1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 #include <linux/console.h> 60 61 #include <asm/sections.h> 62 63 #include "lockdep_internals.h" 64 65 #include <trace/events/lock.h> 66 67 #ifdef CONFIG_PROVE_LOCKING 68 static int prove_locking = 1; 69 module_param(prove_locking, int, 0644); 70 #else 71 #define prove_locking 0 72 #endif 73 74 #ifdef CONFIG_LOCK_STAT 75 static int lock_stat = 1; 76 module_param(lock_stat, int, 0644); 77 #else 78 #define lock_stat 0 79 #endif 80 81 #ifdef CONFIG_SYSCTL 82 static struct ctl_table kern_lockdep_table[] = { 83 #ifdef CONFIG_PROVE_LOCKING 84 { 85 .procname = "prove_locking", 86 .data = &prove_locking, 87 .maxlen = sizeof(int), 88 .mode = 0644, 89 .proc_handler = proc_dointvec, 90 }, 91 #endif /* CONFIG_PROVE_LOCKING */ 92 #ifdef CONFIG_LOCK_STAT 93 { 94 .procname = "lock_stat", 95 .data = &lock_stat, 96 .maxlen = sizeof(int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec, 99 }, 100 #endif /* CONFIG_LOCK_STAT */ 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 nbcon_cpu_emergency_enter(); 578 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 579 dump_stack(); 580 nbcon_cpu_emergency_exit(); 581 582 return NULL; 583 } 584 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 585 586 hash = jhash(trace->entries, trace->nr_entries * 587 sizeof(trace->entries[0]), 0); 588 trace->hash = hash; 589 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 590 hlist_for_each_entry(t2, hash_head, hash_entry) { 591 if (traces_identical(trace, t2)) 592 return t2; 593 } 594 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 595 hlist_add_head(&trace->hash_entry, hash_head); 596 597 return trace; 598 } 599 600 /* Return the number of stack traces in the stack_trace[] array. */ 601 u64 lockdep_stack_trace_count(void) 602 { 603 struct lock_trace *trace; 604 u64 c = 0; 605 int i; 606 607 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 608 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 609 c++; 610 } 611 } 612 613 return c; 614 } 615 616 /* Return the number of stack hash chains that have at least one stack trace. */ 617 u64 lockdep_stack_hash_count(void) 618 { 619 u64 c = 0; 620 int i; 621 622 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 623 if (!hlist_empty(&stack_trace_hash[i])) 624 c++; 625 626 return c; 627 } 628 #endif 629 630 unsigned int nr_hardirq_chains; 631 unsigned int nr_softirq_chains; 632 unsigned int nr_process_chains; 633 unsigned int max_lockdep_depth; 634 635 #ifdef CONFIG_DEBUG_LOCKDEP 636 /* 637 * Various lockdep statistics: 638 */ 639 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 640 #endif 641 642 #ifdef CONFIG_PROVE_LOCKING 643 /* 644 * Locking printouts: 645 */ 646 647 #define __USAGE(__STATE) \ 648 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 649 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 650 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 651 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 652 653 static const char *usage_str[] = 654 { 655 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 656 #include "lockdep_states.h" 657 #undef LOCKDEP_STATE 658 [LOCK_USED] = "INITIAL USE", 659 [LOCK_USED_READ] = "INITIAL READ USE", 660 /* abused as string storage for verify_lock_unused() */ 661 [LOCK_USAGE_STATES] = "IN-NMI", 662 }; 663 #endif 664 665 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 666 { 667 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 668 } 669 670 static inline unsigned long lock_flag(enum lock_usage_bit bit) 671 { 672 return 1UL << bit; 673 } 674 675 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 676 { 677 /* 678 * The usage character defaults to '.' (i.e., irqs disabled and not in 679 * irq context), which is the safest usage category. 680 */ 681 char c = '.'; 682 683 /* 684 * The order of the following usage checks matters, which will 685 * result in the outcome character as follows: 686 * 687 * - '+': irq is enabled and not in irq context 688 * - '-': in irq context and irq is disabled 689 * - '?': in irq context and irq is enabled 690 */ 691 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 692 c = '+'; 693 if (class->usage_mask & lock_flag(bit)) 694 c = '?'; 695 } else if (class->usage_mask & lock_flag(bit)) 696 c = '-'; 697 698 return c; 699 } 700 701 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 702 { 703 int i = 0; 704 705 #define LOCKDEP_STATE(__STATE) \ 706 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 707 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 708 #include "lockdep_states.h" 709 #undef LOCKDEP_STATE 710 711 usage[i] = '\0'; 712 } 713 714 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 715 { 716 char str[KSYM_NAME_LEN]; 717 const char *name; 718 719 name = class->name; 720 if (!name) { 721 name = __get_key_name(class->key, str); 722 printk(KERN_CONT "%s", name); 723 } else { 724 printk(KERN_CONT "%s", name); 725 if (class->name_version > 1) 726 printk(KERN_CONT "#%d", class->name_version); 727 if (class->subclass) 728 printk(KERN_CONT "/%d", class->subclass); 729 if (hlock && class->print_fn) 730 class->print_fn(hlock->instance); 731 } 732 } 733 734 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 735 { 736 char usage[LOCK_USAGE_CHARS]; 737 738 get_usage_chars(class, usage); 739 740 printk(KERN_CONT " ("); 741 __print_lock_name(hlock, class); 742 printk(KERN_CONT "){%s}-{%d:%d}", usage, 743 class->wait_type_outer ?: class->wait_type_inner, 744 class->wait_type_inner); 745 } 746 747 static void print_lockdep_cache(struct lockdep_map *lock) 748 { 749 const char *name; 750 char str[KSYM_NAME_LEN]; 751 752 name = lock->name; 753 if (!name) 754 name = __get_key_name(lock->key->subkeys, str); 755 756 printk(KERN_CONT "%s", name); 757 } 758 759 static void print_lock(struct held_lock *hlock) 760 { 761 /* 762 * We can be called locklessly through debug_show_all_locks() so be 763 * extra careful, the hlock might have been released and cleared. 764 * 765 * If this indeed happens, lets pretend it does not hurt to continue 766 * to print the lock unless the hlock class_idx does not point to a 767 * registered class. The rationale here is: since we don't attempt 768 * to distinguish whether we are in this situation, if it just 769 * happened we can't count on class_idx to tell either. 770 */ 771 struct lock_class *lock = hlock_class(hlock); 772 773 if (!lock) { 774 printk(KERN_CONT "<RELEASED>\n"); 775 return; 776 } 777 778 printk(KERN_CONT "%px", hlock->instance); 779 print_lock_name(hlock, lock); 780 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 781 } 782 783 static void lockdep_print_held_locks(struct task_struct *p) 784 { 785 int i, depth = READ_ONCE(p->lockdep_depth); 786 787 if (!depth) 788 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 789 else 790 printk("%d lock%s held by %s/%d:\n", depth, 791 str_plural(depth), p->comm, task_pid_nr(p)); 792 /* 793 * It's not reliable to print a task's held locks if it's not sleeping 794 * and it's not the current task. 795 */ 796 if (p != current && task_is_running(p)) 797 return; 798 for (i = 0; i < depth; i++) { 799 printk(" #%d: ", i); 800 print_lock(p->held_locks + i); 801 } 802 } 803 804 static void print_kernel_ident(void) 805 { 806 printk("%s %.*s %s\n", init_utsname()->release, 807 (int)strcspn(init_utsname()->version, " "), 808 init_utsname()->version, 809 print_tainted()); 810 } 811 812 static int very_verbose(struct lock_class *class) 813 { 814 #if VERY_VERBOSE 815 return class_filter(class); 816 #endif 817 return 0; 818 } 819 820 /* 821 * Is this the address of a static object: 822 */ 823 #ifdef __KERNEL__ 824 static int static_obj(const void *obj) 825 { 826 unsigned long addr = (unsigned long) obj; 827 828 if (is_kernel_core_data(addr)) 829 return 1; 830 831 /* 832 * keys are allowed in the __ro_after_init section. 833 */ 834 if (is_kernel_rodata(addr)) 835 return 1; 836 837 /* 838 * in initdata section and used during bootup only? 839 * NOTE: On some platforms the initdata section is 840 * outside of the _stext ... _end range. 841 */ 842 if (system_state < SYSTEM_FREEING_INITMEM && 843 init_section_contains((void *)addr, 1)) 844 return 1; 845 846 /* 847 * in-kernel percpu var? 848 */ 849 if (is_kernel_percpu_address(addr)) 850 return 1; 851 852 /* 853 * module static or percpu var? 854 */ 855 return is_module_address(addr) || is_module_percpu_address(addr); 856 } 857 #endif 858 859 /* 860 * To make lock name printouts unique, we calculate a unique 861 * class->name_version generation counter. The caller must hold the graph 862 * lock. 863 */ 864 static int count_matching_names(struct lock_class *new_class) 865 { 866 struct lock_class *class; 867 int count = 0; 868 869 if (!new_class->name) 870 return 0; 871 872 list_for_each_entry(class, &all_lock_classes, lock_entry) { 873 if (new_class->key - new_class->subclass == class->key) 874 return class->name_version; 875 if (class->name && !strcmp(class->name, new_class->name)) 876 count = max(count, class->name_version); 877 } 878 879 return count + 1; 880 } 881 882 /* used from NMI context -- must be lockless */ 883 static noinstr struct lock_class * 884 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 885 { 886 struct lockdep_subclass_key *key; 887 struct hlist_head *hash_head; 888 struct lock_class *class; 889 890 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 891 instrumentation_begin(); 892 debug_locks_off(); 893 nbcon_cpu_emergency_enter(); 894 printk(KERN_ERR 895 "BUG: looking up invalid subclass: %u\n", subclass); 896 printk(KERN_ERR 897 "turning off the locking correctness validator.\n"); 898 dump_stack(); 899 nbcon_cpu_emergency_exit(); 900 instrumentation_end(); 901 return NULL; 902 } 903 904 /* 905 * If it is not initialised then it has never been locked, 906 * so it won't be present in the hash table. 907 */ 908 if (unlikely(!lock->key)) 909 return NULL; 910 911 /* 912 * NOTE: the class-key must be unique. For dynamic locks, a static 913 * lock_class_key variable is passed in through the mutex_init() 914 * (or spin_lock_init()) call - which acts as the key. For static 915 * locks we use the lock object itself as the key. 916 */ 917 BUILD_BUG_ON(sizeof(struct lock_class_key) > 918 sizeof(struct lockdep_map)); 919 920 key = lock->key->subkeys + subclass; 921 922 hash_head = classhashentry(key); 923 924 /* 925 * We do an RCU walk of the hash, see lockdep_free_key_range(). 926 */ 927 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 928 return NULL; 929 930 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 931 if (class->key == key) { 932 /* 933 * Huh! same key, different name? Did someone trample 934 * on some memory? We're most confused. 935 */ 936 WARN_ONCE(class->name != lock->name && 937 lock->key != &__lockdep_no_validate__, 938 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 939 lock->name, lock->key, class->name); 940 return class; 941 } 942 } 943 944 return NULL; 945 } 946 947 /* 948 * Static locks do not have their class-keys yet - for them the key is 949 * the lock object itself. If the lock is in the per cpu area, the 950 * canonical address of the lock (per cpu offset removed) is used. 951 */ 952 static bool assign_lock_key(struct lockdep_map *lock) 953 { 954 unsigned long can_addr, addr = (unsigned long)lock; 955 956 #ifdef __KERNEL__ 957 /* 958 * lockdep_free_key_range() assumes that struct lock_class_key 959 * objects do not overlap. Since we use the address of lock 960 * objects as class key for static objects, check whether the 961 * size of lock_class_key objects does not exceed the size of 962 * the smallest lock object. 963 */ 964 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 965 #endif 966 967 if (__is_kernel_percpu_address(addr, &can_addr)) 968 lock->key = (void *)can_addr; 969 else if (__is_module_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (static_obj(lock)) 972 lock->key = (void *)lock; 973 else { 974 /* Debug-check: all keys must be persistent! */ 975 debug_locks_off(); 976 nbcon_cpu_emergency_enter(); 977 pr_err("INFO: trying to register non-static key.\n"); 978 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 979 pr_err("you didn't initialize this object before use?\n"); 980 pr_err("turning off the locking correctness validator.\n"); 981 dump_stack(); 982 nbcon_cpu_emergency_exit(); 983 return false; 984 } 985 986 return true; 987 } 988 989 #ifdef CONFIG_DEBUG_LOCKDEP 990 991 /* Check whether element @e occurs in list @h */ 992 static bool in_list(struct list_head *e, struct list_head *h) 993 { 994 struct list_head *f; 995 996 list_for_each(f, h) { 997 if (e == f) 998 return true; 999 } 1000 1001 return false; 1002 } 1003 1004 /* 1005 * Check whether entry @e occurs in any of the locks_after or locks_before 1006 * lists. 1007 */ 1008 static bool in_any_class_list(struct list_head *e) 1009 { 1010 struct lock_class *class; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1014 class = &lock_classes[i]; 1015 if (in_list(e, &class->locks_after) || 1016 in_list(e, &class->locks_before)) 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1023 { 1024 struct lock_list *e; 1025 1026 list_for_each_entry(e, h, entry) { 1027 if (e->links_to != c) { 1028 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1029 c->name ? : "(?)", 1030 (unsigned long)(e - list_entries), 1031 e->links_to && e->links_to->name ? 1032 e->links_to->name : "(?)", 1033 e->class && e->class->name ? e->class->name : 1034 "(?)"); 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_PROVE_LOCKING 1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1043 #endif 1044 1045 static bool check_lock_chain_key(struct lock_chain *chain) 1046 { 1047 #ifdef CONFIG_PROVE_LOCKING 1048 u64 chain_key = INITIAL_CHAIN_KEY; 1049 int i; 1050 1051 for (i = chain->base; i < chain->base + chain->depth; i++) 1052 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1053 /* 1054 * The 'unsigned long long' casts avoid that a compiler warning 1055 * is reported when building tools/lib/lockdep. 1056 */ 1057 if (chain->chain_key != chain_key) { 1058 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1059 (unsigned long long)(chain - lock_chains), 1060 (unsigned long long)chain->chain_key, 1061 (unsigned long long)chain_key); 1062 return false; 1063 } 1064 #endif 1065 return true; 1066 } 1067 1068 static bool in_any_zapped_class_list(struct lock_class *class) 1069 { 1070 struct pending_free *pf; 1071 int i; 1072 1073 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1074 if (in_list(&class->lock_entry, &pf->zapped)) 1075 return true; 1076 } 1077 1078 return false; 1079 } 1080 1081 static bool __check_data_structures(void) 1082 { 1083 struct lock_class *class; 1084 struct lock_chain *chain; 1085 struct hlist_head *head; 1086 struct lock_list *e; 1087 int i; 1088 1089 /* Check whether all classes occur in a lock list. */ 1090 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1091 class = &lock_classes[i]; 1092 if (!in_list(&class->lock_entry, &all_lock_classes) && 1093 !in_list(&class->lock_entry, &free_lock_classes) && 1094 !in_any_zapped_class_list(class)) { 1095 printk(KERN_INFO "class %px/%s is not in any class list\n", 1096 class, class->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* Check whether all classes have valid lock lists. */ 1102 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1103 class = &lock_classes[i]; 1104 if (!class_lock_list_valid(class, &class->locks_before)) 1105 return false; 1106 if (!class_lock_list_valid(class, &class->locks_after)) 1107 return false; 1108 } 1109 1110 /* Check the chain_key of all lock chains. */ 1111 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1112 head = chainhash_table + i; 1113 hlist_for_each_entry_rcu(chain, head, entry) { 1114 if (!check_lock_chain_key(chain)) 1115 return false; 1116 } 1117 } 1118 1119 /* 1120 * Check whether all list entries that are in use occur in a class 1121 * lock list. 1122 */ 1123 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1124 e = list_entries + i; 1125 if (!in_any_class_list(&e->entry)) { 1126 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1127 (unsigned int)(e - list_entries), 1128 e->class->name ? : "(?)", 1129 e->links_to->name ? : "(?)"); 1130 return false; 1131 } 1132 } 1133 1134 /* 1135 * Check whether all list entries that are not in use do not occur in 1136 * a class lock list. 1137 */ 1138 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1139 e = list_entries + i; 1140 if (in_any_class_list(&e->entry)) { 1141 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1142 (unsigned int)(e - list_entries), 1143 e->class && e->class->name ? e->class->name : 1144 "(?)", 1145 e->links_to && e->links_to->name ? 1146 e->links_to->name : "(?)"); 1147 return false; 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 int check_consistency = 0; 1155 module_param(check_consistency, int, 0644); 1156 1157 static void check_data_structures(void) 1158 { 1159 static bool once = false; 1160 1161 if (check_consistency && !once) { 1162 if (!__check_data_structures()) { 1163 once = true; 1164 WARN_ON(once); 1165 } 1166 } 1167 } 1168 1169 #else /* CONFIG_DEBUG_LOCKDEP */ 1170 1171 static inline void check_data_structures(void) { } 1172 1173 #endif /* CONFIG_DEBUG_LOCKDEP */ 1174 1175 static void init_chain_block_buckets(void); 1176 1177 /* 1178 * Initialize the lock_classes[] array elements, the free_lock_classes list 1179 * and also the delayed_free structure. 1180 */ 1181 static void init_data_structures_once(void) 1182 { 1183 static bool __read_mostly ds_initialized, rcu_head_initialized; 1184 int i; 1185 1186 if (likely(rcu_head_initialized)) 1187 return; 1188 1189 if (system_state >= SYSTEM_SCHEDULING) { 1190 init_rcu_head(&delayed_free.rcu_head); 1191 rcu_head_initialized = true; 1192 } 1193 1194 if (ds_initialized) 1195 return; 1196 1197 ds_initialized = true; 1198 1199 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1200 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1201 1202 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1203 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1205 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1206 } 1207 init_chain_block_buckets(); 1208 } 1209 1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1211 { 1212 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1213 1214 return lock_keys_hash + hash; 1215 } 1216 1217 /* Register a dynamically allocated key. */ 1218 void lockdep_register_key(struct lock_class_key *key) 1219 { 1220 struct hlist_head *hash_head; 1221 struct lock_class_key *k; 1222 unsigned long flags; 1223 1224 if (WARN_ON_ONCE(static_obj(key))) 1225 return; 1226 hash_head = keyhashentry(key); 1227 1228 raw_local_irq_save(flags); 1229 if (!graph_lock()) 1230 goto restore_irqs; 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (WARN_ON_ONCE(k == key)) 1233 goto out_unlock; 1234 } 1235 hlist_add_head_rcu(&key->hash_entry, hash_head); 1236 out_unlock: 1237 graph_unlock(); 1238 restore_irqs: 1239 raw_local_irq_restore(flags); 1240 } 1241 EXPORT_SYMBOL_GPL(lockdep_register_key); 1242 1243 /* Check whether a key has been registered as a dynamic key. */ 1244 static bool is_dynamic_key(const struct lock_class_key *key) 1245 { 1246 struct hlist_head *hash_head; 1247 struct lock_class_key *k; 1248 bool found = false; 1249 1250 if (WARN_ON_ONCE(static_obj(key))) 1251 return false; 1252 1253 /* 1254 * If lock debugging is disabled lock_keys_hash[] may contain 1255 * pointers to memory that has already been freed. Avoid triggering 1256 * a use-after-free in that case by returning early. 1257 */ 1258 if (!debug_locks) 1259 return true; 1260 1261 hash_head = keyhashentry(key); 1262 1263 rcu_read_lock(); 1264 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1265 if (k == key) { 1266 found = true; 1267 break; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return found; 1273 } 1274 1275 /* 1276 * Register a lock's class in the hash-table, if the class is not present 1277 * yet. Otherwise we look it up. We cache the result in the lock object 1278 * itself, so actual lookup of the hash should be once per lock object. 1279 */ 1280 static struct lock_class * 1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1282 { 1283 struct lockdep_subclass_key *key; 1284 struct hlist_head *hash_head; 1285 struct lock_class *class; 1286 int idx; 1287 1288 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1289 1290 class = look_up_lock_class(lock, subclass); 1291 if (likely(class)) 1292 goto out_set_class_cache; 1293 1294 if (!lock->key) { 1295 if (!assign_lock_key(lock)) 1296 return NULL; 1297 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1298 return NULL; 1299 } 1300 1301 key = lock->key->subkeys + subclass; 1302 hash_head = classhashentry(key); 1303 1304 if (!graph_lock()) { 1305 return NULL; 1306 } 1307 /* 1308 * We have to do the hash-walk again, to avoid races 1309 * with another CPU: 1310 */ 1311 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1312 if (class->key == key) 1313 goto out_unlock_set; 1314 } 1315 1316 init_data_structures_once(); 1317 1318 /* Allocate a new lock class and add it to the hash. */ 1319 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1320 lock_entry); 1321 if (!class) { 1322 if (!debug_locks_off_graph_unlock()) { 1323 return NULL; 1324 } 1325 1326 nbcon_cpu_emergency_enter(); 1327 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1328 dump_stack(); 1329 nbcon_cpu_emergency_exit(); 1330 return NULL; 1331 } 1332 nr_lock_classes++; 1333 __set_bit(class - lock_classes, lock_classes_in_use); 1334 debug_atomic_inc(nr_unused_locks); 1335 class->key = key; 1336 class->name = lock->name; 1337 class->subclass = subclass; 1338 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1339 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1340 class->name_version = count_matching_names(class); 1341 class->wait_type_inner = lock->wait_type_inner; 1342 class->wait_type_outer = lock->wait_type_outer; 1343 class->lock_type = lock->lock_type; 1344 /* 1345 * We use RCU's safe list-add method to make 1346 * parallel walking of the hash-list safe: 1347 */ 1348 hlist_add_head_rcu(&class->hash_entry, hash_head); 1349 /* 1350 * Remove the class from the free list and add it to the global list 1351 * of classes. 