1 /* 2 * kernel/lockdep.c 3 * 4 * Runtime locking correctness validator 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 10 * 11 * this code maps all the lock dependencies as they occur in a live kernel 12 * and will warn about the following classes of locking bugs: 13 * 14 * - lock inversion scenarios 15 * - circular lock dependencies 16 * - hardirq/softirq safe/unsafe locking bugs 17 * 18 * Bugs are reported even if the current locking scenario does not cause 19 * any deadlock at this point. 20 * 21 * I.e. if anytime in the past two locks were taken in a different order, 22 * even if it happened for another task, even if those were different 23 * locks (but of the same class as this lock), this code will detect it. 24 * 25 * Thanks to Arjan van de Ven for coming up with the initial idea of 26 * mapping lock dependencies runtime. 27 */ 28 #define DISABLE_BRANCH_PROFILING 29 #include <linux/mutex.h> 30 #include <linux/sched.h> 31 #include <linux/sched/clock.h> 32 #include <linux/delay.h> 33 #include <linux/module.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/spinlock.h> 37 #include <linux/kallsyms.h> 38 #include <linux/interrupt.h> 39 #include <linux/stacktrace.h> 40 #include <linux/debug_locks.h> 41 #include <linux/irqflags.h> 42 #include <linux/utsname.h> 43 #include <linux/hash.h> 44 #include <linux/ftrace.h> 45 #include <linux/stringify.h> 46 #include <linux/bitops.h> 47 #include <linux/gfp.h> 48 #include <linux/kmemcheck.h> 49 #include <linux/random.h> 50 #include <linux/jhash.h> 51 52 #include <asm/sections.h> 53 54 #include "lockdep_internals.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/lock.h> 58 59 #ifdef CONFIG_PROVE_LOCKING 60 int prove_locking = 1; 61 module_param(prove_locking, int, 0644); 62 #else 63 #define prove_locking 0 64 #endif 65 66 #ifdef CONFIG_LOCK_STAT 67 int lock_stat = 1; 68 module_param(lock_stat, int, 0644); 69 #else 70 #define lock_stat 0 71 #endif 72 73 /* 74 * lockdep_lock: protects the lockdep graph, the hashes and the 75 * class/list/hash allocators. 76 * 77 * This is one of the rare exceptions where it's justified 78 * to use a raw spinlock - we really dont want the spinlock 79 * code to recurse back into the lockdep code... 80 */ 81 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 82 83 static int graph_lock(void) 84 { 85 arch_spin_lock(&lockdep_lock); 86 /* 87 * Make sure that if another CPU detected a bug while 88 * walking the graph we dont change it (while the other 89 * CPU is busy printing out stuff with the graph lock 90 * dropped already) 91 */ 92 if (!debug_locks) { 93 arch_spin_unlock(&lockdep_lock); 94 return 0; 95 } 96 /* prevent any recursions within lockdep from causing deadlocks */ 97 current->lockdep_recursion++; 98 return 1; 99 } 100 101 static inline int graph_unlock(void) 102 { 103 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) { 104 /* 105 * The lockdep graph lock isn't locked while we expect it to 106 * be, we're confused now, bye! 107 */ 108 return DEBUG_LOCKS_WARN_ON(1); 109 } 110 111 current->lockdep_recursion--; 112 arch_spin_unlock(&lockdep_lock); 113 return 0; 114 } 115 116 /* 117 * Turn lock debugging off and return with 0 if it was off already, 118 * and also release the graph lock: 119 */ 120 static inline int debug_locks_off_graph_unlock(void) 121 { 122 int ret = debug_locks_off(); 123 124 arch_spin_unlock(&lockdep_lock); 125 126 return ret; 127 } 128 129 unsigned long nr_list_entries; 130 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 131 132 /* 133 * All data structures here are protected by the global debug_lock. 134 * 135 * Mutex key structs only get allocated, once during bootup, and never 136 * get freed - this significantly simplifies the debugging code. 137 */ 138 unsigned long nr_lock_classes; 139 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 140 141 static inline struct lock_class *hlock_class(struct held_lock *hlock) 142 { 143 if (!hlock->class_idx) { 144 /* 145 * Someone passed in garbage, we give up. 146 */ 147 DEBUG_LOCKS_WARN_ON(1); 148 return NULL; 149 } 150 return lock_classes + hlock->class_idx - 1; 151 } 152 153 #ifdef CONFIG_LOCK_STAT 154 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 155 156 static inline u64 lockstat_clock(void) 157 { 158 return local_clock(); 159 } 160 161 static int lock_point(unsigned long points[], unsigned long ip) 162 { 163 int i; 164 165 for (i = 0; i < LOCKSTAT_POINTS; i++) { 166 if (points[i] == 0) { 167 points[i] = ip; 168 break; 169 } 170 if (points[i] == ip) 171 break; 172 } 173 174 return i; 175 } 176 177 static void lock_time_inc(struct lock_time *lt, u64 time) 178 { 179 if (time > lt->max) 180 lt->max = time; 181 182 if (time < lt->min || !lt->nr) 183 lt->min = time; 184 185 lt->total += time; 186 lt->nr++; 187 } 188 189 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 190 { 191 if (!src->nr) 192 return; 193 194 if (src->max > dst->max) 195 dst->max = src->max; 196 197 if (src->min < dst->min || !dst->nr) 198 dst->min = src->min; 199 200 dst->total += src->total; 201 dst->nr += src->nr; 202 } 203 204 struct lock_class_stats lock_stats(struct lock_class *class) 205 { 206 struct lock_class_stats stats; 207 int cpu, i; 208 209 memset(&stats, 0, sizeof(struct lock_class_stats)); 210 for_each_possible_cpu(cpu) { 211 struct lock_class_stats *pcs = 212 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 213 214 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 215 stats.contention_point[i] += pcs->contention_point[i]; 216 217 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 218 stats.contending_point[i] += pcs->contending_point[i]; 219 220 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 221 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 222 223 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 224 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 225 226 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 227 stats.bounces[i] += pcs->bounces[i]; 228 } 229 230 return stats; 231 } 232 233 void clear_lock_stats(struct lock_class *class) 234 { 235 int cpu; 236 237 for_each_possible_cpu(cpu) { 238 struct lock_class_stats *cpu_stats = 239 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 240 241 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 242 } 243 memset(class->contention_point, 0, sizeof(class->contention_point)); 244 memset(class->contending_point, 0, sizeof(class->contending_point)); 245 } 246 247 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 248 { 249 return &get_cpu_var(cpu_lock_stats)[class - lock_classes]; 250 } 251 252 static void put_lock_stats(struct lock_class_stats *stats) 253 { 254 put_cpu_var(cpu_lock_stats); 255 } 256 257 static void lock_release_holdtime(struct held_lock *hlock) 258 { 259 struct lock_class_stats *stats; 260 u64 holdtime; 261 262 if (!lock_stat) 263 return; 264 265 holdtime = lockstat_clock() - hlock->holdtime_stamp; 266 267 stats = get_lock_stats(hlock_class(hlock)); 268 if (hlock->read) 269 lock_time_inc(&stats->read_holdtime, holdtime); 270 else 271 lock_time_inc(&stats->write_holdtime, holdtime); 272 put_lock_stats(stats); 273 } 274 #else 275 static inline void lock_release_holdtime(struct held_lock *hlock) 276 { 277 } 278 #endif 279 280 /* 281 * We keep a global list of all lock classes. The list only grows, 282 * never shrinks. The list is only accessed with the lockdep 283 * spinlock lock held. 284 */ 285 LIST_HEAD(all_lock_classes); 286 287 /* 288 * The lockdep classes are in a hash-table as well, for fast lookup: 289 */ 290 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 291 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 292 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 293 #define classhashentry(key) (classhash_table + __classhashfn((key))) 294 295 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 296 297 /* 298 * We put the lock dependency chains into a hash-table as well, to cache 299 * their existence: 300 */ 301 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 302 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 303 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 304 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 305 306 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 307 308 /* 309 * The hash key of the lock dependency chains is a hash itself too: 310 * it's a hash of all locks taken up to that lock, including that lock. 311 * It's a 64-bit hash, because it's important for the keys to be 312 * unique. 313 */ 314 static inline u64 iterate_chain_key(u64 key, u32 idx) 315 { 316 u32 k0 = key, k1 = key >> 32; 317 318 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 319 320 return k0 | (u64)k1 << 32; 321 } 322 323 void lockdep_off(void) 324 { 325 current->lockdep_recursion++; 326 } 327 EXPORT_SYMBOL(lockdep_off); 328 329 void lockdep_on(void) 330 { 331 current->lockdep_recursion--; 332 } 333 EXPORT_SYMBOL(lockdep_on); 334 335 /* 336 * Debugging switches: 337 */ 338 339 #define VERBOSE 0 340 #define VERY_VERBOSE 0 341 342 #if VERBOSE 343 # define HARDIRQ_VERBOSE 1 344 # define SOFTIRQ_VERBOSE 1 345 # define RECLAIM_VERBOSE 1 346 #else 347 # define HARDIRQ_VERBOSE 0 348 # define SOFTIRQ_VERBOSE 0 349 # define RECLAIM_VERBOSE 0 350 #endif 351 352 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE 353 /* 354 * Quick filtering for interesting events: 355 */ 356 static int class_filter(struct lock_class *class) 357 { 358 #if 0 359 /* Example */ 360 if (class->name_version == 1 && 361 !strcmp(class->name, "lockname")) 362 return 1; 363 if (class->name_version == 1 && 364 !strcmp(class->name, "&struct->lockfield")) 365 return 1; 366 #endif 367 /* Filter everything else. 1 would be to allow everything else */ 368 return 0; 369 } 370 #endif 371 372 static int verbose(struct lock_class *class) 373 { 374 #if VERBOSE 375 return class_filter(class); 376 #endif 377 return 0; 378 } 379 380 /* 381 * Stack-trace: tightly packed array of stack backtrace 382 * addresses. Protected by the graph_lock. 383 */ 384 unsigned long nr_stack_trace_entries; 385 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 386 387 static void print_lockdep_off(const char *bug_msg) 388 { 389 printk(KERN_DEBUG "%s\n", bug_msg); 390 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 391 #ifdef CONFIG_LOCK_STAT 392 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 393 #endif 394 } 395 396 static int save_trace(struct stack_trace *trace) 397 { 398 trace->nr_entries = 0; 399 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 400 trace->entries = stack_trace + nr_stack_trace_entries; 401 402 trace->skip = 3; 403 404 save_stack_trace(trace); 405 406 /* 407 * Some daft arches put -1 at the end to indicate its a full trace. 408 * 409 * <rant> this is buggy anyway, since it takes a whole extra entry so a 410 * complete trace that maxes out the entries provided will be reported 411 * as incomplete, friggin useless </rant> 412 */ 413 if (trace->nr_entries != 0 && 414 trace->entries[trace->nr_entries-1] == ULONG_MAX) 415 trace->nr_entries--; 416 417 trace->max_entries = trace->nr_entries; 418 419 nr_stack_trace_entries += trace->nr_entries; 420 421 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 422 if (!debug_locks_off_graph_unlock()) 423 return 0; 424 425 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 426 dump_stack(); 427 428 return 0; 429 } 430 431 return 1; 432 } 433 434 unsigned int nr_hardirq_chains; 435 unsigned int nr_softirq_chains; 436 unsigned int nr_process_chains; 437 unsigned int max_lockdep_depth; 438 439 #ifdef CONFIG_DEBUG_LOCKDEP 440 /* 441 * Various lockdep statistics: 442 */ 443 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 444 #endif 445 446 /* 447 * Locking printouts: 448 */ 449 450 #define __USAGE(__STATE) \ 451 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 452 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 453 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 454 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 455 456 static const char *usage_str[] = 457 { 458 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 459 #include "lockdep_states.h" 460 #undef LOCKDEP_STATE 461 [LOCK_USED] = "INITIAL USE", 462 }; 463 464 const char * __get_key_name(struct lockdep_subclass_key *key, char *str) 465 { 466 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 467 } 468 469 static inline unsigned long lock_flag(enum lock_usage_bit bit) 470 { 471 return 1UL << bit; 472 } 473 474 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 475 { 476 char c = '.'; 477 478 if (class->usage_mask & lock_flag(bit + 2)) 479 c = '+'; 480 if (class->usage_mask & lock_flag(bit)) { 481 c = '-'; 482 if (class->usage_mask & lock_flag(bit + 2)) 483 c = '?'; 484 } 485 486 return c; 487 } 488 489 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 490 { 491 int i = 0; 492 493 #define LOCKDEP_STATE(__STATE) \ 494 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 495 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 496 #include "lockdep_states.h" 497 #undef LOCKDEP_STATE 498 499 usage[i] = '\0'; 500 } 501 502 static void __print_lock_name(struct lock_class *class) 503 { 504 char str[KSYM_NAME_LEN]; 505 const char *name; 506 507 name = class->name; 508 if (!name) { 509 name = __get_key_name(class->key, str); 510 printk(KERN_CONT "%s", name); 511 } else { 512 printk(KERN_CONT "%s", name); 513 if (class->name_version > 1) 514 printk(KERN_CONT "#%d", class->name_version); 515 if (class->subclass) 516 printk(KERN_CONT "/%d", class->subclass); 517 } 518 } 519 520 static void print_lock_name(struct lock_class *class) 521 { 522 char usage[LOCK_USAGE_CHARS]; 523 524 get_usage_chars(class, usage); 525 526 printk(KERN_CONT " ("); 527 __print_lock_name(class); 528 printk(KERN_CONT "){%s}", usage); 529 } 530 531 static void print_lockdep_cache(struct lockdep_map *lock) 532 { 533 const char *name; 534 char str[KSYM_NAME_LEN]; 535 536 name = lock->name; 537 if (!name) 538 name = __get_key_name(lock->key->subkeys, str); 539 540 printk(KERN_CONT "%s", name); 541 } 542 543 static void print_lock(struct held_lock *hlock) 544 { 545 /* 546 * We can be called locklessly through debug_show_all_locks() so be 547 * extra careful, the hlock might have been released and cleared. 548 */ 549 unsigned int class_idx = hlock->class_idx; 550 551 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */ 552 barrier(); 553 554 if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) { 555 printk(KERN_CONT "<RELEASED>\n"); 556 return; 557 } 558 559 print_lock_name(lock_classes + class_idx - 1); 560 printk(KERN_CONT ", at: [<%p>] %pS\n", 561 (void *)hlock->acquire_ip, (void *)hlock->acquire_ip); 562 } 563 564 static void lockdep_print_held_locks(struct task_struct *curr) 565 { 566 int i, depth = curr->lockdep_depth; 567 568 if (!depth) { 569 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr)); 570 return; 571 } 572 printk("%d lock%s held by %s/%d:\n", 573 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr)); 574 575 for (i = 0; i < depth; i++) { 576 printk(" #%d: ", i); 577 print_lock(curr->held_locks + i); 578 } 579 } 580 581 static void print_kernel_ident(void) 582 { 583 printk("%s %.*s %s\n", init_utsname()->release, 584 (int)strcspn(init_utsname()->version, " "), 585 init_utsname()->version, 586 print_tainted()); 587 } 588 589 static int very_verbose(struct lock_class *class) 590 { 591 #if VERY_VERBOSE 592 return class_filter(class); 593 #endif 594 return 0; 595 } 596 597 /* 598 * Is this the address of a static object: 599 */ 600 #ifdef __KERNEL__ 601 static int static_obj(void *obj) 602 { 603 unsigned long start = (unsigned long) &_stext, 604 end = (unsigned long) &_end, 605 addr = (unsigned long) obj; 606 607 /* 608 * static variable? 