xref: /linux/kernel/locking/lockdep.c (revision 4999999ed7e099fcc2476c8b3a245c4c2c9026c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 
60 #include <asm/sections.h>
61 
62 #include "lockdep_internals.h"
63 
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 	{
84 		.procname       = "prove_locking",
85 		.data           = &prove_locking,
86 		.maxlen         = sizeof(int),
87 		.mode           = 0644,
88 		.proc_handler   = proc_dointvec,
89 	},
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 	{
93 		.procname       = "lock_stat",
94 		.data           = &lock_stat,
95 		.maxlen         = sizeof(int),
96 		.mode           = 0644,
97 		.proc_handler   = proc_dointvec,
98 	},
99 #endif /* CONFIG_LOCK_STAT */
100 	{ }
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 		dump_stack();
579 
580 		return NULL;
581 	}
582 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583 
584 	hash = jhash(trace->entries, trace->nr_entries *
585 		     sizeof(trace->entries[0]), 0);
586 	trace->hash = hash;
587 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 	hlist_for_each_entry(t2, hash_head, hash_entry) {
589 		if (traces_identical(trace, t2))
590 			return t2;
591 	}
592 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 	hlist_add_head(&trace->hash_entry, hash_head);
594 
595 	return trace;
596 }
597 
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601 	struct lock_trace *trace;
602 	u64 c = 0;
603 	int i;
604 
605 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 			c++;
608 		}
609 	}
610 
611 	return c;
612 }
613 
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617 	u64 c = 0;
618 	int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 		if (!hlist_empty(&stack_trace_hash[i]))
622 			c++;
623 
624 	return c;
625 }
626 #endif
627 
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632 
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639 
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644 
645 #define __USAGE(__STATE)						\
646 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650 
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 	[LOCK_USED] = "INITIAL USE",
657 	[LOCK_USED_READ] = "INITIAL READ USE",
658 	/* abused as string storage for verify_lock_unused() */
659 	[LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662 
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667 
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 	return 1UL << bit;
671 }
672 
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 	/*
676 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 	 * irq context), which is the safest usage category.
678 	 */
679 	char c = '.';
680 
681 	/*
682 	 * The order of the following usage checks matters, which will
683 	 * result in the outcome character as follows:
684 	 *
685 	 * - '+': irq is enabled and not in irq context
686 	 * - '-': in irq context and irq is disabled
687 	 * - '?': in irq context and irq is enabled
688 	 */
689 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 		c = '+';
691 		if (class->usage_mask & lock_flag(bit))
692 			c = '?';
693 	} else if (class->usage_mask & lock_flag(bit))
694 		c = '-';
695 
696 	return c;
697 }
698 
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 	int i = 0;
702 
703 #define LOCKDEP_STATE(__STATE) 						\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708 
709 	usage[i] = '\0';
710 }
711 
712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714 	char str[KSYM_NAME_LEN];
715 	const char *name;
716 
717 	name = class->name;
718 	if (!name) {
719 		name = __get_key_name(class->key, str);
720 		printk(KERN_CONT "%s", name);
721 	} else {
722 		printk(KERN_CONT "%s", name);
723 		if (class->name_version > 1)
724 			printk(KERN_CONT "#%d", class->name_version);
725 		if (class->subclass)
726 			printk(KERN_CONT "/%d", class->subclass);
727 		if (hlock && class->print_fn)
728 			class->print_fn(hlock->instance);
729 	}
730 }
731 
732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734 	char usage[LOCK_USAGE_CHARS];
735 
736 	get_usage_chars(class, usage);
737 
738 	printk(KERN_CONT " (");
739 	__print_lock_name(hlock, class);
740 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
741 			class->wait_type_outer ?: class->wait_type_inner,
742 			class->wait_type_inner);
743 }
744 
745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747 	const char *name;
748 	char str[KSYM_NAME_LEN];
749 
750 	name = lock->name;
751 	if (!name)
752 		name = __get_key_name(lock->key->subkeys, str);
753 
754 	printk(KERN_CONT "%s", name);
755 }
756 
757 static void print_lock(struct held_lock *hlock)
758 {
759 	/*
760 	 * We can be called locklessly through debug_show_all_locks() so be
761 	 * extra careful, the hlock might have been released and cleared.
762 	 *
763 	 * If this indeed happens, lets pretend it does not hurt to continue
764 	 * to print the lock unless the hlock class_idx does not point to a
765 	 * registered class. The rationale here is: since we don't attempt
766 	 * to distinguish whether we are in this situation, if it just
767 	 * happened we can't count on class_idx to tell either.
768 	 */
769 	struct lock_class *lock = hlock_class(hlock);
770 
771 	if (!lock) {
772 		printk(KERN_CONT "<RELEASED>\n");
773 		return;
774 	}
775 
776 	printk(KERN_CONT "%px", hlock->instance);
777 	print_lock_name(hlock, lock);
778 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780 
781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783 	int i, depth = READ_ONCE(p->lockdep_depth);
784 
785 	if (!depth)
786 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787 	else
788 		printk("%d lock%s held by %s/%d:\n", depth,
789 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790 	/*
791 	 * It's not reliable to print a task's held locks if it's not sleeping
792 	 * and it's not the current task.
793 	 */
794 	if (p != current && task_is_running(p))
795 		return;
796 	for (i = 0; i < depth; i++) {
797 		printk(" #%d: ", i);
798 		print_lock(p->held_locks + i);
799 	}
800 }
801 
802 static void print_kernel_ident(void)
803 {
804 	printk("%s %.*s %s\n", init_utsname()->release,
805 		(int)strcspn(init_utsname()->version, " "),
806 		init_utsname()->version,
807 		print_tainted());
808 }
809 
810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813 	return class_filter(class);
814 #endif
815 	return 0;
816 }
817 
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
822 static int static_obj(const void *obj)
823 {
824 	unsigned long addr = (unsigned long) obj;
825 
826 	if (is_kernel_core_data(addr))
827 		return 1;
828 
829 	/*
830 	 * keys are allowed in the __ro_after_init section.
831 	 */
832 	if (is_kernel_rodata(addr))
833 		return 1;
834 
835 	/*
836 	 * in initdata section and used during bootup only?
837 	 * NOTE: On some platforms the initdata section is
838 	 * outside of the _stext ... _end range.
839 	 */
840 	if (system_state < SYSTEM_FREEING_INITMEM &&
841 		init_section_contains((void *)addr, 1))
842 		return 1;
843 
844 	/*
845 	 * in-kernel percpu var?
846 	 */
847 	if (is_kernel_percpu_address(addr))
848 		return 1;
849 
850 	/*
851 	 * module static or percpu var?
852 	 */
853 	return is_module_address(addr) || is_module_percpu_address(addr);
854 }
855 #endif
856 
857 /*
858  * To make lock name printouts unique, we calculate a unique
859  * class->name_version generation counter. The caller must hold the graph
860  * lock.
861  */
862 static int count_matching_names(struct lock_class *new_class)
863 {
864 	struct lock_class *class;
865 	int count = 0;
866 
867 	if (!new_class->name)
868 		return 0;
869 
870 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
871 		if (new_class->key - new_class->subclass == class->key)
872 			return class->name_version;
873 		if (class->name && !strcmp(class->name, new_class->name))
874 			count = max(count, class->name_version);
875 	}
876 
877 	return count + 1;
878 }
879 
880 /* used from NMI context -- must be lockless */
881 static noinstr struct lock_class *
882 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
883 {
884 	struct lockdep_subclass_key *key;
885 	struct hlist_head *hash_head;
886 	struct lock_class *class;
887 
888 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
889 		instrumentation_begin();
890 		debug_locks_off();
891 		printk(KERN_ERR
892 			"BUG: looking up invalid subclass: %u\n", subclass);
893 		printk(KERN_ERR
894 			"turning off the locking correctness validator.\n");
895 		dump_stack();
896 		instrumentation_end();
897 		return NULL;
898 	}
899 
900 	/*
901 	 * If it is not initialised then it has never been locked,
902 	 * so it won't be present in the hash table.
903 	 */
904 	if (unlikely(!lock->key))
905 		return NULL;
906 
907 	/*
908 	 * NOTE: the class-key must be unique. For dynamic locks, a static
909 	 * lock_class_key variable is passed in through the mutex_init()
910 	 * (or spin_lock_init()) call - which acts as the key. For static
911 	 * locks we use the lock object itself as the key.
912 	 */
913 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
914 			sizeof(struct lockdep_map));
915 
916 	key = lock->key->subkeys + subclass;
917 
918 	hash_head = classhashentry(key);
919 
920 	/*
921 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
922 	 */
923 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
924 		return NULL;
925 
926 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
927 		if (class->key == key) {
928 			/*
929 			 * Huh! same key, different name? Did someone trample
930 			 * on some memory? We're most confused.
931 			 */
932 			WARN_ONCE(class->name != lock->name &&
933 				  lock->key != &__lockdep_no_validate__,
934 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
935 				  lock->name, lock->key, class->name);
936 			return class;
937 		}
938 	}
939 
940 	return NULL;
941 }
942 
943 /*
944  * Static locks do not have their class-keys yet - for them the key is
945  * the lock object itself. If the lock is in the per cpu area, the
946  * canonical address of the lock (per cpu offset removed) is used.
947  */
948 static bool assign_lock_key(struct lockdep_map *lock)
949 {
950 	unsigned long can_addr, addr = (unsigned long)lock;
951 
952 #ifdef __KERNEL__
953 	/*
954 	 * lockdep_free_key_range() assumes that struct lock_class_key
955 	 * objects do not overlap. Since we use the address of lock
956 	 * objects as class key for static objects, check whether the
957 	 * size of lock_class_key objects does not exceed the size of
958 	 * the smallest lock object.
959 	 */
960 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
961 #endif
962 
963 	if (__is_kernel_percpu_address(addr, &can_addr))
964 		lock->key = (void *)can_addr;
965 	else if (__is_module_percpu_address(addr, &can_addr))
966 		lock->key = (void *)can_addr;
967 	else if (static_obj(lock))
968 		lock->key = (void *)lock;
969 	else {
970 		/* Debug-check: all keys must be persistent! */
971 		debug_locks_off();
972 		pr_err("INFO: trying to register non-static key.\n");
973 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
974 		pr_err("you didn't initialize this object before use?\n");
975 		pr_err("turning off the locking correctness validator.\n");
976 		dump_stack();
977 		return false;
978 	}
979 
980 	return true;
981 }
982 
983 #ifdef CONFIG_DEBUG_LOCKDEP
984 
985 /* Check whether element @e occurs in list @h */
986 static bool in_list(struct list_head *e, struct list_head *h)
987 {
988 	struct list_head *f;
989 
990 	list_for_each(f, h) {
991 		if (e == f)
992 			return true;
993 	}
994 
995 	return false;
996 }
997 
998 /*
999  * Check whether entry @e occurs in any of the locks_after or locks_before
1000  * lists.
1001  */
1002 static bool in_any_class_list(struct list_head *e)
1003 {
1004 	struct lock_class *class;
1005 	int i;
1006 
1007 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1008 		class = &lock_classes[i];
1009 		if (in_list(e, &class->locks_after) ||
1010 		    in_list(e, &class->locks_before))
1011 			return true;
1012 	}
1013 	return false;
1014 }
1015 
1016 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1017 {
1018 	struct lock_list *e;
1019 
1020 	list_for_each_entry(e, h, entry) {
1021 		if (e->links_to != c) {
1022 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1023 			       c->name ? : "(?)",
1024 			       (unsigned long)(e - list_entries),
1025 			       e->links_to && e->links_to->name ?
1026 			       e->links_to->name : "(?)",
1027 			       e->class && e->class->name ? e->class->name :
1028 			       "(?)");
1029 			return false;
1030 		}
1031 	}
1032 	return true;
1033 }
1034 
1035 #ifdef CONFIG_PROVE_LOCKING
1036 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1037 #endif
1038 
1039 static bool check_lock_chain_key(struct lock_chain *chain)
1040 {
1041 #ifdef CONFIG_PROVE_LOCKING
1042 	u64 chain_key = INITIAL_CHAIN_KEY;
1043 	int i;
1044 
1045 	for (i = chain->base; i < chain->base + chain->depth; i++)
1046 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1047 	/*
1048 	 * The 'unsigned long long' casts avoid that a compiler warning
1049 	 * is reported when building tools/lib/lockdep.
1050 	 */
1051 	if (chain->chain_key != chain_key) {
1052 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1053 		       (unsigned long long)(chain - lock_chains),
1054 		       (unsigned long long)chain->chain_key,
1055 		       (unsigned long long)chain_key);
1056 		return false;
1057 	}
1058 #endif
1059 	return true;
1060 }
1061 
1062 static bool in_any_zapped_class_list(struct lock_class *class)
1063 {
1064 	struct pending_free *pf;
1065 	int i;
1066 
1067 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1068 		if (in_list(&class->lock_entry, &pf->zapped))
1069 			return true;
1070 	}
1071 
1072 	return false;
1073 }
1074 
1075 static bool __check_data_structures(void)
1076 {
1077 	struct lock_class *class;
1078 	struct lock_chain *chain;
1079 	struct hlist_head *head;
1080 	struct lock_list *e;
1081 	int i;
1082 
1083 	/* Check whether all classes occur in a lock list. */
1084 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1085 		class = &lock_classes[i];
1086 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1087 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1088 		    !in_any_zapped_class_list(class)) {
1089 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1090 			       class, class->name ? : "(?)");
1091 			return false;
1092 		}
1093 	}
1094 
1095 	/* Check whether all classes have valid lock lists. */
1096 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097 		class = &lock_classes[i];
1098 		if (!class_lock_list_valid(class, &class->locks_before))
1099 			return false;
1100 		if (!class_lock_list_valid(class, &class->locks_after))
1101 			return false;
1102 	}
1103 
1104 	/* Check the chain_key of all lock chains. */
1105 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1106 		head = chainhash_table + i;
1107 		hlist_for_each_entry_rcu(chain, head, entry) {
1108 			if (!check_lock_chain_key(chain))
1109 				return false;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Check whether all list entries that are in use occur in a class
1115 	 * lock list.
1116 	 */
1117 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1118 		e = list_entries + i;
1119 		if (!in_any_class_list(&e->entry)) {
1120 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1121 			       (unsigned int)(e - list_entries),
1122 			       e->class->name ? : "(?)",
1123 			       e->links_to->name ? : "(?)");
1124 			return false;
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Check whether all list entries that are not in use do not occur in
1130 	 * a class lock list.
1131 	 */
1132 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1133 		e = list_entries + i;
1134 		if (in_any_class_list(&e->entry)) {
1135 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1136 			       (unsigned int)(e - list_entries),
1137 			       e->class && e->class->name ? e->class->name :
1138 			       "(?)",
1139 			       e->links_to && e->links_to->name ?
1140 			       e->links_to->name : "(?)");
1141 			return false;
1142 		}
1143 	}
1144 
1145 	return true;
1146 }
1147 
1148 int check_consistency = 0;
1149 module_param(check_consistency, int, 0644);
1150 
1151 static void check_data_structures(void)
1152 {
1153 	static bool once = false;
1154 
1155 	if (check_consistency && !once) {
1156 		if (!__check_data_structures()) {
1157 			once = true;
1158 			WARN_ON(once);
1159 		}
1160 	}
1161 }
1162 
1163 #else /* CONFIG_DEBUG_LOCKDEP */
1164 
1165 static inline void check_data_structures(void) { }
1166 
1167 #endif /* CONFIG_DEBUG_LOCKDEP */
1168 
1169 static void init_chain_block_buckets(void);
1170 
1171 /*
1172  * Initialize the lock_classes[] array elements, the free_lock_classes list
1173  * and also the delayed_free structure.
1174  */
1175 static void init_data_structures_once(void)
1176 {
1177 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1178 	int i;
1179 
1180 	if (likely(rcu_head_initialized))
1181 		return;
1182 
1183 	if (system_state >= SYSTEM_SCHEDULING) {
1184 		init_rcu_head(&delayed_free.rcu_head);
1185 		rcu_head_initialized = true;
1186 	}
1187 
1188 	if (ds_initialized)
1189 		return;
1190 
1191 	ds_initialized = true;
1192 
1193 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1194 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1195 
1196 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1197 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1198 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1199 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1200 	}
1201 	init_chain_block_buckets();
1202 }
1203 
1204 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1205 {
1206 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1207 
1208 	return lock_keys_hash + hash;
1209 }
1210 
1211 /* Register a dynamically allocated key. */
1212 void lockdep_register_key(struct lock_class_key *key)
1213 {
1214 	struct hlist_head *hash_head;
1215 	struct lock_class_key *k;
1216 	unsigned long flags;
1217 
1218 	if (WARN_ON_ONCE(static_obj(key)))
1219 		return;
1220 	hash_head = keyhashentry(key);
1221 
1222 	raw_local_irq_save(flags);
1223 	if (!graph_lock())
1224 		goto restore_irqs;
1225 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1226 		if (WARN_ON_ONCE(k == key))
1227 			goto out_unlock;
1228 	}
1229 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1230 out_unlock:
1231 	graph_unlock();
1232 restore_irqs:
1233 	raw_local_irq_restore(flags);
1234 }
1235 EXPORT_SYMBOL_GPL(lockdep_register_key);
1236 
1237 /* Check whether a key has been registered as a dynamic key. */
1238 static bool is_dynamic_key(const struct lock_class_key *key)
1239 {
1240 	struct hlist_head *hash_head;
1241 	struct lock_class_key *k;
1242 	bool found = false;
1243 
1244 	if (WARN_ON_ONCE(static_obj(key)))
1245 		return false;
1246 
1247 	/*
1248 	 * If lock debugging is disabled lock_keys_hash[] may contain
1249 	 * pointers to memory that has already been freed. Avoid triggering
1250 	 * a use-after-free in that case by returning early.
1251 	 */
1252 	if (!debug_locks)
1253 		return true;
1254 
1255 	hash_head = keyhashentry(key);
1256 
1257 	rcu_read_lock();
1258 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1259 		if (k == key) {
1260 			found = true;
1261 			break;
1262 		}
1263 	}
1264 	rcu_read_unlock();
1265 
1266 	return found;
1267 }
1268 
1269 /*
1270  * Register a lock's class in the hash-table, if the class is not present
1271  * yet. Otherwise we look it up. We cache the result in the lock object
1272  * itself, so actual lookup of the hash should be once per lock object.
1273  */
1274 static struct lock_class *
1275 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1276 {
1277 	struct lockdep_subclass_key *key;
1278 	struct hlist_head *hash_head;
1279 	struct lock_class *class;
1280 	int idx;
1281 
1282 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1283 
1284 	class = look_up_lock_class(lock, subclass);
1285 	if (likely(class))
1286 		goto out_set_class_cache;
1287 
1288 	if (!lock->key) {
1289 		if (!assign_lock_key(lock))
1290 			return NULL;
1291 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1292 		return NULL;
1293 	}
1294 
1295 	key = lock->key->subkeys + subclass;
1296 	hash_head = classhashentry(key);
1297 
1298 	if (!graph_lock()) {
1299 		return NULL;
1300 	}
1301 	/*
1302 	 * We have to do the hash-walk again, to avoid races
1303 	 * with another CPU:
1304 	 */
1305 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1306 		if (class->key == key)
1307 			goto out_unlock_set;
1308 	}
1309 
1310 	init_data_structures_once();
1311 
1312 	/* Allocate a new lock class and add it to the hash. */
1313 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1314 					 lock_entry);
1315 	if (!class) {
1316 		if (!debug_locks_off_graph_unlock()) {
1317 			return NULL;
1318 		}
1319 
1320 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1321 		dump_stack();
1322 		return NULL;
1323 	}
1324 	nr_lock_classes++;
1325 	__set_bit(class - lock_classes, lock_classes_in_use);
1326 	debug_atomic_inc(nr_unused_locks);
1327 	class->key = key;
1328 	class->name = lock->name;
1329 	class->subclass = subclass;
1330 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1331 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1332 	class->name_version = count_matching_names(class);
1333 	class->wait_type_inner = lock->wait_type_inner;
1334 	class->wait_type_outer = lock->wait_type_outer;
1335 	class->lock_type = lock->lock_type;
1336 	/*
1337 	 * We use RCU's safe list-add method to make
1338 	 * parallel walking of the hash-list safe:
1339 	 */
1340 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1341 	/*
1342 	 * Remove the class from the free list and add it to the global list
1343 	 * of classes.
1344 	 */
1345 	list_move_tail(&class->lock_entry, &all_lock_classes);
1346 	idx = class - lock_classes;
1347 	if (idx > max_lock_class_idx)
1348 		max_lock_class_idx = idx;
1349 
1350 	if (verbose(class)) {
1351 		graph_unlock();
1352 
1353 		printk("\nnew class %px: %s", class->key, class->name);
1354 		if (class->name_version > 1)
1355 			printk(KERN_CONT "#%d", class->name_version);
1356 		printk(KERN_CONT "\n");
1357 		dump_stack();
1358 
1359 		if (!graph_lock()) {
1360 			return NULL;
1361 		}
1362 	}
1363 out_unlock_set:
1364 	graph_unlock();
1365 
1366 out_set_class_cache:
1367 	if (!subclass || force)
1368 		lock->class_cache[0] = class;
1369 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1370 		lock->class_cache[subclass] = class;
1371 
1372 	/*
1373 	 * Hash collision, did we smoke some? We found a class with a matching
1374 	 * hash but the subclass -- which is hashed in -- didn't match.
1375 	 */
1376 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1377 		return NULL;
1378 
1379 	return class;
1380 }
1381 
1382 #ifdef CONFIG_PROVE_LOCKING
1383 /*
1384  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1385  * with NULL on failure)
1386  */
1387 static struct lock_list *alloc_list_entry(void)
1388 {
1389 	int idx = find_first_zero_bit(list_entries_in_use,
1390 				      ARRAY_SIZE(list_entries));
1391 
1392 	if (idx >= ARRAY_SIZE(list_entries)) {
1393 		if (!debug_locks_off_graph_unlock())
1394 			return NULL;
1395 
1396 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1397 		dump_stack();
1398 		return NULL;
1399 	}
1400 	nr_list_entries++;
1401 	__set_bit(idx, list_entries_in_use);
1402 	return list_entries + idx;
1403 }
1404 
1405 /*
1406  * Add a new dependency to the head of the list:
1407  */
1408 static int add_lock_to_list(struct lock_class *this,
1409 			    struct lock_class *links_to, struct list_head *head,
1410 			    u16 distance, u8 dep,
1411 			    const struct lock_trace *trace)
1412 {
1413 	struct lock_list *entry;
1414 	/*
1415 	 * Lock not present yet - get a new dependency struct and
1416 	 * add it to the list:
1417 	 */
1418 	entry = alloc_list_entry();
1419 	if (!entry)
1420 		return 0;
1421 
1422 	entry->class = this;
1423 	entry->links_to = links_to;
1424 	entry->dep = dep;
1425 	entry->distance = distance;
1426 	entry->trace = trace;
1427 	/*
1428 	 * Both allocation and removal are done under the graph lock; but
1429 	 * iteration is under RCU-sched; see look_up_lock_class() and
1430 	 * lockdep_free_key_range().