1352 */ 1353 list_move_tail(&class->lock_entry, &all_lock_classes); 1354 idx = class - lock_classes; 1355 if (idx > max_lock_class_idx) 1356 max_lock_class_idx = idx; 1357 1358 if (verbose(class)) { 1359 graph_unlock(); 1360 1361 nbcon_cpu_emergency_enter(); 1362 printk("\nnew class %px: %s", class->key, class->name); 1363 if (class->name_version > 1) 1364 printk(KERN_CONT "#%d", class->name_version); 1365 printk(KERN_CONT "\n"); 1366 dump_stack(); 1367 nbcon_cpu_emergency_exit(); 1368 1369 if (!graph_lock()) { 1370 return NULL; 1371 } 1372 } 1373 out_unlock_set: 1374 graph_unlock(); 1375 1376 out_set_class_cache: 1377 if (!subclass || force) 1378 lock->class_cache[0] = class; 1379 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1380 lock->class_cache[subclass] = class; 1381 1382 /* 1383 * Hash collision, did we smoke some? We found a class with a matching 1384 * hash but the subclass -- which is hashed in -- didn't match. 1385 */ 1386 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1387 return NULL; 1388 1389 return class; 1390 } 1391 1392 #ifdef CONFIG_PROVE_LOCKING 1393 /* 1394 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1395 * with NULL on failure) 1396 */ 1397 static struct lock_list *alloc_list_entry(void) 1398 { 1399 int idx = find_first_zero_bit(list_entries_in_use, 1400 ARRAY_SIZE(list_entries)); 1401 1402 if (idx >= ARRAY_SIZE(list_entries)) { 1403 if (!debug_locks_off_graph_unlock()) 1404 return NULL; 1405 1406 nbcon_cpu_emergency_enter(); 1407 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1408 dump_stack(); 1409 nbcon_cpu_emergency_exit(); 1410 return NULL; 1411 } 1412 nr_list_entries++; 1413 __set_bit(idx, list_entries_in_use); 1414 return list_entries + idx; 1415 } 1416 1417 /* 1418 * Add a new dependency to the head of the list: 1419 */ 1420 static int add_lock_to_list(struct lock_class *this, 1421 struct lock_class *links_to, struct list_head *head, 1422 u16 distance, u8 dep, 1423 const struct lock_trace *trace) 1424 { 1425 struct lock_list *entry; 1426 /* 1427 * Lock not present yet - get a new dependency struct and 1428 * add it to the list: 1429 */ 1430 entry = alloc_list_entry(); 1431 if (!entry) 1432 return 0; 1433 1434 entry->class = this; 1435 entry->links_to = links_to; 1436 entry->dep = dep; 1437 entry->distance = distance; 1438 entry->trace = trace; 1439 /* 1440 * Both allocation and removal are done under the graph lock; but 1441 * iteration is under RCU-sched; see look_up_lock_class() and 1442 * lockdep_free_key_range(). 1443 */ 1444 list_add_tail_rcu(&entry->entry, head); 1445 1446 return 1; 1447 } 1448 1449 /* 1450 * For good efficiency of modular, we use power of 2 1451 */ 1452 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1453 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1454 1455 /* 1456 * The circular_queue and helpers are used to implement graph 1457 * breadth-first search (BFS) algorithm, by which we can determine 1458 * whether there is a path from a lock to another. In deadlock checks, 1459 * a path from the next lock to be acquired to a previous held lock 1460 * indicates that adding the <prev> -> <next> lock dependency will 1461 * produce a circle in the graph. Breadth-first search instead of 1462 * depth-first search is used in order to find the shortest (circular) 1463 * path. 1464 */ 1465 struct circular_queue { 1466 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1467 unsigned int front, rear; 1468 }; 1469 1470 static struct circular_queue lock_cq; 1471 1472 unsigned int max_bfs_queue_depth; 1473 1474 static unsigned int lockdep_dependency_gen_id; 1475 1476 static inline void __cq_init(struct circular_queue *cq) 1477 { 1478 cq->front = cq->rear = 0; 1479 lockdep_dependency_gen_id++; 1480 } 1481 1482 static inline int __cq_empty(struct circular_queue *cq) 1483 { 1484 return (cq->front == cq->rear); 1485 } 1486 1487 static inline int __cq_full(struct circular_queue *cq) 1488 { 1489 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1490 } 1491 1492 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1493 { 1494 if (__cq_full(cq)) 1495 return -1; 1496 1497 cq->element[cq->rear] = elem; 1498 cq->rear = (cq->rear + 1) & CQ_MASK; 1499 return 0; 1500 } 1501 1502 /* 1503 * Dequeue an element from the circular_queue, return a lock_list if 1504 * the queue is not empty, or NULL if otherwise. 1505 */ 1506 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1507 { 1508 struct lock_list * lock; 1509 1510 if (__cq_empty(cq)) 1511 return NULL; 1512 1513 lock = cq->element[cq->front]; 1514 cq->front = (cq->front + 1) & CQ_MASK; 1515 1516 return lock; 1517 } 1518 1519 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1520 { 1521 return (cq->rear - cq->front) & CQ_MASK; 1522 } 1523 1524 static inline void mark_lock_accessed(struct lock_list *lock) 1525 { 1526 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1527 } 1528 1529 static inline void visit_lock_entry(struct lock_list *lock, 1530 struct lock_list *parent) 1531 { 1532 lock->parent = parent; 1533 } 1534 1535 static inline unsigned long lock_accessed(struct lock_list *lock) 1536 { 1537 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1538 } 1539 1540 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1541 { 1542 return child->parent; 1543 } 1544 1545 static inline int get_lock_depth(struct lock_list *child) 1546 { 1547 int depth = 0; 1548 struct lock_list *parent; 1549 1550 while ((parent = get_lock_parent(child))) { 1551 child = parent; 1552 depth++; 1553 } 1554 return depth; 1555 } 1556 1557 /* 1558 * Return the forward or backward dependency list. 1559 * 1560 * @lock: the lock_list to get its class's dependency list 1561 * @offset: the offset to struct lock_class to determine whether it is 1562 * locks_after or locks_before 1563 */ 1564 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1565 { 1566 void *lock_class = lock->class; 1567 1568 return lock_class + offset; 1569 } 1570 /* 1571 * Return values of a bfs search: 1572 * 1573 * BFS_E* indicates an error 1574 * BFS_R* indicates a result (match or not) 1575 * 1576 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1577 * 1578 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1579 * 1580 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1581 * *@target_entry. 1582 * 1583 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1584 * _unchanged_. 1585 */ 1586 enum bfs_result { 1587 BFS_EINVALIDNODE = -2, 1588 BFS_EQUEUEFULL = -1, 1589 BFS_RMATCH = 0, 1590 BFS_RNOMATCH = 1, 1591 }; 1592 1593 /* 1594 * bfs_result < 0 means error 1595 */ 1596 static inline bool bfs_error(enum bfs_result res) 1597 { 1598 return res < 0; 1599 } 1600 1601 /* 1602 * DEP_*_BIT in lock_list::dep 1603 * 1604 * For dependency @prev -> @next: 1605 * 1606 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1607 * (->read == 2) 1608 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1609 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1610 * EN: @prev is exclusive locker and @next is non-recursive locker 1611 * 1612 * Note that we define the value of DEP_*_BITs so that: 1613 * bit0 is prev->read == 0 1614 * bit1 is next->read != 2 1615 */ 1616 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1617 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1618 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1619 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1620 1621 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1622 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1623 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1624 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1625 1626 static inline unsigned int 1627 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1628 { 1629 return (prev->read == 0) + ((next->read != 2) << 1); 1630 } 1631 1632 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1633 { 1634 return 1U << __calc_dep_bit(prev, next); 1635 } 1636 1637 /* 1638 * calculate the dep_bit for backwards edges. We care about whether @prev is 1639 * shared and whether @next is recursive. 1640 */ 1641 static inline unsigned int 1642 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1643 { 1644 return (next->read != 2) + ((prev->read == 0) << 1); 1645 } 1646 1647 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1648 { 1649 return 1U << __calc_dep_bitb(prev, next); 1650 } 1651 1652 /* 1653 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1654 * search. 1655 */ 1656 static inline void __bfs_init_root(struct lock_list *lock, 1657 struct lock_class *class) 1658 { 1659 lock->class = class; 1660 lock->parent = NULL; 1661 lock->only_xr = 0; 1662 } 1663 1664 /* 1665 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1666 * root for a BFS search. 1667 * 1668 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1669 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1670 * and -(S*)->. 1671 */ 1672 static inline void bfs_init_root(struct lock_list *lock, 1673 struct held_lock *hlock) 1674 { 1675 __bfs_init_root(lock, hlock_class(hlock)); 1676 lock->only_xr = (hlock->read == 2); 1677 } 1678 1679 /* 1680 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1681 * 1682 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1683 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1684 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1685 */ 1686 static inline void bfs_init_rootb(struct lock_list *lock, 1687 struct held_lock *hlock) 1688 { 1689 __bfs_init_root(lock, hlock_class(hlock)); 1690 lock->only_xr = (hlock->read != 0); 1691 } 1692 1693 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1694 { 1695 if (!lock || !lock->parent) 1696 return NULL; 1697 1698 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1699 &lock->entry, struct lock_list, entry); 1700 } 1701 1702 /* 1703 * Breadth-First Search to find a strong path in the dependency graph. 1704 * 1705 * @source_entry: the source of the path we are searching for. 1706 * @data: data used for the second parameter of @match function 1707 * @match: match function for the search 1708 * @target_entry: pointer to the target of a matched path 1709 * @offset: the offset to struct lock_class to determine whether it is 1710 * locks_after or locks_before 1711 * 1712 * We may have multiple edges (considering different kinds of dependencies, 1713 * e.g. ER and SN) between two nodes in the dependency graph. But 1714 * only the strong dependency path in the graph is relevant to deadlocks. A 1715 * strong dependency path is a dependency path that doesn't have two adjacent 1716 * dependencies as -(*R)-> -(S*)->, please see: 1717 * 1718 * Documentation/locking/lockdep-design.rst 1719 * 1720 * for more explanation of the definition of strong dependency paths 1721 * 1722 * In __bfs(), we only traverse in the strong dependency path: 1723 * 1724 * In lock_list::only_xr, we record whether the previous dependency only 1725 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1726 * filter out any -(S*)-> in the current dependency and after that, the 1727 * ->only_xr is set according to whether we only have -(*R)-> left. 1728 */ 1729 static enum bfs_result __bfs(struct lock_list *source_entry, 1730 void *data, 1731 bool (*match)(struct lock_list *entry, void *data), 1732 bool (*skip)(struct lock_list *entry, void *data), 1733 struct lock_list **target_entry, 1734 int offset) 1735 { 1736 struct circular_queue *cq = &lock_cq; 1737 struct lock_list *lock = NULL; 1738 struct lock_list *entry; 1739 struct list_head *head; 1740 unsigned int cq_depth; 1741 bool first; 1742 1743 lockdep_assert_locked(); 1744 1745 __cq_init(cq); 1746 __cq_enqueue(cq, source_entry); 1747 1748 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1749 if (!lock->class) 1750 return BFS_EINVALIDNODE; 1751 1752 /* 1753 * Step 1: check whether we already finish on this one. 1754 * 1755 * If we have visited all the dependencies from this @lock to 1756 * others (iow, if we have visited all lock_list entries in 1757 * @lock->class->locks_{after,before}) we skip, otherwise go 1758 * and visit all the dependencies in the list and mark this 1759 * list accessed. 1760 */ 1761 if (lock_accessed(lock)) 1762 continue; 1763 else 1764 mark_lock_accessed(lock); 1765 1766 /* 1767 * Step 2: check whether prev dependency and this form a strong 1768 * dependency path. 1769 */ 1770 if (lock->parent) { /* Parent exists, check prev dependency */ 1771 u8 dep = lock->dep; 1772 bool prev_only_xr = lock->parent->only_xr; 1773 1774 /* 1775 * Mask out all -(S*)-> if we only have *R in previous 1776 * step, because -(*R)-> -(S*)-> don't make up a strong 1777 * dependency. 1778 */ 1779 if (prev_only_xr) 1780 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1781 1782 /* If nothing left, we skip */ 1783 if (!dep) 1784 continue; 1785 1786 /* If there are only -(*R)-> left, set that for the next step */ 1787 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1788 } 1789 1790 /* 1791 * Step 3: we haven't visited this and there is a strong 1792 * dependency path to this, so check with @match. 1793 * If @skip is provide and returns true, we skip this 1794 * lock (and any path this lock is in). 1795 */ 1796 if (skip && skip(lock, data)) 1797 continue; 1798 1799 if (match(lock, data)) { 1800 *target_entry = lock; 1801 return BFS_RMATCH; 1802 } 1803 1804 /* 1805 * Step 4: if not match, expand the path by adding the 1806 * forward or backwards dependencies in the search 1807 * 1808 */ 1809 first = true; 1810 head = get_dep_list(lock, offset); 1811 list_for_each_entry_rcu(entry, head, entry) { 1812 visit_lock_entry(entry, lock); 1813 1814 /* 1815 * Note we only enqueue the first of the list into the 1816 * queue, because we can always find a sibling 1817 * dependency from one (see __bfs_next()), as a result 1818 * the space of queue is saved. 1819 */ 1820 if (!first) 1821 continue; 1822 1823 first = false; 1824 1825 if (__cq_enqueue(cq, entry)) 1826 return BFS_EQUEUEFULL; 1827 1828 cq_depth = __cq_get_elem_count(cq); 1829 if (max_bfs_queue_depth < cq_depth) 1830 max_bfs_queue_depth = cq_depth; 1831 } 1832 } 1833 1834 return BFS_RNOMATCH; 1835 } 1836 1837 static inline enum bfs_result 1838 __bfs_forwards(struct lock_list *src_entry, 1839 void *data, 1840 bool (*match)(struct lock_list *entry, void *data), 1841 bool (*skip)(struct lock_list *entry, void *data), 1842 struct lock_list **target_entry) 1843 { 1844 return __bfs(src_entry, data, match, skip, target_entry, 1845 offsetof(struct lock_class, locks_after)); 1846 1847 } 1848 1849 static inline enum bfs_result 1850 __bfs_backwards(struct lock_list *src_entry, 1851 void *data, 1852 bool (*match)(struct lock_list *entry, void *data), 1853 bool (*skip)(struct lock_list *entry, void *data), 1854 struct lock_list **target_entry) 1855 { 1856 return __bfs(src_entry, data, match, skip, target_entry, 1857 offsetof(struct lock_class, locks_before)); 1858 1859 } 1860 1861 static void print_lock_trace(const struct lock_trace *trace, 1862 unsigned int spaces) 1863 { 1864 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1865 } 1866 1867 /* 1868 * Print a dependency chain entry (this is only done when a deadlock 1869 * has been detected): 1870 */ 1871 static noinline void 1872 print_circular_bug_entry(struct lock_list *target, int depth) 1873 { 1874 if (debug_locks_silent) 1875 return; 1876 printk("\n-> #%u", depth); 1877 print_lock_name(NULL, target->class); 1878 printk(KERN_CONT ":\n"); 1879 print_lock_trace(target->trace, 6); 1880 } 1881 1882 static void 1883 print_circular_lock_scenario(struct held_lock *src, 1884 struct held_lock *tgt, 1885 struct lock_list *prt) 1886 { 1887 struct lock_class *source = hlock_class(src); 1888 struct lock_class *target = hlock_class(tgt); 1889 struct lock_class *parent = prt->class; 1890 int src_read = src->read; 1891 int tgt_read = tgt->read; 1892 1893 /* 1894 * A direct locking problem where unsafe_class lock is taken 1895 * directly by safe_class lock, then all we need to show 1896 * is the deadlock scenario, as it is obvious that the 1897 * unsafe lock is taken under the safe lock. 1898 * 1899 * But if there is a chain instead, where the safe lock takes 1900 * an intermediate lock (middle_class) where this lock is 1901 * not the same as the safe lock, then the lock chain is 1902 * used to describe the problem. Otherwise we would need 1903 * to show a different CPU case for each link in the chain 1904 * from the safe_class lock to the unsafe_class lock. 1905 */ 1906 if (parent != source) { 1907 printk("Chain exists of:\n "); 1908 __print_lock_name(src, source); 1909 printk(KERN_CONT " --> "); 1910 __print_lock_name(NULL, parent); 1911 printk(KERN_CONT " --> "); 1912 __print_lock_name(tgt, target); 1913 printk(KERN_CONT "\n\n"); 1914 } 1915 1916 printk(" Possible unsafe locking scenario:\n\n"); 1917 printk(" CPU0 CPU1\n"); 1918 printk(" ---- ----\n"); 1919 if (tgt_read != 0) 1920 printk(" rlock("); 1921 else 1922 printk(" lock("); 1923 __print_lock_name(tgt, target); 1924 printk(KERN_CONT ");\n"); 1925 printk(" lock("); 1926 __print_lock_name(NULL, parent); 1927 printk(KERN_CONT ");\n"); 1928 printk(" lock("); 1929 __print_lock_name(tgt, target); 1930 printk(KERN_CONT ");\n"); 1931 if (src_read != 0) 1932 printk(" rlock("); 1933 else if (src->sync) 1934 printk(" sync("); 1935 else 1936 printk(" lock("); 1937 __print_lock_name(src, source); 1938 printk(KERN_CONT ");\n"); 1939 printk("\n *** DEADLOCK ***\n\n"); 1940 } 1941 1942 /* 1943 * When a circular dependency is detected, print the 1944 * header first: 1945 */ 1946 static noinline void 1947 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1948 struct held_lock *check_src, 1949 struct held_lock *check_tgt) 1950 { 1951 struct task_struct *curr = current; 1952 1953 if (debug_locks_silent) 1954 return; 1955 1956 pr_warn("\n"); 1957 pr_warn("======================================================\n"); 1958 pr_warn("WARNING: possible circular locking dependency detected\n"); 1959 print_kernel_ident(); 1960 pr_warn("------------------------------------------------------\n"); 1961 pr_warn("%s/%d is trying to acquire lock:\n", 1962 curr->comm, task_pid_nr(curr)); 1963 print_lock(check_src); 1964 1965 pr_warn("\nbut task is already holding lock:\n"); 1966 1967 print_lock(check_tgt); 1968 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1969 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1970 1971 print_circular_bug_entry(entry, depth); 1972 } 1973 1974 /* 1975 * We are about to add A -> B into the dependency graph, and in __bfs() a 1976 * strong dependency path A -> .. -> B is found: hlock_class equals 1977 * entry->class. 1978 * 1979 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1980 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1981 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1982 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1983 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1984 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1985 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1986 * 1987 * We need to make sure both the start and the end of A -> .. -> B is not 1988 * weaker than A -> B. For the start part, please see the comment in 1989 * check_redundant(). For the end part, we need: 1990 * 1991 * Either 1992 * 1993 * a) A -> B is -(*R)-> (everything is not weaker than that) 1994 * 1995 * or 1996 * 1997 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1998 * 1999 */ 2000 static inline bool hlock_equal(struct lock_list *entry, void *data) 2001 { 2002 struct held_lock *hlock = (struct held_lock *)data; 2003 2004 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2005 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2006 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2007 } 2008 2009 /* 2010 * We are about to add B -> A into the dependency graph, and in __bfs() a 2011 * strong dependency path A -> .. -> B is found: hlock_class equals 2012 * entry->class. 2013 * 2014 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2015 * dependency cycle, that means: 2016 * 2017 * Either 2018 * 2019 * a) B -> A is -(E*)-> 2020 * 2021 * or 2022 * 2023 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2024 * 2025 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2026 */ 2027 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2028 { 2029 struct held_lock *hlock = (struct held_lock *)data; 2030 2031 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2032 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2033 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2034 } 2035 2036 static noinline void print_circular_bug(struct lock_list *this, 2037 struct lock_list *target, 2038 struct held_lock *check_src, 2039 struct held_lock *check_tgt) 2040 { 2041 struct task_struct *curr = current; 2042 struct lock_list *parent; 2043 struct lock_list *first_parent; 2044 int depth; 2045 2046 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2047 return; 2048 2049 this->trace = save_trace(); 2050 if (!this->trace) 2051 return; 2052 2053 depth = get_lock_depth(target); 2054 2055 nbcon_cpu_emergency_enter(); 2056 2057 print_circular_bug_header(target, depth, check_src, check_tgt); 2058 2059 parent = get_lock_parent(target); 2060 first_parent = parent; 2061 2062 while (parent) { 2063 print_circular_bug_entry(parent, --depth); 2064 parent = get_lock_parent(parent); 2065 } 2066 2067 printk("\nother info that might help us debug this:\n\n"); 2068 print_circular_lock_scenario(check_src, check_tgt, 2069 first_parent); 2070 2071 lockdep_print_held_locks(curr); 2072 2073 printk("\nstack backtrace:\n"); 2074 dump_stack(); 2075 2076 nbcon_cpu_emergency_exit(); 2077 } 2078 2079 static noinline void print_bfs_bug(int ret) 2080 { 2081 if (!debug_locks_off_graph_unlock()) 2082 return; 2083 2084 /* 2085 * Breadth-first-search failed, graph got corrupted? 2086 */ 2087 if (ret == BFS_EQUEUEFULL) 2088 pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n"); 2089 2090 WARN(1, "lockdep bfs error:%d\n", ret); 2091 } 2092 2093 static bool noop_count(struct lock_list *entry, void *data) 2094 { 2095 (*(unsigned long *)data)++; 2096 return false; 2097 } 2098 2099 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2100 { 2101 unsigned long count = 0; 2102 struct lock_list *target_entry; 2103 2104 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2105 2106 return count; 2107 } 2108 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2109 { 2110 unsigned long ret, flags; 2111 struct lock_list this; 2112 2113 __bfs_init_root(&this, class); 2114 2115 raw_local_irq_save(flags); 2116 lockdep_lock(); 2117 ret = __lockdep_count_forward_deps(&this); 2118 lockdep_unlock(); 2119 raw_local_irq_restore(flags); 2120 2121 return ret; 2122 } 2123 2124 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2125 { 2126 unsigned long count = 0; 2127 struct lock_list *target_entry; 2128 2129 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2130 2131 return count; 2132 } 2133 2134 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2135 { 2136 unsigned long ret, flags; 2137 struct lock_list this; 2138 2139 __bfs_init_root(&this, class); 2140 2141 raw_local_irq_save(flags); 2142 lockdep_lock(); 2143 ret = __lockdep_count_backward_deps(&this); 2144 lockdep_unlock(); 2145 raw_local_irq_restore(flags); 2146 2147 return ret; 2148 } 2149 2150 /* 2151 * Check that the dependency graph starting at <src> can lead to 2152 * <target> or not. 2153 */ 2154 static noinline enum bfs_result 2155 check_path(struct held_lock *target, struct lock_list *src_entry, 2156 bool (*match)(struct lock_list *entry, void *data), 2157 bool (*skip)(struct lock_list *entry, void *data), 2158 struct lock_list **target_entry) 2159 { 2160 enum bfs_result ret; 2161 2162 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2163 2164 if (unlikely(bfs_error(ret))) 2165 print_bfs_bug(ret); 2166 2167 return ret; 2168 } 2169 2170 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2171 2172 /* 2173 * Prove that the dependency graph starting at <src> can not 2174 * lead to <target>. If it can, there is a circle when adding 2175 * <target> -> <src> dependency. 