609 */ 610 if ((addr >= start) && (addr < end)) 611 return 1; 612 613 if (arch_is_kernel_data(addr)) 614 return 1; 615 616 /* 617 * in-kernel percpu var? 618 */ 619 if (is_kernel_percpu_address(addr)) 620 return 1; 621 622 /* 623 * module static or percpu var? 624 */ 625 return is_module_address(addr) || is_module_percpu_address(addr); 626 } 627 #endif 628 629 /* 630 * To make lock name printouts unique, we calculate a unique 631 * class->name_version generation counter: 632 */ 633 static int count_matching_names(struct lock_class *new_class) 634 { 635 struct lock_class *class; 636 int count = 0; 637 638 if (!new_class->name) 639 return 0; 640 641 list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) { 642 if (new_class->key - new_class->subclass == class->key) 643 return class->name_version; 644 if (class->name && !strcmp(class->name, new_class->name)) 645 count = max(count, class->name_version); 646 } 647 648 return count + 1; 649 } 650 651 /* 652 * Register a lock's class in the hash-table, if the class is not present 653 * yet. Otherwise we look it up. We cache the result in the lock object 654 * itself, so actual lookup of the hash should be once per lock object. 655 */ 656 static inline struct lock_class * 657 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) 658 { 659 struct lockdep_subclass_key *key; 660 struct hlist_head *hash_head; 661 struct lock_class *class; 662 663 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 664 debug_locks_off(); 665 printk(KERN_ERR 666 "BUG: looking up invalid subclass: %u\n", subclass); 667 printk(KERN_ERR 668 "turning off the locking correctness validator.\n"); 669 dump_stack(); 670 return NULL; 671 } 672 673 /* 674 * Static locks do not have their class-keys yet - for them the key 675 * is the lock object itself: 676 */ 677 if (unlikely(!lock->key)) 678 lock->key = (void *)lock; 679 680 /* 681 * NOTE: the class-key must be unique. For dynamic locks, a static 682 * lock_class_key variable is passed in through the mutex_init() 683 * (or spin_lock_init()) call - which acts as the key. For static 684 * locks we use the lock object itself as the key. 685 */ 686 BUILD_BUG_ON(sizeof(struct lock_class_key) > 687 sizeof(struct lockdep_map)); 688 689 key = lock->key->subkeys + subclass; 690 691 hash_head = classhashentry(key); 692 693 /* 694 * We do an RCU walk of the hash, see lockdep_free_key_range(). 695 */ 696 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 697 return NULL; 698 699 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 700 if (class->key == key) { 701 /* 702 * Huh! same key, different name? Did someone trample 703 * on some memory? We're most confused. 704 */ 705 WARN_ON_ONCE(class->name != lock->name); 706 return class; 707 } 708 } 709 710 return NULL; 711 } 712 713 /* 714 * Register a lock's class in the hash-table, if the class is not present 715 * yet. Otherwise we look it up. We cache the result in the lock object 716 * itself, so actual lookup of the hash should be once per lock object. 717 */ 718 static struct lock_class * 719 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 720 { 721 struct lockdep_subclass_key *key; 722 struct hlist_head *hash_head; 723 struct lock_class *class; 724 725 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 726 727 class = look_up_lock_class(lock, subclass); 728 if (likely(class)) 729 goto out_set_class_cache; 730 731 /* 732 * Debug-check: all keys must be persistent! 733 */ 734 if (!static_obj(lock->key)) { 735 debug_locks_off(); 736 printk("INFO: trying to register non-static key.\n"); 737 printk("the code is fine but needs lockdep annotation.\n"); 738 printk("turning off the locking correctness validator.\n"); 739 dump_stack(); 740 741 return NULL; 742 } 743 744 key = lock->key->subkeys + subclass; 745 hash_head = classhashentry(key); 746 747 if (!graph_lock()) { 748 return NULL; 749 } 750 /* 751 * We have to do the hash-walk again, to avoid races 752 * with another CPU: 753 */ 754 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 755 if (class->key == key) 756 goto out_unlock_set; 757 } 758 759 /* 760 * Allocate a new key from the static array, and add it to 761 * the hash: 762 */ 763 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) { 764 if (!debug_locks_off_graph_unlock()) { 765 return NULL; 766 } 767 768 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 769 dump_stack(); 770 return NULL; 771 } 772 class = lock_classes + nr_lock_classes++; 773 debug_atomic_inc(nr_unused_locks); 774 class->key = key; 775 class->name = lock->name; 776 class->subclass = subclass; 777 INIT_LIST_HEAD(&class->lock_entry); 778 INIT_LIST_HEAD(&class->locks_before); 779 INIT_LIST_HEAD(&class->locks_after); 780 class->name_version = count_matching_names(class); 781 /* 782 * We use RCU's safe list-add method to make 783 * parallel walking of the hash-list safe: 784 */ 785 hlist_add_head_rcu(&class->hash_entry, hash_head); 786 /* 787 * Add it to the global list of classes: 788 */ 789 list_add_tail_rcu(&class->lock_entry, &all_lock_classes); 790 791 if (verbose(class)) { 792 graph_unlock(); 793 794 printk("\nnew class %p: %s", class->key, class->name); 795 if (class->name_version > 1) 796 printk(KERN_CONT "#%d", class->name_version); 797 printk(KERN_CONT "\n"); 798 dump_stack(); 799 800 if (!graph_lock()) { 801 return NULL; 802 } 803 } 804 out_unlock_set: 805 graph_unlock(); 806 807 out_set_class_cache: 808 if (!subclass || force) 809 lock->class_cache[0] = class; 810 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 811 lock->class_cache[subclass] = class; 812 813 /* 814 * Hash collision, did we smoke some? We found a class with a matching 815 * hash but the subclass -- which is hashed in -- didn't match. 816 */ 817 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 818 return NULL; 819 820 return class; 821 } 822 823 #ifdef CONFIG_PROVE_LOCKING 824 /* 825 * Allocate a lockdep entry. (assumes the graph_lock held, returns 826 * with NULL on failure) 827 */ 828 static struct lock_list *alloc_list_entry(void) 829 { 830 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) { 831 if (!debug_locks_off_graph_unlock()) 832 return NULL; 833 834 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 835 dump_stack(); 836 return NULL; 837 } 838 return list_entries + nr_list_entries++; 839 } 840 841 /* 842 * Add a new dependency to the head of the list: 843 */ 844 static int add_lock_to_list(struct lock_class *this, struct list_head *head, 845 unsigned long ip, int distance, 846 struct stack_trace *trace) 847 { 848 struct lock_list *entry; 849 /* 850 * Lock not present yet - get a new dependency struct and 851 * add it to the list: 852 */ 853 entry = alloc_list_entry(); 854 if (!entry) 855 return 0; 856 857 entry->class = this; 858 entry->distance = distance; 859 entry->trace = *trace; 860 /* 861 * Both allocation and removal are done under the graph lock; but 862 * iteration is under RCU-sched; see look_up_lock_class() and 863 * lockdep_free_key_range(). 864 */ 865 list_add_tail_rcu(&entry->entry, head); 866 867 return 1; 868 } 869 870 /* 871 * For good efficiency of modular, we use power of 2 872 */ 873 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 874 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 875 876 /* 877 * The circular_queue and helpers is used to implement the 878 * breadth-first search(BFS)algorithem, by which we can build 879 * the shortest path from the next lock to be acquired to the 880 * previous held lock if there is a circular between them. 881 */ 882 struct circular_queue { 883 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; 884 unsigned int front, rear; 885 }; 886 887 static struct circular_queue lock_cq; 888 889 unsigned int max_bfs_queue_depth; 890 891 static unsigned int lockdep_dependency_gen_id; 892 893 static inline void __cq_init(struct circular_queue *cq) 894 { 895 cq->front = cq->rear = 0; 896 lockdep_dependency_gen_id++; 897 } 898 899 static inline int __cq_empty(struct circular_queue *cq) 900 { 901 return (cq->front == cq->rear); 902 } 903 904 static inline int __cq_full(struct circular_queue *cq) 905 { 906 return ((cq->rear + 1) & CQ_MASK) == cq->front; 907 } 908 909 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) 910 { 911 if (__cq_full(cq)) 912 return -1; 913 914 cq->element[cq->rear] = elem; 915 cq->rear = (cq->rear + 1) & CQ_MASK; 916 return 0; 917 } 918 919 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) 920 { 921 if (__cq_empty(cq)) 922 return -1; 923 924 *elem = cq->element[cq->front]; 925 cq->front = (cq->front + 1) & CQ_MASK; 926 return 0; 927 } 928 929 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 930 { 931 return (cq->rear - cq->front) & CQ_MASK; 932 } 933 934 static inline void mark_lock_accessed(struct lock_list *lock, 935 struct lock_list *parent) 936 { 937 unsigned long nr; 938 939 nr = lock - list_entries; 940 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 941 lock->parent = parent; 942 lock->class->dep_gen_id = lockdep_dependency_gen_id; 943 } 944 945 static inline unsigned long lock_accessed(struct lock_list *lock) 946 { 947 unsigned long nr; 948 949 nr = lock - list_entries; 950 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 951 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 952 } 953 954 static inline struct lock_list *get_lock_parent(struct lock_list *child) 955 { 956 return child->parent; 957 } 958 959 static inline int get_lock_depth(struct lock_list *child) 960 { 961 int depth = 0; 962 struct lock_list *parent; 963 964 while ((parent = get_lock_parent(child))) { 965 child = parent; 966 depth++; 967 } 968 return depth; 969 } 970 971 static int __bfs(struct lock_list *source_entry, 972 void *data, 973 int (*match)(struct lock_list *entry, void *data), 974 struct lock_list **target_entry, 975 int forward) 976 { 977 struct lock_list *entry; 978 struct list_head *head; 979 struct circular_queue *cq = &lock_cq; 980 int ret = 1; 981 982 if (match(source_entry, data)) { 983 *target_entry = source_entry; 984 ret = 0; 985 goto exit; 986 } 987 988 if (forward) 989 head = &source_entry->class->locks_after; 990 else 991 head = &source_entry->class->locks_before; 992 993 if (list_empty(head)) 994 goto exit; 995 996 __cq_init(cq); 997 __cq_enqueue(cq, (unsigned long)source_entry); 998 999 while (!__cq_empty(cq)) { 1000 struct lock_list *lock; 1001 1002 __cq_dequeue(cq, (unsigned long *)&lock); 1003 1004 if (!lock->class) { 1005 ret = -2; 1006 goto exit; 1007 } 1008 1009 if (forward) 1010 head = &lock->class->locks_after; 1011 else 1012 head = &lock->class->locks_before; 1013 1014 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1015 1016 list_for_each_entry_rcu(entry, head, entry) { 1017 if (!lock_accessed(entry)) { 1018 unsigned int cq_depth; 1019 mark_lock_accessed(entry, lock); 1020 if (match(entry, data)) { 1021 *target_entry = entry; 1022 ret = 0; 1023 goto exit; 1024 } 1025 1026 if (__cq_enqueue(cq, (unsigned long)entry)) { 1027 ret = -1; 1028 goto exit; 1029 } 1030 cq_depth = __cq_get_elem_count(cq); 1031 if (max_bfs_queue_depth < cq_depth) 1032 max_bfs_queue_depth = cq_depth; 1033 } 1034 } 1035 } 1036 exit: 1037 return ret; 1038 } 1039 1040 static inline int __bfs_forwards(struct lock_list *src_entry, 1041 void *data, 1042 int (*match)(struct lock_list *entry, void *data), 1043 struct lock_list **target_entry) 1044 { 1045 return __bfs(src_entry, data, match, target_entry, 1); 1046 1047 } 1048 1049 static inline int __bfs_backwards(struct lock_list *src_entry, 1050 void *data, 1051 int (*match)(struct lock_list *entry, void *data), 1052 struct lock_list **target_entry) 1053 { 1054 return __bfs(src_entry, data, match, target_entry, 0); 1055 1056 } 1057 1058 /* 1059 * Recursive, forwards-direction lock-dependency checking, used for 1060 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1061 * checking. 1062 */ 1063 1064 /* 1065 * Print a dependency chain entry (this is only done when a deadlock 1066 * has been detected): 1067 */ 1068 static noinline int 1069 print_circular_bug_entry(struct lock_list *target, int depth) 1070 { 1071 if (debug_locks_silent) 1072 return 0; 1073 printk("\n-> #%u", depth); 1074 print_lock_name(target->class); 1075 printk(KERN_CONT ":\n"); 1076 print_stack_trace(&target->trace, 6); 1077 1078 return 0; 1079 } 1080 1081 static void 1082 print_circular_lock_scenario(struct held_lock *src, 1083 struct held_lock *tgt, 1084 struct lock_list *prt) 1085 { 1086 struct lock_class *source = hlock_class(src); 1087 struct lock_class *target = hlock_class(tgt); 1088 struct lock_class *parent = prt->class; 1089 1090 /* 1091 * A direct locking problem where unsafe_class lock is taken 1092 * directly by safe_class lock, then all we need to show 1093 * is the deadlock scenario, as it is obvious that the 1094 * unsafe lock is taken under the safe lock. 1095 * 1096 * But if there is a chain instead, where the safe lock takes 1097 * an intermediate lock (middle_class) where this lock is 1098 * not the same as the safe lock, then the lock chain is 1099 * used to describe the problem. Otherwise we would need 1100 * to show a different CPU case for each link in the chain 1101 * from the safe_class lock to the unsafe_class lock. 1102 */ 1103 if (parent != source) { 1104 printk("Chain exists of:\n "); 1105 __print_lock_name(source); 1106 printk(KERN_CONT " --> "); 1107 __print_lock_name(parent); 1108 printk(KERN_CONT " --> "); 1109 __print_lock_name(target); 1110 printk(KERN_CONT "\n\n"); 1111 } 1112 1113 printk(" Possible unsafe locking scenario:\n\n"); 1114 printk(" CPU0 CPU1\n"); 1115 printk(" ---- ----\n"); 1116 printk(" lock("); 1117 __print_lock_name(target); 1118 printk(KERN_CONT ");\n"); 1119 printk(" lock("); 1120 __print_lock_name(parent); 1121 printk(KERN_CONT ");\n"); 1122 printk(" lock("); 1123 __print_lock_name(target); 1124 printk(KERN_CONT ");\n"); 1125 printk(" lock("); 1126 __print_lock_name(source); 1127 printk(KERN_CONT ");\n"); 1128 printk("\n *** DEADLOCK ***\n\n"); 1129 } 1130 1131 /* 1132 * When a circular dependency is detected, print the 1133 * header first: 1134 */ 1135 static noinline int 1136 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1137 struct held_lock *check_src, 1138 struct held_lock *check_tgt) 1139 { 1140 struct task_struct *curr = current; 1141 1142 if (debug_locks_silent) 1143 return 0; 1144 1145 printk("\n"); 1146 printk("======================================================\n"); 1147 printk("[ INFO: possible circular locking dependency detected ]\n"); 1148 print_kernel_ident(); 1149 printk("-------------------------------------------------------\n"); 1150 printk("%s/%d is trying to acquire lock:\n", 1151 curr->comm, task_pid_nr(curr)); 1152 print_lock(check_src); 1153 printk("\nbut task is already holding lock:\n"); 1154 print_lock(check_tgt); 1155 printk("\nwhich lock already depends on the new lock.