1 /* 2 * kernel/lockdep.c 3 * 4 * Runtime locking correctness validator 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 10 * 11 * this code maps all the lock dependencies as they occur in a live kernel 12 * and will warn about the following classes of locking bugs: 13 * 14 * - lock inversion scenarios 15 * - circular lock dependencies 16 * - hardirq/softirq safe/unsafe locking bugs 17 * 18 * Bugs are reported even if the current locking scenario does not cause 19 * any deadlock at this point. 20 * 21 * I.e. if anytime in the past two locks were taken in a different order, 22 * even if it happened for another task, even if those were different 23 * locks (but of the same class as this lock), this code will detect it. 24 * 25 * Thanks to Arjan van de Ven for coming up with the initial idea of 26 * mapping lock dependencies runtime. 27 */ 28 #define DISABLE_BRANCH_PROFILING 29 #include <linux/mutex.h> 30 #include <linux/sched.h> 31 #include <linux/delay.h> 32 #include <linux/module.h> 33 #include <linux/proc_fs.h> 34 #include <linux/seq_file.h> 35 #include <linux/spinlock.h> 36 #include <linux/kallsyms.h> 37 #include <linux/interrupt.h> 38 #include <linux/stacktrace.h> 39 #include <linux/debug_locks.h> 40 #include <linux/irqflags.h> 41 #include <linux/utsname.h> 42 #include <linux/hash.h> 43 #include <linux/ftrace.h> 44 #include <linux/stringify.h> 45 #include <linux/bitops.h> 46 #include <linux/gfp.h> 47 #include <linux/kmemcheck.h> 48 49 #include <asm/sections.h> 50 51 #include "lockdep_internals.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/lock.h> 55 56 #ifdef CONFIG_PROVE_LOCKING 57 int prove_locking = 1; 58 module_param(prove_locking, int, 0644); 59 #else 60 #define prove_locking 0 61 #endif 62 63 #ifdef CONFIG_LOCK_STAT 64 int lock_stat = 1; 65 module_param(lock_stat, int, 0644); 66 #else 67 #define lock_stat 0 68 #endif 69 70 /* 71 * lockdep_lock: protects the lockdep graph, the hashes and the 72 * class/list/hash allocators. 73 * 74 * This is one of the rare exceptions where it's justified 75 * to use a raw spinlock - we really dont want the spinlock 76 * code to recurse back into the lockdep code... 77 */ 78 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 79 80 static int graph_lock(void) 81 { 82 arch_spin_lock(&lockdep_lock); 83 /* 84 * Make sure that if another CPU detected a bug while 85 * walking the graph we dont change it (while the other 86 * CPU is busy printing out stuff with the graph lock 87 * dropped already) 88 */ 89 if (!debug_locks) { 90 arch_spin_unlock(&lockdep_lock); 91 return 0; 92 } 93 /* prevent any recursions within lockdep from causing deadlocks */ 94 current->lockdep_recursion++; 95 return 1; 96 } 97 98 static inline int graph_unlock(void) 99 { 100 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) { 101 /* 102 * The lockdep graph lock isn't locked while we expect it to 103 * be, we're confused now, bye! 104 */ 105 return DEBUG_LOCKS_WARN_ON(1); 106 } 107 108 current->lockdep_recursion--; 109 arch_spin_unlock(&lockdep_lock); 110 return 0; 111 } 112 113 /* 114 * Turn lock debugging off and return with 0 if it was off already, 115 * and also release the graph lock: 116 */ 117 static inline int debug_locks_off_graph_unlock(void) 118 { 119 int ret = debug_locks_off(); 120 121 arch_spin_unlock(&lockdep_lock); 122 123 return ret; 124 } 125 126 static int lockdep_initialized; 127 128 unsigned long nr_list_entries; 129 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 130 131 /* 132 * All data structures here are protected by the global debug_lock. 133 * 134 * Mutex key structs only get allocated, once during bootup, and never 135 * get freed - this significantly simplifies the debugging code. 136 */ 137 unsigned long nr_lock_classes; 138 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 139 140 static inline struct lock_class *hlock_class(struct held_lock *hlock) 141 { 142 if (!hlock->class_idx) { 143 /* 144 * Someone passed in garbage, we give up. 145 */ 146 DEBUG_LOCKS_WARN_ON(1); 147 return NULL; 148 } 149 return lock_classes + hlock->class_idx - 1; 150 } 151 152 #ifdef CONFIG_LOCK_STAT 153 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], 154 cpu_lock_stats); 155 156 static inline u64 lockstat_clock(void) 157 { 158 return local_clock(); 159 } 160 161 static int lock_point(unsigned long points[], unsigned long ip) 162 { 163 int i; 164 165 for (i = 0; i < LOCKSTAT_POINTS; i++) { 166 if (points[i] == 0) { 167 points[i] = ip; 168 break; 169 } 170 if (points[i] == ip) 171 break; 172 } 173 174 return i; 175 } 176 177 static void lock_time_inc(struct lock_time *lt, u64 time) 178 { 179 if (time > lt->max) 180 lt->max = time; 181 182 if (time < lt->min || !lt->nr) 183 lt->min = time; 184 185 lt->total += time; 186 lt->nr++; 187 } 188 189 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 190 { 191 if (!src->nr) 192 return; 193 194 if (src->max > dst->max) 195 dst->max = src->max; 196 197 if (src->min < dst->min || !dst->nr) 198 dst->min = src->min; 199 200 dst->total += src->total; 201 dst->nr += src->nr; 202 } 203 204 struct lock_class_stats lock_stats(struct lock_class *class) 205 { 206 struct lock_class_stats stats; 207 int cpu, i; 208 209 memset(&stats, 0, sizeof(struct lock_class_stats)); 210 for_each_possible_cpu(cpu) { 211 struct lock_class_stats *pcs = 212 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 213 214 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 215 stats.contention_point[i] += pcs->contention_point[i]; 216 217 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 218 stats.contending_point[i] += pcs->contending_point[i]; 219 220 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 221 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 222 223 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 224 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 225 226 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 