2176 * 2177 * Print an error and return BFS_RMATCH if it does. 2178 */ 2179 static noinline enum bfs_result 2180 check_noncircular(struct held_lock *src, struct held_lock *target, 2181 struct lock_trace **const trace) 2182 { 2183 enum bfs_result ret; 2184 struct lock_list *target_entry; 2185 struct lock_list src_entry; 2186 2187 bfs_init_root(&src_entry, src); 2188 2189 debug_atomic_inc(nr_cyclic_checks); 2190 2191 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2192 2193 if (unlikely(ret == BFS_RMATCH)) { 2194 if (!*trace) { 2195 /* 2196 * If save_trace fails here, the printing might 2197 * trigger a WARN but because of the !nr_entries it 2198 * should not do bad things. 2199 */ 2200 *trace = save_trace(); 2201 } 2202 2203 if (src->class_idx == target->class_idx) 2204 print_deadlock_bug(current, src, target); 2205 else 2206 print_circular_bug(&src_entry, target_entry, src, target); 2207 } 2208 2209 return ret; 2210 } 2211 2212 #ifdef CONFIG_TRACE_IRQFLAGS 2213 2214 /* 2215 * Forwards and backwards subgraph searching, for the purposes of 2216 * proving that two subgraphs can be connected by a new dependency 2217 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2218 * 2219 * A irq safe->unsafe deadlock happens with the following conditions: 2220 * 2221 * 1) We have a strong dependency path A -> ... -> B 2222 * 2223 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2224 * irq can create a new dependency B -> A (consider the case that a holder 2225 * of B gets interrupted by an irq whose handler will try to acquire A). 2226 * 2227 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2228 * strong circle: 2229 * 2230 * For the usage bits of B: 2231 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2232 * ENABLED_IRQ usage suffices. 2233 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2234 * ENABLED_IRQ_*_READ usage suffices. 2235 * 2236 * For the usage bits of A: 2237 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2238 * USED_IN_IRQ usage suffices. 2239 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2240 * USED_IN_IRQ_*_READ usage suffices. 2241 */ 2242 2243 /* 2244 * There is a strong dependency path in the dependency graph: A -> B, and now 2245 * we need to decide which usage bit of A should be accumulated to detect 2246 * safe->unsafe bugs. 2247 * 2248 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2249 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2250 * 2251 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2252 * path, any usage of A should be considered. Otherwise, we should only 2253 * consider _READ usage. 2254 */ 2255 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2256 { 2257 if (!entry->only_xr) 2258 *(unsigned long *)mask |= entry->class->usage_mask; 2259 else /* Mask out _READ usage bits */ 2260 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2261 2262 return false; 2263 } 2264 2265 /* 2266 * There is a strong dependency path in the dependency graph: A -> B, and now 2267 * we need to decide which usage bit of B conflicts with the usage bits of A, 2268 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2269 * 2270 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2271 * path, any usage of B should be considered. Otherwise, we should only 2272 * consider _READ usage. 2273 */ 2274 static inline bool usage_match(struct lock_list *entry, void *mask) 2275 { 2276 if (!entry->only_xr) 2277 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2278 else /* Mask out _READ usage bits */ 2279 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2280 } 2281 2282 static inline bool usage_skip(struct lock_list *entry, void *mask) 2283 { 2284 if (entry->class->lock_type == LD_LOCK_NORMAL) 2285 return false; 2286 2287 /* 2288 * Skip local_lock() for irq inversion detection. 2289 * 2290 * For !RT, local_lock() is not a real lock, so it won't carry any 2291 * dependency. 2292 * 2293 * For RT, an irq inversion happens when we have lock A and B, and on 2294 * some CPU we can have: 2295 * 2296 * lock(A); 2297 * <interrupted> 2298 * lock(B); 2299 * 2300 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2301 * 2302 * Now we prove local_lock() cannot exist in that dependency. First we 2303 * have the observation for any lock chain L1 -> ... -> Ln, for any 2304 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2305 * wait context check will complain. And since B is not a sleep lock, 2306 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2307 * local_lock() is 3, which is greater than 2, therefore there is no 2308 * way the local_lock() exists in the dependency B -> ... -> A. 2309 * 2310 * As a result, we will skip local_lock(), when we search for irq 2311 * inversion bugs. 2312 */ 2313 if (entry->class->lock_type == LD_LOCK_PERCPU && 2314 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2315 return false; 2316 2317 /* 2318 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2319 * a lock and only used to override the wait_type. 2320 */ 2321 2322 return true; 2323 } 2324 2325 /* 2326 * Find a node in the forwards-direction dependency sub-graph starting 2327 * at @root->class that matches @bit. 2328 * 2329 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2330 * into *@target_entry. 2331 */ 2332 static enum bfs_result 2333 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2334 struct lock_list **target_entry) 2335 { 2336 enum bfs_result result; 2337 2338 debug_atomic_inc(nr_find_usage_forwards_checks); 2339 2340 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2341 2342 return result; 2343 } 2344 2345 /* 2346 * Find a node in the backwards-direction dependency sub-graph starting 2347 * at @root->class that matches @bit. 2348 */ 2349 static enum bfs_result 2350 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2351 struct lock_list **target_entry) 2352 { 2353 enum bfs_result result; 2354 2355 debug_atomic_inc(nr_find_usage_backwards_checks); 2356 2357 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2358 2359 return result; 2360 } 2361 2362 static void print_lock_class_header(struct lock_class *class, int depth) 2363 { 2364 int bit; 2365 2366 printk("%*s->", depth, ""); 2367 print_lock_name(NULL, class); 2368 #ifdef CONFIG_DEBUG_LOCKDEP 2369 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2370 #endif 2371 printk(KERN_CONT " {\n"); 2372 2373 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2374 if (class->usage_mask & (1 << bit)) { 2375 int len = depth; 2376 2377 len += printk("%*s %s", depth, "", usage_str[bit]); 2378 len += printk(KERN_CONT " at:\n"); 2379 print_lock_trace(class->usage_traces[bit], len); 2380 } 2381 } 2382 printk("%*s }\n", depth, ""); 2383 2384 printk("%*s ... key at: [<%px>] %pS\n", 2385 depth, "", class->key, class->key); 2386 } 2387 2388 /* 2389 * Dependency path printing: 2390 * 2391 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2392 * printing out each lock in the dependency path will help on understanding how 2393 * the deadlock could happen. Here are some details about dependency path 2394 * printing: 2395 * 2396 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2397 * for a lock dependency A -> B, there are two lock_lists: 2398 * 2399 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2400 * ->links_to is A. In this case, we can say the lock_list is 2401 * "A -> B" (forwards case). 2402 * 2403 * b) lock_list in the ->locks_before list of B, whose ->class is A 2404 * and ->links_to is B. In this case, we can say the lock_list is 2405 * "B <- A" (bacwards case). 2406 * 2407 * The ->trace of both a) and b) point to the call trace where B was 2408 * acquired with A held. 2409 * 2410 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2411 * represent a certain lock dependency, it only provides an initial entry 2412 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2413 * ->class is A, as a result BFS will search all dependencies starting with 2414 * A, e.g. A -> B or A -> C. 2415 * 2416 * The notation of a forwards helper lock_list is like "-> A", which means 2417 * we should search the forwards dependencies starting with "A", e.g A -> B 2418 * or A -> C. 2419 * 2420 * The notation of a bacwards helper lock_list is like "<- B", which means 2421 * we should search the backwards dependencies ending with "B", e.g. 2422 * B <- A or B <- C. 2423 */ 2424 2425 /* 2426 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2427 * 2428 * We have a lock dependency path as follow: 2429 * 2430 * @root @leaf 2431 * | | 2432 * V V 2433 * ->parent ->parent 2434 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2435 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2436 * 2437 * , so it's natural that we start from @leaf and print every ->class and 2438 * ->trace until we reach the @root. 2439 */ 2440 static void __used 2441 print_shortest_lock_dependencies(struct lock_list *leaf, 2442 struct lock_list *root) 2443 { 2444 struct lock_list *entry = leaf; 2445 int depth; 2446 2447 /*compute depth from generated tree by BFS*/ 2448 depth = get_lock_depth(leaf); 2449 2450 do { 2451 print_lock_class_header(entry->class, depth); 2452 printk("%*s ... acquired at:\n", depth, ""); 2453 print_lock_trace(entry->trace, 2); 2454 printk("\n"); 2455 2456 if (depth == 0 && (entry != root)) { 2457 printk("lockdep:%s bad path found in chain graph\n", __func__); 2458 break; 2459 } 2460 2461 entry = get_lock_parent(entry); 2462 depth--; 2463 } while (entry && (depth >= 0)); 2464 } 2465 2466 /* 2467 * printk the shortest lock dependencies from @leaf to @root. 2468 * 2469 * We have a lock dependency path (from a backwards search) as follow: 2470 * 2471 * @leaf @root 2472 * | | 2473 * V V 2474 * ->parent ->parent 2475 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2476 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2477 * 2478 * , so when we iterate from @leaf to @root, we actually print the lock 2479 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2480 * 2481 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2482 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2483 * trace of L1 in the dependency path, which is alright, because most of the 2484 * time we can figure out where L1 is held from the call trace of L2. 2485 */ 2486 static void __used 2487 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2488 struct lock_list *root) 2489 { 2490 struct lock_list *entry = leaf; 2491 const struct lock_trace *trace = NULL; 2492 int depth; 2493 2494 /*compute depth from generated tree by BFS*/ 2495 depth = get_lock_depth(leaf); 2496 2497 do { 2498 print_lock_class_header(entry->class, depth); 2499 if (trace) { 2500 printk("%*s ... acquired at:\n", depth, ""); 2501 print_lock_trace(trace, 2); 2502 printk("\n"); 2503 } 2504 2505 /* 2506 * Record the pointer to the trace for the next lock_list 2507 * entry, see the comments for the function. 2508 */ 2509 trace = entry->trace; 2510 2511 if (depth == 0 && (entry != root)) { 2512 printk("lockdep:%s bad path found in chain graph\n", __func__); 2513 break; 2514 } 2515 2516 entry = get_lock_parent(entry); 2517 depth--; 2518 } while (entry && (depth >= 0)); 2519 } 2520 2521 static void 2522 print_irq_lock_scenario(struct lock_list *safe_entry, 2523 struct lock_list *unsafe_entry, 2524 struct lock_class *prev_class, 2525 struct lock_class *next_class) 2526 { 2527 struct lock_class *safe_class = safe_entry->class; 2528 struct lock_class *unsafe_class = unsafe_entry->class; 2529 struct lock_class *middle_class = prev_class; 2530 2531 if (middle_class == safe_class) 2532 middle_class = next_class; 2533 2534 /* 2535 * A direct locking problem where unsafe_class lock is taken 2536 * directly by safe_class lock, then all we need to show 2537 * is the deadlock scenario, as it is obvious that the 2538 * unsafe lock is taken under the safe lock. 2539 * 2540 * But if there is a chain instead, where the safe lock takes 2541 * an intermediate lock (middle_class) where this lock is 2542 * not the same as the safe lock, then the lock chain is 2543 * used to describe the problem. Otherwise we would need 2544 * to show a different CPU case for each link in the chain 2545 * from the safe_class lock to the unsafe_class lock. 2546 */ 2547 if (middle_class != unsafe_class) { 2548 printk("Chain exists of:\n "); 2549 __print_lock_name(NULL, safe_class); 2550 printk(KERN_CONT " --> "); 2551 __print_lock_name(NULL, middle_class); 2552 printk(KERN_CONT " --> "); 2553 __print_lock_name(NULL, unsafe_class); 2554 printk(KERN_CONT "\n\n"); 2555 } 2556 2557 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2558 printk(" CPU0 CPU1\n"); 2559 printk(" ---- ----\n"); 2560 printk(" lock("); 2561 __print_lock_name(NULL, unsafe_class); 2562 printk(KERN_CONT ");\n"); 2563 printk(" local_irq_disable();\n"); 2564 printk(" lock("); 2565 __print_lock_name(NULL, safe_class); 2566 printk(KERN_CONT ");\n"); 2567 printk(" lock("); 2568 __print_lock_name(NULL, middle_class); 2569 printk(KERN_CONT ");\n"); 2570 printk(" <Interrupt>\n"); 2571 printk(" lock("); 2572 __print_lock_name(NULL, safe_class); 2573 printk(KERN_CONT ");\n"); 2574 printk("\n *** DEADLOCK ***\n\n"); 2575 } 2576 2577 static void 2578 print_bad_irq_dependency(struct task_struct *curr, 2579 struct lock_list *prev_root, 2580 struct lock_list *next_root, 2581 struct lock_list *backwards_entry, 2582 struct lock_list *forwards_entry, 2583 struct held_lock *prev, 2584 struct held_lock *next, 2585 enum lock_usage_bit bit1, 2586 enum lock_usage_bit bit2, 2587 const char *irqclass) 2588 { 2589 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2590 return; 2591 2592 nbcon_cpu_emergency_enter(); 2593 2594 pr_warn("\n"); 2595 pr_warn("=====================================================\n"); 2596 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2597 irqclass, irqclass); 2598 print_kernel_ident(); 2599 pr_warn("-----------------------------------------------------\n"); 2600 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2601 curr->comm, task_pid_nr(curr), 2602 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2603 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2604 lockdep_hardirqs_enabled(), 2605 curr->softirqs_enabled); 2606 print_lock(next); 2607 2608 pr_warn("\nand this task is already holding:\n"); 2609 print_lock(prev); 2610 pr_warn("which would create a new lock dependency:\n"); 2611 print_lock_name(prev, hlock_class(prev)); 2612 pr_cont(" ->"); 2613 print_lock_name(next, hlock_class(next)); 2614 pr_cont("\n"); 2615 2616 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2617 irqclass); 2618 print_lock_name(NULL, backwards_entry->class); 2619 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2620 2621 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2622 2623 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2624 print_lock_name(NULL, forwards_entry->class); 2625 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2626 pr_warn("..."); 2627 2628 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2629 2630 pr_warn("\nother info that might help us debug this:\n\n"); 2631 print_irq_lock_scenario(backwards_entry, forwards_entry, 2632 hlock_class(prev), hlock_class(next)); 2633 2634 lockdep_print_held_locks(curr); 2635 2636 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2637 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2638 2639 pr_warn("\nthe dependencies between the lock to be acquired"); 2640 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2641 next_root->trace = save_trace(); 2642 if (!next_root->trace) 2643 goto out; 2644 print_shortest_lock_dependencies(forwards_entry, next_root); 2645 2646 pr_warn("\nstack backtrace:\n"); 2647 dump_stack(); 2648 out: 2649 nbcon_cpu_emergency_exit(); 2650 } 2651 2652 static const char *state_names[] = { 2653 #define LOCKDEP_STATE(__STATE) \ 2654 __stringify(__STATE), 2655 #include "lockdep_states.h" 2656 #undef LOCKDEP_STATE 2657 }; 2658 2659 static const char *state_rnames[] = { 2660 #define LOCKDEP_STATE(__STATE) \ 2661 __stringify(__STATE)"-READ", 2662 #include "lockdep_states.h" 2663 #undef LOCKDEP_STATE 2664 }; 2665 2666 static inline const char *state_name(enum lock_usage_bit bit) 2667 { 2668 if (bit & LOCK_USAGE_READ_MASK) 2669 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2670 else 2671 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2672 } 2673 2674 /* 2675 * The bit number is encoded like: 2676 * 2677 * bit0: 0 exclusive, 1 read lock 2678 * bit1: 0 used in irq, 1 irq enabled 2679 * bit2-n: state 2680 */ 2681 static int exclusive_bit(int new_bit) 2682 { 2683 int state = new_bit & LOCK_USAGE_STATE_MASK; 2684 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2685 2686 /* 2687 * keep state, bit flip the direction and strip read. 2688 */ 2689 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2690 } 2691 2692 /* 2693 * Observe that when given a bitmask where each bitnr is encoded as above, a 2694 * right shift of the mask transforms the individual bitnrs as -1 and 2695 * conversely, a left shift transforms into +1 for the individual bitnrs. 2696 * 2697 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2698 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2699 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2700 * 2701 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2702 * 2703 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2704 * all bits set) and recompose with bitnr1 flipped. 2705 */ 2706 static unsigned long invert_dir_mask(unsigned long mask) 2707 { 2708 unsigned long excl = 0; 2709 2710 /* Invert dir */ 2711 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2712 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2713 2714 return excl; 2715 } 2716 2717 /* 2718 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2719 * usage may cause deadlock too, for example: 2720 * 2721 * P1 P2 2722 * <irq disabled> 2723 * write_lock(l1); <irq enabled> 2724 * read_lock(l2); 2725 * write_lock(l2); 2726 * <in irq> 2727 * read_lock(l1); 2728 * 2729 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2730 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2731 * deadlock. 2732 * 2733 * In fact, all of the following cases may cause deadlocks: 2734 * 2735 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2736 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2737 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2738 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2739 * 2740 * As a result, to calculate the "exclusive mask", first we invert the 2741 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2742 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2743 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2744 */ 2745 static unsigned long exclusive_mask(unsigned long mask) 2746 { 2747 unsigned long excl = invert_dir_mask(mask); 2748 2749 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2750 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2751 2752 return excl; 2753 } 2754 2755 /* 2756 * Retrieve the _possible_ original mask to which @mask is 2757 * exclusive. Ie: this is the opposite of exclusive_mask(). 2758 * Note that 2 possible original bits can match an exclusive 2759 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2760 * cleared. So both are returned for each exclusive bit. 2761 */ 2762 static unsigned long original_mask(unsigned long mask) 2763 { 2764 unsigned long excl = invert_dir_mask(mask); 2765 2766 /* Include read in existing usages */ 2767 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2768 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2769 2770 return excl; 2771 } 2772 2773 /* 2774 * Find the first pair of bit match between an original 2775 * usage mask and an exclusive usage mask. 2776 */ 2777 static int find_exclusive_match(unsigned long mask, 2778 unsigned long excl_mask, 2779 enum lock_usage_bit *bitp, 2780 enum lock_usage_bit *excl_bitp) 2781 { 2782 int bit, excl, excl_read; 2783 2784 for_each_set_bit(bit, &mask, LOCK_USED) { 2785 /* 2786 * exclusive_bit() strips the read bit, however, 2787 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2788 * to search excl | LOCK_USAGE_READ_MASK as well. 2789 */ 2790 excl = exclusive_bit(bit); 2791 excl_read = excl | LOCK_USAGE_READ_MASK; 2792 if (excl_mask & lock_flag(excl)) { 2793 *bitp = bit; 2794 *excl_bitp = excl; 2795 return 0; 2796 } else if (excl_mask & lock_flag(excl_read)) { 2797 *bitp = bit; 2798 *excl_bitp = excl_read; 2799 return 0; 2800 } 2801 } 2802 return -1; 2803 } 2804 2805 /* 2806 * Prove that the new dependency does not connect a hardirq-safe(-read) 2807 * lock with a hardirq-unsafe lock - to achieve this we search 2808 * the backwards-subgraph starting at <prev>, and the 2809 * forwards-subgraph starting at <next>: 2810 */ 2811 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2812 struct held_lock *next) 2813 { 2814 unsigned long usage_mask = 0, forward_mask, backward_mask; 2815 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2816 struct lock_list *target_entry1; 2817 struct lock_list *target_entry; 2818 struct lock_list this, that; 2819 enum bfs_result ret; 2820 2821 /* 2822 * Step 1: gather all hard/soft IRQs usages backward in an 2823 * accumulated usage mask. 2824 */ 2825 bfs_init_rootb(&this, prev); 2826 2827 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2828 if (bfs_error(ret)) { 2829 print_bfs_bug(ret); 2830 return 0; 2831 } 2832 2833 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2834 if (!usage_mask) 2835 return 1; 2836 2837 /* 2838 * Step 2: find exclusive uses forward that match the previous 2839 * backward accumulated mask. 2840 */ 2841 forward_mask = exclusive_mask(usage_mask); 2842 2843 bfs_init_root(&that, next); 2844 2845 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2846 if (bfs_error(ret)) { 2847 print_bfs_bug(ret); 2848 return 0; 2849 } 2850 if (ret == BFS_RNOMATCH) 2851 return 1; 2852 2853 /* 2854 * Step 3: we found a bad match! Now retrieve a lock from the backward 2855 * list whose usage mask matches the exclusive usage mask from the 2856 * lock found on the forward list. 2857 * 2858 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2859 * the follow case: 2860 * 2861 * When trying to add A -> B to the graph, we find that there is a 2862 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2863 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2864 * invert bits of M's usage_mask, we will find another lock N that is 2865 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2866 * cause a inversion deadlock. 