\n\n"); 1156 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1157 1158 print_circular_bug_entry(entry, depth); 1159 1160 return 0; 1161 } 1162 1163 static inline int class_equal(struct lock_list *entry, void *data) 1164 { 1165 return entry->class == data; 1166 } 1167 1168 static noinline int print_circular_bug(struct lock_list *this, 1169 struct lock_list *target, 1170 struct held_lock *check_src, 1171 struct held_lock *check_tgt) 1172 { 1173 struct task_struct *curr = current; 1174 struct lock_list *parent; 1175 struct lock_list *first_parent; 1176 int depth; 1177 1178 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1179 return 0; 1180 1181 if (!save_trace(&this->trace)) 1182 return 0; 1183 1184 depth = get_lock_depth(target); 1185 1186 print_circular_bug_header(target, depth, check_src, check_tgt); 1187 1188 parent = get_lock_parent(target); 1189 first_parent = parent; 1190 1191 while (parent) { 1192 print_circular_bug_entry(parent, --depth); 1193 parent = get_lock_parent(parent); 1194 } 1195 1196 printk("\nother info that might help us debug this:\n\n"); 1197 print_circular_lock_scenario(check_src, check_tgt, 1198 first_parent); 1199 1200 lockdep_print_held_locks(curr); 1201 1202 printk("\nstack backtrace:\n"); 1203 dump_stack(); 1204 1205 return 0; 1206 } 1207 1208 static noinline int print_bfs_bug(int ret) 1209 { 1210 if (!debug_locks_off_graph_unlock()) 1211 return 0; 1212 1213 /* 1214 * Breadth-first-search failed, graph got corrupted? 1215 */ 1216 WARN(1, "lockdep bfs error:%d\n", ret); 1217 1218 return 0; 1219 } 1220 1221 static int noop_count(struct lock_list *entry, void *data) 1222 { 1223 (*(unsigned long *)data)++; 1224 return 0; 1225 } 1226 1227 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1228 { 1229 unsigned long count = 0; 1230 struct lock_list *uninitialized_var(target_entry); 1231 1232 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1233 1234 return count; 1235 } 1236 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1237 { 1238 unsigned long ret, flags; 1239 struct lock_list this; 1240 1241 this.parent = NULL; 1242 this.class = class; 1243 1244 local_irq_save(flags); 1245 arch_spin_lock(&lockdep_lock); 1246 ret = __lockdep_count_forward_deps(&this); 1247 arch_spin_unlock(&lockdep_lock); 1248 local_irq_restore(flags); 1249 1250 return ret; 1251 } 1252 1253 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1254 { 1255 unsigned long count = 0; 1256 struct lock_list *uninitialized_var(target_entry); 1257 1258 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1259 1260 return count; 1261 } 1262 1263 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1264 { 1265 unsigned long ret, flags; 1266 struct lock_list this; 1267 1268 this.parent = NULL; 1269 this.class = class; 1270 1271 local_irq_save(flags); 1272 arch_spin_lock(&lockdep_lock); 1273 ret = __lockdep_count_backward_deps(&this); 1274 arch_spin_unlock(&lockdep_lock); 1275 local_irq_restore(flags); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Prove that the dependency graph starting at <entry> can not 1282 * lead to <target>. Print an error and return 0 if it does. 1283 */ 1284 static noinline int 1285 check_noncircular(struct lock_list *root, struct lock_class *target, 1286 struct lock_list **target_entry) 1287 { 1288 int result; 1289 1290 debug_atomic_inc(nr_cyclic_checks); 1291 1292 result = __bfs_forwards(root, target, class_equal, target_entry); 1293 1294 return result; 1295 } 1296 1297 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1298 /* 1299 * Forwards and backwards subgraph searching, for the purposes of 1300 * proving that two subgraphs can be connected by a new dependency 1301 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1302 */ 1303 1304 static inline int usage_match(struct lock_list *entry, void *bit) 1305 { 1306 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); 1307 } 1308 1309 1310 1311 /* 1312 * Find a node in the forwards-direction dependency sub-graph starting 1313 * at @root->class that matches @bit. 1314 * 1315 * Return 0 if such a node exists in the subgraph, and put that node 1316 * into *@target_entry. 1317 * 1318 * Return 1 otherwise and keep *@target_entry unchanged. 1319 * Return <0 on error. 1320 */ 1321 static int 1322 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, 1323 struct lock_list **target_entry) 1324 { 1325 int result; 1326 1327 debug_atomic_inc(nr_find_usage_forwards_checks); 1328 1329 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1330 1331 return result; 1332 } 1333 1334 /* 1335 * Find a node in the backwards-direction dependency sub-graph starting 1336 * at @root->class that matches @bit. 1337 * 1338 * Return 0 if such a node exists in the subgraph, and put that node 1339 * into *@target_entry. 1340 * 1341 * Return 1 otherwise and keep *@target_entry unchanged. 1342 * Return <0 on error. 1343 */ 1344 static int 1345 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, 1346 struct lock_list **target_entry) 1347 { 1348 int result; 1349 1350 debug_atomic_inc(nr_find_usage_backwards_checks); 1351 1352 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1353 1354 return result; 1355 } 1356 1357 static void print_lock_class_header(struct lock_class *class, int depth) 1358 { 1359 int bit; 1360 1361 printk("%*s->", depth, ""); 1362 print_lock_name(class); 1363 printk(KERN_CONT " ops: %lu", class->ops); 1364 printk(KERN_CONT " {\n"); 1365 1366 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1367 if (class->usage_mask & (1 << bit)) { 1368 int len = depth; 1369 1370 len += printk("%*s %s", depth, "", usage_str[bit]); 1371 len += printk(KERN_CONT " at:\n"); 1372 print_stack_trace(class->usage_traces + bit, len); 1373 } 1374 } 1375 printk("%*s }\n", depth, ""); 1376 1377 printk("%*s ... key at: [<%p>] %pS\n", 1378 depth, "", class->key, class->key); 1379 } 1380 1381 /* 1382 * printk the shortest lock dependencies from @start to @end in reverse order: 1383 */ 1384 static void __used 1385 print_shortest_lock_dependencies(struct lock_list *leaf, 1386 struct lock_list *root) 1387 { 1388 struct lock_list *entry = leaf; 1389 int depth; 1390 1391 /*compute depth from generated tree by BFS*/ 1392 depth = get_lock_depth(leaf); 1393 1394 do { 1395 print_lock_class_header(entry->class, depth); 1396 printk("%*s ... acquired at:\n", depth, ""); 1397 print_stack_trace(&entry->trace, 2); 1398 printk("\n"); 1399 1400 if (depth == 0 && (entry != root)) { 1401 printk("lockdep:%s bad path found in chain graph\n", __func__); 1402 break; 1403 } 1404 1405 entry = get_lock_parent(entry); 1406 depth--; 1407 } while (entry && (depth >= 0)); 1408 1409 return; 1410 } 1411 1412 static void 1413 print_irq_lock_scenario(struct lock_list *safe_entry, 1414 struct lock_list *unsafe_entry, 1415 struct lock_class *prev_class, 1416 struct lock_class *next_class) 1417 { 1418 struct lock_class *safe_class = safe_entry->class; 1419 struct lock_class *unsafe_class = unsafe_entry->class; 1420 struct lock_class *middle_class = prev_class; 1421 1422 if (middle_class == safe_class) 1423 middle_class = next_class; 1424 1425 /* 1426 * A direct locking problem where unsafe_class lock is taken 1427 * directly by safe_class lock, then all we need to show 1428 * is the deadlock scenario, as it is obvious that the 1429 * unsafe lock is taken under the safe lock. 1430 * 1431 * But if there is a chain instead, where the safe lock takes 1432 * an intermediate lock (middle_class) where this lock is 1433 * not the same as the safe lock, then the lock chain is 1434 * used to describe the problem. Otherwise we would need 1435 * to show a different CPU case for each link in the chain 1436 * from the safe_class lock to the unsafe_class lock. 1437 */ 1438 if (middle_class != unsafe_class) { 1439 printk("Chain exists of:\n "); 1440 __print_lock_name(safe_class); 1441 printk(KERN_CONT " --> "); 1442 __print_lock_name(middle_class); 1443 printk(KERN_CONT " --> "); 1444 __print_lock_name(unsafe_class); 1445 printk(KERN_CONT "\n\n"); 1446 } 1447 1448 printk(" Possible interrupt unsafe locking scenario:\n\n"); 1449 printk(" CPU0 CPU1\n"); 1450 printk(" ---- ----\n"); 1451 printk(" lock("); 1452 __print_lock_name(unsafe_class); 1453 printk(KERN_CONT ");\n"); 1454 printk(" local_irq_disable();\n"); 1455 printk(" lock("); 1456 __print_lock_name(safe_class); 1457 printk(KERN_CONT ");\n"); 1458 printk(" lock("); 1459 __print_lock_name(middle_class); 1460 printk(KERN_CONT ");\n"); 1461 printk(" <Interrupt>\n"); 1462 printk(" lock("); 1463 __print_lock_name(safe_class); 1464 printk(KERN_CONT ");\n"); 1465 printk("\n *** DEADLOCK ***\n\n"); 1466 } 1467 1468 static int 1469 print_bad_irq_dependency(struct task_struct *curr, 1470 struct lock_list *prev_root, 1471 struct lock_list *next_root, 1472 struct lock_list *backwards_entry, 1473 struct lock_list *forwards_entry, 1474 struct held_lock *prev, 1475 struct held_lock *next, 1476 enum lock_usage_bit bit1, 1477 enum lock_usage_bit bit2, 1478 const char *irqclass) 1479 { 1480 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1481 return 0; 1482 1483 printk("\n"); 1484 printk("======================================================\n"); 1485 printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n", 1486 irqclass, irqclass); 1487 print_kernel_ident(); 1488 printk("------------------------------------------------------\n"); 1489 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 1490 curr->comm, task_pid_nr(curr), 1491 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 1492 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 1493 curr->hardirqs_enabled, 1494 curr->softirqs_enabled); 1495 print_lock(next); 1496 1497 printk("\nand this task is already holding:\n"); 1498 print_lock(prev); 1499 printk("which would create a new lock dependency:\n"); 1500 print_lock_name(hlock_class(prev)); 1501 printk(KERN_CONT " ->"); 1502 print_lock_name(hlock_class(next)); 1503 printk(KERN_CONT "\n"); 1504 1505 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1506 irqclass); 1507 print_lock_name(backwards_entry->class); 1508 printk("\n... which became %s-irq-safe at:\n", irqclass); 1509 1510 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); 1511 1512 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1513 print_lock_name(forwards_entry->class); 1514 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1515 printk("..."); 1516 1517 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); 1518 1519 printk("\nother info that might help us debug this:\n\n"); 1520 print_irq_lock_scenario(backwards_entry, forwards_entry, 1521 hlock_class(prev), hlock_class(next)); 1522 1523 lockdep_print_held_locks(curr); 1524 1525 printk("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 1526 if (!save_trace(&prev_root->trace)) 1527 return 0; 1528 print_shortest_lock_dependencies(backwards_entry, prev_root); 1529 1530 printk("\nthe dependencies between the lock to be acquired"); 1531 printk(" and %s-irq-unsafe lock:\n", irqclass); 1532 if (!save_trace(&next_root->trace)) 1533 return 0; 1534 print_shortest_lock_dependencies(forwards_entry, next_root); 1535 1536 printk("\nstack backtrace:\n"); 1537 dump_stack(); 1538 1539 return 0; 1540 } 1541 1542 static int 1543 check_usage(struct task_struct *curr, struct held_lock *prev, 1544 struct held_lock *next, enum lock_usage_bit bit_backwards, 1545 enum lock_usage_bit bit_forwards, const char *irqclass) 1546 { 1547 int ret; 1548 struct lock_list this, that; 1549 struct lock_list *uninitialized_var(target_entry); 1550 struct lock_list *uninitialized_var(target_entry1); 1551 1552 this.parent = NULL; 1553 1554 this.class = hlock_class(prev); 1555 ret = find_usage_backwards(&this, bit_backwards, &target_entry); 1556 if (ret < 0) 1557 return print_bfs_bug(ret); 1558 if (ret == 1) 1559 return ret; 1560 1561 that.parent = NULL; 1562 that.class = hlock_class(next); 1563 ret = find_usage_forwards(&that, bit_forwards, &target_entry1); 1564 if (ret < 0) 1565 return print_bfs_bug(ret); 1566 if (ret == 1) 1567 return ret; 1568 1569 return print_bad_irq_dependency(curr, &this, &that, 1570 target_entry, target_entry1, 1571 prev, next, 1572 bit_backwards, bit_forwards, irqclass); 1573 } 1574 1575 static const char *state_names[] = { 1576 #define LOCKDEP_STATE(__STATE) \ 1577 __stringify(__STATE), 1578 #include "lockdep_states.h" 1579 #undef LOCKDEP_STATE 1580 }; 1581 1582 static const char *state_rnames[] = { 1583 #define LOCKDEP_STATE(__STATE) \ 1584 __stringify(__STATE)"-READ", 1585 #include "lockdep_states.h" 1586 #undef LOCKDEP_STATE 1587 }; 1588 1589 static inline const char *state_name(enum lock_usage_bit bit) 1590 { 1591 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; 1592 } 1593 1594 static int exclusive_bit(int new_bit) 1595 { 1596 /* 1597 * USED_IN 1598 * USED_IN_READ 1599 * ENABLED 1600 * ENABLED_READ 1601 * 1602 * bit 0 - write/read 1603 * bit 1 - used_in/enabled 1604 * bit 2+ state 1605 */ 1606 1607 int state = new_bit & ~3; 1608 int dir = new_bit & 2; 1609 1610 /* 1611 * keep state, bit flip the direction and strip read. 1612 */ 1613 return state | (dir ^ 2); 1614 } 1615 1616 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 1617 struct held_lock *next, enum lock_usage_bit bit) 1618 { 1619 /* 1620 * Prove that the new dependency does not connect a hardirq-safe 1621 * lock with a hardirq-unsafe lock - to achieve this we search 1622 * the backwards-subgraph starting at <prev>, and the 1623 * forwards-subgraph starting at <next>: 1624 */ 1625 if (!check_usage(curr, prev, next, bit, 1626 exclusive_bit(bit), state_name(bit))) 1627 return 0; 1628 1629 bit++; /* _READ */ 1630 1631 /* 1632 * Prove that the new dependency does not connect a hardirq-safe-read 1633 * lock with a hardirq-unsafe lock - to achieve this we search 1634 * the backwards-subgraph starting at <prev>, and the 1635 * forwards-subgraph starting at <next>: 1636 */ 1637 if (!check_usage(curr, prev, next, bit, 1638 exclusive_bit(bit), state_name(bit))) 1639 return 0; 1640 1641 return 1; 1642 } 1643 1644 static int 1645 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1646 struct held_lock *next) 1647 { 1648 #define LOCKDEP_STATE(__STATE) \ 1649 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ 1650 return 0; 1651 #include "lockdep_states.h" 1652 #undef LOCKDEP_STATE 1653 1654 return 1; 1655 } 1656 1657 static void inc_chains(void) 1658 { 1659 if (current->hardirq_context) 1660 nr_hardirq_chains++; 1661 else { 1662 if (current->softirq_context) 1663 nr_softirq_chains++; 1664 else 1665 nr_process_chains++; 1666 } 1667 } 1668 1669 #else 1670 1671 static inline int 1672 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1673 struct held_lock *next) 1674 { 1675 return 1; 1676 } 1677 1678 static inline void inc_chains(void) 1679 { 1680 nr_process_chains++; 1681 } 1682 1683 #endif 1684 1685 static void 1686 print_deadlock_scenario(struct held_lock *nxt, 1687 struct held_lock *prv) 1688 { 1689 struct lock_class *next = hlock_class(nxt); 1690 struct lock_class *prev = hlock_class(prv); 1691 1692 printk(" Possible unsafe locking scenario:\n\n"); 1693 printk(" CPU0\n"); 1694 printk(" ----\n"); 1695 printk(" lock("); 1696 __print_lock_name(prev); 1697 printk(KERN_CONT ");\n"); 1698 printk(" lock("); 1699 __print_lock_name(next); 1700 printk(KERN_CONT ");\n"); 1701 printk("\n *** DEADLOCK ***\n\n"); 1702 printk(" May be due to missing lock nesting notation\n\n"); 1703 } 1704 1705 static int 1706 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 1707 struct held_lock *next) 1708 { 1709 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1710 return 0; 1711 1712 printk("\n"); 1713 printk("=============================================\n"); 1714 printk("[ INFO: possible recursive locking detected ]\n"); 1715 print_kernel_ident(); 1716 printk("---------------------------------------------\n"); 1717 printk("%s/%d is trying to acquire lock:\n", 1718 curr->comm, task_pid_nr(curr)); 1719 print_lock(next); 1720 printk("\nbut task is already holding lock:\n"); 1721 print_lock(prev); 1722 1723 printk("\nother info that might help us debug this:\n"); 1724 print_deadlock_scenario(next, prev); 1725 lockdep_print_held_locks(curr); 1726 1727 printk("\nstack backtrace:\n"); 1728 dump_stack(); 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * Check whether we are holding such a class already. 