xref: /linux/kernel/locking/lockdep.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60 
61 #include <asm/sections.h>
62 
63 #include "lockdep_internals.h"
64 
65 #include <trace/events/lock.h>
66 
67 #ifdef CONFIG_PROVE_LOCKING
68 static int prove_locking = 1;
69 module_param(prove_locking, int, 0644);
70 #else
71 #define prove_locking 0
72 #endif
73 
74 #ifdef CONFIG_LOCK_STAT
75 static int lock_stat = 1;
76 module_param(lock_stat, int, 0644);
77 #else
78 #define lock_stat 0
79 #endif
80 
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_lockdep_table[] = {
83 #ifdef CONFIG_PROVE_LOCKING
84 	{
85 		.procname       = "prove_locking",
86 		.data           = &prove_locking,
87 		.maxlen         = sizeof(int),
88 		.mode           = 0644,
89 		.proc_handler   = proc_dointvec,
90 	},
91 #endif /* CONFIG_PROVE_LOCKING */
92 #ifdef CONFIG_LOCK_STAT
93 	{
94 		.procname       = "lock_stat",
95 		.data           = &lock_stat,
96 		.maxlen         = sizeof(int),
97 		.mode           = 0644,
98 		.proc_handler   = proc_dointvec,
99 	},
100 #endif /* CONFIG_LOCK_STAT */
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		nbcon_cpu_emergency_enter();
578 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
579 		dump_stack();
580 		nbcon_cpu_emergency_exit();
581 
582 		return NULL;
583 	}
584 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
585 
586 	hash = jhash(trace->entries, trace->nr_entries *
587 		     sizeof(trace->entries[0]), 0);
588 	trace->hash = hash;
589 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
590 	hlist_for_each_entry(t2, hash_head, hash_entry) {
591 		if (traces_identical(trace, t2))
592 			return t2;
593 	}
594 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
595 	hlist_add_head(&trace->hash_entry, hash_head);
596 
597 	return trace;
598 }
599 
600 /* Return the number of stack traces in the stack_trace[] array. */
601 u64 lockdep_stack_trace_count(void)
602 {
603 	struct lock_trace *trace;
604 	u64 c = 0;
605 	int i;
606 
607 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
608 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
609 			c++;
610 		}
611 	}
612 
613 	return c;
614 }
615 
616 /* Return the number of stack hash chains that have at least one stack trace. */
617 u64 lockdep_stack_hash_count(void)
618 {
619 	u64 c = 0;
620 	int i;
621 
622 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
623 		if (!hlist_empty(&stack_trace_hash[i]))
624 			c++;
625 
626 	return c;
627 }
628 #endif
629 
630 unsigned int nr_hardirq_chains;
631 unsigned int nr_softirq_chains;
632 unsigned int nr_process_chains;
633 unsigned int max_lockdep_depth;
634 
635 #ifdef CONFIG_DEBUG_LOCKDEP
636 /*
637  * Various lockdep statistics:
638  */
639 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
640 #endif
641 
642 #ifdef CONFIG_PROVE_LOCKING
643 /*
644  * Locking printouts:
645  */
646 
647 #define __USAGE(__STATE)						\
648 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
649 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
650 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
651 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
652 
653 static const char *usage_str[] =
654 {
655 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
656 #include "lockdep_states.h"
657 #undef LOCKDEP_STATE
658 	[LOCK_USED] = "INITIAL USE",
659 	[LOCK_USED_READ] = "INITIAL READ USE",
660 	/* abused as string storage for verify_lock_unused() */
661 	[LOCK_USAGE_STATES] = "IN-NMI",
662 };
663 #endif
664 
665 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
666 {
667 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
668 }
669 
670 static inline unsigned long lock_flag(enum lock_usage_bit bit)
671 {
672 	return 1UL << bit;
673 }
674 
675 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
676 {
677 	/*
678 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
679 	 * irq context), which is the safest usage category.
680 	 */
681 	char c = '.';
682 
683 	/*
684 	 * The order of the following usage checks matters, which will
685 	 * result in the outcome character as follows:
686 	 *
687 	 * - '+': irq is enabled and not in irq context
688 	 * - '-': in irq context and irq is disabled
689 	 * - '?': in irq context and irq is enabled
690 	 */
691 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
692 		c = '+';
693 		if (class->usage_mask & lock_flag(bit))
694 			c = '?';
695 	} else if (class->usage_mask & lock_flag(bit))
696 		c = '-';
697 
698 	return c;
699 }
700 
701 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
702 {
703 	int i = 0;
704 
705 #define LOCKDEP_STATE(__STATE) 						\
706 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
707 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
708 #include "lockdep_states.h"
709 #undef LOCKDEP_STATE
710 
711 	usage[i] = '\0';
712 }
713 
714 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
715 {
716 	char str[KSYM_NAME_LEN];
717 	const char *name;
718 
719 	name = class->name;
720 	if (!name) {
721 		name = __get_key_name(class->key, str);
722 		printk(KERN_CONT "%s", name);
723 	} else {
724 		printk(KERN_CONT "%s", name);
725 		if (class->name_version > 1)
726 			printk(KERN_CONT "#%d", class->name_version);
727 		if (class->subclass)
728 			printk(KERN_CONT "/%d", class->subclass);
729 		if (hlock && class->print_fn)
730 			class->print_fn(hlock->instance);
731 	}
732 }
733 
734 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
735 {
736 	char usage[LOCK_USAGE_CHARS];
737 
738 	get_usage_chars(class, usage);
739 
740 	printk(KERN_CONT " (");
741 	__print_lock_name(hlock, class);
742 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
743 			class->wait_type_outer ?: class->wait_type_inner,
744 			class->wait_type_inner);
745 }
746 
747 static void print_lockdep_cache(struct lockdep_map *lock)
748 {
749 	const char *name;
750 	char str[KSYM_NAME_LEN];
751 
752 	name = lock->name;
753 	if (!name)
754 		name = __get_key_name(lock->key->subkeys, str);
755 
756 	printk(KERN_CONT "%s", name);
757 }
758 
759 static void print_lock(struct held_lock *hlock)
760 {
761 	/*
762 	 * We can be called locklessly through debug_show_all_locks() so be
763 	 * extra careful, the hlock might have been released and cleared.
764 	 *
765 	 * If this indeed happens, lets pretend it does not hurt to continue
766 	 * to print the lock unless the hlock class_idx does not point to a
767 	 * registered class. The rationale here is: since we don't attempt
768 	 * to distinguish whether we are in this situation, if it just
769 	 * happened we can't count on class_idx to tell either.
770 	 */
771 	struct lock_class *lock = hlock_class(hlock);
772 
773 	if (!lock) {
774 		printk(KERN_CONT "<RELEASED>\n");
775 		return;
776 	}
777 
778 	printk(KERN_CONT "%px", hlock->instance);
779 	print_lock_name(hlock, lock);
780 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
781 }
782 
783 static void lockdep_print_held_locks(struct task_struct *p)
784 {
785 	int i, depth = READ_ONCE(p->lockdep_depth);
786 
787 	if (!depth)
788 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
789 	else
790 		printk("%d lock%s held by %s/%d:\n", depth,
791 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
792 	/*
793 	 * It's not reliable to print a task's held locks if it's not sleeping
794 	 * and it's not the current task.
795 	 */
796 	if (p != current && task_is_running(p))
797 		return;
798 	for (i = 0; i < depth; i++) {
799 		printk(" #%d: ", i);
800 		print_lock(p->held_locks + i);
801 	}
802 }
803 
804 static void print_kernel_ident(void)
805 {
806 	printk("%s %.*s %s\n", init_utsname()->release,
807 		(int)strcspn(init_utsname()->version, " "),
808 		init_utsname()->version,
809 		print_tainted());
810 }
811 
812 static int very_verbose(struct lock_class *class)
813 {
814 #if VERY_VERBOSE
815 	return class_filter(class);
816 #endif
817 	return 0;
818 }
819 
820 /*
821  * Is this the address of a static object:
822  */
823 #ifdef __KERNEL__
824 static int static_obj(const void *obj)
825 {
826 	unsigned long addr = (unsigned long) obj;
827 
828 	if (is_kernel_core_data(addr))
829 		return 1;
830 
831 	/*
832 	 * keys are allowed in the __ro_after_init section.
833 	 */
834 	if (is_kernel_rodata(addr))
835 		return 1;
836 
837 	/*
838 	 * in initdata section and used during bootup only?
839 	 * NOTE: On some platforms the initdata section is
840 	 * outside of the _stext ... _end range.
841 	 */
842 	if (system_state < SYSTEM_FREEING_INITMEM &&
843 		init_section_contains((void *)addr, 1))
844 		return 1;
845 
846 	/*
847 	 * in-kernel percpu var?
848 	 */
849 	if (is_kernel_percpu_address(addr))
850 		return 1;
851 
852 	/*
853 	 * module static or percpu var?
854 	 */
855 	return is_module_address(addr) || is_module_percpu_address(addr);
856 }
857 #endif
858 
859 /*
860  * To make lock name printouts unique, we calculate a unique
861  * class->name_version generation counter. The caller must hold the graph
862  * lock.
863  */
864 static int count_matching_names(struct lock_class *new_class)
865 {
866 	struct lock_class *class;
867 	int count = 0;
868 
869 	if (!new_class->name)
870 		return 0;
871 
872 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
873 		if (new_class->key - new_class->subclass == class->key)
874 			return class->name_version;
875 		if (class->name && !strcmp(class->name, new_class->name))
876 			count = max(count, class->name_version);
877 	}
878 
879 	return count + 1;
880 }
881 
882 /* used from NMI context -- must be lockless */
883 static noinstr struct lock_class *
884 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
885 {
886 	struct lockdep_subclass_key *key;
887 	struct hlist_head *hash_head;
888 	struct lock_class *class;
889 
890 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
891 		instrumentation_begin();
892 		debug_locks_off();
893 		nbcon_cpu_emergency_enter();
894 		printk(KERN_ERR
895 			"BUG: looking up invalid subclass: %u\n", subclass);
896 		printk(KERN_ERR
897 			"turning off the locking correctness validator.\n");
898 		dump_stack();
899 		nbcon_cpu_emergency_exit();
900 		instrumentation_end();
901 		return NULL;
902 	}
903 
904 	/*
905 	 * If it is not initialised then it has never been locked,
906 	 * so it won't be present in the hash table.
907 	 */
908 	if (unlikely(!lock->key))
909 		return NULL;
910 
911 	/*
912 	 * NOTE: the class-key must be unique. For dynamic locks, a static
913 	 * lock_class_key variable is passed in through the mutex_init()
914 	 * (or spin_lock_init()) call - which acts as the key. For static
915 	 * locks we use the lock object itself as the key.
916 	 */
917 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
918 			sizeof(struct lockdep_map));
919 
920 	key = lock->key->subkeys + subclass;
921 
922 	hash_head = classhashentry(key);
923 
924 	/*
925 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
926 	 */
927 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
928 		return NULL;
929 
930 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
931 		if (class->key == key) {
932 			/*
933 			 * Huh! same key, different name? Did someone trample
934 			 * on some memory? We're most confused.
935 			 */
936 			WARN_ONCE(class->name != lock->name &&
937 				  lock->key != &__lockdep_no_validate__,
938 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
939 				  lock->name, lock->key, class->name);
940 			return class;
941 		}
942 	}
943 
944 	return NULL;
945 }
946 
947 /*
948  * Static locks do not have their class-keys yet - for them the key is
949  * the lock object itself. If the lock is in the per cpu area, the
950  * canonical address of the lock (per cpu offset removed) is used.
951  */
952 static bool assign_lock_key(struct lockdep_map *lock)
953 {
954 	unsigned long can_addr, addr = (unsigned long)lock;
955 
956 #ifdef __KERNEL__
957 	/*
958 	 * lockdep_free_key_range() assumes that struct lock_class_key
959 	 * objects do not overlap. Since we use the address of lock
960 	 * objects as class key for static objects, check whether the
961 	 * size of lock_class_key objects does not exceed the size of
962 	 * the smallest lock object.
963 	 */
964 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
965 #endif
966 
967 	if (__is_kernel_percpu_address(addr, &can_addr))
968 		lock->key = (void *)can_addr;
969 	else if (__is_module_percpu_address(addr, &can_addr))
970 		lock->key = (void *)can_addr;
971 	else if (static_obj(lock))
972 		lock->key = (void *)lock;
973 	else {
974 		/* Debug-check: all keys must be persistent! */
975 		debug_locks_off();
976 		nbcon_cpu_emergency_enter();
977 		pr_err("INFO: trying to register non-static key.\n");
978 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
979 		pr_err("you didn't initialize this object before use?\n");
980 		pr_err("turning off the locking correctness validator.\n");
981 		dump_stack();
982 		nbcon_cpu_emergency_exit();
983 		return false;
984 	}
985 
986 	return true;
987 }
988 
989 #ifdef CONFIG_DEBUG_LOCKDEP
990 
991 /* Check whether element @e occurs in list @h */
992 static bool in_list(struct list_head *e, struct list_head *h)
993 {
994 	struct list_head *f;
995 
996 	list_for_each(f, h) {
997 		if (e == f)
998 			return true;
999 	}
1000 
1001 	return false;
1002 }
1003 
1004 /*
1005  * Check whether entry @e occurs in any of the locks_after or locks_before
1006  * lists.
1007  */
1008 static bool in_any_class_list(struct list_head *e)
1009 {
1010 	struct lock_class *class;
1011 	int i;
1012 
1013 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014 		class = &lock_classes[i];
1015 		if (in_list(e, &class->locks_after) ||
1016 		    in_list(e, &class->locks_before))
1017 			return true;
1018 	}
1019 	return false;
1020 }
1021 
1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023 {
1024 	struct lock_list *e;
1025 
1026 	list_for_each_entry(e, h, entry) {
1027 		if (e->links_to != c) {
1028 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029 			       c->name ? : "(?)",
1030 			       (unsigned long)(e - list_entries),
1031 			       e->links_to && e->links_to->name ?
1032 			       e->links_to->name : "(?)",
1033 			       e->class && e->class->name ? e->class->name :
1034 			       "(?)");
1035 			return false;
1036 		}
1037 	}
1038 	return true;
1039 }
1040 
1041 #ifdef CONFIG_PROVE_LOCKING
1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043 #endif
1044 
1045 static bool check_lock_chain_key(struct lock_chain *chain)
1046 {
1047 #ifdef CONFIG_PROVE_LOCKING
1048 	u64 chain_key = INITIAL_CHAIN_KEY;
1049 	int i;
1050 
1051 	for (i = chain->base; i < chain->base + chain->depth; i++)
1052 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053 	/*
1054 	 * The 'unsigned long long' casts avoid that a compiler warning
1055 	 * is reported when building tools/lib/lockdep.
1056 	 */
1057 	if (chain->chain_key != chain_key) {
1058 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059 		       (unsigned long long)(chain - lock_chains),
1060 		       (unsigned long long)chain->chain_key,
1061 		       (unsigned long long)chain_key);
1062 		return false;
1063 	}
1064 #endif
1065 	return true;
1066 }
1067 
1068 static bool in_any_zapped_class_list(struct lock_class *class)
1069 {
1070 	struct pending_free *pf;
1071 	int i;
1072 
1073 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074 		if (in_list(&class->lock_entry, &pf->zapped))
1075 			return true;
1076 	}
1077 
1078 	return false;
1079 }
1080 
1081 static bool __check_data_structures(void)
1082 {
1083 	struct lock_class *class;
1084 	struct lock_chain *chain;
1085 	struct hlist_head *head;
1086 	struct lock_list *e;
1087 	int i;
1088 
1089 	/* Check whether all classes occur in a lock list. */
1090 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091 		class = &lock_classes[i];
1092 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1094 		    !in_any_zapped_class_list(class)) {
1095 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1096 			       class, class->name ? : "(?)");
1097 			return false;
1098 		}
1099 	}
1100 
1101 	/* Check whether all classes have valid lock lists. */
1102 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103 		class = &lock_classes[i];
1104 		if (!class_lock_list_valid(class, &class->locks_before))
1105 			return false;
1106 		if (!class_lock_list_valid(class, &class->locks_after))
1107 			return false;
1108 	}
1109 
1110 	/* Check the chain_key of all lock chains. */
1111 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112 		head = chainhash_table + i;
1113 		hlist_for_each_entry_rcu(chain, head, entry) {
1114 			if (!check_lock_chain_key(chain))
1115 				return false;
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Check whether all list entries that are in use occur in a class
1121 	 * lock list.
1122 	 */
1123 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124 		e = list_entries + i;
1125 		if (!in_any_class_list(&e->entry)) {
1126 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127 			       (unsigned int)(e - list_entries),
1128 			       e->class->name ? : "(?)",
1129 			       e->links_to->name ? : "(?)");
1130 			return false;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Check whether all list entries that are not in use do not occur in
1136 	 * a class lock list.
1137 	 */
1138 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139 		e = list_entries + i;
1140 		if (in_any_class_list(&e->entry)) {
1141 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142 			       (unsigned int)(e - list_entries),
1143 			       e->class && e->class->name ? e->class->name :
1144 			       "(?)",
1145 			       e->links_to && e->links_to->name ?
1146 			       e->links_to->name : "(?)");
1147 			return false;
1148 		}
1149 	}
1150 
1151 	return true;
1152 }
1153 
1154 int check_consistency = 0;
1155 module_param(check_consistency, int, 0644);
1156 
1157 static void check_data_structures(void)
1158 {
1159 	static bool once = false;
1160 
1161 	if (check_consistency && !once) {
1162 		if (!__check_data_structures()) {
1163 			once = true;
1164 			WARN_ON(once);
1165 		}
1166 	}
1167 }
1168 
1169 #else /* CONFIG_DEBUG_LOCKDEP */
1170 
1171 static inline void check_data_structures(void) { }
1172 
1173 #endif /* CONFIG_DEBUG_LOCKDEP */
1174 
1175 static void init_chain_block_buckets(void);
1176 
1177 /*
1178  * Initialize the lock_classes[] array elements, the free_lock_classes list
1179  * and also the delayed_free structure.
1180  */
1181 static void init_data_structures_once(void)
1182 {
1183 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1184 	int i;
1185 
1186 	if (likely(rcu_head_initialized))
1187 		return;
1188 
1189 	if (system_state >= SYSTEM_SCHEDULING) {
1190 		init_rcu_head(&delayed_free.rcu_head);
1191 		rcu_head_initialized = true;
1192 	}
1193 
1194 	if (ds_initialized)
1195 		return;
1196 
1197 	ds_initialized = true;
1198 
1199 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201 
1202 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206 	}
1207 	init_chain_block_buckets();
1208 }
1209 
1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211 {
1212 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213 
1214 	return lock_keys_hash + hash;
1215 }
1216 
1217 /* Register a dynamically allocated key. */
1218 void lockdep_register_key(struct lock_class_key *key)
1219 {
1220 	struct hlist_head *hash_head;
1221 	struct lock_class_key *k;
1222 	unsigned long flags;
1223 
1224 	if (WARN_ON_ONCE(static_obj(key)))
1225 		return;
1226 	hash_head = keyhashentry(key);
1227 
1228 	raw_local_irq_save(flags);
1229 	if (!graph_lock())
1230 		goto restore_irqs;
1231 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232 		if (WARN_ON_ONCE(k == key))
1233 			goto out_unlock;
1234 	}
1235 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1236 out_unlock:
1237 	graph_unlock();
1238 restore_irqs:
1239 	raw_local_irq_restore(flags);
1240 }
1241 EXPORT_SYMBOL_GPL(lockdep_register_key);
1242 
1243 /* Check whether a key has been registered as a dynamic key. */
1244 static bool is_dynamic_key(const struct lock_class_key *key)
1245 {
1246 	struct hlist_head *hash_head;
1247 	struct lock_class_key *k;
1248 	bool found = false;
1249 
1250 	if (WARN_ON_ONCE(static_obj(key)))
1251 		return false;
1252 
1253 	/*
1254 	 * If lock debugging is disabled lock_keys_hash[] may contain
1255 	 * pointers to memory that has already been freed. Avoid triggering
1256 	 * a use-after-free in that case by returning early.
1257 	 */
1258 	if (!debug_locks)
1259 		return true;
1260 
1261 	hash_head = keyhashentry(key);
1262 
1263 	rcu_read_lock();
1264 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265 		if (k == key) {
1266 			found = true;
1267 			break;
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 
1272 	return found;
1273 }
1274 
1275 /*
1276  * Register a lock's class in the hash-table, if the class is not present
1277  * yet. Otherwise we look it up. We cache the result in the lock object
1278  * itself, so actual lookup of the hash should be once per lock object.
1279  */
1280 static struct lock_class *
1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282 {
1283 	struct lockdep_subclass_key *key;
1284 	struct hlist_head *hash_head;
1285 	struct lock_class *class;
1286 	int idx;
1287 
1288 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289 
1290 	class = look_up_lock_class(lock, subclass);
1291 	if (likely(class))
1292 		goto out_set_class_cache;
1293 
1294 	if (!lock->key) {
1295 		if (!assign_lock_key(lock))
1296 			return NULL;
1297 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298 		return NULL;
1299 	}
1300 
1301 	key = lock->key->subkeys + subclass;
1302 	hash_head = classhashentry(key);
1303 
1304 	if (!graph_lock()) {
1305 		return NULL;
1306 	}
1307 	/*
1308 	 * We have to do the hash-walk again, to avoid races
1309 	 * with another CPU:
1310 	 */
1311 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312 		if (class->key == key)
1313 			goto out_unlock_set;
1314 	}
1315 
1316 	init_data_structures_once();
1317 
1318 	/* Allocate a new lock class and add it to the hash. */
1319 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320 					 lock_entry);
1321 	if (!class) {
1322 		if (!debug_locks_off_graph_unlock()) {
1323 			return NULL;
1324 		}
1325 
1326 		nbcon_cpu_emergency_enter();
1327 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1328 		dump_stack();
1329 		nbcon_cpu_emergency_exit();
1330 		return NULL;
1331 	}
1332 	nr_lock_classes++;
1333 	__set_bit(class - lock_classes, lock_classes_in_use);
1334 	debug_atomic_inc(nr_unused_locks);
1335 	class->key = key;
1336 	class->name = lock->name;
1337 	class->subclass = subclass;
1338 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1339 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1340 	class->name_version = count_matching_names(class);
1341 	class->wait_type_inner = lock->wait_type_inner;
1342 	class->wait_type_outer = lock->wait_type_outer;
1343 	class->lock_type = lock->lock_type;
1344 	/*
1345 	 * We use RCU's safe list-add method to make
1346 	 * parallel walking of the hash-list safe:
1347 	 */
1348 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1349 	/*
1350 	 * Remove the class from the free list and add it to the global list
1351 	 * of classes.
1352 	 */
1353 	list_move_tail(&class->lock_entry, &all_lock_classes);
1354 	idx = class - lock_classes;
1355 	if (idx > max_lock_class_idx)
1356 		max_lock_class_idx = idx;
1357 
1358 	if (verbose(class)) {
1359 		graph_unlock();
1360 
1361 		nbcon_cpu_emergency_enter();
1362 		printk("\nnew class %px: %s", class->key, class->name);
1363 		if (class->name_version > 1)
1364 			printk(KERN_CONT "#%d", class->name_version);
1365 		printk(KERN_CONT "\n");
1366 		dump_stack();
1367 		nbcon_cpu_emergency_exit();
1368 
1369 		if (!graph_lock()) {
1370 			return NULL;
1371 		}
1372 	}
1373 out_unlock_set:
1374 	graph_unlock();
1375 
1376 out_set_class_cache:
1377 	if (!subclass || force)
1378 		lock->class_cache[0] = class;
1379 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1380 		lock->class_cache[subclass] = class;
1381 
1382 	/*
1383 	 * Hash collision, did we smoke some? We found a class with a matching
1384 	 * hash but the subclass -- which is hashed in -- didn't match.