227 stats.bounces[i] += pcs->bounces[i]; 228 } 229 230 return stats; 231 } 232 233 void clear_lock_stats(struct lock_class *class) 234 { 235 int cpu; 236 237 for_each_possible_cpu(cpu) { 238 struct lock_class_stats *cpu_stats = 239 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 240 241 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 242 } 243 memset(class->contention_point, 0, sizeof(class->contention_point)); 244 memset(class->contending_point, 0, sizeof(class->contending_point)); 245 } 246 247 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 248 { 249 return &get_cpu_var(cpu_lock_stats)[class - lock_classes]; 250 } 251 252 static void put_lock_stats(struct lock_class_stats *stats) 253 { 254 put_cpu_var(cpu_lock_stats); 255 } 256 257 static void lock_release_holdtime(struct held_lock *hlock) 258 { 259 struct lock_class_stats *stats; 260 u64 holdtime; 261 262 if (!lock_stat) 263 return; 264 265 holdtime = lockstat_clock() - hlock->holdtime_stamp; 266 267 stats = get_lock_stats(hlock_class(hlock)); 268 if (hlock->read) 269 lock_time_inc(&stats->read_holdtime, holdtime); 270 else 271 lock_time_inc(&stats->write_holdtime, holdtime); 272 put_lock_stats(stats); 273 } 274 #else 275 static inline void lock_release_holdtime(struct held_lock *hlock) 276 { 277 } 278 #endif 279 280 /* 281 * We keep a global list of all lock classes. The list only grows, 282 * never shrinks. The list is only accessed with the lockdep 283 * spinlock lock held. 284 */ 285 LIST_HEAD(all_lock_classes); 286 287 /* 288 * The lockdep classes are in a hash-table as well, for fast lookup: 289 */ 290 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 291 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 292 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 293 #define classhashentry(key) (classhash_table + __classhashfn((key))) 294 295 static struct list_head classhash_table[CLASSHASH_SIZE]; 296 297 /* 298 * We put the lock dependency chains into a hash-table as well, to cache 299 * their existence: 300 */ 301 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 302 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 303 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 304 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 305 306 static struct list_head chainhash_table[CHAINHASH_SIZE]; 307 308 /* 309 * The hash key of the lock dependency chains is a hash itself too: 310 * it's a hash of all locks taken up to that lock, including that lock. 311 * It's a 64-bit hash, because it's important for the keys to be 312 * unique. 313 */ 314 #define iterate_chain_key(key1, key2) \ 315 (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \ 316 ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \ 317 (key2)) 318 319 void lockdep_off(void) 320 { 321 current->lockdep_recursion++; 322 } 323 EXPORT_SYMBOL(lockdep_off); 324 325 void lockdep_on(void) 326 { 327 current->lockdep_recursion--; 328 } 329 EXPORT_SYMBOL(lockdep_on); 330 331 /* 332 * Debugging switches: 333 */ 334 335 #define VERBOSE 0 336 #define VERY_VERBOSE 0 337 338 #if VERBOSE 339 # define HARDIRQ_VERBOSE 1 340 # define SOFTIRQ_VERBOSE 1 341 # define RECLAIM_VERBOSE 1 342 #else 343 # define HARDIRQ_VERBOSE 0 344 # define SOFTIRQ_VERBOSE 0 345 # define RECLAIM_VERBOSE 0 346 #endif 347 348 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE 349 /* 350 * Quick filtering for interesting events: 351 */ 352 static int class_filter(struct lock_class *class) 353 { 354 #if 0 355 /* Example */ 356 if (class->name_version == 1 && 357 !strcmp(class->name, "lockname")) 358 return 1; 359 if (class->name_version == 1 && 360 !strcmp(class->name, "&struct->lockfield")) 361 return 1; 362 #endif 363 /* Filter everything else. 1 would be to allow everything else */ 364 return 0; 365 } 366 #endif 367 368 static int verbose(struct lock_class *class) 369 { 370 #if VERBOSE 371 return class_filter(class); 372 #endif 373 return 0; 374 } 375 376 /* 377 * Stack-trace: tightly packed array of stack backtrace 378 * addresses. Protected by the graph_lock. 379 */ 380 unsigned long nr_stack_trace_entries; 381 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 382 383 static void print_lockdep_off(const char *bug_msg) 384 { 385 printk(KERN_DEBUG "%s\n", bug_msg); 386 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 387 #ifdef CONFIG_LOCK_STAT 388 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 389 #endif 390 } 391 392 static int save_trace(struct stack_trace *trace) 393 { 394 trace->nr_entries = 0; 395 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 396 trace->entries = stack_trace + nr_stack_trace_entries; 397 398 trace->skip = 3; 399 400 save_stack_trace(trace); 401 402 /* 403 * Some daft arches put -1 at the end to indicate its a full trace. 404 * 405 * <rant> this is buggy anyway, since it takes a whole extra entry so a 406 * complete trace that maxes out the entries provided will be reported 407 * as incomplete, friggin useless </rant> 408 */ 409 if (trace->nr_entries != 0 && 410 trace->entries[trace->nr_entries-1] == ULONG_MAX) 411 trace->nr_entries--; 412 413 trace->max_entries = trace->nr_entries; 414 415 nr_stack_trace_entries += trace->nr_entries; 416 417 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 418 if (!debug_locks_off_graph_unlock()) 419 return 0; 420 421 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 422 dump_stack(); 423 424 return 0; 425 } 426 427 return 1; 428 } 429 430 unsigned int nr_hardirq_chains; 431 unsigned int nr_softirq_chains; 432 unsigned int nr_process_chains; 433 unsigned int max_lockdep_depth; 434 435 #ifdef CONFIG_DEBUG_LOCKDEP 436 /* 437 * We cannot printk in early bootup code. Not even early_printk() 438 * might work. So we mark any initialization errors and printk 439 * about it later on, in lockdep_info(). 