1735 * 1736 * (Note that this has to be done separately, because the graph cannot 1737 * detect such classes of deadlocks.) 1738 * 1739 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 1740 */ 1741 static int 1742 check_deadlock(struct task_struct *curr, struct held_lock *next, 1743 struct lockdep_map *next_instance, int read) 1744 { 1745 struct held_lock *prev; 1746 struct held_lock *nest = NULL; 1747 int i; 1748 1749 for (i = 0; i < curr->lockdep_depth; i++) { 1750 prev = curr->held_locks + i; 1751 1752 if (prev->instance == next->nest_lock) 1753 nest = prev; 1754 1755 if (hlock_class(prev) != hlock_class(next)) 1756 continue; 1757 1758 /* 1759 * Allow read-after-read recursion of the same 1760 * lock class (i.e. read_lock(lock)+read_lock(lock)): 1761 */ 1762 if ((read == 2) && prev->read) 1763 return 2; 1764 1765 /* 1766 * We're holding the nest_lock, which serializes this lock's 1767 * nesting behaviour. 1768 */ 1769 if (nest) 1770 return 2; 1771 1772 return print_deadlock_bug(curr, prev, next); 1773 } 1774 return 1; 1775 } 1776 1777 /* 1778 * There was a chain-cache miss, and we are about to add a new dependency 1779 * to a previous lock. We recursively validate the following rules: 1780 * 1781 * - would the adding of the <prev> -> <next> dependency create a 1782 * circular dependency in the graph? [== circular deadlock] 1783 * 1784 * - does the new prev->next dependency connect any hardirq-safe lock 1785 * (in the full backwards-subgraph starting at <prev>) with any 1786 * hardirq-unsafe lock (in the full forwards-subgraph starting at 1787 * <next>)? [== illegal lock inversion with hardirq contexts] 1788 * 1789 * - does the new prev->next dependency connect any softirq-safe lock 1790 * (in the full backwards-subgraph starting at <prev>) with any 1791 * softirq-unsafe lock (in the full forwards-subgraph starting at 1792 * <next>)? [== illegal lock inversion with softirq contexts] 1793 * 1794 * any of these scenarios could lead to a deadlock. 1795 * 1796 * Then if all the validations pass, we add the forwards and backwards 1797 * dependency. 1798 */ 1799 static int 1800 check_prev_add(struct task_struct *curr, struct held_lock *prev, 1801 struct held_lock *next, int distance, int *stack_saved) 1802 { 1803 struct lock_list *entry; 1804 int ret; 1805 struct lock_list this; 1806 struct lock_list *uninitialized_var(target_entry); 1807 /* 1808 * Static variable, serialized by the graph_lock(). 1809 * 1810 * We use this static variable to save the stack trace in case 1811 * we call into this function multiple times due to encountering 1812 * trylocks in the held lock stack. 1813 */ 1814 static struct stack_trace trace; 1815 1816 /* 1817 * Prove that the new <prev> -> <next> dependency would not 1818 * create a circular dependency in the graph. (We do this by 1819 * forward-recursing into the graph starting at <next>, and 1820 * checking whether we can reach <prev>.) 1821 * 1822 * We are using global variables to control the recursion, to 1823 * keep the stackframe size of the recursive functions low: 1824 */ 1825 this.class = hlock_class(next); 1826 this.parent = NULL; 1827 ret = check_noncircular(&this, hlock_class(prev), &target_entry); 1828 if (unlikely(!ret)) 1829 return print_circular_bug(&this, target_entry, next, prev); 1830 else if (unlikely(ret < 0)) 1831 return print_bfs_bug(ret); 1832 1833 if (!check_prev_add_irq(curr, prev, next)) 1834 return 0; 1835 1836 /* 1837 * For recursive read-locks we do all the dependency checks, 1838 * but we dont store read-triggered dependencies (only 1839 * write-triggered dependencies). This ensures that only the 1840 * write-side dependencies matter, and that if for example a 1841 * write-lock never takes any other locks, then the reads are 1842 * equivalent to a NOP. 1843 */ 1844 if (next->read == 2 || prev->read == 2) 1845 return 1; 1846 /* 1847 * Is the <prev> -> <next> dependency already present? 1848 * 1849 * (this may occur even though this is a new chain: consider 1850 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 1851 * chains - the second one will be new, but L1 already has 1852 * L2 added to its dependency list, due to the first chain.) 1853 */ 1854 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 1855 if (entry->class == hlock_class(next)) { 1856 if (distance == 1) 1857 entry->distance = 1; 1858 return 2; 1859 } 1860 } 1861 1862 if (!*stack_saved) { 1863 if (!save_trace(&trace)) 1864 return 0; 1865 *stack_saved = 1; 1866 } 1867 1868 /* 1869 * Ok, all validations passed, add the new lock 1870 * to the previous lock's dependency list: 1871 */ 1872 ret = add_lock_to_list(hlock_class(next), 1873 &hlock_class(prev)->locks_after, 1874 next->acquire_ip, distance, &trace); 1875 1876 if (!ret) 1877 return 0; 1878 1879 ret = add_lock_to_list(hlock_class(prev), 1880 &hlock_class(next)->locks_before, 1881 next->acquire_ip, distance, &trace); 1882 if (!ret) 1883 return 0; 1884 1885 /* 1886 * Debugging printouts: 1887 */ 1888 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) { 1889 /* We drop graph lock, so another thread can overwrite trace. */ 1890 *stack_saved = 0; 1891 graph_unlock(); 1892 printk("\n new dependency: "); 1893 print_lock_name(hlock_class(prev)); 1894 printk(KERN_CONT " => "); 1895 print_lock_name(hlock_class(next)); 1896 printk(KERN_CONT "\n"); 1897 dump_stack(); 1898 return graph_lock(); 1899 } 1900 return 1; 1901 } 1902 1903 /* 1904 * Add the dependency to all directly-previous locks that are 'relevant'. 1905 * The ones that are relevant are (in increasing distance from curr): 1906 * all consecutive trylock entries and the final non-trylock entry - or 1907 * the end of this context's lock-chain - whichever comes first. 1908 */ 1909 static int 1910 check_prevs_add(struct task_struct *curr, struct held_lock *next) 1911 { 1912 int depth = curr->lockdep_depth; 1913 int stack_saved = 0; 1914 struct held_lock *hlock; 1915 1916 /* 1917 * Debugging checks. 1918 * 1919 * Depth must not be zero for a non-head lock: 1920 */ 1921 if (!depth) 1922 goto out_bug; 1923 /* 1924 * At least two relevant locks must exist for this 1925 * to be a head: 1926 */ 1927 if (curr->held_locks[depth].irq_context != 1928 curr->held_locks[depth-1].irq_context) 1929 goto out_bug; 1930 1931 for (;;) { 1932 int distance = curr->lockdep_depth - depth + 1; 1933 hlock = curr->held_locks + depth - 1; 1934 /* 1935 * Only non-recursive-read entries get new dependencies 1936 * added: 1937 */ 1938 if (hlock->read != 2 && hlock->check) { 1939 if (!check_prev_add(curr, hlock, next, 1940 distance, &stack_saved)) 1941 return 0; 1942 /* 1943 * Stop after the first non-trylock entry, 1944 * as non-trylock entries have added their 1945 * own direct dependencies already, so this 1946 * lock is connected to them indirectly: 1947 */ 1948 if (!hlock->trylock) 1949 break; 1950 } 1951 depth--; 1952 /* 1953 * End of lock-stack? 1954 */ 1955 if (!depth) 1956 break; 1957 /* 1958 * Stop the search if we cross into another context: 1959 */ 1960 if (curr->held_locks[depth].irq_context != 1961 curr->held_locks[depth-1].irq_context) 1962 break; 1963 } 1964 return 1; 1965 out_bug: 1966 if (!debug_locks_off_graph_unlock()) 1967 return 0; 1968 1969 /* 1970 * Clearly we all shouldn't be here, but since we made it we 1971 * can reliable say we messed up our state. See the above two 1972 * gotos for reasons why we could possibly end up here. 1973 */ 1974 WARN_ON(1); 1975 1976 return 0; 1977 } 1978 1979 unsigned long nr_lock_chains; 1980 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 1981 int nr_chain_hlocks; 1982 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1983 1984 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 1985 { 1986 return lock_classes + chain_hlocks[chain->base + i]; 1987 } 1988 1989 /* 1990 * Returns the index of the first held_lock of the current chain 1991 */ 1992 static inline int get_first_held_lock(struct task_struct *curr, 1993 struct held_lock *hlock) 1994 { 1995 int i; 1996 struct held_lock *hlock_curr; 1997 1998 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 1999 hlock_curr = curr->held_locks + i; 2000 if (hlock_curr->irq_context != hlock->irq_context) 2001 break; 2002 2003 } 2004 2005 return ++i; 2006 } 2007 2008 #ifdef CONFIG_DEBUG_LOCKDEP 2009 /* 2010 * Returns the next chain_key iteration 2011 */ 2012 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2013 { 2014 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2015 2016 printk(" class_idx:%d -> chain_key:%016Lx", 2017 class_idx, 2018 (unsigned long long)new_chain_key); 2019 return new_chain_key; 2020 } 2021 2022 static void 2023 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2024 { 2025 struct held_lock *hlock; 2026 u64 chain_key = 0; 2027 int depth = curr->lockdep_depth; 2028 int i; 2029 2030 printk("depth: %u\n", depth + 1); 2031 for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) { 2032 hlock = curr->held_locks + i; 2033 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2034 2035 print_lock(hlock); 2036 } 2037 2038 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2039 print_lock(hlock_next); 2040 } 2041 2042 static void print_chain_keys_chain(struct lock_chain *chain) 2043 { 2044 int i; 2045 u64 chain_key = 0; 2046 int class_id; 2047 2048 printk("depth: %u\n", chain->depth); 2049 for (i = 0; i < chain->depth; i++) { 2050 class_id = chain_hlocks[chain->base + i]; 2051 chain_key = print_chain_key_iteration(class_id + 1, chain_key); 2052 2053 print_lock_name(lock_classes + class_id); 2054 printk("\n"); 2055 } 2056 } 2057 2058 static void print_collision(struct task_struct *curr, 2059 struct held_lock *hlock_next, 2060 struct lock_chain *chain) 2061 { 2062 printk("\n"); 2063 printk("======================\n"); 2064 printk("[chain_key collision ]\n"); 2065 print_kernel_ident(); 2066 printk("----------------------\n"); 2067 printk("%s/%d: ", current->comm, task_pid_nr(current)); 2068 printk("Hash chain already cached but the contents don't match!\n"); 2069 2070 printk("Held locks:"); 2071 print_chain_keys_held_locks(curr, hlock_next); 2072 2073 printk("Locks in cached chain:"); 2074 print_chain_keys_chain(chain); 2075 2076 printk("\nstack backtrace:\n"); 2077 dump_stack(); 2078 } 2079 #endif 2080 2081 /* 2082 * Checks whether the chain and the current held locks are consistent 2083 * in depth and also in content. If they are not it most likely means 2084 * that there was a collision during the calculation of the chain_key. 2085 * Returns: 0 not passed, 1 passed 2086 */ 2087 static int check_no_collision(struct task_struct *curr, 2088 struct held_lock *hlock, 2089 struct lock_chain *chain) 2090 { 2091 #ifdef CONFIG_DEBUG_LOCKDEP 2092 int i, j, id; 2093 2094 i = get_first_held_lock(curr, hlock); 2095 2096 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2097 print_collision(curr, hlock, chain); 2098 return 0; 2099 } 2100 2101 for (j = 0; j < chain->depth - 1; j++, i++) { 2102 id = curr->held_locks[i].class_idx - 1; 2103 2104 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2105 print_collision(curr, hlock, chain); 2106 return 0; 2107 } 2108 } 2109 #endif 2110 return 1; 2111 } 2112 2113 /* 2114 * Look up a dependency chain. If the key is not present yet then 2115 * add it and return 1 - in this case the new dependency chain is 2116 * validated. If the key is already hashed, return 0. 2117 * (On return with 1 graph_lock is held.) 2118 */ 2119 static inline int lookup_chain_cache(struct task_struct *curr, 2120 struct held_lock *hlock, 2121 u64 chain_key) 2122 { 2123 struct lock_class *class = hlock_class(hlock); 2124 struct hlist_head *hash_head = chainhashentry(chain_key); 2125 struct lock_chain *chain; 2126 int i, j; 2127 2128 /* 2129 * We might need to take the graph lock, ensure we've got IRQs 2130 * disabled to make this an IRQ-safe lock.. for recursion reasons 2131 * lockdep won't complain about its own locking errors. 2132 */ 2133 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2134 return 0; 2135 /* 2136 * We can walk it lock-free, because entries only get added 2137 * to the hash: 2138 */ 2139 hlist_for_each_entry_rcu(chain, hash_head, entry) { 2140 if (chain->chain_key == chain_key) { 2141 cache_hit: 2142 debug_atomic_inc(chain_lookup_hits); 2143 if (!check_no_collision(curr, hlock, chain)) 2144 return 0; 2145 2146 if (very_verbose(class)) 2147 printk("\nhash chain already cached, key: " 2148 "%016Lx tail class: [%p] %s\n", 2149 (unsigned long long)chain_key, 2150 class->key, class->name); 2151 return 0; 2152 } 2153 } 2154 if (very_verbose(class)) 2155 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n", 2156 (unsigned long long)chain_key, class->key, class->name); 2157 /* 2158 * Allocate a new chain entry from the static array, and add 2159 * it to the hash: 2160 */ 2161 if (!graph_lock()) 2162 return 0; 2163 /* 2164 * We have to walk the chain again locked - to avoid duplicates: 2165 */ 2166 hlist_for_each_entry(chain, hash_head, entry) { 2167 if (chain->chain_key == chain_key) { 2168 graph_unlock(); 2169 goto cache_hit; 2170 } 2171 } 2172 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2173 if (!debug_locks_off_graph_unlock()) 2174 return 0; 2175 2176 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2177 dump_stack(); 2178 return 0; 2179 } 2180 chain = lock_chains + nr_lock_chains++; 2181 chain->chain_key = chain_key; 2182 chain->irq_context = hlock->irq_context; 2183 i = get_first_held_lock(curr, hlock); 2184 chain->depth = curr->lockdep_depth + 1 - i; 2185 2186 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 2187 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 2188 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 2189 2190 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2191 chain->base = nr_chain_hlocks; 2192 for (j = 0; j < chain->depth - 1; j++, i++) { 2193 int lock_id = curr->held_locks[i].class_idx - 1; 2194 chain_hlocks[chain->base + j] = lock_id; 2195 } 2196 chain_hlocks[chain->base + j] = class - lock_classes; 2197 } 2198 2199 if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS) 2200 nr_chain_hlocks += chain->depth; 2201 2202 #ifdef CONFIG_DEBUG_LOCKDEP 2203 /* 2204 * Important for check_no_collision(). 2205 */ 2206 if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) { 2207 if (!debug_locks_off_graph_unlock()) 2208 return 0; 2209 2210 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 2211 dump_stack(); 2212 return 0; 2213 } 2214 #endif 2215 2216 hlist_add_head_rcu(&chain->entry, hash_head); 2217 debug_atomic_inc(chain_lookup_misses); 2218 inc_chains(); 2219 2220 return 1; 2221 } 2222 2223 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock, 2224 struct held_lock *hlock, int chain_head, u64 chain_key) 2225 { 2226 /* 2227 * Trylock needs to maintain the stack of held locks, but it 2228 * does not add new dependencies, because trylock can be done 2229 * in any order. 2230 * 2231 * We look up the chain_key and do the O(N^2) check and update of 2232 * the dependencies only if this is a new dependency chain. 