1431 	 */
1432 	list_add_tail_rcu(&entry->entry, head);
1433 
1434 	return 1;
1435 }
1436 
1437 /*
1438  * For good efficiency of modular, we use power of 2
1439  */
1440 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1441 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1442 
1443 /*
1444  * The circular_queue and helpers are used to implement graph
1445  * breadth-first search (BFS) algorithm, by which we can determine
1446  * whether there is a path from a lock to another. In deadlock checks,
1447  * a path from the next lock to be acquired to a previous held lock
1448  * indicates that adding the <prev> -> <next> lock dependency will
1449  * produce a circle in the graph. Breadth-first search instead of
1450  * depth-first search is used in order to find the shortest (circular)
1451  * path.
1452  */
1453 struct circular_queue {
1454 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1455 	unsigned int  front, rear;
1456 };
1457 
1458 static struct circular_queue lock_cq;
1459 
1460 unsigned int max_bfs_queue_depth;
1461 
1462 static unsigned int lockdep_dependency_gen_id;
1463 
1464 static inline void __cq_init(struct circular_queue *cq)
1465 {
1466 	cq->front = cq->rear = 0;
1467 	lockdep_dependency_gen_id++;
1468 }
1469 
1470 static inline int __cq_empty(struct circular_queue *cq)
1471 {
1472 	return (cq->front == cq->rear);
1473 }
1474 
1475 static inline int __cq_full(struct circular_queue *cq)
1476 {
1477 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1478 }
1479 
1480 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1481 {
1482 	if (__cq_full(cq))
1483 		return -1;
1484 
1485 	cq->element[cq->rear] = elem;
1486 	cq->rear = (cq->rear + 1) & CQ_MASK;
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Dequeue an element from the circular_queue, return a lock_list if
1492  * the queue is not empty, or NULL if otherwise.
1493  */
1494 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1495 {
1496 	struct lock_list * lock;
1497 
1498 	if (__cq_empty(cq))
1499 		return NULL;
1500 
1501 	lock = cq->element[cq->front];
1502 	cq->front = (cq->front + 1) & CQ_MASK;
1503 
1504 	return lock;
1505 }
1506 
1507 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1508 {
1509 	return (cq->rear - cq->front) & CQ_MASK;
1510 }
1511 
1512 static inline void mark_lock_accessed(struct lock_list *lock)
1513 {
1514 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1515 }
1516 
1517 static inline void visit_lock_entry(struct lock_list *lock,
1518 				    struct lock_list *parent)
1519 {
1520 	lock->parent = parent;
1521 }
1522 
1523 static inline unsigned long lock_accessed(struct lock_list *lock)
1524 {
1525 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1526 }
1527 
1528 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1529 {
1530 	return child->parent;
1531 }
1532 
1533 static inline int get_lock_depth(struct lock_list *child)
1534 {
1535 	int depth = 0;
1536 	struct lock_list *parent;
1537 
1538 	while ((parent = get_lock_parent(child))) {
1539 		child = parent;
1540 		depth++;
1541 	}
1542 	return depth;
1543 }
1544 
1545 /*
1546  * Return the forward or backward dependency list.
1547  *
1548  * @lock:   the lock_list to get its class's dependency list
1549  * @offset: the offset to struct lock_class to determine whether it is
1550  *          locks_after or locks_before
1551  */
1552 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1553 {
1554 	void *lock_class = lock->class;
1555 
1556 	return lock_class + offset;
1557 }
1558 /*
1559  * Return values of a bfs search:
1560  *
1561  * BFS_E* indicates an error
1562  * BFS_R* indicates a result (match or not)
1563  *
1564  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1565  *
1566  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1567  *
1568  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1569  *             *@target_entry.
1570  *
1571  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1572  *               _unchanged_.
1573  */
1574 enum bfs_result {
1575 	BFS_EINVALIDNODE = -2,
1576 	BFS_EQUEUEFULL = -1,
1577 	BFS_RMATCH = 0,
1578 	BFS_RNOMATCH = 1,
1579 };
1580 
1581 /*
1582  * bfs_result < 0 means error
1583  */
1584 static inline bool bfs_error(enum bfs_result res)
1585 {
1586 	return res < 0;
1587 }
1588 
1589 /*
1590  * DEP_*_BIT in lock_list::dep
1591  *
1592  * For dependency @prev -> @next:
1593  *
1594  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1595  *       (->read == 2)
1596  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1597  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1598  *   EN: @prev is exclusive locker and @next is non-recursive locker
1599  *
1600  * Note that we define the value of DEP_*_BITs so that:
1601  *   bit0 is prev->read == 0
1602  *   bit1 is next->read != 2
1603  */
1604 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1605 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1606 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1607 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1608 
1609 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1610 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1611 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1612 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1613 
1614 static inline unsigned int
1615 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1616 {
1617 	return (prev->read == 0) + ((next->read != 2) << 1);
1618 }
1619 
1620 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1621 {
1622 	return 1U << __calc_dep_bit(prev, next);
1623 }
1624 
1625 /*
1626  * calculate the dep_bit for backwards edges. We care about whether @prev is
1627  * shared and whether @next is recursive.
1628  */
1629 static inline unsigned int
1630 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1631 {
1632 	return (next->read != 2) + ((prev->read == 0) << 1);
1633 }
1634 
1635 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1636 {
1637 	return 1U << __calc_dep_bitb(prev, next);
1638 }
1639 
1640 /*
1641  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1642  * search.
1643  */
1644 static inline void __bfs_init_root(struct lock_list *lock,
1645 				   struct lock_class *class)
1646 {
1647 	lock->class = class;
1648 	lock->parent = NULL;
1649 	lock->only_xr = 0;
1650 }
1651 
1652 /*
1653  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1654  * root for a BFS search.
1655  *
1656  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1657  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1658  * and -(S*)->.
1659  */
1660 static inline void bfs_init_root(struct lock_list *lock,
1661 				 struct held_lock *hlock)
1662 {
1663 	__bfs_init_root(lock, hlock_class(hlock));
1664 	lock->only_xr = (hlock->read == 2);
1665 }
1666 
1667 /*
1668  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1669  *
1670  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1671  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1672  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1673  */
1674 static inline void bfs_init_rootb(struct lock_list *lock,
1675 				  struct held_lock *hlock)
1676 {
1677 	__bfs_init_root(lock, hlock_class(hlock));
1678 	lock->only_xr = (hlock->read != 0);
1679 }
1680 
1681 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1682 {
1683 	if (!lock || !lock->parent)
1684 		return NULL;
1685 
1686 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1687 				     &lock->entry, struct lock_list, entry);
1688 }
1689 
1690 /*
1691  * Breadth-First Search to find a strong path in the dependency graph.
1692  *
1693  * @source_entry: the source of the path we are searching for.
1694  * @data: data used for the second parameter of @match function
1695  * @match: match function for the search
1696  * @target_entry: pointer to the target of a matched path
1697  * @offset: the offset to struct lock_class to determine whether it is
1698  *          locks_after or locks_before
1699  *
1700  * We may have multiple edges (considering different kinds of dependencies,
1701  * e.g. ER and SN) between two nodes in the dependency graph. But
1702  * only the strong dependency path in the graph is relevant to deadlocks. A
1703  * strong dependency path is a dependency path that doesn't have two adjacent
1704  * dependencies as -(*R)-> -(S*)->, please see:
1705  *
1706  *         Documentation/locking/lockdep-design.rst
1707  *
1708  * for more explanation of the definition of strong dependency paths
1709  *
1710  * In __bfs(), we only traverse in the strong dependency path:
1711  *
1712  *     In lock_list::only_xr, we record whether the previous dependency only
1713  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1714  *     filter out any -(S*)-> in the current dependency and after that, the
1715  *     ->only_xr is set according to whether we only have -(*R)-> left.
1716  */
1717 static enum bfs_result __bfs(struct lock_list *source_entry,
1718 			     void *data,
1719 			     bool (*match)(struct lock_list *entry, void *data),
1720 			     bool (*skip)(struct lock_list *entry, void *data),
1721 			     struct lock_list **target_entry,
1722 			     int offset)
1723 {
1724 	struct circular_queue *cq = &lock_cq;
1725 	struct lock_list *lock = NULL;
1726 	struct lock_list *entry;
1727 	struct list_head *head;
1728 	unsigned int cq_depth;
1729 	bool first;
1730 
1731 	lockdep_assert_locked();
1732 
1733 	__cq_init(cq);
1734 	__cq_enqueue(cq, source_entry);
1735 
1736 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1737 		if (!lock->class)
1738 			return BFS_EINVALIDNODE;
1739 
1740 		/*
1741 		 * Step 1: check whether we already finish on this one.
1742 		 *
1743 		 * If we have visited all the dependencies from this @lock to
1744 		 * others (iow, if we have visited all lock_list entries in
1745 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1746 		 * and visit all the dependencies in the list and mark this
1747 		 * list accessed.
1748 		 */
1749 		if (lock_accessed(lock))
1750 			continue;
1751 		else
1752 			mark_lock_accessed(lock);
1753 
1754 		/*
1755 		 * Step 2: check whether prev dependency and this form a strong
1756 		 *         dependency path.
1757 		 */
1758 		if (lock->parent) { /* Parent exists, check prev dependency */
1759 			u8 dep = lock->dep;
1760 			bool prev_only_xr = lock->parent->only_xr;
1761 
1762 			/*
1763 			 * Mask out all -(S*)-> if we only have *R in previous
1764 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1765 			 * dependency.
1766 			 */
1767 			if (prev_only_xr)
1768 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1769 
1770 			/* If nothing left, we skip */
1771 			if (!dep)
1772 				continue;
1773 
1774 			/* If there are only -(*R)-> left, set that for the next step */
1775 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1776 		}
1777 
1778 		/*
1779 		 * Step 3: we haven't visited this and there is a strong
1780 		 *         dependency path to this, so check with @match.
1781 		 *         If @skip is provide and returns true, we skip this
1782 		 *         lock (and any path this lock is in).
1783 		 */
1784 		if (skip && skip(lock, data))
1785 			continue;
1786 
1787 		if (match(lock, data)) {
1788 			*target_entry = lock;
1789 			return BFS_RMATCH;
1790 		}
1791 
1792 		/*
1793 		 * Step 4: if not match, expand the path by adding the
1794 		 *         forward or backwards dependencies in the search
1795 		 *
1796 		 */
1797 		first = true;
1798 		head = get_dep_list(lock, offset);
1799 		list_for_each_entry_rcu(entry, head, entry) {
1800 			visit_lock_entry(entry, lock);
1801 
1802 			/*
1803 			 * Note we only enqueue the first of the list into the
1804 			 * queue, because we can always find a sibling
1805 			 * dependency from one (see __bfs_next()), as a result
1806 			 * the space of queue is saved.
1807 			 */
1808 			if (!first)
1809 				continue;
1810 
1811 			first = false;
1812 
1813 			if (__cq_enqueue(cq, entry))
1814 				return BFS_EQUEUEFULL;
1815 
1816 			cq_depth = __cq_get_elem_count(cq);
1817 			if (max_bfs_queue_depth < cq_depth)
1818 				max_bfs_queue_depth = cq_depth;
1819 		}
1820 	}
1821 
1822 	return BFS_RNOMATCH;
1823 }
1824 
1825 static inline enum bfs_result
1826 __bfs_forwards(struct lock_list *src_entry,
1827 	       void *data,
1828 	       bool (*match)(struct lock_list *entry, void *data),
1829 	       bool (*skip)(struct lock_list *entry, void *data),
1830 	       struct lock_list **target_entry)
1831 {
1832 	return __bfs(src_entry, data, match, skip, target_entry,
1833 		     offsetof(struct lock_class, locks_after));
1834 
1835 }
1836 
1837 static inline enum bfs_result
1838 __bfs_backwards(struct lock_list *src_entry,
1839 		void *data,
1840 		bool (*match)(struct lock_list *entry, void *data),
1841 	       bool (*skip)(struct lock_list *entry, void *data),
1842 		struct lock_list **target_entry)
1843 {
1844 	return __bfs(src_entry, data, match, skip, target_entry,
1845 		     offsetof(struct lock_class, locks_before));
1846 
1847 }
1848 
1849 static void print_lock_trace(const struct lock_trace *trace,
1850 			     unsigned int spaces)
1851 {
1852 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1853 }
1854 
1855 /*
1856  * Print a dependency chain entry (this is only done when a deadlock
1857  * has been detected):
1858  */
1859 static noinline void
1860 print_circular_bug_entry(struct lock_list *target, int depth)
1861 {
1862 	if (debug_locks_silent)
1863 		return;
1864 	printk("\n-> #%u", depth);
1865 	print_lock_name(NULL, target->class);
1866 	printk(KERN_CONT ":\n");
1867 	print_lock_trace(target->trace, 6);
1868 }
1869 
1870 static void
1871 print_circular_lock_scenario(struct held_lock *src,
1872 			     struct held_lock *tgt,
1873 			     struct lock_list *prt)
1874 {
1875 	struct lock_class *source = hlock_class(src);
1876 	struct lock_class *target = hlock_class(tgt);
1877 	struct lock_class *parent = prt->class;
1878 	int src_read = src->read;
1879 	int tgt_read = tgt->read;
1880 
1881 	/*
1882 	 * A direct locking problem where unsafe_class lock is taken
1883 	 * directly by safe_class lock, then all we need to show
1884 	 * is the deadlock scenario, as it is obvious that the
1885 	 * unsafe lock is taken under the safe lock.
1886 	 *
1887 	 * But if there is a chain instead, where the safe lock takes
1888 	 * an intermediate lock (middle_class) where this lock is
1889 	 * not the same as the safe lock, then the lock chain is
1890 	 * used to describe the problem. Otherwise we would need
1891 	 * to show a different CPU case for each link in the chain
1892 	 * from the safe_class lock to the unsafe_class lock.
1893 	 */
1894 	if (parent != source) {
1895 		printk("Chain exists of:\n  ");
1896 		__print_lock_name(src, source);
1897 		printk(KERN_CONT " --> ");
1898 		__print_lock_name(NULL, parent);
1899 		printk(KERN_CONT " --> ");
1900 		__print_lock_name(tgt, target);
1901 		printk(KERN_CONT "\n\n");
1902 	}
1903 
1904 	printk(" Possible unsafe locking scenario:\n\n");
1905 	printk("       CPU0                    CPU1\n");
1906 	printk("       ----                    ----\n");
1907 	if (tgt_read != 0)
1908 		printk("  rlock(");
1909 	else
1910 		printk("  lock(");
1911 	__print_lock_name(tgt, target);
1912 	printk(KERN_CONT ");\n");
1913 	printk("                               lock(");
1914 	__print_lock_name(NULL, parent);
1915 	printk(KERN_CONT ");\n");
1916 	printk("                               lock(");
1917 	__print_lock_name(tgt, target);
1918 	printk(KERN_CONT ");\n");
1919 	if (src_read != 0)
1920 		printk("  rlock(");
1921 	else if (src->sync)
1922 		printk("  sync(");
1923 	else
1924 		printk("  lock(");
1925 	__print_lock_name(src, source);
1926 	printk(KERN_CONT ");\n");
1927 	printk("\n *** DEADLOCK ***\n\n");
1928 }
1929 
1930 /*
1931  * When a circular dependency is detected, print the
1932  * header first:
1933  */
1934 static noinline void
1935 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1936 			struct held_lock *check_src,
1937 			struct held_lock *check_tgt)
1938 {
1939 	struct task_struct *curr = current;
1940 
1941 	if (debug_locks_silent)
1942 		return;
1943 
1944 	pr_warn("\n");
1945 	pr_warn("======================================================\n");
1946 	pr_warn("WARNING: possible circular locking dependency detected\n");
1947 	print_kernel_ident();
1948 	pr_warn("------------------------------------------------------\n");
1949 	pr_warn("%s/%d is trying to acquire lock:\n",
1950 		curr->comm, task_pid_nr(curr));
1951 	print_lock(check_src);
1952 
1953 	pr_warn("\nbut task is already holding lock:\n");
1954 
1955 	print_lock(check_tgt);
1956 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1957 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1958 
1959 	print_circular_bug_entry(entry, depth);
1960 }
1961 
1962 /*
1963  * We are about to add A -> B into the dependency graph, and in __bfs() a
1964  * strong dependency path A -> .. -> B is found: hlock_class equals
1965  * entry->class.
1966  *
1967  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1968  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1969  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1970  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1971  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1972  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1973  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1974  *
1975  * We need to make sure both the start and the end of A -> .. -> B is not
1976  * weaker than A -> B. For the start part, please see the comment in
1977  * check_redundant(). For the end part, we need:
1978  *
1979  * Either
1980  *
1981  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1982  *
1983  * or
1984  *
1985  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1986  *
1987  */
1988 static inline bool hlock_equal(struct lock_list *entry, void *data)
1989 {
1990 	struct held_lock *hlock = (struct held_lock *)data;
1991 
1992 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1993 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1994 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1995 }
1996 
1997 /*
1998  * We are about to add B -> A into the dependency graph, and in __bfs() a
1999  * strong dependency path A -> .. -> B is found: hlock_class equals
2000  * entry->class.
2001  *
2002  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2003  * dependency cycle, that means:
2004  *
2005  * Either
2006  *
2007  *     a) B -> A is -(E*)->
2008  *
2009  * or
2010  *
2011  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2012  *
2013  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2014  */
2015 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2016 {
2017 	struct held_lock *hlock = (struct held_lock *)data;
2018 
2019 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2020 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2021 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2022 }
2023 
2024 static noinline void print_circular_bug(struct lock_list *this,
2025 				struct lock_list *target,
2026 				struct held_lock *check_src,
2027 				struct held_lock *check_tgt)
2028 {
2029 	struct task_struct *curr = current;
2030 	struct lock_list *parent;
2031 	struct lock_list *first_parent;
2032 	int depth;
2033 
2034 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2035 		return;
2036 
2037 	this->trace = save_trace();
2038 	if (!this->trace)
2039 		return;
2040 
2041 	depth = get_lock_depth(target);
2042 
2043 	print_circular_bug_header(target, depth, check_src, check_tgt);
2044 
2045 	parent = get_lock_parent(target);
2046 	first_parent = parent;
2047 
2048 	while (parent) {
2049 		print_circular_bug_entry(parent, --depth);
2050 		parent = get_lock_parent(parent);
2051 	}
2052 
2053 	printk("\nother info that might help us debug this:\n\n");
2054 	print_circular_lock_scenario(check_src, check_tgt,
2055 				     first_parent);
2056 
2057 	lockdep_print_held_locks(curr);
2058 
2059 	printk("\nstack backtrace:\n");
2060 	dump_stack();
2061 }
2062 
2063 static noinline void print_bfs_bug(int ret)
2064 {
2065 	if (!debug_locks_off_graph_unlock())
2066 		return;
2067 
2068 	/*
2069 	 * Breadth-first-search failed, graph got corrupted?
2070 	 */
2071 	WARN(1, "lockdep bfs error:%d\n", ret);
2072 }
2073 
2074 static bool noop_count(struct lock_list *entry, void *data)
2075 {
2076 	(*(unsigned long *)data)++;
2077 	return false;
2078 }
2079 
2080 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2081 {
2082 	unsigned long  count = 0;
2083 	struct lock_list *target_entry;
2084 
2085 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2086 
2087 	return count;
2088 }
2089 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2090 {
2091 	unsigned long ret, flags;
2092 	struct lock_list this;
2093 
2094 	__bfs_init_root(&this, class);
2095 
2096 	raw_local_irq_save(flags);
2097 	lockdep_lock();
2098 	ret = __lockdep_count_forward_deps(&this);
2099 	lockdep_unlock();
2100 	raw_local_irq_restore(flags);
2101 
2102 	return ret;
2103 }
2104 
2105 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2106 {
2107 	unsigned long  count = 0;
2108 	struct lock_list *target_entry;
2109 
2110 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2111 
2112 	return count;
2113 }
2114 
2115 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2116 {
2117 	unsigned long ret, flags;
2118 	struct lock_list this;
2119 
2120 	__bfs_init_root(&this, class);
2121 
2122 	raw_local_irq_save(flags);
2123 	lockdep_lock();
2124 	ret = __lockdep_count_backward_deps(&this);
2125 	lockdep_unlock();
2126 	raw_local_irq_restore(flags);
2127 
2128 	return ret;
2129 }
2130 
2131 /*
2132  * Check that the dependency graph starting at <src> can lead to
2133  * <target> or not.
2134  */
2135 static noinline enum bfs_result
2136 check_path(struct held_lock *target, struct lock_list *src_entry,
2137 	   bool (*match)(struct lock_list *entry, void *data),
2138 	   bool (*skip)(struct lock_list *entry, void *data),
2139 	   struct lock_list **target_entry)
2140 {
2141 	enum bfs_result ret;
2142 
2143 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2144 
2145 	if (unlikely(bfs_error(ret)))
2146 		print_bfs_bug(ret);
2147 
2148 	return ret;
2149 }
2150 
2151 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2152 
2153 /*
2154  * Prove that the dependency graph starting at <src> can not
2155  * lead to <target>. If it can, there is a circle when adding
2156  * <target> -> <src> dependency.
2157  *
2158  * Print an error and return BFS_RMATCH if it does.
2159  */
2160 static noinline enum bfs_result
2161 check_noncircular(struct held_lock *src, struct held_lock *target,
2162 		  struct lock_trace **const trace)
2163 {
2164 	enum bfs_result ret;
2165 	struct lock_list *target_entry;
2166 	struct lock_list src_entry;
2167 
2168 	bfs_init_root(&src_entry, src);
2169 
2170 	debug_atomic_inc(nr_cyclic_checks);
2171 
2172 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2173 
2174 	if (unlikely(ret == BFS_RMATCH)) {
2175 		if (!*trace) {
2176 			/*
2177 			 * If save_trace fails here, the printing might
2178 			 * trigger a WARN but because of the !nr_entries it
2179 			 * should not do bad things.
2180 			 */
2181 			*trace = save_trace();
2182 		}
2183 
2184 		if (src->class_idx == target->class_idx)
2185 			print_deadlock_bug(current, src, target);
2186 		else
2187 			print_circular_bug(&src_entry, target_entry, src, target);
2188 	}
2189 
2190 	return ret;
2191 }
2192 
2193 #ifdef CONFIG_TRACE_IRQFLAGS
2194 
2195 /*
2196  * Forwards and backwards subgraph searching, for the purposes of
2197  * proving that two subgraphs can be connected by a new dependency
2198  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2199  *
2200  * A irq safe->unsafe deadlock happens with the following conditions:
2201  *
2202  * 1) We have a strong dependency path A -> ... -> B
2203  *
2204  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2205  *    irq can create a new dependency B -> A (consider the case that a holder
2206  *    of B gets interrupted by an irq whose handler will try to acquire A).