1385 	 */
1386 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1387 		return NULL;
1388 
1389 	return class;
1390 }
1391 
1392 #ifdef CONFIG_PROVE_LOCKING
1393 /*
1394  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1395  * with NULL on failure)
1396  */
1397 static struct lock_list *alloc_list_entry(void)
1398 {
1399 	int idx = find_first_zero_bit(list_entries_in_use,
1400 				      ARRAY_SIZE(list_entries));
1401 
1402 	if (idx >= ARRAY_SIZE(list_entries)) {
1403 		if (!debug_locks_off_graph_unlock())
1404 			return NULL;
1405 
1406 		nbcon_cpu_emergency_enter();
1407 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1408 		dump_stack();
1409 		nbcon_cpu_emergency_exit();
1410 		return NULL;
1411 	}
1412 	nr_list_entries++;
1413 	__set_bit(idx, list_entries_in_use);
1414 	return list_entries + idx;
1415 }
1416 
1417 /*
1418  * Add a new dependency to the head of the list:
1419  */
1420 static int add_lock_to_list(struct lock_class *this,
1421 			    struct lock_class *links_to, struct list_head *head,
1422 			    u16 distance, u8 dep,
1423 			    const struct lock_trace *trace)
1424 {
1425 	struct lock_list *entry;
1426 	/*
1427 	 * Lock not present yet - get a new dependency struct and
1428 	 * add it to the list:
1429 	 */
1430 	entry = alloc_list_entry();
1431 	if (!entry)
1432 		return 0;
1433 
1434 	entry->class = this;
1435 	entry->links_to = links_to;
1436 	entry->dep = dep;
1437 	entry->distance = distance;
1438 	entry->trace = trace;
1439 	/*
1440 	 * Both allocation and removal are done under the graph lock; but
1441 	 * iteration is under RCU-sched; see look_up_lock_class() and
1442 	 * lockdep_free_key_range().
1443 	 */
1444 	list_add_tail_rcu(&entry->entry, head);
1445 
1446 	return 1;
1447 }
1448 
1449 /*
1450  * For good efficiency of modular, we use power of 2
1451  */
1452 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1453 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1454 
1455 /*
1456  * The circular_queue and helpers are used to implement graph
1457  * breadth-first search (BFS) algorithm, by which we can determine
1458  * whether there is a path from a lock to another. In deadlock checks,
1459  * a path from the next lock to be acquired to a previous held lock
1460  * indicates that adding the <prev> -> <next> lock dependency will
1461  * produce a circle in the graph. Breadth-first search instead of
1462  * depth-first search is used in order to find the shortest (circular)
1463  * path.
1464  */
1465 struct circular_queue {
1466 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1467 	unsigned int  front, rear;
1468 };
1469 
1470 static struct circular_queue lock_cq;
1471 
1472 unsigned int max_bfs_queue_depth;
1473 
1474 static unsigned int lockdep_dependency_gen_id;
1475 
1476 static inline void __cq_init(struct circular_queue *cq)
1477 {
1478 	cq->front = cq->rear = 0;
1479 	lockdep_dependency_gen_id++;
1480 }
1481 
1482 static inline int __cq_empty(struct circular_queue *cq)
1483 {
1484 	return (cq->front == cq->rear);
1485 }
1486 
1487 static inline int __cq_full(struct circular_queue *cq)
1488 {
1489 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1490 }
1491 
1492 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1493 {
1494 	if (__cq_full(cq))
1495 		return -1;
1496 
1497 	cq->element[cq->rear] = elem;
1498 	cq->rear = (cq->rear + 1) & CQ_MASK;
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Dequeue an element from the circular_queue, return a lock_list if
1504  * the queue is not empty, or NULL if otherwise.
1505  */
1506 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1507 {
1508 	struct lock_list * lock;
1509 
1510 	if (__cq_empty(cq))
1511 		return NULL;
1512 
1513 	lock = cq->element[cq->front];
1514 	cq->front = (cq->front + 1) & CQ_MASK;
1515 
1516 	return lock;
1517 }
1518 
1519 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1520 {
1521 	return (cq->rear - cq->front) & CQ_MASK;
1522 }
1523 
1524 static inline void mark_lock_accessed(struct lock_list *lock)
1525 {
1526 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1527 }
1528 
1529 static inline void visit_lock_entry(struct lock_list *lock,
1530 				    struct lock_list *parent)
1531 {
1532 	lock->parent = parent;
1533 }
1534 
1535 static inline unsigned long lock_accessed(struct lock_list *lock)
1536 {
1537 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1538 }
1539 
1540 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1541 {
1542 	return child->parent;
1543 }
1544 
1545 static inline int get_lock_depth(struct lock_list *child)
1546 {
1547 	int depth = 0;
1548 	struct lock_list *parent;
1549 
1550 	while ((parent = get_lock_parent(child))) {
1551 		child = parent;
1552 		depth++;
1553 	}
1554 	return depth;
1555 }
1556 
1557 /*
1558  * Return the forward or backward dependency list.
1559  *
1560  * @lock:   the lock_list to get its class's dependency list
1561  * @offset: the offset to struct lock_class to determine whether it is
1562  *          locks_after or locks_before
1563  */
1564 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1565 {
1566 	void *lock_class = lock->class;
1567 
1568 	return lock_class + offset;
1569 }
1570 /*
1571  * Return values of a bfs search:
1572  *
1573  * BFS_E* indicates an error
1574  * BFS_R* indicates a result (match or not)
1575  *
1576  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1577  *
1578  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1579  *
1580  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1581  *             *@target_entry.
1582  *
1583  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1584  *               _unchanged_.
1585  */
1586 enum bfs_result {
1587 	BFS_EINVALIDNODE = -2,
1588 	BFS_EQUEUEFULL = -1,
1589 	BFS_RMATCH = 0,
1590 	BFS_RNOMATCH = 1,
1591 };
1592 
1593 /*
1594  * bfs_result < 0 means error
1595  */
1596 static inline bool bfs_error(enum bfs_result res)
1597 {
1598 	return res < 0;
1599 }
1600 
1601 /*
1602  * DEP_*_BIT in lock_list::dep
1603  *
1604  * For dependency @prev -> @next:
1605  *
1606  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1607  *       (->read == 2)
1608  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1609  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1610  *   EN: @prev is exclusive locker and @next is non-recursive locker
1611  *
1612  * Note that we define the value of DEP_*_BITs so that:
1613  *   bit0 is prev->read == 0
1614  *   bit1 is next->read != 2
1615  */
1616 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1617 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1618 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1619 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1620 
1621 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1622 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1623 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1624 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1625 
1626 static inline unsigned int
1627 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1628 {
1629 	return (prev->read == 0) + ((next->read != 2) << 1);
1630 }
1631 
1632 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1633 {
1634 	return 1U << __calc_dep_bit(prev, next);
1635 }
1636 
1637 /*
1638  * calculate the dep_bit for backwards edges. We care about whether @prev is
1639  * shared and whether @next is recursive.
1640  */
1641 static inline unsigned int
1642 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1643 {
1644 	return (next->read != 2) + ((prev->read == 0) << 1);
1645 }
1646 
1647 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1648 {
1649 	return 1U << __calc_dep_bitb(prev, next);
1650 }
1651 
1652 /*
1653  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1654  * search.
1655  */
1656 static inline void __bfs_init_root(struct lock_list *lock,
1657 				   struct lock_class *class)
1658 {
1659 	lock->class = class;
1660 	lock->parent = NULL;
1661 	lock->only_xr = 0;
1662 }
1663 
1664 /*
1665  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1666  * root for a BFS search.
1667  *
1668  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1669  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1670  * and -(S*)->.
1671  */
1672 static inline void bfs_init_root(struct lock_list *lock,
1673 				 struct held_lock *hlock)
1674 {
1675 	__bfs_init_root(lock, hlock_class(hlock));
1676 	lock->only_xr = (hlock->read == 2);
1677 }
1678 
1679 /*
1680  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1681  *
1682  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1683  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1684  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1685  */
1686 static inline void bfs_init_rootb(struct lock_list *lock,
1687 				  struct held_lock *hlock)
1688 {
1689 	__bfs_init_root(lock, hlock_class(hlock));
1690 	lock->only_xr = (hlock->read != 0);
1691 }
1692 
1693 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1694 {
1695 	if (!lock || !lock->parent)
1696 		return NULL;
1697 
1698 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1699 				     &lock->entry, struct lock_list, entry);
1700 }
1701 
1702 /*
1703  * Breadth-First Search to find a strong path in the dependency graph.
1704  *
1705  * @source_entry: the source of the path we are searching for.
1706  * @data: data used for the second parameter of @match function
1707  * @match: match function for the search
1708  * @target_entry: pointer to the target of a matched path
1709  * @offset: the offset to struct lock_class to determine whether it is
1710  *          locks_after or locks_before
1711  *
1712  * We may have multiple edges (considering different kinds of dependencies,
1713  * e.g. ER and SN) between two nodes in the dependency graph. But
1714  * only the strong dependency path in the graph is relevant to deadlocks. A
1715  * strong dependency path is a dependency path that doesn't have two adjacent
1716  * dependencies as -(*R)-> -(S*)->, please see:
1717  *
1718  *         Documentation/locking/lockdep-design.rst
1719  *
1720  * for more explanation of the definition of strong dependency paths
1721  *
1722  * In __bfs(), we only traverse in the strong dependency path:
1723  *
1724  *     In lock_list::only_xr, we record whether the previous dependency only
1725  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1726  *     filter out any -(S*)-> in the current dependency and after that, the
1727  *     ->only_xr is set according to whether we only have -(*R)-> left.
1728  */
1729 static enum bfs_result __bfs(struct lock_list *source_entry,
1730 			     void *data,
1731 			     bool (*match)(struct lock_list *entry, void *data),
1732 			     bool (*skip)(struct lock_list *entry, void *data),
1733 			     struct lock_list **target_entry,
1734 			     int offset)
1735 {
1736 	struct circular_queue *cq = &lock_cq;
1737 	struct lock_list *lock = NULL;
1738 	struct lock_list *entry;
1739 	struct list_head *head;
1740 	unsigned int cq_depth;
1741 	bool first;
1742 
1743 	lockdep_assert_locked();
1744 
1745 	__cq_init(cq);
1746 	__cq_enqueue(cq, source_entry);
1747 
1748 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1749 		if (!lock->class)
1750 			return BFS_EINVALIDNODE;
1751 
1752 		/*
1753 		 * Step 1: check whether we already finish on this one.
1754 		 *
1755 		 * If we have visited all the dependencies from this @lock to
1756 		 * others (iow, if we have visited all lock_list entries in
1757 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1758 		 * and visit all the dependencies in the list and mark this
1759 		 * list accessed.
1760 		 */
1761 		if (lock_accessed(lock))
1762 			continue;
1763 		else
1764 			mark_lock_accessed(lock);
1765 
1766 		/*
1767 		 * Step 2: check whether prev dependency and this form a strong
1768 		 *         dependency path.
1769 		 */
1770 		if (lock->parent) { /* Parent exists, check prev dependency */
1771 			u8 dep = lock->dep;
1772 			bool prev_only_xr = lock->parent->only_xr;
1773 
1774 			/*
1775 			 * Mask out all -(S*)-> if we only have *R in previous
1776 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1777 			 * dependency.
1778 			 */
1779 			if (prev_only_xr)
1780 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1781 
1782 			/* If nothing left, we skip */
1783 			if (!dep)
1784 				continue;
1785 
1786 			/* If there are only -(*R)-> left, set that for the next step */
1787 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1788 		}
1789 
1790 		/*
1791 		 * Step 3: we haven't visited this and there is a strong
1792 		 *         dependency path to this, so check with @match.
1793 		 *         If @skip is provide and returns true, we skip this
1794 		 *         lock (and any path this lock is in).
1795 		 */
1796 		if (skip && skip(lock, data))
1797 			continue;
1798 
1799 		if (match(lock, data)) {
1800 			*target_entry = lock;
1801 			return BFS_RMATCH;
1802 		}
1803 
1804 		/*
1805 		 * Step 4: if not match, expand the path by adding the
1806 		 *         forward or backwards dependencies in the search
1807 		 *
1808 		 */
1809 		first = true;
1810 		head = get_dep_list(lock, offset);
1811 		list_for_each_entry_rcu(entry, head, entry) {
1812 			visit_lock_entry(entry, lock);
1813 
1814 			/*
1815 			 * Note we only enqueue the first of the list into the
1816 			 * queue, because we can always find a sibling
1817 			 * dependency from one (see __bfs_next()), as a result
1818 			 * the space of queue is saved.
1819 			 */
1820 			if (!first)
1821 				continue;
1822 
1823 			first = false;
1824 
1825 			if (__cq_enqueue(cq, entry))
1826 				return BFS_EQUEUEFULL;
1827 
1828 			cq_depth = __cq_get_elem_count(cq);
1829 			if (max_bfs_queue_depth < cq_depth)
1830 				max_bfs_queue_depth = cq_depth;
1831 		}
1832 	}
1833 
1834 	return BFS_RNOMATCH;
1835 }
1836 
1837 static inline enum bfs_result
1838 __bfs_forwards(struct lock_list *src_entry,
1839 	       void *data,
1840 	       bool (*match)(struct lock_list *entry, void *data),
1841 	       bool (*skip)(struct lock_list *entry, void *data),
1842 	       struct lock_list **target_entry)
1843 {
1844 	return __bfs(src_entry, data, match, skip, target_entry,
1845 		     offsetof(struct lock_class, locks_after));
1846 
1847 }
1848 
1849 static inline enum bfs_result
1850 __bfs_backwards(struct lock_list *src_entry,
1851 		void *data,
1852 		bool (*match)(struct lock_list *entry, void *data),
1853 	       bool (*skip)(struct lock_list *entry, void *data),
1854 		struct lock_list **target_entry)
1855 {
1856 	return __bfs(src_entry, data, match, skip, target_entry,
1857 		     offsetof(struct lock_class, locks_before));
1858 
1859 }
1860 
1861 static void print_lock_trace(const struct lock_trace *trace,
1862 			     unsigned int spaces)
1863 {
1864 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1865 }
1866 
1867 /*
1868  * Print a dependency chain entry (this is only done when a deadlock
1869  * has been detected):
1870  */
1871 static noinline void
1872 print_circular_bug_entry(struct lock_list *target, int depth)
1873 {
1874 	if (debug_locks_silent)
1875 		return;
1876 	printk("\n-> #%u", depth);
1877 	print_lock_name(NULL, target->class);
1878 	printk(KERN_CONT ":\n");
1879 	print_lock_trace(target->trace, 6);
1880 }
1881 
1882 static void
1883 print_circular_lock_scenario(struct held_lock *src,
1884 			     struct held_lock *tgt,
1885 			     struct lock_list *prt)
1886 {
1887 	struct lock_class *source = hlock_class(src);
1888 	struct lock_class *target = hlock_class(tgt);
1889 	struct lock_class *parent = prt->class;
1890 	int src_read = src->read;
1891 	int tgt_read = tgt->read;
1892 
1893 	/*
1894 	 * A direct locking problem where unsafe_class lock is taken
1895 	 * directly by safe_class lock, then all we need to show
1896 	 * is the deadlock scenario, as it is obvious that the
1897 	 * unsafe lock is taken under the safe lock.
1898 	 *
1899 	 * But if there is a chain instead, where the safe lock takes
1900 	 * an intermediate lock (middle_class) where this lock is
1901 	 * not the same as the safe lock, then the lock chain is
1902 	 * used to describe the problem. Otherwise we would need
1903 	 * to show a different CPU case for each link in the chain
1904 	 * from the safe_class lock to the unsafe_class lock.
1905 	 */
1906 	if (parent != source) {
1907 		printk("Chain exists of:\n  ");
1908 		__print_lock_name(src, source);
1909 		printk(KERN_CONT " --> ");
1910 		__print_lock_name(NULL, parent);
1911 		printk(KERN_CONT " --> ");
1912 		__print_lock_name(tgt, target);
1913 		printk(KERN_CONT "\n\n");
1914 	}
1915 
1916 	printk(" Possible unsafe locking scenario:\n\n");
1917 	printk("       CPU0                    CPU1\n");
1918 	printk("       ----                    ----\n");
1919 	if (tgt_read != 0)
1920 		printk("  rlock(");
1921 	else
1922 		printk("  lock(");
1923 	__print_lock_name(tgt, target);
1924 	printk(KERN_CONT ");\n");
1925 	printk("                               lock(");
1926 	__print_lock_name(NULL, parent);
1927 	printk(KERN_CONT ");\n");
1928 	printk("                               lock(");
1929 	__print_lock_name(tgt, target);
1930 	printk(KERN_CONT ");\n");
1931 	if (src_read != 0)
1932 		printk("  rlock(");
1933 	else if (src->sync)
1934 		printk("  sync(");
1935 	else
1936 		printk("  lock(");
1937 	__print_lock_name(src, source);
1938 	printk(KERN_CONT ");\n");
1939 	printk("\n *** DEADLOCK ***\n\n");
1940 }
1941 
1942 /*
1943  * When a circular dependency is detected, print the
1944  * header first:
1945  */
1946 static noinline void
1947 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1948 			struct held_lock *check_src,
1949 			struct held_lock *check_tgt)
1950 {
1951 	struct task_struct *curr = current;
1952 
1953 	if (debug_locks_silent)
1954 		return;
1955 
1956 	pr_warn("\n");
1957 	pr_warn("======================================================\n");
1958 	pr_warn("WARNING: possible circular locking dependency detected\n");
1959 	print_kernel_ident();
1960 	pr_warn("------------------------------------------------------\n");
1961 	pr_warn("%s/%d is trying to acquire lock:\n",
1962 		curr->comm, task_pid_nr(curr));
1963 	print_lock(check_src);
1964 
1965 	pr_warn("\nbut task is already holding lock:\n");
1966 
1967 	print_lock(check_tgt);
1968 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1969 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1970 
1971 	print_circular_bug_entry(entry, depth);
1972 }
1973 
1974 /*
1975  * We are about to add A -> B into the dependency graph, and in __bfs() a
1976  * strong dependency path A -> .. -> B is found: hlock_class equals
1977  * entry->class.
1978  *
1979  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1980  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1981  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1982  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1983  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1984  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1985  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1986  *
1987  * We need to make sure both the start and the end of A -> .. -> B is not
1988  * weaker than A -> B. For the start part, please see the comment in
1989  * check_redundant(). For the end part, we need:
1990  *
1991  * Either
1992  *
1993  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1994  *
1995  * or
1996  *
1997  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1998  *
1999  */
2000 static inline bool hlock_equal(struct lock_list *entry, void *data)
2001 {
2002 	struct held_lock *hlock = (struct held_lock *)data;
2003 
2004 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2005 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2006 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2007 }
2008 
2009 /*
2010  * We are about to add B -> A into the dependency graph, and in __bfs() a
2011  * strong dependency path A -> .. -> B is found: hlock_class equals
2012  * entry->class.
2013  *
2014  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2015  * dependency cycle, that means:
2016  *
2017  * Either
2018  *
2019  *     a) B -> A is -(E*)->
2020  *
2021  * or
2022  *
2023  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2024  *
2025  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2026  */
2027 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2028 {
2029 	struct held_lock *hlock = (struct held_lock *)data;
2030 
2031 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2032 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2033 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2034 }
2035 
2036 static noinline void print_circular_bug(struct lock_list *this,
2037 				struct lock_list *target,
2038 				struct held_lock *check_src,
2039 				struct held_lock *check_tgt)
2040 {
2041 	struct task_struct *curr = current;
2042 	struct lock_list *parent;
2043 	struct lock_list *first_parent;
2044 	int depth;
2045 
2046 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2047 		return;
2048 
2049 	this->trace = save_trace();
2050 	if (!this->trace)
2051 		return;
2052 
2053 	depth = get_lock_depth(target);
2054 
2055 	nbcon_cpu_emergency_enter();
2056 
2057 	print_circular_bug_header(target, depth, check_src, check_tgt);
2058 
2059 	parent = get_lock_parent(target);
2060 	first_parent = parent;
2061 
2062 	while (parent) {
2063 		print_circular_bug_entry(parent, --depth);
2064 		parent = get_lock_parent(parent);
2065 	}
2066 
2067 	printk("\nother info that might help us debug this:\n\n");
2068 	print_circular_lock_scenario(check_src, check_tgt,
2069 				     first_parent);
2070 
2071 	lockdep_print_held_locks(curr);
2072 
2073 	printk("\nstack backtrace:\n");
2074 	dump_stack();
2075 
2076 	nbcon_cpu_emergency_exit();
2077 }
2078 
2079 static noinline void print_bfs_bug(int ret)
2080 {
2081 	if (!debug_locks_off_graph_unlock())
2082 		return;
2083 
2084 	/*
2085 	 * Breadth-first-search failed, graph got corrupted?
2086 	 */
2087 	WARN(1, "lockdep bfs error:%d\n", ret);
2088 }
2089 
2090 static bool noop_count(struct lock_list *entry, void *data)
2091 {
2092 	(*(unsigned long *)data)++;
2093 	return false;
2094 }
2095 
2096 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2097 {
2098 	unsigned long  count = 0;
2099 	struct lock_list *target_entry;
2100 
2101 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2102 
2103 	return count;
2104 }
2105 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2106 {
2107 	unsigned long ret, flags;
2108 	struct lock_list this;
2109 
2110 	__bfs_init_root(&this, class);
2111 
2112 	raw_local_irq_save(flags);
2113 	lockdep_lock();
2114 	ret = __lockdep_count_forward_deps(&this);
2115 	lockdep_unlock();
2116 	raw_local_irq_restore(flags);
2117 
2118 	return ret;
2119 }
2120 
2121 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2122 {
2123 	unsigned long  count = 0;
2124 	struct lock_list *target_entry;
2125 
2126 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2127 
2128 	return count;
2129 }
2130 
2131 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2132 {
2133 	unsigned long ret, flags;
2134 	struct lock_list this;
2135 
2136 	__bfs_init_root(&this, class);
2137 
2138 	raw_local_irq_save(flags);
2139 	lockdep_lock();
2140 	ret = __lockdep_count_backward_deps(&this);
2141 	lockdep_unlock();
2142 	raw_local_irq_restore(flags);
2143 
2144 	return ret;
2145 }
2146 
2147 /*
2148  * Check that the dependency graph starting at <src> can lead to
2149  * <target> or not.
2150  */
2151 static noinline enum bfs_result
2152 check_path(struct held_lock *target, struct lock_list *src_entry,
2153 	   bool (*match)(struct lock_list *entry, void *data),
2154 	   bool (*skip)(struct lock_list *entry, void *data),
2155 	   struct lock_list **target_entry)
2156 {
2157 	enum bfs_result ret;
2158 
2159 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2160 
2161 	if (unlikely(bfs_error(ret)))
2162 		print_bfs_bug(ret);
2163 
2164 	return ret;
2165 }
2166 
2167 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2168 
2169 /*
2170  * Prove that the dependency graph starting at <src> can not
2171  * lead to <target>. If it can, there is a circle when adding
2172  * <target> -> <src> dependency.
2173  *
2174  * Print an error and return BFS_RMATCH if it does.