2233 * (If lookup_chain_cache() returns with 1 it acquires 2234 * graph_lock for us) 2235 */ 2236 if (!hlock->trylock && hlock->check && 2237 lookup_chain_cache(curr, hlock, chain_key)) { 2238 /* 2239 * Check whether last held lock: 2240 * 2241 * - is irq-safe, if this lock is irq-unsafe 2242 * - is softirq-safe, if this lock is hardirq-unsafe 2243 * 2244 * And check whether the new lock's dependency graph 2245 * could lead back to the previous lock. 2246 * 2247 * any of these scenarios could lead to a deadlock. If 2248 * All validations 2249 */ 2250 int ret = check_deadlock(curr, hlock, lock, hlock->read); 2251 2252 if (!ret) 2253 return 0; 2254 /* 2255 * Mark recursive read, as we jump over it when 2256 * building dependencies (just like we jump over 2257 * trylock entries): 2258 */ 2259 if (ret == 2) 2260 hlock->read = 2; 2261 /* 2262 * Add dependency only if this lock is not the head 2263 * of the chain, and if it's not a secondary read-lock: 2264 */ 2265 if (!chain_head && ret != 2) 2266 if (!check_prevs_add(curr, hlock)) 2267 return 0; 2268 graph_unlock(); 2269 } else 2270 /* after lookup_chain_cache(): */ 2271 if (unlikely(!debug_locks)) 2272 return 0; 2273 2274 return 1; 2275 } 2276 #else 2277 static inline int validate_chain(struct task_struct *curr, 2278 struct lockdep_map *lock, struct held_lock *hlock, 2279 int chain_head, u64 chain_key) 2280 { 2281 return 1; 2282 } 2283 #endif 2284 2285 /* 2286 * We are building curr_chain_key incrementally, so double-check 2287 * it from scratch, to make sure that it's done correctly: 2288 */ 2289 static void check_chain_key(struct task_struct *curr) 2290 { 2291 #ifdef CONFIG_DEBUG_LOCKDEP 2292 struct held_lock *hlock, *prev_hlock = NULL; 2293 unsigned int i; 2294 u64 chain_key = 0; 2295 2296 for (i = 0; i < curr->lockdep_depth; i++) { 2297 hlock = curr->held_locks + i; 2298 if (chain_key != hlock->prev_chain_key) { 2299 debug_locks_off(); 2300 /* 2301 * We got mighty confused, our chain keys don't match 2302 * with what we expect, someone trample on our task state? 2303 */ 2304 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 2305 curr->lockdep_depth, i, 2306 (unsigned long long)chain_key, 2307 (unsigned long long)hlock->prev_chain_key); 2308 return; 2309 } 2310 /* 2311 * Whoops ran out of static storage again? 2312 */ 2313 if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS)) 2314 return; 2315 2316 if (prev_hlock && (prev_hlock->irq_context != 2317 hlock->irq_context)) 2318 chain_key = 0; 2319 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 2320 prev_hlock = hlock; 2321 } 2322 if (chain_key != curr->curr_chain_key) { 2323 debug_locks_off(); 2324 /* 2325 * More smoking hash instead of calculating it, damn see these 2326 * numbers float.. I bet that a pink elephant stepped on my memory. 2327 */ 2328 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 2329 curr->lockdep_depth, i, 2330 (unsigned long long)chain_key, 2331 (unsigned long long)curr->curr_chain_key); 2332 } 2333 #endif 2334 } 2335 2336 static void 2337 print_usage_bug_scenario(struct held_lock *lock) 2338 { 2339 struct lock_class *class = hlock_class(lock); 2340 2341 printk(" Possible unsafe locking scenario:\n\n"); 2342 printk(" CPU0\n"); 2343 printk(" ----\n"); 2344 printk(" lock("); 2345 __print_lock_name(class); 2346 printk(KERN_CONT ");\n"); 2347 printk(" <Interrupt>\n"); 2348 printk(" lock("); 2349 __print_lock_name(class); 2350 printk(KERN_CONT ");\n"); 2351 printk("\n *** DEADLOCK ***\n\n"); 2352 } 2353 2354 static int 2355 print_usage_bug(struct task_struct *curr, struct held_lock *this, 2356 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 2357 { 2358 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2359 return 0; 2360 2361 printk("\n"); 2362 printk("=================================\n"); 2363 printk("[ INFO: inconsistent lock state ]\n"); 2364 print_kernel_ident(); 2365 printk("---------------------------------\n"); 2366 2367 printk("inconsistent {%s} -> {%s} usage.\n", 2368 usage_str[prev_bit], usage_str[new_bit]); 2369 2370 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 2371 curr->comm, task_pid_nr(curr), 2372 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 2373 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 2374 trace_hardirqs_enabled(curr), 2375 trace_softirqs_enabled(curr)); 2376 print_lock(this); 2377 2378 printk("{%s} state was registered at:\n", usage_str[prev_bit]); 2379 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1); 2380 2381 print_irqtrace_events(curr); 2382 printk("\nother info that might help us debug this:\n"); 2383 print_usage_bug_scenario(this); 2384 2385 lockdep_print_held_locks(curr); 2386 2387 printk("\nstack backtrace:\n"); 2388 dump_stack(); 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * Print out an error if an invalid bit is set: 2395 */ 2396 static inline int 2397 valid_state(struct task_struct *curr, struct held_lock *this, 2398 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 2399 { 2400 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) 2401 return print_usage_bug(curr, this, bad_bit, new_bit); 2402 return 1; 2403 } 2404 2405 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2406 enum lock_usage_bit new_bit); 2407 2408 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 2409 2410 /* 2411 * print irq inversion bug: 2412 */ 2413 static int 2414 print_irq_inversion_bug(struct task_struct *curr, 2415 struct lock_list *root, struct lock_list *other, 2416 struct held_lock *this, int forwards, 2417 const char *irqclass) 2418 { 2419 struct lock_list *entry = other; 2420 struct lock_list *middle = NULL; 2421 int depth; 2422 2423 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2424 return 0; 2425 2426 printk("\n"); 2427 printk("=========================================================\n"); 2428 printk("[ INFO: possible irq lock inversion dependency detected ]\n"); 2429 print_kernel_ident(); 2430 printk("---------------------------------------------------------\n"); 2431 printk("%s/%d just changed the state of lock:\n", 2432 curr->comm, task_pid_nr(curr)); 2433 print_lock(this); 2434 if (forwards) 2435 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2436 else 2437 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2438 print_lock_name(other->class); 2439 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2440 2441 printk("\nother info that might help us debug this:\n"); 2442 2443 /* Find a middle lock (if one exists) */ 2444 depth = get_lock_depth(other); 2445 do { 2446 if (depth == 0 && (entry != root)) { 2447 printk("lockdep:%s bad path found in chain graph\n", __func__); 2448 break; 2449 } 2450 middle = entry; 2451 entry = get_lock_parent(entry); 2452 depth--; 2453 } while (entry && entry != root && (depth >= 0)); 2454 if (forwards) 2455 print_irq_lock_scenario(root, other, 2456 middle ? middle->class : root->class, other->class); 2457 else 2458 print_irq_lock_scenario(other, root, 2459 middle ? middle->class : other->class, root->class); 2460 2461 lockdep_print_held_locks(curr); 2462 2463 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 2464 if (!save_trace(&root->trace)) 2465 return 0; 2466 print_shortest_lock_dependencies(other, root); 2467 2468 printk("\nstack backtrace:\n"); 2469 dump_stack(); 2470 2471 return 0; 2472 } 2473 2474 /* 2475 * Prove that in the forwards-direction subgraph starting at <this> 2476 * there is no lock matching <mask>: 2477 */ 2478 static int 2479 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 2480 enum lock_usage_bit bit, const char *irqclass) 2481 { 2482 int ret; 2483 struct lock_list root; 2484 struct lock_list *uninitialized_var(target_entry); 2485 2486 root.parent = NULL; 2487 root.class = hlock_class(this); 2488 ret = find_usage_forwards(&root, bit, &target_entry); 2489 if (ret < 0) 2490 return print_bfs_bug(ret); 2491 if (ret == 1) 2492 return ret; 2493 2494 return print_irq_inversion_bug(curr, &root, target_entry, 2495 this, 1, irqclass); 2496 } 2497 2498 /* 2499 * Prove that in the backwards-direction subgraph starting at <this> 2500 * there is no lock matching <mask>: 2501 */ 2502 static int 2503 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 2504 enum lock_usage_bit bit, const char *irqclass) 2505 { 2506 int ret; 2507 struct lock_list root; 2508 struct lock_list *uninitialized_var(target_entry); 2509 2510 root.parent = NULL; 2511 root.class = hlock_class(this); 2512 ret = find_usage_backwards(&root, bit, &target_entry); 2513 if (ret < 0) 2514 return print_bfs_bug(ret); 2515 if (ret == 1) 2516 return ret; 2517 2518 return print_irq_inversion_bug(curr, &root, target_entry, 2519 this, 0, irqclass); 2520 } 2521 2522 void print_irqtrace_events(struct task_struct *curr) 2523 { 2524 printk("irq event stamp: %u\n", curr->irq_events); 2525 printk("hardirqs last enabled at (%u): [<%p>] %pS\n", 2526 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip, 2527 (void *)curr->hardirq_enable_ip); 2528 printk("hardirqs last disabled at (%u): [<%p>] %pS\n", 2529 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip, 2530 (void *)curr->hardirq_disable_ip); 2531 printk("softirqs last enabled at (%u): [<%p>] %pS\n", 2532 curr->softirq_enable_event, (void *)curr->softirq_enable_ip, 2533 (void *)curr->softirq_enable_ip); 2534 printk("softirqs last disabled at (%u): [<%p>] %pS\n", 2535 curr->softirq_disable_event, (void *)curr->softirq_disable_ip, 2536 (void *)curr->softirq_disable_ip); 2537 } 2538 2539 static int HARDIRQ_verbose(struct lock_class *class) 2540 { 2541 #if HARDIRQ_VERBOSE 2542 return class_filter(class); 2543 #endif 2544 return 0; 2545 } 2546 2547 static int SOFTIRQ_verbose(struct lock_class *class) 2548 { 2549 #if SOFTIRQ_VERBOSE 2550 return class_filter(class); 2551 #endif 2552 return 0; 2553 } 2554 2555 static int RECLAIM_FS_verbose(struct lock_class *class) 2556 { 2557 #if RECLAIM_VERBOSE 2558 return class_filter(class); 2559 #endif 2560 return 0; 2561 } 2562 2563 #define STRICT_READ_CHECKS 1 2564 2565 static int (*state_verbose_f[])(struct lock_class *class) = { 2566 #define LOCKDEP_STATE(__STATE) \ 2567 __STATE##_verbose, 2568 #include "lockdep_states.h" 2569 #undef LOCKDEP_STATE 2570 }; 2571 2572 static inline int state_verbose(enum lock_usage_bit bit, 2573 struct lock_class *class) 2574 { 2575 return state_verbose_f[bit >> 2](class); 2576 } 2577 2578 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 2579 enum lock_usage_bit bit, const char *name); 2580 2581 static int 2582 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2583 enum lock_usage_bit new_bit) 2584 { 2585 int excl_bit = exclusive_bit(new_bit); 2586 int read = new_bit & 1; 2587 int dir = new_bit & 2; 2588 2589 /* 2590 * mark USED_IN has to look forwards -- to ensure no dependency 2591 * has ENABLED state, which would allow recursion deadlocks. 2592 * 2593 * mark ENABLED has to look backwards -- to ensure no dependee 2594 * has USED_IN state, which, again, would allow recursion deadlocks. 2595 */ 2596 check_usage_f usage = dir ? 2597 check_usage_backwards : check_usage_forwards; 2598 2599 /* 2600 * Validate that this particular lock does not have conflicting 2601 * usage states. 2602 */ 2603 if (!valid_state(curr, this, new_bit, excl_bit)) 2604 return 0; 2605 2606 /* 2607 * Validate that the lock dependencies don't have conflicting usage 2608 * states. 2609 */ 2610 if ((!read || !dir || STRICT_READ_CHECKS) && 2611 !usage(curr, this, excl_bit, state_name(new_bit & ~1))) 2612 return 0; 2613 2614 /* 2615 * Check for read in write conflicts 2616 */ 2617 if (!read) { 2618 if (!valid_state(curr, this, new_bit, excl_bit + 1)) 2619 return 0; 2620 2621 if (STRICT_READ_CHECKS && 2622 !usage(curr, this, excl_bit + 1, 2623 state_name(new_bit + 1))) 2624 return 0; 2625 } 2626 2627 if (state_verbose(new_bit, hlock_class(this))) 2628 return 2; 2629 2630 return 1; 2631 } 2632 2633 enum mark_type { 2634 #define LOCKDEP_STATE(__STATE) __STATE, 2635 #include "lockdep_states.h" 2636 #undef LOCKDEP_STATE 2637 }; 2638 2639 /* 2640 * Mark all held locks with a usage bit: 2641 */ 2642 static int 2643 mark_held_locks(struct task_struct *curr, enum mark_type mark) 2644 { 2645 enum lock_usage_bit usage_bit; 2646 struct held_lock *hlock; 2647 int i; 2648 2649 for (i = 0; i < curr->lockdep_depth; i++) { 2650 hlock = curr->held_locks + i; 2651 2652 usage_bit = 2 + (mark << 2); /* ENABLED */ 2653 if (hlock->read) 2654 usage_bit += 1; /* READ */ 2655 2656 BUG_ON(usage_bit >= LOCK_USAGE_STATES); 2657 2658 if (!hlock->check) 2659 continue; 2660 2661 if (!mark_lock(curr, hlock, usage_bit)) 2662 return 0; 2663 } 2664 2665 return 1; 2666 } 2667 2668 /* 2669 * Hardirqs will be enabled: 2670 */ 2671 static void __trace_hardirqs_on_caller(unsigned long ip) 2672 { 2673 struct task_struct *curr = current; 2674 2675 /* we'll do an OFF -> ON transition: */ 2676 curr->hardirqs_enabled = 1; 2677 2678 /* 2679 * We are going to turn hardirqs on, so set the 2680 * usage bit for all held locks: 2681 */ 2682 if (!mark_held_locks(curr, HARDIRQ)) 2683 return; 2684 /* 2685 * If we have softirqs enabled, then set the usage 2686 * bit for all held locks. (disabled hardirqs prevented 2687 * this bit from being set before) 2688 */ 2689 if (curr->softirqs_enabled) 2690 if (!mark_held_locks(curr, SOFTIRQ)) 2691 return; 2692 2693 curr->hardirq_enable_ip = ip; 2694 curr->hardirq_enable_event = ++curr->irq_events; 2695 debug_atomic_inc(hardirqs_on_events); 2696 } 2697 2698 __visible void trace_hardirqs_on_caller(unsigned long ip) 2699 { 2700 time_hardirqs_on(CALLER_ADDR0, ip); 2701 2702 if (unlikely(!debug_locks || current->lockdep_recursion)) 2703 return; 2704 2705 if (unlikely(current->hardirqs_enabled)) { 2706 /* 2707 * Neither irq nor preemption are disabled here 2708 * so this is racy by nature but losing one hit 2709 * in a stat is not a big deal. 2710 */ 2711 __debug_atomic_inc(redundant_hardirqs_on); 2712 return; 2713 } 2714 2715 /* 2716 * We're enabling irqs and according to our state above irqs weren't 2717 * already enabled, yet we find the hardware thinks they are in fact 2718 * enabled.. someone messed up their IRQ state tracing. 2719 */ 2720 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2721 return; 2722 2723 /* 2724 * See the fine text that goes along with this variable definition. 2725 */ 2726 if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled))) 2727 return; 2728 2729 /* 2730 * Can't allow enabling interrupts while in an interrupt handler, 2731 * that's general bad form and such. Recursion, limited stack etc.. 2732 */ 2733 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 2734 return; 2735 2736 current->lockdep_recursion = 1; 2737 __trace_hardirqs_on_caller(ip); 2738 current->lockdep_recursion = 0; 2739 } 2740 EXPORT_SYMBOL(trace_hardirqs_on_caller); 2741 2742 void trace_hardirqs_on(void) 2743 { 2744 trace_hardirqs_on_caller(CALLER_ADDR0); 2745 } 2746 EXPORT_SYMBOL(trace_hardirqs_on); 2747 2748 /* 2749 * Hardirqs were disabled: 2750 */ 2751 __visible void trace_hardirqs_off_caller(unsigned long ip) 2752 { 2753 struct task_struct *curr = current; 2754 2755 time_hardirqs_off(CALLER_ADDR0, ip); 2756 2757 if (unlikely(!debug_locks || current->lockdep_recursion)) 2758 return; 2759 2760 /* 2761 * So we're supposed to get called after you mask local IRQs, but for 2762 * some reason the hardware doesn't quite think you did a proper job. 2763 */ 2764 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2765 return; 2766 2767 if (curr->hardirqs_enabled) { 2768 /* 2769 * We have done an ON -> OFF transition: 2770 */ 2771 curr->hardirqs_enabled = 0; 2772 curr->hardirq_disable_ip = ip; 2773 curr->hardirq_disable_event = ++curr->irq_events; 2774 debug_atomic_inc(hardirqs_off_events); 2775 } else 2776 debug_atomic_inc(redundant_hardirqs_off); 2777 } 2778 EXPORT_SYMBOL(trace_hardirqs_off_caller); 2779 2780 void trace_hardirqs_off(void) 2781 { 2782 trace_hardirqs_off_caller(CALLER_ADDR0); 2783 } 2784 EXPORT_SYMBOL(trace_hardirqs_off); 2785 2786 /* 2787 * Softirqs will be enabled: 2788 */ 2789 void trace_softirqs_on(unsigned long ip) 2790 { 2791 struct task_struct *curr = current; 2792 2793 if (unlikely(!debug_locks || current->lockdep_recursion)) 2794 return; 2795 2796 /* 2797 * We fancy IRQs being disabled here, see softirq.c, avoids 2798 * funny state and nesting things. 