440 */ 441 static int lockdep_init_error; 442 static const char *lock_init_error; 443 static unsigned long lockdep_init_trace_data[20]; 444 static struct stack_trace lockdep_init_trace = { 445 .max_entries = ARRAY_SIZE(lockdep_init_trace_data), 446 .entries = lockdep_init_trace_data, 447 }; 448 449 /* 450 * Various lockdep statistics: 451 */ 452 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 453 #endif 454 455 /* 456 * Locking printouts: 457 */ 458 459 #define __USAGE(__STATE) \ 460 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 461 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 462 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 463 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 464 465 static const char *usage_str[] = 466 { 467 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 468 #include "lockdep_states.h" 469 #undef LOCKDEP_STATE 470 [LOCK_USED] = "INITIAL USE", 471 }; 472 473 const char * __get_key_name(struct lockdep_subclass_key *key, char *str) 474 { 475 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 476 } 477 478 static inline unsigned long lock_flag(enum lock_usage_bit bit) 479 { 480 return 1UL << bit; 481 } 482 483 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 484 { 485 char c = '.'; 486 487 if (class->usage_mask & lock_flag(bit + 2)) 488 c = '+'; 489 if (class->usage_mask & lock_flag(bit)) { 490 c = '-'; 491 if (class->usage_mask & lock_flag(bit + 2)) 492 c = '?'; 493 } 494 495 return c; 496 } 497 498 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 499 { 500 int i = 0; 501 502 #define LOCKDEP_STATE(__STATE) \ 503 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 504 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 505 #include "lockdep_states.h" 506 #undef LOCKDEP_STATE 507 508 usage[i] = '\0'; 509 } 510 511 static void __print_lock_name(struct lock_class *class) 512 { 513 char str[KSYM_NAME_LEN]; 514 const char *name; 515 516 name = class->name; 517 if (!name) { 518 name = __get_key_name(class->key, str); 519 printk("%s", name); 520 } else { 521 printk("%s", name); 522 if (class->name_version > 1) 523 printk("#%d", class->name_version); 524 if (class->subclass) 525 printk("/%d", class->subclass); 526 } 527 } 528 529 static void print_lock_name(struct lock_class *class) 530 { 531 char usage[LOCK_USAGE_CHARS]; 532 533 get_usage_chars(class, usage); 534 535 printk(" ("); 536 __print_lock_name(class); 537 printk("){%s}", usage); 538 } 539 540 static void print_lockdep_cache(struct lockdep_map *lock) 541 { 542 const char *name; 543 char str[KSYM_NAME_LEN]; 544 545 name = lock->name; 546 if (!name) 547 name = __get_key_name(lock->key->subkeys, str); 548 549 printk("%s", name); 550 } 551 552 static void print_lock(struct held_lock *hlock) 553 { 554 print_lock_name(hlock_class(hlock)); 555 printk(", at: "); 556 print_ip_sym(hlock->acquire_ip); 557 } 558 559 static void lockdep_print_held_locks(struct task_struct *curr) 560 { 561 int i, depth = curr->lockdep_depth; 562 563 if (!depth) { 564 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr)); 565 return; 566 } 567 printk("%d lock%s held by %s/%d:\n", 568 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr)); 569 570 for (i = 0; i < depth; i++) { 571 printk(" #%d: ", i); 572 print_lock(curr->held_locks + i); 573 } 574 } 575 576 static void print_kernel_ident(void) 577 { 578 printk("%s %.*s %s\n", init_utsname()->release, 579 (int)strcspn(init_utsname()->version, " "), 580 init_utsname()->version, 581 print_tainted()); 582 } 583 584 static int very_verbose(struct lock_class *class) 585 { 586 #if VERY_VERBOSE 587 return class_filter(class); 588 #endif 589 return 0; 590 } 591 592 /* 593 * Is this the address of a static object: 594 */ 595 #ifdef __KERNEL__ 596 static int static_obj(void *obj) 597 { 598 unsigned long start = (unsigned long) &_stext, 599 end = (unsigned long) &_end, 600 addr = (unsigned long) obj; 601 602 /* 603 * static variable? 604 */ 605 if ((addr >= start) && (addr < end)) 606 return 1; 607 608 if (arch_is_kernel_data(addr)) 609 return 1; 610 611 /* 612 * in-kernel percpu var? 613 */ 614 if (is_kernel_percpu_address(addr)) 615 return 1; 616 617 /* 618 * module static or percpu var? 619 */ 620 return is_module_address(addr) || is_module_percpu_address(addr); 621 } 622 #endif 623 624 /* 625 * To make lock name printouts unique, we calculate a unique 626 * class->name_version generation counter: 627 */ 628 static int count_matching_names(struct lock_class *new_class) 629 { 630 struct lock_class *class; 631 int count = 0; 632 633 if (!new_class->name) 634 return 0; 635 636 list_for_each_entry(class, &all_lock_classes, lock_entry) { 637 if (new_class->key - new_class->subclass == class->key) 638 return class->name_version; 639 if (class->name && !strcmp(class->name, new_class->name)) 640 count = max(count, class->name_version); 641 } 642 643 return count + 1; 644 } 645 646 /* 647 * Register a lock's class in the hash-table, if the class is not present 648 * yet. Otherwise we look it up. We cache the result in the lock object 649 * itself, so actual lookup of the hash should be once per lock object. 650 */ 651 static inline struct lock_class * 652 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) 653 { 654 struct lockdep_subclass_key *key; 655 struct list_head *hash_head; 656 struct lock_class *class; 657 658 #ifdef CONFIG_DEBUG_LOCKDEP 659 /* 660 * If the architecture calls into lockdep before initializing 661 * the hashes then we'll warn about it later. (we cannot printk 662 * right now) 663 */ 664 if (unlikely(!lockdep_initialized)) { 665 lockdep_init(); 666 lockdep_init_error = 1; 667 lock_init_error = lock->name; 668 save_stack_trace(&lockdep_init_trace); 669 } 670 #endif 671 672 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 673 debug_locks_off(); 674 printk(KERN_ERR 675 "BUG: looking up invalid subclass: %u\n", subclass); 676 printk(KERN_ERR 677 "turning off the locking correctness validator.