2175  */
2176 static noinline enum bfs_result
2177 check_noncircular(struct held_lock *src, struct held_lock *target,
2178 		  struct lock_trace **const trace)
2179 {
2180 	enum bfs_result ret;
2181 	struct lock_list *target_entry;
2182 	struct lock_list src_entry;
2183 
2184 	bfs_init_root(&src_entry, src);
2185 
2186 	debug_atomic_inc(nr_cyclic_checks);
2187 
2188 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2189 
2190 	if (unlikely(ret == BFS_RMATCH)) {
2191 		if (!*trace) {
2192 			/*
2193 			 * If save_trace fails here, the printing might
2194 			 * trigger a WARN but because of the !nr_entries it
2195 			 * should not do bad things.
2196 			 */
2197 			*trace = save_trace();
2198 		}
2199 
2200 		if (src->class_idx == target->class_idx)
2201 			print_deadlock_bug(current, src, target);
2202 		else
2203 			print_circular_bug(&src_entry, target_entry, src, target);
2204 	}
2205 
2206 	return ret;
2207 }
2208 
2209 #ifdef CONFIG_TRACE_IRQFLAGS
2210 
2211 /*
2212  * Forwards and backwards subgraph searching, for the purposes of
2213  * proving that two subgraphs can be connected by a new dependency
2214  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2215  *
2216  * A irq safe->unsafe deadlock happens with the following conditions:
2217  *
2218  * 1) We have a strong dependency path A -> ... -> B
2219  *
2220  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2221  *    irq can create a new dependency B -> A (consider the case that a holder
2222  *    of B gets interrupted by an irq whose handler will try to acquire A).
2223  *
2224  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2225  *    strong circle:
2226  *
2227  *      For the usage bits of B:
2228  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2229  *           ENABLED_IRQ usage suffices.
2230  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2231  *           ENABLED_IRQ_*_READ usage suffices.
2232  *
2233  *      For the usage bits of A:
2234  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2235  *           USED_IN_IRQ usage suffices.
2236  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2237  *           USED_IN_IRQ_*_READ usage suffices.
2238  */
2239 
2240 /*
2241  * There is a strong dependency path in the dependency graph: A -> B, and now
2242  * we need to decide which usage bit of A should be accumulated to detect
2243  * safe->unsafe bugs.
2244  *
2245  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2246  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2247  *
2248  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2249  * path, any usage of A should be considered. Otherwise, we should only
2250  * consider _READ usage.
2251  */
2252 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2253 {
2254 	if (!entry->only_xr)
2255 		*(unsigned long *)mask |= entry->class->usage_mask;
2256 	else /* Mask out _READ usage bits */
2257 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2258 
2259 	return false;
2260 }
2261 
2262 /*
2263  * There is a strong dependency path in the dependency graph: A -> B, and now
2264  * we need to decide which usage bit of B conflicts with the usage bits of A,
2265  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2266  *
2267  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2268  * path, any usage of B should be considered. Otherwise, we should only
2269  * consider _READ usage.
2270  */
2271 static inline bool usage_match(struct lock_list *entry, void *mask)
2272 {
2273 	if (!entry->only_xr)
2274 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2275 	else /* Mask out _READ usage bits */
2276 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2277 }
2278 
2279 static inline bool usage_skip(struct lock_list *entry, void *mask)
2280 {
2281 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2282 		return false;
2283 
2284 	/*
2285 	 * Skip local_lock() for irq inversion detection.
2286 	 *
2287 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2288 	 * dependency.
2289 	 *
2290 	 * For RT, an irq inversion happens when we have lock A and B, and on
2291 	 * some CPU we can have:
2292 	 *
2293 	 *	lock(A);
2294 	 *	<interrupted>
2295 	 *	  lock(B);
2296 	 *
2297 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2298 	 *
2299 	 * Now we prove local_lock() cannot exist in that dependency. First we
2300 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2301 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2302 	 * wait context check will complain. And since B is not a sleep lock,
2303 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2304 	 * local_lock() is 3, which is greater than 2, therefore there is no
2305 	 * way the local_lock() exists in the dependency B -> ... -> A.
2306 	 *
2307 	 * As a result, we will skip local_lock(), when we search for irq
2308 	 * inversion bugs.
2309 	 */
2310 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2311 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2312 		return false;
2313 
2314 	/*
2315 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2316 	 * a lock and only used to override the wait_type.
2317 	 */
2318 
2319 	return true;
2320 }
2321 
2322 /*
2323  * Find a node in the forwards-direction dependency sub-graph starting
2324  * at @root->class that matches @bit.
2325  *
2326  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2327  * into *@target_entry.
2328  */
2329 static enum bfs_result
2330 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2331 			struct lock_list **target_entry)
2332 {
2333 	enum bfs_result result;
2334 
2335 	debug_atomic_inc(nr_find_usage_forwards_checks);
2336 
2337 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2338 
2339 	return result;
2340 }
2341 
2342 /*
2343  * Find a node in the backwards-direction dependency sub-graph starting
2344  * at @root->class that matches @bit.
2345  */
2346 static enum bfs_result
2347 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2348 			struct lock_list **target_entry)
2349 {
2350 	enum bfs_result result;
2351 
2352 	debug_atomic_inc(nr_find_usage_backwards_checks);
2353 
2354 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2355 
2356 	return result;
2357 }
2358 
2359 static void print_lock_class_header(struct lock_class *class, int depth)
2360 {
2361 	int bit;
2362 
2363 	printk("%*s->", depth, "");
2364 	print_lock_name(NULL, class);
2365 #ifdef CONFIG_DEBUG_LOCKDEP
2366 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2367 #endif
2368 	printk(KERN_CONT " {\n");
2369 
2370 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2371 		if (class->usage_mask & (1 << bit)) {
2372 			int len = depth;
2373 
2374 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2375 			len += printk(KERN_CONT " at:\n");
2376 			print_lock_trace(class->usage_traces[bit], len);
2377 		}
2378 	}
2379 	printk("%*s }\n", depth, "");
2380 
2381 	printk("%*s ... key      at: [<%px>] %pS\n",
2382 		depth, "", class->key, class->key);
2383 }
2384 
2385 /*
2386  * Dependency path printing:
2387  *
2388  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2389  * printing out each lock in the dependency path will help on understanding how
2390  * the deadlock could happen. Here are some details about dependency path
2391  * printing:
2392  *
2393  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2394  * 	for a lock dependency A -> B, there are two lock_lists:
2395  *
2396  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2397  * 		->links_to is A. In this case, we can say the lock_list is
2398  * 		"A -> B" (forwards case).
2399  *
2400  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2401  * 		and ->links_to is B. In this case, we can say the lock_list is
2402  * 		"B <- A" (bacwards case).
2403  *
2404  * 	The ->trace of both a) and b) point to the call trace where B was
2405  * 	acquired with A held.
2406  *
2407  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2408  * 	represent a certain lock dependency, it only provides an initial entry
2409  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2410  * 	->class is A, as a result BFS will search all dependencies starting with
2411  * 	A, e.g. A -> B or A -> C.
2412  *
2413  * 	The notation of a forwards helper lock_list is like "-> A", which means
2414  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2415  * 	or A -> C.
2416  *
2417  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2418  * 	we should search the backwards dependencies ending with "B", e.g.
2419  * 	B <- A or B <- C.
2420  */
2421 
2422 /*
2423  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2424  *
2425  * We have a lock dependency path as follow:
2426  *
2427  *    @root                                                                 @leaf
2428  *      |                                                                     |
2429  *      V                                                                     V
2430  *	          ->parent                                   ->parent
2431  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2432  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2433  *
2434  * , so it's natural that we start from @leaf and print every ->class and
2435  * ->trace until we reach the @root.
2436  */
2437 static void __used
2438 print_shortest_lock_dependencies(struct lock_list *leaf,
2439 				 struct lock_list *root)
2440 {
2441 	struct lock_list *entry = leaf;
2442 	int depth;
2443 
2444 	/*compute depth from generated tree by BFS*/
2445 	depth = get_lock_depth(leaf);
2446 
2447 	do {
2448 		print_lock_class_header(entry->class, depth);
2449 		printk("%*s ... acquired at:\n", depth, "");
2450 		print_lock_trace(entry->trace, 2);
2451 		printk("\n");
2452 
2453 		if (depth == 0 && (entry != root)) {
2454 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2455 			break;
2456 		}
2457 
2458 		entry = get_lock_parent(entry);
2459 		depth--;
2460 	} while (entry && (depth >= 0));
2461 }
2462 
2463 /*
2464  * printk the shortest lock dependencies from @leaf to @root.
2465  *
2466  * We have a lock dependency path (from a backwards search) as follow:
2467  *
2468  *    @leaf                                                                 @root
2469  *      |                                                                     |
2470  *      V                                                                     V
2471  *	          ->parent                                   ->parent
2472  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2473  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2474  *
2475  * , so when we iterate from @leaf to @root, we actually print the lock
2476  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2477  *
2478  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2479  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2480  * trace of L1 in the dependency path, which is alright, because most of the
2481  * time we can figure out where L1 is held from the call trace of L2.
2482  */
2483 static void __used
2484 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2485 					   struct lock_list *root)
2486 {
2487 	struct lock_list *entry = leaf;
2488 	const struct lock_trace *trace = NULL;
2489 	int depth;
2490 
2491 	/*compute depth from generated tree by BFS*/
2492 	depth = get_lock_depth(leaf);
2493 
2494 	do {
2495 		print_lock_class_header(entry->class, depth);
2496 		if (trace) {
2497 			printk("%*s ... acquired at:\n", depth, "");
2498 			print_lock_trace(trace, 2);
2499 			printk("\n");
2500 		}
2501 
2502 		/*
2503 		 * Record the pointer to the trace for the next lock_list
2504 		 * entry, see the comments for the function.
2505 		 */
2506 		trace = entry->trace;
2507 
2508 		if (depth == 0 && (entry != root)) {
2509 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2510 			break;
2511 		}
2512 
2513 		entry = get_lock_parent(entry);
2514 		depth--;
2515 	} while (entry && (depth >= 0));
2516 }
2517 
2518 static void
2519 print_irq_lock_scenario(struct lock_list *safe_entry,
2520 			struct lock_list *unsafe_entry,
2521 			struct lock_class *prev_class,
2522 			struct lock_class *next_class)
2523 {
2524 	struct lock_class *safe_class = safe_entry->class;
2525 	struct lock_class *unsafe_class = unsafe_entry->class;
2526 	struct lock_class *middle_class = prev_class;
2527 
2528 	if (middle_class == safe_class)
2529 		middle_class = next_class;
2530 
2531 	/*
2532 	 * A direct locking problem where unsafe_class lock is taken
2533 	 * directly by safe_class lock, then all we need to show
2534 	 * is the deadlock scenario, as it is obvious that the
2535 	 * unsafe lock is taken under the safe lock.
2536 	 *
2537 	 * But if there is a chain instead, where the safe lock takes
2538 	 * an intermediate lock (middle_class) where this lock is
2539 	 * not the same as the safe lock, then the lock chain is
2540 	 * used to describe the problem. Otherwise we would need
2541 	 * to show a different CPU case for each link in the chain
2542 	 * from the safe_class lock to the unsafe_class lock.
2543 	 */
2544 	if (middle_class != unsafe_class) {
2545 		printk("Chain exists of:\n  ");
2546 		__print_lock_name(NULL, safe_class);
2547 		printk(KERN_CONT " --> ");
2548 		__print_lock_name(NULL, middle_class);
2549 		printk(KERN_CONT " --> ");
2550 		__print_lock_name(NULL, unsafe_class);
2551 		printk(KERN_CONT "\n\n");
2552 	}
2553 
2554 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2555 	printk("       CPU0                    CPU1\n");
2556 	printk("       ----                    ----\n");
2557 	printk("  lock(");
2558 	__print_lock_name(NULL, unsafe_class);
2559 	printk(KERN_CONT ");\n");
2560 	printk("                               local_irq_disable();\n");
2561 	printk("                               lock(");
2562 	__print_lock_name(NULL, safe_class);
2563 	printk(KERN_CONT ");\n");
2564 	printk("                               lock(");
2565 	__print_lock_name(NULL, middle_class);
2566 	printk(KERN_CONT ");\n");
2567 	printk("  <Interrupt>\n");
2568 	printk("    lock(");
2569 	__print_lock_name(NULL, safe_class);
2570 	printk(KERN_CONT ");\n");
2571 	printk("\n *** DEADLOCK ***\n\n");
2572 }
2573 
2574 static void
2575 print_bad_irq_dependency(struct task_struct *curr,
2576 			 struct lock_list *prev_root,
2577 			 struct lock_list *next_root,
2578 			 struct lock_list *backwards_entry,
2579 			 struct lock_list *forwards_entry,
2580 			 struct held_lock *prev,
2581 			 struct held_lock *next,
2582 			 enum lock_usage_bit bit1,
2583 			 enum lock_usage_bit bit2,
2584 			 const char *irqclass)
2585 {
2586 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2587 		return;
2588 
2589 	nbcon_cpu_emergency_enter();
2590 
2591 	pr_warn("\n");
2592 	pr_warn("=====================================================\n");
2593 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2594 		irqclass, irqclass);
2595 	print_kernel_ident();
2596 	pr_warn("-----------------------------------------------------\n");
2597 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2598 		curr->comm, task_pid_nr(curr),
2599 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2600 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2601 		lockdep_hardirqs_enabled(),
2602 		curr->softirqs_enabled);
2603 	print_lock(next);
2604 
2605 	pr_warn("\nand this task is already holding:\n");
2606 	print_lock(prev);
2607 	pr_warn("which would create a new lock dependency:\n");
2608 	print_lock_name(prev, hlock_class(prev));
2609 	pr_cont(" ->");
2610 	print_lock_name(next, hlock_class(next));
2611 	pr_cont("\n");
2612 
2613 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2614 		irqclass);
2615 	print_lock_name(NULL, backwards_entry->class);
2616 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2617 
2618 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2619 
2620 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2621 	print_lock_name(NULL, forwards_entry->class);
2622 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2623 	pr_warn("...");
2624 
2625 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2626 
2627 	pr_warn("\nother info that might help us debug this:\n\n");
2628 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2629 				hlock_class(prev), hlock_class(next));
2630 
2631 	lockdep_print_held_locks(curr);
2632 
2633 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2634 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2635 
2636 	pr_warn("\nthe dependencies between the lock to be acquired");
2637 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2638 	next_root->trace = save_trace();
2639 	if (!next_root->trace)
2640 		goto out;
2641 	print_shortest_lock_dependencies(forwards_entry, next_root);
2642 
2643 	pr_warn("\nstack backtrace:\n");
2644 	dump_stack();
2645 out:
2646 	nbcon_cpu_emergency_exit();
2647 }
2648 
2649 static const char *state_names[] = {
2650 #define LOCKDEP_STATE(__STATE) \
2651 	__stringify(__STATE),
2652 #include "lockdep_states.h"
2653 #undef LOCKDEP_STATE
2654 };
2655 
2656 static const char *state_rnames[] = {
2657 #define LOCKDEP_STATE(__STATE) \
2658 	__stringify(__STATE)"-READ",
2659 #include "lockdep_states.h"
2660 #undef LOCKDEP_STATE
2661 };
2662 
2663 static inline const char *state_name(enum lock_usage_bit bit)
2664 {
2665 	if (bit & LOCK_USAGE_READ_MASK)
2666 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2667 	else
2668 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2669 }
2670 
2671 /*
2672  * The bit number is encoded like:
2673  *
2674  *  bit0: 0 exclusive, 1 read lock
2675  *  bit1: 0 used in irq, 1 irq enabled
2676  *  bit2-n: state
2677  */
2678 static int exclusive_bit(int new_bit)
2679 {
2680 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2681 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2682 
2683 	/*
2684 	 * keep state, bit flip the direction and strip read.
2685 	 */
2686 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2687 }
2688 
2689 /*
2690  * Observe that when given a bitmask where each bitnr is encoded as above, a
2691  * right shift of the mask transforms the individual bitnrs as -1 and
2692  * conversely, a left shift transforms into +1 for the individual bitnrs.
2693  *
2694  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2695  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2696  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2697  *
2698  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2699  *
2700  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2701  * all bits set) and recompose with bitnr1 flipped.
2702  */
2703 static unsigned long invert_dir_mask(unsigned long mask)
2704 {
2705 	unsigned long excl = 0;
2706 
2707 	/* Invert dir */
2708 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2709 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2710 
2711 	return excl;
2712 }
2713 
2714 /*
2715  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2716  * usage may cause deadlock too, for example:
2717  *
2718  * P1				P2
2719  * <irq disabled>
2720  * write_lock(l1);		<irq enabled>
2721  *				read_lock(l2);
2722  * write_lock(l2);
2723  * 				<in irq>
2724  * 				read_lock(l1);
2725  *
2726  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2727  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2728  * deadlock.
2729  *
2730  * In fact, all of the following cases may cause deadlocks:
2731  *
2732  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2733  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2734  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2735  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2736  *
2737  * As a result, to calculate the "exclusive mask", first we invert the
2738  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2739  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2740  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2741  */
2742 static unsigned long exclusive_mask(unsigned long mask)
2743 {
2744 	unsigned long excl = invert_dir_mask(mask);
2745 
2746 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2747 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2748 
2749 	return excl;
2750 }
2751 
2752 /*
2753  * Retrieve the _possible_ original mask to which @mask is
2754  * exclusive. Ie: this is the opposite of exclusive_mask().
2755  * Note that 2 possible original bits can match an exclusive
2756  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2757  * cleared. So both are returned for each exclusive bit.
2758  */
2759 static unsigned long original_mask(unsigned long mask)
2760 {
2761 	unsigned long excl = invert_dir_mask(mask);
2762 
2763 	/* Include read in existing usages */
2764 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2765 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2766 
2767 	return excl;
2768 }
2769 
2770 /*
2771  * Find the first pair of bit match between an original
2772  * usage mask and an exclusive usage mask.
2773  */
2774 static int find_exclusive_match(unsigned long mask,
2775 				unsigned long excl_mask,
2776 				enum lock_usage_bit *bitp,
2777 				enum lock_usage_bit *excl_bitp)
2778 {
2779 	int bit, excl, excl_read;
2780 
2781 	for_each_set_bit(bit, &mask, LOCK_USED) {
2782 		/*
2783 		 * exclusive_bit() strips the read bit, however,
2784 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2785 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2786 		 */
2787 		excl = exclusive_bit(bit);
2788 		excl_read = excl | LOCK_USAGE_READ_MASK;
2789 		if (excl_mask & lock_flag(excl)) {
2790 			*bitp = bit;
2791 			*excl_bitp = excl;
2792 			return 0;
2793 		} else if (excl_mask & lock_flag(excl_read)) {
2794 			*bitp = bit;
2795 			*excl_bitp = excl_read;
2796 			return 0;
2797 		}
2798 	}
2799 	return -1;
2800 }
2801 
2802 /*
2803  * Prove that the new dependency does not connect a hardirq-safe(-read)
2804  * lock with a hardirq-unsafe lock - to achieve this we search
2805  * the backwards-subgraph starting at <prev>, and the
2806  * forwards-subgraph starting at <next>:
2807  */
2808 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2809 			   struct held_lock *next)
2810 {
2811 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2812 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2813 	struct lock_list *target_entry1;
2814 	struct lock_list *target_entry;
2815 	struct lock_list this, that;
2816 	enum bfs_result ret;
2817 
2818 	/*
2819 	 * Step 1: gather all hard/soft IRQs usages backward in an
2820 	 * accumulated usage mask.
2821 	 */
2822 	bfs_init_rootb(&this, prev);
2823 
2824 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2825 	if (bfs_error(ret)) {
2826 		print_bfs_bug(ret);
2827 		return 0;
2828 	}
2829 
2830 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2831 	if (!usage_mask)
2832 		return 1;
2833 
2834 	/*
2835 	 * Step 2: find exclusive uses forward that match the previous
2836 	 * backward accumulated mask.
2837 	 */
2838 	forward_mask = exclusive_mask(usage_mask);
2839 
2840 	bfs_init_root(&that, next);
2841 
2842 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2843 	if (bfs_error(ret)) {
2844 		print_bfs_bug(ret);
2845 		return 0;
2846 	}
2847 	if (ret == BFS_RNOMATCH)
2848 		return 1;
2849 
2850 	/*
2851 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2852 	 * list whose usage mask matches the exclusive usage mask from the
2853 	 * lock found on the forward list.
2854 	 *
2855 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2856 	 * the follow case:
2857 	 *
2858 	 * When trying to add A -> B to the graph, we find that there is a
2859 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2860 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2861 	 * invert bits of M's usage_mask, we will find another lock N that is
2862 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2863 	 * cause a inversion deadlock.
2864 	 */
2865 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2866 
2867 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2868 	if (bfs_error(ret)) {
2869 		print_bfs_bug(ret);
2870 		return 0;
2871 	}
2872 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2873 		return 1;
2874 
2875 	/*
2876 	 * Step 4: narrow down to a pair of incompatible usage bits
2877 	 * and report it.
2878 	 */
2879 	ret = find_exclusive_match(target_entry->class->usage_mask,
2880 				   target_entry1->class->usage_mask,
2881 				   &backward_bit, &forward_bit);
2882 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2883 		return 1;
2884 
2885 	print_bad_irq_dependency(curr, &this, &that,
2886 				 target_entry, target_entry1,
2887 				 prev, next,
2888 				 backward_bit, forward_bit,
2889 				 state_name(backward_bit));
2890 
2891 	return 0;
2892 }
2893 
2894 #else
2895 
2896 static inline int check_irq_usage(struct task_struct *curr,
2897 				  struct held_lock *prev, struct held_lock *next)
2898 {
2899 	return 1;
2900 }
2901 
2902 static inline bool usage_skip(struct lock_list *entry, void *mask)
2903 {
2904 	return false;
2905 }
2906 
2907 #endif /* CONFIG_TRACE_IRQFLAGS */
2908 
2909 #ifdef CONFIG_LOCKDEP_SMALL
2910 /*
2911  * Check that the dependency graph starting at <src> can lead to
2912  * <target> or not. If it can, <src> -> <target> dependency is already
2913  * in the graph.
2914  *
2915  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2916  * any error appears in the bfs search.
2917  */
2918 static noinline enum bfs_result
2919 check_redundant(struct held_lock *src, struct held_lock *target)
2920 {
2921 	enum bfs_result ret;
2922 	struct lock_list *target_entry;
2923 	struct lock_list src_entry;
2924 
2925 	bfs_init_root(&src_entry, src);
2926 	/*
2927 	 * Special setup for check_redundant().
2928 	 *
2929 	 * To report redundant, we need to find a strong dependency path that
2930 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2931 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2932 	 * we achieve this by setting the initial node's ->only_xr to true in
2933 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2934 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2935 	 */
2936 	src_entry.only_xr = src->read == 0;
2937 
2938 	debug_atomic_inc(nr_redundant_checks);
2939 
2940 	/*
2941 	 * Note: we skip local_lock() for redundant check, because as the
2942 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2943 	 * the same.