2207  *
2208  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2209  *    strong circle:
2210  *
2211  *      For the usage bits of B:
2212  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2213  *           ENABLED_IRQ usage suffices.
2214  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2215  *           ENABLED_IRQ_*_READ usage suffices.
2216  *
2217  *      For the usage bits of A:
2218  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2219  *           USED_IN_IRQ usage suffices.
2220  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2221  *           USED_IN_IRQ_*_READ usage suffices.
2222  */
2223 
2224 /*
2225  * There is a strong dependency path in the dependency graph: A -> B, and now
2226  * we need to decide which usage bit of A should be accumulated to detect
2227  * safe->unsafe bugs.
2228  *
2229  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2230  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2231  *
2232  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2233  * path, any usage of A should be considered. Otherwise, we should only
2234  * consider _READ usage.
2235  */
2236 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2237 {
2238 	if (!entry->only_xr)
2239 		*(unsigned long *)mask |= entry->class->usage_mask;
2240 	else /* Mask out _READ usage bits */
2241 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2242 
2243 	return false;
2244 }
2245 
2246 /*
2247  * There is a strong dependency path in the dependency graph: A -> B, and now
2248  * we need to decide which usage bit of B conflicts with the usage bits of A,
2249  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2250  *
2251  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2252  * path, any usage of B should be considered. Otherwise, we should only
2253  * consider _READ usage.
2254  */
2255 static inline bool usage_match(struct lock_list *entry, void *mask)
2256 {
2257 	if (!entry->only_xr)
2258 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2259 	else /* Mask out _READ usage bits */
2260 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2261 }
2262 
2263 static inline bool usage_skip(struct lock_list *entry, void *mask)
2264 {
2265 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2266 		return false;
2267 
2268 	/*
2269 	 * Skip local_lock() for irq inversion detection.
2270 	 *
2271 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2272 	 * dependency.
2273 	 *
2274 	 * For RT, an irq inversion happens when we have lock A and B, and on
2275 	 * some CPU we can have:
2276 	 *
2277 	 *	lock(A);
2278 	 *	<interrupted>
2279 	 *	  lock(B);
2280 	 *
2281 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2282 	 *
2283 	 * Now we prove local_lock() cannot exist in that dependency. First we
2284 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2285 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2286 	 * wait context check will complain. And since B is not a sleep lock,
2287 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2288 	 * local_lock() is 3, which is greater than 2, therefore there is no
2289 	 * way the local_lock() exists in the dependency B -> ... -> A.
2290 	 *
2291 	 * As a result, we will skip local_lock(), when we search for irq
2292 	 * inversion bugs.
2293 	 */
2294 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2295 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2296 		return false;
2297 
2298 	/*
2299 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2300 	 * a lock and only used to override the wait_type.
2301 	 */
2302 
2303 	return true;
2304 }
2305 
2306 /*
2307  * Find a node in the forwards-direction dependency sub-graph starting
2308  * at @root->class that matches @bit.
2309  *
2310  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2311  * into *@target_entry.
2312  */
2313 static enum bfs_result
2314 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2315 			struct lock_list **target_entry)
2316 {
2317 	enum bfs_result result;
2318 
2319 	debug_atomic_inc(nr_find_usage_forwards_checks);
2320 
2321 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322 
2323 	return result;
2324 }
2325 
2326 /*
2327  * Find a node in the backwards-direction dependency sub-graph starting
2328  * at @root->class that matches @bit.
2329  */
2330 static enum bfs_result
2331 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2332 			struct lock_list **target_entry)
2333 {
2334 	enum bfs_result result;
2335 
2336 	debug_atomic_inc(nr_find_usage_backwards_checks);
2337 
2338 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2339 
2340 	return result;
2341 }
2342 
2343 static void print_lock_class_header(struct lock_class *class, int depth)
2344 {
2345 	int bit;
2346 
2347 	printk("%*s->", depth, "");
2348 	print_lock_name(NULL, class);
2349 #ifdef CONFIG_DEBUG_LOCKDEP
2350 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2351 #endif
2352 	printk(KERN_CONT " {\n");
2353 
2354 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2355 		if (class->usage_mask & (1 << bit)) {
2356 			int len = depth;
2357 
2358 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2359 			len += printk(KERN_CONT " at:\n");
2360 			print_lock_trace(class->usage_traces[bit], len);
2361 		}
2362 	}
2363 	printk("%*s }\n", depth, "");
2364 
2365 	printk("%*s ... key      at: [<%px>] %pS\n",
2366 		depth, "", class->key, class->key);
2367 }
2368 
2369 /*
2370  * Dependency path printing:
2371  *
2372  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2373  * printing out each lock in the dependency path will help on understanding how
2374  * the deadlock could happen. Here are some details about dependency path
2375  * printing:
2376  *
2377  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2378  * 	for a lock dependency A -> B, there are two lock_lists:
2379  *
2380  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2381  * 		->links_to is A. In this case, we can say the lock_list is
2382  * 		"A -> B" (forwards case).
2383  *
2384  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2385  * 		and ->links_to is B. In this case, we can say the lock_list is
2386  * 		"B <- A" (bacwards case).
2387  *
2388  * 	The ->trace of both a) and b) point to the call trace where B was
2389  * 	acquired with A held.
2390  *
2391  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2392  * 	represent a certain lock dependency, it only provides an initial entry
2393  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2394  * 	->class is A, as a result BFS will search all dependencies starting with
2395  * 	A, e.g. A -> B or A -> C.
2396  *
2397  * 	The notation of a forwards helper lock_list is like "-> A", which means
2398  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2399  * 	or A -> C.
2400  *
2401  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2402  * 	we should search the backwards dependencies ending with "B", e.g.
2403  * 	B <- A or B <- C.
2404  */
2405 
2406 /*
2407  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2408  *
2409  * We have a lock dependency path as follow:
2410  *
2411  *    @root                                                                 @leaf
2412  *      |                                                                     |
2413  *      V                                                                     V
2414  *	          ->parent                                   ->parent
2415  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2416  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2417  *
2418  * , so it's natural that we start from @leaf and print every ->class and
2419  * ->trace until we reach the @root.
2420  */
2421 static void __used
2422 print_shortest_lock_dependencies(struct lock_list *leaf,
2423 				 struct lock_list *root)
2424 {
2425 	struct lock_list *entry = leaf;
2426 	int depth;
2427 
2428 	/*compute depth from generated tree by BFS*/
2429 	depth = get_lock_depth(leaf);
2430 
2431 	do {
2432 		print_lock_class_header(entry->class, depth);
2433 		printk("%*s ... acquired at:\n", depth, "");
2434 		print_lock_trace(entry->trace, 2);
2435 		printk("\n");
2436 
2437 		if (depth == 0 && (entry != root)) {
2438 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2439 			break;
2440 		}
2441 
2442 		entry = get_lock_parent(entry);
2443 		depth--;
2444 	} while (entry && (depth >= 0));
2445 }
2446 
2447 /*
2448  * printk the shortest lock dependencies from @leaf to @root.
2449  *
2450  * We have a lock dependency path (from a backwards search) as follow:
2451  *
2452  *    @leaf                                                                 @root
2453  *      |                                                                     |
2454  *      V                                                                     V
2455  *	          ->parent                                   ->parent
2456  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2457  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2458  *
2459  * , so when we iterate from @leaf to @root, we actually print the lock
2460  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2461  *
2462  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2463  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2464  * trace of L1 in the dependency path, which is alright, because most of the
2465  * time we can figure out where L1 is held from the call trace of L2.
2466  */
2467 static void __used
2468 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2469 					   struct lock_list *root)
2470 {
2471 	struct lock_list *entry = leaf;
2472 	const struct lock_trace *trace = NULL;
2473 	int depth;
2474 
2475 	/*compute depth from generated tree by BFS*/
2476 	depth = get_lock_depth(leaf);
2477 
2478 	do {
2479 		print_lock_class_header(entry->class, depth);
2480 		if (trace) {
2481 			printk("%*s ... acquired at:\n", depth, "");
2482 			print_lock_trace(trace, 2);
2483 			printk("\n");
2484 		}
2485 
2486 		/*
2487 		 * Record the pointer to the trace for the next lock_list
2488 		 * entry, see the comments for the function.
2489 		 */
2490 		trace = entry->trace;
2491 
2492 		if (depth == 0 && (entry != root)) {
2493 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2494 			break;
2495 		}
2496 
2497 		entry = get_lock_parent(entry);
2498 		depth--;
2499 	} while (entry && (depth >= 0));
2500 }
2501 
2502 static void
2503 print_irq_lock_scenario(struct lock_list *safe_entry,
2504 			struct lock_list *unsafe_entry,
2505 			struct lock_class *prev_class,
2506 			struct lock_class *next_class)
2507 {
2508 	struct lock_class *safe_class = safe_entry->class;
2509 	struct lock_class *unsafe_class = unsafe_entry->class;
2510 	struct lock_class *middle_class = prev_class;
2511 
2512 	if (middle_class == safe_class)
2513 		middle_class = next_class;
2514 
2515 	/*
2516 	 * A direct locking problem where unsafe_class lock is taken
2517 	 * directly by safe_class lock, then all we need to show
2518 	 * is the deadlock scenario, as it is obvious that the
2519 	 * unsafe lock is taken under the safe lock.
2520 	 *
2521 	 * But if there is a chain instead, where the safe lock takes
2522 	 * an intermediate lock (middle_class) where this lock is
2523 	 * not the same as the safe lock, then the lock chain is
2524 	 * used to describe the problem. Otherwise we would need
2525 	 * to show a different CPU case for each link in the chain
2526 	 * from the safe_class lock to the unsafe_class lock.
2527 	 */
2528 	if (middle_class != unsafe_class) {
2529 		printk("Chain exists of:\n  ");
2530 		__print_lock_name(NULL, safe_class);
2531 		printk(KERN_CONT " --> ");
2532 		__print_lock_name(NULL, middle_class);
2533 		printk(KERN_CONT " --> ");
2534 		__print_lock_name(NULL, unsafe_class);
2535 		printk(KERN_CONT "\n\n");
2536 	}
2537 
2538 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2539 	printk("       CPU0                    CPU1\n");
2540 	printk("       ----                    ----\n");
2541 	printk("  lock(");
2542 	__print_lock_name(NULL, unsafe_class);
2543 	printk(KERN_CONT ");\n");
2544 	printk("                               local_irq_disable();\n");
2545 	printk("                               lock(");
2546 	__print_lock_name(NULL, safe_class);
2547 	printk(KERN_CONT ");\n");
2548 	printk("                               lock(");
2549 	__print_lock_name(NULL, middle_class);
2550 	printk(KERN_CONT ");\n");
2551 	printk("  <Interrupt>\n");
2552 	printk("    lock(");
2553 	__print_lock_name(NULL, safe_class);
2554 	printk(KERN_CONT ");\n");
2555 	printk("\n *** DEADLOCK ***\n\n");
2556 }
2557 
2558 static void
2559 print_bad_irq_dependency(struct task_struct *curr,
2560 			 struct lock_list *prev_root,
2561 			 struct lock_list *next_root,
2562 			 struct lock_list *backwards_entry,
2563 			 struct lock_list *forwards_entry,
2564 			 struct held_lock *prev,
2565 			 struct held_lock *next,
2566 			 enum lock_usage_bit bit1,
2567 			 enum lock_usage_bit bit2,
2568 			 const char *irqclass)
2569 {
2570 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2571 		return;
2572 
2573 	pr_warn("\n");
2574 	pr_warn("=====================================================\n");
2575 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2576 		irqclass, irqclass);
2577 	print_kernel_ident();
2578 	pr_warn("-----------------------------------------------------\n");
2579 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2580 		curr->comm, task_pid_nr(curr),
2581 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2582 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2583 		lockdep_hardirqs_enabled(),
2584 		curr->softirqs_enabled);
2585 	print_lock(next);
2586 
2587 	pr_warn("\nand this task is already holding:\n");
2588 	print_lock(prev);
2589 	pr_warn("which would create a new lock dependency:\n");
2590 	print_lock_name(prev, hlock_class(prev));
2591 	pr_cont(" ->");
2592 	print_lock_name(next, hlock_class(next));
2593 	pr_cont("\n");
2594 
2595 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2596 		irqclass);
2597 	print_lock_name(NULL, backwards_entry->class);
2598 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2599 
2600 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2601 
2602 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2603 	print_lock_name(NULL, forwards_entry->class);
2604 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2605 	pr_warn("...");
2606 
2607 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2608 
2609 	pr_warn("\nother info that might help us debug this:\n\n");
2610 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2611 				hlock_class(prev), hlock_class(next));
2612 
2613 	lockdep_print_held_locks(curr);
2614 
2615 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2616 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2617 
2618 	pr_warn("\nthe dependencies between the lock to be acquired");
2619 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2620 	next_root->trace = save_trace();
2621 	if (!next_root->trace)
2622 		return;
2623 	print_shortest_lock_dependencies(forwards_entry, next_root);
2624 
2625 	pr_warn("\nstack backtrace:\n");
2626 	dump_stack();
2627 }
2628 
2629 static const char *state_names[] = {
2630 #define LOCKDEP_STATE(__STATE) \
2631 	__stringify(__STATE),
2632 #include "lockdep_states.h"
2633 #undef LOCKDEP_STATE
2634 };
2635 
2636 static const char *state_rnames[] = {
2637 #define LOCKDEP_STATE(__STATE) \
2638 	__stringify(__STATE)"-READ",
2639 #include "lockdep_states.h"
2640 #undef LOCKDEP_STATE
2641 };
2642 
2643 static inline const char *state_name(enum lock_usage_bit bit)
2644 {
2645 	if (bit & LOCK_USAGE_READ_MASK)
2646 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2647 	else
2648 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2649 }
2650 
2651 /*
2652  * The bit number is encoded like:
2653  *
2654  *  bit0: 0 exclusive, 1 read lock
2655  *  bit1: 0 used in irq, 1 irq enabled
2656  *  bit2-n: state
2657  */
2658 static int exclusive_bit(int new_bit)
2659 {
2660 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2661 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2662 
2663 	/*
2664 	 * keep state, bit flip the direction and strip read.
2665 	 */
2666 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2667 }
2668 
2669 /*
2670  * Observe that when given a bitmask where each bitnr is encoded as above, a
2671  * right shift of the mask transforms the individual bitnrs as -1 and
2672  * conversely, a left shift transforms into +1 for the individual bitnrs.
2673  *
2674  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2675  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2676  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2677  *
2678  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2679  *
2680  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2681  * all bits set) and recompose with bitnr1 flipped.
2682  */
2683 static unsigned long invert_dir_mask(unsigned long mask)
2684 {
2685 	unsigned long excl = 0;
2686 
2687 	/* Invert dir */
2688 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2689 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2690 
2691 	return excl;
2692 }
2693 
2694 /*
2695  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2696  * usage may cause deadlock too, for example:
2697  *
2698  * P1				P2
2699  * <irq disabled>
2700  * write_lock(l1);		<irq enabled>
2701  *				read_lock(l2);
2702  * write_lock(l2);
2703  * 				<in irq>
2704  * 				read_lock(l1);
2705  *
2706  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2707  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2708  * deadlock.
2709  *
2710  * In fact, all of the following cases may cause deadlocks:
2711  *
2712  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2713  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2714  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2715  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2716  *
2717  * As a result, to calculate the "exclusive mask", first we invert the
2718  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2719  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2720  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2721  */
2722 static unsigned long exclusive_mask(unsigned long mask)
2723 {
2724 	unsigned long excl = invert_dir_mask(mask);
2725 
2726 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2727 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2728 
2729 	return excl;
2730 }
2731 
2732 /*
2733  * Retrieve the _possible_ original mask to which @mask is
2734  * exclusive. Ie: this is the opposite of exclusive_mask().
2735  * Note that 2 possible original bits can match an exclusive
2736  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2737  * cleared. So both are returned for each exclusive bit.
2738  */
2739 static unsigned long original_mask(unsigned long mask)
2740 {
2741 	unsigned long excl = invert_dir_mask(mask);
2742 
2743 	/* Include read in existing usages */
2744 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2745 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2746 
2747 	return excl;
2748 }
2749 
2750 /*
2751  * Find the first pair of bit match between an original
2752  * usage mask and an exclusive usage mask.
2753  */
2754 static int find_exclusive_match(unsigned long mask,
2755 				unsigned long excl_mask,
2756 				enum lock_usage_bit *bitp,
2757 				enum lock_usage_bit *excl_bitp)
2758 {
2759 	int bit, excl, excl_read;
2760 
2761 	for_each_set_bit(bit, &mask, LOCK_USED) {
2762 		/*
2763 		 * exclusive_bit() strips the read bit, however,
2764 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2765 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2766 		 */
2767 		excl = exclusive_bit(bit);
2768 		excl_read = excl | LOCK_USAGE_READ_MASK;
2769 		if (excl_mask & lock_flag(excl)) {
2770 			*bitp = bit;
2771 			*excl_bitp = excl;
2772 			return 0;
2773 		} else if (excl_mask & lock_flag(excl_read)) {
2774 			*bitp = bit;
2775 			*excl_bitp = excl_read;
2776 			return 0;
2777 		}
2778 	}
2779 	return -1;
2780 }
2781 
2782 /*
2783  * Prove that the new dependency does not connect a hardirq-safe(-read)
2784  * lock with a hardirq-unsafe lock - to achieve this we search
2785  * the backwards-subgraph starting at <prev>, and the
2786  * forwards-subgraph starting at <next>:
2787  */
2788 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2789 			   struct held_lock *next)
2790 {
2791 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2792 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2793 	struct lock_list *target_entry1;
2794 	struct lock_list *target_entry;
2795 	struct lock_list this, that;
2796 	enum bfs_result ret;
2797 
2798 	/*
2799 	 * Step 1: gather all hard/soft IRQs usages backward in an
2800 	 * accumulated usage mask.
2801 	 */
2802 	bfs_init_rootb(&this, prev);
2803 
2804 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2805 	if (bfs_error(ret)) {
2806 		print_bfs_bug(ret);
2807 		return 0;
2808 	}
2809 
2810 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2811 	if (!usage_mask)
2812 		return 1;
2813 
2814 	/*
2815 	 * Step 2: find exclusive uses forward that match the previous
2816 	 * backward accumulated mask.
2817 	 */
2818 	forward_mask = exclusive_mask(usage_mask);
2819 
2820 	bfs_init_root(&that, next);
2821 
2822 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2823 	if (bfs_error(ret)) {
2824 		print_bfs_bug(ret);
2825 		return 0;
2826 	}
2827 	if (ret == BFS_RNOMATCH)
2828 		return 1;
2829 
2830 	/*
2831 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2832 	 * list whose usage mask matches the exclusive usage mask from the
2833 	 * lock found on the forward list.
2834 	 *
2835 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2836 	 * the follow case:
2837 	 *
2838 	 * When trying to add A -> B to the graph, we find that there is a
2839 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2840 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2841 	 * invert bits of M's usage_mask, we will find another lock N that is
2842 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2843 	 * cause a inversion deadlock.
2844 	 */
2845 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2846 
2847 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2848 	if (bfs_error(ret)) {
2849 		print_bfs_bug(ret);
2850 		return 0;
2851 	}
2852 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2853 		return 1;
2854 
2855 	/*
2856 	 * Step 4: narrow down to a pair of incompatible usage bits
2857 	 * and report it.
2858 	 */
2859 	ret = find_exclusive_match(target_entry->class->usage_mask,
2860 				   target_entry1->class->usage_mask,
2861 				   &backward_bit, &forward_bit);
2862 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2863 		return 1;
2864 
2865 	print_bad_irq_dependency(curr, &this, &that,
2866 				 target_entry, target_entry1,
2867 				 prev, next,
2868 				 backward_bit, forward_bit,
2869 				 state_name(backward_bit));
2870 
2871 	return 0;
2872 }
2873 
2874 #else
2875 
2876 static inline int check_irq_usage(struct task_struct *curr,
2877 				  struct held_lock *prev, struct held_lock *next)
2878 {
2879 	return 1;
2880 }
2881 
2882 static inline bool usage_skip(struct lock_list *entry, void *mask)
2883 {
2884 	return false;
2885 }
2886 
2887 #endif /* CONFIG_TRACE_IRQFLAGS */
2888 
2889 #ifdef CONFIG_LOCKDEP_SMALL
2890 /*
2891  * Check that the dependency graph starting at <src> can lead to
2892  * <target> or not. If it can, <src> -> <target> dependency is already
2893  * in the graph.
2894  *
2895  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2896  * any error appears in the bfs search.
2897  */
2898 static noinline enum bfs_result
2899 check_redundant(struct held_lock *src, struct held_lock *target)
2900 {
2901 	enum bfs_result ret;
2902 	struct lock_list *target_entry;
2903 	struct lock_list src_entry;
2904 
2905 	bfs_init_root(&src_entry, src);
2906 	/*
2907 	 * Special setup for check_redundant().
2908 	 *
2909 	 * To report redundant, we need to find a strong dependency path that
2910 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2911 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2912 	 * we achieve this by setting the initial node's ->only_xr to true in
2913 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2914 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2915 	 */
2916 	src_entry.only_xr = src->read == 0;
2917 
2918 	debug_atomic_inc(nr_redundant_checks);
2919 
2920 	/*
2921 	 * Note: we skip local_lock() for redundant check, because as the
2922 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2923 	 * the same.
2924 	 */
2925 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2926 
2927 	if (ret == BFS_RMATCH)
2928 		debug_atomic_inc(nr_redundant);
2929 
2930 	return ret;
2931 }
2932 
2933 #else
2934 
2935 static inline enum bfs_result
2936 check_redundant(struct held_lock *src, struct held_lock *target)
2937 {
2938 	return BFS_RNOMATCH;
2939 }
2940 
2941 #endif
2942 
2943 static void inc_chains(int irq_context)
2944 {
2945 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2946 		nr_hardirq_chains++;
2947 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2948 		nr_softirq_chains++;
2949 	else
2950 		nr_process_chains++;
2951 }
2952 
2953 static void dec_chains(int irq_context)
2954 {
2955 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2956 		nr_hardirq_chains--;
2957 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2958 		nr_softirq_chains--;
2959 	else
2960 		nr_process_chains--;
2961 }
2962 
2963 static void
2964 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2965 {
2966 	struct lock_class *next = hlock_class(nxt);
2967 	struct lock_class *prev = hlock_class(prv);
2968 
2969 	printk(" Possible unsafe locking scenario:\n\n");
2970 	printk("       CPU0\n");
2971 	printk("       ----\n");
2972 	printk("  lock(");
2973 	__print_lock_name(prv, prev);
2974 	printk(KERN_CONT ");\n");
2975 	printk("  lock(");
2976 	__print_lock_name(nxt, next);
2977 	printk(KERN_CONT ");\n");
2978 	printk("\n *** DEADLOCK ***\n\n");
2979 	printk(" May be due to missing lock nesting notation\n\n");
2980 }
2981 
2982 static void
2983 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2984 		   struct held_lock *next)
2985 {
2986 	struct lock_class *class = hlock_class(prev);
2987 
2988 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2989 		return;
2990 
2991 	pr_warn("\n");
2992 	pr_warn("============================================\n");
2993 	pr_warn("WARNING: possible recursive locking detected\n");
2994 	print_kernel_ident();
2995 	pr_warn("--------------------------------------------\n");
2996 	pr_warn("%s/%d is trying to acquire lock:\n",
2997 		curr->comm, task_pid_nr(curr));
2998 	print_lock(next);
2999 	pr_warn("\nbut task is already holding lock:\n");
3000 	print_lock(prev);
3001 
3002 	if (class->cmp_fn) {
3003 		pr_warn("and the lock comparison function returns %i:\n",
3004 			class->cmp_fn(prev->instance, next->instance));
3005 	}
3006 
3007 	pr_warn("\nother info that might help us debug this:\n");
3008 	print_deadlock_scenario(next, prev);
3009 	lockdep_print_held_locks(curr);
3010 
3011 	pr_warn("\nstack backtrace:\n");
3012 	dump_stack();
3013 }
3014 
3015 /*
3016  * Check whether we are holding such a class already.