2867 */ 2868 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2869 2870 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2871 if (bfs_error(ret)) { 2872 print_bfs_bug(ret); 2873 return 0; 2874 } 2875 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2876 return 1; 2877 2878 /* 2879 * Step 4: narrow down to a pair of incompatible usage bits 2880 * and report it. 2881 */ 2882 ret = find_exclusive_match(target_entry->class->usage_mask, 2883 target_entry1->class->usage_mask, 2884 &backward_bit, &forward_bit); 2885 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2886 return 1; 2887 2888 print_bad_irq_dependency(curr, &this, &that, 2889 target_entry, target_entry1, 2890 prev, next, 2891 backward_bit, forward_bit, 2892 state_name(backward_bit)); 2893 2894 return 0; 2895 } 2896 2897 #else 2898 2899 static inline int check_irq_usage(struct task_struct *curr, 2900 struct held_lock *prev, struct held_lock *next) 2901 { 2902 return 1; 2903 } 2904 2905 static inline bool usage_skip(struct lock_list *entry, void *mask) 2906 { 2907 return false; 2908 } 2909 2910 #endif /* CONFIG_TRACE_IRQFLAGS */ 2911 2912 #ifdef CONFIG_LOCKDEP_SMALL 2913 /* 2914 * Check that the dependency graph starting at <src> can lead to 2915 * <target> or not. If it can, <src> -> <target> dependency is already 2916 * in the graph. 2917 * 2918 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2919 * any error appears in the bfs search. 2920 */ 2921 static noinline enum bfs_result 2922 check_redundant(struct held_lock *src, struct held_lock *target) 2923 { 2924 enum bfs_result ret; 2925 struct lock_list *target_entry; 2926 struct lock_list src_entry; 2927 2928 bfs_init_root(&src_entry, src); 2929 /* 2930 * Special setup for check_redundant(). 2931 * 2932 * To report redundant, we need to find a strong dependency path that 2933 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2934 * we need to let __bfs() only search for a path starting at a -(E*)->, 2935 * we achieve this by setting the initial node's ->only_xr to true in 2936 * that case. And if <prev> is S, we set initial ->only_xr to false 2937 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2938 */ 2939 src_entry.only_xr = src->read == 0; 2940 2941 debug_atomic_inc(nr_redundant_checks); 2942 2943 /* 2944 * Note: we skip local_lock() for redundant check, because as the 2945 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2946 * the same. 2947 */ 2948 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2949 2950 if (ret == BFS_RMATCH) 2951 debug_atomic_inc(nr_redundant); 2952 2953 return ret; 2954 } 2955 2956 #else 2957 2958 static inline enum bfs_result 2959 check_redundant(struct held_lock *src, struct held_lock *target) 2960 { 2961 return BFS_RNOMATCH; 2962 } 2963 2964 #endif 2965 2966 static void inc_chains(int irq_context) 2967 { 2968 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2969 nr_hardirq_chains++; 2970 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2971 nr_softirq_chains++; 2972 else 2973 nr_process_chains++; 2974 } 2975 2976 static void dec_chains(int irq_context) 2977 { 2978 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2979 nr_hardirq_chains--; 2980 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2981 nr_softirq_chains--; 2982 else 2983 nr_process_chains--; 2984 } 2985 2986 static void 2987 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2988 { 2989 struct lock_class *next = hlock_class(nxt); 2990 struct lock_class *prev = hlock_class(prv); 2991 2992 printk(" Possible unsafe locking scenario:\n\n"); 2993 printk(" CPU0\n"); 2994 printk(" ----\n"); 2995 printk(" lock("); 2996 __print_lock_name(prv, prev); 2997 printk(KERN_CONT ");\n"); 2998 printk(" lock("); 2999 __print_lock_name(nxt, next); 3000 printk(KERN_CONT ");\n"); 3001 printk("\n *** DEADLOCK ***\n\n"); 3002 printk(" May be due to missing lock nesting notation\n\n"); 3003 } 3004 3005 static void 3006 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 3007 struct held_lock *next) 3008 { 3009 struct lock_class *class = hlock_class(prev); 3010 3011 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3012 return; 3013 3014 nbcon_cpu_emergency_enter(); 3015 3016 pr_warn("\n"); 3017 pr_warn("============================================\n"); 3018 pr_warn("WARNING: possible recursive locking detected\n"); 3019 print_kernel_ident(); 3020 pr_warn("--------------------------------------------\n"); 3021 pr_warn("%s/%d is trying to acquire lock:\n", 3022 curr->comm, task_pid_nr(curr)); 3023 print_lock(next); 3024 pr_warn("\nbut task is already holding lock:\n"); 3025 print_lock(prev); 3026 3027 if (class->cmp_fn) { 3028 pr_warn("and the lock comparison function returns %i:\n", 3029 class->cmp_fn(prev->instance, next->instance)); 3030 } 3031 3032 pr_warn("\nother info that might help us debug this:\n"); 3033 print_deadlock_scenario(next, prev); 3034 lockdep_print_held_locks(curr); 3035 3036 pr_warn("\nstack backtrace:\n"); 3037 dump_stack(); 3038 3039 nbcon_cpu_emergency_exit(); 3040 } 3041 3042 /* 3043 * Check whether we are holding such a class already. 3044 * 3045 * (Note that this has to be done separately, because the graph cannot 3046 * detect such classes of deadlocks.) 3047 * 3048 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3049 * lock class is held but nest_lock is also held, i.e. we rely on the 3050 * nest_lock to avoid the deadlock. 3051 */ 3052 static int 3053 check_deadlock(struct task_struct *curr, struct held_lock *next) 3054 { 3055 struct lock_class *class; 3056 struct held_lock *prev; 3057 struct held_lock *nest = NULL; 3058 int i; 3059 3060 for (i = 0; i < curr->lockdep_depth; i++) { 3061 prev = curr->held_locks + i; 3062 3063 if (prev->instance == next->nest_lock) 3064 nest = prev; 3065 3066 if (hlock_class(prev) != hlock_class(next)) 3067 continue; 3068 3069 /* 3070 * Allow read-after-read recursion of the same 3071 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3072 */ 3073 if ((next->read == 2) && prev->read) 3074 continue; 3075 3076 class = hlock_class(prev); 3077 3078 if (class->cmp_fn && 3079 class->cmp_fn(prev->instance, next->instance) < 0) 3080 continue; 3081 3082 /* 3083 * We're holding the nest_lock, which serializes this lock's 3084 * nesting behaviour. 3085 */ 3086 if (nest) 3087 return 2; 3088 3089 print_deadlock_bug(curr, prev, next); 3090 return 0; 3091 } 3092 return 1; 3093 } 3094 3095 /* 3096 * There was a chain-cache miss, and we are about to add a new dependency 3097 * to a previous lock. We validate the following rules: 3098 * 3099 * - would the adding of the <prev> -> <next> dependency create a 3100 * circular dependency in the graph? [== circular deadlock] 3101 * 3102 * - does the new prev->next dependency connect any hardirq-safe lock 3103 * (in the full backwards-subgraph starting at <prev>) with any 3104 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3105 * <next>)? [== illegal lock inversion with hardirq contexts] 3106 * 3107 * - does the new prev->next dependency connect any softirq-safe lock 3108 * (in the full backwards-subgraph starting at <prev>) with any 3109 * softirq-unsafe lock (in the full forwards-subgraph starting at 3110 * <next>)? [== illegal lock inversion with softirq contexts] 3111 * 3112 * any of these scenarios could lead to a deadlock. 3113 * 3114 * Then if all the validations pass, we add the forwards and backwards 3115 * dependency. 3116 */ 3117 static int 3118 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3119 struct held_lock *next, u16 distance, 3120 struct lock_trace **const trace) 3121 { 3122 struct lock_list *entry; 3123 enum bfs_result ret; 3124 3125 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3126 /* 3127 * The warning statements below may trigger a use-after-free 3128 * of the class name. It is better to trigger a use-after free 3129 * and to have the class name most of the time instead of not 3130 * having the class name available. 3131 */ 3132 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3133 "Detected use-after-free of lock class %px/%s\n", 3134 hlock_class(prev), 3135 hlock_class(prev)->name); 3136 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3137 "Detected use-after-free of lock class %px/%s\n", 3138 hlock_class(next), 3139 hlock_class(next)->name); 3140 return 2; 3141 } 3142 3143 if (prev->class_idx == next->class_idx) { 3144 struct lock_class *class = hlock_class(prev); 3145 3146 if (class->cmp_fn && 3147 class->cmp_fn(prev->instance, next->instance) < 0) 3148 return 2; 3149 } 3150 3151 /* 3152 * Prove that the new <prev> -> <next> dependency would not 3153 * create a circular dependency in the graph. (We do this by 3154 * a breadth-first search into the graph starting at <next>, 3155 * and check whether we can reach <prev>.) 3156 * 3157 * The search is limited by the size of the circular queue (i.e., 3158 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3159 * in the graph whose neighbours are to be checked. 3160 */ 3161 ret = check_noncircular(next, prev, trace); 3162 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3163 return 0; 3164 3165 if (!check_irq_usage(curr, prev, next)) 3166 return 0; 3167 3168 /* 3169 * Is the <prev> -> <next> dependency already present? 3170 * 3171 * (this may occur even though this is a new chain: consider 3172 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3173 * chains - the second one will be new, but L1 already has 3174 * L2 added to its dependency list, due to the first chain.) 3175 */ 3176 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3177 if (entry->class == hlock_class(next)) { 3178 if (distance == 1) 3179 entry->distance = 1; 3180 entry->dep |= calc_dep(prev, next); 3181 3182 /* 3183 * Also, update the reverse dependency in @next's 3184 * ->locks_before list. 3185 * 3186 * Here we reuse @entry as the cursor, which is fine 3187 * because we won't go to the next iteration of the 3188 * outer loop: 3189 * 3190 * For normal cases, we return in the inner loop. 3191 * 3192 * If we fail to return, we have inconsistency, i.e. 3193 * <prev>::locks_after contains <next> while 3194 * <next>::locks_before doesn't contain <prev>. In 3195 * that case, we return after the inner and indicate 3196 * something is wrong. 3197 */ 3198 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3199 if (entry->class == hlock_class(prev)) { 3200 if (distance == 1) 3201 entry->distance = 1; 3202 entry->dep |= calc_depb(prev, next); 3203 return 1; 3204 } 3205 } 3206 3207 /* <prev> is not found in <next>::locks_before */ 3208 return 0; 3209 } 3210 } 3211 3212 /* 3213 * Is the <prev> -> <next> link redundant? 3214 */ 3215 ret = check_redundant(prev, next); 3216 if (bfs_error(ret)) 3217 return 0; 3218 else if (ret == BFS_RMATCH) 3219 return 2; 3220 3221 if (!*trace) { 3222 *trace = save_trace(); 3223 if (!*trace) 3224 return 0; 3225 } 3226 3227 /* 3228 * Ok, all validations passed, add the new lock 3229 * to the previous lock's dependency list: 3230 */ 3231 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3232 &hlock_class(prev)->locks_after, distance, 3233 calc_dep(prev, next), *trace); 3234 3235 if (!ret) 3236 return 0; 3237 3238 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3239 &hlock_class(next)->locks_before, distance, 3240 calc_depb(prev, next), *trace); 3241 if (!ret) 3242 return 0; 3243 3244 return 2; 3245 } 3246 3247 /* 3248 * Add the dependency to all directly-previous locks that are 'relevant'. 3249 * The ones that are relevant are (in increasing distance from curr): 3250 * all consecutive trylock entries and the final non-trylock entry - or 3251 * the end of this context's lock-chain - whichever comes first. 3252 */ 3253 static int 3254 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3255 { 3256 struct lock_trace *trace = NULL; 3257 int depth = curr->lockdep_depth; 3258 struct held_lock *hlock; 3259 3260 /* 3261 * Debugging checks. 3262 * 3263 * Depth must not be zero for a non-head lock: 3264 */ 3265 if (!depth) 3266 goto out_bug; 3267 /* 3268 * At least two relevant locks must exist for this 3269 * to be a head: 3270 */ 3271 if (curr->held_locks[depth].irq_context != 3272 curr->held_locks[depth-1].irq_context) 3273 goto out_bug; 3274 3275 for (;;) { 3276 u16 distance = curr->lockdep_depth - depth + 1; 3277 hlock = curr->held_locks + depth - 1; 3278 3279 if (hlock->check) { 3280 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3281 if (!ret) 3282 return 0; 3283 3284 /* 3285 * Stop after the first non-trylock entry, 3286 * as non-trylock entries have added their 3287 * own direct dependencies already, so this 3288 * lock is connected to them indirectly: 3289 */ 3290 if (!hlock->trylock) 3291 break; 3292 } 3293 3294 depth--; 3295 /* 3296 * End of lock-stack? 3297 */ 3298 if (!depth) 3299 break; 3300 /* 3301 * Stop the search if we cross into another context: 3302 */ 3303 if (curr->held_locks[depth].irq_context != 3304 curr->held_locks[depth-1].irq_context) 3305 break; 3306 } 3307 return 1; 3308 out_bug: 3309 if (!debug_locks_off_graph_unlock()) 3310 return 0; 3311 3312 /* 3313 * Clearly we all shouldn't be here, but since we made it we 3314 * can reliable say we messed up our state. See the above two 3315 * gotos for reasons why we could possibly end up here. 3316 */ 3317 WARN_ON(1); 3318 3319 return 0; 3320 } 3321 3322 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3323 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3324 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3325 unsigned long nr_zapped_lock_chains; 3326 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3327 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3328 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3329 3330 /* 3331 * The first 2 chain_hlocks entries in the chain block in the bucket 3332 * list contains the following meta data: 3333 * 3334 * entry[0]: 3335 * Bit 15 - always set to 1 (it is not a class index) 3336 * Bits 0-14 - upper 15 bits of the next block index 3337 * entry[1] - lower 16 bits of next block index 3338 * 3339 * A next block index of all 1 bits means it is the end of the list. 3340 * 3341 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3342 * the chain block size: 3343 * 3344 * entry[2] - upper 16 bits of the chain block size 3345 * entry[3] - lower 16 bits of the chain block size 3346 */ 3347 #define MAX_CHAIN_BUCKETS 16 3348 #define CHAIN_BLK_FLAG (1U << 15) 3349 #define CHAIN_BLK_LIST_END 0xFFFFU 3350 3351 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3352 3353 static inline int size_to_bucket(int size) 3354 { 3355 if (size > MAX_CHAIN_BUCKETS) 3356 return 0; 3357 3358 return size - 1; 3359 } 3360 3361 /* 3362 * Iterate all the chain blocks in a bucket. 3363 */ 3364 #define for_each_chain_block(bucket, prev, curr) \ 3365 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3366 (curr) >= 0; \ 3367 (prev) = (curr), (curr) = chain_block_next(curr)) 3368 3369 /* 3370 * next block or -1 3371 */ 3372 static inline int chain_block_next(int offset) 3373 { 3374 int next = chain_hlocks[offset]; 3375 3376 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3377 3378 if (next == CHAIN_BLK_LIST_END) 3379 return -1; 3380 3381 next &= ~CHAIN_BLK_FLAG; 3382 next <<= 16; 3383 next |= chain_hlocks[offset + 1]; 3384 3385 return next; 3386 } 3387 3388 /* 3389 * bucket-0 only 3390 */ 3391 static inline int chain_block_size(int offset) 3392 { 3393 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3394 } 3395 3396 static inline void init_chain_block(int offset, int next, int bucket, int size) 3397 { 3398 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3399 chain_hlocks[offset + 1] = (u16)next; 3400 3401 if (size && !bucket) { 3402 chain_hlocks[offset + 2] = size >> 16; 3403 chain_hlocks[offset + 3] = (u16)size; 3404 } 3405 } 3406 3407 static inline void add_chain_block(int offset, int size) 3408 { 3409 int bucket = size_to_bucket(size); 3410 int next = chain_block_buckets[bucket]; 3411 int prev, curr; 3412 3413 if (unlikely(size < 2)) { 3414 /* 3415 * We can't store single entries on the freelist. Leak them. 3416 * 3417 * One possible way out would be to uniquely mark them, other 3418 * than with CHAIN_BLK_FLAG, such that we can recover them when 3419 * the block before it is re-added. 3420 */ 3421 if (size) 3422 nr_lost_chain_hlocks++; 3423 return; 3424 } 3425 3426 nr_free_chain_hlocks += size; 3427 if (!bucket) { 3428 nr_large_chain_blocks++; 3429 3430 /* 3431 * Variable sized, sort large to small. 3432 */ 3433 for_each_chain_block(0, prev, curr) { 3434 if (size >= chain_block_size(curr)) 3435 break; 3436 } 3437 init_chain_block(offset, curr, 0, size); 3438 if (prev < 0) 3439 chain_block_buckets[0] = offset; 3440 else 3441 init_chain_block(prev, offset, 0, 0); 3442 return; 3443 } 3444 /* 3445 * Fixed size, add to head. 3446 */ 3447 init_chain_block(offset, next, bucket, size); 3448 chain_block_buckets[bucket] = offset; 3449 } 3450 3451 /* 3452 * Only the first block in the list can be deleted. 3453 * 3454 * For the variable size bucket[0], the first block (the largest one) is 3455 * returned, broken up and put back into the pool. So if a chain block of 3456 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3457 * queued up after the primordial chain block and never be used until the 3458 * hlock entries in the primordial chain block is almost used up. That 3459 * causes fragmentation and reduce allocation efficiency. That can be 3460 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3461 */ 3462 static inline void del_chain_block(int bucket, int size, int next) 3463 { 3464 nr_free_chain_hlocks -= size; 3465 chain_block_buckets[bucket] = next; 3466 3467 if (!bucket) 3468 nr_large_chain_blocks--; 3469 } 3470 3471 static void init_chain_block_buckets(void) 3472 { 3473 int i; 3474 3475 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3476 chain_block_buckets[i] = -1; 3477 3478 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3479 } 3480 3481 /* 3482 * Return offset of a chain block of the right size or -1 if not found. 3483 * 3484 * Fairly simple worst-fit allocator with the addition of a number of size 3485 * specific free lists. 3486 */ 3487 static int alloc_chain_hlocks(int req) 3488 { 3489 int bucket, curr, size; 3490 3491 /* 3492 * We rely on the MSB to act as an escape bit to denote freelist 3493 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3494 */ 3495 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3496 3497 init_data_structures_once(); 3498 3499 if (nr_free_chain_hlocks < req) 3500 return -1; 3501 3502 /* 3503 * We require a minimum of 2 (u16) entries to encode a freelist 3504 * 'pointer'. 3505 */ 3506 req = max(req, 2); 3507 bucket = size_to_bucket(req); 3508 curr = chain_block_buckets[bucket]; 3509 3510 if (bucket) { 3511 if (curr >= 0) { 3512 del_chain_block(bucket, req, chain_block_next(curr)); 3513 return curr; 3514 } 3515 /* Try bucket 0 */ 3516 curr = chain_block_buckets[0]; 3517 } 3518 3519 /* 3520 * The variable sized freelist is sorted by size; the first entry is 3521 * the largest. Use it if it fits. 3522 */ 3523 if (curr >= 0) { 3524 size = chain_block_size(curr); 3525 if (likely(size >= req)) { 3526 del_chain_block(0, size, chain_block_next(curr)); 3527 if (size > req) 3528 add_chain_block(curr + req, size - req); 3529 return curr; 3530 } 3531 } 3532 3533 /* 3534 * Last resort, split a block in a larger sized bucket. 3535 */ 3536 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3537 bucket = size_to_bucket(size); 3538 curr = chain_block_buckets[bucket]; 3539 if (curr < 0) 3540 continue; 3541 3542 del_chain_block(bucket, size, chain_block_next(curr)); 3543 add_chain_block(curr + req, size - req); 3544 return curr; 3545 } 3546 3547 return -1; 3548 } 3549 3550 static inline void free_chain_hlocks(int base, int size) 3551 { 3552 add_chain_block(base, max(size, 2)); 3553 } 3554 3555 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3556 { 3557 u16 chain_hlock = chain_hlocks[chain->base + i]; 3558 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3559 3560 return lock_classes + class_idx; 3561 } 3562 3563 /* 3564 * Returns the index of the first held_lock of the current chain 3565 */ 3566 static inline int get_first_held_lock(struct task_struct *curr, 3567 struct held_lock *hlock) 3568 { 3569 int i; 3570 struct held_lock *hlock_curr; 3571 3572 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3573 hlock_curr = curr->held_locks + i; 3574 if (hlock_curr->irq_context != hlock->irq_context) 3575 break; 3576 3577 } 3578 3579 return ++i; 3580 } 3581 3582 #ifdef CONFIG_DEBUG_LOCKDEP 3583 /* 3584 * Returns the next chain_key iteration 3585 */ 3586 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3587 { 3588 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3589 3590 printk(" hlock_id:%d -> chain_key:%016Lx", 3591 (unsigned int)hlock_id, 3592 (unsigned long long)new_chain_key); 3593 return new_chain_key; 3594 } 3595 3596 static void 3597 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3598 { 3599 struct held_lock *hlock; 3600 u64 chain_key = INITIAL_CHAIN_KEY; 3601 int depth = curr->lockdep_depth; 3602 int i = get_first_held_lock(curr, hlock_next); 3603 3604 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3605 hlock_next->irq_context); 3606 for (; i < depth; i++) { 3607 hlock = curr->held_locks + i; 3608 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3609 3610 print_lock(hlock); 3611 } 3612 3613 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3614 print_lock(hlock_next); 3615 } 3616 3617 static void print_chain_keys_chain(struct lock_chain *chain) 3618 { 3619 int i; 3620 u64 chain_key = INITIAL_CHAIN_KEY; 3621 u16 hlock_id; 3622 3623 printk("depth: %u\n", chain->depth); 3624 for (i = 0; i < chain->depth; i++) { 3625 hlock_id = chain_hlocks[chain->base + i]; 3626 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3627 3628 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3629 printk("\n"); 3630 } 3631 } 3632 3633 static void print_collision(struct task_struct *curr, 3634 struct held_lock *hlock_next, 3635 struct lock_chain *chain) 3636 { 3637 nbcon_cpu_emergency_enter(); 3638 3639 pr_warn("\n"); 3640 pr_warn("============================\n"); 3641 pr_warn("WARNING: chain_key collision\n"); 3642 print_kernel_ident(); 3643 pr_warn("----------------------------\n"); 3644 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3645 pr_warn("Hash chain already cached but the contents don't match!