2944 	 */
2945 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2946 
2947 	if (ret == BFS_RMATCH)
2948 		debug_atomic_inc(nr_redundant);
2949 
2950 	return ret;
2951 }
2952 
2953 #else
2954 
2955 static inline enum bfs_result
2956 check_redundant(struct held_lock *src, struct held_lock *target)
2957 {
2958 	return BFS_RNOMATCH;
2959 }
2960 
2961 #endif
2962 
2963 static void inc_chains(int irq_context)
2964 {
2965 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2966 		nr_hardirq_chains++;
2967 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2968 		nr_softirq_chains++;
2969 	else
2970 		nr_process_chains++;
2971 }
2972 
2973 static void dec_chains(int irq_context)
2974 {
2975 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2976 		nr_hardirq_chains--;
2977 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2978 		nr_softirq_chains--;
2979 	else
2980 		nr_process_chains--;
2981 }
2982 
2983 static void
2984 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2985 {
2986 	struct lock_class *next = hlock_class(nxt);
2987 	struct lock_class *prev = hlock_class(prv);
2988 
2989 	printk(" Possible unsafe locking scenario:\n\n");
2990 	printk("       CPU0\n");
2991 	printk("       ----\n");
2992 	printk("  lock(");
2993 	__print_lock_name(prv, prev);
2994 	printk(KERN_CONT ");\n");
2995 	printk("  lock(");
2996 	__print_lock_name(nxt, next);
2997 	printk(KERN_CONT ");\n");
2998 	printk("\n *** DEADLOCK ***\n\n");
2999 	printk(" May be due to missing lock nesting notation\n\n");
3000 }
3001 
3002 static void
3003 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3004 		   struct held_lock *next)
3005 {
3006 	struct lock_class *class = hlock_class(prev);
3007 
3008 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3009 		return;
3010 
3011 	nbcon_cpu_emergency_enter();
3012 
3013 	pr_warn("\n");
3014 	pr_warn("============================================\n");
3015 	pr_warn("WARNING: possible recursive locking detected\n");
3016 	print_kernel_ident();
3017 	pr_warn("--------------------------------------------\n");
3018 	pr_warn("%s/%d is trying to acquire lock:\n",
3019 		curr->comm, task_pid_nr(curr));
3020 	print_lock(next);
3021 	pr_warn("\nbut task is already holding lock:\n");
3022 	print_lock(prev);
3023 
3024 	if (class->cmp_fn) {
3025 		pr_warn("and the lock comparison function returns %i:\n",
3026 			class->cmp_fn(prev->instance, next->instance));
3027 	}
3028 
3029 	pr_warn("\nother info that might help us debug this:\n");
3030 	print_deadlock_scenario(next, prev);
3031 	lockdep_print_held_locks(curr);
3032 
3033 	pr_warn("\nstack backtrace:\n");
3034 	dump_stack();
3035 
3036 	nbcon_cpu_emergency_exit();
3037 }
3038 
3039 /*
3040  * Check whether we are holding such a class already.
3041  *
3042  * (Note that this has to be done separately, because the graph cannot
3043  * detect such classes of deadlocks.)
3044  *
3045  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3046  * lock class is held but nest_lock is also held, i.e. we rely on the
3047  * nest_lock to avoid the deadlock.
3048  */
3049 static int
3050 check_deadlock(struct task_struct *curr, struct held_lock *next)
3051 {
3052 	struct lock_class *class;
3053 	struct held_lock *prev;
3054 	struct held_lock *nest = NULL;
3055 	int i;
3056 
3057 	for (i = 0; i < curr->lockdep_depth; i++) {
3058 		prev = curr->held_locks + i;
3059 
3060 		if (prev->instance == next->nest_lock)
3061 			nest = prev;
3062 
3063 		if (hlock_class(prev) != hlock_class(next))
3064 			continue;
3065 
3066 		/*
3067 		 * Allow read-after-read recursion of the same
3068 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3069 		 */
3070 		if ((next->read == 2) && prev->read)
3071 			continue;
3072 
3073 		class = hlock_class(prev);
3074 
3075 		if (class->cmp_fn &&
3076 		    class->cmp_fn(prev->instance, next->instance) < 0)
3077 			continue;
3078 
3079 		/*
3080 		 * We're holding the nest_lock, which serializes this lock's
3081 		 * nesting behaviour.
3082 		 */
3083 		if (nest)
3084 			return 2;
3085 
3086 		print_deadlock_bug(curr, prev, next);
3087 		return 0;
3088 	}
3089 	return 1;
3090 }
3091 
3092 /*
3093  * There was a chain-cache miss, and we are about to add a new dependency
3094  * to a previous lock. We validate the following rules:
3095  *
3096  *  - would the adding of the <prev> -> <next> dependency create a
3097  *    circular dependency in the graph? [== circular deadlock]
3098  *
3099  *  - does the new prev->next dependency connect any hardirq-safe lock
3100  *    (in the full backwards-subgraph starting at <prev>) with any
3101  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3102  *    <next>)? [== illegal lock inversion with hardirq contexts]
3103  *
3104  *  - does the new prev->next dependency connect any softirq-safe lock
3105  *    (in the full backwards-subgraph starting at <prev>) with any
3106  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3107  *    <next>)? [== illegal lock inversion with softirq contexts]
3108  *
3109  * any of these scenarios could lead to a deadlock.
3110  *
3111  * Then if all the validations pass, we add the forwards and backwards
3112  * dependency.
3113  */
3114 static int
3115 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3116 	       struct held_lock *next, u16 distance,
3117 	       struct lock_trace **const trace)
3118 {
3119 	struct lock_list *entry;
3120 	enum bfs_result ret;
3121 
3122 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3123 		/*
3124 		 * The warning statements below may trigger a use-after-free
3125 		 * of the class name. It is better to trigger a use-after free
3126 		 * and to have the class name most of the time instead of not
3127 		 * having the class name available.
3128 		 */
3129 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3130 			  "Detected use-after-free of lock class %px/%s\n",
3131 			  hlock_class(prev),
3132 			  hlock_class(prev)->name);
3133 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3134 			  "Detected use-after-free of lock class %px/%s\n",
3135 			  hlock_class(next),
3136 			  hlock_class(next)->name);
3137 		return 2;
3138 	}
3139 
3140 	if (prev->class_idx == next->class_idx) {
3141 		struct lock_class *class = hlock_class(prev);
3142 
3143 		if (class->cmp_fn &&
3144 		    class->cmp_fn(prev->instance, next->instance) < 0)
3145 			return 2;
3146 	}
3147 
3148 	/*
3149 	 * Prove that the new <prev> -> <next> dependency would not
3150 	 * create a circular dependency in the graph. (We do this by
3151 	 * a breadth-first search into the graph starting at <next>,
3152 	 * and check whether we can reach <prev>.)
3153 	 *
3154 	 * The search is limited by the size of the circular queue (i.e.,
3155 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3156 	 * in the graph whose neighbours are to be checked.
3157 	 */
3158 	ret = check_noncircular(next, prev, trace);
3159 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3160 		return 0;
3161 
3162 	if (!check_irq_usage(curr, prev, next))
3163 		return 0;
3164 
3165 	/*
3166 	 * Is the <prev> -> <next> dependency already present?
3167 	 *
3168 	 * (this may occur even though this is a new chain: consider
3169 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3170 	 *  chains - the second one will be new, but L1 already has
3171 	 *  L2 added to its dependency list, due to the first chain.)
3172 	 */
3173 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3174 		if (entry->class == hlock_class(next)) {
3175 			if (distance == 1)
3176 				entry->distance = 1;
3177 			entry->dep |= calc_dep(prev, next);
3178 
3179 			/*
3180 			 * Also, update the reverse dependency in @next's
3181 			 * ->locks_before list.
3182 			 *
3183 			 *  Here we reuse @entry as the cursor, which is fine
3184 			 *  because we won't go to the next iteration of the
3185 			 *  outer loop:
3186 			 *
3187 			 *  For normal cases, we return in the inner loop.
3188 			 *
3189 			 *  If we fail to return, we have inconsistency, i.e.
3190 			 *  <prev>::locks_after contains <next> while
3191 			 *  <next>::locks_before doesn't contain <prev>. In
3192 			 *  that case, we return after the inner and indicate
3193 			 *  something is wrong.
3194 			 */
3195 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3196 				if (entry->class == hlock_class(prev)) {
3197 					if (distance == 1)
3198 						entry->distance = 1;
3199 					entry->dep |= calc_depb(prev, next);
3200 					return 1;
3201 				}
3202 			}
3203 
3204 			/* <prev> is not found in <next>::locks_before */
3205 			return 0;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Is the <prev> -> <next> link redundant?
3211 	 */
3212 	ret = check_redundant(prev, next);
3213 	if (bfs_error(ret))
3214 		return 0;
3215 	else if (ret == BFS_RMATCH)
3216 		return 2;
3217 
3218 	if (!*trace) {
3219 		*trace = save_trace();
3220 		if (!*trace)
3221 			return 0;
3222 	}
3223 
3224 	/*
3225 	 * Ok, all validations passed, add the new lock
3226 	 * to the previous lock's dependency list:
3227 	 */
3228 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3229 			       &hlock_class(prev)->locks_after, distance,
3230 			       calc_dep(prev, next), *trace);
3231 
3232 	if (!ret)
3233 		return 0;
3234 
3235 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3236 			       &hlock_class(next)->locks_before, distance,
3237 			       calc_depb(prev, next), *trace);
3238 	if (!ret)
3239 		return 0;
3240 
3241 	return 2;
3242 }
3243 
3244 /*
3245  * Add the dependency to all directly-previous locks that are 'relevant'.
3246  * The ones that are relevant are (in increasing distance from curr):
3247  * all consecutive trylock entries and the final non-trylock entry - or
3248  * the end of this context's lock-chain - whichever comes first.
3249  */
3250 static int
3251 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3252 {
3253 	struct lock_trace *trace = NULL;
3254 	int depth = curr->lockdep_depth;
3255 	struct held_lock *hlock;
3256 
3257 	/*
3258 	 * Debugging checks.
3259 	 *
3260 	 * Depth must not be zero for a non-head lock:
3261 	 */
3262 	if (!depth)
3263 		goto out_bug;
3264 	/*
3265 	 * At least two relevant locks must exist for this
3266 	 * to be a head:
3267 	 */
3268 	if (curr->held_locks[depth].irq_context !=
3269 			curr->held_locks[depth-1].irq_context)
3270 		goto out_bug;
3271 
3272 	for (;;) {
3273 		u16 distance = curr->lockdep_depth - depth + 1;
3274 		hlock = curr->held_locks + depth - 1;
3275 
3276 		if (hlock->check) {
3277 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3278 			if (!ret)
3279 				return 0;
3280 
3281 			/*
3282 			 * Stop after the first non-trylock entry,
3283 			 * as non-trylock entries have added their
3284 			 * own direct dependencies already, so this
3285 			 * lock is connected to them indirectly:
3286 			 */
3287 			if (!hlock->trylock)
3288 				break;
3289 		}
3290 
3291 		depth--;
3292 		/*
3293 		 * End of lock-stack?
3294 		 */
3295 		if (!depth)
3296 			break;
3297 		/*
3298 		 * Stop the search if we cross into another context:
3299 		 */
3300 		if (curr->held_locks[depth].irq_context !=
3301 				curr->held_locks[depth-1].irq_context)
3302 			break;
3303 	}
3304 	return 1;
3305 out_bug:
3306 	if (!debug_locks_off_graph_unlock())
3307 		return 0;
3308 
3309 	/*
3310 	 * Clearly we all shouldn't be here, but since we made it we
3311 	 * can reliable say we messed up our state. See the above two
3312 	 * gotos for reasons why we could possibly end up here.
3313 	 */
3314 	WARN_ON(1);
3315 
3316 	return 0;
3317 }
3318 
3319 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3320 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3321 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3322 unsigned long nr_zapped_lock_chains;
3323 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3324 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3325 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3326 
3327 /*
3328  * The first 2 chain_hlocks entries in the chain block in the bucket
3329  * list contains the following meta data:
3330  *
3331  *   entry[0]:
3332  *     Bit    15 - always set to 1 (it is not a class index)
3333  *     Bits 0-14 - upper 15 bits of the next block index
3334  *   entry[1]    - lower 16 bits of next block index
3335  *
3336  * A next block index of all 1 bits means it is the end of the list.
3337  *
3338  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3339  * the chain block size:
3340  *
3341  *   entry[2] - upper 16 bits of the chain block size
3342  *   entry[3] - lower 16 bits of the chain block size
3343  */
3344 #define MAX_CHAIN_BUCKETS	16
3345 #define CHAIN_BLK_FLAG		(1U << 15)
3346 #define CHAIN_BLK_LIST_END	0xFFFFU
3347 
3348 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3349 
3350 static inline int size_to_bucket(int size)
3351 {
3352 	if (size > MAX_CHAIN_BUCKETS)
3353 		return 0;
3354 
3355 	return size - 1;
3356 }
3357 
3358 /*
3359  * Iterate all the chain blocks in a bucket.
3360  */
3361 #define for_each_chain_block(bucket, prev, curr)		\
3362 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3363 	     (curr) >= 0;					\
3364 	     (prev) = (curr), (curr) = chain_block_next(curr))
3365 
3366 /*
3367  * next block or -1
3368  */
3369 static inline int chain_block_next(int offset)
3370 {
3371 	int next = chain_hlocks[offset];
3372 
3373 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3374 
3375 	if (next == CHAIN_BLK_LIST_END)
3376 		return -1;
3377 
3378 	next &= ~CHAIN_BLK_FLAG;
3379 	next <<= 16;
3380 	next |= chain_hlocks[offset + 1];
3381 
3382 	return next;
3383 }
3384 
3385 /*
3386  * bucket-0 only
3387  */
3388 static inline int chain_block_size(int offset)
3389 {
3390 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3391 }
3392 
3393 static inline void init_chain_block(int offset, int next, int bucket, int size)
3394 {
3395 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3396 	chain_hlocks[offset + 1] = (u16)next;
3397 
3398 	if (size && !bucket) {
3399 		chain_hlocks[offset + 2] = size >> 16;
3400 		chain_hlocks[offset + 3] = (u16)size;
3401 	}
3402 }
3403 
3404 static inline void add_chain_block(int offset, int size)
3405 {
3406 	int bucket = size_to_bucket(size);
3407 	int next = chain_block_buckets[bucket];
3408 	int prev, curr;
3409 
3410 	if (unlikely(size < 2)) {
3411 		/*
3412 		 * We can't store single entries on the freelist. Leak them.
3413 		 *
3414 		 * One possible way out would be to uniquely mark them, other
3415 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3416 		 * the block before it is re-added.
3417 		 */
3418 		if (size)
3419 			nr_lost_chain_hlocks++;
3420 		return;
3421 	}
3422 
3423 	nr_free_chain_hlocks += size;
3424 	if (!bucket) {
3425 		nr_large_chain_blocks++;
3426 
3427 		/*
3428 		 * Variable sized, sort large to small.
3429 		 */
3430 		for_each_chain_block(0, prev, curr) {
3431 			if (size >= chain_block_size(curr))
3432 				break;
3433 		}
3434 		init_chain_block(offset, curr, 0, size);
3435 		if (prev < 0)
3436 			chain_block_buckets[0] = offset;
3437 		else
3438 			init_chain_block(prev, offset, 0, 0);
3439 		return;
3440 	}
3441 	/*
3442 	 * Fixed size, add to head.
3443 	 */
3444 	init_chain_block(offset, next, bucket, size);
3445 	chain_block_buckets[bucket] = offset;
3446 }
3447 
3448 /*
3449  * Only the first block in the list can be deleted.
3450  *
3451  * For the variable size bucket[0], the first block (the largest one) is
3452  * returned, broken up and put back into the pool. So if a chain block of
3453  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3454  * queued up after the primordial chain block and never be used until the
3455  * hlock entries in the primordial chain block is almost used up. That
3456  * causes fragmentation and reduce allocation efficiency. That can be
3457  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3458  */
3459 static inline void del_chain_block(int bucket, int size, int next)
3460 {
3461 	nr_free_chain_hlocks -= size;
3462 	chain_block_buckets[bucket] = next;
3463 
3464 	if (!bucket)
3465 		nr_large_chain_blocks--;
3466 }
3467 
3468 static void init_chain_block_buckets(void)
3469 {
3470 	int i;
3471 
3472 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3473 		chain_block_buckets[i] = -1;
3474 
3475 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3476 }
3477 
3478 /*
3479  * Return offset of a chain block of the right size or -1 if not found.
3480  *
3481  * Fairly simple worst-fit allocator with the addition of a number of size
3482  * specific free lists.
3483  */
3484 static int alloc_chain_hlocks(int req)
3485 {
3486 	int bucket, curr, size;
3487 
3488 	/*
3489 	 * We rely on the MSB to act as an escape bit to denote freelist
3490 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3491 	 */
3492 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3493 
3494 	init_data_structures_once();
3495 
3496 	if (nr_free_chain_hlocks < req)
3497 		return -1;
3498 
3499 	/*
3500 	 * We require a minimum of 2 (u16) entries to encode a freelist
3501 	 * 'pointer'.
3502 	 */
3503 	req = max(req, 2);
3504 	bucket = size_to_bucket(req);
3505 	curr = chain_block_buckets[bucket];
3506 
3507 	if (bucket) {
3508 		if (curr >= 0) {
3509 			del_chain_block(bucket, req, chain_block_next(curr));
3510 			return curr;
3511 		}
3512 		/* Try bucket 0 */
3513 		curr = chain_block_buckets[0];
3514 	}
3515 
3516 	/*
3517 	 * The variable sized freelist is sorted by size; the first entry is
3518 	 * the largest. Use it if it fits.
3519 	 */
3520 	if (curr >= 0) {
3521 		size = chain_block_size(curr);
3522 		if (likely(size >= req)) {
3523 			del_chain_block(0, size, chain_block_next(curr));
3524 			if (size > req)
3525 				add_chain_block(curr + req, size - req);
3526 			return curr;
3527 		}
3528 	}
3529 
3530 	/*
3531 	 * Last resort, split a block in a larger sized bucket.
3532 	 */
3533 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3534 		bucket = size_to_bucket(size);
3535 		curr = chain_block_buckets[bucket];
3536 		if (curr < 0)
3537 			continue;
3538 
3539 		del_chain_block(bucket, size, chain_block_next(curr));
3540 		add_chain_block(curr + req, size - req);
3541 		return curr;
3542 	}
3543 
3544 	return -1;
3545 }
3546 
3547 static inline void free_chain_hlocks(int base, int size)
3548 {
3549 	add_chain_block(base, max(size, 2));
3550 }
3551 
3552 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3553 {
3554 	u16 chain_hlock = chain_hlocks[chain->base + i];
3555 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3556 
3557 	return lock_classes + class_idx;
3558 }
3559 
3560 /*
3561  * Returns the index of the first held_lock of the current chain
3562  */
3563 static inline int get_first_held_lock(struct task_struct *curr,
3564 					struct held_lock *hlock)
3565 {
3566 	int i;
3567 	struct held_lock *hlock_curr;
3568 
3569 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3570 		hlock_curr = curr->held_locks + i;
3571 		if (hlock_curr->irq_context != hlock->irq_context)
3572 			break;
3573 
3574 	}
3575 
3576 	return ++i;
3577 }
3578 
3579 #ifdef CONFIG_DEBUG_LOCKDEP
3580 /*
3581  * Returns the next chain_key iteration
3582  */
3583 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3584 {
3585 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3586 
3587 	printk(" hlock_id:%d -> chain_key:%016Lx",
3588 		(unsigned int)hlock_id,
3589 		(unsigned long long)new_chain_key);
3590 	return new_chain_key;
3591 }
3592 
3593 static void
3594 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3595 {
3596 	struct held_lock *hlock;
3597 	u64 chain_key = INITIAL_CHAIN_KEY;
3598 	int depth = curr->lockdep_depth;
3599 	int i = get_first_held_lock(curr, hlock_next);
3600 
3601 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3602 		hlock_next->irq_context);
3603 	for (; i < depth; i++) {
3604 		hlock = curr->held_locks + i;
3605 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3606 
3607 		print_lock(hlock);
3608 	}
3609 
3610 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3611 	print_lock(hlock_next);
3612 }
3613 
3614 static void print_chain_keys_chain(struct lock_chain *chain)
3615 {
3616 	int i;
3617 	u64 chain_key = INITIAL_CHAIN_KEY;
3618 	u16 hlock_id;
3619 
3620 	printk("depth: %u\n", chain->depth);
3621 	for (i = 0; i < chain->depth; i++) {
3622 		hlock_id = chain_hlocks[chain->base + i];
3623 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3624 
3625 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3626 		printk("\n");
3627 	}
3628 }
3629 
3630 static void print_collision(struct task_struct *curr,
3631 			struct held_lock *hlock_next,
3632 			struct lock_chain *chain)
3633 {
3634 	nbcon_cpu_emergency_enter();
3635 
3636 	pr_warn("\n");
3637 	pr_warn("============================\n");
3638 	pr_warn("WARNING: chain_key collision\n");
3639 	print_kernel_ident();
3640 	pr_warn("----------------------------\n");
3641 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3642 	pr_warn("Hash chain already cached but the contents don't match!\n");
3643 
3644 	pr_warn("Held locks:");
3645 	print_chain_keys_held_locks(curr, hlock_next);
3646 
3647 	pr_warn("Locks in cached chain:");
3648 	print_chain_keys_chain(chain);
3649 
3650 	pr_warn("\nstack backtrace:\n");
3651 	dump_stack();
3652 
3653 	nbcon_cpu_emergency_exit();
3654 }
3655 #endif
3656 
3657 /*
3658  * Checks whether the chain and the current held locks are consistent
3659  * in depth and also in content. If they are not it most likely means
3660  * that there was a collision during the calculation of the chain_key.
3661  * Returns: 0 not passed, 1 passed
3662  */
3663 static int check_no_collision(struct task_struct *curr,
3664 			struct held_lock *hlock,
3665 			struct lock_chain *chain)
3666 {
3667 #ifdef CONFIG_DEBUG_LOCKDEP
3668 	int i, j, id;
3669 
3670 	i = get_first_held_lock(curr, hlock);
3671 
3672 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3673 		print_collision(curr, hlock, chain);
3674 		return 0;
3675 	}
3676 
3677 	for (j = 0; j < chain->depth - 1; j++, i++) {
3678 		id = hlock_id(&curr->held_locks[i]);
3679 
3680 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3681 			print_collision(curr, hlock, chain);
3682 			return 0;
3683 		}
3684 	}
3685 #endif
3686 	return 1;
3687 }
3688 
3689 /*
3690  * Given an index that is >= -1, return the index of the next lock chain.
3691  * Return -2 if there is no next lock chain.
3692  */
3693 long lockdep_next_lockchain(long i)
3694 {
3695 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3696 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3697 }
3698 
3699 unsigned long lock_chain_count(void)
3700 {
3701 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3702 }
3703 
3704 /* Must be called with the graph lock held. */
3705 static struct lock_chain *alloc_lock_chain(void)
3706 {
3707 	int idx = find_first_zero_bit(lock_chains_in_use,
3708 				      ARRAY_SIZE(lock_chains));
3709 
3710 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3711 		return NULL;
3712 	__set_bit(idx, lock_chains_in_use);
3713 	return lock_chains + idx;
3714 }
3715 
3716 /*
3717  * Adds a dependency chain into chain hashtable. And must be called with
3718  * graph_lock held.
3719  *
3720  * Return 0 if fail, and graph_lock is released.
3721  * Return 1 if succeed, with graph_lock held.
3722  */
3723 static inline int add_chain_cache(struct task_struct *curr,
3724 				  struct held_lock *hlock,
3725 				  u64 chain_key)
3726 {
3727 	struct hlist_head *hash_head = chainhashentry(chain_key);
3728 	struct lock_chain *chain;
3729 	int i, j;
3730 
3731 	/*
3732 	 * The caller must hold the graph lock, ensure we've got IRQs
3733 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3734 	 * lockdep won't complain about its own locking errors.