\n"); 678 dump_stack(); 679 return NULL; 680 } 681 682 /* 683 * Static locks do not have their class-keys yet - for them the key 684 * is the lock object itself: 685 */ 686 if (unlikely(!lock->key)) 687 lock->key = (void *)lock; 688 689 /* 690 * NOTE: the class-key must be unique. For dynamic locks, a static 691 * lock_class_key variable is passed in through the mutex_init() 692 * (or spin_lock_init()) call - which acts as the key. For static 693 * locks we use the lock object itself as the key. 694 */ 695 BUILD_BUG_ON(sizeof(struct lock_class_key) > 696 sizeof(struct lockdep_map)); 697 698 key = lock->key->subkeys + subclass; 699 700 hash_head = classhashentry(key); 701 702 /* 703 * We can walk the hash lockfree, because the hash only 704 * grows, and we are careful when adding entries to the end: 705 */ 706 list_for_each_entry(class, hash_head, hash_entry) { 707 if (class->key == key) { 708 /* 709 * Huh! same key, different name? Did someone trample 710 * on some memory? We're most confused. 711 */ 712 WARN_ON_ONCE(class->name != lock->name); 713 return class; 714 } 715 } 716 717 return NULL; 718 } 719 720 /* 721 * Register a lock's class in the hash-table, if the class is not present 722 * yet. Otherwise we look it up. We cache the result in the lock object 723 * itself, so actual lookup of the hash should be once per lock object. 724 */ 725 static inline struct lock_class * 726 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 727 { 728 struct lockdep_subclass_key *key; 729 struct list_head *hash_head; 730 struct lock_class *class; 731 unsigned long flags; 732 733 class = look_up_lock_class(lock, subclass); 734 if (likely(class)) 735 goto out_set_class_cache; 736 737 /* 738 * Debug-check: all keys must be persistent! 739 */ 740 if (!static_obj(lock->key)) { 741 debug_locks_off(); 742 printk("INFO: trying to register non-static key.\n"); 743 printk("the code is fine but needs lockdep annotation.\n"); 744 printk("turning off the locking correctness validator.\n"); 745 dump_stack(); 746 747 return NULL; 748 } 749 750 key = lock->key->subkeys + subclass; 751 hash_head = classhashentry(key); 752 753 raw_local_irq_save(flags); 754 if (!graph_lock()) { 755 raw_local_irq_restore(flags); 756 return NULL; 757 } 758 /* 759 * We have to do the hash-walk again, to avoid races 760 * with another CPU: 761 */ 762 list_for_each_entry(class, hash_head, hash_entry) 763 if (class->key == key) 764 goto out_unlock_set; 765 /* 766 * Allocate a new key from the static array, and add it to 767 * the hash: 768 */ 769 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) { 770 if (!debug_locks_off_graph_unlock()) { 771 raw_local_irq_restore(flags); 772 return NULL; 773 } 774 raw_local_irq_restore(flags); 775 776 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 777 dump_stack(); 778 return NULL; 779 } 780 class = lock_classes + nr_lock_classes++; 781 debug_atomic_inc(nr_unused_locks); 782 class->key = key; 783 class->name = lock->name; 784 class->subclass = subclass; 785 INIT_LIST_HEAD(&class->lock_entry); 786 INIT_LIST_HEAD(&class->locks_before); 787 INIT_LIST_HEAD(&class->locks_after); 788 class->name_version = count_matching_names(class); 789 /* 790 * We use RCU's safe list-add method to make 791 * parallel walking of the hash-list safe: 792 */ 793 list_add_tail_rcu(&class->hash_entry, hash_head); 794 /* 795 * Add it to the global list of classes: 796 */ 797 list_add_tail_rcu(&class->lock_entry, &all_lock_classes); 798 799 if (verbose(class)) { 800 graph_unlock(); 801 raw_local_irq_restore(flags); 802 803 printk("\nnew class %p: %s", class->key, class->name); 804 if (class->name_version > 1) 805 printk("#%d", class->name_version); 806 printk("\n"); 807 dump_stack(); 808 809 raw_local_irq_save(flags); 810 if (!graph_lock()) { 811 raw_local_irq_restore(flags); 812 return NULL; 813 } 814 } 815 out_unlock_set: 816 graph_unlock(); 817 raw_local_irq_restore(flags); 818 819 out_set_class_cache: 820 if (!subclass || force) 821 lock->class_cache[0] = class; 822 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 823 lock->class_cache[subclass] = class; 824 825 /* 826 * Hash collision, did we smoke some? We found a class with a matching 827 * hash but the subclass -- which is hashed in -- didn't match. 828 */ 829 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 830 return NULL; 831 832 return class; 833 } 834 835 #ifdef CONFIG_PROVE_LOCKING 836 /* 837 * Allocate a lockdep entry. (assumes the graph_lock held, returns 838 * with NULL on failure) 839 */ 840 static struct lock_list *alloc_list_entry(void) 841 { 842 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) { 843 if (!debug_locks_off_graph_unlock()) 844 return NULL; 845 846 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 847 dump_stack(); 848 return NULL; 849 } 850 return list_entries + nr_list_entries++; 851 } 852 853 /* 854 * Add a new dependency to the head of the list: 855 */ 856 static int add_lock_to_list(struct lock_class *class, struct lock_class *this, 857 struct list_head *head, unsigned long ip, 858 int distance, struct stack_trace *trace) 859 { 860 struct lock_list *entry; 861 /* 862 * Lock not present yet - get a new dependency struct and 863 * add it to the list: 864 */ 865 entry = alloc_list_entry(); 866 if (!entry) 867 return 0; 868 869 entry->class = this; 870 entry->distance = distance; 871 entry->trace = *trace; 872 /* 873 * Since we never remove from the dependency list, the list can 874 * be walked lockless by other CPUs, it's only allocation 875 * that must be protected by the spinlock. But this also means 876 * we must make new entries visible only once writes to the 877 * entry become visible - hence the RCU op: 878 */ 879 list_add_tail_rcu(&entry->entry, head); 880 881 return 1; 882 } 883 884 /* 885 * For good efficiency of modular, we use power of 2 886 */ 887 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 888 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 