\n"); 3646 3647 pr_warn("Held locks:"); 3648 print_chain_keys_held_locks(curr, hlock_next); 3649 3650 pr_warn("Locks in cached chain:"); 3651 print_chain_keys_chain(chain); 3652 3653 pr_warn("\nstack backtrace:\n"); 3654 dump_stack(); 3655 3656 nbcon_cpu_emergency_exit(); 3657 } 3658 #endif 3659 3660 /* 3661 * Checks whether the chain and the current held locks are consistent 3662 * in depth and also in content. If they are not it most likely means 3663 * that there was a collision during the calculation of the chain_key. 3664 * Returns: 0 not passed, 1 passed 3665 */ 3666 static int check_no_collision(struct task_struct *curr, 3667 struct held_lock *hlock, 3668 struct lock_chain *chain) 3669 { 3670 #ifdef CONFIG_DEBUG_LOCKDEP 3671 int i, j, id; 3672 3673 i = get_first_held_lock(curr, hlock); 3674 3675 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3676 print_collision(curr, hlock, chain); 3677 return 0; 3678 } 3679 3680 for (j = 0; j < chain->depth - 1; j++, i++) { 3681 id = hlock_id(&curr->held_locks[i]); 3682 3683 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3684 print_collision(curr, hlock, chain); 3685 return 0; 3686 } 3687 } 3688 #endif 3689 return 1; 3690 } 3691 3692 /* 3693 * Given an index that is >= -1, return the index of the next lock chain. 3694 * Return -2 if there is no next lock chain. 3695 */ 3696 long lockdep_next_lockchain(long i) 3697 { 3698 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3699 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3700 } 3701 3702 unsigned long lock_chain_count(void) 3703 { 3704 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3705 } 3706 3707 /* Must be called with the graph lock held. */ 3708 static struct lock_chain *alloc_lock_chain(void) 3709 { 3710 int idx = find_first_zero_bit(lock_chains_in_use, 3711 ARRAY_SIZE(lock_chains)); 3712 3713 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3714 return NULL; 3715 __set_bit(idx, lock_chains_in_use); 3716 return lock_chains + idx; 3717 } 3718 3719 /* 3720 * Adds a dependency chain into chain hashtable. And must be called with 3721 * graph_lock held. 3722 * 3723 * Return 0 if fail, and graph_lock is released. 3724 * Return 1 if succeed, with graph_lock held. 3725 */ 3726 static inline int add_chain_cache(struct task_struct *curr, 3727 struct held_lock *hlock, 3728 u64 chain_key) 3729 { 3730 struct hlist_head *hash_head = chainhashentry(chain_key); 3731 struct lock_chain *chain; 3732 int i, j; 3733 3734 /* 3735 * The caller must hold the graph lock, ensure we've got IRQs 3736 * disabled to make this an IRQ-safe lock.. for recursion reasons 3737 * lockdep won't complain about its own locking errors. 3738 */ 3739 if (lockdep_assert_locked()) 3740 return 0; 3741 3742 chain = alloc_lock_chain(); 3743 if (!chain) { 3744 if (!debug_locks_off_graph_unlock()) 3745 return 0; 3746 3747 nbcon_cpu_emergency_enter(); 3748 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3749 dump_stack(); 3750 nbcon_cpu_emergency_exit(); 3751 return 0; 3752 } 3753 chain->chain_key = chain_key; 3754 chain->irq_context = hlock->irq_context; 3755 i = get_first_held_lock(curr, hlock); 3756 chain->depth = curr->lockdep_depth + 1 - i; 3757 3758 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3759 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3760 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3761 3762 j = alloc_chain_hlocks(chain->depth); 3763 if (j < 0) { 3764 if (!debug_locks_off_graph_unlock()) 3765 return 0; 3766 3767 nbcon_cpu_emergency_enter(); 3768 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3769 dump_stack(); 3770 nbcon_cpu_emergency_exit(); 3771 return 0; 3772 } 3773 3774 chain->base = j; 3775 for (j = 0; j < chain->depth - 1; j++, i++) { 3776 int lock_id = hlock_id(curr->held_locks + i); 3777 3778 chain_hlocks[chain->base + j] = lock_id; 3779 } 3780 chain_hlocks[chain->base + j] = hlock_id(hlock); 3781 hlist_add_head_rcu(&chain->entry, hash_head); 3782 debug_atomic_inc(chain_lookup_misses); 3783 inc_chains(chain->irq_context); 3784 3785 return 1; 3786 } 3787 3788 /* 3789 * Look up a dependency chain. Must be called with either the graph lock or 3790 * the RCU read lock held. 3791 */ 3792 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3793 { 3794 struct hlist_head *hash_head = chainhashentry(chain_key); 3795 struct lock_chain *chain; 3796 3797 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3798 if (READ_ONCE(chain->chain_key) == chain_key) { 3799 debug_atomic_inc(chain_lookup_hits); 3800 return chain; 3801 } 3802 } 3803 return NULL; 3804 } 3805 3806 /* 3807 * If the key is not present yet in dependency chain cache then 3808 * add it and return 1 - in this case the new dependency chain is 3809 * validated. If the key is already hashed, return 0. 3810 * (On return with 1 graph_lock is held.) 3811 */ 3812 static inline int lookup_chain_cache_add(struct task_struct *curr, 3813 struct held_lock *hlock, 3814 u64 chain_key) 3815 { 3816 struct lock_class *class = hlock_class(hlock); 3817 struct lock_chain *chain = lookup_chain_cache(chain_key); 3818 3819 if (chain) { 3820 cache_hit: 3821 if (!check_no_collision(curr, hlock, chain)) 3822 return 0; 3823 3824 if (very_verbose(class)) { 3825 printk("\nhash chain already cached, key: " 3826 "%016Lx tail class: [%px] %s\n", 3827 (unsigned long long)chain_key, 3828 class->key, class->name); 3829 } 3830 3831 return 0; 3832 } 3833 3834 if (very_verbose(class)) { 3835 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3836 (unsigned long long)chain_key, class->key, class->name); 3837 } 3838 3839 if (!graph_lock()) 3840 return 0; 3841 3842 /* 3843 * We have to walk the chain again locked - to avoid duplicates: 3844 */ 3845 chain = lookup_chain_cache(chain_key); 3846 if (chain) { 3847 graph_unlock(); 3848 goto cache_hit; 3849 } 3850 3851 if (!add_chain_cache(curr, hlock, chain_key)) 3852 return 0; 3853 3854 return 1; 3855 } 3856 3857 static int validate_chain(struct task_struct *curr, 3858 struct held_lock *hlock, 3859 int chain_head, u64 chain_key) 3860 { 3861 /* 3862 * Trylock needs to maintain the stack of held locks, but it 3863 * does not add new dependencies, because trylock can be done 3864 * in any order. 3865 * 3866 * We look up the chain_key and do the O(N^2) check and update of 3867 * the dependencies only if this is a new dependency chain. 3868 * (If lookup_chain_cache_add() return with 1 it acquires 3869 * graph_lock for us) 3870 */ 3871 if (!hlock->trylock && hlock->check && 3872 lookup_chain_cache_add(curr, hlock, chain_key)) { 3873 /* 3874 * Check whether last held lock: 3875 * 3876 * - is irq-safe, if this lock is irq-unsafe 3877 * - is softirq-safe, if this lock is hardirq-unsafe 3878 * 3879 * And check whether the new lock's dependency graph 3880 * could lead back to the previous lock: 3881 * 3882 * - within the current held-lock stack 3883 * - across our accumulated lock dependency records 3884 * 3885 * any of these scenarios could lead to a deadlock. 3886 */ 3887 /* 3888 * The simple case: does the current hold the same lock 3889 * already? 3890 */ 3891 int ret = check_deadlock(curr, hlock); 3892 3893 if (!ret) 3894 return 0; 3895 /* 3896 * Add dependency only if this lock is not the head 3897 * of the chain, and if the new lock introduces no more 3898 * lock dependency (because we already hold a lock with the 3899 * same lock class) nor deadlock (because the nest_lock 3900 * serializes nesting locks), see the comments for 3901 * check_deadlock(). 3902 */ 3903 if (!chain_head && ret != 2) { 3904 if (!check_prevs_add(curr, hlock)) 3905 return 0; 3906 } 3907 3908 graph_unlock(); 3909 } else { 3910 /* after lookup_chain_cache_add(): */ 3911 if (unlikely(!debug_locks)) 3912 return 0; 3913 } 3914 3915 return 1; 3916 } 3917 #else 3918 static inline int validate_chain(struct task_struct *curr, 3919 struct held_lock *hlock, 3920 int chain_head, u64 chain_key) 3921 { 3922 return 1; 3923 } 3924 3925 static void init_chain_block_buckets(void) { } 3926 #endif /* CONFIG_PROVE_LOCKING */ 3927 3928 /* 3929 * We are building curr_chain_key incrementally, so double-check 3930 * it from scratch, to make sure that it's done correctly: 3931 */ 3932 static void check_chain_key(struct task_struct *curr) 3933 { 3934 #ifdef CONFIG_DEBUG_LOCKDEP 3935 struct held_lock *hlock, *prev_hlock = NULL; 3936 unsigned int i; 3937 u64 chain_key = INITIAL_CHAIN_KEY; 3938 3939 for (i = 0; i < curr->lockdep_depth; i++) { 3940 hlock = curr->held_locks + i; 3941 if (chain_key != hlock->prev_chain_key) { 3942 debug_locks_off(); 3943 /* 3944 * We got mighty confused, our chain keys don't match 3945 * with what we expect, someone trample on our task state? 3946 */ 3947 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3948 curr->lockdep_depth, i, 3949 (unsigned long long)chain_key, 3950 (unsigned long long)hlock->prev_chain_key); 3951 return; 3952 } 3953 3954 /* 3955 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3956 * it registered lock class index? 3957 */ 3958 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3959 return; 3960 3961 if (prev_hlock && (prev_hlock->irq_context != 3962 hlock->irq_context)) 3963 chain_key = INITIAL_CHAIN_KEY; 3964 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3965 prev_hlock = hlock; 3966 } 3967 if (chain_key != curr->curr_chain_key) { 3968 debug_locks_off(); 3969 /* 3970 * More smoking hash instead of calculating it, damn see these 3971 * numbers float.. I bet that a pink elephant stepped on my memory. 3972 */ 3973 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3974 curr->lockdep_depth, i, 3975 (unsigned long long)chain_key, 3976 (unsigned long long)curr->curr_chain_key); 3977 } 3978 #endif 3979 } 3980 3981 #ifdef CONFIG_PROVE_LOCKING 3982 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3983 enum lock_usage_bit new_bit); 3984 3985 static void print_usage_bug_scenario(struct held_lock *lock) 3986 { 3987 struct lock_class *class = hlock_class(lock); 3988 3989 printk(" Possible unsafe locking scenario:\n\n"); 3990 printk(" CPU0\n"); 3991 printk(" ----\n"); 3992 printk(" lock("); 3993 __print_lock_name(lock, class); 3994 printk(KERN_CONT ");\n"); 3995 printk(" <Interrupt>\n"); 3996 printk(" lock("); 3997 __print_lock_name(lock, class); 3998 printk(KERN_CONT ");\n"); 3999 printk("\n *** DEADLOCK ***\n\n"); 4000 } 4001 4002 static void 4003 print_usage_bug(struct task_struct *curr, struct held_lock *this, 4004 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 4005 { 4006 if (!debug_locks_off() || debug_locks_silent) 4007 return; 4008 4009 nbcon_cpu_emergency_enter(); 4010 4011 pr_warn("\n"); 4012 pr_warn("================================\n"); 4013 pr_warn("WARNING: inconsistent lock state\n"); 4014 print_kernel_ident(); 4015 pr_warn("--------------------------------\n"); 4016 4017 pr_warn("inconsistent {%s} -> {%s} usage.\n", 4018 usage_str[prev_bit], usage_str[new_bit]); 4019 4020 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 4021 curr->comm, task_pid_nr(curr), 4022 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 4023 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 4024 lockdep_hardirqs_enabled(), 4025 lockdep_softirqs_enabled(curr)); 4026 print_lock(this); 4027 4028 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 4029 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 4030 4031 print_irqtrace_events(curr); 4032 pr_warn("\nother info that might help us debug this:\n"); 4033 print_usage_bug_scenario(this); 4034 4035 lockdep_print_held_locks(curr); 4036 4037 pr_warn("\nstack backtrace:\n"); 4038 dump_stack(); 4039 4040 nbcon_cpu_emergency_exit(); 4041 } 4042 4043 /* 4044 * Print out an error if an invalid bit is set: 4045 */ 4046 static inline int 4047 valid_state(struct task_struct *curr, struct held_lock *this, 4048 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4049 { 4050 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4051 graph_unlock(); 4052 print_usage_bug(curr, this, bad_bit, new_bit); 4053 return 0; 4054 } 4055 return 1; 4056 } 4057 4058 4059 /* 4060 * print irq inversion bug: 4061 */ 4062 static void 4063 print_irq_inversion_bug(struct task_struct *curr, 4064 struct lock_list *root, struct lock_list *other, 4065 struct held_lock *this, int forwards, 4066 const char *irqclass) 4067 { 4068 struct lock_list *entry = other; 4069 struct lock_list *middle = NULL; 4070 int depth; 4071 4072 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4073 return; 4074 4075 nbcon_cpu_emergency_enter(); 4076 4077 pr_warn("\n"); 4078 pr_warn("========================================================\n"); 4079 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4080 print_kernel_ident(); 4081 pr_warn("--------------------------------------------------------\n"); 4082 pr_warn("%s/%d just changed the state of lock:\n", 4083 curr->comm, task_pid_nr(curr)); 4084 print_lock(this); 4085 if (forwards) 4086 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4087 else 4088 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4089 print_lock_name(NULL, other->class); 4090 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4091 4092 pr_warn("\nother info that might help us debug this:\n"); 4093 4094 /* Find a middle lock (if one exists) */ 4095 depth = get_lock_depth(other); 4096 do { 4097 if (depth == 0 && (entry != root)) { 4098 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4099 break; 4100 } 4101 middle = entry; 4102 entry = get_lock_parent(entry); 4103 depth--; 4104 } while (entry && entry != root && (depth >= 0)); 4105 if (forwards) 4106 print_irq_lock_scenario(root, other, 4107 middle ? middle->class : root->class, other->class); 4108 else 4109 print_irq_lock_scenario(other, root, 4110 middle ? middle->class : other->class, root->class); 4111 4112 lockdep_print_held_locks(curr); 4113 4114 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4115 root->trace = save_trace(); 4116 if (!root->trace) 4117 goto out; 4118 print_shortest_lock_dependencies(other, root); 4119 4120 pr_warn("\nstack backtrace:\n"); 4121 dump_stack(); 4122 out: 4123 nbcon_cpu_emergency_exit(); 4124 } 4125 4126 /* 4127 * Prove that in the forwards-direction subgraph starting at <this> 4128 * there is no lock matching <mask>: 4129 */ 4130 static int 4131 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4132 enum lock_usage_bit bit) 4133 { 4134 enum bfs_result ret; 4135 struct lock_list root; 4136 struct lock_list *target_entry; 4137 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4138 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4139 4140 bfs_init_root(&root, this); 4141 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4142 if (bfs_error(ret)) { 4143 print_bfs_bug(ret); 4144 return 0; 4145 } 4146 if (ret == BFS_RNOMATCH) 4147 return 1; 4148 4149 /* Check whether write or read usage is the match */ 4150 if (target_entry->class->usage_mask & lock_flag(bit)) { 4151 print_irq_inversion_bug(curr, &root, target_entry, 4152 this, 1, state_name(bit)); 4153 } else { 4154 print_irq_inversion_bug(curr, &root, target_entry, 4155 this, 1, state_name(read_bit)); 4156 } 4157 4158 return 0; 4159 } 4160 4161 /* 4162 * Prove that in the backwards-direction subgraph starting at <this> 4163 * there is no lock matching <mask>: 4164 */ 4165 static int 4166 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4167 enum lock_usage_bit bit) 4168 { 4169 enum bfs_result ret; 4170 struct lock_list root; 4171 struct lock_list *target_entry; 4172 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4173 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4174 4175 bfs_init_rootb(&root, this); 4176 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4177 if (bfs_error(ret)) { 4178 print_bfs_bug(ret); 4179 return 0; 4180 } 4181 if (ret == BFS_RNOMATCH) 4182 return 1; 4183 4184 /* Check whether write or read usage is the match */ 4185 if (target_entry->class->usage_mask & lock_flag(bit)) { 4186 print_irq_inversion_bug(curr, &root, target_entry, 4187 this, 0, state_name(bit)); 4188 } else { 4189 print_irq_inversion_bug(curr, &root, target_entry, 4190 this, 0, state_name(read_bit)); 4191 } 4192 4193 return 0; 4194 } 4195 4196 void print_irqtrace_events(struct task_struct *curr) 4197 { 4198 const struct irqtrace_events *trace = &curr->irqtrace; 4199 4200 nbcon_cpu_emergency_enter(); 4201 4202 printk("irq event stamp: %u\n", trace->irq_events); 4203 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4204 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4205 (void *)trace->hardirq_enable_ip); 4206 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4207 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4208 (void *)trace->hardirq_disable_ip); 4209 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4210 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4211 (void *)trace->softirq_enable_ip); 4212 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4213 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4214 (void *)trace->softirq_disable_ip); 4215 4216 nbcon_cpu_emergency_exit(); 4217 } 4218 4219 static int HARDIRQ_verbose(struct lock_class *class) 4220 { 4221 #if HARDIRQ_VERBOSE 4222 return class_filter(class); 4223 #endif 4224 return 0; 4225 } 4226 4227 static int SOFTIRQ_verbose(struct lock_class *class) 4228 { 4229 #if SOFTIRQ_VERBOSE 4230 return class_filter(class); 4231 #endif 4232 return 0; 4233 } 4234 4235 static int (*state_verbose_f[])(struct lock_class *class) = { 4236 #define LOCKDEP_STATE(__STATE) \ 4237 __STATE##_verbose, 4238 #include "lockdep_states.h" 4239 #undef LOCKDEP_STATE 4240 }; 4241 4242 static inline int state_verbose(enum lock_usage_bit bit, 4243 struct lock_class *class) 4244 { 4245 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4246 } 4247 4248 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4249 enum lock_usage_bit bit, const char *name); 4250 4251 static int 4252 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4253 enum lock_usage_bit new_bit) 4254 { 4255 int excl_bit = exclusive_bit(new_bit); 4256 int read = new_bit & LOCK_USAGE_READ_MASK; 4257 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4258 4259 /* 4260 * Validate that this particular lock does not have conflicting 4261 * usage states. 4262 */ 4263 if (!valid_state(curr, this, new_bit, excl_bit)) 4264 return 0; 4265 4266 /* 4267 * Check for read in write conflicts 4268 */ 4269 if (!read && !valid_state(curr, this, new_bit, 4270 excl_bit + LOCK_USAGE_READ_MASK)) 4271 return 0; 4272 4273 4274 /* 4275 * Validate that the lock dependencies don't have conflicting usage 4276 * states. 4277 */ 4278 if (dir) { 4279 /* 4280 * mark ENABLED has to look backwards -- to ensure no dependee 4281 * has USED_IN state, which, again, would allow recursion deadlocks. 4282 */ 4283 if (!check_usage_backwards(curr, this, excl_bit)) 4284 return 0; 4285 } else { 4286 /* 4287 * mark USED_IN has to look forwards -- to ensure no dependency 4288 * has ENABLED state, which would allow recursion deadlocks. 4289 */ 4290 if (!check_usage_forwards(curr, this, excl_bit)) 4291 return 0; 4292 } 4293 4294 if (state_verbose(new_bit, hlock_class(this))) 4295 return 2; 4296 4297 return 1; 4298 } 4299 4300 /* 4301 * Mark all held locks with a usage bit: 4302 */ 4303 static int 4304 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4305 { 4306 struct held_lock *hlock; 4307 int i; 4308 4309 for (i = 0; i < curr->lockdep_depth; i++) { 4310 enum lock_usage_bit hlock_bit = base_bit; 4311 hlock = curr->held_locks + i; 4312 4313 if (hlock->read) 4314 hlock_bit += LOCK_USAGE_READ_MASK; 4315 4316 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4317 4318 if (!hlock->check) 4319 continue; 4320 4321 if (!mark_lock(curr, hlock, hlock_bit)) 4322 return 0; 4323 } 4324 4325 return 1; 4326 } 4327 4328 /* 4329 * Hardirqs will be enabled: 4330 */ 4331 static void __trace_hardirqs_on_caller(void) 4332 { 4333 struct task_struct *curr = current; 4334 4335 /* 4336 * We are going to turn hardirqs on, so set the 4337 * usage bit for all held locks: 4338 */ 4339 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4340 return; 4341 /* 4342 * If we have softirqs enabled, then set the usage 4343 * bit for all held locks. (disabled hardirqs prevented 4344 * this bit from being set before) 4345 */ 4346 if (curr->softirqs_enabled) 4347 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4348 } 4349 4350 /** 4351 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4352 * 4353 * Invoked before a possible transition to RCU idle from exit to user or 4354 * guest mode. This ensures that all RCU operations are done before RCU 4355 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4356 * invoked to set the final state. 4357 */ 4358 void lockdep_hardirqs_on_prepare(void) 4359 { 4360 if (unlikely(!debug_locks)) 4361 return; 4362 4363 /* 4364 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4365 */ 4366 if (unlikely(in_nmi())) 4367 return; 4368 4369 if (unlikely(this_cpu_read(lockdep_recursion))) 4370 return; 4371 4372 if (unlikely(lockdep_hardirqs_enabled())) { 4373 /* 4374 * Neither irq nor preemption are disabled here 4375 * so this is racy by nature but losing one hit 4376 * in a stat is not a big deal. 4377 */ 4378 __debug_atomic_inc(redundant_hardirqs_on); 4379 return; 4380 } 4381 4382 /* 4383 * We're enabling irqs and according to our state above irqs weren't 4384 * already enabled, yet we find the hardware thinks they are in fact 4385 * enabled.. someone messed up their IRQ state tracing. 4386 */ 4387 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4388 return; 4389 4390 /* 4391 * See the fine text that goes along with this variable definition. 