3735 	 */
3736 	if (lockdep_assert_locked())
3737 		return 0;
3738 
3739 	chain = alloc_lock_chain();
3740 	if (!chain) {
3741 		if (!debug_locks_off_graph_unlock())
3742 			return 0;
3743 
3744 		nbcon_cpu_emergency_enter();
3745 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3746 		dump_stack();
3747 		nbcon_cpu_emergency_exit();
3748 		return 0;
3749 	}
3750 	chain->chain_key = chain_key;
3751 	chain->irq_context = hlock->irq_context;
3752 	i = get_first_held_lock(curr, hlock);
3753 	chain->depth = curr->lockdep_depth + 1 - i;
3754 
3755 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3756 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3757 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3758 
3759 	j = alloc_chain_hlocks(chain->depth);
3760 	if (j < 0) {
3761 		if (!debug_locks_off_graph_unlock())
3762 			return 0;
3763 
3764 		nbcon_cpu_emergency_enter();
3765 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3766 		dump_stack();
3767 		nbcon_cpu_emergency_exit();
3768 		return 0;
3769 	}
3770 
3771 	chain->base = j;
3772 	for (j = 0; j < chain->depth - 1; j++, i++) {
3773 		int lock_id = hlock_id(curr->held_locks + i);
3774 
3775 		chain_hlocks[chain->base + j] = lock_id;
3776 	}
3777 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3778 	hlist_add_head_rcu(&chain->entry, hash_head);
3779 	debug_atomic_inc(chain_lookup_misses);
3780 	inc_chains(chain->irq_context);
3781 
3782 	return 1;
3783 }
3784 
3785 /*
3786  * Look up a dependency chain. Must be called with either the graph lock or
3787  * the RCU read lock held.
3788  */
3789 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3790 {
3791 	struct hlist_head *hash_head = chainhashentry(chain_key);
3792 	struct lock_chain *chain;
3793 
3794 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3795 		if (READ_ONCE(chain->chain_key) == chain_key) {
3796 			debug_atomic_inc(chain_lookup_hits);
3797 			return chain;
3798 		}
3799 	}
3800 	return NULL;
3801 }
3802 
3803 /*
3804  * If the key is not present yet in dependency chain cache then
3805  * add it and return 1 - in this case the new dependency chain is
3806  * validated. If the key is already hashed, return 0.
3807  * (On return with 1 graph_lock is held.)
3808  */
3809 static inline int lookup_chain_cache_add(struct task_struct *curr,
3810 					 struct held_lock *hlock,
3811 					 u64 chain_key)
3812 {
3813 	struct lock_class *class = hlock_class(hlock);
3814 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3815 
3816 	if (chain) {
3817 cache_hit:
3818 		if (!check_no_collision(curr, hlock, chain))
3819 			return 0;
3820 
3821 		if (very_verbose(class)) {
3822 			printk("\nhash chain already cached, key: "
3823 					"%016Lx tail class: [%px] %s\n",
3824 					(unsigned long long)chain_key,
3825 					class->key, class->name);
3826 		}
3827 
3828 		return 0;
3829 	}
3830 
3831 	if (very_verbose(class)) {
3832 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3833 			(unsigned long long)chain_key, class->key, class->name);
3834 	}
3835 
3836 	if (!graph_lock())
3837 		return 0;
3838 
3839 	/*
3840 	 * We have to walk the chain again locked - to avoid duplicates:
3841 	 */
3842 	chain = lookup_chain_cache(chain_key);
3843 	if (chain) {
3844 		graph_unlock();
3845 		goto cache_hit;
3846 	}
3847 
3848 	if (!add_chain_cache(curr, hlock, chain_key))
3849 		return 0;
3850 
3851 	return 1;
3852 }
3853 
3854 static int validate_chain(struct task_struct *curr,
3855 			  struct held_lock *hlock,
3856 			  int chain_head, u64 chain_key)
3857 {
3858 	/*
3859 	 * Trylock needs to maintain the stack of held locks, but it
3860 	 * does not add new dependencies, because trylock can be done
3861 	 * in any order.
3862 	 *
3863 	 * We look up the chain_key and do the O(N^2) check and update of
3864 	 * the dependencies only if this is a new dependency chain.
3865 	 * (If lookup_chain_cache_add() return with 1 it acquires
3866 	 * graph_lock for us)
3867 	 */
3868 	if (!hlock->trylock && hlock->check &&
3869 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3870 		/*
3871 		 * Check whether last held lock:
3872 		 *
3873 		 * - is irq-safe, if this lock is irq-unsafe
3874 		 * - is softirq-safe, if this lock is hardirq-unsafe
3875 		 *
3876 		 * And check whether the new lock's dependency graph
3877 		 * could lead back to the previous lock:
3878 		 *
3879 		 * - within the current held-lock stack
3880 		 * - across our accumulated lock dependency records
3881 		 *
3882 		 * any of these scenarios could lead to a deadlock.
3883 		 */
3884 		/*
3885 		 * The simple case: does the current hold the same lock
3886 		 * already?
3887 		 */
3888 		int ret = check_deadlock(curr, hlock);
3889 
3890 		if (!ret)
3891 			return 0;
3892 		/*
3893 		 * Add dependency only if this lock is not the head
3894 		 * of the chain, and if the new lock introduces no more
3895 		 * lock dependency (because we already hold a lock with the
3896 		 * same lock class) nor deadlock (because the nest_lock
3897 		 * serializes nesting locks), see the comments for
3898 		 * check_deadlock().
3899 		 */
3900 		if (!chain_head && ret != 2) {
3901 			if (!check_prevs_add(curr, hlock))
3902 				return 0;
3903 		}
3904 
3905 		graph_unlock();
3906 	} else {
3907 		/* after lookup_chain_cache_add(): */
3908 		if (unlikely(!debug_locks))
3909 			return 0;
3910 	}
3911 
3912 	return 1;
3913 }
3914 #else
3915 static inline int validate_chain(struct task_struct *curr,
3916 				 struct held_lock *hlock,
3917 				 int chain_head, u64 chain_key)
3918 {
3919 	return 1;
3920 }
3921 
3922 static void init_chain_block_buckets(void)	{ }
3923 #endif /* CONFIG_PROVE_LOCKING */
3924 
3925 /*
3926  * We are building curr_chain_key incrementally, so double-check
3927  * it from scratch, to make sure that it's done correctly:
3928  */
3929 static void check_chain_key(struct task_struct *curr)
3930 {
3931 #ifdef CONFIG_DEBUG_LOCKDEP
3932 	struct held_lock *hlock, *prev_hlock = NULL;
3933 	unsigned int i;
3934 	u64 chain_key = INITIAL_CHAIN_KEY;
3935 
3936 	for (i = 0; i < curr->lockdep_depth; i++) {
3937 		hlock = curr->held_locks + i;
3938 		if (chain_key != hlock->prev_chain_key) {
3939 			debug_locks_off();
3940 			/*
3941 			 * We got mighty confused, our chain keys don't match
3942 			 * with what we expect, someone trample on our task state?
3943 			 */
3944 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3945 				curr->lockdep_depth, i,
3946 				(unsigned long long)chain_key,
3947 				(unsigned long long)hlock->prev_chain_key);
3948 			return;
3949 		}
3950 
3951 		/*
3952 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3953 		 * it registered lock class index?
3954 		 */
3955 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3956 			return;
3957 
3958 		if (prev_hlock && (prev_hlock->irq_context !=
3959 							hlock->irq_context))
3960 			chain_key = INITIAL_CHAIN_KEY;
3961 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3962 		prev_hlock = hlock;
3963 	}
3964 	if (chain_key != curr->curr_chain_key) {
3965 		debug_locks_off();
3966 		/*
3967 		 * More smoking hash instead of calculating it, damn see these
3968 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3969 		 */
3970 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3971 			curr->lockdep_depth, i,
3972 			(unsigned long long)chain_key,
3973 			(unsigned long long)curr->curr_chain_key);
3974 	}
3975 #endif
3976 }
3977 
3978 #ifdef CONFIG_PROVE_LOCKING
3979 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3980 		     enum lock_usage_bit new_bit);
3981 
3982 static void print_usage_bug_scenario(struct held_lock *lock)
3983 {
3984 	struct lock_class *class = hlock_class(lock);
3985 
3986 	printk(" Possible unsafe locking scenario:\n\n");
3987 	printk("       CPU0\n");
3988 	printk("       ----\n");
3989 	printk("  lock(");
3990 	__print_lock_name(lock, class);
3991 	printk(KERN_CONT ");\n");
3992 	printk("  <Interrupt>\n");
3993 	printk("    lock(");
3994 	__print_lock_name(lock, class);
3995 	printk(KERN_CONT ");\n");
3996 	printk("\n *** DEADLOCK ***\n\n");
3997 }
3998 
3999 static void
4000 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4001 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4002 {
4003 	if (!debug_locks_off() || debug_locks_silent)
4004 		return;
4005 
4006 	nbcon_cpu_emergency_enter();
4007 
4008 	pr_warn("\n");
4009 	pr_warn("================================\n");
4010 	pr_warn("WARNING: inconsistent lock state\n");
4011 	print_kernel_ident();
4012 	pr_warn("--------------------------------\n");
4013 
4014 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4015 		usage_str[prev_bit], usage_str[new_bit]);
4016 
4017 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4018 		curr->comm, task_pid_nr(curr),
4019 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4020 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4021 		lockdep_hardirqs_enabled(),
4022 		lockdep_softirqs_enabled(curr));
4023 	print_lock(this);
4024 
4025 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4026 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4027 
4028 	print_irqtrace_events(curr);
4029 	pr_warn("\nother info that might help us debug this:\n");
4030 	print_usage_bug_scenario(this);
4031 
4032 	lockdep_print_held_locks(curr);
4033 
4034 	pr_warn("\nstack backtrace:\n");
4035 	dump_stack();
4036 
4037 	nbcon_cpu_emergency_exit();
4038 }
4039 
4040 /*
4041  * Print out an error if an invalid bit is set:
4042  */
4043 static inline int
4044 valid_state(struct task_struct *curr, struct held_lock *this,
4045 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4046 {
4047 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4048 		graph_unlock();
4049 		print_usage_bug(curr, this, bad_bit, new_bit);
4050 		return 0;
4051 	}
4052 	return 1;
4053 }
4054 
4055 
4056 /*
4057  * print irq inversion bug:
4058  */
4059 static void
4060 print_irq_inversion_bug(struct task_struct *curr,
4061 			struct lock_list *root, struct lock_list *other,
4062 			struct held_lock *this, int forwards,
4063 			const char *irqclass)
4064 {
4065 	struct lock_list *entry = other;
4066 	struct lock_list *middle = NULL;
4067 	int depth;
4068 
4069 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4070 		return;
4071 
4072 	nbcon_cpu_emergency_enter();
4073 
4074 	pr_warn("\n");
4075 	pr_warn("========================================================\n");
4076 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4077 	print_kernel_ident();
4078 	pr_warn("--------------------------------------------------------\n");
4079 	pr_warn("%s/%d just changed the state of lock:\n",
4080 		curr->comm, task_pid_nr(curr));
4081 	print_lock(this);
4082 	if (forwards)
4083 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4084 	else
4085 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4086 	print_lock_name(NULL, other->class);
4087 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4088 
4089 	pr_warn("\nother info that might help us debug this:\n");
4090 
4091 	/* Find a middle lock (if one exists) */
4092 	depth = get_lock_depth(other);
4093 	do {
4094 		if (depth == 0 && (entry != root)) {
4095 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4096 			break;
4097 		}
4098 		middle = entry;
4099 		entry = get_lock_parent(entry);
4100 		depth--;
4101 	} while (entry && entry != root && (depth >= 0));
4102 	if (forwards)
4103 		print_irq_lock_scenario(root, other,
4104 			middle ? middle->class : root->class, other->class);
4105 	else
4106 		print_irq_lock_scenario(other, root,
4107 			middle ? middle->class : other->class, root->class);
4108 
4109 	lockdep_print_held_locks(curr);
4110 
4111 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4112 	root->trace = save_trace();
4113 	if (!root->trace)
4114 		goto out;
4115 	print_shortest_lock_dependencies(other, root);
4116 
4117 	pr_warn("\nstack backtrace:\n");
4118 	dump_stack();
4119 out:
4120 	nbcon_cpu_emergency_exit();
4121 }
4122 
4123 /*
4124  * Prove that in the forwards-direction subgraph starting at <this>
4125  * there is no lock matching <mask>:
4126  */
4127 static int
4128 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4129 		     enum lock_usage_bit bit)
4130 {
4131 	enum bfs_result ret;
4132 	struct lock_list root;
4133 	struct lock_list *target_entry;
4134 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4135 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4136 
4137 	bfs_init_root(&root, this);
4138 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4139 	if (bfs_error(ret)) {
4140 		print_bfs_bug(ret);
4141 		return 0;
4142 	}
4143 	if (ret == BFS_RNOMATCH)
4144 		return 1;
4145 
4146 	/* Check whether write or read usage is the match */
4147 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4148 		print_irq_inversion_bug(curr, &root, target_entry,
4149 					this, 1, state_name(bit));
4150 	} else {
4151 		print_irq_inversion_bug(curr, &root, target_entry,
4152 					this, 1, state_name(read_bit));
4153 	}
4154 
4155 	return 0;
4156 }
4157 
4158 /*
4159  * Prove that in the backwards-direction subgraph starting at <this>
4160  * there is no lock matching <mask>:
4161  */
4162 static int
4163 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4164 		      enum lock_usage_bit bit)
4165 {
4166 	enum bfs_result ret;
4167 	struct lock_list root;
4168 	struct lock_list *target_entry;
4169 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4170 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4171 
4172 	bfs_init_rootb(&root, this);
4173 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4174 	if (bfs_error(ret)) {
4175 		print_bfs_bug(ret);
4176 		return 0;
4177 	}
4178 	if (ret == BFS_RNOMATCH)
4179 		return 1;
4180 
4181 	/* Check whether write or read usage is the match */
4182 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4183 		print_irq_inversion_bug(curr, &root, target_entry,
4184 					this, 0, state_name(bit));
4185 	} else {
4186 		print_irq_inversion_bug(curr, &root, target_entry,
4187 					this, 0, state_name(read_bit));
4188 	}
4189 
4190 	return 0;
4191 }
4192 
4193 void print_irqtrace_events(struct task_struct *curr)
4194 {
4195 	const struct irqtrace_events *trace = &curr->irqtrace;
4196 
4197 	nbcon_cpu_emergency_enter();
4198 
4199 	printk("irq event stamp: %u\n", trace->irq_events);
4200 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4201 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4202 		(void *)trace->hardirq_enable_ip);
4203 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4204 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4205 		(void *)trace->hardirq_disable_ip);
4206 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4207 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4208 		(void *)trace->softirq_enable_ip);
4209 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4210 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4211 		(void *)trace->softirq_disable_ip);
4212 
4213 	nbcon_cpu_emergency_exit();
4214 }
4215 
4216 static int HARDIRQ_verbose(struct lock_class *class)
4217 {
4218 #if HARDIRQ_VERBOSE
4219 	return class_filter(class);
4220 #endif
4221 	return 0;
4222 }
4223 
4224 static int SOFTIRQ_verbose(struct lock_class *class)
4225 {
4226 #if SOFTIRQ_VERBOSE
4227 	return class_filter(class);
4228 #endif
4229 	return 0;
4230 }
4231 
4232 static int (*state_verbose_f[])(struct lock_class *class) = {
4233 #define LOCKDEP_STATE(__STATE) \
4234 	__STATE##_verbose,
4235 #include "lockdep_states.h"
4236 #undef LOCKDEP_STATE
4237 };
4238 
4239 static inline int state_verbose(enum lock_usage_bit bit,
4240 				struct lock_class *class)
4241 {
4242 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4243 }
4244 
4245 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4246 			     enum lock_usage_bit bit, const char *name);
4247 
4248 static int
4249 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4250 		enum lock_usage_bit new_bit)
4251 {
4252 	int excl_bit = exclusive_bit(new_bit);
4253 	int read = new_bit & LOCK_USAGE_READ_MASK;
4254 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4255 
4256 	/*
4257 	 * Validate that this particular lock does not have conflicting
4258 	 * usage states.
4259 	 */
4260 	if (!valid_state(curr, this, new_bit, excl_bit))
4261 		return 0;
4262 
4263 	/*
4264 	 * Check for read in write conflicts
4265 	 */
4266 	if (!read && !valid_state(curr, this, new_bit,
4267 				  excl_bit + LOCK_USAGE_READ_MASK))
4268 		return 0;
4269 
4270 
4271 	/*
4272 	 * Validate that the lock dependencies don't have conflicting usage
4273 	 * states.
4274 	 */
4275 	if (dir) {
4276 		/*
4277 		 * mark ENABLED has to look backwards -- to ensure no dependee
4278 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4279 		 */
4280 		if (!check_usage_backwards(curr, this, excl_bit))
4281 			return 0;
4282 	} else {
4283 		/*
4284 		 * mark USED_IN has to look forwards -- to ensure no dependency
4285 		 * has ENABLED state, which would allow recursion deadlocks.
4286 		 */
4287 		if (!check_usage_forwards(curr, this, excl_bit))
4288 			return 0;
4289 	}
4290 
4291 	if (state_verbose(new_bit, hlock_class(this)))
4292 		return 2;
4293 
4294 	return 1;
4295 }
4296 
4297 /*
4298  * Mark all held locks with a usage bit:
4299  */
4300 static int
4301 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4302 {
4303 	struct held_lock *hlock;
4304 	int i;
4305 
4306 	for (i = 0; i < curr->lockdep_depth; i++) {
4307 		enum lock_usage_bit hlock_bit = base_bit;
4308 		hlock = curr->held_locks + i;
4309 
4310 		if (hlock->read)
4311 			hlock_bit += LOCK_USAGE_READ_MASK;
4312 
4313 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4314 
4315 		if (!hlock->check)
4316 			continue;
4317 
4318 		if (!mark_lock(curr, hlock, hlock_bit))
4319 			return 0;
4320 	}
4321 
4322 	return 1;
4323 }
4324 
4325 /*
4326  * Hardirqs will be enabled:
4327  */
4328 static void __trace_hardirqs_on_caller(void)
4329 {
4330 	struct task_struct *curr = current;
4331 
4332 	/*
4333 	 * We are going to turn hardirqs on, so set the
4334 	 * usage bit for all held locks:
4335 	 */
4336 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4337 		return;
4338 	/*
4339 	 * If we have softirqs enabled, then set the usage
4340 	 * bit for all held locks. (disabled hardirqs prevented
4341 	 * this bit from being set before)
4342 	 */
4343 	if (curr->softirqs_enabled)
4344 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4345 }
4346 
4347 /**
4348  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4349  *
4350  * Invoked before a possible transition to RCU idle from exit to user or
4351  * guest mode. This ensures that all RCU operations are done before RCU
4352  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4353  * invoked to set the final state.
4354  */
4355 void lockdep_hardirqs_on_prepare(void)
4356 {
4357 	if (unlikely(!debug_locks))
4358 		return;
4359 
4360 	/*
4361 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4362 	 */
4363 	if (unlikely(in_nmi()))
4364 		return;
4365 
4366 	if (unlikely(this_cpu_read(lockdep_recursion)))
4367 		return;
4368 
4369 	if (unlikely(lockdep_hardirqs_enabled())) {
4370 		/*
4371 		 * Neither irq nor preemption are disabled here
4372 		 * so this is racy by nature but losing one hit
4373 		 * in a stat is not a big deal.
4374 		 */
4375 		__debug_atomic_inc(redundant_hardirqs_on);
4376 		return;
4377 	}
4378 
4379 	/*
4380 	 * We're enabling irqs and according to our state above irqs weren't
4381 	 * already enabled, yet we find the hardware thinks they are in fact
4382 	 * enabled.. someone messed up their IRQ state tracing.
4383 	 */
4384 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4385 		return;
4386 
4387 	/*
4388 	 * See the fine text that goes along with this variable definition.
4389 	 */
4390 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4391 		return;
4392 
4393 	/*
4394 	 * Can't allow enabling interrupts while in an interrupt handler,
4395 	 * that's general bad form and such. Recursion, limited stack etc..
4396 	 */
4397 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4398 		return;
4399 
4400 	current->hardirq_chain_key = current->curr_chain_key;
4401 
4402 	lockdep_recursion_inc();
4403 	__trace_hardirqs_on_caller();
4404 	lockdep_recursion_finish();
4405 }
4406 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4407 
4408 void noinstr lockdep_hardirqs_on(unsigned long ip)
4409 {
4410 	struct irqtrace_events *trace = &current->irqtrace;
4411 
4412 	if (unlikely(!debug_locks))
4413 		return;
4414 
4415 	/*
4416 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4417 	 * tracking state and hardware state are out of sync.
4418 	 *
4419 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4420 	 * and not rely on hardware state like normal interrupts.
4421 	 */
4422 	if (unlikely(in_nmi())) {
4423 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4424 			return;
4425 
4426 		/*
4427 		 * Skip:
4428 		 *  - recursion check, because NMI can hit lockdep;
4429 		 *  - hardware state check, because above;
4430 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4431 		 */
4432 		goto skip_checks;
4433 	}
4434 
4435 	if (unlikely(this_cpu_read(lockdep_recursion)))
4436 		return;
4437 
4438 	if (lockdep_hardirqs_enabled()) {
4439 		/*
4440 		 * Neither irq nor preemption are disabled here
4441 		 * so this is racy by nature but losing one hit
4442 		 * in a stat is not a big deal.
4443 		 */
4444 		__debug_atomic_inc(redundant_hardirqs_on);
4445 		return;
4446 	}
4447 
4448 	/*
4449 	 * We're enabling irqs and according to our state above irqs weren't
4450 	 * already enabled, yet we find the hardware thinks they are in fact
4451 	 * enabled.. someone messed up their IRQ state tracing.
4452 	 */
4453 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4454 		return;
4455 
4456 	/*
4457 	 * Ensure the lock stack remained unchanged between
4458 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4459 	 */
4460 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4461 			    current->curr_chain_key);
4462 
4463 skip_checks:
4464 	/* we'll do an OFF -> ON transition: */
4465 	__this_cpu_write(hardirqs_enabled, 1);
4466 	trace->hardirq_enable_ip = ip;
4467 	trace->hardirq_enable_event = ++trace->irq_events;
4468 	debug_atomic_inc(hardirqs_on_events);
4469 }
4470 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4471 
4472 /*
4473  * Hardirqs were disabled:
4474  */
4475 void noinstr lockdep_hardirqs_off(unsigned long ip)
4476 {
4477 	if (unlikely(!debug_locks))
4478 		return;
4479 
4480 	/*
4481 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4482 	 * they will restore the software state. This ensures the software
4483 	 * state is consistent inside NMIs as well.
4484 	 */
4485 	if (in_nmi()) {
4486 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4487 			return;
4488 	} else if (__this_cpu_read(lockdep_recursion))
4489 		return;
4490 
4491 	/*
4492 	 * So we're supposed to get called after you mask local IRQs, but for
4493 	 * some reason the hardware doesn't quite think you did a proper job.
4494 	 */
4495 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4496 		return;
4497 
4498 	if (lockdep_hardirqs_enabled()) {
4499 		struct irqtrace_events *trace = &current->irqtrace;
4500 
4501 		/*
4502 		 * We have done an ON -> OFF transition:
4503 		 */
4504 		__this_cpu_write(hardirqs_enabled, 0);
4505 		trace->hardirq_disable_ip = ip;
4506 		trace->hardirq_disable_event = ++trace->irq_events;
4507 		debug_atomic_inc(hardirqs_off_events);
4508 	} else {
4509 		debug_atomic_inc(redundant_hardirqs_off);
4510 	}
4511 }
4512 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4513 
4514 /*
4515  * Softirqs will be enabled:
4516  */
4517 void lockdep_softirqs_on(unsigned long ip)
4518 {
4519 	struct irqtrace_events *trace = &current->irqtrace;
4520 
4521 	if (unlikely(!lockdep_enabled()))
4522 		return;
4523 
4524 	/*
4525 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4526 	 * funny state and nesting things.