2799 */ 2800 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2801 return; 2802 2803 if (curr->softirqs_enabled) { 2804 debug_atomic_inc(redundant_softirqs_on); 2805 return; 2806 } 2807 2808 current->lockdep_recursion = 1; 2809 /* 2810 * We'll do an OFF -> ON transition: 2811 */ 2812 curr->softirqs_enabled = 1; 2813 curr->softirq_enable_ip = ip; 2814 curr->softirq_enable_event = ++curr->irq_events; 2815 debug_atomic_inc(softirqs_on_events); 2816 /* 2817 * We are going to turn softirqs on, so set the 2818 * usage bit for all held locks, if hardirqs are 2819 * enabled too: 2820 */ 2821 if (curr->hardirqs_enabled) 2822 mark_held_locks(curr, SOFTIRQ); 2823 current->lockdep_recursion = 0; 2824 } 2825 2826 /* 2827 * Softirqs were disabled: 2828 */ 2829 void trace_softirqs_off(unsigned long ip) 2830 { 2831 struct task_struct *curr = current; 2832 2833 if (unlikely(!debug_locks || current->lockdep_recursion)) 2834 return; 2835 2836 /* 2837 * We fancy IRQs being disabled here, see softirq.c 2838 */ 2839 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2840 return; 2841 2842 if (curr->softirqs_enabled) { 2843 /* 2844 * We have done an ON -> OFF transition: 2845 */ 2846 curr->softirqs_enabled = 0; 2847 curr->softirq_disable_ip = ip; 2848 curr->softirq_disable_event = ++curr->irq_events; 2849 debug_atomic_inc(softirqs_off_events); 2850 /* 2851 * Whoops, we wanted softirqs off, so why aren't they? 2852 */ 2853 DEBUG_LOCKS_WARN_ON(!softirq_count()); 2854 } else 2855 debug_atomic_inc(redundant_softirqs_off); 2856 } 2857 2858 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) 2859 { 2860 struct task_struct *curr = current; 2861 2862 if (unlikely(!debug_locks)) 2863 return; 2864 2865 /* no reclaim without waiting on it */ 2866 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 2867 return; 2868 2869 /* this guy won't enter reclaim */ 2870 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 2871 return; 2872 2873 /* We're only interested __GFP_FS allocations for now */ 2874 if (!(gfp_mask & __GFP_FS)) 2875 return; 2876 2877 /* 2878 * Oi! Can't be having __GFP_FS allocations with IRQs disabled. 2879 */ 2880 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags))) 2881 return; 2882 2883 mark_held_locks(curr, RECLAIM_FS); 2884 } 2885 2886 static void check_flags(unsigned long flags); 2887 2888 void lockdep_trace_alloc(gfp_t gfp_mask) 2889 { 2890 unsigned long flags; 2891 2892 if (unlikely(current->lockdep_recursion)) 2893 return; 2894 2895 raw_local_irq_save(flags); 2896 check_flags(flags); 2897 current->lockdep_recursion = 1; 2898 __lockdep_trace_alloc(gfp_mask, flags); 2899 current->lockdep_recursion = 0; 2900 raw_local_irq_restore(flags); 2901 } 2902 2903 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) 2904 { 2905 /* 2906 * If non-trylock use in a hardirq or softirq context, then 2907 * mark the lock as used in these contexts: 2908 */ 2909 if (!hlock->trylock) { 2910 if (hlock->read) { 2911 if (curr->hardirq_context) 2912 if (!mark_lock(curr, hlock, 2913 LOCK_USED_IN_HARDIRQ_READ)) 2914 return 0; 2915 if (curr->softirq_context) 2916 if (!mark_lock(curr, hlock, 2917 LOCK_USED_IN_SOFTIRQ_READ)) 2918 return 0; 2919 } else { 2920 if (curr->hardirq_context) 2921 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 2922 return 0; 2923 if (curr->softirq_context) 2924 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 2925 return 0; 2926 } 2927 } 2928 if (!hlock->hardirqs_off) { 2929 if (hlock->read) { 2930 if (!mark_lock(curr, hlock, 2931 LOCK_ENABLED_HARDIRQ_READ)) 2932 return 0; 2933 if (curr->softirqs_enabled) 2934 if (!mark_lock(curr, hlock, 2935 LOCK_ENABLED_SOFTIRQ_READ)) 2936 return 0; 2937 } else { 2938 if (!mark_lock(curr, hlock, 2939 LOCK_ENABLED_HARDIRQ)) 2940 return 0; 2941 if (curr->softirqs_enabled) 2942 if (!mark_lock(curr, hlock, 2943 LOCK_ENABLED_SOFTIRQ)) 2944 return 0; 2945 } 2946 } 2947 2948 /* 2949 * We reuse the irq context infrastructure more broadly as a general 2950 * context checking code. This tests GFP_FS recursion (a lock taken 2951 * during reclaim for a GFP_FS allocation is held over a GFP_FS 2952 * allocation). 2953 */ 2954 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) { 2955 if (hlock->read) { 2956 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ)) 2957 return 0; 2958 } else { 2959 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS)) 2960 return 0; 2961 } 2962 } 2963 2964 return 1; 2965 } 2966 2967 static inline unsigned int task_irq_context(struct task_struct *task) 2968 { 2969 return 2 * !!task->hardirq_context + !!task->softirq_context; 2970 } 2971 2972 static int separate_irq_context(struct task_struct *curr, 2973 struct held_lock *hlock) 2974 { 2975 unsigned int depth = curr->lockdep_depth; 2976 2977 /* 2978 * Keep track of points where we cross into an interrupt context: 2979 */ 2980 if (depth) { 2981 struct held_lock *prev_hlock; 2982 2983 prev_hlock = curr->held_locks + depth-1; 2984 /* 2985 * If we cross into another context, reset the 2986 * hash key (this also prevents the checking and the 2987 * adding of the dependency to 'prev'): 2988 */ 2989 if (prev_hlock->irq_context != hlock->irq_context) 2990 return 1; 2991 } 2992 return 0; 2993 } 2994 2995 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 2996 2997 static inline 2998 int mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2999 enum lock_usage_bit new_bit) 3000 { 3001 WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */ 3002 return 1; 3003 } 3004 3005 static inline int mark_irqflags(struct task_struct *curr, 3006 struct held_lock *hlock) 3007 { 3008 return 1; 3009 } 3010 3011 static inline unsigned int task_irq_context(struct task_struct *task) 3012 { 3013 return 0; 3014 } 3015 3016 static inline int separate_irq_context(struct task_struct *curr, 3017 struct held_lock *hlock) 3018 { 3019 return 0; 3020 } 3021 3022 void lockdep_trace_alloc(gfp_t gfp_mask) 3023 { 3024 } 3025 3026 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 3027 3028 /* 3029 * Mark a lock with a usage bit, and validate the state transition: 3030 */ 3031 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3032 enum lock_usage_bit new_bit) 3033 { 3034 unsigned int new_mask = 1 << new_bit, ret = 1; 3035 3036 /* 3037 * If already set then do not dirty the cacheline, 3038 * nor do any checks: 3039 */ 3040 if (likely(hlock_class(this)->usage_mask & new_mask)) 3041 return 1; 3042 3043 if (!graph_lock()) 3044 return 0; 3045 /* 3046 * Make sure we didn't race: 3047 */ 3048 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 3049 graph_unlock(); 3050 return 1; 3051 } 3052 3053 hlock_class(this)->usage_mask |= new_mask; 3054 3055 if (!save_trace(hlock_class(this)->usage_traces + new_bit)) 3056 return 0; 3057 3058 switch (new_bit) { 3059 #define LOCKDEP_STATE(__STATE) \ 3060 case LOCK_USED_IN_##__STATE: \ 3061 case LOCK_USED_IN_##__STATE##_READ: \ 3062 case LOCK_ENABLED_##__STATE: \ 3063 case LOCK_ENABLED_##__STATE##_READ: 3064 #include "lockdep_states.h" 3065 #undef LOCKDEP_STATE 3066 ret = mark_lock_irq(curr, this, new_bit); 3067 if (!ret) 3068 return 0; 3069 break; 3070 case LOCK_USED: 3071 debug_atomic_dec(nr_unused_locks); 3072 break; 3073 default: 3074 if (!debug_locks_off_graph_unlock()) 3075 return 0; 3076 WARN_ON(1); 3077 return 0; 3078 } 3079 3080 graph_unlock(); 3081 3082 /* 3083 * We must printk outside of the graph_lock: 3084 */ 3085 if (ret == 2) { 3086 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 3087 print_lock(this); 3088 print_irqtrace_events(curr); 3089 dump_stack(); 3090 } 3091 3092 return ret; 3093 } 3094 3095 /* 3096 * Initialize a lock instance's lock-class mapping info: 3097 */ 3098 void lockdep_init_map(struct lockdep_map *lock, const char *name, 3099 struct lock_class_key *key, int subclass) 3100 { 3101 int i; 3102 3103 kmemcheck_mark_initialized(lock, sizeof(*lock)); 3104 3105 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 3106 lock->class_cache[i] = NULL; 3107 3108 #ifdef CONFIG_LOCK_STAT 3109 lock->cpu = raw_smp_processor_id(); 3110 #endif 3111 3112 /* 3113 * Can't be having no nameless bastards around this place! 3114 */ 3115 if (DEBUG_LOCKS_WARN_ON(!name)) { 3116 lock->name = "NULL"; 3117 return; 3118 } 3119 3120 lock->name = name; 3121 3122 /* 3123 * No key, no joy, we need to hash something. 3124 */ 3125 if (DEBUG_LOCKS_WARN_ON(!key)) 3126 return; 3127 /* 3128 * Sanity check, the lock-class key must be persistent: 3129 */ 3130 if (!static_obj(key)) { 3131 printk("BUG: key %p not in .data!\n", key); 3132 /* 3133 * What it says above ^^^^^, I suggest you read it. 3134 */ 3135 DEBUG_LOCKS_WARN_ON(1); 3136 return; 3137 } 3138 lock->key = key; 3139 3140 if (unlikely(!debug_locks)) 3141 return; 3142 3143 if (subclass) { 3144 unsigned long flags; 3145 3146 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 3147 return; 3148 3149 raw_local_irq_save(flags); 3150 current->lockdep_recursion = 1; 3151 register_lock_class(lock, subclass, 1); 3152 current->lockdep_recursion = 0; 3153 raw_local_irq_restore(flags); 3154 } 3155 } 3156 EXPORT_SYMBOL_GPL(lockdep_init_map); 3157 3158 struct lock_class_key __lockdep_no_validate__; 3159 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 3160 3161 static int 3162 print_lock_nested_lock_not_held(struct task_struct *curr, 3163 struct held_lock *hlock, 3164 unsigned long ip) 3165 { 3166 if (!debug_locks_off()) 3167 return 0; 3168 if (debug_locks_silent) 3169 return 0; 3170 3171 printk("\n"); 3172 printk("==================================\n"); 3173 printk("[ BUG: Nested lock was not taken ]\n"); 3174 print_kernel_ident(); 3175 printk("----------------------------------\n"); 3176 3177 printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 3178 print_lock(hlock); 3179 3180 printk("\nbut this task is not holding:\n"); 3181 printk("%s\n", hlock->nest_lock->name); 3182 3183 printk("\nstack backtrace:\n"); 3184 dump_stack(); 3185 3186 printk("\nother info that might help us debug this:\n"); 3187 lockdep_print_held_locks(curr); 3188 3189 printk("\nstack backtrace:\n"); 3190 dump_stack(); 3191 3192 return 0; 3193 } 3194 3195 static int __lock_is_held(struct lockdep_map *lock, int read); 3196 3197 /* 3198 * This gets called for every mutex_lock*()/spin_lock*() operation. 3199 * We maintain the dependency maps and validate the locking attempt: 3200 */ 3201 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3202 int trylock, int read, int check, int hardirqs_off, 3203 struct lockdep_map *nest_lock, unsigned long ip, 3204 int references, int pin_count) 3205 { 3206 struct task_struct *curr = current; 3207 struct lock_class *class = NULL; 3208 struct held_lock *hlock; 3209 unsigned int depth; 3210 int chain_head = 0; 3211 int class_idx; 3212 u64 chain_key; 3213 3214 if (unlikely(!debug_locks)) 3215 return 0; 3216 3217 /* 3218 * Lockdep should run with IRQs disabled, otherwise we could 3219 * get an interrupt which would want to take locks, which would 3220 * end up in lockdep and have you got a head-ache already? 3221 */ 3222 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3223 return 0; 3224 3225 if (!prove_locking || lock->key == &__lockdep_no_validate__) 3226 check = 0; 3227 3228 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 3229 class = lock->class_cache[subclass]; 3230 /* 3231 * Not cached? 3232 */ 3233 if (unlikely(!class)) { 3234 class = register_lock_class(lock, subclass, 0); 3235 if (!class) 3236 return 0; 3237 } 3238 atomic_inc((atomic_t *)&class->ops); 3239 if (very_verbose(class)) { 3240 printk("\nacquire class [%p] %s", class->key, class->name); 3241 if (class->name_version > 1) 3242 printk(KERN_CONT "#%d", class->name_version); 3243 printk(KERN_CONT "\n"); 3244 dump_stack(); 3245 } 3246 3247 /* 3248 * Add the lock to the list of currently held locks. 3249 * (we dont increase the depth just yet, up until the 3250 * dependency checks are done) 3251 */ 3252 depth = curr->lockdep_depth; 3253 /* 3254 * Ran out of static storage for our per-task lock stack again have we? 3255 */ 3256 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 3257 return 0; 3258 3259 class_idx = class - lock_classes + 1; 3260 3261 if (depth) { 3262 hlock = curr->held_locks + depth - 1; 3263 if (hlock->class_idx == class_idx && nest_lock) { 3264 if (hlock->references) 3265 hlock->references++; 3266 else 3267 hlock->references = 2; 3268 3269 return 1; 3270 } 3271 } 3272 3273 hlock = curr->held_locks + depth; 3274 /* 3275 * Plain impossible, we just registered it and checked it weren't no 3276 * NULL like.. I bet this mushroom I ate was good! 3277 */ 3278 if (DEBUG_LOCKS_WARN_ON(!class)) 3279 return 0; 3280 hlock->class_idx = class_idx; 3281 hlock->acquire_ip = ip; 3282 hlock->instance = lock; 3283 hlock->nest_lock = nest_lock; 3284 hlock->irq_context = task_irq_context(curr); 3285 hlock->trylock = trylock; 3286 hlock->read = read; 3287 hlock->check = check; 3288 hlock->hardirqs_off = !!hardirqs_off; 3289 hlock->references = references; 3290 #ifdef CONFIG_LOCK_STAT 3291 hlock->waittime_stamp = 0; 3292 hlock->holdtime_stamp = lockstat_clock(); 3293 #endif 3294 hlock->pin_count = pin_count; 3295 3296 if (check && !mark_irqflags(curr, hlock)) 3297 return 0; 3298 3299 /* mark it as used: */ 3300 if (!mark_lock(curr, hlock, LOCK_USED)) 3301 return 0; 3302 3303 /* 3304 * Calculate the chain hash: it's the combined hash of all the 3305 * lock keys along the dependency chain. We save the hash value 3306 * at every step so that we can get the current hash easily 3307 * after unlock. The chain hash is then used to cache dependency 3308 * results. 3309 * 3310 * The 'key ID' is what is the most compact key value to drive 3311 * the hash, not class->key. 3312 */ 3313 /* 3314 * Whoops, we did it again.. ran straight out of our static allocation. 3315 */ 3316 if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS)) 3317 return 0; 3318 3319 chain_key = curr->curr_chain_key; 3320 if (!depth) { 3321 /* 3322 * How can we have a chain hash when we ain't got no keys?! 3323 */ 3324 if (DEBUG_LOCKS_WARN_ON(chain_key != 0)) 3325 return 0; 3326 chain_head = 1; 3327 } 3328 3329 hlock->prev_chain_key = chain_key; 3330 if (separate_irq_context(curr, hlock)) { 3331 chain_key = 0; 3332 chain_head = 1; 3333 } 3334 chain_key = iterate_chain_key(chain_key, class_idx); 3335 3336 if (nest_lock && !__lock_is_held(nest_lock, -1)) 3337 return print_lock_nested_lock_not_held(curr, hlock, ip); 3338 3339 if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) 3340 return 0; 3341 3342 curr->curr_chain_key = chain_key; 3343 curr->lockdep_depth++; 3344 check_chain_key(curr); 3345 #ifdef CONFIG_DEBUG_LOCKDEP 3346 if (unlikely(!debug_locks)) 3347 return 0; 3348 #endif 3349 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 3350 debug_locks_off(); 3351 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 3352 printk(KERN_DEBUG "depth: %i max: %lu!