889 890 /* 891 * The circular_queue and helpers is used to implement the 892 * breadth-first search(BFS)algorithem, by which we can build 893 * the shortest path from the next lock to be acquired to the 894 * previous held lock if there is a circular between them. 895 */ 896 struct circular_queue { 897 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; 898 unsigned int front, rear; 899 }; 900 901 static struct circular_queue lock_cq; 902 903 unsigned int max_bfs_queue_depth; 904 905 static unsigned int lockdep_dependency_gen_id; 906 907 static inline void __cq_init(struct circular_queue *cq) 908 { 909 cq->front = cq->rear = 0; 910 lockdep_dependency_gen_id++; 911 } 912 913 static inline int __cq_empty(struct circular_queue *cq) 914 { 915 return (cq->front == cq->rear); 916 } 917 918 static inline int __cq_full(struct circular_queue *cq) 919 { 920 return ((cq->rear + 1) & CQ_MASK) == cq->front; 921 } 922 923 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) 924 { 925 if (__cq_full(cq)) 926 return -1; 927 928 cq->element[cq->rear] = elem; 929 cq->rear = (cq->rear + 1) & CQ_MASK; 930 return 0; 931 } 932 933 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) 934 { 935 if (__cq_empty(cq)) 936 return -1; 937 938 *elem = cq->element[cq->front]; 939 cq->front = (cq->front + 1) & CQ_MASK; 940 return 0; 941 } 942 943 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 944 { 945 return (cq->rear - cq->front) & CQ_MASK; 946 } 947 948 static inline void mark_lock_accessed(struct lock_list *lock, 949 struct lock_list *parent) 950 { 951 unsigned long nr; 952 953 nr = lock - list_entries; 954 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 955 lock->parent = parent; 956 lock->class->dep_gen_id = lockdep_dependency_gen_id; 957 } 958 959 static inline unsigned long lock_accessed(struct lock_list *lock) 960 { 961 unsigned long nr; 962 963 nr = lock - list_entries; 964 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 965 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 966 } 967 968 static inline struct lock_list *get_lock_parent(struct lock_list *child) 969 { 970 return child->parent; 971 } 972 973 static inline int get_lock_depth(struct lock_list *child) 974 { 975 int depth = 0; 976 struct lock_list *parent; 977 978 while ((parent = get_lock_parent(child))) { 979 child = parent; 980 depth++; 981 } 982 return depth; 983 } 984 985 static int __bfs(struct lock_list *source_entry, 986 void *data, 987 int (*match)(struct lock_list *entry, void *data), 988 struct lock_list **target_entry, 989 int forward) 990 { 991 struct lock_list *entry; 992 struct list_head *head; 993 struct circular_queue *cq = &lock_cq; 994 int ret = 1; 995 996 if (match(source_entry, data)) { 997 *target_entry = source_entry; 998 ret = 0; 999 goto exit; 1000 } 1001 1002 if (forward) 1003 head = &source_entry->class->locks_after; 1004 else 1005 head = &source_entry->class->locks_before; 1006 1007 if (list_empty(head)) 1008 goto exit; 1009 1010 __cq_init(cq); 1011 __cq_enqueue(cq, (unsigned long)source_entry); 1012 1013 while (!__cq_empty(cq)) { 1014 struct lock_list *lock; 1015 1016 __cq_dequeue(cq, (unsigned long *)&lock); 1017 1018 if (!lock->class) { 1019 ret = -2; 1020 goto exit; 1021 } 1022 1023 if (forward) 1024 head = &lock->class->locks_after; 1025 else 1026 head = &lock->class->locks_before; 1027 1028 list_for_each_entry(entry, head, entry) { 1029 if (!lock_accessed(entry)) { 1030 unsigned int cq_depth; 1031 mark_lock_accessed(entry, lock); 1032 if (match(entry, data)) { 1033 *target_entry = entry; 1034 ret = 0; 1035 goto exit; 1036 } 1037 1038 if (__cq_enqueue(cq, (unsigned long)entry)) { 1039 ret = -1; 1040 goto exit; 1041 } 1042 cq_depth = __cq_get_elem_count(cq); 1043 if (max_bfs_queue_depth < cq_depth) 1044 max_bfs_queue_depth = cq_depth; 1045 } 1046 } 1047 } 1048 exit: 1049 return ret; 1050 } 1051 1052 static inline int __bfs_forwards(struct lock_list *src_entry, 1053 void *data, 1054 int (*match)(struct lock_list *entry, void *data), 1055 struct lock_list **target_entry) 1056 { 1057 return __bfs(src_entry, data, match, target_entry, 1); 1058 1059 } 1060 1061 static inline int __bfs_backwards(struct lock_list *src_entry, 1062 void *data, 1063 int (*match)(struct lock_list *entry, void *data), 1064 struct lock_list **target_entry) 1065 { 1066 return __bfs(src_entry, data, match, target_entry, 0); 1067 1068 } 1069 1070 /* 1071 * Recursive, forwards-direction lock-dependency checking, used for 1072 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1073 * checking. 1074 */ 1075 1076 /* 1077 * Print a dependency chain entry (this is only done when a deadlock 1078 * has been detected): 1079 */ 1080 static noinline int 1081 print_circular_bug_entry(struct lock_list *target, int depth) 1082 { 1083 if (debug_locks_silent) 1084 return 0; 1085 printk("\n-> #%u", depth); 1086 print_lock_name(target->class); 1087 printk(":\n"); 1088 print_stack_trace(&target->trace, 6); 1089 1090 return 0; 1091 } 1092 1093 static void 1094 print_circular_lock_scenario(struct held_lock *src, 1095 struct held_lock *tgt, 1096 struct lock_list *prt) 1097 { 1098 struct lock_class *source = hlock_class(src); 1099 struct lock_class *target = hlock_class(tgt); 1100 struct lock_class *parent = prt->class; 1101 1102 /* 1103 * A direct locking problem where unsafe_class lock is taken 1104 * directly by safe_class lock, then all we need to show 1105 * is the deadlock scenario, as it is obvious that the 1106 * unsafe lock is taken under the safe lock. 1107 * 1108 * But if there is a chain instead, where the safe lock takes 1109 * an intermediate lock (middle_class) where this lock is 1110 * not the same as the safe lock, then the lock chain is 1111 * used to describe the problem. Otherwise we would need 1112 * to show a different CPU case for each link in the chain 1113 * from the safe_class lock to the unsafe_class lock. 1114 */ 1115 