4527 	 */
4528 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4529 		return;
4530 
4531 	if (current->softirqs_enabled) {
4532 		debug_atomic_inc(redundant_softirqs_on);
4533 		return;
4534 	}
4535 
4536 	lockdep_recursion_inc();
4537 	/*
4538 	 * We'll do an OFF -> ON transition:
4539 	 */
4540 	current->softirqs_enabled = 1;
4541 	trace->softirq_enable_ip = ip;
4542 	trace->softirq_enable_event = ++trace->irq_events;
4543 	debug_atomic_inc(softirqs_on_events);
4544 	/*
4545 	 * We are going to turn softirqs on, so set the
4546 	 * usage bit for all held locks, if hardirqs are
4547 	 * enabled too:
4548 	 */
4549 	if (lockdep_hardirqs_enabled())
4550 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4551 	lockdep_recursion_finish();
4552 }
4553 
4554 /*
4555  * Softirqs were disabled:
4556  */
4557 void lockdep_softirqs_off(unsigned long ip)
4558 {
4559 	if (unlikely(!lockdep_enabled()))
4560 		return;
4561 
4562 	/*
4563 	 * We fancy IRQs being disabled here, see softirq.c
4564 	 */
4565 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4566 		return;
4567 
4568 	if (current->softirqs_enabled) {
4569 		struct irqtrace_events *trace = &current->irqtrace;
4570 
4571 		/*
4572 		 * We have done an ON -> OFF transition:
4573 		 */
4574 		current->softirqs_enabled = 0;
4575 		trace->softirq_disable_ip = ip;
4576 		trace->softirq_disable_event = ++trace->irq_events;
4577 		debug_atomic_inc(softirqs_off_events);
4578 		/*
4579 		 * Whoops, we wanted softirqs off, so why aren't they?
4580 		 */
4581 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4582 	} else
4583 		debug_atomic_inc(redundant_softirqs_off);
4584 }
4585 
4586 static int
4587 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4588 {
4589 	if (!check)
4590 		goto lock_used;
4591 
4592 	/*
4593 	 * If non-trylock use in a hardirq or softirq context, then
4594 	 * mark the lock as used in these contexts:
4595 	 */
4596 	if (!hlock->trylock) {
4597 		if (hlock->read) {
4598 			if (lockdep_hardirq_context())
4599 				if (!mark_lock(curr, hlock,
4600 						LOCK_USED_IN_HARDIRQ_READ))
4601 					return 0;
4602 			if (curr->softirq_context)
4603 				if (!mark_lock(curr, hlock,
4604 						LOCK_USED_IN_SOFTIRQ_READ))
4605 					return 0;
4606 		} else {
4607 			if (lockdep_hardirq_context())
4608 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4609 					return 0;
4610 			if (curr->softirq_context)
4611 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4612 					return 0;
4613 		}
4614 	}
4615 
4616 	/*
4617 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4618 	 * creates no critical section and no extra dependency can be introduced
4619 	 * by interrupts
4620 	 */
4621 	if (!hlock->hardirqs_off && !hlock->sync) {
4622 		if (hlock->read) {
4623 			if (!mark_lock(curr, hlock,
4624 					LOCK_ENABLED_HARDIRQ_READ))
4625 				return 0;
4626 			if (curr->softirqs_enabled)
4627 				if (!mark_lock(curr, hlock,
4628 						LOCK_ENABLED_SOFTIRQ_READ))
4629 					return 0;
4630 		} else {
4631 			if (!mark_lock(curr, hlock,
4632 					LOCK_ENABLED_HARDIRQ))
4633 				return 0;
4634 			if (curr->softirqs_enabled)
4635 				if (!mark_lock(curr, hlock,
4636 						LOCK_ENABLED_SOFTIRQ))
4637 					return 0;
4638 		}
4639 	}
4640 
4641 lock_used:
4642 	/* mark it as used: */
4643 	if (!mark_lock(curr, hlock, LOCK_USED))
4644 		return 0;
4645 
4646 	return 1;
4647 }
4648 
4649 static inline unsigned int task_irq_context(struct task_struct *task)
4650 {
4651 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4652 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4653 }
4654 
4655 static int separate_irq_context(struct task_struct *curr,
4656 		struct held_lock *hlock)
4657 {
4658 	unsigned int depth = curr->lockdep_depth;
4659 
4660 	/*
4661 	 * Keep track of points where we cross into an interrupt context:
4662 	 */
4663 	if (depth) {
4664 		struct held_lock *prev_hlock;
4665 
4666 		prev_hlock = curr->held_locks + depth-1;
4667 		/*
4668 		 * If we cross into another context, reset the
4669 		 * hash key (this also prevents the checking and the
4670 		 * adding of the dependency to 'prev'):
4671 		 */
4672 		if (prev_hlock->irq_context != hlock->irq_context)
4673 			return 1;
4674 	}
4675 	return 0;
4676 }
4677 
4678 /*
4679  * Mark a lock with a usage bit, and validate the state transition:
4680  */
4681 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4682 			     enum lock_usage_bit new_bit)
4683 {
4684 	unsigned int new_mask, ret = 1;
4685 
4686 	if (new_bit >= LOCK_USAGE_STATES) {
4687 		DEBUG_LOCKS_WARN_ON(1);
4688 		return 0;
4689 	}
4690 
4691 	if (new_bit == LOCK_USED && this->read)
4692 		new_bit = LOCK_USED_READ;
4693 
4694 	new_mask = 1 << new_bit;
4695 
4696 	/*
4697 	 * If already set then do not dirty the cacheline,
4698 	 * nor do any checks:
4699 	 */
4700 	if (likely(hlock_class(this)->usage_mask & new_mask))
4701 		return 1;
4702 
4703 	if (!graph_lock())
4704 		return 0;
4705 	/*
4706 	 * Make sure we didn't race:
4707 	 */
4708 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4709 		goto unlock;
4710 
4711 	if (!hlock_class(this)->usage_mask)
4712 		debug_atomic_dec(nr_unused_locks);
4713 
4714 	hlock_class(this)->usage_mask |= new_mask;
4715 
4716 	if (new_bit < LOCK_TRACE_STATES) {
4717 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4718 			return 0;
4719 	}
4720 
4721 	if (new_bit < LOCK_USED) {
4722 		ret = mark_lock_irq(curr, this, new_bit);
4723 		if (!ret)
4724 			return 0;
4725 	}
4726 
4727 unlock:
4728 	graph_unlock();
4729 
4730 	/*
4731 	 * We must printk outside of the graph_lock:
4732 	 */
4733 	if (ret == 2) {
4734 		nbcon_cpu_emergency_enter();
4735 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4736 		print_lock(this);
4737 		print_irqtrace_events(curr);
4738 		dump_stack();
4739 		nbcon_cpu_emergency_exit();
4740 	}
4741 
4742 	return ret;
4743 }
4744 
4745 static inline short task_wait_context(struct task_struct *curr)
4746 {
4747 	/*
4748 	 * Set appropriate wait type for the context; for IRQs we have to take
4749 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4750 	 */
4751 	if (lockdep_hardirq_context()) {
4752 		/*
4753 		 * Check if force_irqthreads will run us threaded.
4754 		 */
4755 		if (curr->hardirq_threaded || curr->irq_config)
4756 			return LD_WAIT_CONFIG;
4757 
4758 		return LD_WAIT_SPIN;
4759 	} else if (curr->softirq_context) {
4760 		/*
4761 		 * Softirqs are always threaded.
4762 		 */
4763 		return LD_WAIT_CONFIG;
4764 	}
4765 
4766 	return LD_WAIT_MAX;
4767 }
4768 
4769 static int
4770 print_lock_invalid_wait_context(struct task_struct *curr,
4771 				struct held_lock *hlock)
4772 {
4773 	short curr_inner;
4774 
4775 	if (!debug_locks_off())
4776 		return 0;
4777 	if (debug_locks_silent)
4778 		return 0;
4779 
4780 	nbcon_cpu_emergency_enter();
4781 
4782 	pr_warn("\n");
4783 	pr_warn("=============================\n");
4784 	pr_warn("[ BUG: Invalid wait context ]\n");
4785 	print_kernel_ident();
4786 	pr_warn("-----------------------------\n");
4787 
4788 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4789 	print_lock(hlock);
4790 
4791 	pr_warn("other info that might help us debug this:\n");
4792 
4793 	curr_inner = task_wait_context(curr);
4794 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4795 
4796 	lockdep_print_held_locks(curr);
4797 
4798 	pr_warn("stack backtrace:\n");
4799 	dump_stack();
4800 
4801 	nbcon_cpu_emergency_exit();
4802 
4803 	return 0;
4804 }
4805 
4806 /*
4807  * Verify the wait_type context.
4808  *
4809  * This check validates we take locks in the right wait-type order; that is it
4810  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4811  * acquire spinlocks inside raw_spinlocks and the sort.
4812  *
4813  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4814  * can be taken from (pretty much) any context but also has constraints.
4815  * However when taken in a stricter environment the RCU lock does not loosen
4816  * the constraints.
4817  *
4818  * Therefore we must look for the strictest environment in the lock stack and
4819  * compare that to the lock we're trying to acquire.
4820  */
4821 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4822 {
4823 	u8 next_inner = hlock_class(next)->wait_type_inner;
4824 	u8 next_outer = hlock_class(next)->wait_type_outer;
4825 	u8 curr_inner;
4826 	int depth;
4827 
4828 	if (!next_inner || next->trylock)
4829 		return 0;
4830 
4831 	if (!next_outer)
4832 		next_outer = next_inner;
4833 
4834 	/*
4835 	 * Find start of current irq_context..
4836 	 */
4837 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4838 		struct held_lock *prev = curr->held_locks + depth;
4839 		if (prev->irq_context != next->irq_context)
4840 			break;
4841 	}
4842 	depth++;
4843 
4844 	curr_inner = task_wait_context(curr);
4845 
4846 	for (; depth < curr->lockdep_depth; depth++) {
4847 		struct held_lock *prev = curr->held_locks + depth;
4848 		struct lock_class *class = hlock_class(prev);
4849 		u8 prev_inner = class->wait_type_inner;
4850 
4851 		if (prev_inner) {
4852 			/*
4853 			 * We can have a bigger inner than a previous one
4854 			 * when outer is smaller than inner, as with RCU.
4855 			 *
4856 			 * Also due to trylocks.
4857 			 */
4858 			curr_inner = min(curr_inner, prev_inner);
4859 
4860 			/*
4861 			 * Allow override for annotations -- this is typically
4862 			 * only valid/needed for code that only exists when
4863 			 * CONFIG_PREEMPT_RT=n.
4864 			 */
4865 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4866 				curr_inner = prev_inner;
4867 		}
4868 	}
4869 
4870 	if (next_outer > curr_inner)
4871 		return print_lock_invalid_wait_context(curr, next);
4872 
4873 	return 0;
4874 }
4875 
4876 #else /* CONFIG_PROVE_LOCKING */
4877 
4878 static inline int
4879 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4880 {
4881 	return 1;
4882 }
4883 
4884 static inline unsigned int task_irq_context(struct task_struct *task)
4885 {
4886 	return 0;
4887 }
4888 
4889 static inline int separate_irq_context(struct task_struct *curr,
4890 		struct held_lock *hlock)
4891 {
4892 	return 0;
4893 }
4894 
4895 static inline int check_wait_context(struct task_struct *curr,
4896 				     struct held_lock *next)
4897 {
4898 	return 0;
4899 }
4900 
4901 #endif /* CONFIG_PROVE_LOCKING */
4902 
4903 /*
4904  * Initialize a lock instance's lock-class mapping info:
4905  */
4906 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4907 			    struct lock_class_key *key, int subclass,
4908 			    u8 inner, u8 outer, u8 lock_type)
4909 {
4910 	int i;
4911 
4912 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4913 		lock->class_cache[i] = NULL;
4914 
4915 #ifdef CONFIG_LOCK_STAT
4916 	lock->cpu = raw_smp_processor_id();
4917 #endif
4918 
4919 	/*
4920 	 * Can't be having no nameless bastards around this place!
4921 	 */
4922 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4923 		lock->name = "NULL";
4924 		return;
4925 	}
4926 
4927 	lock->name = name;
4928 
4929 	lock->wait_type_outer = outer;
4930 	lock->wait_type_inner = inner;
4931 	lock->lock_type = lock_type;
4932 
4933 	/*
4934 	 * No key, no joy, we need to hash something.
4935 	 */
4936 	if (DEBUG_LOCKS_WARN_ON(!key))
4937 		return;
4938 	/*
4939 	 * Sanity check, the lock-class key must either have been allocated
4940 	 * statically or must have been registered as a dynamic key.
4941 	 */
4942 	if (!static_obj(key) && !is_dynamic_key(key)) {
4943 		if (debug_locks)
4944 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4945 		DEBUG_LOCKS_WARN_ON(1);
4946 		return;
4947 	}
4948 	lock->key = key;
4949 
4950 	if (unlikely(!debug_locks))
4951 		return;
4952 
4953 	if (subclass) {
4954 		unsigned long flags;
4955 
4956 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4957 			return;
4958 
4959 		raw_local_irq_save(flags);
4960 		lockdep_recursion_inc();
4961 		register_lock_class(lock, subclass, 1);
4962 		lockdep_recursion_finish();
4963 		raw_local_irq_restore(flags);
4964 	}
4965 }
4966 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4967 
4968 struct lock_class_key __lockdep_no_validate__;
4969 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4970 
4971 struct lock_class_key __lockdep_no_track__;
4972 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
4973 
4974 #ifdef CONFIG_PROVE_LOCKING
4975 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4976 			     lock_print_fn print_fn)
4977 {
4978 	struct lock_class *class = lock->class_cache[0];
4979 	unsigned long flags;
4980 
4981 	raw_local_irq_save(flags);
4982 	lockdep_recursion_inc();
4983 
4984 	if (!class)
4985 		class = register_lock_class(lock, 0, 0);
4986 
4987 	if (class) {
4988 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4989 		WARN_ON(class->print_fn && class->print_fn != print_fn);
4990 
4991 		class->cmp_fn	= cmp_fn;
4992 		class->print_fn = print_fn;
4993 	}
4994 
4995 	lockdep_recursion_finish();
4996 	raw_local_irq_restore(flags);
4997 }
4998 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4999 #endif
5000 
5001 static void
5002 print_lock_nested_lock_not_held(struct task_struct *curr,
5003 				struct held_lock *hlock)
5004 {
5005 	if (!debug_locks_off())
5006 		return;
5007 	if (debug_locks_silent)
5008 		return;
5009 
5010 	nbcon_cpu_emergency_enter();
5011 
5012 	pr_warn("\n");
5013 	pr_warn("==================================\n");
5014 	pr_warn("WARNING: Nested lock was not taken\n");
5015 	print_kernel_ident();
5016 	pr_warn("----------------------------------\n");
5017 
5018 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5019 	print_lock(hlock);
5020 
5021 	pr_warn("\nbut this task is not holding:\n");
5022 	pr_warn("%s\n", hlock->nest_lock->name);
5023 
5024 	pr_warn("\nstack backtrace:\n");
5025 	dump_stack();
5026 
5027 	pr_warn("\nother info that might help us debug this:\n");
5028 	lockdep_print_held_locks(curr);
5029 
5030 	pr_warn("\nstack backtrace:\n");
5031 	dump_stack();
5032 
5033 	nbcon_cpu_emergency_exit();
5034 }
5035 
5036 static int __lock_is_held(const struct lockdep_map *lock, int read);
5037 
5038 /*
5039  * This gets called for every mutex_lock*()/spin_lock*() operation.
5040  * We maintain the dependency maps and validate the locking attempt:
5041  *
5042  * The callers must make sure that IRQs are disabled before calling it,
5043  * otherwise we could get an interrupt which would want to take locks,
5044  * which would end up in lockdep again.
5045  */
5046 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5047 			  int trylock, int read, int check, int hardirqs_off,
5048 			  struct lockdep_map *nest_lock, unsigned long ip,
5049 			  int references, int pin_count, int sync)
5050 {
5051 	struct task_struct *curr = current;
5052 	struct lock_class *class = NULL;
5053 	struct held_lock *hlock;
5054 	unsigned int depth;
5055 	int chain_head = 0;
5056 	int class_idx;
5057 	u64 chain_key;
5058 
5059 	if (unlikely(!debug_locks))
5060 		return 0;
5061 
5062 	if (unlikely(lock->key == &__lockdep_no_track__))
5063 		return 0;
5064 
5065 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5066 		check = 0;
5067 
5068 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5069 		class = lock->class_cache[subclass];
5070 	/*
5071 	 * Not cached?
5072 	 */
5073 	if (unlikely(!class)) {
5074 		class = register_lock_class(lock, subclass, 0);
5075 		if (!class)
5076 			return 0;
5077 	}
5078 
5079 	debug_class_ops_inc(class);
5080 
5081 	if (very_verbose(class)) {
5082 		nbcon_cpu_emergency_enter();
5083 		printk("\nacquire class [%px] %s", class->key, class->name);
5084 		if (class->name_version > 1)
5085 			printk(KERN_CONT "#%d", class->name_version);
5086 		printk(KERN_CONT "\n");
5087 		dump_stack();
5088 		nbcon_cpu_emergency_exit();
5089 	}
5090 
5091 	/*
5092 	 * Add the lock to the list of currently held locks.
5093 	 * (we dont increase the depth just yet, up until the
5094 	 * dependency checks are done)
5095 	 */
5096 	depth = curr->lockdep_depth;
5097 	/*
5098 	 * Ran out of static storage for our per-task lock stack again have we?
5099 	 */
5100 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5101 		return 0;
5102 
5103 	class_idx = class - lock_classes;
5104 
5105 	if (depth && !sync) {
5106 		/* we're holding locks and the new held lock is not a sync */
5107 		hlock = curr->held_locks + depth - 1;
5108 		if (hlock->class_idx == class_idx && nest_lock) {
5109 			if (!references)
5110 				references++;
5111 
5112 			if (!hlock->references)
5113 				hlock->references++;
5114 
5115 			hlock->references += references;
5116 
5117 			/* Overflow */
5118 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5119 				return 0;
5120 
5121 			return 2;
5122 		}
5123 	}
5124 
5125 	hlock = curr->held_locks + depth;
5126 	/*
5127 	 * Plain impossible, we just registered it and checked it weren't no
5128 	 * NULL like.. I bet this mushroom I ate was good!
5129 	 */
5130 	if (DEBUG_LOCKS_WARN_ON(!class))
5131 		return 0;
5132 	hlock->class_idx = class_idx;
5133 	hlock->acquire_ip = ip;
5134 	hlock->instance = lock;
5135 	hlock->nest_lock = nest_lock;
5136 	hlock->irq_context = task_irq_context(curr);
5137 	hlock->trylock = trylock;
5138 	hlock->read = read;
5139 	hlock->check = check;
5140 	hlock->sync = !!sync;
5141 	hlock->hardirqs_off = !!hardirqs_off;
5142 	hlock->references = references;
5143 #ifdef CONFIG_LOCK_STAT
5144 	hlock->waittime_stamp = 0;
5145 	hlock->holdtime_stamp = lockstat_clock();
5146 #endif
5147 	hlock->pin_count = pin_count;
5148 
5149 	if (check_wait_context(curr, hlock))
5150 		return 0;
5151 
5152 	/* Initialize the lock usage bit */
5153 	if (!mark_usage(curr, hlock, check))
5154 		return 0;
5155 
5156 	/*
5157 	 * Calculate the chain hash: it's the combined hash of all the
5158 	 * lock keys along the dependency chain. We save the hash value
5159 	 * at every step so that we can get the current hash easily
5160 	 * after unlock. The chain hash is then used to cache dependency
5161 	 * results.
5162 	 *
5163 	 * The 'key ID' is what is the most compact key value to drive
5164 	 * the hash, not class->key.
5165 	 */
5166 	/*
5167 	 * Whoops, we did it again.. class_idx is invalid.
5168 	 */
5169 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5170 		return 0;
5171 
5172 	chain_key = curr->curr_chain_key;
5173 	if (!depth) {
5174 		/*
5175 		 * How can we have a chain hash when we ain't got no keys?!
5176 		 */
5177 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5178 			return 0;
5179 		chain_head = 1;
5180 	}
5181 
5182 	hlock->prev_chain_key = chain_key;
5183 	if (separate_irq_context(curr, hlock)) {
5184 		chain_key = INITIAL_CHAIN_KEY;
5185 		chain_head = 1;
5186 	}
5187 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5188 
5189 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5190 		print_lock_nested_lock_not_held(curr, hlock);
5191 		return 0;
5192 	}
5193 
5194 	if (!debug_locks_silent) {
5195 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5196 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5197 	}
5198 
5199 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5200 		return 0;
5201 
5202 	/* For lock_sync(), we are done here since no actual critical section */
5203 	if (hlock->sync)
5204 		return 1;
5205 
5206 	curr->curr_chain_key = chain_key;
5207 	curr->lockdep_depth++;
5208 	check_chain_key(curr);
5209 #ifdef CONFIG_DEBUG_LOCKDEP
5210 	if (unlikely(!debug_locks))
5211 		return 0;
5212 #endif
5213 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5214 		debug_locks_off();
5215 		nbcon_cpu_emergency_enter();
5216 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5217 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5218 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5219 
5220 		lockdep_print_held_locks(current);
5221 		debug_show_all_locks();
5222 		dump_stack();
5223 		nbcon_cpu_emergency_exit();
5224 
5225 		return 0;
5226 	}
5227 
5228 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5229 		max_lockdep_depth = curr->lockdep_depth;
5230 
5231 	return 1;
5232 }
5233 
5234 static void print_unlock_imbalance_bug(struct task_struct *curr,
5235 				       struct lockdep_map *lock,
5236 				       unsigned long ip)
5237 {
5238 	if (!debug_locks_off())
5239 		return;
5240 	if (debug_locks_silent)
5241 		return;
5242 
5243 	nbcon_cpu_emergency_enter();
5244 
5245 	pr_warn("\n");
5246 	pr_warn("=====================================\n");
5247 	pr_warn("WARNING: bad unlock balance detected!\n");
5248 	print_kernel_ident();
5249 	pr_warn("-------------------------------------\n");
5250 	pr_warn("%s/%d is trying to release lock (",
5251 		curr->comm, task_pid_nr(curr));
5252 	print_lockdep_cache(lock);
5253 	pr_cont(") at:\n");
5254 	print_ip_sym(KERN_WARNING, ip);
5255 	pr_warn("but there are no more locks to release!\n");
5256 	pr_warn("\nother info that might help us debug this:\n");
5257 	lockdep_print_held_locks(curr);
5258 
5259 	pr_warn("\nstack backtrace:\n");
5260 	dump_stack();
5261 
5262 	nbcon_cpu_emergency_exit();
5263 }
5264 
5265 static noinstr int match_held_lock(const struct held_lock *hlock,
5266 				   const struct lockdep_map *lock)
5267 {
5268 	if (hlock->instance == lock)
5269 		return 1;
5270 
5271 	if (hlock->references) {
5272 		const struct lock_class *class = lock->class_cache[0];
5273 
5274 		if (!class)
5275 			class = look_up_lock_class(lock, 0);
5276 
5277 		/*
5278 		 * If look_up_lock_class() failed to find a class, we're trying
5279 		 * to test if we hold a lock that has never yet been acquired.