3017  *
3018  * (Note that this has to be done separately, because the graph cannot
3019  * detect such classes of deadlocks.)
3020  *
3021  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3022  * lock class is held but nest_lock is also held, i.e. we rely on the
3023  * nest_lock to avoid the deadlock.
3024  */
3025 static int
3026 check_deadlock(struct task_struct *curr, struct held_lock *next)
3027 {
3028 	struct lock_class *class;
3029 	struct held_lock *prev;
3030 	struct held_lock *nest = NULL;
3031 	int i;
3032 
3033 	for (i = 0; i < curr->lockdep_depth; i++) {
3034 		prev = curr->held_locks + i;
3035 
3036 		if (prev->instance == next->nest_lock)
3037 			nest = prev;
3038 
3039 		if (hlock_class(prev) != hlock_class(next))
3040 			continue;
3041 
3042 		/*
3043 		 * Allow read-after-read recursion of the same
3044 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3045 		 */
3046 		if ((next->read == 2) && prev->read)
3047 			continue;
3048 
3049 		class = hlock_class(prev);
3050 
3051 		if (class->cmp_fn &&
3052 		    class->cmp_fn(prev->instance, next->instance) < 0)
3053 			continue;
3054 
3055 		/*
3056 		 * We're holding the nest_lock, which serializes this lock's
3057 		 * nesting behaviour.
3058 		 */
3059 		if (nest)
3060 			return 2;
3061 
3062 		print_deadlock_bug(curr, prev, next);
3063 		return 0;
3064 	}
3065 	return 1;
3066 }
3067 
3068 /*
3069  * There was a chain-cache miss, and we are about to add a new dependency
3070  * to a previous lock. We validate the following rules:
3071  *
3072  *  - would the adding of the <prev> -> <next> dependency create a
3073  *    circular dependency in the graph? [== circular deadlock]
3074  *
3075  *  - does the new prev->next dependency connect any hardirq-safe lock
3076  *    (in the full backwards-subgraph starting at <prev>) with any
3077  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3078  *    <next>)? [== illegal lock inversion with hardirq contexts]
3079  *
3080  *  - does the new prev->next dependency connect any softirq-safe lock
3081  *    (in the full backwards-subgraph starting at <prev>) with any
3082  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3083  *    <next>)? [== illegal lock inversion with softirq contexts]
3084  *
3085  * any of these scenarios could lead to a deadlock.
3086  *
3087  * Then if all the validations pass, we add the forwards and backwards
3088  * dependency.
3089  */
3090 static int
3091 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3092 	       struct held_lock *next, u16 distance,
3093 	       struct lock_trace **const trace)
3094 {
3095 	struct lock_list *entry;
3096 	enum bfs_result ret;
3097 
3098 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3099 		/*
3100 		 * The warning statements below may trigger a use-after-free
3101 		 * of the class name. It is better to trigger a use-after free
3102 		 * and to have the class name most of the time instead of not
3103 		 * having the class name available.
3104 		 */
3105 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3106 			  "Detected use-after-free of lock class %px/%s\n",
3107 			  hlock_class(prev),
3108 			  hlock_class(prev)->name);
3109 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3110 			  "Detected use-after-free of lock class %px/%s\n",
3111 			  hlock_class(next),
3112 			  hlock_class(next)->name);
3113 		return 2;
3114 	}
3115 
3116 	if (prev->class_idx == next->class_idx) {
3117 		struct lock_class *class = hlock_class(prev);
3118 
3119 		if (class->cmp_fn &&
3120 		    class->cmp_fn(prev->instance, next->instance) < 0)
3121 			return 2;
3122 	}
3123 
3124 	/*
3125 	 * Prove that the new <prev> -> <next> dependency would not
3126 	 * create a circular dependency in the graph. (We do this by
3127 	 * a breadth-first search into the graph starting at <next>,
3128 	 * and check whether we can reach <prev>.)
3129 	 *
3130 	 * The search is limited by the size of the circular queue (i.e.,
3131 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3132 	 * in the graph whose neighbours are to be checked.
3133 	 */
3134 	ret = check_noncircular(next, prev, trace);
3135 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3136 		return 0;
3137 
3138 	if (!check_irq_usage(curr, prev, next))
3139 		return 0;
3140 
3141 	/*
3142 	 * Is the <prev> -> <next> dependency already present?
3143 	 *
3144 	 * (this may occur even though this is a new chain: consider
3145 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3146 	 *  chains - the second one will be new, but L1 already has
3147 	 *  L2 added to its dependency list, due to the first chain.)
3148 	 */
3149 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3150 		if (entry->class == hlock_class(next)) {
3151 			if (distance == 1)
3152 				entry->distance = 1;
3153 			entry->dep |= calc_dep(prev, next);
3154 
3155 			/*
3156 			 * Also, update the reverse dependency in @next's
3157 			 * ->locks_before list.
3158 			 *
3159 			 *  Here we reuse @entry as the cursor, which is fine
3160 			 *  because we won't go to the next iteration of the
3161 			 *  outer loop:
3162 			 *
3163 			 *  For normal cases, we return in the inner loop.
3164 			 *
3165 			 *  If we fail to return, we have inconsistency, i.e.
3166 			 *  <prev>::locks_after contains <next> while
3167 			 *  <next>::locks_before doesn't contain <prev>. In
3168 			 *  that case, we return after the inner and indicate
3169 			 *  something is wrong.
3170 			 */
3171 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3172 				if (entry->class == hlock_class(prev)) {
3173 					if (distance == 1)
3174 						entry->distance = 1;
3175 					entry->dep |= calc_depb(prev, next);
3176 					return 1;
3177 				}
3178 			}
3179 
3180 			/* <prev> is not found in <next>::locks_before */
3181 			return 0;
3182 		}
3183 	}
3184 
3185 	/*
3186 	 * Is the <prev> -> <next> link redundant?
3187 	 */
3188 	ret = check_redundant(prev, next);
3189 	if (bfs_error(ret))
3190 		return 0;
3191 	else if (ret == BFS_RMATCH)
3192 		return 2;
3193 
3194 	if (!*trace) {
3195 		*trace = save_trace();
3196 		if (!*trace)
3197 			return 0;
3198 	}
3199 
3200 	/*
3201 	 * Ok, all validations passed, add the new lock
3202 	 * to the previous lock's dependency list:
3203 	 */
3204 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3205 			       &hlock_class(prev)->locks_after, distance,
3206 			       calc_dep(prev, next), *trace);
3207 
3208 	if (!ret)
3209 		return 0;
3210 
3211 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3212 			       &hlock_class(next)->locks_before, distance,
3213 			       calc_depb(prev, next), *trace);
3214 	if (!ret)
3215 		return 0;
3216 
3217 	return 2;
3218 }
3219 
3220 /*
3221  * Add the dependency to all directly-previous locks that are 'relevant'.
3222  * The ones that are relevant are (in increasing distance from curr):
3223  * all consecutive trylock entries and the final non-trylock entry - or
3224  * the end of this context's lock-chain - whichever comes first.
3225  */
3226 static int
3227 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3228 {
3229 	struct lock_trace *trace = NULL;
3230 	int depth = curr->lockdep_depth;
3231 	struct held_lock *hlock;
3232 
3233 	/*
3234 	 * Debugging checks.
3235 	 *
3236 	 * Depth must not be zero for a non-head lock:
3237 	 */
3238 	if (!depth)
3239 		goto out_bug;
3240 	/*
3241 	 * At least two relevant locks must exist for this
3242 	 * to be a head:
3243 	 */
3244 	if (curr->held_locks[depth].irq_context !=
3245 			curr->held_locks[depth-1].irq_context)
3246 		goto out_bug;
3247 
3248 	for (;;) {
3249 		u16 distance = curr->lockdep_depth - depth + 1;
3250 		hlock = curr->held_locks + depth - 1;
3251 
3252 		if (hlock->check) {
3253 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3254 			if (!ret)
3255 				return 0;
3256 
3257 			/*
3258 			 * Stop after the first non-trylock entry,
3259 			 * as non-trylock entries have added their
3260 			 * own direct dependencies already, so this
3261 			 * lock is connected to them indirectly:
3262 			 */
3263 			if (!hlock->trylock)
3264 				break;
3265 		}
3266 
3267 		depth--;
3268 		/*
3269 		 * End of lock-stack?
3270 		 */
3271 		if (!depth)
3272 			break;
3273 		/*
3274 		 * Stop the search if we cross into another context:
3275 		 */
3276 		if (curr->held_locks[depth].irq_context !=
3277 				curr->held_locks[depth-1].irq_context)
3278 			break;
3279 	}
3280 	return 1;
3281 out_bug:
3282 	if (!debug_locks_off_graph_unlock())
3283 		return 0;
3284 
3285 	/*
3286 	 * Clearly we all shouldn't be here, but since we made it we
3287 	 * can reliable say we messed up our state. See the above two
3288 	 * gotos for reasons why we could possibly end up here.
3289 	 */
3290 	WARN_ON(1);
3291 
3292 	return 0;
3293 }
3294 
3295 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3296 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3297 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3298 unsigned long nr_zapped_lock_chains;
3299 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3300 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3301 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3302 
3303 /*
3304  * The first 2 chain_hlocks entries in the chain block in the bucket
3305  * list contains the following meta data:
3306  *
3307  *   entry[0]:
3308  *     Bit    15 - always set to 1 (it is not a class index)
3309  *     Bits 0-14 - upper 15 bits of the next block index
3310  *   entry[1]    - lower 16 bits of next block index
3311  *
3312  * A next block index of all 1 bits means it is the end of the list.
3313  *
3314  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3315  * the chain block size:
3316  *
3317  *   entry[2] - upper 16 bits of the chain block size
3318  *   entry[3] - lower 16 bits of the chain block size
3319  */
3320 #define MAX_CHAIN_BUCKETS	16
3321 #define CHAIN_BLK_FLAG		(1U << 15)
3322 #define CHAIN_BLK_LIST_END	0xFFFFU
3323 
3324 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3325 
3326 static inline int size_to_bucket(int size)
3327 {
3328 	if (size > MAX_CHAIN_BUCKETS)
3329 		return 0;
3330 
3331 	return size - 1;
3332 }
3333 
3334 /*
3335  * Iterate all the chain blocks in a bucket.
3336  */
3337 #define for_each_chain_block(bucket, prev, curr)		\
3338 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3339 	     (curr) >= 0;					\
3340 	     (prev) = (curr), (curr) = chain_block_next(curr))
3341 
3342 /*
3343  * next block or -1
3344  */
3345 static inline int chain_block_next(int offset)
3346 {
3347 	int next = chain_hlocks[offset];
3348 
3349 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3350 
3351 	if (next == CHAIN_BLK_LIST_END)
3352 		return -1;
3353 
3354 	next &= ~CHAIN_BLK_FLAG;
3355 	next <<= 16;
3356 	next |= chain_hlocks[offset + 1];
3357 
3358 	return next;
3359 }
3360 
3361 /*
3362  * bucket-0 only
3363  */
3364 static inline int chain_block_size(int offset)
3365 {
3366 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3367 }
3368 
3369 static inline void init_chain_block(int offset, int next, int bucket, int size)
3370 {
3371 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3372 	chain_hlocks[offset + 1] = (u16)next;
3373 
3374 	if (size && !bucket) {
3375 		chain_hlocks[offset + 2] = size >> 16;
3376 		chain_hlocks[offset + 3] = (u16)size;
3377 	}
3378 }
3379 
3380 static inline void add_chain_block(int offset, int size)
3381 {
3382 	int bucket = size_to_bucket(size);
3383 	int next = chain_block_buckets[bucket];
3384 	int prev, curr;
3385 
3386 	if (unlikely(size < 2)) {
3387 		/*
3388 		 * We can't store single entries on the freelist. Leak them.
3389 		 *
3390 		 * One possible way out would be to uniquely mark them, other
3391 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3392 		 * the block before it is re-added.
3393 		 */
3394 		if (size)
3395 			nr_lost_chain_hlocks++;
3396 		return;
3397 	}
3398 
3399 	nr_free_chain_hlocks += size;
3400 	if (!bucket) {
3401 		nr_large_chain_blocks++;
3402 
3403 		/*
3404 		 * Variable sized, sort large to small.
3405 		 */
3406 		for_each_chain_block(0, prev, curr) {
3407 			if (size >= chain_block_size(curr))
3408 				break;
3409 		}
3410 		init_chain_block(offset, curr, 0, size);
3411 		if (prev < 0)
3412 			chain_block_buckets[0] = offset;
3413 		else
3414 			init_chain_block(prev, offset, 0, 0);
3415 		return;
3416 	}
3417 	/*
3418 	 * Fixed size, add to head.
3419 	 */
3420 	init_chain_block(offset, next, bucket, size);
3421 	chain_block_buckets[bucket] = offset;
3422 }
3423 
3424 /*
3425  * Only the first block in the list can be deleted.
3426  *
3427  * For the variable size bucket[0], the first block (the largest one) is
3428  * returned, broken up and put back into the pool. So if a chain block of
3429  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3430  * queued up after the primordial chain block and never be used until the
3431  * hlock entries in the primordial chain block is almost used up. That
3432  * causes fragmentation and reduce allocation efficiency. That can be
3433  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3434  */
3435 static inline void del_chain_block(int bucket, int size, int next)
3436 {
3437 	nr_free_chain_hlocks -= size;
3438 	chain_block_buckets[bucket] = next;
3439 
3440 	if (!bucket)
3441 		nr_large_chain_blocks--;
3442 }
3443 
3444 static void init_chain_block_buckets(void)
3445 {
3446 	int i;
3447 
3448 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3449 		chain_block_buckets[i] = -1;
3450 
3451 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3452 }
3453 
3454 /*
3455  * Return offset of a chain block of the right size or -1 if not found.
3456  *
3457  * Fairly simple worst-fit allocator with the addition of a number of size
3458  * specific free lists.
3459  */
3460 static int alloc_chain_hlocks(int req)
3461 {
3462 	int bucket, curr, size;
3463 
3464 	/*
3465 	 * We rely on the MSB to act as an escape bit to denote freelist
3466 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3467 	 */
3468 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3469 
3470 	init_data_structures_once();
3471 
3472 	if (nr_free_chain_hlocks < req)
3473 		return -1;
3474 
3475 	/*
3476 	 * We require a minimum of 2 (u16) entries to encode a freelist
3477 	 * 'pointer'.
3478 	 */
3479 	req = max(req, 2);
3480 	bucket = size_to_bucket(req);
3481 	curr = chain_block_buckets[bucket];
3482 
3483 	if (bucket) {
3484 		if (curr >= 0) {
3485 			del_chain_block(bucket, req, chain_block_next(curr));
3486 			return curr;
3487 		}
3488 		/* Try bucket 0 */
3489 		curr = chain_block_buckets[0];
3490 	}
3491 
3492 	/*
3493 	 * The variable sized freelist is sorted by size; the first entry is
3494 	 * the largest. Use it if it fits.
3495 	 */
3496 	if (curr >= 0) {
3497 		size = chain_block_size(curr);
3498 		if (likely(size >= req)) {
3499 			del_chain_block(0, size, chain_block_next(curr));
3500 			add_chain_block(curr + req, size - req);
3501 			return curr;
3502 		}
3503 	}
3504 
3505 	/*
3506 	 * Last resort, split a block in a larger sized bucket.
3507 	 */
3508 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3509 		bucket = size_to_bucket(size);
3510 		curr = chain_block_buckets[bucket];
3511 		if (curr < 0)
3512 			continue;
3513 
3514 		del_chain_block(bucket, size, chain_block_next(curr));
3515 		add_chain_block(curr + req, size - req);
3516 		return curr;
3517 	}
3518 
3519 	return -1;
3520 }
3521 
3522 static inline void free_chain_hlocks(int base, int size)
3523 {
3524 	add_chain_block(base, max(size, 2));
3525 }
3526 
3527 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3528 {
3529 	u16 chain_hlock = chain_hlocks[chain->base + i];
3530 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3531 
3532 	return lock_classes + class_idx;
3533 }
3534 
3535 /*
3536  * Returns the index of the first held_lock of the current chain
3537  */
3538 static inline int get_first_held_lock(struct task_struct *curr,
3539 					struct held_lock *hlock)
3540 {
3541 	int i;
3542 	struct held_lock *hlock_curr;
3543 
3544 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3545 		hlock_curr = curr->held_locks + i;
3546 		if (hlock_curr->irq_context != hlock->irq_context)
3547 			break;
3548 
3549 	}
3550 
3551 	return ++i;
3552 }
3553 
3554 #ifdef CONFIG_DEBUG_LOCKDEP
3555 /*
3556  * Returns the next chain_key iteration
3557  */
3558 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3559 {
3560 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3561 
3562 	printk(" hlock_id:%d -> chain_key:%016Lx",
3563 		(unsigned int)hlock_id,
3564 		(unsigned long long)new_chain_key);
3565 	return new_chain_key;
3566 }
3567 
3568 static void
3569 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3570 {
3571 	struct held_lock *hlock;
3572 	u64 chain_key = INITIAL_CHAIN_KEY;
3573 	int depth = curr->lockdep_depth;
3574 	int i = get_first_held_lock(curr, hlock_next);
3575 
3576 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3577 		hlock_next->irq_context);
3578 	for (; i < depth; i++) {
3579 		hlock = curr->held_locks + i;
3580 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3581 
3582 		print_lock(hlock);
3583 	}
3584 
3585 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3586 	print_lock(hlock_next);
3587 }
3588 
3589 static void print_chain_keys_chain(struct lock_chain *chain)
3590 {
3591 	int i;
3592 	u64 chain_key = INITIAL_CHAIN_KEY;
3593 	u16 hlock_id;
3594 
3595 	printk("depth: %u\n", chain->depth);
3596 	for (i = 0; i < chain->depth; i++) {
3597 		hlock_id = chain_hlocks[chain->base + i];
3598 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3599 
3600 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3601 		printk("\n");
3602 	}
3603 }
3604 
3605 static void print_collision(struct task_struct *curr,
3606 			struct held_lock *hlock_next,
3607 			struct lock_chain *chain)
3608 {
3609 	pr_warn("\n");
3610 	pr_warn("============================\n");
3611 	pr_warn("WARNING: chain_key collision\n");
3612 	print_kernel_ident();
3613 	pr_warn("----------------------------\n");
3614 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3615 	pr_warn("Hash chain already cached but the contents don't match!\n");
3616 
3617 	pr_warn("Held locks:");
3618 	print_chain_keys_held_locks(curr, hlock_next);
3619 
3620 	pr_warn("Locks in cached chain:");
3621 	print_chain_keys_chain(chain);
3622 
3623 	pr_warn("\nstack backtrace:\n");
3624 	dump_stack();
3625 }
3626 #endif
3627 
3628 /*
3629  * Checks whether the chain and the current held locks are consistent
3630  * in depth and also in content. If they are not it most likely means
3631  * that there was a collision during the calculation of the chain_key.
3632  * Returns: 0 not passed, 1 passed
3633  */
3634 static int check_no_collision(struct task_struct *curr,
3635 			struct held_lock *hlock,
3636 			struct lock_chain *chain)
3637 {
3638 #ifdef CONFIG_DEBUG_LOCKDEP
3639 	int i, j, id;
3640 
3641 	i = get_first_held_lock(curr, hlock);
3642 
3643 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3644 		print_collision(curr, hlock, chain);
3645 		return 0;
3646 	}
3647 
3648 	for (j = 0; j < chain->depth - 1; j++, i++) {
3649 		id = hlock_id(&curr->held_locks[i]);
3650 
3651 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3652 			print_collision(curr, hlock, chain);
3653 			return 0;
3654 		}
3655 	}
3656 #endif
3657 	return 1;
3658 }
3659 
3660 /*
3661  * Given an index that is >= -1, return the index of the next lock chain.
3662  * Return -2 if there is no next lock chain.
3663  */
3664 long lockdep_next_lockchain(long i)
3665 {
3666 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3667 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3668 }
3669 
3670 unsigned long lock_chain_count(void)
3671 {
3672 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3673 }
3674 
3675 /* Must be called with the graph lock held. */
3676 static struct lock_chain *alloc_lock_chain(void)
3677 {
3678 	int idx = find_first_zero_bit(lock_chains_in_use,
3679 				      ARRAY_SIZE(lock_chains));
3680 
3681 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3682 		return NULL;
3683 	__set_bit(idx, lock_chains_in_use);
3684 	return lock_chains + idx;
3685 }
3686 
3687 /*
3688  * Adds a dependency chain into chain hashtable. And must be called with
3689  * graph_lock held.
3690  *
3691  * Return 0 if fail, and graph_lock is released.
3692  * Return 1 if succeed, with graph_lock held.
3693  */
3694 static inline int add_chain_cache(struct task_struct *curr,
3695 				  struct held_lock *hlock,
3696 				  u64 chain_key)
3697 {
3698 	struct hlist_head *hash_head = chainhashentry(chain_key);
3699 	struct lock_chain *chain;
3700 	int i, j;
3701 
3702 	/*
3703 	 * The caller must hold the graph lock, ensure we've got IRQs
3704 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3705 	 * lockdep won't complain about its own locking errors.