if (parent != source) { 1116 printk("Chain exists of:\n "); 1117 __print_lock_name(source); 1118 printk(" --> "); 1119 __print_lock_name(parent); 1120 printk(" --> "); 1121 __print_lock_name(target); 1122 printk("\n\n"); 1123 } 1124 1125 printk(" Possible unsafe locking scenario:\n\n"); 1126 printk(" CPU0 CPU1\n"); 1127 printk(" ---- ----\n"); 1128 printk(" lock("); 1129 __print_lock_name(target); 1130 printk(");\n"); 1131 printk(" lock("); 1132 __print_lock_name(parent); 1133 printk(");\n"); 1134 printk(" lock("); 1135 __print_lock_name(target); 1136 printk(");\n"); 1137 printk(" lock("); 1138 __print_lock_name(source); 1139 printk(");\n"); 1140 printk("\n *** DEADLOCK ***\n\n"); 1141 } 1142 1143 /* 1144 * When a circular dependency is detected, print the 1145 * header first: 1146 */ 1147 static noinline int 1148 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1149 struct held_lock *check_src, 1150 struct held_lock *check_tgt) 1151 { 1152 struct task_struct *curr = current; 1153 1154 if (debug_locks_silent) 1155 return 0; 1156 1157 printk("\n"); 1158 printk("======================================================\n"); 1159 printk("[ INFO: possible circular locking dependency detected ]\n"); 1160 print_kernel_ident(); 1161 printk("-------------------------------------------------------\n"); 1162 printk("%s/%d is trying to acquire lock:\n", 1163 curr->comm, task_pid_nr(curr)); 1164 print_lock(check_src); 1165 printk("\nbut task is already holding lock:\n"); 1166 print_lock(check_tgt); 1167 printk("\nwhich lock already depends on the new lock.\n\n"); 1168 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1169 1170 print_circular_bug_entry(entry, depth); 1171 1172 return 0; 1173 } 1174 1175 static inline int class_equal(struct lock_list *entry, void *data) 1176 { 1177 return entry->class == data; 1178 } 1179 1180 static noinline int print_circular_bug(struct lock_list *this, 1181 struct lock_list *target, 1182 struct held_lock *check_src, 1183 struct held_lock *check_tgt) 1184 { 1185 struct task_struct *curr = current; 1186 struct lock_list *parent; 1187 struct lock_list *first_parent; 1188 int depth; 1189 1190 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1191 return 0; 1192 1193 if (!save_trace(&this->trace)) 1194 return 0; 1195 1196 depth = get_lock_depth(target); 1197 1198 print_circular_bug_header(target, depth, check_src, check_tgt); 1199 1200 parent = get_lock_parent(target); 1201 first_parent = parent; 1202 1203 while (parent) { 1204 print_circular_bug_entry(parent, --depth); 1205 parent = get_lock_parent(parent); 1206 } 1207 1208 printk("\nother info that might help us debug this:\n\n"); 1209 print_circular_lock_scenario(check_src, check_tgt, 1210 first_parent); 1211 1212 lockdep_print_held_locks(curr); 1213 1214 printk("\nstack backtrace:\n"); 1215 dump_stack(); 1216 1217 return 0; 1218 } 1219 1220 static noinline int print_bfs_bug(int ret) 1221 { 1222 if (!debug_locks_off_graph_unlock()) 1223 return 0; 1224 1225 /* 1226 * Breadth-first-search failed, graph got corrupted? 1227 */ 1228 WARN(1, "lockdep bfs error:%d\n", ret); 1229 1230 return 0; 1231 } 1232 1233 static int noop_count(struct lock_list *entry, void *data) 1234 { 1235 (*(unsigned long *)data)++; 1236 return 0; 1237 } 1238 1239 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1240 { 1241 unsigned long count = 0; 1242 struct lock_list *uninitialized_var(target_entry); 1243 1244 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1245 1246 return count; 1247 } 1248 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1249 { 1250 unsigned long ret, flags; 1251 struct lock_list this; 1252 1253 this.parent = NULL; 1254 this.class = class; 1255 1256 local_irq_save(flags); 1257 arch_spin_lock(&lockdep_lock); 1258 ret = __lockdep_count_forward_deps(&this); 1259 arch_spin_unlock(&lockdep_lock); 1260 local_irq_restore(flags); 1261 1262 return ret; 1263 } 1264 1265 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1266 { 1267 unsigned long count = 0; 1268 struct lock_list *uninitialized_var(target_entry); 1269 1270 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1271 1272 return count; 1273 } 1274 1275 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1276 { 1277 unsigned long ret, flags; 1278 struct lock_list this; 1279 1280 this.parent = NULL; 1281 this.class = class; 1282 1283 local_irq_save(flags); 1284 arch_spin_lock(&lockdep_lock); 1285 ret = __lockdep_count_backward_deps(&this); 1286 arch_spin_unlock(&lockdep_lock); 1287 local_irq_restore(flags); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Prove that the dependency graph starting at <entry> can not 1294 * lead to <target>. Print an error and return 0 if it does. 1295 */ 1296 static noinline int 1297 check_noncircular(struct lock_list *root, struct lock_class *target, 1298 struct lock_list **target_entry) 1299 { 1300 int result; 1301 1302 debug_atomic_inc(nr_cyclic_checks); 1303 1304 result = __bfs_forwards(root, target, class_equal, target_entry); 1305 1306 return result; 1307 } 1308 1309 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1310 /* 1311 * Forwards and backwards subgraph searching, for the purposes of 1312 * proving that two subgraphs can be connected by a new dependency 1313 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1314 */ 1315 1316 static inline int usage_match(struct lock_list *entry, void *bit) 1317 { 1318 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); 1319 } 1320 1321 1322 1323 /* 1324 * Find a node in the forwards-direction dependency sub-graph starting 1325 * at @root->class that matches @bit. 1326 * 1327 * Return 0 if such a node exists in the subgraph, and put that node 1328 * into *@target_entry. 1329 * 1330 * Return 1 otherwise and keep *@target_entry unchanged. 1331 * Return <0 on error. 