5280 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5281 		 * holding it either, so report failure.
5282 		 */
5283 		if (!class)
5284 			return 0;
5285 
5286 		/*
5287 		 * References, but not a lock we're actually ref-counting?
5288 		 * State got messed up, follow the sites that change ->references
5289 		 * and try to make sense of it.
5290 		 */
5291 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5292 			return 0;
5293 
5294 		if (hlock->class_idx == class - lock_classes)
5295 			return 1;
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 /* @depth must not be zero */
5302 static struct held_lock *find_held_lock(struct task_struct *curr,
5303 					struct lockdep_map *lock,
5304 					unsigned int depth, int *idx)
5305 {
5306 	struct held_lock *ret, *hlock, *prev_hlock;
5307 	int i;
5308 
5309 	i = depth - 1;
5310 	hlock = curr->held_locks + i;
5311 	ret = hlock;
5312 	if (match_held_lock(hlock, lock))
5313 		goto out;
5314 
5315 	ret = NULL;
5316 	for (i--, prev_hlock = hlock--;
5317 	     i >= 0;
5318 	     i--, prev_hlock = hlock--) {
5319 		/*
5320 		 * We must not cross into another context:
5321 		 */
5322 		if (prev_hlock->irq_context != hlock->irq_context) {
5323 			ret = NULL;
5324 			break;
5325 		}
5326 		if (match_held_lock(hlock, lock)) {
5327 			ret = hlock;
5328 			break;
5329 		}
5330 	}
5331 
5332 out:
5333 	*idx = i;
5334 	return ret;
5335 }
5336 
5337 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5338 				int idx, unsigned int *merged)
5339 {
5340 	struct held_lock *hlock;
5341 	int first_idx = idx;
5342 
5343 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5344 		return 0;
5345 
5346 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5347 		switch (__lock_acquire(hlock->instance,
5348 				    hlock_class(hlock)->subclass,
5349 				    hlock->trylock,
5350 				    hlock->read, hlock->check,
5351 				    hlock->hardirqs_off,
5352 				    hlock->nest_lock, hlock->acquire_ip,
5353 				    hlock->references, hlock->pin_count, 0)) {
5354 		case 0:
5355 			return 1;
5356 		case 1:
5357 			break;
5358 		case 2:
5359 			*merged += (idx == first_idx);
5360 			break;
5361 		default:
5362 			WARN_ON(1);
5363 			return 0;
5364 		}
5365 	}
5366 	return 0;
5367 }
5368 
5369 static int
5370 __lock_set_class(struct lockdep_map *lock, const char *name,
5371 		 struct lock_class_key *key, unsigned int subclass,
5372 		 unsigned long ip)
5373 {
5374 	struct task_struct *curr = current;
5375 	unsigned int depth, merged = 0;
5376 	struct held_lock *hlock;
5377 	struct lock_class *class;
5378 	int i;
5379 
5380 	if (unlikely(!debug_locks))
5381 		return 0;
5382 
5383 	depth = curr->lockdep_depth;
5384 	/*
5385 	 * This function is about (re)setting the class of a held lock,
5386 	 * yet we're not actually holding any locks. Naughty user!
5387 	 */
5388 	if (DEBUG_LOCKS_WARN_ON(!depth))
5389 		return 0;
5390 
5391 	hlock = find_held_lock(curr, lock, depth, &i);
5392 	if (!hlock) {
5393 		print_unlock_imbalance_bug(curr, lock, ip);
5394 		return 0;
5395 	}
5396 
5397 	lockdep_init_map_type(lock, name, key, 0,
5398 			      lock->wait_type_inner,
5399 			      lock->wait_type_outer,
5400 			      lock->lock_type);
5401 	class = register_lock_class(lock, subclass, 0);
5402 	hlock->class_idx = class - lock_classes;
5403 
5404 	curr->lockdep_depth = i;
5405 	curr->curr_chain_key = hlock->prev_chain_key;
5406 
5407 	if (reacquire_held_locks(curr, depth, i, &merged))
5408 		return 0;
5409 
5410 	/*
5411 	 * I took it apart and put it back together again, except now I have
5412 	 * these 'spare' parts.. where shall I put them.
5413 	 */
5414 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5415 		return 0;
5416 	return 1;
5417 }
5418 
5419 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5420 {
5421 	struct task_struct *curr = current;
5422 	unsigned int depth, merged = 0;
5423 	struct held_lock *hlock;
5424 	int i;
5425 
5426 	if (unlikely(!debug_locks))
5427 		return 0;
5428 
5429 	depth = curr->lockdep_depth;
5430 	/*
5431 	 * This function is about (re)setting the class of a held lock,
5432 	 * yet we're not actually holding any locks. Naughty user!
5433 	 */
5434 	if (DEBUG_LOCKS_WARN_ON(!depth))
5435 		return 0;
5436 
5437 	hlock = find_held_lock(curr, lock, depth, &i);
5438 	if (!hlock) {
5439 		print_unlock_imbalance_bug(curr, lock, ip);
5440 		return 0;
5441 	}
5442 
5443 	curr->lockdep_depth = i;
5444 	curr->curr_chain_key = hlock->prev_chain_key;
5445 
5446 	WARN(hlock->read, "downgrading a read lock");
5447 	hlock->read = 1;
5448 	hlock->acquire_ip = ip;
5449 
5450 	if (reacquire_held_locks(curr, depth, i, &merged))
5451 		return 0;
5452 
5453 	/* Merging can't happen with unchanged classes.. */
5454 	if (DEBUG_LOCKS_WARN_ON(merged))
5455 		return 0;
5456 
5457 	/*
5458 	 * I took it apart and put it back together again, except now I have
5459 	 * these 'spare' parts.. where shall I put them.
5460 	 */
5461 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5462 		return 0;
5463 
5464 	return 1;
5465 }
5466 
5467 /*
5468  * Remove the lock from the list of currently held locks - this gets
5469  * called on mutex_unlock()/spin_unlock*() (or on a failed
5470  * mutex_lock_interruptible()).
5471  */
5472 static int
5473 __lock_release(struct lockdep_map *lock, unsigned long ip)
5474 {
5475 	struct task_struct *curr = current;
5476 	unsigned int depth, merged = 1;
5477 	struct held_lock *hlock;
5478 	int i;
5479 
5480 	if (unlikely(!debug_locks))
5481 		return 0;
5482 
5483 	depth = curr->lockdep_depth;
5484 	/*
5485 	 * So we're all set to release this lock.. wait what lock? We don't
5486 	 * own any locks, you've been drinking again?
5487 	 */
5488 	if (depth <= 0) {
5489 		print_unlock_imbalance_bug(curr, lock, ip);
5490 		return 0;
5491 	}
5492 
5493 	/*
5494 	 * Check whether the lock exists in the current stack
5495 	 * of held locks:
5496 	 */
5497 	hlock = find_held_lock(curr, lock, depth, &i);
5498 	if (!hlock) {
5499 		print_unlock_imbalance_bug(curr, lock, ip);
5500 		return 0;
5501 	}
5502 
5503 	if (hlock->instance == lock)
5504 		lock_release_holdtime(hlock);
5505 
5506 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5507 
5508 	if (hlock->references) {
5509 		hlock->references--;
5510 		if (hlock->references) {
5511 			/*
5512 			 * We had, and after removing one, still have
5513 			 * references, the current lock stack is still
5514 			 * valid. We're done!
5515 			 */
5516 			return 1;
5517 		}
5518 	}
5519 
5520 	/*
5521 	 * We have the right lock to unlock, 'hlock' points to it.
5522 	 * Now we remove it from the stack, and add back the other
5523 	 * entries (if any), recalculating the hash along the way:
5524 	 */
5525 
5526 	curr->lockdep_depth = i;
5527 	curr->curr_chain_key = hlock->prev_chain_key;
5528 
5529 	/*
5530 	 * The most likely case is when the unlock is on the innermost
5531 	 * lock. In this case, we are done!
5532 	 */
5533 	if (i == depth-1)
5534 		return 1;
5535 
5536 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5537 		return 0;
5538 
5539 	/*
5540 	 * We had N bottles of beer on the wall, we drank one, but now
5541 	 * there's not N-1 bottles of beer left on the wall...
5542 	 * Pouring two of the bottles together is acceptable.
5543 	 */
5544 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5545 
5546 	/*
5547 	 * Since reacquire_held_locks() would have called check_chain_key()
5548 	 * indirectly via __lock_acquire(), we don't need to do it again
5549 	 * on return.
5550 	 */
5551 	return 0;
5552 }
5553 
5554 static __always_inline
5555 int __lock_is_held(const struct lockdep_map *lock, int read)
5556 {
5557 	struct task_struct *curr = current;
5558 	int i;
5559 
5560 	for (i = 0; i < curr->lockdep_depth; i++) {
5561 		struct held_lock *hlock = curr->held_locks + i;
5562 
5563 		if (match_held_lock(hlock, lock)) {
5564 			if (read == -1 || !!hlock->read == read)
5565 				return LOCK_STATE_HELD;
5566 
5567 			return LOCK_STATE_NOT_HELD;
5568 		}
5569 	}
5570 
5571 	return LOCK_STATE_NOT_HELD;
5572 }
5573 
5574 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5575 {
5576 	struct pin_cookie cookie = NIL_COOKIE;
5577 	struct task_struct *curr = current;
5578 	int i;
5579 
5580 	if (unlikely(!debug_locks))
5581 		return cookie;
5582 
5583 	for (i = 0; i < curr->lockdep_depth; i++) {
5584 		struct held_lock *hlock = curr->held_locks + i;
5585 
5586 		if (match_held_lock(hlock, lock)) {
5587 			/*
5588 			 * Grab 16bits of randomness; this is sufficient to not
5589 			 * be guessable and still allows some pin nesting in
5590 			 * our u32 pin_count.
5591 			 */
5592 			cookie.val = 1 + (sched_clock() & 0xffff);
5593 			hlock->pin_count += cookie.val;
5594 			return cookie;
5595 		}
5596 	}
5597 
5598 	WARN(1, "pinning an unheld lock\n");
5599 	return cookie;
5600 }
5601 
5602 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5603 {
5604 	struct task_struct *curr = current;
5605 	int i;
5606 
5607 	if (unlikely(!debug_locks))
5608 		return;
5609 
5610 	for (i = 0; i < curr->lockdep_depth; i++) {
5611 		struct held_lock *hlock = curr->held_locks + i;
5612 
5613 		if (match_held_lock(hlock, lock)) {
5614 			hlock->pin_count += cookie.val;
5615 			return;
5616 		}
5617 	}
5618 
5619 	WARN(1, "pinning an unheld lock\n");
5620 }
5621 
5622 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5623 {
5624 	struct task_struct *curr = current;
5625 	int i;
5626 
5627 	if (unlikely(!debug_locks))
5628 		return;
5629 
5630 	for (i = 0; i < curr->lockdep_depth; i++) {
5631 		struct held_lock *hlock = curr->held_locks + i;
5632 
5633 		if (match_held_lock(hlock, lock)) {
5634 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5635 				return;
5636 
5637 			hlock->pin_count -= cookie.val;
5638 
5639 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5640 				hlock->pin_count = 0;
5641 
5642 			return;
5643 		}
5644 	}
5645 
5646 	WARN(1, "unpinning an unheld lock\n");
5647 }
5648 
5649 /*
5650  * Check whether we follow the irq-flags state precisely:
5651  */
5652 static noinstr void check_flags(unsigned long flags)
5653 {
5654 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5655 	if (!debug_locks)
5656 		return;
5657 
5658 	/* Get the warning out..  */
5659 	instrumentation_begin();
5660 
5661 	if (irqs_disabled_flags(flags)) {
5662 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5663 			printk("possible reason: unannotated irqs-off.\n");
5664 		}
5665 	} else {
5666 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5667 			printk("possible reason: unannotated irqs-on.\n");
5668 		}
5669 	}
5670 
5671 #ifndef CONFIG_PREEMPT_RT
5672 	/*
5673 	 * We dont accurately track softirq state in e.g.
5674 	 * hardirq contexts (such as on 4KSTACKS), so only
5675 	 * check if not in hardirq contexts:
5676 	 */
5677 	if (!hardirq_count()) {
5678 		if (softirq_count()) {
5679 			/* like the above, but with softirqs */
5680 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5681 		} else {
5682 			/* lick the above, does it taste good? */
5683 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5684 		}
5685 	}
5686 #endif
5687 
5688 	if (!debug_locks)
5689 		print_irqtrace_events(current);
5690 
5691 	instrumentation_end();
5692 #endif
5693 }
5694 
5695 void lock_set_class(struct lockdep_map *lock, const char *name,
5696 		    struct lock_class_key *key, unsigned int subclass,
5697 		    unsigned long ip)
5698 {
5699 	unsigned long flags;
5700 
5701 	if (unlikely(!lockdep_enabled()))
5702 		return;
5703 
5704 	raw_local_irq_save(flags);
5705 	lockdep_recursion_inc();
5706 	check_flags(flags);
5707 	if (__lock_set_class(lock, name, key, subclass, ip))
5708 		check_chain_key(current);
5709 	lockdep_recursion_finish();
5710 	raw_local_irq_restore(flags);
5711 }
5712 EXPORT_SYMBOL_GPL(lock_set_class);
5713 
5714 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5715 {
5716 	unsigned long flags;
5717 
5718 	if (unlikely(!lockdep_enabled()))
5719 		return;
5720 
5721 	raw_local_irq_save(flags);
5722 	lockdep_recursion_inc();
5723 	check_flags(flags);
5724 	if (__lock_downgrade(lock, ip))
5725 		check_chain_key(current);
5726 	lockdep_recursion_finish();
5727 	raw_local_irq_restore(flags);
5728 }
5729 EXPORT_SYMBOL_GPL(lock_downgrade);
5730 
5731 /* NMI context !!! */
5732 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5733 {
5734 #ifdef CONFIG_PROVE_LOCKING
5735 	struct lock_class *class = look_up_lock_class(lock, subclass);
5736 	unsigned long mask = LOCKF_USED;
5737 
5738 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5739 	if (!class)
5740 		return;
5741 
5742 	/*
5743 	 * READ locks only conflict with USED, such that if we only ever use
5744 	 * READ locks, there is no deadlock possible -- RCU.
5745 	 */
5746 	if (!hlock->read)
5747 		mask |= LOCKF_USED_READ;
5748 
5749 	if (!(class->usage_mask & mask))
5750 		return;
5751 
5752 	hlock->class_idx = class - lock_classes;
5753 
5754 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5755 #endif
5756 }
5757 
5758 static bool lockdep_nmi(void)
5759 {
5760 	if (raw_cpu_read(lockdep_recursion))
5761 		return false;
5762 
5763 	if (!in_nmi())
5764 		return false;
5765 
5766 	return true;
5767 }
5768 
5769 /*
5770  * read_lock() is recursive if:
5771  * 1. We force lockdep think this way in selftests or
5772  * 2. The implementation is not queued read/write lock or
5773  * 3. The locker is at an in_interrupt() context.
5774  */
5775 bool read_lock_is_recursive(void)
5776 {
5777 	return force_read_lock_recursive ||
5778 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5779 	       in_interrupt();
5780 }
5781 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5782 
5783 /*
5784  * We are not always called with irqs disabled - do that here,
5785  * and also avoid lockdep recursion:
5786  */
5787 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5788 			  int trylock, int read, int check,
5789 			  struct lockdep_map *nest_lock, unsigned long ip)
5790 {
5791 	unsigned long flags;
5792 
5793 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5794 
5795 	if (!debug_locks)
5796 		return;
5797 
5798 	if (unlikely(!lockdep_enabled())) {
5799 		/* XXX allow trylock from NMI ?!? */
5800 		if (lockdep_nmi() && !trylock) {
5801 			struct held_lock hlock;
5802 
5803 			hlock.acquire_ip = ip;
5804 			hlock.instance = lock;
5805 			hlock.nest_lock = nest_lock;
5806 			hlock.irq_context = 2; // XXX
5807 			hlock.trylock = trylock;
5808 			hlock.read = read;
5809 			hlock.check = check;
5810 			hlock.hardirqs_off = true;
5811 			hlock.references = 0;
5812 
5813 			verify_lock_unused(lock, &hlock, subclass);
5814 		}
5815 		return;
5816 	}
5817 
5818 	raw_local_irq_save(flags);
5819 	check_flags(flags);
5820 
5821 	lockdep_recursion_inc();
5822 	__lock_acquire(lock, subclass, trylock, read, check,
5823 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5824 	lockdep_recursion_finish();
5825 	raw_local_irq_restore(flags);
5826 }
5827 EXPORT_SYMBOL_GPL(lock_acquire);
5828 
5829 void lock_release(struct lockdep_map *lock, unsigned long ip)
5830 {
5831 	unsigned long flags;
5832 
5833 	trace_lock_release(lock, ip);
5834 
5835 	if (unlikely(!lockdep_enabled() ||
5836 		     lock->key == &__lockdep_no_track__))
5837 		return;
5838 
5839 	raw_local_irq_save(flags);
5840 	check_flags(flags);
5841 
5842 	lockdep_recursion_inc();
5843 	if (__lock_release(lock, ip))
5844 		check_chain_key(current);
5845 	lockdep_recursion_finish();
5846 	raw_local_irq_restore(flags);
5847 }
5848 EXPORT_SYMBOL_GPL(lock_release);
5849 
5850 /*
5851  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5852  *
5853  * No actual critical section is created by the APIs annotated with this: these
5854  * APIs are used to wait for one or multiple critical sections (on other CPUs
5855  * or threads), and it means that calling these APIs inside these critical
5856  * sections is potential deadlock.
5857  */
5858 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5859 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5860 {
5861 	unsigned long flags;
5862 
5863 	if (unlikely(!lockdep_enabled()))
5864 		return;
5865 
5866 	raw_local_irq_save(flags);
5867 	check_flags(flags);
5868 
5869 	lockdep_recursion_inc();
5870 	__lock_acquire(lock, subclass, 0, read, check,
5871 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5872 	check_chain_key(current);
5873 	lockdep_recursion_finish();
5874 	raw_local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL_GPL(lock_sync);
5877 
5878 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5879 {
5880 	unsigned long flags;
5881 	int ret = LOCK_STATE_NOT_HELD;
5882 
5883 	/*
5884 	 * Avoid false negative lockdep_assert_held() and
5885 	 * lockdep_assert_not_held().
5886 	 */
5887 	if (unlikely(!lockdep_enabled()))
5888 		return LOCK_STATE_UNKNOWN;
5889 
5890 	raw_local_irq_save(flags);
5891 	check_flags(flags);
5892 
5893 	lockdep_recursion_inc();
5894 	ret = __lock_is_held(lock, read);
5895 	lockdep_recursion_finish();
5896 	raw_local_irq_restore(flags);
5897 
5898 	return ret;
5899 }
5900 EXPORT_SYMBOL_GPL(lock_is_held_type);
5901 NOKPROBE_SYMBOL(lock_is_held_type);
5902 
5903 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5904 {
5905 	struct pin_cookie cookie = NIL_COOKIE;
5906 	unsigned long flags;
5907 
5908 	if (unlikely(!lockdep_enabled()))
5909 		return cookie;
5910 
5911 	raw_local_irq_save(flags);
5912 	check_flags(flags);
5913 
5914 	lockdep_recursion_inc();
5915 	cookie = __lock_pin_lock(lock);
5916 	lockdep_recursion_finish();
5917 	raw_local_irq_restore(flags);
5918 
5919 	return cookie;
5920 }
5921 EXPORT_SYMBOL_GPL(lock_pin_lock);
5922 
5923 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5924 {
5925 	unsigned long flags;
5926 
5927 	if (unlikely(!lockdep_enabled()))
5928 		return;
5929 
5930 	raw_local_irq_save(flags);
5931 	check_flags(flags);
5932 
5933 	lockdep_recursion_inc();
5934 	__lock_repin_lock(lock, cookie);
5935 	lockdep_recursion_finish();
5936 	raw_local_irq_restore(flags);
5937 }
5938 EXPORT_SYMBOL_GPL(lock_repin_lock);
5939 
5940 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5941 {
5942 	unsigned long flags;
5943 
5944 	if (unlikely(!lockdep_enabled()))
5945 		return;
5946 
5947 	raw_local_irq_save(flags);
5948 	check_flags(flags);
5949 
5950 	lockdep_recursion_inc();
5951 	__lock_unpin_lock(lock, cookie);
5952 	lockdep_recursion_finish();
5953 	raw_local_irq_restore(flags);
5954 }
5955 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5956 
5957 #ifdef CONFIG_LOCK_STAT
5958 static void print_lock_contention_bug(struct task_struct *curr,
5959 				      struct lockdep_map *lock,
5960 				      unsigned long ip)
5961 {
5962 	if (!debug_locks_off())
5963 		return;
5964 	if (debug_locks_silent)
5965 		return;
5966 
5967 	nbcon_cpu_emergency_enter();
5968 
5969 	pr_warn("\n");
5970 	pr_warn("=================================\n");
5971 	pr_warn("WARNING: bad contention detected!\n");
5972 	print_kernel_ident();
5973 	pr_warn("---------------------------------\n");
5974 	pr_warn("%s/%d is trying to contend lock (",
5975 		curr->comm, task_pid_nr(curr));
5976 	print_lockdep_cache(lock);
5977 	pr_cont(") at:\n");
5978 	print_ip_sym(KERN_WARNING, ip);
5979 	pr_warn("but there are no locks held!\n");
5980 	pr_warn("\nother info that might help us debug this:\n");
5981 	lockdep_print_held_locks(curr);
5982 
5983 	pr_warn("\nstack backtrace:\n");
5984 	dump_stack();
5985 
5986 	nbcon_cpu_emergency_exit();
5987 }
5988 
5989 static void
5990 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5991 {
5992 	struct task_struct *curr = current;
5993 	struct held_lock *hlock;
5994 	struct lock_class_stats *stats;
5995 	unsigned int depth;
5996 	int i, contention_point, contending_point;
5997 
5998 	depth = curr->lockdep_depth;
5999 	/*
6000 	 * Whee, we contended on this lock, except it seems we're not
6001 	 * actually trying to acquire anything much at all..
6002 	 */
6003 	if (DEBUG_LOCKS_WARN_ON(!depth))
6004 		return;
6005 
6006 	if (unlikely(lock->key == &__lockdep_no_track__))
6007 		return;
6008 
6009 	hlock = find_held_lock(curr, lock, depth, &i);
6010 	if (!hlock) {
6011 		print_lock_contention_bug(curr, lock, ip);
6012 		return;
6013 	}
6014 
6015 	if (hlock->instance != lock)
6016 		return;
6017 
6018 	hlock->waittime_stamp = lockstat_clock();
6019 
6020 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6021 	contending_point = lock_point(hlock_class(hlock)->contending_point,
6022 				      lock->ip);
6023 
6024 	stats = get_lock_stats(hlock_class(hlock));
6025 	if (contention_point < LOCKSTAT_POINTS)
6026 		stats->contention_point[contention_point]++;
6027 	if (contending_point < LOCKSTAT_POINTS)
6028 		stats->contending_point[contending_point]++;
6029 	if (lock->cpu != smp_processor_id())
6030 		stats->bounces[bounce_contended + !!hlock->read]++;
6031 }
6032 
6033 static void
6034 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6035 {
6036 	struct task_struct *curr = current;
6037 	struct held_lock *hlock;
6038 	struct lock_class_stats *stats;
6039 	unsigned int depth;
6040 	u64 now, waittime = 0;
6041 	int i, cpu;
6042 
6043 	depth = curr->lockdep_depth;
6044 	/*
6045 	 * Yay, we acquired ownership of this lock we didn't try to
6046 	 * acquire, how the heck did that happen?