3706 	 */
3707 	if (lockdep_assert_locked())
3708 		return 0;
3709 
3710 	chain = alloc_lock_chain();
3711 	if (!chain) {
3712 		if (!debug_locks_off_graph_unlock())
3713 			return 0;
3714 
3715 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3716 		dump_stack();
3717 		return 0;
3718 	}
3719 	chain->chain_key = chain_key;
3720 	chain->irq_context = hlock->irq_context;
3721 	i = get_first_held_lock(curr, hlock);
3722 	chain->depth = curr->lockdep_depth + 1 - i;
3723 
3724 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3725 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3726 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3727 
3728 	j = alloc_chain_hlocks(chain->depth);
3729 	if (j < 0) {
3730 		if (!debug_locks_off_graph_unlock())
3731 			return 0;
3732 
3733 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3734 		dump_stack();
3735 		return 0;
3736 	}
3737 
3738 	chain->base = j;
3739 	for (j = 0; j < chain->depth - 1; j++, i++) {
3740 		int lock_id = hlock_id(curr->held_locks + i);
3741 
3742 		chain_hlocks[chain->base + j] = lock_id;
3743 	}
3744 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3745 	hlist_add_head_rcu(&chain->entry, hash_head);
3746 	debug_atomic_inc(chain_lookup_misses);
3747 	inc_chains(chain->irq_context);
3748 
3749 	return 1;
3750 }
3751 
3752 /*
3753  * Look up a dependency chain. Must be called with either the graph lock or
3754  * the RCU read lock held.
3755  */
3756 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3757 {
3758 	struct hlist_head *hash_head = chainhashentry(chain_key);
3759 	struct lock_chain *chain;
3760 
3761 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3762 		if (READ_ONCE(chain->chain_key) == chain_key) {
3763 			debug_atomic_inc(chain_lookup_hits);
3764 			return chain;
3765 		}
3766 	}
3767 	return NULL;
3768 }
3769 
3770 /*
3771  * If the key is not present yet in dependency chain cache then
3772  * add it and return 1 - in this case the new dependency chain is
3773  * validated. If the key is already hashed, return 0.
3774  * (On return with 1 graph_lock is held.)
3775  */
3776 static inline int lookup_chain_cache_add(struct task_struct *curr,
3777 					 struct held_lock *hlock,
3778 					 u64 chain_key)
3779 {
3780 	struct lock_class *class = hlock_class(hlock);
3781 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3782 
3783 	if (chain) {
3784 cache_hit:
3785 		if (!check_no_collision(curr, hlock, chain))
3786 			return 0;
3787 
3788 		if (very_verbose(class)) {
3789 			printk("\nhash chain already cached, key: "
3790 					"%016Lx tail class: [%px] %s\n",
3791 					(unsigned long long)chain_key,
3792 					class->key, class->name);
3793 		}
3794 
3795 		return 0;
3796 	}
3797 
3798 	if (very_verbose(class)) {
3799 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3800 			(unsigned long long)chain_key, class->key, class->name);
3801 	}
3802 
3803 	if (!graph_lock())
3804 		return 0;
3805 
3806 	/*
3807 	 * We have to walk the chain again locked - to avoid duplicates:
3808 	 */
3809 	chain = lookup_chain_cache(chain_key);
3810 	if (chain) {
3811 		graph_unlock();
3812 		goto cache_hit;
3813 	}
3814 
3815 	if (!add_chain_cache(curr, hlock, chain_key))
3816 		return 0;
3817 
3818 	return 1;
3819 }
3820 
3821 static int validate_chain(struct task_struct *curr,
3822 			  struct held_lock *hlock,
3823 			  int chain_head, u64 chain_key)
3824 {
3825 	/*
3826 	 * Trylock needs to maintain the stack of held locks, but it
3827 	 * does not add new dependencies, because trylock can be done
3828 	 * in any order.
3829 	 *
3830 	 * We look up the chain_key and do the O(N^2) check and update of
3831 	 * the dependencies only if this is a new dependency chain.
3832 	 * (If lookup_chain_cache_add() return with 1 it acquires
3833 	 * graph_lock for us)
3834 	 */
3835 	if (!hlock->trylock && hlock->check &&
3836 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3837 		/*
3838 		 * Check whether last held lock:
3839 		 *
3840 		 * - is irq-safe, if this lock is irq-unsafe
3841 		 * - is softirq-safe, if this lock is hardirq-unsafe
3842 		 *
3843 		 * And check whether the new lock's dependency graph
3844 		 * could lead back to the previous lock:
3845 		 *
3846 		 * - within the current held-lock stack
3847 		 * - across our accumulated lock dependency records
3848 		 *
3849 		 * any of these scenarios could lead to a deadlock.
3850 		 */
3851 		/*
3852 		 * The simple case: does the current hold the same lock
3853 		 * already?
3854 		 */
3855 		int ret = check_deadlock(curr, hlock);
3856 
3857 		if (!ret)
3858 			return 0;
3859 		/*
3860 		 * Add dependency only if this lock is not the head
3861 		 * of the chain, and if the new lock introduces no more
3862 		 * lock dependency (because we already hold a lock with the
3863 		 * same lock class) nor deadlock (because the nest_lock
3864 		 * serializes nesting locks), see the comments for
3865 		 * check_deadlock().
3866 		 */
3867 		if (!chain_head && ret != 2) {
3868 			if (!check_prevs_add(curr, hlock))
3869 				return 0;
3870 		}
3871 
3872 		graph_unlock();
3873 	} else {
3874 		/* after lookup_chain_cache_add(): */
3875 		if (unlikely(!debug_locks))
3876 			return 0;
3877 	}
3878 
3879 	return 1;
3880 }
3881 #else
3882 static inline int validate_chain(struct task_struct *curr,
3883 				 struct held_lock *hlock,
3884 				 int chain_head, u64 chain_key)
3885 {
3886 	return 1;
3887 }
3888 
3889 static void init_chain_block_buckets(void)	{ }
3890 #endif /* CONFIG_PROVE_LOCKING */
3891 
3892 /*
3893  * We are building curr_chain_key incrementally, so double-check
3894  * it from scratch, to make sure that it's done correctly:
3895  */
3896 static void check_chain_key(struct task_struct *curr)
3897 {
3898 #ifdef CONFIG_DEBUG_LOCKDEP
3899 	struct held_lock *hlock, *prev_hlock = NULL;
3900 	unsigned int i;
3901 	u64 chain_key = INITIAL_CHAIN_KEY;
3902 
3903 	for (i = 0; i < curr->lockdep_depth; i++) {
3904 		hlock = curr->held_locks + i;
3905 		if (chain_key != hlock->prev_chain_key) {
3906 			debug_locks_off();
3907 			/*
3908 			 * We got mighty confused, our chain keys don't match
3909 			 * with what we expect, someone trample on our task state?
3910 			 */
3911 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3912 				curr->lockdep_depth, i,
3913 				(unsigned long long)chain_key,
3914 				(unsigned long long)hlock->prev_chain_key);
3915 			return;
3916 		}
3917 
3918 		/*
3919 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3920 		 * it registered lock class index?
3921 		 */
3922 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3923 			return;
3924 
3925 		if (prev_hlock && (prev_hlock->irq_context !=
3926 							hlock->irq_context))
3927 			chain_key = INITIAL_CHAIN_KEY;
3928 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3929 		prev_hlock = hlock;
3930 	}
3931 	if (chain_key != curr->curr_chain_key) {
3932 		debug_locks_off();
3933 		/*
3934 		 * More smoking hash instead of calculating it, damn see these
3935 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3936 		 */
3937 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3938 			curr->lockdep_depth, i,
3939 			(unsigned long long)chain_key,
3940 			(unsigned long long)curr->curr_chain_key);
3941 	}
3942 #endif
3943 }
3944 
3945 #ifdef CONFIG_PROVE_LOCKING
3946 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3947 		     enum lock_usage_bit new_bit);
3948 
3949 static void print_usage_bug_scenario(struct held_lock *lock)
3950 {
3951 	struct lock_class *class = hlock_class(lock);
3952 
3953 	printk(" Possible unsafe locking scenario:\n\n");
3954 	printk("       CPU0\n");
3955 	printk("       ----\n");
3956 	printk("  lock(");
3957 	__print_lock_name(lock, class);
3958 	printk(KERN_CONT ");\n");
3959 	printk("  <Interrupt>\n");
3960 	printk("    lock(");
3961 	__print_lock_name(lock, class);
3962 	printk(KERN_CONT ");\n");
3963 	printk("\n *** DEADLOCK ***\n\n");
3964 }
3965 
3966 static void
3967 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3968 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3969 {
3970 	if (!debug_locks_off() || debug_locks_silent)
3971 		return;
3972 
3973 	pr_warn("\n");
3974 	pr_warn("================================\n");
3975 	pr_warn("WARNING: inconsistent lock state\n");
3976 	print_kernel_ident();
3977 	pr_warn("--------------------------------\n");
3978 
3979 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3980 		usage_str[prev_bit], usage_str[new_bit]);
3981 
3982 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3983 		curr->comm, task_pid_nr(curr),
3984 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3985 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3986 		lockdep_hardirqs_enabled(),
3987 		lockdep_softirqs_enabled(curr));
3988 	print_lock(this);
3989 
3990 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3991 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3992 
3993 	print_irqtrace_events(curr);
3994 	pr_warn("\nother info that might help us debug this:\n");
3995 	print_usage_bug_scenario(this);
3996 
3997 	lockdep_print_held_locks(curr);
3998 
3999 	pr_warn("\nstack backtrace:\n");
4000 	dump_stack();
4001 }
4002 
4003 /*
4004  * Print out an error if an invalid bit is set:
4005  */
4006 static inline int
4007 valid_state(struct task_struct *curr, struct held_lock *this,
4008 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4009 {
4010 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4011 		graph_unlock();
4012 		print_usage_bug(curr, this, bad_bit, new_bit);
4013 		return 0;
4014 	}
4015 	return 1;
4016 }
4017 
4018 
4019 /*
4020  * print irq inversion bug:
4021  */
4022 static void
4023 print_irq_inversion_bug(struct task_struct *curr,
4024 			struct lock_list *root, struct lock_list *other,
4025 			struct held_lock *this, int forwards,
4026 			const char *irqclass)
4027 {
4028 	struct lock_list *entry = other;
4029 	struct lock_list *middle = NULL;
4030 	int depth;
4031 
4032 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4033 		return;
4034 
4035 	pr_warn("\n");
4036 	pr_warn("========================================================\n");
4037 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4038 	print_kernel_ident();
4039 	pr_warn("--------------------------------------------------------\n");
4040 	pr_warn("%s/%d just changed the state of lock:\n",
4041 		curr->comm, task_pid_nr(curr));
4042 	print_lock(this);
4043 	if (forwards)
4044 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4045 	else
4046 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4047 	print_lock_name(NULL, other->class);
4048 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4049 
4050 	pr_warn("\nother info that might help us debug this:\n");
4051 
4052 	/* Find a middle lock (if one exists) */
4053 	depth = get_lock_depth(other);
4054 	do {
4055 		if (depth == 0 && (entry != root)) {
4056 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4057 			break;
4058 		}
4059 		middle = entry;
4060 		entry = get_lock_parent(entry);
4061 		depth--;
4062 	} while (entry && entry != root && (depth >= 0));
4063 	if (forwards)
4064 		print_irq_lock_scenario(root, other,
4065 			middle ? middle->class : root->class, other->class);
4066 	else
4067 		print_irq_lock_scenario(other, root,
4068 			middle ? middle->class : other->class, root->class);
4069 
4070 	lockdep_print_held_locks(curr);
4071 
4072 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4073 	root->trace = save_trace();
4074 	if (!root->trace)
4075 		return;
4076 	print_shortest_lock_dependencies(other, root);
4077 
4078 	pr_warn("\nstack backtrace:\n");
4079 	dump_stack();
4080 }
4081 
4082 /*
4083  * Prove that in the forwards-direction subgraph starting at <this>
4084  * there is no lock matching <mask>:
4085  */
4086 static int
4087 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4088 		     enum lock_usage_bit bit)
4089 {
4090 	enum bfs_result ret;
4091 	struct lock_list root;
4092 	struct lock_list *target_entry;
4093 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4094 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4095 
4096 	bfs_init_root(&root, this);
4097 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4098 	if (bfs_error(ret)) {
4099 		print_bfs_bug(ret);
4100 		return 0;
4101 	}
4102 	if (ret == BFS_RNOMATCH)
4103 		return 1;
4104 
4105 	/* Check whether write or read usage is the match */
4106 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4107 		print_irq_inversion_bug(curr, &root, target_entry,
4108 					this, 1, state_name(bit));
4109 	} else {
4110 		print_irq_inversion_bug(curr, &root, target_entry,
4111 					this, 1, state_name(read_bit));
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 /*
4118  * Prove that in the backwards-direction subgraph starting at <this>
4119  * there is no lock matching <mask>:
4120  */
4121 static int
4122 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4123 		      enum lock_usage_bit bit)
4124 {
4125 	enum bfs_result ret;
4126 	struct lock_list root;
4127 	struct lock_list *target_entry;
4128 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4129 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4130 
4131 	bfs_init_rootb(&root, this);
4132 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4133 	if (bfs_error(ret)) {
4134 		print_bfs_bug(ret);
4135 		return 0;
4136 	}
4137 	if (ret == BFS_RNOMATCH)
4138 		return 1;
4139 
4140 	/* Check whether write or read usage is the match */
4141 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4142 		print_irq_inversion_bug(curr, &root, target_entry,
4143 					this, 0, state_name(bit));
4144 	} else {
4145 		print_irq_inversion_bug(curr, &root, target_entry,
4146 					this, 0, state_name(read_bit));
4147 	}
4148 
4149 	return 0;
4150 }
4151 
4152 void print_irqtrace_events(struct task_struct *curr)
4153 {
4154 	const struct irqtrace_events *trace = &curr->irqtrace;
4155 
4156 	printk("irq event stamp: %u\n", trace->irq_events);
4157 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4158 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4159 		(void *)trace->hardirq_enable_ip);
4160 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4161 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4162 		(void *)trace->hardirq_disable_ip);
4163 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4164 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4165 		(void *)trace->softirq_enable_ip);
4166 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4167 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4168 		(void *)trace->softirq_disable_ip);
4169 }
4170 
4171 static int HARDIRQ_verbose(struct lock_class *class)
4172 {
4173 #if HARDIRQ_VERBOSE
4174 	return class_filter(class);
4175 #endif
4176 	return 0;
4177 }
4178 
4179 static int SOFTIRQ_verbose(struct lock_class *class)
4180 {
4181 #if SOFTIRQ_VERBOSE
4182 	return class_filter(class);
4183 #endif
4184 	return 0;
4185 }
4186 
4187 static int (*state_verbose_f[])(struct lock_class *class) = {
4188 #define LOCKDEP_STATE(__STATE) \
4189 	__STATE##_verbose,
4190 #include "lockdep_states.h"
4191 #undef LOCKDEP_STATE
4192 };
4193 
4194 static inline int state_verbose(enum lock_usage_bit bit,
4195 				struct lock_class *class)
4196 {
4197 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4198 }
4199 
4200 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4201 			     enum lock_usage_bit bit, const char *name);
4202 
4203 static int
4204 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4205 		enum lock_usage_bit new_bit)
4206 {
4207 	int excl_bit = exclusive_bit(new_bit);
4208 	int read = new_bit & LOCK_USAGE_READ_MASK;
4209 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4210 
4211 	/*
4212 	 * Validate that this particular lock does not have conflicting
4213 	 * usage states.
4214 	 */
4215 	if (!valid_state(curr, this, new_bit, excl_bit))
4216 		return 0;
4217 
4218 	/*
4219 	 * Check for read in write conflicts
4220 	 */
4221 	if (!read && !valid_state(curr, this, new_bit,
4222 				  excl_bit + LOCK_USAGE_READ_MASK))
4223 		return 0;
4224 
4225 
4226 	/*
4227 	 * Validate that the lock dependencies don't have conflicting usage
4228 	 * states.
4229 	 */
4230 	if (dir) {
4231 		/*
4232 		 * mark ENABLED has to look backwards -- to ensure no dependee
4233 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4234 		 */
4235 		if (!check_usage_backwards(curr, this, excl_bit))
4236 			return 0;
4237 	} else {
4238 		/*
4239 		 * mark USED_IN has to look forwards -- to ensure no dependency
4240 		 * has ENABLED state, which would allow recursion deadlocks.
4241 		 */
4242 		if (!check_usage_forwards(curr, this, excl_bit))
4243 			return 0;
4244 	}
4245 
4246 	if (state_verbose(new_bit, hlock_class(this)))
4247 		return 2;
4248 
4249 	return 1;
4250 }
4251 
4252 /*
4253  * Mark all held locks with a usage bit:
4254  */
4255 static int
4256 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4257 {
4258 	struct held_lock *hlock;
4259 	int i;
4260 
4261 	for (i = 0; i < curr->lockdep_depth; i++) {
4262 		enum lock_usage_bit hlock_bit = base_bit;
4263 		hlock = curr->held_locks + i;
4264 
4265 		if (hlock->read)
4266 			hlock_bit += LOCK_USAGE_READ_MASK;
4267 
4268 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4269 
4270 		if (!hlock->check)
4271 			continue;
4272 
4273 		if (!mark_lock(curr, hlock, hlock_bit))
4274 			return 0;
4275 	}
4276 
4277 	return 1;
4278 }
4279 
4280 /*
4281  * Hardirqs will be enabled:
4282  */
4283 static void __trace_hardirqs_on_caller(void)
4284 {
4285 	struct task_struct *curr = current;
4286 
4287 	/*
4288 	 * We are going to turn hardirqs on, so set the
4289 	 * usage bit for all held locks:
4290 	 */
4291 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4292 		return;
4293 	/*
4294 	 * If we have softirqs enabled, then set the usage
4295 	 * bit for all held locks. (disabled hardirqs prevented
4296 	 * this bit from being set before)
4297 	 */
4298 	if (curr->softirqs_enabled)
4299 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4300 }
4301 
4302 /**
4303  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4304  *
4305  * Invoked before a possible transition to RCU idle from exit to user or
4306  * guest mode. This ensures that all RCU operations are done before RCU
4307  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4308  * invoked to set the final state.
4309  */
4310 void lockdep_hardirqs_on_prepare(void)
4311 {
4312 	if (unlikely(!debug_locks))
4313 		return;
4314 
4315 	/*
4316 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4317 	 */
4318 	if (unlikely(in_nmi()))
4319 		return;
4320 
4321 	if (unlikely(this_cpu_read(lockdep_recursion)))
4322 		return;
4323 
4324 	if (unlikely(lockdep_hardirqs_enabled())) {
4325 		/*
4326 		 * Neither irq nor preemption are disabled here
4327 		 * so this is racy by nature but losing one hit
4328 		 * in a stat is not a big deal.
4329 		 */
4330 		__debug_atomic_inc(redundant_hardirqs_on);
4331 		return;
4332 	}
4333 
4334 	/*
4335 	 * We're enabling irqs and according to our state above irqs weren't
4336 	 * already enabled, yet we find the hardware thinks they are in fact
4337 	 * enabled.. someone messed up their IRQ state tracing.
4338 	 */
4339 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4340 		return;
4341 
4342 	/*
4343 	 * See the fine text that goes along with this variable definition.
4344 	 */
4345 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4346 		return;
4347 
4348 	/*
4349 	 * Can't allow enabling interrupts while in an interrupt handler,
4350 	 * that's general bad form and such. Recursion, limited stack etc..
4351 	 */
4352 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4353 		return;
4354 
4355 	current->hardirq_chain_key = current->curr_chain_key;
4356 
4357 	lockdep_recursion_inc();
4358 	__trace_hardirqs_on_caller();
4359 	lockdep_recursion_finish();
4360 }
4361 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4362 
4363 void noinstr lockdep_hardirqs_on(unsigned long ip)
4364 {
4365 	struct irqtrace_events *trace = &current->irqtrace;
4366 
4367 	if (unlikely(!debug_locks))
4368 		return;
4369 
4370 	/*
4371 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4372 	 * tracking state and hardware state are out of sync.
4373 	 *
4374 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4375 	 * and not rely on hardware state like normal interrupts.
4376 	 */
4377 	if (unlikely(in_nmi())) {
4378 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4379 			return;
4380 
4381 		/*
4382 		 * Skip:
4383 		 *  - recursion check, because NMI can hit lockdep;
4384 		 *  - hardware state check, because above;
4385 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4386 		 */
4387 		goto skip_checks;
4388 	}
4389 
4390 	if (unlikely(this_cpu_read(lockdep_recursion)))
4391 		return;
4392 
4393 	if (lockdep_hardirqs_enabled()) {
4394 		/*
4395 		 * Neither irq nor preemption are disabled here
4396 		 * so this is racy by nature but losing one hit
4397 		 * in a stat is not a big deal.
4398 		 */
4399 		__debug_atomic_inc(redundant_hardirqs_on);
4400 		return;
4401 	}
4402 
4403 	/*
4404 	 * We're enabling irqs and according to our state above irqs weren't
4405 	 * already enabled, yet we find the hardware thinks they are in fact
4406 	 * enabled.. someone messed up their IRQ state tracing.
4407 	 */
4408 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4409 		return;
4410 
4411 	/*
4412 	 * Ensure the lock stack remained unchanged between
4413 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4414 	 */
4415 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4416 			    current->curr_chain_key);
4417 
4418 skip_checks:
4419 	/* we'll do an OFF -> ON transition: */
4420 	__this_cpu_write(hardirqs_enabled, 1);
4421 	trace->hardirq_enable_ip = ip;
4422 	trace->hardirq_enable_event = ++trace->irq_events;
4423 	debug_atomic_inc(hardirqs_on_events);
4424 }
4425 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4426 
4427 /*
4428  * Hardirqs were disabled:
4429  */
4430 void noinstr lockdep_hardirqs_off(unsigned long ip)
4431 {
4432 	if (unlikely(!debug_locks))
4433 		return;
4434 
4435 	/*
4436 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4437 	 * they will restore the software state. This ensures the software
4438 	 * state is consistent inside NMIs as well.
4439 	 */
4440 	if (in_nmi()) {
4441 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4442 			return;
4443 	} else if (__this_cpu_read(lockdep_recursion))
4444 		return;
4445 
4446 	/*
4447 	 * So we're supposed to get called after you mask local IRQs, but for
4448 	 * some reason the hardware doesn't quite think you did a proper job.
4449 	 */
4450 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4451 		return;
4452 
4453 	if (lockdep_hardirqs_enabled()) {
4454 		struct irqtrace_events *trace = &current->irqtrace;
4455 
4456 		/*
4457 		 * We have done an ON -> OFF transition:
4458 		 */
4459 		__this_cpu_write(hardirqs_enabled, 0);
4460 		trace->hardirq_disable_ip = ip;
4461 		trace->hardirq_disable_event = ++trace->irq_events;
4462 		debug_atomic_inc(hardirqs_off_events);
4463 	} else {
4464 		debug_atomic_inc(redundant_hardirqs_off);
4465 	}
4466 }
4467 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4468 
4469 /*
4470  * Softirqs will be enabled:
4471  */
4472 void lockdep_softirqs_on(unsigned long ip)
4473 {
4474 	struct irqtrace_events *trace = &current->irqtrace;
4475 
4476 	if (unlikely(!lockdep_enabled()))
4477 		return;
4478 
4479 	/*
4480 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4481 	 * funny state and nesting things.