\n", 3353 curr->lockdep_depth, MAX_LOCK_DEPTH); 3354 3355 lockdep_print_held_locks(current); 3356 debug_show_all_locks(); 3357 dump_stack(); 3358 3359 return 0; 3360 } 3361 3362 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 3363 max_lockdep_depth = curr->lockdep_depth; 3364 3365 return 1; 3366 } 3367 3368 static int 3369 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock, 3370 unsigned long ip) 3371 { 3372 if (!debug_locks_off()) 3373 return 0; 3374 if (debug_locks_silent) 3375 return 0; 3376 3377 printk("\n"); 3378 printk("=====================================\n"); 3379 printk("[ BUG: bad unlock balance detected! ]\n"); 3380 print_kernel_ident(); 3381 printk("-------------------------------------\n"); 3382 printk("%s/%d is trying to release lock (", 3383 curr->comm, task_pid_nr(curr)); 3384 print_lockdep_cache(lock); 3385 printk(KERN_CONT ") at:\n"); 3386 print_ip_sym(ip); 3387 printk("but there are no more locks to release!\n"); 3388 printk("\nother info that might help us debug this:\n"); 3389 lockdep_print_held_locks(curr); 3390 3391 printk("\nstack backtrace:\n"); 3392 dump_stack(); 3393 3394 return 0; 3395 } 3396 3397 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) 3398 { 3399 if (hlock->instance == lock) 3400 return 1; 3401 3402 if (hlock->references) { 3403 struct lock_class *class = lock->class_cache[0]; 3404 3405 if (!class) 3406 class = look_up_lock_class(lock, 0); 3407 3408 /* 3409 * If look_up_lock_class() failed to find a class, we're trying 3410 * to test if we hold a lock that has never yet been acquired. 3411 * Clearly if the lock hasn't been acquired _ever_, we're not 3412 * holding it either, so report failure. 3413 */ 3414 if (!class) 3415 return 0; 3416 3417 /* 3418 * References, but not a lock we're actually ref-counting? 3419 * State got messed up, follow the sites that change ->references 3420 * and try to make sense of it. 3421 */ 3422 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 3423 return 0; 3424 3425 if (hlock->class_idx == class - lock_classes + 1) 3426 return 1; 3427 } 3428 3429 return 0; 3430 } 3431 3432 static int 3433 __lock_set_class(struct lockdep_map *lock, const char *name, 3434 struct lock_class_key *key, unsigned int subclass, 3435 unsigned long ip) 3436 { 3437 struct task_struct *curr = current; 3438 struct held_lock *hlock, *prev_hlock; 3439 struct lock_class *class; 3440 unsigned int depth; 3441 int i; 3442 3443 depth = curr->lockdep_depth; 3444 /* 3445 * This function is about (re)setting the class of a held lock, 3446 * yet we're not actually holding any locks. Naughty user! 3447 */ 3448 if (DEBUG_LOCKS_WARN_ON(!depth)) 3449 return 0; 3450 3451 prev_hlock = NULL; 3452 for (i = depth-1; i >= 0; i--) { 3453 hlock = curr->held_locks + i; 3454 /* 3455 * We must not cross into another context: 3456 */ 3457 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3458 break; 3459 if (match_held_lock(hlock, lock)) 3460 goto found_it; 3461 prev_hlock = hlock; 3462 } 3463 return print_unlock_imbalance_bug(curr, lock, ip); 3464 3465 found_it: 3466 lockdep_init_map(lock, name, key, 0); 3467 class = register_lock_class(lock, subclass, 0); 3468 hlock->class_idx = class - lock_classes + 1; 3469 3470 curr->lockdep_depth = i; 3471 curr->curr_chain_key = hlock->prev_chain_key; 3472 3473 for (; i < depth; i++) { 3474 hlock = curr->held_locks + i; 3475 if (!__lock_acquire(hlock->instance, 3476 hlock_class(hlock)->subclass, hlock->trylock, 3477 hlock->read, hlock->check, hlock->hardirqs_off, 3478 hlock->nest_lock, hlock->acquire_ip, 3479 hlock->references, hlock->pin_count)) 3480 return 0; 3481 } 3482 3483 /* 3484 * I took it apart and put it back together again, except now I have 3485 * these 'spare' parts.. where shall I put them. 3486 */ 3487 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3488 return 0; 3489 return 1; 3490 } 3491 3492 /* 3493 * Remove the lock to the list of currently held locks - this gets 3494 * called on mutex_unlock()/spin_unlock*() (or on a failed 3495 * mutex_lock_interruptible()). 3496 * 3497 * @nested is an hysterical artifact, needs a tree wide cleanup. 3498 */ 3499 static int 3500 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) 3501 { 3502 struct task_struct *curr = current; 3503 struct held_lock *hlock, *prev_hlock; 3504 unsigned int depth; 3505 int i; 3506 3507 if (unlikely(!debug_locks)) 3508 return 0; 3509 3510 depth = curr->lockdep_depth; 3511 /* 3512 * So we're all set to release this lock.. wait what lock? We don't 3513 * own any locks, you've been drinking again? 3514 */ 3515 if (DEBUG_LOCKS_WARN_ON(depth <= 0)) 3516 return print_unlock_imbalance_bug(curr, lock, ip); 3517 3518 /* 3519 * Check whether the lock exists in the current stack 3520 * of held locks: 3521 */ 3522 prev_hlock = NULL; 3523 for (i = depth-1; i >= 0; i--) { 3524 hlock = curr->held_locks + i; 3525 /* 3526 * We must not cross into another context: 3527 */ 3528 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3529 break; 3530 if (match_held_lock(hlock, lock)) 3531 goto found_it; 3532 prev_hlock = hlock; 3533 } 3534 return print_unlock_imbalance_bug(curr, lock, ip); 3535 3536 found_it: 3537 if (hlock->instance == lock) 3538 lock_release_holdtime(hlock); 3539 3540 WARN(hlock->pin_count, "releasing a pinned lock\n"); 3541 3542 if (hlock->references) { 3543 hlock->references--; 3544 if (hlock->references) { 3545 /* 3546 * We had, and after removing one, still have 3547 * references, the current lock stack is still 3548 * valid. We're done! 3549 */ 3550 return 1; 3551 } 3552 } 3553 3554 /* 3555 * We have the right lock to unlock, 'hlock' points to it. 3556 * Now we remove it from the stack, and add back the other 3557 * entries (if any), recalculating the hash along the way: 3558 */ 3559 3560 curr->lockdep_depth = i; 3561 curr->curr_chain_key = hlock->prev_chain_key; 3562 3563 for (i++; i < depth; i++) { 3564 hlock = curr->held_locks + i; 3565 if (!__lock_acquire(hlock->instance, 3566 hlock_class(hlock)->subclass, hlock->trylock, 3567 hlock->read, hlock->check, hlock->hardirqs_off, 3568 hlock->nest_lock, hlock->acquire_ip, 3569 hlock->references, hlock->pin_count)) 3570 return 0; 3571 } 3572 3573 /* 3574 * We had N bottles of beer on the wall, we drank one, but now 3575 * there's not N-1 bottles of beer left on the wall... 3576 */ 3577 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1)) 3578 return 0; 3579 3580 return 1; 3581 } 3582 3583 static int __lock_is_held(struct lockdep_map *lock, int read) 3584 { 3585 struct task_struct *curr = current; 3586 int i; 3587 3588 for (i = 0; i < curr->lockdep_depth; i++) { 3589 struct held_lock *hlock = curr->held_locks + i; 3590 3591 if (match_held_lock(hlock, lock)) { 3592 if (read == -1 || hlock->read == read) 3593 return 1; 3594 3595 return 0; 3596 } 3597 } 3598 3599 return 0; 3600 } 3601 3602 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 3603 { 3604 struct pin_cookie cookie = NIL_COOKIE; 3605 struct task_struct *curr = current; 3606 int i; 3607 3608 if (unlikely(!debug_locks)) 3609 return cookie; 3610 3611 for (i = 0; i < curr->lockdep_depth; i++) { 3612 struct held_lock *hlock = curr->held_locks + i; 3613 3614 if (match_held_lock(hlock, lock)) { 3615 /* 3616 * Grab 16bits of randomness; this is sufficient to not 3617 * be guessable and still allows some pin nesting in 3618 * our u32 pin_count. 3619 */ 3620 cookie.val = 1 + (prandom_u32() >> 16); 3621 hlock->pin_count += cookie.val; 3622 return cookie; 3623 } 3624 } 3625 3626 WARN(1, "pinning an unheld lock\n"); 3627 return cookie; 3628 } 3629 3630 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3631 { 3632 struct task_struct *curr = current; 3633 int i; 3634 3635 if (unlikely(!debug_locks)) 3636 return; 3637 3638 for (i = 0; i < curr->lockdep_depth; i++) { 3639 struct held_lock *hlock = curr->held_locks + i; 3640 3641 if (match_held_lock(hlock, lock)) { 3642 hlock->pin_count += cookie.val; 3643 return; 3644 } 3645 } 3646 3647 WARN(1, "pinning an unheld lock\n"); 3648 } 3649 3650 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3651 { 3652 struct task_struct *curr = current; 3653 int i; 3654 3655 if (unlikely(!debug_locks)) 3656 return; 3657 3658 for (i = 0; i < curr->lockdep_depth; i++) { 3659 struct held_lock *hlock = curr->held_locks + i; 3660 3661 if (match_held_lock(hlock, lock)) { 3662 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 3663 return; 3664 3665 hlock->pin_count -= cookie.val; 3666 3667 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 3668 hlock->pin_count = 0; 3669 3670 return; 3671 } 3672 } 3673 3674 WARN(1, "unpinning an unheld lock\n"); 3675 } 3676 3677 /* 3678 * Check whether we follow the irq-flags state precisely: 3679 */ 3680 static void check_flags(unsigned long flags) 3681 { 3682 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \ 3683 defined(CONFIG_TRACE_IRQFLAGS) 3684 if (!debug_locks) 3685 return; 3686 3687 if (irqs_disabled_flags(flags)) { 3688 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 3689 printk("possible reason: unannotated irqs-off.\n"); 3690 } 3691 } else { 3692 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 3693 printk("possible reason: unannotated irqs-on.\n"); 3694 } 3695 } 3696 3697 /* 3698 * We dont accurately track softirq state in e.g. 3699 * hardirq contexts (such as on 4KSTACKS), so only 3700 * check if not in hardirq contexts: 3701 */ 3702 if (!hardirq_count()) { 3703 if (softirq_count()) { 3704 /* like the above, but with softirqs */ 3705 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 3706 } else { 3707 /* lick the above, does it taste good? */ 3708 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 3709 } 3710 } 3711 3712 if (!debug_locks) 3713 print_irqtrace_events(current); 3714 #endif 3715 } 3716 3717 void lock_set_class(struct lockdep_map *lock, const char *name, 3718 struct lock_class_key *key, unsigned int subclass, 3719 unsigned long ip) 3720 { 3721 unsigned long flags; 3722 3723 if (unlikely(current->lockdep_recursion)) 3724 return; 3725 3726 raw_local_irq_save(flags); 3727 current->lockdep_recursion = 1; 3728 check_flags(flags); 3729 if (__lock_set_class(lock, name, key, subclass, ip)) 3730 check_chain_key(current); 3731 current->lockdep_recursion = 0; 3732 raw_local_irq_restore(flags); 3733 } 3734 EXPORT_SYMBOL_GPL(lock_set_class); 3735 3736 /* 3737 * We are not always called with irqs disabled - do that here, 3738 * and also avoid lockdep recursion: 3739 */ 3740 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3741 int trylock, int read, int check, 3742 struct lockdep_map *nest_lock, unsigned long ip) 3743 { 3744 unsigned long flags; 3745 3746 if (unlikely(current->lockdep_recursion)) 3747 return; 3748 3749 raw_local_irq_save(flags); 3750 check_flags(flags); 3751 3752 current->lockdep_recursion = 1; 3753 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 3754 __lock_acquire(lock, subclass, trylock, read, check, 3755 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 3756 current->lockdep_recursion = 0; 3757 raw_local_irq_restore(flags); 3758 } 3759 EXPORT_SYMBOL_GPL(lock_acquire); 3760 3761 void lock_release(struct lockdep_map *lock, int nested, 3762 unsigned long ip) 3763 { 3764 unsigned long flags; 3765 3766 if (unlikely(current->lockdep_recursion)) 3767 return; 3768 3769 raw_local_irq_save(flags); 3770 check_flags(flags); 3771 current->lockdep_recursion = 1; 3772 trace_lock_release(lock, ip); 3773 if (__lock_release(lock, nested, ip)) 3774 check_chain_key(current); 3775 current->lockdep_recursion = 0; 3776 raw_local_irq_restore(flags); 3777 } 3778 EXPORT_SYMBOL_GPL(lock_release); 3779 3780 int lock_is_held_type(struct lockdep_map *lock, int read) 3781 { 3782 unsigned long flags; 3783 int ret = 0; 3784 3785 if (unlikely(current->lockdep_recursion)) 3786 return 1; /* avoid false negative lockdep_assert_held() */ 3787 3788 raw_local_irq_save(flags); 3789 check_flags(flags); 3790 3791 current->lockdep_recursion = 1; 3792 ret = __lock_is_held(lock, read); 3793 current->lockdep_recursion = 0; 3794 raw_local_irq_restore(flags); 3795 3796 return ret; 3797 } 3798 EXPORT_SYMBOL_GPL(lock_is_held_type); 3799 3800 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 3801 { 3802 struct pin_cookie cookie = NIL_COOKIE; 3803 unsigned long flags; 3804 3805 if (unlikely(current->lockdep_recursion)) 3806 return cookie; 3807 3808 raw_local_irq_save(flags); 3809 check_flags(flags); 3810 3811 current->lockdep_recursion = 1; 3812 cookie = __lock_pin_lock(lock); 3813 current->lockdep_recursion = 0; 3814 raw_local_irq_restore(flags); 3815 3816 return cookie; 3817 } 3818 EXPORT_SYMBOL_GPL(lock_pin_lock); 3819 3820 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3821 { 3822 unsigned long flags; 3823 3824 if (unlikely(current->lockdep_recursion)) 3825 return; 3826 3827 raw_local_irq_save(flags); 3828 check_flags(flags); 3829 3830 current->lockdep_recursion = 1; 3831 __lock_repin_lock(lock, cookie); 3832 current->lockdep_recursion = 0; 3833 raw_local_irq_restore(flags); 3834 } 3835 EXPORT_SYMBOL_GPL(lock_repin_lock); 3836 3837 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3838 { 3839 unsigned long flags; 3840 3841 if (unlikely(current->lockdep_recursion)) 3842 return; 3843 3844 raw_local_irq_save(flags); 3845 check_flags(flags); 3846 3847 current->lockdep_recursion = 1; 3848 __lock_unpin_lock(lock, cookie); 3849 current->lockdep_recursion = 0; 3850 raw_local_irq_restore(flags); 3851 } 3852 EXPORT_SYMBOL_GPL(lock_unpin_lock); 3853 3854 void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3855 { 3856 current->lockdep_reclaim_gfp = gfp_mask; 3857 } 3858 3859 void lockdep_clear_current_reclaim_state(void) 3860 { 3861 current->lockdep_reclaim_gfp = 0; 3862 } 3863 3864 #ifdef CONFIG_LOCK_STAT 3865 static int 3866 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, 3867 unsigned long ip) 3868 { 3869 if (!debug_locks_off()) 3870 return 0; 3871 if (debug_locks_silent) 3872 return 0; 3873 3874 printk("\n"); 3875 printk("=================================\n"); 3876 printk("[ BUG: bad contention detected! ]\n"); 3877 print_kernel_ident(); 3878 printk("---------------------------------\n"); 3879 printk("%s/%d is trying to contend lock (", 3880 curr->comm, task_pid_nr(curr)); 3881 print_lockdep_cache(lock); 3882 printk(KERN_CONT ") at:\n"); 3883 print_ip_sym(ip); 3884 printk("but there are no locks held!\n"); 3885 printk("\nother info that might help us debug this:\n"); 3886 lockdep_print_held_locks(curr); 3887 3888 printk("\nstack backtrace:\n"); 3889 dump_stack(); 3890 3891 return 0; 3892 } 3893 3894 static void 3895 __lock_contended(struct lockdep_map *lock, unsigned long ip) 3896 { 3897 struct task_struct *curr = current; 3898 struct held_lock *hlock, *prev_hlock; 3899 struct lock_class_stats *stats; 3900 unsigned int depth; 3901 int i, contention_point, contending_point; 3902 3903 depth = curr->lockdep_depth; 3904 /* 3905 * Whee, we contended on this lock, except it seems we're not 3906 * actually trying to acquire anything much at all.. 3907 */ 3908 if (DEBUG_LOCKS_WARN_ON(!depth)) 3909 return; 3910 3911 prev_hlock = NULL; 3912 for (i = depth-1; i >= 0; i--) { 3913 hlock = curr->held_locks + i; 3914 /* 3915 * We must not cross into another context: 3916 */ 3917 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3918 break; 3919 if (match_held_lock(hlock, lock)) 3920 goto found_it; 3921 prev_hlock = hlock; 3922 } 3923 print_lock_contention_bug(curr, lock, ip); 3924 return; 3925 3926 found_it: 3927 if (hlock->instance != lock) 3928 return; 3929 3930 hlock->waittime_stamp = lockstat_clock(); 3931 3932 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3933 contending_point = lock_point(hlock_class(hlock)->contending_point, 3934 lock->ip); 3935 3936 stats = get_lock_stats(hlock_class(hlock)); 3937 if (contention_point < LOCKSTAT_POINTS) 3938 stats->contention_point[contention_point]++; 3939 if (contending_point < LOCKSTAT_POINTS) 3940 stats->contending_point[contending_point]++; 3941 if (lock->cpu != smp_processor_id()) 3942 stats->bounces[bounce_contended + !!hlock->read]++; 3943 put_lock_stats(stats); 3944 } 3945 3946 static void 3947 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 3948 { 3949 struct task_struct *curr = current; 3950 struct held_lock *hlock, *prev_hlock; 3951 struct lock_class_stats *stats; 3952 unsigned int depth; 3953 u64 now, waittime = 0; 3954 int i, cpu; 3955 3956 depth = curr->lockdep_depth; 3957 /* 3958 * Yay, we acquired ownership of this lock we didn't try to 3959 * acquire, how the heck did that happen? 