4392 */ 4393 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4394 return; 4395 4396 /* 4397 * Can't allow enabling interrupts while in an interrupt handler, 4398 * that's general bad form and such. Recursion, limited stack etc.. 4399 */ 4400 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4401 return; 4402 4403 current->hardirq_chain_key = current->curr_chain_key; 4404 4405 lockdep_recursion_inc(); 4406 __trace_hardirqs_on_caller(); 4407 lockdep_recursion_finish(); 4408 } 4409 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4410 4411 void noinstr lockdep_hardirqs_on(unsigned long ip) 4412 { 4413 struct irqtrace_events *trace = ¤t->irqtrace; 4414 4415 if (unlikely(!debug_locks)) 4416 return; 4417 4418 /* 4419 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4420 * tracking state and hardware state are out of sync. 4421 * 4422 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4423 * and not rely on hardware state like normal interrupts. 4424 */ 4425 if (unlikely(in_nmi())) { 4426 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4427 return; 4428 4429 /* 4430 * Skip: 4431 * - recursion check, because NMI can hit lockdep; 4432 * - hardware state check, because above; 4433 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4434 */ 4435 goto skip_checks; 4436 } 4437 4438 if (unlikely(this_cpu_read(lockdep_recursion))) 4439 return; 4440 4441 if (lockdep_hardirqs_enabled()) { 4442 /* 4443 * Neither irq nor preemption are disabled here 4444 * so this is racy by nature but losing one hit 4445 * in a stat is not a big deal. 4446 */ 4447 __debug_atomic_inc(redundant_hardirqs_on); 4448 return; 4449 } 4450 4451 /* 4452 * We're enabling irqs and according to our state above irqs weren't 4453 * already enabled, yet we find the hardware thinks they are in fact 4454 * enabled.. someone messed up their IRQ state tracing. 4455 */ 4456 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4457 return; 4458 4459 /* 4460 * Ensure the lock stack remained unchanged between 4461 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4462 */ 4463 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4464 current->curr_chain_key); 4465 4466 skip_checks: 4467 /* we'll do an OFF -> ON transition: */ 4468 __this_cpu_write(hardirqs_enabled, 1); 4469 trace->hardirq_enable_ip = ip; 4470 trace->hardirq_enable_event = ++trace->irq_events; 4471 debug_atomic_inc(hardirqs_on_events); 4472 } 4473 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4474 4475 /* 4476 * Hardirqs were disabled: 4477 */ 4478 void noinstr lockdep_hardirqs_off(unsigned long ip) 4479 { 4480 if (unlikely(!debug_locks)) 4481 return; 4482 4483 /* 4484 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4485 * they will restore the software state. This ensures the software 4486 * state is consistent inside NMIs as well. 4487 */ 4488 if (in_nmi()) { 4489 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4490 return; 4491 } else if (__this_cpu_read(lockdep_recursion)) 4492 return; 4493 4494 /* 4495 * So we're supposed to get called after you mask local IRQs, but for 4496 * some reason the hardware doesn't quite think you did a proper job. 4497 */ 4498 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4499 return; 4500 4501 if (lockdep_hardirqs_enabled()) { 4502 struct irqtrace_events *trace = ¤t->irqtrace; 4503 4504 /* 4505 * We have done an ON -> OFF transition: 4506 */ 4507 __this_cpu_write(hardirqs_enabled, 0); 4508 trace->hardirq_disable_ip = ip; 4509 trace->hardirq_disable_event = ++trace->irq_events; 4510 debug_atomic_inc(hardirqs_off_events); 4511 } else { 4512 debug_atomic_inc(redundant_hardirqs_off); 4513 } 4514 } 4515 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4516 4517 /* 4518 * Softirqs will be enabled: 4519 */ 4520 void lockdep_softirqs_on(unsigned long ip) 4521 { 4522 struct irqtrace_events *trace = ¤t->irqtrace; 4523 4524 if (unlikely(!lockdep_enabled())) 4525 return; 4526 4527 /* 4528 * We fancy IRQs being disabled here, see softirq.c, avoids 4529 * funny state and nesting things. 4530 */ 4531 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4532 return; 4533 4534 if (current->softirqs_enabled) { 4535 debug_atomic_inc(redundant_softirqs_on); 4536 return; 4537 } 4538 4539 lockdep_recursion_inc(); 4540 /* 4541 * We'll do an OFF -> ON transition: 4542 */ 4543 current->softirqs_enabled = 1; 4544 trace->softirq_enable_ip = ip; 4545 trace->softirq_enable_event = ++trace->irq_events; 4546 debug_atomic_inc(softirqs_on_events); 4547 /* 4548 * We are going to turn softirqs on, so set the 4549 * usage bit for all held locks, if hardirqs are 4550 * enabled too: 4551 */ 4552 if (lockdep_hardirqs_enabled()) 4553 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4554 lockdep_recursion_finish(); 4555 } 4556 4557 /* 4558 * Softirqs were disabled: 4559 */ 4560 void lockdep_softirqs_off(unsigned long ip) 4561 { 4562 if (unlikely(!lockdep_enabled())) 4563 return; 4564 4565 /* 4566 * We fancy IRQs being disabled here, see softirq.c 4567 */ 4568 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4569 return; 4570 4571 if (current->softirqs_enabled) { 4572 struct irqtrace_events *trace = ¤t->irqtrace; 4573 4574 /* 4575 * We have done an ON -> OFF transition: 4576 */ 4577 current->softirqs_enabled = 0; 4578 trace->softirq_disable_ip = ip; 4579 trace->softirq_disable_event = ++trace->irq_events; 4580 debug_atomic_inc(softirqs_off_events); 4581 /* 4582 * Whoops, we wanted softirqs off, so why aren't they? 4583 */ 4584 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4585 } else 4586 debug_atomic_inc(redundant_softirqs_off); 4587 } 4588 4589 /** 4590 * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped 4591 * 4592 * @cpu: index of offlined CPU 4593 * @idle: task pointer for offlined CPU's idle thread 4594 * 4595 * Invoked after the CPU is dead. Ensures that the tracing infrastructure 4596 * is left in a suitable state for the CPU to be subsequently brought 4597 * online again. 4598 */ 4599 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle) 4600 { 4601 if (unlikely(!debug_locks)) 4602 return; 4603 4604 if (unlikely(per_cpu(hardirqs_enabled, cpu))) { 4605 pr_warn("CPU %u left hardirqs enabled!", cpu); 4606 if (idle) 4607 print_irqtrace_events(idle); 4608 /* Clean it up for when the CPU comes online again. */ 4609 per_cpu(hardirqs_enabled, cpu) = 0; 4610 } 4611 } 4612 4613 static int 4614 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4615 { 4616 if (!check) 4617 goto lock_used; 4618 4619 /* 4620 * If non-trylock use in a hardirq or softirq context, then 4621 * mark the lock as used in these contexts: 4622 */ 4623 if (!hlock->trylock) { 4624 if (hlock->read) { 4625 if (lockdep_hardirq_context()) 4626 if (!mark_lock(curr, hlock, 4627 LOCK_USED_IN_HARDIRQ_READ)) 4628 return 0; 4629 if (curr->softirq_context) 4630 if (!mark_lock(curr, hlock, 4631 LOCK_USED_IN_SOFTIRQ_READ)) 4632 return 0; 4633 } else { 4634 if (lockdep_hardirq_context()) 4635 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4636 return 0; 4637 if (curr->softirq_context) 4638 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4639 return 0; 4640 } 4641 } 4642 4643 /* 4644 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4645 * creates no critical section and no extra dependency can be introduced 4646 * by interrupts 4647 */ 4648 if (!hlock->hardirqs_off && !hlock->sync) { 4649 if (hlock->read) { 4650 if (!mark_lock(curr, hlock, 4651 LOCK_ENABLED_HARDIRQ_READ)) 4652 return 0; 4653 if (curr->softirqs_enabled) 4654 if (!mark_lock(curr, hlock, 4655 LOCK_ENABLED_SOFTIRQ_READ)) 4656 return 0; 4657 } else { 4658 if (!mark_lock(curr, hlock, 4659 LOCK_ENABLED_HARDIRQ)) 4660 return 0; 4661 if (curr->softirqs_enabled) 4662 if (!mark_lock(curr, hlock, 4663 LOCK_ENABLED_SOFTIRQ)) 4664 return 0; 4665 } 4666 } 4667 4668 lock_used: 4669 /* mark it as used: */ 4670 if (!mark_lock(curr, hlock, LOCK_USED)) 4671 return 0; 4672 4673 return 1; 4674 } 4675 4676 static inline unsigned int task_irq_context(struct task_struct *task) 4677 { 4678 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4679 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4680 } 4681 4682 static int separate_irq_context(struct task_struct *curr, 4683 struct held_lock *hlock) 4684 { 4685 unsigned int depth = curr->lockdep_depth; 4686 4687 /* 4688 * Keep track of points where we cross into an interrupt context: 4689 */ 4690 if (depth) { 4691 struct held_lock *prev_hlock; 4692 4693 prev_hlock = curr->held_locks + depth-1; 4694 /* 4695 * If we cross into another context, reset the 4696 * hash key (this also prevents the checking and the 4697 * adding of the dependency to 'prev'): 4698 */ 4699 if (prev_hlock->irq_context != hlock->irq_context) 4700 return 1; 4701 } 4702 return 0; 4703 } 4704 4705 /* 4706 * Mark a lock with a usage bit, and validate the state transition: 4707 */ 4708 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4709 enum lock_usage_bit new_bit) 4710 { 4711 unsigned int new_mask, ret = 1; 4712 4713 if (new_bit >= LOCK_USAGE_STATES) { 4714 DEBUG_LOCKS_WARN_ON(1); 4715 return 0; 4716 } 4717 4718 if (new_bit == LOCK_USED && this->read) 4719 new_bit = LOCK_USED_READ; 4720 4721 new_mask = 1 << new_bit; 4722 4723 /* 4724 * If already set then do not dirty the cacheline, 4725 * nor do any checks: 4726 */ 4727 if (likely(hlock_class(this)->usage_mask & new_mask)) 4728 return 1; 4729 4730 if (!graph_lock()) 4731 return 0; 4732 /* 4733 * Make sure we didn't race: 4734 */ 4735 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4736 goto unlock; 4737 4738 if (!hlock_class(this)->usage_mask) 4739 debug_atomic_dec(nr_unused_locks); 4740 4741 hlock_class(this)->usage_mask |= new_mask; 4742 4743 if (new_bit < LOCK_TRACE_STATES) { 4744 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4745 return 0; 4746 } 4747 4748 if (new_bit < LOCK_USED) { 4749 ret = mark_lock_irq(curr, this, new_bit); 4750 if (!ret) 4751 return 0; 4752 } 4753 4754 unlock: 4755 graph_unlock(); 4756 4757 /* 4758 * We must printk outside of the graph_lock: 4759 */ 4760 if (ret == 2) { 4761 nbcon_cpu_emergency_enter(); 4762 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4763 print_lock(this); 4764 print_irqtrace_events(curr); 4765 dump_stack(); 4766 nbcon_cpu_emergency_exit(); 4767 } 4768 4769 return ret; 4770 } 4771 4772 static inline short task_wait_context(struct task_struct *curr) 4773 { 4774 /* 4775 * Set appropriate wait type for the context; for IRQs we have to take 4776 * into account force_irqthread as that is implied by PREEMPT_RT. 4777 */ 4778 if (lockdep_hardirq_context()) { 4779 /* 4780 * Check if force_irqthreads will run us threaded. 4781 */ 4782 if (curr->hardirq_threaded || curr->irq_config) 4783 return LD_WAIT_CONFIG; 4784 4785 return LD_WAIT_SPIN; 4786 } else if (curr->softirq_context) { 4787 /* 4788 * Softirqs are always threaded. 4789 */ 4790 return LD_WAIT_CONFIG; 4791 } 4792 4793 return LD_WAIT_MAX; 4794 } 4795 4796 static int 4797 print_lock_invalid_wait_context(struct task_struct *curr, 4798 struct held_lock *hlock) 4799 { 4800 short curr_inner; 4801 4802 if (!debug_locks_off()) 4803 return 0; 4804 if (debug_locks_silent) 4805 return 0; 4806 4807 nbcon_cpu_emergency_enter(); 4808 4809 pr_warn("\n"); 4810 pr_warn("=============================\n"); 4811 pr_warn("[ BUG: Invalid wait context ]\n"); 4812 print_kernel_ident(); 4813 pr_warn("-----------------------------\n"); 4814 4815 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4816 print_lock(hlock); 4817 4818 pr_warn("other info that might help us debug this:\n"); 4819 4820 curr_inner = task_wait_context(curr); 4821 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4822 4823 lockdep_print_held_locks(curr); 4824 4825 pr_warn("stack backtrace:\n"); 4826 dump_stack(); 4827 4828 nbcon_cpu_emergency_exit(); 4829 4830 return 0; 4831 } 4832 4833 /* 4834 * Verify the wait_type context. 4835 * 4836 * This check validates we take locks in the right wait-type order; that is it 4837 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4838 * acquire spinlocks inside raw_spinlocks and the sort. 4839 * 4840 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4841 * can be taken from (pretty much) any context but also has constraints. 4842 * However when taken in a stricter environment the RCU lock does not loosen 4843 * the constraints. 4844 * 4845 * Therefore we must look for the strictest environment in the lock stack and 4846 * compare that to the lock we're trying to acquire. 4847 */ 4848 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4849 { 4850 u8 next_inner = hlock_class(next)->wait_type_inner; 4851 u8 next_outer = hlock_class(next)->wait_type_outer; 4852 u8 curr_inner; 4853 int depth; 4854 4855 if (!next_inner || next->trylock) 4856 return 0; 4857 4858 if (!next_outer) 4859 next_outer = next_inner; 4860 4861 /* 4862 * Find start of current irq_context.. 4863 */ 4864 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4865 struct held_lock *prev = curr->held_locks + depth; 4866 if (prev->irq_context != next->irq_context) 4867 break; 4868 } 4869 depth++; 4870 4871 curr_inner = task_wait_context(curr); 4872 4873 for (; depth < curr->lockdep_depth; depth++) { 4874 struct held_lock *prev = curr->held_locks + depth; 4875 struct lock_class *class = hlock_class(prev); 4876 u8 prev_inner = class->wait_type_inner; 4877 4878 if (prev_inner) { 4879 /* 4880 * We can have a bigger inner than a previous one 4881 * when outer is smaller than inner, as with RCU. 4882 * 4883 * Also due to trylocks. 4884 */ 4885 curr_inner = min(curr_inner, prev_inner); 4886 4887 /* 4888 * Allow override for annotations -- this is typically 4889 * only valid/needed for code that only exists when 4890 * CONFIG_PREEMPT_RT=n. 4891 */ 4892 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4893 curr_inner = prev_inner; 4894 } 4895 } 4896 4897 if (next_outer > curr_inner) 4898 return print_lock_invalid_wait_context(curr, next); 4899 4900 return 0; 4901 } 4902 4903 #else /* CONFIG_PROVE_LOCKING */ 4904 4905 static inline int 4906 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4907 { 4908 return 1; 4909 } 4910 4911 static inline unsigned int task_irq_context(struct task_struct *task) 4912 { 4913 return 0; 4914 } 4915 4916 static inline int separate_irq_context(struct task_struct *curr, 4917 struct held_lock *hlock) 4918 { 4919 return 0; 4920 } 4921 4922 static inline int check_wait_context(struct task_struct *curr, 4923 struct held_lock *next) 4924 { 4925 return 0; 4926 } 4927 4928 #endif /* CONFIG_PROVE_LOCKING */ 4929 4930 /* 4931 * Initialize a lock instance's lock-class mapping info: 4932 */ 4933 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4934 struct lock_class_key *key, int subclass, 4935 u8 inner, u8 outer, u8 lock_type) 4936 { 4937 int i; 4938 4939 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4940 lock->class_cache[i] = NULL; 4941 4942 #ifdef CONFIG_LOCK_STAT 4943 lock->cpu = raw_smp_processor_id(); 4944 #endif 4945 4946 /* 4947 * Can't be having no nameless bastards around this place! 4948 */ 4949 if (DEBUG_LOCKS_WARN_ON(!name)) { 4950 lock->name = "NULL"; 4951 return; 4952 } 4953 4954 lock->name = name; 4955 4956 lock->wait_type_outer = outer; 4957 lock->wait_type_inner = inner; 4958 lock->lock_type = lock_type; 4959 4960 /* 4961 * No key, no joy, we need to hash something. 4962 */ 4963 if (DEBUG_LOCKS_WARN_ON(!key)) 4964 return; 4965 /* 4966 * Sanity check, the lock-class key must either have been allocated 4967 * statically or must have been registered as a dynamic key. 4968 */ 4969 if (!static_obj(key) && !is_dynamic_key(key)) { 4970 if (debug_locks) 4971 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4972 DEBUG_LOCKS_WARN_ON(1); 4973 return; 4974 } 4975 lock->key = key; 4976 4977 if (unlikely(!debug_locks)) 4978 return; 4979 4980 if (subclass) { 4981 unsigned long flags; 4982 4983 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4984 return; 4985 4986 raw_local_irq_save(flags); 4987 lockdep_recursion_inc(); 4988 register_lock_class(lock, subclass, 1); 4989 lockdep_recursion_finish(); 4990 raw_local_irq_restore(flags); 4991 } 4992 } 4993 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4994 4995 struct lock_class_key __lockdep_no_validate__; 4996 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4997 4998 struct lock_class_key __lockdep_no_track__; 4999 EXPORT_SYMBOL_GPL(__lockdep_no_track__); 5000 5001 #ifdef CONFIG_PROVE_LOCKING 5002 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 5003 lock_print_fn print_fn) 5004 { 5005 struct lock_class *class = lock->class_cache[0]; 5006 unsigned long flags; 5007 5008 raw_local_irq_save(flags); 5009 lockdep_recursion_inc(); 5010 5011 if (!class) 5012 class = register_lock_class(lock, 0, 0); 5013 5014 if (class) { 5015 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 5016 WARN_ON(class->print_fn && class->print_fn != print_fn); 5017 5018 class->cmp_fn = cmp_fn; 5019 class->print_fn = print_fn; 5020 } 5021 5022 lockdep_recursion_finish(); 5023 raw_local_irq_restore(flags); 5024 } 5025 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 5026 #endif 5027 5028 static void 5029 print_lock_nested_lock_not_held(struct task_struct *curr, 5030 struct held_lock *hlock) 5031 { 5032 if (!debug_locks_off()) 5033 return; 5034 if (debug_locks_silent) 5035 return; 5036 5037 nbcon_cpu_emergency_enter(); 5038 5039 pr_warn("\n"); 5040 pr_warn("==================================\n"); 5041 pr_warn("WARNING: Nested lock was not taken\n"); 5042 print_kernel_ident(); 5043 pr_warn("----------------------------------\n"); 5044 5045 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 5046 print_lock(hlock); 5047 5048 pr_warn("\nbut this task is not holding:\n"); 5049 pr_warn("%s\n", hlock->nest_lock->name); 5050 5051 pr_warn("\nstack backtrace:\n"); 5052 dump_stack(); 5053 5054 pr_warn("\nother info that might help us debug this:\n"); 5055 lockdep_print_held_locks(curr); 5056 5057 pr_warn("\nstack backtrace:\n"); 5058 dump_stack(); 5059 5060 nbcon_cpu_emergency_exit(); 5061 } 5062 5063 static int __lock_is_held(const struct lockdep_map *lock, int read); 5064 5065 /* 5066 * This gets called for every mutex_lock*()/spin_lock*() operation. 5067 * We maintain the dependency maps and validate the locking attempt: 5068 * 5069 * The callers must make sure that IRQs are disabled before calling it, 5070 * otherwise we could get an interrupt which would want to take locks, 5071 * which would end up in lockdep again. 5072 */ 5073 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5074 int trylock, int read, int check, int hardirqs_off, 5075 struct lockdep_map *nest_lock, unsigned long ip, 5076 int references, int pin_count, int sync) 5077 { 5078 struct task_struct *curr = current; 5079 struct lock_class *class = NULL; 5080 struct held_lock *hlock; 5081 unsigned int depth; 5082 int chain_head = 0; 5083 int class_idx; 5084 u64 chain_key; 5085 5086 if (unlikely(!debug_locks)) 5087 return 0; 5088 5089 if (unlikely(lock->key == &__lockdep_no_track__)) 5090 return 0; 5091 5092 if (!prove_locking || lock->key == &__lockdep_no_validate__) 5093 check = 0; 5094 5095 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5096 class = lock->class_cache[subclass]; 5097 /* 5098 * Not cached? 5099 */ 5100 if (unlikely(!class)) { 5101 class = register_lock_class(lock, subclass, 0); 5102 if (!class) 5103 return 0; 5104 } 5105 5106 debug_class_ops_inc(class); 5107 5108 if (very_verbose(class)) { 5109 nbcon_cpu_emergency_enter(); 5110 printk("\nacquire class [%px] %s", class->key, class->name); 5111 if (class->name_version > 1) 5112 printk(KERN_CONT "#%d", class->name_version); 5113 printk(KERN_CONT "\n"); 5114 dump_stack(); 5115 nbcon_cpu_emergency_exit(); 5116 } 5117 5118 /* 5119 * Add the lock to the list of currently held locks. 5120 * (we dont increase the depth just yet, up until the 5121 * dependency checks are done) 5122 */ 5123 depth = curr->lockdep_depth; 5124 /* 5125 * Ran out of static storage for our per-task lock stack again have we? 5126 */ 5127 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5128 return 0; 5129 5130 class_idx = class - lock_classes; 5131 5132 if (depth && !sync) { 5133 /* we're holding locks and the new held lock is not a sync */ 5134 hlock = curr->held_locks + depth - 1; 5135 if (hlock->class_idx == class_idx && nest_lock) { 5136 if (!references) 5137 references++; 5138 5139 if (!hlock->references) 5140 hlock->references++; 5141 5142 hlock->references += references; 5143 5144 /* Overflow */ 5145 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5146 return 0; 5147 5148 return 2; 5149 } 5150 } 5151 5152 hlock = curr->held_locks + depth; 5153 /* 5154 * Plain impossible, we just registered it and checked it weren't no 5155 * NULL like.. I bet this mushroom I ate was good! 5156 */ 5157 if (DEBUG_LOCKS_WARN_ON(!class)) 5158 return 0; 5159 hlock->class_idx = class_idx; 5160 hlock->acquire_ip = ip; 5161 hlock->instance = lock; 5162 hlock->nest_lock = nest_lock; 5163 hlock->irq_context = task_irq_context(curr); 5164 hlock->trylock = trylock; 5165 hlock->read = read; 5166 hlock->check = check; 5167 hlock->sync = !!sync; 5168 hlock->hardirqs_off = !!hardirqs_off; 5169 hlock->references = references; 5170 #ifdef CONFIG_LOCK_STAT 5171 hlock->waittime_stamp = 0; 5172 hlock->holdtime_stamp = lockstat_clock(); 5173 #endif 5174 hlock->pin_count = pin_count; 5175 5176 if (check_wait_context(curr, hlock)) 5177 return 0; 5178 5179 /* Initialize the lock usage bit */ 5180 if (!mark_usage(curr, hlock, check)) 5181 return 0; 5182 5183 /* 5184 * Calculate the chain hash: it's the combined hash of all the 5185 * lock keys along the dependency chain. We save the hash value 5186 * at every step so that we can get the current hash easily 5187 * after unlock. The chain hash is then used to cache dependency 5188 * results. 5189 * 5190 * The 'key ID' is what is the most compact key value to drive 5191 * the hash, not class->key. 5192 */ 5193 /* 5194 * Whoops, we did it again.. class_idx is invalid. 