1332 */ 1333 static int 1334 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, 1335 struct lock_list **target_entry) 1336 { 1337 int result; 1338 1339 debug_atomic_inc(nr_find_usage_forwards_checks); 1340 1341 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1342 1343 return result; 1344 } 1345 1346 /* 1347 * Find a node in the backwards-direction dependency sub-graph starting 1348 * at @root->class that matches @bit. 1349 * 1350 * Return 0 if such a node exists in the subgraph, and put that node 1351 * into *@target_entry. 1352 * 1353 * Return 1 otherwise and keep *@target_entry unchanged. 1354 * Return <0 on error. 1355 */ 1356 static int 1357 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, 1358 struct lock_list **target_entry) 1359 { 1360 int result; 1361 1362 debug_atomic_inc(nr_find_usage_backwards_checks); 1363 1364 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1365 1366 return result; 1367 } 1368 1369 static void print_lock_class_header(struct lock_class *class, int depth) 1370 { 1371 int bit; 1372 1373 printk("%*s->", depth, ""); 1374 print_lock_name(class); 1375 printk(" ops: %lu", class->ops); 1376 printk(" {\n"); 1377 1378 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1379 if (class->usage_mask & (1 << bit)) { 1380 int len = depth; 1381 1382 len += printk("%*s %s", depth, "", usage_str[bit]); 1383 len += printk(" at:\n"); 1384 print_stack_trace(class->usage_traces + bit, len); 1385 } 1386 } 1387 printk("%*s }\n", depth, ""); 1388 1389 printk("%*s ... key at: ",depth,""); 1390 print_ip_sym((unsigned long)class->key); 1391 } 1392 1393 /* 1394 * printk the shortest lock dependencies from @start to @end in reverse order: 1395 */ 1396 static void __used 1397 print_shortest_lock_dependencies(struct lock_list *leaf, 1398 struct lock_list *root) 1399 { 1400 struct lock_list *entry = leaf; 1401 int depth; 1402 1403 /*compute depth from generated tree by BFS*/ 1404 depth = get_lock_depth(leaf); 1405 1406 do { 1407 print_lock_class_header(entry->class, depth); 1408 printk("%*s ... acquired at:\n", depth, ""); 1409 print_stack_trace(&entry->trace, 2); 1410 printk("\n"); 1411 1412 if (depth == 0 && (entry != root)) { 1413 printk("lockdep:%s bad path found in chain graph\n", __func__); 1414 break; 1415 } 1416 1417 entry = get_lock_parent(entry); 1418 depth--; 1419 } while (entry && (depth >= 0)); 1420 1421 return; 1422 } 1423 1424 static void 1425 print_irq_lock_scenario(struct lock_list *safe_entry, 1426 struct lock_list *unsafe_entry, 1427 struct lock_class *prev_class, 1428 struct lock_class *next_class) 1429 { 1430 struct lock_class *safe_class = safe_entry->class; 1431 struct lock_class *unsafe_class = unsafe_entry->class; 1432 struct lock_class *middle_class = prev_class; 1433 1434 if (middle_class == safe_class) 1435 middle_class = next_class; 1436 1437 /* 1438 * A direct locking problem where unsafe_class lock is taken 1439 * directly by safe_class lock, then all we need to show 1440 * is the deadlock scenario, as it is obvious that the 1441 * unsafe lock is taken under the safe lock. 1442 * 1443 * But if there is a chain instead, where the safe lock takes 1444 * an intermediate lock (middle_class) where this lock is 1445 * not the same as the safe lock, then the lock chain is 1446 * used to describe the problem. Otherwise we would need 1447 * to show a different CPU case for each link in the chain 1448 * from the safe_class lock to the unsafe_class lock. 1449 */ 1450 if (middle_class != unsafe_class) { 1451 printk("Chain exists of:\n "); 1452 __print_lock_name(safe_class); 1453 printk(" --> "); 1454 __print_lock_name(middle_class); 1455 printk(" --> "); 1456 __print_lock_name(unsafe_class); 1457 printk("\n\n"); 1458 } 1459 1460 printk(" Possible interrupt unsafe locking scenario:\n\n"); 1461 printk(" CPU0 CPU1\n"); 1462 printk(" ---- ----\n"); 1463 printk(" lock("); 1464 __print_lock_name(unsafe_class); 1465 printk(");\n"); 1466 printk(" local_irq_disable();\n"); 1467 printk(" lock("); 1468 __print_lock_name(safe_class); 1469 printk(");\n"); 1470 printk(" lock("); 1471 __print_lock_name(middle_class); 1472 printk(");\n"); 1473 printk(" <Interrupt>\n"); 1474 printk(" lock("); 1475 __print_lock_name(safe_class); 1476 printk(");\n"); 1477 printk("\n *** DEADLOCK ***\n\n"); 1478 } 1479 1480 static int 1481 print_bad_irq_dependency(struct task_struct *curr, 1482 struct lock_list *prev_root, 1483 struct lock_list *next_root, 1484 struct lock_list *backwards_entry, 1485 struct lock_list *forwards_entry, 1486 struct held_lock *prev, 1487 struct held_lock *next, 1488 enum lock_usage_bit bit1, 1489 enum lock_usage_bit bit2, 1490 const char *irqclass) 1491 { 1492 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1493 return 0; 1494 1495 printk("\n"); 1496 printk("======================================================\n"); 1497 printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n", 1498 irqclass, irqclass); 1499 print_kernel_ident(); 1500 printk("------------------------------------------------------\n"); 1501 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 1502 curr->comm, task_pid_nr(curr), 1503 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 1504 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 1505 curr->hardirqs_enabled, 1506 curr->softirqs_enabled); 1507 print_lock(next); 1508 1509 printk("\nand this task is already holding:\n"); 1510 print_lock(prev); 1511 printk("which would create a new lock dependency:\n"); 1512 print_lock_name(hlock_class(prev)); 1513 printk(" ->"); 1514 print_lock_name(hlock_class(next)); 1515 printk("\n"); 1516 1517 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1518 irqclass); 1519 print_lock_name(backwards_entry->class); 1520 printk("\n... which became %s-irq-safe at:\n", irqclass); 1521 1522 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); 1523 1524 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1525 print_lock_name(forwards_entry->class); 1526 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1527 