3960 */ 3961 if (DEBUG_LOCKS_WARN_ON(!depth)) 3962 return; 3963 3964 prev_hlock = NULL; 3965 for (i = depth-1; i >= 0; i--) { 3966 hlock = curr->held_locks + i; 3967 /* 3968 * We must not cross into another context: 3969 */ 3970 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3971 break; 3972 if (match_held_lock(hlock, lock)) 3973 goto found_it; 3974 prev_hlock = hlock; 3975 } 3976 print_lock_contention_bug(curr, lock, _RET_IP_); 3977 return; 3978 3979 found_it: 3980 if (hlock->instance != lock) 3981 return; 3982 3983 cpu = smp_processor_id(); 3984 if (hlock->waittime_stamp) { 3985 now = lockstat_clock(); 3986 waittime = now - hlock->waittime_stamp; 3987 hlock->holdtime_stamp = now; 3988 } 3989 3990 trace_lock_acquired(lock, ip); 3991 3992 stats = get_lock_stats(hlock_class(hlock)); 3993 if (waittime) { 3994 if (hlock->read) 3995 lock_time_inc(&stats->read_waittime, waittime); 3996 else 3997 lock_time_inc(&stats->write_waittime, waittime); 3998 } 3999 if (lock->cpu != cpu) 4000 stats->bounces[bounce_acquired + !!hlock->read]++; 4001 put_lock_stats(stats); 4002 4003 lock->cpu = cpu; 4004 lock->ip = ip; 4005 } 4006 4007 void lock_contended(struct lockdep_map *lock, unsigned long ip) 4008 { 4009 unsigned long flags; 4010 4011 if (unlikely(!lock_stat)) 4012 return; 4013 4014 if (unlikely(current->lockdep_recursion)) 4015 return; 4016 4017 raw_local_irq_save(flags); 4018 check_flags(flags); 4019 current->lockdep_recursion = 1; 4020 trace_lock_contended(lock, ip); 4021 __lock_contended(lock, ip); 4022 current->lockdep_recursion = 0; 4023 raw_local_irq_restore(flags); 4024 } 4025 EXPORT_SYMBOL_GPL(lock_contended); 4026 4027 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 4028 { 4029 unsigned long flags; 4030 4031 if (unlikely(!lock_stat)) 4032 return; 4033 4034 if (unlikely(current->lockdep_recursion)) 4035 return; 4036 4037 raw_local_irq_save(flags); 4038 check_flags(flags); 4039 current->lockdep_recursion = 1; 4040 __lock_acquired(lock, ip); 4041 current->lockdep_recursion = 0; 4042 raw_local_irq_restore(flags); 4043 } 4044 EXPORT_SYMBOL_GPL(lock_acquired); 4045 #endif 4046 4047 /* 4048 * Used by the testsuite, sanitize the validator state 4049 * after a simulated failure: 4050 */ 4051 4052 void lockdep_reset(void) 4053 { 4054 unsigned long flags; 4055 int i; 4056 4057 raw_local_irq_save(flags); 4058 current->curr_chain_key = 0; 4059 current->lockdep_depth = 0; 4060 current->lockdep_recursion = 0; 4061 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 4062 nr_hardirq_chains = 0; 4063 nr_softirq_chains = 0; 4064 nr_process_chains = 0; 4065 debug_locks = 1; 4066 for (i = 0; i < CHAINHASH_SIZE; i++) 4067 INIT_HLIST_HEAD(chainhash_table + i); 4068 raw_local_irq_restore(flags); 4069 } 4070 4071 static void zap_class(struct lock_class *class) 4072 { 4073 int i; 4074 4075 /* 4076 * Remove all dependencies this lock is 4077 * involved in: 4078 */ 4079 for (i = 0; i < nr_list_entries; i++) { 4080 if (list_entries[i].class == class) 4081 list_del_rcu(&list_entries[i].entry); 4082 } 4083 /* 4084 * Unhash the class and remove it from the all_lock_classes list: 4085 */ 4086 hlist_del_rcu(&class->hash_entry); 4087 list_del_rcu(&class->lock_entry); 4088 4089 RCU_INIT_POINTER(class->key, NULL); 4090 RCU_INIT_POINTER(class->name, NULL); 4091 } 4092 4093 static inline int within(const void *addr, void *start, unsigned long size) 4094 { 4095 return addr >= start && addr < start + size; 4096 } 4097 4098 /* 4099 * Used in module.c to remove lock classes from memory that is going to be 4100 * freed; and possibly re-used by other modules. 4101 * 4102 * We will have had one sync_sched() before getting here, so we're guaranteed 4103 * nobody will look up these exact classes -- they're properly dead but still 4104 * allocated. 4105 */ 4106 void lockdep_free_key_range(void *start, unsigned long size) 4107 { 4108 struct lock_class *class; 4109 struct hlist_head *head; 4110 unsigned long flags; 4111 int i; 4112 int locked; 4113 4114 raw_local_irq_save(flags); 4115 locked = graph_lock(); 4116 4117 /* 4118 * Unhash all classes that were created by this module: 4119 */ 4120 for (i = 0; i < CLASSHASH_SIZE; i++) { 4121 head = classhash_table + i; 4122 hlist_for_each_entry_rcu(class, head, hash_entry) { 4123 if (within(class->key, start, size)) 4124 zap_class(class); 4125 else if (within(class->name, start, size)) 4126 zap_class(class); 4127 } 4128 } 4129 4130 if (locked) 4131 graph_unlock(); 4132 raw_local_irq_restore(flags); 4133 4134 /* 4135 * Wait for any possible iterators from look_up_lock_class() to pass 4136 * before continuing to free the memory they refer to. 4137 * 4138 * sync_sched() is sufficient because the read-side is IRQ disable. 4139 */ 4140 synchronize_sched(); 4141 4142 /* 4143 * XXX at this point we could return the resources to the pool; 4144 * instead we leak them. We would need to change to bitmap allocators 4145 * instead of the linear allocators we have now. 4146 */ 4147 } 4148 4149 void lockdep_reset_lock(struct lockdep_map *lock) 4150 { 4151 struct lock_class *class; 4152 struct hlist_head *head; 4153 unsigned long flags; 4154 int i, j; 4155 int locked; 4156 4157 raw_local_irq_save(flags); 4158 4159 /* 4160 * Remove all classes this lock might have: 4161 */ 4162 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 4163 /* 4164 * If the class exists we look it up and zap it: 4165 */ 4166 class = look_up_lock_class(lock, j); 4167 if (class) 4168 zap_class(class); 4169 } 4170 /* 4171 * Debug check: in the end all mapped classes should 4172 * be gone. 4173 */ 4174 locked = graph_lock(); 4175 for (i = 0; i < CLASSHASH_SIZE; i++) { 4176 head = classhash_table + i; 4177 hlist_for_each_entry_rcu(class, head, hash_entry) { 4178 int match = 0; 4179 4180 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 4181 match |= class == lock->class_cache[j]; 4182 4183 if (unlikely(match)) { 4184 if (debug_locks_off_graph_unlock()) { 4185 /* 4186 * We all just reset everything, how did it match? 4187 */ 4188 WARN_ON(1); 4189 } 4190 goto out_restore; 4191 } 4192 } 4193 } 4194 if (locked) 4195 graph_unlock(); 4196 4197 out_restore: 4198 raw_local_irq_restore(flags); 4199 } 4200 4201 void __init lockdep_info(void) 4202 { 4203 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 4204 4205 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 4206 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 4207 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 4208 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 4209 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 4210 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 4211 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 4212 4213 printk(" memory used by lock dependency info: %lu kB\n", 4214 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS + 4215 sizeof(struct list_head) * CLASSHASH_SIZE + 4216 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 4217 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 4218 sizeof(struct list_head) * CHAINHASH_SIZE 4219 #ifdef CONFIG_PROVE_LOCKING 4220 + sizeof(struct circular_queue) 4221 #endif 4222 ) / 1024 4223 ); 4224 4225 printk(" per task-struct memory footprint: %lu bytes\n", 4226 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 4227 } 4228 4229 static void 4230 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 4231 const void *mem_to, struct held_lock *hlock) 4232 { 4233 if (!debug_locks_off()) 4234 return; 4235 if (debug_locks_silent) 4236 return; 4237 4238 printk("\n"); 4239 printk("=========================\n"); 4240 printk("[ BUG: held lock freed! ]\n"); 4241 print_kernel_ident(); 4242 printk("-------------------------\n"); 4243 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n", 4244 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 4245 print_lock(hlock); 4246 lockdep_print_held_locks(curr); 4247 4248 printk("\nstack backtrace:\n"); 4249 dump_stack(); 4250 } 4251 4252 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 4253 const void* lock_from, unsigned long lock_len) 4254 { 4255 return lock_from + lock_len <= mem_from || 4256 mem_from + mem_len <= lock_from; 4257 } 4258 4259 /* 4260 * Called when kernel memory is freed (or unmapped), or if a lock 4261 * is destroyed or reinitialized - this code checks whether there is 4262 * any held lock in the memory range of <from> to <to>: 4263 */ 4264 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 4265 { 4266 struct task_struct *curr = current; 4267 struct held_lock *hlock; 4268 unsigned long flags; 4269 int i; 4270 4271 if (unlikely(!debug_locks)) 4272 return; 4273 4274 local_irq_save(flags); 4275 for (i = 0; i < curr->lockdep_depth; i++) { 4276 hlock = curr->held_locks + i; 4277 4278 if (not_in_range(mem_from, mem_len, hlock->instance, 4279 sizeof(*hlock->instance))) 4280 continue; 4281 4282 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 4283 break; 4284 } 4285 local_irq_restore(flags); 4286 } 4287 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 4288 4289 static void print_held_locks_bug(void) 4290 { 4291 if (!debug_locks_off()) 4292 return; 4293 if (debug_locks_silent) 4294 return; 4295 4296 printk("\n"); 4297 printk("=====================================\n"); 4298 printk("[ BUG: %s/%d still has locks held! ]\n", 4299 current->comm, task_pid_nr(current)); 4300 print_kernel_ident(); 4301 printk("-------------------------------------\n"); 4302 lockdep_print_held_locks(current); 4303 printk("\nstack backtrace:\n"); 4304 dump_stack(); 4305 } 4306 4307 void debug_check_no_locks_held(void) 4308 { 4309 if (unlikely(current->lockdep_depth > 0)) 4310 print_held_locks_bug(); 4311 } 4312 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 4313 4314 #ifdef __KERNEL__ 4315 void debug_show_all_locks(void) 4316 { 4317 struct task_struct *g, *p; 4318 int count = 10; 4319 int unlock = 1; 4320 4321 if (unlikely(!debug_locks)) { 4322 printk("INFO: lockdep is turned off.\n"); 4323 return; 4324 } 4325 printk("\nShowing all locks held in the system:\n"); 4326 4327 /* 4328 * Here we try to get the tasklist_lock as hard as possible, 4329 * if not successful after 2 seconds we ignore it (but keep 4330 * trying). This is to enable a debug printout even if a 4331 * tasklist_lock-holding task deadlocks or crashes. 4332 */ 4333 retry: 4334 if (!read_trylock(&tasklist_lock)) { 4335 if (count == 10) 4336 printk("hm, tasklist_lock locked, retrying... "); 4337 if (count) { 4338 count--; 4339 printk(" #%d", 10-count); 4340 mdelay(200); 4341 goto retry; 4342 } 4343 printk(" ignoring it.\n"); 4344 unlock = 0; 4345 } else { 4346 if (count != 10) 4347 printk(KERN_CONT " locked it.\n"); 4348 } 4349 4350 do_each_thread(g, p) { 4351 /* 4352 * It's not reliable to print a task's held locks 4353 * if it's not sleeping (or if it's not the current 4354 * task): 4355 */ 4356 if (p->state == TASK_RUNNING && p != current) 4357 continue; 4358 if (p->lockdep_depth) 4359 lockdep_print_held_locks(p); 4360 if (!unlock) 4361 if (read_trylock(&tasklist_lock)) 4362 unlock = 1; 4363 } while_each_thread(g, p); 4364 4365 printk("\n"); 4366 printk("=============================================\n\n"); 4367 4368 if (unlock) 4369 read_unlock(&tasklist_lock); 4370 } 4371 EXPORT_SYMBOL_GPL(debug_show_all_locks); 4372 #endif 4373 4374 /* 4375 * Careful: only use this function if you are sure that 4376 * the task cannot run in parallel! 4377 */ 4378 void debug_show_held_locks(struct task_struct *task) 4379 { 4380 if (unlikely(!debug_locks)) { 4381 printk("INFO: lockdep is turned off.\n"); 4382 return; 4383 } 4384 lockdep_print_held_locks(task); 4385 } 4386 EXPORT_SYMBOL_GPL(debug_show_held_locks); 4387 4388 asmlinkage __visible void lockdep_sys_exit(void) 4389 { 4390 struct task_struct *curr = current; 4391 4392 if (unlikely(curr->lockdep_depth)) { 4393 if (!debug_locks_off()) 4394 return; 4395 printk("\n"); 4396 printk("================================================\n"); 4397 printk("[ BUG: lock held when returning to user space! ]\n"); 4398 print_kernel_ident(); 4399 printk("------------------------------------------------\n"); 4400 printk("%s/%d is leaving the kernel with locks still held!\n", 4401 curr->comm, curr->pid); 4402 lockdep_print_held_locks(curr); 4403 } 4404 } 4405 4406 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 4407 { 4408 struct task_struct *curr = current; 4409 4410 #ifndef CONFIG_PROVE_RCU_REPEATEDLY 4411 if (!debug_locks_off()) 4412 return; 4413 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */ 4414 /* Note: the following can be executed concurrently, so be careful. */ 4415 printk("\n"); 4416 pr_err("===============================\n"); 4417 pr_err("[ ERR: suspicious RCU usage. ]\n"); 4418 print_kernel_ident(); 4419 pr_err("-------------------------------\n"); 4420 pr_err("%s:%d %s!\n", file, line, s); 4421 pr_err("\nother info that might help us debug this:\n\n"); 4422 pr_err("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 4423 !rcu_lockdep_current_cpu_online() 4424 ? "RCU used illegally from offline CPU!\n" 4425 : !rcu_is_watching() 4426 ? "RCU used illegally from idle CPU!\n" 4427 : "", 4428 rcu_scheduler_active, debug_locks); 4429 4430 /* 4431 * If a CPU is in the RCU-free window in idle (ie: in the section 4432 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 4433 * considers that CPU to be in an "extended quiescent state", 4434 * which means that RCU will be completely ignoring that CPU. 4435 * Therefore, rcu_read_lock() and friends have absolutely no 4436 * effect on a CPU running in that state. In other words, even if 4437 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 4438 * delete data structures out from under it. RCU really has no 4439 * choice here: we need to keep an RCU-free window in idle where 4440 * the CPU may possibly enter into low power mode. This way we can 4441 * notice an extended quiescent state to other CPUs that started a grace 4442 * period. Otherwise we would delay any grace period as long as we run 4443 * in the idle task. 4444 * 4445 * So complain bitterly if someone does call rcu_read_lock(), 4446 * rcu_read_lock_bh() and so on from extended quiescent states. 4447 */ 4448 if (!rcu_is_watching()) 4449 printk("RCU used illegally from extended quiescent state!\n"); 4450 4451 lockdep_print_held_locks(curr); 4452 printk("\nstack backtrace:\n"); 4453 dump_stack(); 4454 } 4455 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 4456