5195 */ 5196 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5197 return 0; 5198 5199 chain_key = curr->curr_chain_key; 5200 if (!depth) { 5201 /* 5202 * How can we have a chain hash when we ain't got no keys?! 5203 */ 5204 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5205 return 0; 5206 chain_head = 1; 5207 } 5208 5209 hlock->prev_chain_key = chain_key; 5210 if (separate_irq_context(curr, hlock)) { 5211 chain_key = INITIAL_CHAIN_KEY; 5212 chain_head = 1; 5213 } 5214 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5215 5216 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5217 print_lock_nested_lock_not_held(curr, hlock); 5218 return 0; 5219 } 5220 5221 if (!debug_locks_silent) { 5222 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5223 WARN_ON_ONCE(!hlock_class(hlock)->key); 5224 } 5225 5226 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5227 return 0; 5228 5229 /* For lock_sync(), we are done here since no actual critical section */ 5230 if (hlock->sync) 5231 return 1; 5232 5233 curr->curr_chain_key = chain_key; 5234 curr->lockdep_depth++; 5235 check_chain_key(curr); 5236 #ifdef CONFIG_DEBUG_LOCKDEP 5237 if (unlikely(!debug_locks)) 5238 return 0; 5239 #endif 5240 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5241 debug_locks_off(); 5242 nbcon_cpu_emergency_enter(); 5243 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5244 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5245 curr->lockdep_depth, MAX_LOCK_DEPTH); 5246 5247 lockdep_print_held_locks(current); 5248 debug_show_all_locks(); 5249 dump_stack(); 5250 nbcon_cpu_emergency_exit(); 5251 5252 return 0; 5253 } 5254 5255 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5256 max_lockdep_depth = curr->lockdep_depth; 5257 5258 return 1; 5259 } 5260 5261 static void print_unlock_imbalance_bug(struct task_struct *curr, 5262 struct lockdep_map *lock, 5263 unsigned long ip) 5264 { 5265 if (!debug_locks_off()) 5266 return; 5267 if (debug_locks_silent) 5268 return; 5269 5270 nbcon_cpu_emergency_enter(); 5271 5272 pr_warn("\n"); 5273 pr_warn("=====================================\n"); 5274 pr_warn("WARNING: bad unlock balance detected!\n"); 5275 print_kernel_ident(); 5276 pr_warn("-------------------------------------\n"); 5277 pr_warn("%s/%d is trying to release lock (", 5278 curr->comm, task_pid_nr(curr)); 5279 print_lockdep_cache(lock); 5280 pr_cont(") at:\n"); 5281 print_ip_sym(KERN_WARNING, ip); 5282 pr_warn("but there are no more locks to release!\n"); 5283 pr_warn("\nother info that might help us debug this:\n"); 5284 lockdep_print_held_locks(curr); 5285 5286 pr_warn("\nstack backtrace:\n"); 5287 dump_stack(); 5288 5289 nbcon_cpu_emergency_exit(); 5290 } 5291 5292 static noinstr int match_held_lock(const struct held_lock *hlock, 5293 const struct lockdep_map *lock) 5294 { 5295 if (hlock->instance == lock) 5296 return 1; 5297 5298 if (hlock->references) { 5299 const struct lock_class *class = lock->class_cache[0]; 5300 5301 if (!class) 5302 class = look_up_lock_class(lock, 0); 5303 5304 /* 5305 * If look_up_lock_class() failed to find a class, we're trying 5306 * to test if we hold a lock that has never yet been acquired. 5307 * Clearly if the lock hasn't been acquired _ever_, we're not 5308 * holding it either, so report failure. 5309 */ 5310 if (!class) 5311 return 0; 5312 5313 /* 5314 * References, but not a lock we're actually ref-counting? 5315 * State got messed up, follow the sites that change ->references 5316 * and try to make sense of it. 5317 */ 5318 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5319 return 0; 5320 5321 if (hlock->class_idx == class - lock_classes) 5322 return 1; 5323 } 5324 5325 return 0; 5326 } 5327 5328 /* @depth must not be zero */ 5329 static struct held_lock *find_held_lock(struct task_struct *curr, 5330 struct lockdep_map *lock, 5331 unsigned int depth, int *idx) 5332 { 5333 struct held_lock *ret, *hlock, *prev_hlock; 5334 int i; 5335 5336 i = depth - 1; 5337 hlock = curr->held_locks + i; 5338 ret = hlock; 5339 if (match_held_lock(hlock, lock)) 5340 goto out; 5341 5342 ret = NULL; 5343 for (i--, prev_hlock = hlock--; 5344 i >= 0; 5345 i--, prev_hlock = hlock--) { 5346 /* 5347 * We must not cross into another context: 5348 */ 5349 if (prev_hlock->irq_context != hlock->irq_context) { 5350 ret = NULL; 5351 break; 5352 } 5353 if (match_held_lock(hlock, lock)) { 5354 ret = hlock; 5355 break; 5356 } 5357 } 5358 5359 out: 5360 *idx = i; 5361 return ret; 5362 } 5363 5364 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5365 int idx, unsigned int *merged) 5366 { 5367 struct held_lock *hlock; 5368 int first_idx = idx; 5369 5370 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5371 return 0; 5372 5373 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5374 switch (__lock_acquire(hlock->instance, 5375 hlock_class(hlock)->subclass, 5376 hlock->trylock, 5377 hlock->read, hlock->check, 5378 hlock->hardirqs_off, 5379 hlock->nest_lock, hlock->acquire_ip, 5380 hlock->references, hlock->pin_count, 0)) { 5381 case 0: 5382 return 1; 5383 case 1: 5384 break; 5385 case 2: 5386 *merged += (idx == first_idx); 5387 break; 5388 default: 5389 WARN_ON(1); 5390 return 0; 5391 } 5392 } 5393 return 0; 5394 } 5395 5396 static int 5397 __lock_set_class(struct lockdep_map *lock, const char *name, 5398 struct lock_class_key *key, unsigned int subclass, 5399 unsigned long ip) 5400 { 5401 struct task_struct *curr = current; 5402 unsigned int depth, merged = 0; 5403 struct held_lock *hlock; 5404 struct lock_class *class; 5405 int i; 5406 5407 if (unlikely(!debug_locks)) 5408 return 0; 5409 5410 depth = curr->lockdep_depth; 5411 /* 5412 * This function is about (re)setting the class of a held lock, 5413 * yet we're not actually holding any locks. Naughty user! 5414 */ 5415 if (DEBUG_LOCKS_WARN_ON(!depth)) 5416 return 0; 5417 5418 hlock = find_held_lock(curr, lock, depth, &i); 5419 if (!hlock) { 5420 print_unlock_imbalance_bug(curr, lock, ip); 5421 return 0; 5422 } 5423 5424 lockdep_init_map_type(lock, name, key, 0, 5425 lock->wait_type_inner, 5426 lock->wait_type_outer, 5427 lock->lock_type); 5428 class = register_lock_class(lock, subclass, 0); 5429 hlock->class_idx = class - lock_classes; 5430 5431 curr->lockdep_depth = i; 5432 curr->curr_chain_key = hlock->prev_chain_key; 5433 5434 if (reacquire_held_locks(curr, depth, i, &merged)) 5435 return 0; 5436 5437 /* 5438 * I took it apart and put it back together again, except now I have 5439 * these 'spare' parts.. where shall I put them. 5440 */ 5441 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5442 return 0; 5443 return 1; 5444 } 5445 5446 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5447 { 5448 struct task_struct *curr = current; 5449 unsigned int depth, merged = 0; 5450 struct held_lock *hlock; 5451 int i; 5452 5453 if (unlikely(!debug_locks)) 5454 return 0; 5455 5456 depth = curr->lockdep_depth; 5457 /* 5458 * This function is about (re)setting the class of a held lock, 5459 * yet we're not actually holding any locks. Naughty user! 5460 */ 5461 if (DEBUG_LOCKS_WARN_ON(!depth)) 5462 return 0; 5463 5464 hlock = find_held_lock(curr, lock, depth, &i); 5465 if (!hlock) { 5466 print_unlock_imbalance_bug(curr, lock, ip); 5467 return 0; 5468 } 5469 5470 curr->lockdep_depth = i; 5471 curr->curr_chain_key = hlock->prev_chain_key; 5472 5473 WARN(hlock->read, "downgrading a read lock"); 5474 hlock->read = 1; 5475 hlock->acquire_ip = ip; 5476 5477 if (reacquire_held_locks(curr, depth, i, &merged)) 5478 return 0; 5479 5480 /* Merging can't happen with unchanged classes.. */ 5481 if (DEBUG_LOCKS_WARN_ON(merged)) 5482 return 0; 5483 5484 /* 5485 * I took it apart and put it back together again, except now I have 5486 * these 'spare' parts.. where shall I put them. 5487 */ 5488 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5489 return 0; 5490 5491 return 1; 5492 } 5493 5494 /* 5495 * Remove the lock from the list of currently held locks - this gets 5496 * called on mutex_unlock()/spin_unlock*() (or on a failed 5497 * mutex_lock_interruptible()). 5498 */ 5499 static int 5500 __lock_release(struct lockdep_map *lock, unsigned long ip) 5501 { 5502 struct task_struct *curr = current; 5503 unsigned int depth, merged = 1; 5504 struct held_lock *hlock; 5505 int i; 5506 5507 if (unlikely(!debug_locks)) 5508 return 0; 5509 5510 depth = curr->lockdep_depth; 5511 /* 5512 * So we're all set to release this lock.. wait what lock? We don't 5513 * own any locks, you've been drinking again? 5514 */ 5515 if (depth <= 0) { 5516 print_unlock_imbalance_bug(curr, lock, ip); 5517 return 0; 5518 } 5519 5520 /* 5521 * Check whether the lock exists in the current stack 5522 * of held locks: 5523 */ 5524 hlock = find_held_lock(curr, lock, depth, &i); 5525 if (!hlock) { 5526 print_unlock_imbalance_bug(curr, lock, ip); 5527 return 0; 5528 } 5529 5530 if (hlock->instance == lock) 5531 lock_release_holdtime(hlock); 5532 5533 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5534 5535 if (hlock->references) { 5536 hlock->references--; 5537 if (hlock->references) { 5538 /* 5539 * We had, and after removing one, still have 5540 * references, the current lock stack is still 5541 * valid. We're done! 5542 */ 5543 return 1; 5544 } 5545 } 5546 5547 /* 5548 * We have the right lock to unlock, 'hlock' points to it. 5549 * Now we remove it from the stack, and add back the other 5550 * entries (if any), recalculating the hash along the way: 5551 */ 5552 5553 curr->lockdep_depth = i; 5554 curr->curr_chain_key = hlock->prev_chain_key; 5555 5556 /* 5557 * The most likely case is when the unlock is on the innermost 5558 * lock. In this case, we are done! 5559 */ 5560 if (i == depth-1) 5561 return 1; 5562 5563 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5564 return 0; 5565 5566 /* 5567 * We had N bottles of beer on the wall, we drank one, but now 5568 * there's not N-1 bottles of beer left on the wall... 5569 * Pouring two of the bottles together is acceptable. 5570 */ 5571 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5572 5573 /* 5574 * Since reacquire_held_locks() would have called check_chain_key() 5575 * indirectly via __lock_acquire(), we don't need to do it again 5576 * on return. 5577 */ 5578 return 0; 5579 } 5580 5581 static __always_inline 5582 int __lock_is_held(const struct lockdep_map *lock, int read) 5583 { 5584 struct task_struct *curr = current; 5585 int i; 5586 5587 for (i = 0; i < curr->lockdep_depth; i++) { 5588 struct held_lock *hlock = curr->held_locks + i; 5589 5590 if (match_held_lock(hlock, lock)) { 5591 if (read == -1 || !!hlock->read == read) 5592 return LOCK_STATE_HELD; 5593 5594 return LOCK_STATE_NOT_HELD; 5595 } 5596 } 5597 5598 return LOCK_STATE_NOT_HELD; 5599 } 5600 5601 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5602 { 5603 struct pin_cookie cookie = NIL_COOKIE; 5604 struct task_struct *curr = current; 5605 int i; 5606 5607 if (unlikely(!debug_locks)) 5608 return cookie; 5609 5610 for (i = 0; i < curr->lockdep_depth; i++) { 5611 struct held_lock *hlock = curr->held_locks + i; 5612 5613 if (match_held_lock(hlock, lock)) { 5614 /* 5615 * Grab 16bits of randomness; this is sufficient to not 5616 * be guessable and still allows some pin nesting in 5617 * our u32 pin_count. 5618 */ 5619 cookie.val = 1 + (sched_clock() & 0xffff); 5620 hlock->pin_count += cookie.val; 5621 return cookie; 5622 } 5623 } 5624 5625 WARN(1, "pinning an unheld lock\n"); 5626 return cookie; 5627 } 5628 5629 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5630 { 5631 struct task_struct *curr = current; 5632 int i; 5633 5634 if (unlikely(!debug_locks)) 5635 return; 5636 5637 for (i = 0; i < curr->lockdep_depth; i++) { 5638 struct held_lock *hlock = curr->held_locks + i; 5639 5640 if (match_held_lock(hlock, lock)) { 5641 hlock->pin_count += cookie.val; 5642 return; 5643 } 5644 } 5645 5646 WARN(1, "pinning an unheld lock\n"); 5647 } 5648 5649 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5650 { 5651 struct task_struct *curr = current; 5652 int i; 5653 5654 if (unlikely(!debug_locks)) 5655 return; 5656 5657 for (i = 0; i < curr->lockdep_depth; i++) { 5658 struct held_lock *hlock = curr->held_locks + i; 5659 5660 if (match_held_lock(hlock, lock)) { 5661 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5662 return; 5663 5664 hlock->pin_count -= cookie.val; 5665 5666 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5667 hlock->pin_count = 0; 5668 5669 return; 5670 } 5671 } 5672 5673 WARN(1, "unpinning an unheld lock\n"); 5674 } 5675 5676 /* 5677 * Check whether we follow the irq-flags state precisely: 5678 */ 5679 static noinstr void check_flags(unsigned long flags) 5680 { 5681 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5682 if (!debug_locks) 5683 return; 5684 5685 /* Get the warning out.. */ 5686 instrumentation_begin(); 5687 5688 if (irqs_disabled_flags(flags)) { 5689 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5690 printk("possible reason: unannotated irqs-off.\n"); 5691 } 5692 } else { 5693 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5694 printk("possible reason: unannotated irqs-on.\n"); 5695 } 5696 } 5697 5698 #ifndef CONFIG_PREEMPT_RT 5699 /* 5700 * We dont accurately track softirq state in e.g. 5701 * hardirq contexts (such as on 4KSTACKS), so only 5702 * check if not in hardirq contexts: 5703 */ 5704 if (!hardirq_count()) { 5705 if (softirq_count()) { 5706 /* like the above, but with softirqs */ 5707 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5708 } else { 5709 /* lick the above, does it taste good? */ 5710 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5711 } 5712 } 5713 #endif 5714 5715 if (!debug_locks) 5716 print_irqtrace_events(current); 5717 5718 instrumentation_end(); 5719 #endif 5720 } 5721 5722 void lock_set_class(struct lockdep_map *lock, const char *name, 5723 struct lock_class_key *key, unsigned int subclass, 5724 unsigned long ip) 5725 { 5726 unsigned long flags; 5727 5728 if (unlikely(!lockdep_enabled())) 5729 return; 5730 5731 raw_local_irq_save(flags); 5732 lockdep_recursion_inc(); 5733 check_flags(flags); 5734 if (__lock_set_class(lock, name, key, subclass, ip)) 5735 check_chain_key(current); 5736 lockdep_recursion_finish(); 5737 raw_local_irq_restore(flags); 5738 } 5739 EXPORT_SYMBOL_GPL(lock_set_class); 5740 5741 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5742 { 5743 unsigned long flags; 5744 5745 if (unlikely(!lockdep_enabled())) 5746 return; 5747 5748 raw_local_irq_save(flags); 5749 lockdep_recursion_inc(); 5750 check_flags(flags); 5751 if (__lock_downgrade(lock, ip)) 5752 check_chain_key(current); 5753 lockdep_recursion_finish(); 5754 raw_local_irq_restore(flags); 5755 } 5756 EXPORT_SYMBOL_GPL(lock_downgrade); 5757 5758 /* NMI context !!! */ 5759 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5760 { 5761 #ifdef CONFIG_PROVE_LOCKING 5762 struct lock_class *class = look_up_lock_class(lock, subclass); 5763 unsigned long mask = LOCKF_USED; 5764 5765 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5766 if (!class) 5767 return; 5768 5769 /* 5770 * READ locks only conflict with USED, such that if we only ever use 5771 * READ locks, there is no deadlock possible -- RCU. 5772 */ 5773 if (!hlock->read) 5774 mask |= LOCKF_USED_READ; 5775 5776 if (!(class->usage_mask & mask)) 5777 return; 5778 5779 hlock->class_idx = class - lock_classes; 5780 5781 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5782 #endif 5783 } 5784 5785 static bool lockdep_nmi(void) 5786 { 5787 if (raw_cpu_read(lockdep_recursion)) 5788 return false; 5789 5790 if (!in_nmi()) 5791 return false; 5792 5793 return true; 5794 } 5795 5796 /* 5797 * read_lock() is recursive if: 5798 * 1. We force lockdep think this way in selftests or 5799 * 2. The implementation is not queued read/write lock or 5800 * 3. The locker is at an in_interrupt() context. 5801 */ 5802 bool read_lock_is_recursive(void) 5803 { 5804 return force_read_lock_recursive || 5805 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5806 in_interrupt(); 5807 } 5808 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5809 5810 /* 5811 * We are not always called with irqs disabled - do that here, 5812 * and also avoid lockdep recursion: 5813 */ 5814 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5815 int trylock, int read, int check, 5816 struct lockdep_map *nest_lock, unsigned long ip) 5817 { 5818 unsigned long flags; 5819 5820 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5821 5822 if (!debug_locks) 5823 return; 5824 5825 if (unlikely(!lockdep_enabled())) { 5826 /* XXX allow trylock from NMI ?!? */ 5827 if (lockdep_nmi() && !trylock) { 5828 struct held_lock hlock; 5829 5830 hlock.acquire_ip = ip; 5831 hlock.instance = lock; 5832 hlock.nest_lock = nest_lock; 5833 hlock.irq_context = 2; // XXX 5834 hlock.trylock = trylock; 5835 hlock.read = read; 5836 hlock.check = check; 5837 hlock.hardirqs_off = true; 5838 hlock.references = 0; 5839 5840 verify_lock_unused(lock, &hlock, subclass); 5841 } 5842 return; 5843 } 5844 5845 raw_local_irq_save(flags); 5846 check_flags(flags); 5847 5848 lockdep_recursion_inc(); 5849 __lock_acquire(lock, subclass, trylock, read, check, 5850 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5851 lockdep_recursion_finish(); 5852 raw_local_irq_restore(flags); 5853 } 5854 EXPORT_SYMBOL_GPL(lock_acquire); 5855 5856 void lock_release(struct lockdep_map *lock, unsigned long ip) 5857 { 5858 unsigned long flags; 5859 5860 trace_lock_release(lock, ip); 5861 5862 if (unlikely(!lockdep_enabled() || 5863 lock->key == &__lockdep_no_track__)) 5864 return; 5865 5866 raw_local_irq_save(flags); 5867 check_flags(flags); 5868 5869 lockdep_recursion_inc(); 5870 if (__lock_release(lock, ip)) 5871 check_chain_key(current); 5872 lockdep_recursion_finish(); 5873 raw_local_irq_restore(flags); 5874 } 5875 EXPORT_SYMBOL_GPL(lock_release); 5876 5877 /* 5878 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5879 * 5880 * No actual critical section is created by the APIs annotated with this: these 5881 * APIs are used to wait for one or multiple critical sections (on other CPUs 5882 * or threads), and it means that calling these APIs inside these critical 5883 * sections is potential deadlock. 5884 */ 5885 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5886 int check, struct lockdep_map *nest_lock, unsigned long ip) 5887 { 5888 unsigned long flags; 5889 5890 if (unlikely(!lockdep_enabled())) 5891 return; 5892 5893 raw_local_irq_save(flags); 5894 check_flags(flags); 5895 5896 lockdep_recursion_inc(); 5897 __lock_acquire(lock, subclass, 0, read, check, 5898 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5899 check_chain_key(current); 5900 lockdep_recursion_finish(); 5901 raw_local_irq_restore(flags); 5902 } 5903 EXPORT_SYMBOL_GPL(lock_sync); 5904 5905 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5906 { 5907 unsigned long flags; 5908 int ret = LOCK_STATE_NOT_HELD; 5909 5910 /* 5911 * Avoid false negative lockdep_assert_held() and 5912 * lockdep_assert_not_held(). 5913 */ 5914 if (unlikely(!lockdep_enabled())) 5915 return LOCK_STATE_UNKNOWN; 5916 5917 raw_local_irq_save(flags); 5918 check_flags(flags); 5919 5920 lockdep_recursion_inc(); 5921 ret = __lock_is_held(lock, read); 5922 lockdep_recursion_finish(); 5923 raw_local_irq_restore(flags); 5924 5925 return ret; 5926 } 5927 EXPORT_SYMBOL_GPL(lock_is_held_type); 5928 NOKPROBE_SYMBOL(lock_is_held_type); 5929 5930 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5931 { 5932 struct pin_cookie cookie = NIL_COOKIE; 5933 unsigned long flags; 5934 5935 if (unlikely(!lockdep_enabled())) 5936 return cookie; 5937 5938 raw_local_irq_save(flags); 5939 check_flags(flags); 5940 5941 lockdep_recursion_inc(); 5942 cookie = __lock_pin_lock(lock); 5943 lockdep_recursion_finish(); 5944 raw_local_irq_restore(flags); 5945 5946 return cookie; 5947 } 5948 EXPORT_SYMBOL_GPL(lock_pin_lock); 5949 5950 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5951 { 5952 unsigned long flags; 5953 5954 if (unlikely(!lockdep_enabled())) 5955 return; 5956 5957 raw_local_irq_save(flags); 5958 check_flags(flags); 5959 5960 lockdep_recursion_inc(); 5961 __lock_repin_lock(lock, cookie); 5962 lockdep_recursion_finish(); 5963 raw_local_irq_restore(flags); 5964 } 5965 EXPORT_SYMBOL_GPL(lock_repin_lock); 5966 5967 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5968 { 5969 unsigned long flags; 5970 5971 if (unlikely(!lockdep_enabled())) 5972 return; 5973 5974 raw_local_irq_save(flags); 5975 check_flags(flags); 5976 5977 lockdep_recursion_inc(); 5978 __lock_unpin_lock(lock, cookie); 5979 lockdep_recursion_finish(); 5980 raw_local_irq_restore(flags); 5981 } 5982 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5983 5984 #ifdef CONFIG_LOCK_STAT 5985 static void print_lock_contention_bug(struct task_struct *curr, 5986 struct lockdep_map *lock, 5987 unsigned long ip) 5988 { 5989 if (!debug_locks_off()) 5990 return; 5991 if (debug_locks_silent) 5992 return; 5993 5994 nbcon_cpu_emergency_enter(); 5995 5996 pr_warn("\n"); 5997 pr_warn("=================================\n"); 5998 pr_warn("WARNING: bad contention detected!\n"); 5999 print_kernel_ident(); 6000 pr_warn("---------------------------------\n"); 6001 pr_warn("%s/%d is trying to contend lock (", 6002 curr->comm, task_pid_nr(curr)); 6003 print_lockdep_cache(lock); 6004 pr_cont(") at:\n"); 6005 print_ip_sym(KERN_WARNING, ip); 6006 pr_warn("but there are no locks held!\n"); 6007 pr_warn("\nother info that might help us debug this:\n"); 6008 lockdep_print_held_locks(curr); 6009 6010 pr_warn("\nstack backtrace:\n"); 6011 dump_stack(); 6012 6013 nbcon_cpu_emergency_exit(); 6014 } 6015 6016 static void 6017 __lock_contended(struct lockdep_map *lock, unsigned long ip) 6018 { 6019 struct task_struct *curr = current; 6020 struct held_lock *hlock; 6021 struct lock_class_stats *stats; 6022 unsigned int depth; 6023 int i, contention_point, contending_point; 6024 6025 depth = curr->lockdep_depth; 6026 /* 6027 * Whee, we contended on this lock, except it seems we're not 6028 * actually trying to acquire anything much at all.. 6029 */ 6030 if (DEBUG_LOCKS_WARN_ON(!depth)) 6031 return; 6032 6033 if (unlikely(lock->key == &__lockdep_no_track__)) 6034 return; 6035 6036 hlock = find_held_lock(curr, lock, depth, &i); 6037 if (!hlock) { 6038 print_lock_contention_bug(curr, lock, ip); 6039 return; 6040 } 6041 6042 if (hlock->instance != lock) 6043 return; 6044 6045 hlock->waittime_stamp = lockstat_clock(); 6046 6047 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 6048 contending_point = lock_point(hlock_class(hlock)->contending_point, 6049 lock->ip); 6050 6051 stats = get_lock_stats(hlock_class(hlock)); 6052 if (contention_point < LOCKSTAT_POINTS) 6053 stats->contention_point[contention_point]++; 6054 if (contending_point < LOCKSTAT_POINTS) 6055 stats->contending_point[contending_point]++; 6056 if (lock->cpu != smp_processor_id()) 6057 stats->bounces[bounce_contended + !!hlock->read]++; 6058 } 6059 6060 static void 6061 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 6062 { 6063 struct task_struct *curr = current; 6064 struct held_lock *hlock; 6065 struct lock_class_stats *stats; 6066 unsigned int depth; 6067 u64 now, waittime = 0; 6068 int i, cpu; 6069 6070 depth = curr->lockdep_depth; 6071 /* 6072 * Yay, we acquired ownership of this lock we didn't try to 6073 * acquire, how the heck did that happen? 