a 6224 * registered lock class. The caller must hold either the graph lock or the 6225 * RCU read lock. 6226 */ 6227 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6228 { 6229 struct lock_class *class; 6230 struct hlist_head *head; 6231 int i, j; 6232 6233 for (i = 0; i < CLASSHASH_SIZE; i++) { 6234 head = classhash_table + i; 6235 hlist_for_each_entry_rcu(class, head, hash_entry) { 6236 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6237 if (lock->class_cache[j] == class) 6238 return true; 6239 } 6240 } 6241 return false; 6242 } 6243 6244 /* The caller must hold the graph lock. Does not sleep. */ 6245 static void __lockdep_reset_lock(struct pending_free *pf, 6246 struct lockdep_map *lock) 6247 { 6248 struct lock_class *class; 6249 int j; 6250 6251 /* 6252 * Remove all classes this lock might have: 6253 */ 6254 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6255 /* 6256 * If the class exists we look it up and zap it: 6257 */ 6258 class = look_up_lock_class(lock, j); 6259 if (class) 6260 zap_class(pf, class); 6261 } 6262 /* 6263 * Debug check: in the end all mapped classes should 6264 * be gone. 6265 */ 6266 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6267 debug_locks_off(); 6268 } 6269 6270 /* 6271 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6272 * released data structures from RCU context. 6273 */ 6274 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6275 { 6276 struct pending_free *pf; 6277 unsigned long flags; 6278 int locked; 6279 6280 raw_local_irq_save(flags); 6281 locked = graph_lock(); 6282 if (!locked) 6283 goto out_irq; 6284 6285 pf = get_pending_free(); 6286 __lockdep_reset_lock(pf, lock); 6287 call_rcu_zapped(pf); 6288 6289 graph_unlock(); 6290 out_irq: 6291 raw_local_irq_restore(flags); 6292 } 6293 6294 /* 6295 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6296 * lockdep selftests. 6297 */ 6298 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6299 { 6300 struct pending_free *pf = delayed_free.pf; 6301 unsigned long flags; 6302 6303 raw_local_irq_save(flags); 6304 lockdep_lock(); 6305 __lockdep_reset_lock(pf, lock); 6306 __free_zapped_classes(pf); 6307 lockdep_unlock(); 6308 raw_local_irq_restore(flags); 6309 } 6310 6311 void lockdep_reset_lock(struct lockdep_map *lock) 6312 { 6313 init_data_structures_once(); 6314 6315 if (inside_selftest()) 6316 lockdep_reset_lock_imm(lock); 6317 else 6318 lockdep_reset_lock_reg(lock); 6319 } 6320 6321 /* 6322 * Unregister a dynamically allocated key. 6323 * 6324 * Unlike lockdep_register_key(), a search is always done to find a matching 6325 * key irrespective of debug_locks to avoid potential invalid access to freed 6326 * memory in lock_class entry. 6327 */ 6328 void lockdep_unregister_key(struct lock_class_key *key) 6329 { 6330 struct hlist_head *hash_head = keyhashentry(key); 6331 struct lock_class_key *k; 6332 struct pending_free *pf; 6333 unsigned long flags; 6334 bool found = false; 6335 6336 might_sleep(); 6337 6338 if (WARN_ON_ONCE(static_obj(key))) 6339 return; 6340 6341 raw_local_irq_save(flags); 6342 lockdep_lock(); 6343 6344 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6345 if (k == key) { 6346 hlist_del_rcu(&k->hash_entry); 6347 found = true; 6348 break; 6349 } 6350 } 6351 WARN_ON_ONCE(!found && debug_locks); 6352 if (found) { 6353 pf = get_pending_free(); 6354 __lockdep_free_key_range(pf, key, 1); 6355 call_rcu_zapped(pf); 6356 } 6357 lockdep_unlock(); 6358 raw_local_irq_restore(flags); 6359 6360 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6361 synchronize_rcu(); 6362 } 6363 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6364 6365 void __init lockdep_init(void) 6366 { 6367 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6368 6369 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6370 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6371 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6372 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6373 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6374 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6375 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6376 6377 printk(" memory used by lock dependency info: %zu kB\n", 6378 (sizeof(lock_classes) + 6379 sizeof(lock_classes_in_use) + 6380 sizeof(classhash_table) + 6381 sizeof(list_entries) + 6382 sizeof(list_entries_in_use) + 6383 sizeof(chainhash_table) + 6384 sizeof(delayed_free) 6385 #ifdef CONFIG_PROVE_LOCKING 6386 + sizeof(lock_cq) 6387 + sizeof(lock_chains) 6388 + sizeof(lock_chains_in_use) 6389 + sizeof(chain_hlocks) 6390 #endif 6391 ) / 1024 6392 ); 6393 6394 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6395 printk(" memory used for stack traces: %zu kB\n", 6396 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6397 ); 6398 #endif 6399 6400 printk(" per task-struct memory footprint: %zu bytes\n", 6401 sizeof(((struct task_struct *)NULL)->held_locks)); 6402 } 6403 6404 static void 6405 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6406 const void *mem_to, struct held_lock *hlock) 6407 { 6408 if (!debug_locks_off()) 6409 return; 6410 if (debug_locks_silent) 6411 return; 6412 6413 pr_warn("\n"); 6414 pr_warn("=========================\n"); 6415 pr_warn("WARNING: held lock freed!