4482 	 */
4483 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4484 		return;
4485 
4486 	if (current->softirqs_enabled) {
4487 		debug_atomic_inc(redundant_softirqs_on);
4488 		return;
4489 	}
4490 
4491 	lockdep_recursion_inc();
4492 	/*
4493 	 * We'll do an OFF -> ON transition:
4494 	 */
4495 	current->softirqs_enabled = 1;
4496 	trace->softirq_enable_ip = ip;
4497 	trace->softirq_enable_event = ++trace->irq_events;
4498 	debug_atomic_inc(softirqs_on_events);
4499 	/*
4500 	 * We are going to turn softirqs on, so set the
4501 	 * usage bit for all held locks, if hardirqs are
4502 	 * enabled too:
4503 	 */
4504 	if (lockdep_hardirqs_enabled())
4505 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4506 	lockdep_recursion_finish();
4507 }
4508 
4509 /*
4510  * Softirqs were disabled:
4511  */
4512 void lockdep_softirqs_off(unsigned long ip)
4513 {
4514 	if (unlikely(!lockdep_enabled()))
4515 		return;
4516 
4517 	/*
4518 	 * We fancy IRQs being disabled here, see softirq.c
4519 	 */
4520 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4521 		return;
4522 
4523 	if (current->softirqs_enabled) {
4524 		struct irqtrace_events *trace = &current->irqtrace;
4525 
4526 		/*
4527 		 * We have done an ON -> OFF transition:
4528 		 */
4529 		current->softirqs_enabled = 0;
4530 		trace->softirq_disable_ip = ip;
4531 		trace->softirq_disable_event = ++trace->irq_events;
4532 		debug_atomic_inc(softirqs_off_events);
4533 		/*
4534 		 * Whoops, we wanted softirqs off, so why aren't they?
4535 		 */
4536 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4537 	} else
4538 		debug_atomic_inc(redundant_softirqs_off);
4539 }
4540 
4541 static int
4542 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4543 {
4544 	if (!check)
4545 		goto lock_used;
4546 
4547 	/*
4548 	 * If non-trylock use in a hardirq or softirq context, then
4549 	 * mark the lock as used in these contexts:
4550 	 */
4551 	if (!hlock->trylock) {
4552 		if (hlock->read) {
4553 			if (lockdep_hardirq_context())
4554 				if (!mark_lock(curr, hlock,
4555 						LOCK_USED_IN_HARDIRQ_READ))
4556 					return 0;
4557 			if (curr->softirq_context)
4558 				if (!mark_lock(curr, hlock,
4559 						LOCK_USED_IN_SOFTIRQ_READ))
4560 					return 0;
4561 		} else {
4562 			if (lockdep_hardirq_context())
4563 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4564 					return 0;
4565 			if (curr->softirq_context)
4566 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4567 					return 0;
4568 		}
4569 	}
4570 
4571 	/*
4572 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4573 	 * creates no critical section and no extra dependency can be introduced
4574 	 * by interrupts
4575 	 */
4576 	if (!hlock->hardirqs_off && !hlock->sync) {
4577 		if (hlock->read) {
4578 			if (!mark_lock(curr, hlock,
4579 					LOCK_ENABLED_HARDIRQ_READ))
4580 				return 0;
4581 			if (curr->softirqs_enabled)
4582 				if (!mark_lock(curr, hlock,
4583 						LOCK_ENABLED_SOFTIRQ_READ))
4584 					return 0;
4585 		} else {
4586 			if (!mark_lock(curr, hlock,
4587 					LOCK_ENABLED_HARDIRQ))
4588 				return 0;
4589 			if (curr->softirqs_enabled)
4590 				if (!mark_lock(curr, hlock,
4591 						LOCK_ENABLED_SOFTIRQ))
4592 					return 0;
4593 		}
4594 	}
4595 
4596 lock_used:
4597 	/* mark it as used: */
4598 	if (!mark_lock(curr, hlock, LOCK_USED))
4599 		return 0;
4600 
4601 	return 1;
4602 }
4603 
4604 static inline unsigned int task_irq_context(struct task_struct *task)
4605 {
4606 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4607 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4608 }
4609 
4610 static int separate_irq_context(struct task_struct *curr,
4611 		struct held_lock *hlock)
4612 {
4613 	unsigned int depth = curr->lockdep_depth;
4614 
4615 	/*
4616 	 * Keep track of points where we cross into an interrupt context:
4617 	 */
4618 	if (depth) {
4619 		struct held_lock *prev_hlock;
4620 
4621 		prev_hlock = curr->held_locks + depth-1;
4622 		/*
4623 		 * If we cross into another context, reset the
4624 		 * hash key (this also prevents the checking and the
4625 		 * adding of the dependency to 'prev'):
4626 		 */
4627 		if (prev_hlock->irq_context != hlock->irq_context)
4628 			return 1;
4629 	}
4630 	return 0;
4631 }
4632 
4633 /*
4634  * Mark a lock with a usage bit, and validate the state transition:
4635  */
4636 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4637 			     enum lock_usage_bit new_bit)
4638 {
4639 	unsigned int new_mask, ret = 1;
4640 
4641 	if (new_bit >= LOCK_USAGE_STATES) {
4642 		DEBUG_LOCKS_WARN_ON(1);
4643 		return 0;
4644 	}
4645 
4646 	if (new_bit == LOCK_USED && this->read)
4647 		new_bit = LOCK_USED_READ;
4648 
4649 	new_mask = 1 << new_bit;
4650 
4651 	/*
4652 	 * If already set then do not dirty the cacheline,
4653 	 * nor do any checks:
4654 	 */
4655 	if (likely(hlock_class(this)->usage_mask & new_mask))
4656 		return 1;
4657 
4658 	if (!graph_lock())
4659 		return 0;
4660 	/*
4661 	 * Make sure we didn't race:
4662 	 */
4663 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4664 		goto unlock;
4665 
4666 	if (!hlock_class(this)->usage_mask)
4667 		debug_atomic_dec(nr_unused_locks);
4668 
4669 	hlock_class(this)->usage_mask |= new_mask;
4670 
4671 	if (new_bit < LOCK_TRACE_STATES) {
4672 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4673 			return 0;
4674 	}
4675 
4676 	if (new_bit < LOCK_USED) {
4677 		ret = mark_lock_irq(curr, this, new_bit);
4678 		if (!ret)
4679 			return 0;
4680 	}
4681 
4682 unlock:
4683 	graph_unlock();
4684 
4685 	/*
4686 	 * We must printk outside of the graph_lock:
4687 	 */
4688 	if (ret == 2) {
4689 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4690 		print_lock(this);
4691 		print_irqtrace_events(curr);
4692 		dump_stack();
4693 	}
4694 
4695 	return ret;
4696 }
4697 
4698 static inline short task_wait_context(struct task_struct *curr)
4699 {
4700 	/*
4701 	 * Set appropriate wait type for the context; for IRQs we have to take
4702 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4703 	 */
4704 	if (lockdep_hardirq_context()) {
4705 		/*
4706 		 * Check if force_irqthreads will run us threaded.
4707 		 */
4708 		if (curr->hardirq_threaded || curr->irq_config)
4709 			return LD_WAIT_CONFIG;
4710 
4711 		return LD_WAIT_SPIN;
4712 	} else if (curr->softirq_context) {
4713 		/*
4714 		 * Softirqs are always threaded.
4715 		 */
4716 		return LD_WAIT_CONFIG;
4717 	}
4718 
4719 	return LD_WAIT_MAX;
4720 }
4721 
4722 static int
4723 print_lock_invalid_wait_context(struct task_struct *curr,
4724 				struct held_lock *hlock)
4725 {
4726 	short curr_inner;
4727 
4728 	if (!debug_locks_off())
4729 		return 0;
4730 	if (debug_locks_silent)
4731 		return 0;
4732 
4733 	pr_warn("\n");
4734 	pr_warn("=============================\n");
4735 	pr_warn("[ BUG: Invalid wait context ]\n");
4736 	print_kernel_ident();
4737 	pr_warn("-----------------------------\n");
4738 
4739 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4740 	print_lock(hlock);
4741 
4742 	pr_warn("other info that might help us debug this:\n");
4743 
4744 	curr_inner = task_wait_context(curr);
4745 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4746 
4747 	lockdep_print_held_locks(curr);
4748 
4749 	pr_warn("stack backtrace:\n");
4750 	dump_stack();
4751 
4752 	return 0;
4753 }
4754 
4755 /*
4756  * Verify the wait_type context.
4757  *
4758  * This check validates we take locks in the right wait-type order; that is it
4759  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4760  * acquire spinlocks inside raw_spinlocks and the sort.
4761  *
4762  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4763  * can be taken from (pretty much) any context but also has constraints.
4764  * However when taken in a stricter environment the RCU lock does not loosen
4765  * the constraints.
4766  *
4767  * Therefore we must look for the strictest environment in the lock stack and
4768  * compare that to the lock we're trying to acquire.
4769  */
4770 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4771 {
4772 	u8 next_inner = hlock_class(next)->wait_type_inner;
4773 	u8 next_outer = hlock_class(next)->wait_type_outer;
4774 	u8 curr_inner;
4775 	int depth;
4776 
4777 	if (!next_inner || next->trylock)
4778 		return 0;
4779 
4780 	if (!next_outer)
4781 		next_outer = next_inner;
4782 
4783 	/*
4784 	 * Find start of current irq_context..
4785 	 */
4786 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4787 		struct held_lock *prev = curr->held_locks + depth;
4788 		if (prev->irq_context != next->irq_context)
4789 			break;
4790 	}
4791 	depth++;
4792 
4793 	curr_inner = task_wait_context(curr);
4794 
4795 	for (; depth < curr->lockdep_depth; depth++) {
4796 		struct held_lock *prev = curr->held_locks + depth;
4797 		struct lock_class *class = hlock_class(prev);
4798 		u8 prev_inner = class->wait_type_inner;
4799 
4800 		if (prev_inner) {
4801 			/*
4802 			 * We can have a bigger inner than a previous one
4803 			 * when outer is smaller than inner, as with RCU.
4804 			 *
4805 			 * Also due to trylocks.
4806 			 */
4807 			curr_inner = min(curr_inner, prev_inner);
4808 
4809 			/*
4810 			 * Allow override for annotations -- this is typically
4811 			 * only valid/needed for code that only exists when
4812 			 * CONFIG_PREEMPT_RT=n.
4813 			 */
4814 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4815 				curr_inner = prev_inner;
4816 		}
4817 	}
4818 
4819 	if (next_outer > curr_inner)
4820 		return print_lock_invalid_wait_context(curr, next);
4821 
4822 	return 0;
4823 }
4824 
4825 #else /* CONFIG_PROVE_LOCKING */
4826 
4827 static inline int
4828 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4829 {
4830 	return 1;
4831 }
4832 
4833 static inline unsigned int task_irq_context(struct task_struct *task)
4834 {
4835 	return 0;
4836 }
4837 
4838 static inline int separate_irq_context(struct task_struct *curr,
4839 		struct held_lock *hlock)
4840 {
4841 	return 0;
4842 }
4843 
4844 static inline int check_wait_context(struct task_struct *curr,
4845 				     struct held_lock *next)
4846 {
4847 	return 0;
4848 }
4849 
4850 #endif /* CONFIG_PROVE_LOCKING */
4851 
4852 /*
4853  * Initialize a lock instance's lock-class mapping info:
4854  */
4855 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4856 			    struct lock_class_key *key, int subclass,
4857 			    u8 inner, u8 outer, u8 lock_type)
4858 {
4859 	int i;
4860 
4861 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4862 		lock->class_cache[i] = NULL;
4863 
4864 #ifdef CONFIG_LOCK_STAT
4865 	lock->cpu = raw_smp_processor_id();
4866 #endif
4867 
4868 	/*
4869 	 * Can't be having no nameless bastards around this place!
4870 	 */
4871 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4872 		lock->name = "NULL";
4873 		return;
4874 	}
4875 
4876 	lock->name = name;
4877 
4878 	lock->wait_type_outer = outer;
4879 	lock->wait_type_inner = inner;
4880 	lock->lock_type = lock_type;
4881 
4882 	/*
4883 	 * No key, no joy, we need to hash something.
4884 	 */
4885 	if (DEBUG_LOCKS_WARN_ON(!key))
4886 		return;
4887 	/*
4888 	 * Sanity check, the lock-class key must either have been allocated
4889 	 * statically or must have been registered as a dynamic key.
4890 	 */
4891 	if (!static_obj(key) && !is_dynamic_key(key)) {
4892 		if (debug_locks)
4893 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4894 		DEBUG_LOCKS_WARN_ON(1);
4895 		return;
4896 	}
4897 	lock->key = key;
4898 
4899 	if (unlikely(!debug_locks))
4900 		return;
4901 
4902 	if (subclass) {
4903 		unsigned long flags;
4904 
4905 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4906 			return;
4907 
4908 		raw_local_irq_save(flags);
4909 		lockdep_recursion_inc();
4910 		register_lock_class(lock, subclass, 1);
4911 		lockdep_recursion_finish();
4912 		raw_local_irq_restore(flags);
4913 	}
4914 }
4915 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4916 
4917 struct lock_class_key __lockdep_no_validate__;
4918 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4919 
4920 #ifdef CONFIG_PROVE_LOCKING
4921 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4922 			     lock_print_fn print_fn)
4923 {
4924 	struct lock_class *class = lock->class_cache[0];
4925 	unsigned long flags;
4926 
4927 	raw_local_irq_save(flags);
4928 	lockdep_recursion_inc();
4929 
4930 	if (!class)
4931 		class = register_lock_class(lock, 0, 0);
4932 
4933 	if (class) {
4934 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4935 		WARN_ON(class->print_fn && class->print_fn != print_fn);
4936 
4937 		class->cmp_fn	= cmp_fn;
4938 		class->print_fn = print_fn;
4939 	}
4940 
4941 	lockdep_recursion_finish();
4942 	raw_local_irq_restore(flags);
4943 }
4944 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4945 #endif
4946 
4947 static void
4948 print_lock_nested_lock_not_held(struct task_struct *curr,
4949 				struct held_lock *hlock)
4950 {
4951 	if (!debug_locks_off())
4952 		return;
4953 	if (debug_locks_silent)
4954 		return;
4955 
4956 	pr_warn("\n");
4957 	pr_warn("==================================\n");
4958 	pr_warn("WARNING: Nested lock was not taken\n");
4959 	print_kernel_ident();
4960 	pr_warn("----------------------------------\n");
4961 
4962 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4963 	print_lock(hlock);
4964 
4965 	pr_warn("\nbut this task is not holding:\n");
4966 	pr_warn("%s\n", hlock->nest_lock->name);
4967 
4968 	pr_warn("\nstack backtrace:\n");
4969 	dump_stack();
4970 
4971 	pr_warn("\nother info that might help us debug this:\n");
4972 	lockdep_print_held_locks(curr);
4973 
4974 	pr_warn("\nstack backtrace:\n");
4975 	dump_stack();
4976 }
4977 
4978 static int __lock_is_held(const struct lockdep_map *lock, int read);
4979 
4980 /*
4981  * This gets called for every mutex_lock*()/spin_lock*() operation.
4982  * We maintain the dependency maps and validate the locking attempt:
4983  *
4984  * The callers must make sure that IRQs are disabled before calling it,
4985  * otherwise we could get an interrupt which would want to take locks,
4986  * which would end up in lockdep again.
4987  */
4988 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4989 			  int trylock, int read, int check, int hardirqs_off,
4990 			  struct lockdep_map *nest_lock, unsigned long ip,
4991 			  int references, int pin_count, int sync)
4992 {
4993 	struct task_struct *curr = current;
4994 	struct lock_class *class = NULL;
4995 	struct held_lock *hlock;
4996 	unsigned int depth;
4997 	int chain_head = 0;
4998 	int class_idx;
4999 	u64 chain_key;
5000 
5001 	if (unlikely(!debug_locks))
5002 		return 0;
5003 
5004 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5005 		check = 0;
5006 
5007 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5008 		class = lock->class_cache[subclass];
5009 	/*
5010 	 * Not cached?
5011 	 */
5012 	if (unlikely(!class)) {
5013 		class = register_lock_class(lock, subclass, 0);
5014 		if (!class)
5015 			return 0;
5016 	}
5017 
5018 	debug_class_ops_inc(class);
5019 
5020 	if (very_verbose(class)) {
5021 		printk("\nacquire class [%px] %s", class->key, class->name);
5022 		if (class->name_version > 1)
5023 			printk(KERN_CONT "#%d", class->name_version);
5024 		printk(KERN_CONT "\n");
5025 		dump_stack();
5026 	}
5027 
5028 	/*
5029 	 * Add the lock to the list of currently held locks.
5030 	 * (we dont increase the depth just yet, up until the
5031 	 * dependency checks are done)
5032 	 */
5033 	depth = curr->lockdep_depth;
5034 	/*
5035 	 * Ran out of static storage for our per-task lock stack again have we?
5036 	 */
5037 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5038 		return 0;
5039 
5040 	class_idx = class - lock_classes;
5041 
5042 	if (depth && !sync) {
5043 		/* we're holding locks and the new held lock is not a sync */
5044 		hlock = curr->held_locks + depth - 1;
5045 		if (hlock->class_idx == class_idx && nest_lock) {
5046 			if (!references)
5047 				references++;
5048 
5049 			if (!hlock->references)
5050 				hlock->references++;
5051 
5052 			hlock->references += references;
5053 
5054 			/* Overflow */
5055 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5056 				return 0;
5057 
5058 			return 2;
5059 		}
5060 	}
5061 
5062 	hlock = curr->held_locks + depth;
5063 	/*
5064 	 * Plain impossible, we just registered it and checked it weren't no
5065 	 * NULL like.. I bet this mushroom I ate was good!
5066 	 */
5067 	if (DEBUG_LOCKS_WARN_ON(!class))
5068 		return 0;
5069 	hlock->class_idx = class_idx;
5070 	hlock->acquire_ip = ip;
5071 	hlock->instance = lock;
5072 	hlock->nest_lock = nest_lock;
5073 	hlock->irq_context = task_irq_context(curr);
5074 	hlock->trylock = trylock;
5075 	hlock->read = read;
5076 	hlock->check = check;
5077 	hlock->sync = !!sync;
5078 	hlock->hardirqs_off = !!hardirqs_off;
5079 	hlock->references = references;
5080 #ifdef CONFIG_LOCK_STAT
5081 	hlock->waittime_stamp = 0;
5082 	hlock->holdtime_stamp = lockstat_clock();
5083 #endif
5084 	hlock->pin_count = pin_count;
5085 
5086 	if (check_wait_context(curr, hlock))
5087 		return 0;
5088 
5089 	/* Initialize the lock usage bit */
5090 	if (!mark_usage(curr, hlock, check))
5091 		return 0;
5092 
5093 	/*
5094 	 * Calculate the chain hash: it's the combined hash of all the
5095 	 * lock keys along the dependency chain. We save the hash value
5096 	 * at every step so that we can get the current hash easily
5097 	 * after unlock. The chain hash is then used to cache dependency
5098 	 * results.
5099 	 *
5100 	 * The 'key ID' is what is the most compact key value to drive
5101 	 * the hash, not class->key.
5102 	 */
5103 	/*
5104 	 * Whoops, we did it again.. class_idx is invalid.
5105 	 */
5106 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5107 		return 0;
5108 
5109 	chain_key = curr->curr_chain_key;
5110 	if (!depth) {
5111 		/*
5112 		 * How can we have a chain hash when we ain't got no keys?!
5113 		 */
5114 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5115 			return 0;
5116 		chain_head = 1;
5117 	}
5118 
5119 	hlock->prev_chain_key = chain_key;
5120 	if (separate_irq_context(curr, hlock)) {
5121 		chain_key = INITIAL_CHAIN_KEY;
5122 		chain_head = 1;
5123 	}
5124 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5125 
5126 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5127 		print_lock_nested_lock_not_held(curr, hlock);
5128 		return 0;
5129 	}
5130 
5131 	if (!debug_locks_silent) {
5132 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5133 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5134 	}
5135 
5136 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5137 		return 0;
5138 
5139 	/* For lock_sync(), we are done here since no actual critical section */
5140 	if (hlock->sync)
5141 		return 1;
5142 
5143 	curr->curr_chain_key = chain_key;
5144 	curr->lockdep_depth++;
5145 	check_chain_key(curr);
5146 #ifdef CONFIG_DEBUG_LOCKDEP
5147 	if (unlikely(!debug_locks))
5148 		return 0;
5149 #endif
5150 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5151 		debug_locks_off();
5152 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5153 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5154 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5155 
5156 		lockdep_print_held_locks(current);
5157 		debug_show_all_locks();
5158 		dump_stack();
5159 
5160 		return 0;
5161 	}
5162 
5163 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5164 		max_lockdep_depth = curr->lockdep_depth;
5165 
5166 	return 1;
5167 }
5168 
5169 static void print_unlock_imbalance_bug(struct task_struct *curr,
5170 				       struct lockdep_map *lock,
5171 				       unsigned long ip)
5172 {
5173 	if (!debug_locks_off())
5174 		return;
5175 	if (debug_locks_silent)
5176 		return;
5177 
5178 	pr_warn("\n");
5179 	pr_warn("=====================================\n");
5180 	pr_warn("WARNING: bad unlock balance detected!\n");
5181 	print_kernel_ident();
5182 	pr_warn("-------------------------------------\n");
5183 	pr_warn("%s/%d is trying to release lock (",
5184 		curr->comm, task_pid_nr(curr));
5185 	print_lockdep_cache(lock);
5186 	pr_cont(") at:\n");
5187 	print_ip_sym(KERN_WARNING, ip);
5188 	pr_warn("but there are no more locks to release!\n");
5189 	pr_warn("\nother info that might help us debug this:\n");
5190 	lockdep_print_held_locks(curr);
5191 
5192 	pr_warn("\nstack backtrace:\n");
5193 	dump_stack();
5194 }
5195 
5196 static noinstr int match_held_lock(const struct held_lock *hlock,
5197 				   const struct lockdep_map *lock)
5198 {
5199 	if (hlock->instance == lock)
5200 		return 1;
5201 
5202 	if (hlock->references) {
5203 		const struct lock_class *class = lock->class_cache[0];
5204 
5205 		if (!class)
5206 			class = look_up_lock_class(lock, 0);
5207 
5208 		/*
5209 		 * If look_up_lock_class() failed to find a class, we're trying
5210 		 * to test if we hold a lock that has never yet been acquired.
5211 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5212 		 * holding it either, so report failure.
5213 		 */
5214 		if (!class)
5215 			return 0;
5216 
5217 		/*
5218 		 * References, but not a lock we're actually ref-counting?
5219 		 * State got messed up, follow the sites that change ->references
5220 		 * and try to make sense of it.