6074 */ 6075 if (DEBUG_LOCKS_WARN_ON(!depth)) 6076 return; 6077 6078 if (unlikely(lock->key == &__lockdep_no_track__)) 6079 return; 6080 6081 hlock = find_held_lock(curr, lock, depth, &i); 6082 if (!hlock) { 6083 print_lock_contention_bug(curr, lock, _RET_IP_); 6084 return; 6085 } 6086 6087 if (hlock->instance != lock) 6088 return; 6089 6090 cpu = smp_processor_id(); 6091 if (hlock->waittime_stamp) { 6092 now = lockstat_clock(); 6093 waittime = now - hlock->waittime_stamp; 6094 hlock->holdtime_stamp = now; 6095 } 6096 6097 stats = get_lock_stats(hlock_class(hlock)); 6098 if (waittime) { 6099 if (hlock->read) 6100 lock_time_inc(&stats->read_waittime, waittime); 6101 else 6102 lock_time_inc(&stats->write_waittime, waittime); 6103 } 6104 if (lock->cpu != cpu) 6105 stats->bounces[bounce_acquired + !!hlock->read]++; 6106 6107 lock->cpu = cpu; 6108 lock->ip = ip; 6109 } 6110 6111 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6112 { 6113 unsigned long flags; 6114 6115 trace_lock_contended(lock, ip); 6116 6117 if (unlikely(!lock_stat || !lockdep_enabled())) 6118 return; 6119 6120 raw_local_irq_save(flags); 6121 check_flags(flags); 6122 lockdep_recursion_inc(); 6123 __lock_contended(lock, ip); 6124 lockdep_recursion_finish(); 6125 raw_local_irq_restore(flags); 6126 } 6127 EXPORT_SYMBOL_GPL(lock_contended); 6128 6129 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6130 { 6131 unsigned long flags; 6132 6133 trace_lock_acquired(lock, ip); 6134 6135 if (unlikely(!lock_stat || !lockdep_enabled())) 6136 return; 6137 6138 raw_local_irq_save(flags); 6139 check_flags(flags); 6140 lockdep_recursion_inc(); 6141 __lock_acquired(lock, ip); 6142 lockdep_recursion_finish(); 6143 raw_local_irq_restore(flags); 6144 } 6145 EXPORT_SYMBOL_GPL(lock_acquired); 6146 #endif 6147 6148 /* 6149 * Used by the testsuite, sanitize the validator state 6150 * after a simulated failure: 6151 */ 6152 6153 void lockdep_reset(void) 6154 { 6155 unsigned long flags; 6156 int i; 6157 6158 raw_local_irq_save(flags); 6159 lockdep_init_task(current); 6160 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6161 nr_hardirq_chains = 0; 6162 nr_softirq_chains = 0; 6163 nr_process_chains = 0; 6164 debug_locks = 1; 6165 for (i = 0; i < CHAINHASH_SIZE; i++) 6166 INIT_HLIST_HEAD(chainhash_table + i); 6167 raw_local_irq_restore(flags); 6168 } 6169 6170 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6171 static void remove_class_from_lock_chain(struct pending_free *pf, 6172 struct lock_chain *chain, 6173 struct lock_class *class) 6174 { 6175 #ifdef CONFIG_PROVE_LOCKING 6176 int i; 6177 6178 for (i = chain->base; i < chain->base + chain->depth; i++) { 6179 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6180 continue; 6181 /* 6182 * Each lock class occurs at most once in a lock chain so once 6183 * we found a match we can break out of this loop. 6184 */ 6185 goto free_lock_chain; 6186 } 6187 /* Since the chain has not been modified, return. */ 6188 return; 6189 6190 free_lock_chain: 6191 free_chain_hlocks(chain->base, chain->depth); 6192 /* Overwrite the chain key for concurrent RCU readers. */ 6193 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6194 dec_chains(chain->irq_context); 6195 6196 /* 6197 * Note: calling hlist_del_rcu() from inside a 6198 * hlist_for_each_entry_rcu() loop is safe. 6199 */ 6200 hlist_del_rcu(&chain->entry); 6201 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6202 nr_zapped_lock_chains++; 6203 #endif 6204 } 6205 6206 /* Must be called with the graph lock held. */ 6207 static void remove_class_from_lock_chains(struct pending_free *pf, 6208 struct lock_class *class) 6209 { 6210 struct lock_chain *chain; 6211 struct hlist_head *head; 6212 int i; 6213 6214 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6215 head = chainhash_table + i; 6216 hlist_for_each_entry_rcu(chain, head, entry) { 6217 remove_class_from_lock_chain(pf, chain, class); 6218 } 6219 } 6220 } 6221 6222 /* 6223 * Remove all references to a lock class. The caller must hold the graph lock. 6224 */ 6225 static void zap_class(struct pending_free *pf, struct lock_class *class) 6226 { 6227 struct lock_list *entry; 6228 int i; 6229 6230 WARN_ON_ONCE(!class->key); 6231 6232 /* 6233 * Remove all dependencies this lock is 6234 * involved in: 6235 */ 6236 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6237 entry = list_entries + i; 6238 if (entry->class != class && entry->links_to != class) 6239 continue; 6240 __clear_bit(i, list_entries_in_use); 6241 nr_list_entries--; 6242 list_del_rcu(&entry->entry); 6243 } 6244 if (list_empty(&class->locks_after) && 6245 list_empty(&class->locks_before)) { 6246 list_move_tail(&class->lock_entry, &pf->zapped); 6247 hlist_del_rcu(&class->hash_entry); 6248 WRITE_ONCE(class->key, NULL); 6249 WRITE_ONCE(class->name, NULL); 6250 nr_lock_classes--; 6251 __clear_bit(class - lock_classes, lock_classes_in_use); 6252 if (class - lock_classes == max_lock_class_idx) 6253 max_lock_class_idx--; 6254 } else { 6255 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6256 class->name); 6257 } 6258 6259 remove_class_from_lock_chains(pf, class); 6260 nr_zapped_classes++; 6261 } 6262 6263 static void reinit_class(struct lock_class *class) 6264 { 6265 WARN_ON_ONCE(!class->lock_entry.next); 6266 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6267 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6268 memset_startat(class, 0, key); 6269 WARN_ON_ONCE(!class->lock_entry.next); 6270 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6271 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6272 } 6273 6274 static inline int within(const void *addr, void *start, unsigned long size) 6275 { 6276 return addr >= start && addr < start + size; 6277 } 6278 6279 static bool inside_selftest(void) 6280 { 6281 return current == lockdep_selftest_task_struct; 6282 } 6283 6284 /* The caller must hold the graph lock. */ 6285 static struct pending_free *get_pending_free(void) 6286 { 6287 return delayed_free.pf + delayed_free.index; 6288 } 6289 6290 static void free_zapped_rcu(struct rcu_head *cb); 6291 6292 /* 6293 * See if we need to queue an RCU callback, must called with 6294 * the lockdep lock held, returns false if either we don't have 6295 * any pending free or the callback is already scheduled. 6296 * Otherwise, a call_rcu() must follow this function call. 6297 */ 6298 static bool prepare_call_rcu_zapped(struct pending_free *pf) 6299 { 6300 WARN_ON_ONCE(inside_selftest()); 6301 6302 if (list_empty(&pf->zapped)) 6303 return false; 6304 6305 if (delayed_free.scheduled) 6306 return false; 6307 6308 delayed_free.scheduled = true; 6309 6310 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6311 delayed_free.index ^= 1; 6312 6313 return true; 6314 } 6315 6316 /* The caller must hold the graph lock. May be called from RCU context. */ 6317 static void __free_zapped_classes(struct pending_free *pf) 6318 { 6319 struct lock_class *class; 6320 6321 check_data_structures(); 6322 6323 list_for_each_entry(class, &pf->zapped, lock_entry) 6324 reinit_class(class); 6325 6326 list_splice_init(&pf->zapped, &free_lock_classes); 6327 6328 #ifdef CONFIG_PROVE_LOCKING 6329 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6330 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6331 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6332 #endif 6333 } 6334 6335 static void free_zapped_rcu(struct rcu_head *ch) 6336 { 6337 struct pending_free *pf; 6338 unsigned long flags; 6339 bool need_callback; 6340 6341 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6342 return; 6343 6344 raw_local_irq_save(flags); 6345 lockdep_lock(); 6346 6347 /* closed head */ 6348 pf = delayed_free.pf + (delayed_free.index ^ 1); 6349 __free_zapped_classes(pf); 6350 delayed_free.scheduled = false; 6351 need_callback = 6352 prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index); 6353 lockdep_unlock(); 6354 raw_local_irq_restore(flags); 6355 6356 /* 6357 * If there's pending free and its callback has not been scheduled, 6358 * queue an RCU callback. 6359 */ 6360 if (need_callback) 6361 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6362 6363 } 6364 6365 /* 6366 * Remove all lock classes from the class hash table and from the 6367 * all_lock_classes list whose key or name is in the address range [start, 6368 * start + size). Move these lock classes to the zapped_classes list. Must 6369 * be called with the graph lock held. 6370 */ 6371 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6372 unsigned long size) 6373 { 6374 struct lock_class *class; 6375 struct hlist_head *head; 6376 int i; 6377 6378 /* Unhash all classes that were created by a module. */ 6379 for (i = 0; i < CLASSHASH_SIZE; i++) { 6380 head = classhash_table + i; 6381 hlist_for_each_entry_rcu(class, head, hash_entry) { 6382 if (!within(class->key, start, size) && 6383 !within(class->name, start, size)) 6384 continue; 6385 zap_class(pf, class); 6386 } 6387 } 6388 } 6389 6390 /* 6391 * Used in module.c to remove lock classes from memory that is going to be 6392 * freed; and possibly re-used by other modules. 6393 * 6394 * We will have had one synchronize_rcu() before getting here, so we're 6395 * guaranteed nobody will look up these exact classes -- they're properly dead 6396 * but still allocated. 6397 */ 6398 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6399 { 6400 struct pending_free *pf; 6401 unsigned long flags; 6402 bool need_callback; 6403 6404 init_data_structures_once(); 6405 6406 raw_local_irq_save(flags); 6407 lockdep_lock(); 6408 pf = get_pending_free(); 6409 __lockdep_free_key_range(pf, start, size); 6410 need_callback = prepare_call_rcu_zapped(pf); 6411 lockdep_unlock(); 6412 raw_local_irq_restore(flags); 6413 if (need_callback) 6414 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6415 /* 6416 * Wait for any possible iterators from look_up_lock_class() to pass 6417 * before continuing to free the memory they refer to. 6418 */ 6419 synchronize_rcu(); 6420 } 6421 6422 /* 6423 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6424 * Ignores debug_locks. Must only be used by the lockdep selftests. 6425 */ 6426 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6427 { 6428 struct pending_free *pf = delayed_free.pf; 6429 unsigned long flags; 6430 6431 init_data_structures_once(); 6432 6433 raw_local_irq_save(flags); 6434 lockdep_lock(); 6435 __lockdep_free_key_range(pf, start, size); 6436 __free_zapped_classes(pf); 6437 lockdep_unlock(); 6438 raw_local_irq_restore(flags); 6439 } 6440 6441 void lockdep_free_key_range(void *start, unsigned long size) 6442 { 6443 init_data_structures_once(); 6444 6445 if (inside_selftest()) 6446 lockdep_free_key_range_imm(start, size); 6447 else 6448 lockdep_free_key_range_reg(start, size); 6449 } 6450 6451 /* 6452 * Check whether any element of the @lock->class_cache[] array refers to a 6453 * registered lock class. The caller must hold either the graph lock or the 6454 * RCU read lock. 6455 */ 6456 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6457 { 6458 struct lock_class *class; 6459 struct hlist_head *head; 6460 int i, j; 6461 6462 for (i = 0; i < CLASSHASH_SIZE; i++) { 6463 head = classhash_table + i; 6464 hlist_for_each_entry_rcu(class, head, hash_entry) { 6465 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6466 if (lock->class_cache[j] == class) 6467 return true; 6468 } 6469 } 6470 return false; 6471 } 6472 6473 /* The caller must hold the graph lock. Does not sleep. */ 6474 static void __lockdep_reset_lock(struct pending_free *pf, 6475 struct lockdep_map *lock) 6476 { 6477 struct lock_class *class; 6478 int j; 6479 6480 /* 6481 * Remove all classes this lock might have: 6482 */ 6483 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6484 /* 6485 * If the class exists we look it up and zap it: 6486 */ 6487 class = look_up_lock_class(lock, j); 6488 if (class) 6489 zap_class(pf, class); 6490 } 6491 /* 6492 * Debug check: in the end all mapped classes should 6493 * be gone. 6494 */ 6495 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6496 debug_locks_off(); 6497 } 6498 6499 /* 6500 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6501 * released data structures from RCU context. 6502 */ 6503 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6504 { 6505 struct pending_free *pf; 6506 unsigned long flags; 6507 int locked; 6508 bool need_callback = false; 6509 6510 raw_local_irq_save(flags); 6511 locked = graph_lock(); 6512 if (!locked) 6513 goto out_irq; 6514 6515 pf = get_pending_free(); 6516 __lockdep_reset_lock(pf, lock); 6517 need_callback = prepare_call_rcu_zapped(pf); 6518 6519 graph_unlock(); 6520 out_irq: 6521 raw_local_irq_restore(flags); 6522 if (need_callback) 6523 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6524 } 6525 6526 /* 6527 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6528 * lockdep selftests. 6529 */ 6530 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6531 { 6532 struct pending_free *pf = delayed_free.pf; 6533 unsigned long flags; 6534 6535 raw_local_irq_save(flags); 6536 lockdep_lock(); 6537 __lockdep_reset_lock(pf, lock); 6538 __free_zapped_classes(pf); 6539 lockdep_unlock(); 6540 raw_local_irq_restore(flags); 6541 } 6542 6543 void lockdep_reset_lock(struct lockdep_map *lock) 6544 { 6545 init_data_structures_once(); 6546 6547 if (inside_selftest()) 6548 lockdep_reset_lock_imm(lock); 6549 else 6550 lockdep_reset_lock_reg(lock); 6551 } 6552 6553 /* 6554 * Unregister a dynamically allocated key. 6555 * 6556 * Unlike lockdep_register_key(), a search is always done to find a matching 6557 * key irrespective of debug_locks to avoid potential invalid access to freed 6558 * memory in lock_class entry. 6559 */ 6560 void lockdep_unregister_key(struct lock_class_key *key) 6561 { 6562 struct hlist_head *hash_head = keyhashentry(key); 6563 struct lock_class_key *k; 6564 struct pending_free *pf; 6565 unsigned long flags; 6566 bool found = false; 6567 bool need_callback = false; 6568 6569 might_sleep(); 6570 6571 if (WARN_ON_ONCE(static_obj(key))) 6572 return; 6573 6574 raw_local_irq_save(flags); 6575 lockdep_lock(); 6576 6577 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6578 if (k == key) { 6579 hlist_del_rcu(&k->hash_entry); 6580 found = true; 6581 break; 6582 } 6583 } 6584 WARN_ON_ONCE(!found && debug_locks); 6585 if (found) { 6586 pf = get_pending_free(); 6587 __lockdep_free_key_range(pf, key, 1); 6588 need_callback = prepare_call_rcu_zapped(pf); 6589 } 6590 lockdep_unlock(); 6591 raw_local_irq_restore(flags); 6592 6593 if (need_callback) 6594 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6595 6596 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6597 synchronize_rcu(); 6598 } 6599 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6600 6601 void __init lockdep_init(void) 6602 { 6603 pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6604 6605 pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6606 pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6607 pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6608 pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6609 pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6610 pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6611 pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6612 6613 pr_info(" memory used by lock dependency info: %zu kB\n", 6614 (sizeof(lock_classes) + 6615 sizeof(lock_classes_in_use) + 6616 sizeof(classhash_table) + 6617 sizeof(list_entries) + 6618 sizeof(list_entries_in_use) + 6619 sizeof(chainhash_table) + 6620 sizeof(delayed_free) 6621 #ifdef CONFIG_PROVE_LOCKING 6622 + sizeof(lock_cq) 6623 + sizeof(lock_chains) 6624 + sizeof(lock_chains_in_use) 6625 + sizeof(chain_hlocks) 6626 #endif 6627 ) / 1024 6628 ); 6629 6630 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6631 pr_info(" memory used for stack traces: %zu kB\n", 6632 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6633 ); 6634 #endif 6635 6636 pr_info(" per task-struct memory footprint: %zu bytes\n", 6637 sizeof(((struct task_struct *)NULL)->held_locks)); 6638 } 6639 6640 static void 6641 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6642 const void *mem_to, struct held_lock *hlock) 6643 { 6644 if (!debug_locks_off()) 6645 return; 6646 if (debug_locks_silent) 6647 return; 6648 6649 nbcon_cpu_emergency_enter(); 6650 6651 pr_warn("\n"); 6652 pr_warn("=========================\n"); 6653 pr_warn("WARNING: held lock freed!\n"); 6654 print_kernel_ident(); 6655 pr_warn("-------------------------\n"); 6656 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6657 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6658 print_lock(hlock); 6659 lockdep_print_held_locks(curr); 6660 6661 pr_warn("\nstack backtrace:\n"); 6662 dump_stack(); 6663 6664 nbcon_cpu_emergency_exit(); 6665 } 6666 6667 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6668 const void* lock_from, unsigned long lock_len) 6669 { 6670 return lock_from + lock_len <= mem_from || 6671 mem_from + mem_len <= lock_from; 6672 } 6673 6674 /* 6675 * Called when kernel memory is freed (or unmapped), or if a lock 6676 * is destroyed or reinitialized - this code checks whether there is 6677 * any held lock in the memory range of <from> to <to>: 6678 */ 6679 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6680 { 6681 struct task_struct *curr = current; 6682 struct held_lock *hlock; 6683 unsigned long flags; 6684 int i; 6685 6686 if (unlikely(!debug_locks)) 6687 return; 6688 6689 raw_local_irq_save(flags); 6690 for (i = 0; i < curr->lockdep_depth; i++) { 6691 hlock = curr->held_locks + i; 6692 6693 if (not_in_range(mem_from, mem_len, hlock->instance, 6694 sizeof(*hlock->instance))) 6695 continue; 6696 6697 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6698 break; 6699 } 6700 raw_local_irq_restore(flags); 6701 } 6702 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6703 6704 static void print_held_locks_bug(void) 6705 { 6706 if (!debug_locks_off()) 6707 return; 6708 if (debug_locks_silent) 6709 return; 6710 6711 nbcon_cpu_emergency_enter(); 6712 6713 pr_warn("\n"); 6714 pr_warn("====================================\n"); 6715 pr_warn("WARNING: %s/%d still has locks held!\n", 6716 current->comm, task_pid_nr(current)); 6717 print_kernel_ident(); 6718 pr_warn("------------------------------------\n"); 6719 lockdep_print_held_locks(current); 6720 pr_warn("\nstack backtrace:\n"); 6721 dump_stack(); 6722 6723 nbcon_cpu_emergency_exit(); 6724 } 6725 6726 void debug_check_no_locks_held(void) 6727 { 6728 if (unlikely(current->lockdep_depth > 0)) 6729 print_held_locks_bug(); 6730 } 6731 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6732 6733 #ifdef __KERNEL__ 6734 void debug_show_all_locks(void) 6735 { 6736 struct task_struct *g, *p; 6737 6738 if (unlikely(!debug_locks)) { 6739 pr_warn("INFO: lockdep is turned off.\n"); 6740 return; 6741 } 6742 pr_warn("\nShowing all locks held in the system:\n"); 6743 6744 rcu_read_lock(); 6745 for_each_process_thread(g, p) { 6746 if (!p->lockdep_depth) 6747 continue; 6748 lockdep_print_held_locks(p); 6749 touch_nmi_watchdog(); 6750 touch_all_softlockup_watchdogs(); 6751 } 6752 rcu_read_unlock(); 6753 6754 pr_warn("\n"); 6755 pr_warn("=============================================\n\n"); 6756 } 6757 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6758 #endif 6759 6760 /* 6761 * Careful: only use this function if you are sure that 6762 * the task cannot run in parallel! 6763 */ 6764 void debug_show_held_locks(struct task_struct *task) 6765 { 6766 if (unlikely(!debug_locks)) { 6767 printk("INFO: lockdep is turned off.\n"); 6768 return; 6769 } 6770 lockdep_print_held_locks(task); 6771 } 6772 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6773 6774 asmlinkage __visible void lockdep_sys_exit(void) 6775 { 6776 struct task_struct *curr = current; 6777 6778 if (unlikely(curr->lockdep_depth)) { 6779 if (!debug_locks_off()) 6780 return; 6781 nbcon_cpu_emergency_enter(); 6782 pr_warn("\n"); 6783 pr_warn("================================================\n"); 6784 pr_warn("WARNING: lock held when returning to user space!\n"); 6785 print_kernel_ident(); 6786 pr_warn("------------------------------------------------\n"); 6787 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6788 curr->comm, curr->pid); 6789 lockdep_print_held_locks(curr); 6790 nbcon_cpu_emergency_exit(); 6791 } 6792 6793 /* 6794 * The lock history for each syscall should be independent. So wipe the 6795 * slate clean on return to userspace. 6796 */ 6797 lockdep_invariant_state(false); 6798 } 6799 6800 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6801 { 6802 struct task_struct *curr = current; 6803 int dl = READ_ONCE(debug_locks); 6804 bool rcu = warn_rcu_enter(); 6805 6806 /* Note: the following can be executed concurrently, so be careful. */ 6807 nbcon_cpu_emergency_enter(); 6808 pr_warn("\n"); 6809 pr_warn("=============================\n"); 6810 pr_warn("WARNING: suspicious RCU usage\n"); 6811 print_kernel_ident(); 6812 pr_warn("-----------------------------\n"); 6813 pr_warn("%s:%d %s!\n", file, line, s); 6814 pr_warn("\nother info that might help us debug this:\n\n"); 6815 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6816 !rcu_lockdep_current_cpu_online() 6817 ? "RCU used illegally from offline CPU!\n" 6818 : "", 6819 rcu_scheduler_active, dl, 6820 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6821 6822 /* 6823 * If a CPU is in the RCU-free window in idle (ie: in the section 6824 * between ct_idle_enter() and ct_idle_exit(), then RCU 6825 * considers that CPU to be in an "extended quiescent state", 6826 * which means that RCU will be completely ignoring that CPU. 6827 * Therefore, rcu_read_lock() and friends have absolutely no 6828 * effect on a CPU running in that state. In other words, even if 6829 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6830 * delete data structures out from under it. RCU really has no 6831 * choice here: we need to keep an RCU-free window in idle where 6832 * the CPU may possibly enter into low power mode. This way we can 6833 * notice an extended quiescent state to other CPUs that started a grace 6834 * period. Otherwise we would delay any grace period as long as we run 6835 * in the idle task. 6836 * 6837 * So complain bitterly if someone does call rcu_read_lock(), 6838 * rcu_read_lock_bh() and so on from extended quiescent states. 6839 */ 6840 if (!rcu_is_watching()) 6841 pr_warn("RCU used illegally from extended quiescent state!\n"); 6842 6843 lockdep_print_held_locks(curr); 6844 pr_warn("\nstack backtrace:\n"); 6845 dump_stack(); 6846 nbcon_cpu_emergency_exit(); 6847 warn_rcu_exit(rcu); 6848 } 6849 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6850