\n"); 6416 print_kernel_ident(); 6417 pr_warn("-------------------------\n"); 6418 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6419 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6420 print_lock(hlock); 6421 lockdep_print_held_locks(curr); 6422 6423 pr_warn("\nstack backtrace:\n"); 6424 dump_stack(); 6425 } 6426 6427 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6428 const void* lock_from, unsigned long lock_len) 6429 { 6430 return lock_from + lock_len <= mem_from || 6431 mem_from + mem_len <= lock_from; 6432 } 6433 6434 /* 6435 * Called when kernel memory is freed (or unmapped), or if a lock 6436 * is destroyed or reinitialized - this code checks whether there is 6437 * any held lock in the memory range of <from> to <to>: 6438 */ 6439 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6440 { 6441 struct task_struct *curr = current; 6442 struct held_lock *hlock; 6443 unsigned long flags; 6444 int i; 6445 6446 if (unlikely(!debug_locks)) 6447 return; 6448 6449 raw_local_irq_save(flags); 6450 for (i = 0; i < curr->lockdep_depth; i++) { 6451 hlock = curr->held_locks + i; 6452 6453 if (not_in_range(mem_from, mem_len, hlock->instance, 6454 sizeof(*hlock->instance))) 6455 continue; 6456 6457 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6458 break; 6459 } 6460 raw_local_irq_restore(flags); 6461 } 6462 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6463 6464 static void print_held_locks_bug(void) 6465 { 6466 if (!debug_locks_off()) 6467 return; 6468 if (debug_locks_silent) 6469 return; 6470 6471 pr_warn("\n"); 6472 pr_warn("====================================\n"); 6473 pr_warn("WARNING: %s/%d still has locks held!\n", 6474 current->comm, task_pid_nr(current)); 6475 print_kernel_ident(); 6476 pr_warn("------------------------------------\n"); 6477 lockdep_print_held_locks(current); 6478 pr_warn("\nstack backtrace:\n"); 6479 dump_stack(); 6480 } 6481 6482 void debug_check_no_locks_held(void) 6483 { 6484 if (unlikely(current->lockdep_depth > 0)) 6485 print_held_locks_bug(); 6486 } 6487 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6488 6489 #ifdef __KERNEL__ 6490 void debug_show_all_locks(void) 6491 { 6492 struct task_struct *g, *p; 6493 6494 if (unlikely(!debug_locks)) { 6495 pr_warn("INFO: lockdep is turned off.\n"); 6496 return; 6497 } 6498 pr_warn("\nShowing all locks held in the system:\n"); 6499 6500 rcu_read_lock(); 6501 for_each_process_thread(g, p) { 6502 if (!p->lockdep_depth) 6503 continue; 6504 lockdep_print_held_locks(p); 6505 touch_nmi_watchdog(); 6506 touch_all_softlockup_watchdogs(); 6507 } 6508 rcu_read_unlock(); 6509 6510 pr_warn("\n"); 6511 pr_warn("=============================================\n\n"); 6512 } 6513 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6514 #endif 6515 6516 /* 6517 * Careful: only use this function if you are sure that 6518 * the task cannot run in parallel! 6519 */ 6520 void debug_show_held_locks(struct task_struct *task) 6521 { 6522 if (unlikely(!debug_locks)) { 6523 printk("INFO: lockdep is turned off.\n"); 6524 return; 6525 } 6526 lockdep_print_held_locks(task); 6527 } 6528 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6529 6530 asmlinkage __visible void lockdep_sys_exit(void) 6531 { 6532 struct task_struct *curr = current; 6533 6534 if (unlikely(curr->lockdep_depth)) { 6535 if (!debug_locks_off()) 6536 return; 6537 pr_warn("\n"); 6538 pr_warn("================================================\n"); 6539 pr_warn("WARNING: lock held when returning to user space!\n"); 6540 print_kernel_ident(); 6541 pr_warn("------------------------------------------------\n"); 6542 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6543 curr->comm, curr->pid); 6544 lockdep_print_held_locks(curr); 6545 } 6546 6547 /* 6548 * The lock history for each syscall should be independent. So wipe the 6549 * slate clean on return to userspace. 6550 */ 6551 lockdep_invariant_state(false); 6552 } 6553 6554 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6555 { 6556 struct task_struct *curr = current; 6557 int dl = READ_ONCE(debug_locks); 6558 6559 /* Note: the following can be executed concurrently, so be careful. */ 6560 pr_warn("\n"); 6561 pr_warn("=============================\n"); 6562 pr_warn("WARNING: suspicious RCU usage\n"); 6563 print_kernel_ident(); 6564 pr_warn("-----------------------------\n"); 6565 pr_warn("%s:%d %s!\n", file, line, s); 6566 pr_warn("\nother info that might help us debug this:\n\n"); 6567 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6568 !rcu_lockdep_current_cpu_online() 6569 ? "RCU used illegally from offline CPU!\n" 6570 : "", 6571 rcu_scheduler_active, dl, 6572 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6573 6574 /* 6575 * If a CPU is in the RCU-free window in idle (ie: in the section 6576 * between ct_idle_enter() and ct_idle_exit(), then RCU 6577 * considers that CPU to be in an "extended quiescent state", 6578 * which means that RCU will be completely ignoring that CPU. 6579 * Therefore, rcu_read_lock() and friends have absolutely no 6580 * effect on a CPU running in that state. In other words, even if 6581 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6582 * delete data structures out from under it. RCU really has no 6583 * choice here: we need to keep an RCU-free window in idle where 6584 * the CPU may possibly enter into low power mode. This way we can 6585 * notice an extended quiescent state to other CPUs that started a grace 6586 * period. Otherwise we would delay any grace period as long as we run 6587 * in the idle task. 6588 * 6589 * So complain bitterly if someone does call rcu_read_lock(), 6590 * rcu_read_lock_bh() and so on from extended quiescent states. 6591 */ 6592 if (!rcu_is_watching()) 6593 pr_warn("RCU used illegally from extended quiescent state!\n"); 6594 6595 lockdep_print_held_locks(curr); 6596 pr_warn("\nstack backtrace:\n"); 6597 dump_stack(); 6598 } 6599 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6600