5221 		 */
5222 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5223 			return 0;
5224 
5225 		if (hlock->class_idx == class - lock_classes)
5226 			return 1;
5227 	}
5228 
5229 	return 0;
5230 }
5231 
5232 /* @depth must not be zero */
5233 static struct held_lock *find_held_lock(struct task_struct *curr,
5234 					struct lockdep_map *lock,
5235 					unsigned int depth, int *idx)
5236 {
5237 	struct held_lock *ret, *hlock, *prev_hlock;
5238 	int i;
5239 
5240 	i = depth - 1;
5241 	hlock = curr->held_locks + i;
5242 	ret = hlock;
5243 	if (match_held_lock(hlock, lock))
5244 		goto out;
5245 
5246 	ret = NULL;
5247 	for (i--, prev_hlock = hlock--;
5248 	     i >= 0;
5249 	     i--, prev_hlock = hlock--) {
5250 		/*
5251 		 * We must not cross into another context:
5252 		 */
5253 		if (prev_hlock->irq_context != hlock->irq_context) {
5254 			ret = NULL;
5255 			break;
5256 		}
5257 		if (match_held_lock(hlock, lock)) {
5258 			ret = hlock;
5259 			break;
5260 		}
5261 	}
5262 
5263 out:
5264 	*idx = i;
5265 	return ret;
5266 }
5267 
5268 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5269 				int idx, unsigned int *merged)
5270 {
5271 	struct held_lock *hlock;
5272 	int first_idx = idx;
5273 
5274 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5275 		return 0;
5276 
5277 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5278 		switch (__lock_acquire(hlock->instance,
5279 				    hlock_class(hlock)->subclass,
5280 				    hlock->trylock,
5281 				    hlock->read, hlock->check,
5282 				    hlock->hardirqs_off,
5283 				    hlock->nest_lock, hlock->acquire_ip,
5284 				    hlock->references, hlock->pin_count, 0)) {
5285 		case 0:
5286 			return 1;
5287 		case 1:
5288 			break;
5289 		case 2:
5290 			*merged += (idx == first_idx);
5291 			break;
5292 		default:
5293 			WARN_ON(1);
5294 			return 0;
5295 		}
5296 	}
5297 	return 0;
5298 }
5299 
5300 static int
5301 __lock_set_class(struct lockdep_map *lock, const char *name,
5302 		 struct lock_class_key *key, unsigned int subclass,
5303 		 unsigned long ip)
5304 {
5305 	struct task_struct *curr = current;
5306 	unsigned int depth, merged = 0;
5307 	struct held_lock *hlock;
5308 	struct lock_class *class;
5309 	int i;
5310 
5311 	if (unlikely(!debug_locks))
5312 		return 0;
5313 
5314 	depth = curr->lockdep_depth;
5315 	/*
5316 	 * This function is about (re)setting the class of a held lock,
5317 	 * yet we're not actually holding any locks. Naughty user!
5318 	 */
5319 	if (DEBUG_LOCKS_WARN_ON(!depth))
5320 		return 0;
5321 
5322 	hlock = find_held_lock(curr, lock, depth, &i);
5323 	if (!hlock) {
5324 		print_unlock_imbalance_bug(curr, lock, ip);
5325 		return 0;
5326 	}
5327 
5328 	lockdep_init_map_type(lock, name, key, 0,
5329 			      lock->wait_type_inner,
5330 			      lock->wait_type_outer,
5331 			      lock->lock_type);
5332 	class = register_lock_class(lock, subclass, 0);
5333 	hlock->class_idx = class - lock_classes;
5334 
5335 	curr->lockdep_depth = i;
5336 	curr->curr_chain_key = hlock->prev_chain_key;
5337 
5338 	if (reacquire_held_locks(curr, depth, i, &merged))
5339 		return 0;
5340 
5341 	/*
5342 	 * I took it apart and put it back together again, except now I have
5343 	 * these 'spare' parts.. where shall I put them.
5344 	 */
5345 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5346 		return 0;
5347 	return 1;
5348 }
5349 
5350 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5351 {
5352 	struct task_struct *curr = current;
5353 	unsigned int depth, merged = 0;
5354 	struct held_lock *hlock;
5355 	int i;
5356 
5357 	if (unlikely(!debug_locks))
5358 		return 0;
5359 
5360 	depth = curr->lockdep_depth;
5361 	/*
5362 	 * This function is about (re)setting the class of a held lock,
5363 	 * yet we're not actually holding any locks. Naughty user!
5364 	 */
5365 	if (DEBUG_LOCKS_WARN_ON(!depth))
5366 		return 0;
5367 
5368 	hlock = find_held_lock(curr, lock, depth, &i);
5369 	if (!hlock) {
5370 		print_unlock_imbalance_bug(curr, lock, ip);
5371 		return 0;
5372 	}
5373 
5374 	curr->lockdep_depth = i;
5375 	curr->curr_chain_key = hlock->prev_chain_key;
5376 
5377 	WARN(hlock->read, "downgrading a read lock");
5378 	hlock->read = 1;
5379 	hlock->acquire_ip = ip;
5380 
5381 	if (reacquire_held_locks(curr, depth, i, &merged))
5382 		return 0;
5383 
5384 	/* Merging can't happen with unchanged classes.. */
5385 	if (DEBUG_LOCKS_WARN_ON(merged))
5386 		return 0;
5387 
5388 	/*
5389 	 * I took it apart and put it back together again, except now I have
5390 	 * these 'spare' parts.. where shall I put them.
5391 	 */
5392 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5393 		return 0;
5394 
5395 	return 1;
5396 }
5397 
5398 /*
5399  * Remove the lock from the list of currently held locks - this gets
5400  * called on mutex_unlock()/spin_unlock*() (or on a failed
5401  * mutex_lock_interruptible()).
5402  */
5403 static int
5404 __lock_release(struct lockdep_map *lock, unsigned long ip)
5405 {
5406 	struct task_struct *curr = current;
5407 	unsigned int depth, merged = 1;
5408 	struct held_lock *hlock;
5409 	int i;
5410 
5411 	if (unlikely(!debug_locks))
5412 		return 0;
5413 
5414 	depth = curr->lockdep_depth;
5415 	/*
5416 	 * So we're all set to release this lock.. wait what lock? We don't
5417 	 * own any locks, you've been drinking again?
5418 	 */
5419 	if (depth <= 0) {
5420 		print_unlock_imbalance_bug(curr, lock, ip);
5421 		return 0;
5422 	}
5423 
5424 	/*
5425 	 * Check whether the lock exists in the current stack
5426 	 * of held locks:
5427 	 */
5428 	hlock = find_held_lock(curr, lock, depth, &i);
5429 	if (!hlock) {
5430 		print_unlock_imbalance_bug(curr, lock, ip);
5431 		return 0;
5432 	}
5433 
5434 	if (hlock->instance == lock)
5435 		lock_release_holdtime(hlock);
5436 
5437 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5438 
5439 	if (hlock->references) {
5440 		hlock->references--;
5441 		if (hlock->references) {
5442 			/*
5443 			 * We had, and after removing one, still have
5444 			 * references, the current lock stack is still
5445 			 * valid. We're done!
5446 			 */
5447 			return 1;
5448 		}
5449 	}
5450 
5451 	/*
5452 	 * We have the right lock to unlock, 'hlock' points to it.
5453 	 * Now we remove it from the stack, and add back the other
5454 	 * entries (if any), recalculating the hash along the way:
5455 	 */
5456 
5457 	curr->lockdep_depth = i;
5458 	curr->curr_chain_key = hlock->prev_chain_key;
5459 
5460 	/*
5461 	 * The most likely case is when the unlock is on the innermost
5462 	 * lock. In this case, we are done!
5463 	 */
5464 	if (i == depth-1)
5465 		return 1;
5466 
5467 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5468 		return 0;
5469 
5470 	/*
5471 	 * We had N bottles of beer on the wall, we drank one, but now
5472 	 * there's not N-1 bottles of beer left on the wall...
5473 	 * Pouring two of the bottles together is acceptable.
5474 	 */
5475 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5476 
5477 	/*
5478 	 * Since reacquire_held_locks() would have called check_chain_key()
5479 	 * indirectly via __lock_acquire(), we don't need to do it again
5480 	 * on return.
5481 	 */
5482 	return 0;
5483 }
5484 
5485 static __always_inline
5486 int __lock_is_held(const struct lockdep_map *lock, int read)
5487 {
5488 	struct task_struct *curr = current;
5489 	int i;
5490 
5491 	for (i = 0; i < curr->lockdep_depth; i++) {
5492 		struct held_lock *hlock = curr->held_locks + i;
5493 
5494 		if (match_held_lock(hlock, lock)) {
5495 			if (read == -1 || !!hlock->read == read)
5496 				return LOCK_STATE_HELD;
5497 
5498 			return LOCK_STATE_NOT_HELD;
5499 		}
5500 	}
5501 
5502 	return LOCK_STATE_NOT_HELD;
5503 }
5504 
5505 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5506 {
5507 	struct pin_cookie cookie = NIL_COOKIE;
5508 	struct task_struct *curr = current;
5509 	int i;
5510 
5511 	if (unlikely(!debug_locks))
5512 		return cookie;
5513 
5514 	for (i = 0; i < curr->lockdep_depth; i++) {
5515 		struct held_lock *hlock = curr->held_locks + i;
5516 
5517 		if (match_held_lock(hlock, lock)) {
5518 			/*
5519 			 * Grab 16bits of randomness; this is sufficient to not
5520 			 * be guessable and still allows some pin nesting in
5521 			 * our u32 pin_count.
5522 			 */
5523 			cookie.val = 1 + (sched_clock() & 0xffff);
5524 			hlock->pin_count += cookie.val;
5525 			return cookie;
5526 		}
5527 	}
5528 
5529 	WARN(1, "pinning an unheld lock\n");
5530 	return cookie;
5531 }
5532 
5533 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5534 {
5535 	struct task_struct *curr = current;
5536 	int i;
5537 
5538 	if (unlikely(!debug_locks))
5539 		return;
5540 
5541 	for (i = 0; i < curr->lockdep_depth; i++) {
5542 		struct held_lock *hlock = curr->held_locks + i;
5543 
5544 		if (match_held_lock(hlock, lock)) {
5545 			hlock->pin_count += cookie.val;
5546 			return;
5547 		}
5548 	}
5549 
5550 	WARN(1, "pinning an unheld lock\n");
5551 }
5552 
5553 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5554 {
5555 	struct task_struct *curr = current;
5556 	int i;
5557 
5558 	if (unlikely(!debug_locks))
5559 		return;
5560 
5561 	for (i = 0; i < curr->lockdep_depth; i++) {
5562 		struct held_lock *hlock = curr->held_locks + i;
5563 
5564 		if (match_held_lock(hlock, lock)) {
5565 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5566 				return;
5567 
5568 			hlock->pin_count -= cookie.val;
5569 
5570 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5571 				hlock->pin_count = 0;
5572 
5573 			return;
5574 		}
5575 	}
5576 
5577 	WARN(1, "unpinning an unheld lock\n");
5578 }
5579 
5580 /*
5581  * Check whether we follow the irq-flags state precisely:
5582  */
5583 static noinstr void check_flags(unsigned long flags)
5584 {
5585 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5586 	if (!debug_locks)
5587 		return;
5588 
5589 	/* Get the warning out..  */
5590 	instrumentation_begin();
5591 
5592 	if (irqs_disabled_flags(flags)) {
5593 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5594 			printk("possible reason: unannotated irqs-off.\n");
5595 		}
5596 	} else {
5597 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5598 			printk("possible reason: unannotated irqs-on.\n");
5599 		}
5600 	}
5601 
5602 #ifndef CONFIG_PREEMPT_RT
5603 	/*
5604 	 * We dont accurately track softirq state in e.g.
5605 	 * hardirq contexts (such as on 4KSTACKS), so only
5606 	 * check if not in hardirq contexts:
5607 	 */
5608 	if (!hardirq_count()) {
5609 		if (softirq_count()) {
5610 			/* like the above, but with softirqs */
5611 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5612 		} else {
5613 			/* lick the above, does it taste good? */
5614 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5615 		}
5616 	}
5617 #endif
5618 
5619 	if (!debug_locks)
5620 		print_irqtrace_events(current);
5621 
5622 	instrumentation_end();
5623 #endif
5624 }
5625 
5626 void lock_set_class(struct lockdep_map *lock, const char *name,
5627 		    struct lock_class_key *key, unsigned int subclass,
5628 		    unsigned long ip)
5629 {
5630 	unsigned long flags;
5631 
5632 	if (unlikely(!lockdep_enabled()))
5633 		return;
5634 
5635 	raw_local_irq_save(flags);
5636 	lockdep_recursion_inc();
5637 	check_flags(flags);
5638 	if (__lock_set_class(lock, name, key, subclass, ip))
5639 		check_chain_key(current);
5640 	lockdep_recursion_finish();
5641 	raw_local_irq_restore(flags);
5642 }
5643 EXPORT_SYMBOL_GPL(lock_set_class);
5644 
5645 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5646 {
5647 	unsigned long flags;
5648 
5649 	if (unlikely(!lockdep_enabled()))
5650 		return;
5651 
5652 	raw_local_irq_save(flags);
5653 	lockdep_recursion_inc();
5654 	check_flags(flags);
5655 	if (__lock_downgrade(lock, ip))
5656 		check_chain_key(current);
5657 	lockdep_recursion_finish();
5658 	raw_local_irq_restore(flags);
5659 }
5660 EXPORT_SYMBOL_GPL(lock_downgrade);
5661 
5662 /* NMI context !!! */
5663 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5664 {
5665 #ifdef CONFIG_PROVE_LOCKING
5666 	struct lock_class *class = look_up_lock_class(lock, subclass);
5667 	unsigned long mask = LOCKF_USED;
5668 
5669 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5670 	if (!class)
5671 		return;
5672 
5673 	/*
5674 	 * READ locks only conflict with USED, such that if we only ever use
5675 	 * READ locks, there is no deadlock possible -- RCU.
5676 	 */
5677 	if (!hlock->read)
5678 		mask |= LOCKF_USED_READ;
5679 
5680 	if (!(class->usage_mask & mask))
5681 		return;
5682 
5683 	hlock->class_idx = class - lock_classes;
5684 
5685 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5686 #endif
5687 }
5688 
5689 static bool lockdep_nmi(void)
5690 {
5691 	if (raw_cpu_read(lockdep_recursion))
5692 		return false;
5693 
5694 	if (!in_nmi())
5695 		return false;
5696 
5697 	return true;
5698 }
5699 
5700 /*
5701  * read_lock() is recursive if:
5702  * 1. We force lockdep think this way in selftests or
5703  * 2. The implementation is not queued read/write lock or
5704  * 3. The locker is at an in_interrupt() context.
5705  */
5706 bool read_lock_is_recursive(void)
5707 {
5708 	return force_read_lock_recursive ||
5709 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5710 	       in_interrupt();
5711 }
5712 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5713 
5714 /*
5715  * We are not always called with irqs disabled - do that here,
5716  * and also avoid lockdep recursion:
5717  */
5718 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5719 			  int trylock, int read, int check,
5720 			  struct lockdep_map *nest_lock, unsigned long ip)
5721 {
5722 	unsigned long flags;
5723 
5724 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5725 
5726 	if (!debug_locks)
5727 		return;
5728 
5729 	if (unlikely(!lockdep_enabled())) {
5730 		/* XXX allow trylock from NMI ?!? */
5731 		if (lockdep_nmi() && !trylock) {
5732 			struct held_lock hlock;
5733 
5734 			hlock.acquire_ip = ip;
5735 			hlock.instance = lock;
5736 			hlock.nest_lock = nest_lock;
5737 			hlock.irq_context = 2; // XXX
5738 			hlock.trylock = trylock;
5739 			hlock.read = read;
5740 			hlock.check = check;
5741 			hlock.hardirqs_off = true;
5742 			hlock.references = 0;
5743 
5744 			verify_lock_unused(lock, &hlock, subclass);
5745 		}
5746 		return;
5747 	}
5748 
5749 	raw_local_irq_save(flags);
5750 	check_flags(flags);
5751 
5752 	lockdep_recursion_inc();
5753 	__lock_acquire(lock, subclass, trylock, read, check,
5754 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5755 	lockdep_recursion_finish();
5756 	raw_local_irq_restore(flags);
5757 }
5758 EXPORT_SYMBOL_GPL(lock_acquire);
5759 
5760 void lock_release(struct lockdep_map *lock, unsigned long ip)
5761 {
5762 	unsigned long flags;
5763 
5764 	trace_lock_release(lock, ip);
5765 
5766 	if (unlikely(!lockdep_enabled()))
5767 		return;
5768 
5769 	raw_local_irq_save(flags);
5770 	check_flags(flags);
5771 
5772 	lockdep_recursion_inc();
5773 	if (__lock_release(lock, ip))
5774 		check_chain_key(current);
5775 	lockdep_recursion_finish();
5776 	raw_local_irq_restore(flags);
5777 }
5778 EXPORT_SYMBOL_GPL(lock_release);
5779 
5780 /*
5781  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5782  *
5783  * No actual critical section is created by the APIs annotated with this: these
5784  * APIs are used to wait for one or multiple critical sections (on other CPUs
5785  * or threads), and it means that calling these APIs inside these critical
5786  * sections is potential deadlock.
5787  */
5788 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5789 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5790 {
5791 	unsigned long flags;
5792 
5793 	if (unlikely(!lockdep_enabled()))
5794 		return;
5795 
5796 	raw_local_irq_save(flags);
5797 	check_flags(flags);
5798 
5799 	lockdep_recursion_inc();
5800 	__lock_acquire(lock, subclass, 0, read, check,
5801 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5802 	check_chain_key(current);
5803 	lockdep_recursion_finish();
5804 	raw_local_irq_restore(flags);
5805 }
5806 EXPORT_SYMBOL_GPL(lock_sync);
5807 
5808 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5809 {
5810 	unsigned long flags;
5811 	int ret = LOCK_STATE_NOT_HELD;
5812 
5813 	/*
5814 	 * Avoid false negative lockdep_assert_held() and
5815 	 * lockdep_assert_not_held().
5816 	 */
5817 	if (unlikely(!lockdep_enabled()))
5818 		return LOCK_STATE_UNKNOWN;
5819 
5820 	raw_local_irq_save(flags);
5821 	check_flags(flags);
5822 
5823 	lockdep_recursion_inc();
5824 	ret = __lock_is_held(lock, read);
5825 	lockdep_recursion_finish();
5826 	raw_local_irq_restore(flags);
5827 
5828 	return ret;
5829 }
5830 EXPORT_SYMBOL_GPL(lock_is_held_type);
5831 NOKPROBE_SYMBOL(lock_is_held_type);
5832 
5833 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5834 {
5835 	struct pin_cookie cookie = NIL_COOKIE;
5836 	unsigned long flags;
5837 
5838 	if (unlikely(!lockdep_enabled()))
5839 		return cookie;
5840 
5841 	raw_local_irq_save(flags);
5842 	check_flags(flags);
5843 
5844 	lockdep_recursion_inc();
5845 	cookie = __lock_pin_lock(lock);
5846 	lockdep_recursion_finish();
5847 	raw_local_irq_restore(flags);
5848 
5849 	return cookie;
5850 }
5851 EXPORT_SYMBOL_GPL(lock_pin_lock);
5852 
5853 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5854 {
5855 	unsigned long flags;
5856 
5857 	if (unlikely(!lockdep_enabled()))
5858 		return;
5859 
5860 	raw_local_irq_save(flags);
5861 	check_flags(flags);
5862 
5863 	lockdep_recursion_inc();
5864 	__lock_repin_lock(lock, cookie);
5865 	lockdep_recursion_finish();
5866 	raw_local_irq_restore(flags);
5867 }
5868 EXPORT_SYMBOL_GPL(lock_repin_lock);
5869 
5870 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5871 {
5872 	unsigned long flags;
5873 
5874 	if (unlikely(!lockdep_enabled()))
5875 		return;
5876 
5877 	raw_local_irq_save(flags);
5878 	check_flags(flags);
5879 
5880 	lockdep_recursion_inc();
5881 	__lock_unpin_lock(lock, cookie);
5882 	lockdep_recursion_finish();
5883 	raw_local_irq_restore(flags);
5884 }
5885 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5886 
5887 #ifdef CONFIG_LOCK_STAT
5888 static void print_lock_contention_bug(struct task_struct *curr,
5889 				      struct lockdep_map *lock,
5890 				      unsigned long ip)
5891 {
5892 	if (!debug_locks_off())
5893 		return;
5894 	if (debug_locks_silent)
5895 		return;
5896 
5897 	pr_warn("\n");
5898 	pr_warn("=================================\n");
5899 	pr_warn("WARNING: bad contention detected!\n");
5900 	print_kernel_ident();
5901 	pr_warn("---------------------------------\n");
5902 	pr_warn("%s/%d is trying to contend lock (",
5903 		curr->comm, task_pid_nr(curr));
5904 	print_lockdep_cache(lock);
5905 	pr_cont(") at:\n");
5906 	print_ip_sym(KERN_WARNING, ip);
5907 	pr_warn("but there are no locks held!\n");
5908 	pr_warn("\nother info that might help us debug this:\n");
5909 	lockdep_print_held_locks(curr);
5910 
5911 	pr_warn("\nstack backtrace:\n");
5912 	dump_stack();
5913 }
5914 
5915 static void
5916 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5917 {
5918 	struct task_struct *curr = current;
5919 	struct held_lock *hlock;
5920 	struct lock_class_stats *stats;
5921 	unsigned int depth;
5922 	int i, contention_point, contending_point;
5923 
5924 	depth = curr->lockdep_depth;
5925 	/*
5926 	 * Whee, we contended on this lock, except it seems we're not
5927 	 * actually trying to acquire anything much at all..
5928 	 */
5929 	if (DEBUG_LOCKS_WARN_ON(!depth))
5930 		return;
5931 
5932 	hlock = find_held_lock(curr, lock, depth, &i);
5933 	if (!hlock) {
5934 		print_lock_contention_bug(curr, lock, ip);
5935 		return;
5936 	}
5937 
5938 	if (hlock->instance != lock)
5939 		return;
5940 
5941 	hlock->waittime_stamp = lockstat_clock();
5942 
5943 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5944 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5945 				      lock->ip);
5946 
5947 	stats = get_lock_stats(hlock_class(hlock));
5948 	if (contention_point < LOCKSTAT_POINTS)
5949 		stats->contention_point[contention_point]++;
5950 	if (contending_point < LOCKSTAT_POINTS)
5951 		stats->contending_point[contending_point]++;
5952 	if (lock->cpu != smp_processor_id())
5953 		stats->bounces[bounce_contended + !!hlock->read]++;
5954 }
5955 
5956 static void
5957 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5958 {
5959 	struct task_struct *curr = current;
5960 	struct held_lock *hlock;
5961 	struct lock_class_stats *stats;
5962 	unsigned int depth;
5963 	u64 now, waittime = 0;
5964 	int i, cpu;
5965 
5966 	depth = curr->lockdep_depth;
5967 	/*
5968 	 * Yay, we acquired ownership of this lock we didn't try to
5969 	 * acquire, how the heck did that happen?