6047 	 */
6048 	if (DEBUG_LOCKS_WARN_ON(!depth))
6049 		return;
6050 
6051 	if (unlikely(lock->key == &__lockdep_no_track__))
6052 		return;
6053 
6054 	hlock = find_held_lock(curr, lock, depth, &i);
6055 	if (!hlock) {
6056 		print_lock_contention_bug(curr, lock, _RET_IP_);
6057 		return;
6058 	}
6059 
6060 	if (hlock->instance != lock)
6061 		return;
6062 
6063 	cpu = smp_processor_id();
6064 	if (hlock->waittime_stamp) {
6065 		now = lockstat_clock();
6066 		waittime = now - hlock->waittime_stamp;
6067 		hlock->holdtime_stamp = now;
6068 	}
6069 
6070 	stats = get_lock_stats(hlock_class(hlock));
6071 	if (waittime) {
6072 		if (hlock->read)
6073 			lock_time_inc(&stats->read_waittime, waittime);
6074 		else
6075 			lock_time_inc(&stats->write_waittime, waittime);
6076 	}
6077 	if (lock->cpu != cpu)
6078 		stats->bounces[bounce_acquired + !!hlock->read]++;
6079 
6080 	lock->cpu = cpu;
6081 	lock->ip = ip;
6082 }
6083 
6084 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6085 {
6086 	unsigned long flags;
6087 
6088 	trace_lock_contended(lock, ip);
6089 
6090 	if (unlikely(!lock_stat || !lockdep_enabled()))
6091 		return;
6092 
6093 	raw_local_irq_save(flags);
6094 	check_flags(flags);
6095 	lockdep_recursion_inc();
6096 	__lock_contended(lock, ip);
6097 	lockdep_recursion_finish();
6098 	raw_local_irq_restore(flags);
6099 }
6100 EXPORT_SYMBOL_GPL(lock_contended);
6101 
6102 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6103 {
6104 	unsigned long flags;
6105 
6106 	trace_lock_acquired(lock, ip);
6107 
6108 	if (unlikely(!lock_stat || !lockdep_enabled()))
6109 		return;
6110 
6111 	raw_local_irq_save(flags);
6112 	check_flags(flags);
6113 	lockdep_recursion_inc();
6114 	__lock_acquired(lock, ip);
6115 	lockdep_recursion_finish();
6116 	raw_local_irq_restore(flags);
6117 }
6118 EXPORT_SYMBOL_GPL(lock_acquired);
6119 #endif
6120 
6121 /*
6122  * Used by the testsuite, sanitize the validator state
6123  * after a simulated failure:
6124  */
6125 
6126 void lockdep_reset(void)
6127 {
6128 	unsigned long flags;
6129 	int i;
6130 
6131 	raw_local_irq_save(flags);
6132 	lockdep_init_task(current);
6133 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6134 	nr_hardirq_chains = 0;
6135 	nr_softirq_chains = 0;
6136 	nr_process_chains = 0;
6137 	debug_locks = 1;
6138 	for (i = 0; i < CHAINHASH_SIZE; i++)
6139 		INIT_HLIST_HEAD(chainhash_table + i);
6140 	raw_local_irq_restore(flags);
6141 }
6142 
6143 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6144 static void remove_class_from_lock_chain(struct pending_free *pf,
6145 					 struct lock_chain *chain,
6146 					 struct lock_class *class)
6147 {
6148 #ifdef CONFIG_PROVE_LOCKING
6149 	int i;
6150 
6151 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6152 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6153 			continue;
6154 		/*
6155 		 * Each lock class occurs at most once in a lock chain so once
6156 		 * we found a match we can break out of this loop.
6157 		 */
6158 		goto free_lock_chain;
6159 	}
6160 	/* Since the chain has not been modified, return. */
6161 	return;
6162 
6163 free_lock_chain:
6164 	free_chain_hlocks(chain->base, chain->depth);
6165 	/* Overwrite the chain key for concurrent RCU readers. */
6166 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6167 	dec_chains(chain->irq_context);
6168 
6169 	/*
6170 	 * Note: calling hlist_del_rcu() from inside a
6171 	 * hlist_for_each_entry_rcu() loop is safe.
6172 	 */
6173 	hlist_del_rcu(&chain->entry);
6174 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6175 	nr_zapped_lock_chains++;
6176 #endif
6177 }
6178 
6179 /* Must be called with the graph lock held. */
6180 static void remove_class_from_lock_chains(struct pending_free *pf,
6181 					  struct lock_class *class)
6182 {
6183 	struct lock_chain *chain;
6184 	struct hlist_head *head;
6185 	int i;
6186 
6187 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6188 		head = chainhash_table + i;
6189 		hlist_for_each_entry_rcu(chain, head, entry) {
6190 			remove_class_from_lock_chain(pf, chain, class);
6191 		}
6192 	}
6193 }
6194 
6195 /*
6196  * Remove all references to a lock class. The caller must hold the graph lock.
6197  */
6198 static void zap_class(struct pending_free *pf, struct lock_class *class)
6199 {
6200 	struct lock_list *entry;
6201 	int i;
6202 
6203 	WARN_ON_ONCE(!class->key);
6204 
6205 	/*
6206 	 * Remove all dependencies this lock is
6207 	 * involved in:
6208 	 */
6209 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6210 		entry = list_entries + i;
6211 		if (entry->class != class && entry->links_to != class)
6212 			continue;
6213 		__clear_bit(i, list_entries_in_use);
6214 		nr_list_entries--;
6215 		list_del_rcu(&entry->entry);
6216 	}
6217 	if (list_empty(&class->locks_after) &&
6218 	    list_empty(&class->locks_before)) {
6219 		list_move_tail(&class->lock_entry, &pf->zapped);
6220 		hlist_del_rcu(&class->hash_entry);
6221 		WRITE_ONCE(class->key, NULL);
6222 		WRITE_ONCE(class->name, NULL);
6223 		nr_lock_classes--;
6224 		__clear_bit(class - lock_classes, lock_classes_in_use);
6225 		if (class - lock_classes == max_lock_class_idx)
6226 			max_lock_class_idx--;
6227 	} else {
6228 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6229 			  class->name);
6230 	}
6231 
6232 	remove_class_from_lock_chains(pf, class);
6233 	nr_zapped_classes++;
6234 }
6235 
6236 static void reinit_class(struct lock_class *class)
6237 {
6238 	WARN_ON_ONCE(!class->lock_entry.next);
6239 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6240 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6241 	memset_startat(class, 0, key);
6242 	WARN_ON_ONCE(!class->lock_entry.next);
6243 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6244 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6245 }
6246 
6247 static inline int within(const void *addr, void *start, unsigned long size)
6248 {
6249 	return addr >= start && addr < start + size;
6250 }
6251 
6252 static bool inside_selftest(void)
6253 {
6254 	return current == lockdep_selftest_task_struct;
6255 }
6256 
6257 /* The caller must hold the graph lock. */
6258 static struct pending_free *get_pending_free(void)
6259 {
6260 	return delayed_free.pf + delayed_free.index;
6261 }
6262 
6263 static void free_zapped_rcu(struct rcu_head *cb);
6264 
6265 /*
6266  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6267  * the graph lock held.
6268  */
6269 static void call_rcu_zapped(struct pending_free *pf)
6270 {
6271 	WARN_ON_ONCE(inside_selftest());
6272 
6273 	if (list_empty(&pf->zapped))
6274 		return;
6275 
6276 	if (delayed_free.scheduled)
6277 		return;
6278 
6279 	delayed_free.scheduled = true;
6280 
6281 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6282 	delayed_free.index ^= 1;
6283 
6284 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6285 }
6286 
6287 /* The caller must hold the graph lock. May be called from RCU context. */
6288 static void __free_zapped_classes(struct pending_free *pf)
6289 {
6290 	struct lock_class *class;
6291 
6292 	check_data_structures();
6293 
6294 	list_for_each_entry(class, &pf->zapped, lock_entry)
6295 		reinit_class(class);
6296 
6297 	list_splice_init(&pf->zapped, &free_lock_classes);
6298 
6299 #ifdef CONFIG_PROVE_LOCKING
6300 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6301 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6302 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6303 #endif
6304 }
6305 
6306 static void free_zapped_rcu(struct rcu_head *ch)
6307 {
6308 	struct pending_free *pf;
6309 	unsigned long flags;
6310 
6311 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6312 		return;
6313 
6314 	raw_local_irq_save(flags);
6315 	lockdep_lock();
6316 
6317 	/* closed head */
6318 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6319 	__free_zapped_classes(pf);
6320 	delayed_free.scheduled = false;
6321 
6322 	/*
6323 	 * If there's anything on the open list, close and start a new callback.
6324 	 */
6325 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6326 
6327 	lockdep_unlock();
6328 	raw_local_irq_restore(flags);
6329 }
6330 
6331 /*
6332  * Remove all lock classes from the class hash table and from the
6333  * all_lock_classes list whose key or name is in the address range [start,
6334  * start + size). Move these lock classes to the zapped_classes list. Must
6335  * be called with the graph lock held.
6336  */
6337 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6338 				     unsigned long size)
6339 {
6340 	struct lock_class *class;
6341 	struct hlist_head *head;
6342 	int i;
6343 
6344 	/* Unhash all classes that were created by a module. */
6345 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6346 		head = classhash_table + i;
6347 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6348 			if (!within(class->key, start, size) &&
6349 			    !within(class->name, start, size))
6350 				continue;
6351 			zap_class(pf, class);
6352 		}
6353 	}
6354 }
6355 
6356 /*
6357  * Used in module.c to remove lock classes from memory that is going to be
6358  * freed; and possibly re-used by other modules.
6359  *
6360  * We will have had one synchronize_rcu() before getting here, so we're
6361  * guaranteed nobody will look up these exact classes -- they're properly dead
6362  * but still allocated.
6363  */
6364 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6365 {
6366 	struct pending_free *pf;
6367 	unsigned long flags;
6368 
6369 	init_data_structures_once();
6370 
6371 	raw_local_irq_save(flags);
6372 	lockdep_lock();
6373 	pf = get_pending_free();
6374 	__lockdep_free_key_range(pf, start, size);
6375 	call_rcu_zapped(pf);
6376 	lockdep_unlock();
6377 	raw_local_irq_restore(flags);
6378 
6379 	/*
6380 	 * Wait for any possible iterators from look_up_lock_class() to pass
6381 	 * before continuing to free the memory they refer to.
6382 	 */
6383 	synchronize_rcu();
6384 }
6385 
6386 /*
6387  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6388  * Ignores debug_locks. Must only be used by the lockdep selftests.
6389  */
6390 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6391 {
6392 	struct pending_free *pf = delayed_free.pf;
6393 	unsigned long flags;
6394 
6395 	init_data_structures_once();
6396 
6397 	raw_local_irq_save(flags);
6398 	lockdep_lock();
6399 	__lockdep_free_key_range(pf, start, size);
6400 	__free_zapped_classes(pf);
6401 	lockdep_unlock();
6402 	raw_local_irq_restore(flags);
6403 }
6404 
6405 void lockdep_free_key_range(void *start, unsigned long size)
6406 {
6407 	init_data_structures_once();
6408 
6409 	if (inside_selftest())
6410 		lockdep_free_key_range_imm(start, size);
6411 	else
6412 		lockdep_free_key_range_reg(start, size);
6413 }
6414 
6415 /*
6416  * Check whether any element of the @lock->class_cache[] array refers to a
6417  * registered lock class. The caller must hold either the graph lock or the
6418  * RCU read lock.
6419  */
6420 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6421 {
6422 	struct lock_class *class;
6423 	struct hlist_head *head;
6424 	int i, j;
6425 
6426 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6427 		head = classhash_table + i;
6428 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6429 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6430 				if (lock->class_cache[j] == class)
6431 					return true;
6432 		}
6433 	}
6434 	return false;
6435 }
6436 
6437 /* The caller must hold the graph lock. Does not sleep. */
6438 static void __lockdep_reset_lock(struct pending_free *pf,
6439 				 struct lockdep_map *lock)
6440 {
6441 	struct lock_class *class;
6442 	int j;
6443 
6444 	/*
6445 	 * Remove all classes this lock might have:
6446 	 */
6447 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6448 		/*
6449 		 * If the class exists we look it up and zap it:
6450 		 */
6451 		class = look_up_lock_class(lock, j);
6452 		if (class)
6453 			zap_class(pf, class);
6454 	}
6455 	/*
6456 	 * Debug check: in the end all mapped classes should
6457 	 * be gone.
6458 	 */
6459 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6460 		debug_locks_off();
6461 }
6462 
6463 /*
6464  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6465  * released data structures from RCU context.
6466  */
6467 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6468 {
6469 	struct pending_free *pf;
6470 	unsigned long flags;
6471 	int locked;
6472 
6473 	raw_local_irq_save(flags);
6474 	locked = graph_lock();
6475 	if (!locked)
6476 		goto out_irq;
6477 
6478 	pf = get_pending_free();
6479 	__lockdep_reset_lock(pf, lock);
6480 	call_rcu_zapped(pf);
6481 
6482 	graph_unlock();
6483 out_irq:
6484 	raw_local_irq_restore(flags);
6485 }
6486 
6487 /*
6488  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6489  * lockdep selftests.
6490  */
6491 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6492 {
6493 	struct pending_free *pf = delayed_free.pf;
6494 	unsigned long flags;
6495 
6496 	raw_local_irq_save(flags);
6497 	lockdep_lock();
6498 	__lockdep_reset_lock(pf, lock);
6499 	__free_zapped_classes(pf);
6500 	lockdep_unlock();
6501 	raw_local_irq_restore(flags);
6502 }
6503 
6504 void lockdep_reset_lock(struct lockdep_map *lock)
6505 {
6506 	init_data_structures_once();
6507 
6508 	if (inside_selftest())
6509 		lockdep_reset_lock_imm(lock);
6510 	else
6511 		lockdep_reset_lock_reg(lock);
6512 }
6513 
6514 /*
6515  * Unregister a dynamically allocated key.
6516  *
6517  * Unlike lockdep_register_key(), a search is always done to find a matching
6518  * key irrespective of debug_locks to avoid potential invalid access to freed
6519  * memory in lock_class entry.
6520  */
6521 void lockdep_unregister_key(struct lock_class_key *key)
6522 {
6523 	struct hlist_head *hash_head = keyhashentry(key);
6524 	struct lock_class_key *k;
6525 	struct pending_free *pf;
6526 	unsigned long flags;
6527 	bool found = false;
6528 
6529 	might_sleep();
6530 
6531 	if (WARN_ON_ONCE(static_obj(key)))
6532 		return;
6533 
6534 	raw_local_irq_save(flags);
6535 	lockdep_lock();
6536 
6537 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6538 		if (k == key) {
6539 			hlist_del_rcu(&k->hash_entry);
6540 			found = true;
6541 			break;
6542 		}
6543 	}
6544 	WARN_ON_ONCE(!found && debug_locks);
6545 	if (found) {
6546 		pf = get_pending_free();
6547 		__lockdep_free_key_range(pf, key, 1);
6548 		call_rcu_zapped(pf);
6549 	}
6550 	lockdep_unlock();
6551 	raw_local_irq_restore(flags);
6552 
6553 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6554 	synchronize_rcu();
6555 }
6556 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6557 
6558 void __init lockdep_init(void)
6559 {
6560 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6561 
6562 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6563 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6564 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6565 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6566 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6567 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6568 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6569 
6570 	printk(" memory used by lock dependency info: %zu kB\n",
6571 	       (sizeof(lock_classes) +
6572 		sizeof(lock_classes_in_use) +
6573 		sizeof(classhash_table) +
6574 		sizeof(list_entries) +
6575 		sizeof(list_entries_in_use) +
6576 		sizeof(chainhash_table) +
6577 		sizeof(delayed_free)
6578 #ifdef CONFIG_PROVE_LOCKING
6579 		+ sizeof(lock_cq)
6580 		+ sizeof(lock_chains)
6581 		+ sizeof(lock_chains_in_use)
6582 		+ sizeof(chain_hlocks)
6583 #endif
6584 		) / 1024
6585 		);
6586 
6587 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6588 	printk(" memory used for stack traces: %zu kB\n",
6589 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6590 	       );
6591 #endif
6592 
6593 	printk(" per task-struct memory footprint: %zu bytes\n",
6594 	       sizeof(((struct task_struct *)NULL)->held_locks));
6595 }
6596 
6597 static void
6598 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6599 		     const void *mem_to, struct held_lock *hlock)
6600 {
6601 	if (!debug_locks_off())
6602 		return;
6603 	if (debug_locks_silent)
6604 		return;
6605 
6606 	nbcon_cpu_emergency_enter();
6607 
6608 	pr_warn("\n");
6609 	pr_warn("=========================\n");
6610 	pr_warn("WARNING: held lock freed!\n");
6611 	print_kernel_ident();
6612 	pr_warn("-------------------------\n");
6613 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6614 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6615 	print_lock(hlock);
6616 	lockdep_print_held_locks(curr);
6617 
6618 	pr_warn("\nstack backtrace:\n");
6619 	dump_stack();
6620 
6621 	nbcon_cpu_emergency_exit();
6622 }
6623 
6624 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6625 				const void* lock_from, unsigned long lock_len)
6626 {
6627 	return lock_from + lock_len <= mem_from ||
6628 		mem_from + mem_len <= lock_from;
6629 }
6630 
6631 /*
6632  * Called when kernel memory is freed (or unmapped), or if a lock
6633  * is destroyed or reinitialized - this code checks whether there is
6634  * any held lock in the memory range of <from> to <to>:
6635  */
6636 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6637 {
6638 	struct task_struct *curr = current;
6639 	struct held_lock *hlock;
6640 	unsigned long flags;
6641 	int i;
6642 
6643 	if (unlikely(!debug_locks))
6644 		return;
6645 
6646 	raw_local_irq_save(flags);
6647 	for (i = 0; i < curr->lockdep_depth; i++) {
6648 		hlock = curr->held_locks + i;
6649 
6650 		if (not_in_range(mem_from, mem_len, hlock->instance,
6651 					sizeof(*hlock->instance)))
6652 			continue;
6653 
6654 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6655 		break;
6656 	}
6657 	raw_local_irq_restore(flags);
6658 }
6659 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6660 
6661 static void print_held_locks_bug(void)
6662 {
6663 	if (!debug_locks_off())
6664 		return;
6665 	if (debug_locks_silent)
6666 		return;
6667 
6668 	nbcon_cpu_emergency_enter();
6669 
6670 	pr_warn("\n");
6671 	pr_warn("====================================\n");
6672 	pr_warn("WARNING: %s/%d still has locks held!\n",
6673 	       current->comm, task_pid_nr(current));
6674 	print_kernel_ident();
6675 	pr_warn("------------------------------------\n");
6676 	lockdep_print_held_locks(current);
6677 	pr_warn("\nstack backtrace:\n");
6678 	dump_stack();
6679 
6680 	nbcon_cpu_emergency_exit();
6681 }
6682 
6683 void debug_check_no_locks_held(void)
6684 {
6685 	if (unlikely(current->lockdep_depth > 0))
6686 		print_held_locks_bug();
6687 }
6688 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6689 
6690 #ifdef __KERNEL__
6691 void debug_show_all_locks(void)
6692 {
6693 	struct task_struct *g, *p;
6694 
6695 	if (unlikely(!debug_locks)) {
6696 		pr_warn("INFO: lockdep is turned off.\n");
6697 		return;
6698 	}
6699 	pr_warn("\nShowing all locks held in the system:\n");
6700 
6701 	rcu_read_lock();
6702 	for_each_process_thread(g, p) {
6703 		if (!p->lockdep_depth)
6704 			continue;
6705 		lockdep_print_held_locks(p);
6706 		touch_nmi_watchdog();
6707 		touch_all_softlockup_watchdogs();
6708 	}
6709 	rcu_read_unlock();
6710 
6711 	pr_warn("\n");
6712 	pr_warn("=============================================\n\n");
6713 }
6714 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6715 #endif
6716 
6717 /*
6718  * Careful: only use this function if you are sure that
6719  * the task cannot run in parallel!
6720  */
6721 void debug_show_held_locks(struct task_struct *task)
6722 {
6723 	if (unlikely(!debug_locks)) {
6724 		printk("INFO: lockdep is turned off.\n");
6725 		return;
6726 	}
6727 	lockdep_print_held_locks(task);
6728 }
6729 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6730 
6731 asmlinkage __visible void lockdep_sys_exit(void)
6732 {
6733 	struct task_struct *curr = current;
6734 
6735 	if (unlikely(curr->lockdep_depth)) {
6736 		if (!debug_locks_off())
6737 			return;
6738 		nbcon_cpu_emergency_enter();
6739 		pr_warn("\n");
6740 		pr_warn("================================================\n");
6741 		pr_warn("WARNING: lock held when returning to user space!\n");
6742 		print_kernel_ident();
6743 		pr_warn("------------------------------------------------\n");
6744 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6745 				curr->comm, curr->pid);
6746 		lockdep_print_held_locks(curr);
6747 		nbcon_cpu_emergency_exit();
6748 	}
6749 
6750 	/*
6751 	 * The lock history for each syscall should be independent. So wipe the
6752 	 * slate clean on return to userspace.
6753 	 */
6754 	lockdep_invariant_state(false);
6755 }
6756 
6757 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6758 {
6759 	struct task_struct *curr = current;
6760 	int dl = READ_ONCE(debug_locks);
6761 	bool rcu = warn_rcu_enter();
6762 
6763 	/* Note: the following can be executed concurrently, so be careful. */
6764 	nbcon_cpu_emergency_enter();
6765 	pr_warn("\n");
6766 	pr_warn("=============================\n");
6767 	pr_warn("WARNING: suspicious RCU usage\n");
6768 	print_kernel_ident();
6769 	pr_warn("-----------------------------\n");
6770 	pr_warn("%s:%d %s!\n", file, line, s);
6771 	pr_warn("\nother info that might help us debug this:\n\n");
6772 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6773 	       !rcu_lockdep_current_cpu_online()
6774 			? "RCU used illegally from offline CPU!\n"
6775 			: "",
6776 	       rcu_scheduler_active, dl,
6777 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6778 
6779 	/*
6780 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6781 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6782 	 * considers that CPU to be in an "extended quiescent state",
6783 	 * which means that RCU will be completely ignoring that CPU.
6784 	 * Therefore, rcu_read_lock() and friends have absolutely no
6785 	 * effect on a CPU running in that state. In other words, even if
6786 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6787 	 * delete data structures out from under it.  RCU really has no
6788 	 * choice here: we need to keep an RCU-free window in idle where
6789 	 * the CPU may possibly enter into low power mode. This way we can
6790 	 * notice an extended quiescent state to other CPUs that started a grace
6791 	 * period. Otherwise we would delay any grace period as long as we run
6792 	 * in the idle task.
6793 	 *
6794 	 * So complain bitterly if someone does call rcu_read_lock(),
6795 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6796 	 */
6797 	if (!rcu_is_watching())
6798 		pr_warn("RCU used illegally from extended quiescent state!\n");
6799 
6800 	lockdep_print_held_locks(curr);
6801 	pr_warn("\nstack backtrace:\n");
6802 	dump_stack();
6803 	nbcon_cpu_emergency_exit();
6804 	warn_rcu_exit(rcu);
6805 }
6806 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6807