5970 	 */
5971 	if (DEBUG_LOCKS_WARN_ON(!depth))
5972 		return;
5973 
5974 	hlock = find_held_lock(curr, lock, depth, &i);
5975 	if (!hlock) {
5976 		print_lock_contention_bug(curr, lock, _RET_IP_);
5977 		return;
5978 	}
5979 
5980 	if (hlock->instance != lock)
5981 		return;
5982 
5983 	cpu = smp_processor_id();
5984 	if (hlock->waittime_stamp) {
5985 		now = lockstat_clock();
5986 		waittime = now - hlock->waittime_stamp;
5987 		hlock->holdtime_stamp = now;
5988 	}
5989 
5990 	stats = get_lock_stats(hlock_class(hlock));
5991 	if (waittime) {
5992 		if (hlock->read)
5993 			lock_time_inc(&stats->read_waittime, waittime);
5994 		else
5995 			lock_time_inc(&stats->write_waittime, waittime);
5996 	}
5997 	if (lock->cpu != cpu)
5998 		stats->bounces[bounce_acquired + !!hlock->read]++;
5999 
6000 	lock->cpu = cpu;
6001 	lock->ip = ip;
6002 }
6003 
6004 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6005 {
6006 	unsigned long flags;
6007 
6008 	trace_lock_contended(lock, ip);
6009 
6010 	if (unlikely(!lock_stat || !lockdep_enabled()))
6011 		return;
6012 
6013 	raw_local_irq_save(flags);
6014 	check_flags(flags);
6015 	lockdep_recursion_inc();
6016 	__lock_contended(lock, ip);
6017 	lockdep_recursion_finish();
6018 	raw_local_irq_restore(flags);
6019 }
6020 EXPORT_SYMBOL_GPL(lock_contended);
6021 
6022 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6023 {
6024 	unsigned long flags;
6025 
6026 	trace_lock_acquired(lock, ip);
6027 
6028 	if (unlikely(!lock_stat || !lockdep_enabled()))
6029 		return;
6030 
6031 	raw_local_irq_save(flags);
6032 	check_flags(flags);
6033 	lockdep_recursion_inc();
6034 	__lock_acquired(lock, ip);
6035 	lockdep_recursion_finish();
6036 	raw_local_irq_restore(flags);
6037 }
6038 EXPORT_SYMBOL_GPL(lock_acquired);
6039 #endif
6040 
6041 /*
6042  * Used by the testsuite, sanitize the validator state
6043  * after a simulated failure:
6044  */
6045 
6046 void lockdep_reset(void)
6047 {
6048 	unsigned long flags;
6049 	int i;
6050 
6051 	raw_local_irq_save(flags);
6052 	lockdep_init_task(current);
6053 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6054 	nr_hardirq_chains = 0;
6055 	nr_softirq_chains = 0;
6056 	nr_process_chains = 0;
6057 	debug_locks = 1;
6058 	for (i = 0; i < CHAINHASH_SIZE; i++)
6059 		INIT_HLIST_HEAD(chainhash_table + i);
6060 	raw_local_irq_restore(flags);
6061 }
6062 
6063 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6064 static void remove_class_from_lock_chain(struct pending_free *pf,
6065 					 struct lock_chain *chain,
6066 					 struct lock_class *class)
6067 {
6068 #ifdef CONFIG_PROVE_LOCKING
6069 	int i;
6070 
6071 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6072 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6073 			continue;
6074 		/*
6075 		 * Each lock class occurs at most once in a lock chain so once
6076 		 * we found a match we can break out of this loop.
6077 		 */
6078 		goto free_lock_chain;
6079 	}
6080 	/* Since the chain has not been modified, return. */
6081 	return;
6082 
6083 free_lock_chain:
6084 	free_chain_hlocks(chain->base, chain->depth);
6085 	/* Overwrite the chain key for concurrent RCU readers. */
6086 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6087 	dec_chains(chain->irq_context);
6088 
6089 	/*
6090 	 * Note: calling hlist_del_rcu() from inside a
6091 	 * hlist_for_each_entry_rcu() loop is safe.
6092 	 */
6093 	hlist_del_rcu(&chain->entry);
6094 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6095 	nr_zapped_lock_chains++;
6096 #endif
6097 }
6098 
6099 /* Must be called with the graph lock held. */
6100 static void remove_class_from_lock_chains(struct pending_free *pf,
6101 					  struct lock_class *class)
6102 {
6103 	struct lock_chain *chain;
6104 	struct hlist_head *head;
6105 	int i;
6106 
6107 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6108 		head = chainhash_table + i;
6109 		hlist_for_each_entry_rcu(chain, head, entry) {
6110 			remove_class_from_lock_chain(pf, chain, class);
6111 		}
6112 	}
6113 }
6114 
6115 /*
6116  * Remove all references to a lock class. The caller must hold the graph lock.
6117  */
6118 static void zap_class(struct pending_free *pf, struct lock_class *class)
6119 {
6120 	struct lock_list *entry;
6121 	int i;
6122 
6123 	WARN_ON_ONCE(!class->key);
6124 
6125 	/*
6126 	 * Remove all dependencies this lock is
6127 	 * involved in:
6128 	 */
6129 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6130 		entry = list_entries + i;
6131 		if (entry->class != class && entry->links_to != class)
6132 			continue;
6133 		__clear_bit(i, list_entries_in_use);
6134 		nr_list_entries--;
6135 		list_del_rcu(&entry->entry);
6136 	}
6137 	if (list_empty(&class->locks_after) &&
6138 	    list_empty(&class->locks_before)) {
6139 		list_move_tail(&class->lock_entry, &pf->zapped);
6140 		hlist_del_rcu(&class->hash_entry);
6141 		WRITE_ONCE(class->key, NULL);
6142 		WRITE_ONCE(class->name, NULL);
6143 		nr_lock_classes--;
6144 		__clear_bit(class - lock_classes, lock_classes_in_use);
6145 		if (class - lock_classes == max_lock_class_idx)
6146 			max_lock_class_idx--;
6147 	} else {
6148 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6149 			  class->name);
6150 	}
6151 
6152 	remove_class_from_lock_chains(pf, class);
6153 	nr_zapped_classes++;
6154 }
6155 
6156 static void reinit_class(struct lock_class *class)
6157 {
6158 	WARN_ON_ONCE(!class->lock_entry.next);
6159 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6160 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6161 	memset_startat(class, 0, key);
6162 	WARN_ON_ONCE(!class->lock_entry.next);
6163 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6164 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6165 }
6166 
6167 static inline int within(const void *addr, void *start, unsigned long size)
6168 {
6169 	return addr >= start && addr < start + size;
6170 }
6171 
6172 static bool inside_selftest(void)
6173 {
6174 	return current == lockdep_selftest_task_struct;
6175 }
6176 
6177 /* The caller must hold the graph lock. */
6178 static struct pending_free *get_pending_free(void)
6179 {
6180 	return delayed_free.pf + delayed_free.index;
6181 }
6182 
6183 static void free_zapped_rcu(struct rcu_head *cb);
6184 
6185 /*
6186  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6187  * the graph lock held.
6188  */
6189 static void call_rcu_zapped(struct pending_free *pf)
6190 {
6191 	WARN_ON_ONCE(inside_selftest());
6192 
6193 	if (list_empty(&pf->zapped))
6194 		return;
6195 
6196 	if (delayed_free.scheduled)
6197 		return;
6198 
6199 	delayed_free.scheduled = true;
6200 
6201 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6202 	delayed_free.index ^= 1;
6203 
6204 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6205 }
6206 
6207 /* The caller must hold the graph lock. May be called from RCU context. */
6208 static void __free_zapped_classes(struct pending_free *pf)
6209 {
6210 	struct lock_class *class;
6211 
6212 	check_data_structures();
6213 
6214 	list_for_each_entry(class, &pf->zapped, lock_entry)
6215 		reinit_class(class);
6216 
6217 	list_splice_init(&pf->zapped, &free_lock_classes);
6218 
6219 #ifdef CONFIG_PROVE_LOCKING
6220 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6221 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6222 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6223 #endif
6224 }
6225 
6226 static void free_zapped_rcu(struct rcu_head *ch)
6227 {
6228 	struct pending_free *pf;
6229 	unsigned long flags;
6230 
6231 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6232 		return;
6233 
6234 	raw_local_irq_save(flags);
6235 	lockdep_lock();
6236 
6237 	/* closed head */
6238 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6239 	__free_zapped_classes(pf);
6240 	delayed_free.scheduled = false;
6241 
6242 	/*
6243 	 * If there's anything on the open list, close and start a new callback.
6244 	 */
6245 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6246 
6247 	lockdep_unlock();
6248 	raw_local_irq_restore(flags);
6249 }
6250 
6251 /*
6252  * Remove all lock classes from the class hash table and from the
6253  * all_lock_classes list whose key or name is in the address range [start,
6254  * start + size). Move these lock classes to the zapped_classes list. Must
6255  * be called with the graph lock held.
6256  */
6257 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6258 				     unsigned long size)
6259 {
6260 	struct lock_class *class;
6261 	struct hlist_head *head;
6262 	int i;
6263 
6264 	/* Unhash all classes that were created by a module. */
6265 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6266 		head = classhash_table + i;
6267 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6268 			if (!within(class->key, start, size) &&
6269 			    !within(class->name, start, size))
6270 				continue;
6271 			zap_class(pf, class);
6272 		}
6273 	}
6274 }
6275 
6276 /*
6277  * Used in module.c to remove lock classes from memory that is going to be
6278  * freed; and possibly re-used by other modules.
6279  *
6280  * We will have had one synchronize_rcu() before getting here, so we're
6281  * guaranteed nobody will look up these exact classes -- they're properly dead
6282  * but still allocated.
6283  */
6284 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6285 {
6286 	struct pending_free *pf;
6287 	unsigned long flags;
6288 
6289 	init_data_structures_once();
6290 
6291 	raw_local_irq_save(flags);
6292 	lockdep_lock();
6293 	pf = get_pending_free();
6294 	__lockdep_free_key_range(pf, start, size);
6295 	call_rcu_zapped(pf);
6296 	lockdep_unlock();
6297 	raw_local_irq_restore(flags);
6298 
6299 	/*
6300 	 * Wait for any possible iterators from look_up_lock_class() to pass
6301 	 * before continuing to free the memory they refer to.
6302 	 */
6303 	synchronize_rcu();
6304 }
6305 
6306 /*
6307  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6308  * Ignores debug_locks. Must only be used by the lockdep selftests.
6309  */
6310 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6311 {
6312 	struct pending_free *pf = delayed_free.pf;
6313 	unsigned long flags;
6314 
6315 	init_data_structures_once();
6316 
6317 	raw_local_irq_save(flags);
6318 	lockdep_lock();
6319 	__lockdep_free_key_range(pf, start, size);
6320 	__free_zapped_classes(pf);
6321 	lockdep_unlock();
6322 	raw_local_irq_restore(flags);
6323 }
6324 
6325 void lockdep_free_key_range(void *start, unsigned long size)
6326 {
6327 	init_data_structures_once();
6328 
6329 	if (inside_selftest())
6330 		lockdep_free_key_range_imm(start, size);
6331 	else
6332 		lockdep_free_key_range_reg(start, size);
6333 }
6334 
6335 /*
6336  * Check whether any element of the @lock->class_cache[] array refers to a
6337  * registered lock class. The caller must hold either the graph lock or the
6338  * RCU read lock.
6339  */
6340 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6341 {
6342 	struct lock_class *class;
6343 	struct hlist_head *head;
6344 	int i, j;
6345 
6346 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6347 		head = classhash_table + i;
6348 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6349 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6350 				if (lock->class_cache[j] == class)
6351 					return true;
6352 		}
6353 	}
6354 	return false;
6355 }
6356 
6357 /* The caller must hold the graph lock. Does not sleep. */
6358 static void __lockdep_reset_lock(struct pending_free *pf,
6359 				 struct lockdep_map *lock)
6360 {
6361 	struct lock_class *class;
6362 	int j;
6363 
6364 	/*
6365 	 * Remove all classes this lock might have:
6366 	 */
6367 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6368 		/*
6369 		 * If the class exists we look it up and zap it:
6370 		 */
6371 		class = look_up_lock_class(lock, j);
6372 		if (class)
6373 			zap_class(pf, class);
6374 	}
6375 	/*
6376 	 * Debug check: in the end all mapped classes should
6377 	 * be gone.
6378 	 */
6379 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6380 		debug_locks_off();
6381 }
6382 
6383 /*
6384  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6385  * released data structures from RCU context.
6386  */
6387 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6388 {
6389 	struct pending_free *pf;
6390 	unsigned long flags;
6391 	int locked;
6392 
6393 	raw_local_irq_save(flags);
6394 	locked = graph_lock();
6395 	if (!locked)
6396 		goto out_irq;
6397 
6398 	pf = get_pending_free();
6399 	__lockdep_reset_lock(pf, lock);
6400 	call_rcu_zapped(pf);
6401 
6402 	graph_unlock();
6403 out_irq:
6404 	raw_local_irq_restore(flags);
6405 }
6406 
6407 /*
6408  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6409  * lockdep selftests.
6410  */
6411 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6412 {
6413 	struct pending_free *pf = delayed_free.pf;
6414 	unsigned long flags;
6415 
6416 	raw_local_irq_save(flags);
6417 	lockdep_lock();
6418 	__lockdep_reset_lock(pf, lock);
6419 	__free_zapped_classes(pf);
6420 	lockdep_unlock();
6421 	raw_local_irq_restore(flags);
6422 }
6423 
6424 void lockdep_reset_lock(struct lockdep_map *lock)
6425 {
6426 	init_data_structures_once();
6427 
6428 	if (inside_selftest())
6429 		lockdep_reset_lock_imm(lock);
6430 	else
6431 		lockdep_reset_lock_reg(lock);
6432 }
6433 
6434 /*
6435  * Unregister a dynamically allocated key.
6436  *
6437  * Unlike lockdep_register_key(), a search is always done to find a matching
6438  * key irrespective of debug_locks to avoid potential invalid access to freed
6439  * memory in lock_class entry.
6440  */
6441 void lockdep_unregister_key(struct lock_class_key *key)
6442 {
6443 	struct hlist_head *hash_head = keyhashentry(key);
6444 	struct lock_class_key *k;
6445 	struct pending_free *pf;
6446 	unsigned long flags;
6447 	bool found = false;
6448 
6449 	might_sleep();
6450 
6451 	if (WARN_ON_ONCE(static_obj(key)))
6452 		return;
6453 
6454 	raw_local_irq_save(flags);
6455 	lockdep_lock();
6456 
6457 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6458 		if (k == key) {
6459 			hlist_del_rcu(&k->hash_entry);
6460 			found = true;
6461 			break;
6462 		}
6463 	}
6464 	WARN_ON_ONCE(!found && debug_locks);
6465 	if (found) {
6466 		pf = get_pending_free();
6467 		__lockdep_free_key_range(pf, key, 1);
6468 		call_rcu_zapped(pf);
6469 	}
6470 	lockdep_unlock();
6471 	raw_local_irq_restore(flags);
6472 
6473 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6474 	synchronize_rcu();
6475 }
6476 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6477 
6478 void __init lockdep_init(void)
6479 {
6480 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6481 
6482 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6483 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6484 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6485 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6486 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6487 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6488 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6489 
6490 	printk(" memory used by lock dependency info: %zu kB\n",
6491 	       (sizeof(lock_classes) +
6492 		sizeof(lock_classes_in_use) +
6493 		sizeof(classhash_table) +
6494 		sizeof(list_entries) +
6495 		sizeof(list_entries_in_use) +
6496 		sizeof(chainhash_table) +
6497 		sizeof(delayed_free)
6498 #ifdef CONFIG_PROVE_LOCKING
6499 		+ sizeof(lock_cq)
6500 		+ sizeof(lock_chains)
6501 		+ sizeof(lock_chains_in_use)
6502 		+ sizeof(chain_hlocks)
6503 #endif
6504 		) / 1024
6505 		);
6506 
6507 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6508 	printk(" memory used for stack traces: %zu kB\n",
6509 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6510 	       );
6511 #endif
6512 
6513 	printk(" per task-struct memory footprint: %zu bytes\n",
6514 	       sizeof(((struct task_struct *)NULL)->held_locks));
6515 }
6516 
6517 static void
6518 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6519 		     const void *mem_to, struct held_lock *hlock)
6520 {
6521 	if (!debug_locks_off())
6522 		return;
6523 	if (debug_locks_silent)
6524 		return;
6525 
6526 	pr_warn("\n");
6527 	pr_warn("=========================\n");
6528 	pr_warn("WARNING: held lock freed!\n");
6529 	print_kernel_ident();
6530 	pr_warn("-------------------------\n");
6531 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6532 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6533 	print_lock(hlock);
6534 	lockdep_print_held_locks(curr);
6535 
6536 	pr_warn("\nstack backtrace:\n");
6537 	dump_stack();
6538 }
6539 
6540 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6541 				const void* lock_from, unsigned long lock_len)
6542 {
6543 	return lock_from + lock_len <= mem_from ||
6544 		mem_from + mem_len <= lock_from;
6545 }
6546 
6547 /*
6548  * Called when kernel memory is freed (or unmapped), or if a lock
6549  * is destroyed or reinitialized - this code checks whether there is
6550  * any held lock in the memory range of <from> to <to>:
6551  */
6552 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6553 {
6554 	struct task_struct *curr = current;
6555 	struct held_lock *hlock;
6556 	unsigned long flags;
6557 	int i;
6558 
6559 	if (unlikely(!debug_locks))
6560 		return;
6561 
6562 	raw_local_irq_save(flags);
6563 	for (i = 0; i < curr->lockdep_depth; i++) {
6564 		hlock = curr->held_locks + i;
6565 
6566 		if (not_in_range(mem_from, mem_len, hlock->instance,
6567 					sizeof(*hlock->instance)))
6568 			continue;
6569 
6570 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6571 		break;
6572 	}
6573 	raw_local_irq_restore(flags);
6574 }
6575 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6576 
6577 static void print_held_locks_bug(void)
6578 {
6579 	if (!debug_locks_off())
6580 		return;
6581 	if (debug_locks_silent)
6582 		return;
6583 
6584 	pr_warn("\n");
6585 	pr_warn("====================================\n");
6586 	pr_warn("WARNING: %s/%d still has locks held!\n",
6587 	       current->comm, task_pid_nr(current));
6588 	print_kernel_ident();
6589 	pr_warn("------------------------------------\n");
6590 	lockdep_print_held_locks(current);
6591 	pr_warn("\nstack backtrace:\n");
6592 	dump_stack();
6593 }
6594 
6595 void debug_check_no_locks_held(void)
6596 {
6597 	if (unlikely(current->lockdep_depth > 0))
6598 		print_held_locks_bug();
6599 }
6600 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6601 
6602 #ifdef __KERNEL__
6603 void debug_show_all_locks(void)
6604 {
6605 	struct task_struct *g, *p;
6606 
6607 	if (unlikely(!debug_locks)) {
6608 		pr_warn("INFO: lockdep is turned off.\n");
6609 		return;
6610 	}
6611 	pr_warn("\nShowing all locks held in the system:\n");
6612 
6613 	rcu_read_lock();
6614 	for_each_process_thread(g, p) {
6615 		if (!p->lockdep_depth)
6616 			continue;
6617 		lockdep_print_held_locks(p);
6618 		touch_nmi_watchdog();
6619 		touch_all_softlockup_watchdogs();
6620 	}
6621 	rcu_read_unlock();
6622 
6623 	pr_warn("\n");
6624 	pr_warn("=============================================\n\n");
6625 }
6626 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6627 #endif
6628 
6629 /*
6630  * Careful: only use this function if you are sure that
6631  * the task cannot run in parallel!
6632  */
6633 void debug_show_held_locks(struct task_struct *task)
6634 {
6635 	if (unlikely(!debug_locks)) {
6636 		printk("INFO: lockdep is turned off.\n");
6637 		return;
6638 	}
6639 	lockdep_print_held_locks(task);
6640 }
6641 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6642 
6643 asmlinkage __visible void lockdep_sys_exit(void)
6644 {
6645 	struct task_struct *curr = current;
6646 
6647 	if (unlikely(curr->lockdep_depth)) {
6648 		if (!debug_locks_off())
6649 			return;
6650 		pr_warn("\n");
6651 		pr_warn("================================================\n");
6652 		pr_warn("WARNING: lock held when returning to user space!\n");
6653 		print_kernel_ident();
6654 		pr_warn("------------------------------------------------\n");
6655 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6656 				curr->comm, curr->pid);
6657 		lockdep_print_held_locks(curr);
6658 	}
6659 
6660 	/*
6661 	 * The lock history for each syscall should be independent. So wipe the
6662 	 * slate clean on return to userspace.
6663 	 */
6664 	lockdep_invariant_state(false);
6665 }
6666 
6667 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6668 {
6669 	struct task_struct *curr = current;
6670 	int dl = READ_ONCE(debug_locks);
6671 	bool rcu = warn_rcu_enter();
6672 
6673 	/* Note: the following can be executed concurrently, so be careful. */
6674 	pr_warn("\n");
6675 	pr_warn("=============================\n");
6676 	pr_warn("WARNING: suspicious RCU usage\n");
6677 	print_kernel_ident();
6678 	pr_warn("-----------------------------\n");
6679 	pr_warn("%s:%d %s!\n", file, line, s);
6680 	pr_warn("\nother info that might help us debug this:\n\n");
6681 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6682 	       !rcu_lockdep_current_cpu_online()
6683 			? "RCU used illegally from offline CPU!\n"
6684 			: "",
6685 	       rcu_scheduler_active, dl,
6686 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6687 
6688 	/*
6689 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6690 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6691 	 * considers that CPU to be in an "extended quiescent state",
6692 	 * which means that RCU will be completely ignoring that CPU.
6693 	 * Therefore, rcu_read_lock() and friends have absolutely no
6694 	 * effect on a CPU running in that state. In other words, even if
6695 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6696 	 * delete data structures out from under it.  RCU really has no
6697 	 * choice here: we need to keep an RCU-free window in idle where
6698 	 * the CPU may possibly enter into low power mode. This way we can
6699 	 * notice an extended quiescent state to other CPUs that started a grace
6700 	 * period. Otherwise we would delay any grace period as long as we run
6701 	 * in the idle task.
6702 	 *
6703 	 * So complain bitterly if someone does call rcu_read_lock(),
6704 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6705 	 */
6706 	if (!rcu_is_watching())
6707 		pr_warn("RCU used illegally from extended quiescent state!\n");
6708 
6709 	lockdep_print_held_locks(curr);
6710 	pr_warn("\nstack backtrace:\n");
6711 	dump_stack();
6712 	warn_rcu_exit(rcu);
6713 }
6714 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6715