printk("..."); 1528 1529 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); 1530 1531 printk("\nother info that might help us debug this:\n\n"); 1532 print_irq_lock_scenario(backwards_entry, forwards_entry, 1533 hlock_class(prev), hlock_class(next)); 1534 1535 lockdep_print_held_locks(curr); 1536 1537 printk("\nthe dependencies between %s-irq-safe lock", irqclass); 1538 printk(" and the holding lock:\n"); 1539 if (!save_trace(&prev_root->trace)) 1540 return 0; 1541 print_shortest_lock_dependencies(backwards_entry, prev_root); 1542 1543 printk("\nthe dependencies between the lock to be acquired"); 1544 printk(" and %s-irq-unsafe lock:\n", irqclass); 1545 if (!save_trace(&next_root->trace)) 1546 return 0; 1547 print_shortest_lock_dependencies(forwards_entry, next_root); 1548 1549 printk("\nstack backtrace:\n"); 1550 dump_stack(); 1551 1552 return 0; 1553 } 1554 1555 static int 1556 check_usage(struct task_struct *curr, struct held_lock *prev, 1557 struct held_lock *next, enum lock_usage_bit bit_backwards, 1558 enum lock_usage_bit bit_forwards, const char *irqclass) 1559 { 1560 int ret; 1561 struct lock_list this, that; 1562 struct lock_list *uninitialized_var(target_entry); 1563 struct lock_list *uninitialized_var(target_entry1); 1564 1565 this.parent = NULL; 1566 1567 this.class = hlock_class(prev); 1568 ret = find_usage_backwards(&this, bit_backwards, &target_entry); 1569 if (ret < 0) 1570 return print_bfs_bug(ret); 1571 if (ret == 1) 1572 return ret; 1573 1574 that.parent = NULL; 1575 that.class = hlock_class(next); 1576 ret = find_usage_forwards(&that, bit_forwards, &target_entry1); 1577 if (ret < 0) 1578 return print_bfs_bug(ret); 1579 if (ret == 1) 1580 return ret; 1581 1582 return print_bad_irq_dependency(curr, &this, &that, 1583 target_entry, target_entry1, 1584 prev, next, 1585 bit_backwards, bit_forwards, irqclass); 1586 } 1587 1588 static const char *state_names[] = { 1589 #define LOCKDEP_STATE(__STATE) \ 1590 __stringify(__STATE), 1591 #include "lockdep_states.h" 1592 #undef LOCKDEP_STATE 1593 }; 1594 1595 static const char *state_rnames[] = { 1596 #define LOCKDEP_STATE(__STATE) \ 1597 __stringify(__STATE)"-READ", 1598 #include "lockdep_states.h" 1599 #undef LOCKDEP_STATE 1600 }; 1601 1602 static inline const char *state_name(enum lock_usage_bit bit) 1603 { 1604 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; 1605 } 1606 1607 static int exclusive_bit(int new_bit) 1608 { 1609 /* 1610 * USED_IN 1611 * USED_IN_READ 1612 * ENABLED 1613 * ENABLED_READ 1614 * 1615 * bit 0 - write/read 1616 * bit 1 - used_in/enabled 1617 * bit 2+ state 1618 */ 1619 1620 int state = new_bit & ~3; 1621 int dir = new_bit & 2; 1622 1623 /* 1624 * keep state, bit flip the direction and strip read. 1625 */ 1626 return state | (dir ^ 2); 1627 } 1628 1629 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 1630 struct held_lock *next, enum lock_usage_bit bit) 1631 { 1632 /* 1633 * Prove that the new dependency does not connect a hardirq-safe 1634 * lock with a hardirq-unsafe lock - to achieve this we search 1635 * the backwards-subgraph starting at <prev>, and the 1636 * forwards-subgraph starting at <next>: 1637 */ 1638 if (!check_usage(curr, prev, next, bit, 1639 exclusive_bit(bit), state_name(bit))) 1640 return 0; 1641 1642 bit++; /* _READ */ 1643 1644 /* 1645 * Prove that the new dependency does not connect a hardirq-safe-read 1646 * lock with a hardirq-unsafe lock - to achieve this we search 1647 * the backwards-subgraph starting at <prev>, and the 1648 * forwards-subgraph starting at <next>: 1649 */ 1650 if (!check_usage(curr, prev, next, bit, 1651 exclusive_bit(bit), state_name(bit))) 1652 return 0; 1653 1654 return 1; 1655 } 1656 1657 static int 1658 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1659 struct held_lock *next) 1660 { 1661 #define LOCKDEP_STATE(__STATE) \ 1662 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ 1663 return 0; 1664 #include "lockdep_states.h" 1665 #undef LOCKDEP_STATE 1666 1667 return 1; 1668 } 1669 1670 static void inc_chains(void) 1671 { 1672 if (current->hardirq_context) 1673 nr_hardirq_chains++; 1674 else { 1675 if (current->softirq_context) 1676 nr_softirq_chains++; 1677 else 1678 nr_process_chains++; 1679 } 1680 } 1681 1682 #else 1683 1684 static inline int 1685 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1686 struct held_lock *next) 1687 { 1688 return 1; 1689 } 1690 1691 static inline void inc_chains(void) 1692 { 1693 nr_process_chains++; 1694 } 1695 1696 #endif 1697 1698 static void 1699 print_deadlock_scenario(struct held_lock *nxt, 1700 struct held_lock *prv) 1701 { 1702 struct lock_class *next = hlock_class(nxt); 1703 struct lock_class *prev = hlock_class(prv); 1704 1705 printk(" Possible unsafe locking scenario:\n\n"); 1706 printk(" CPU0\n"); 1707 printk(" ----\n"); 1708 printk(" lock("); 1709 __print_lock_name(prev); 1710 printk(");\n"); 1711 printk(" lock("); 1712 __print_lock_name(next); 1713 printk(");\n"); 1714 printk("\n *** DEADLOCK ***\n\n"); 1715 printk(" May be due to missing lock nesting notation\n\n"); 1716 } 1717 1718 static int 1719 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 1720 struct held_lock *next) 1721 { 1722 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1723 return 0; 1724 1725 printk("\n"); 1726 printk("=============================================\n"); 1727 printk("[ INFO: possible recursive locking detected ]\n"); 1728 print_kernel_ident(); 1729 printk("---------------------------------------------\n"); 1730 printk("%s/%d is trying to acquire lock:\n", 1731 curr->comm, task_pid_nr(curr)); 1732 print_lock(next); 1733 printk("\nbut task is already holding lock:\n"); 1734 print_lock(prev); 1735 1736 printk("\nother info that might help us debug this:\n"); 1737 print_deadlock_scenario(next, prev); 1738 lockdep_print_held_locks(curr); 1739 1740 printk("\nstack backtrace:\n"); 1741 dump_stack(); 1742 1743 return 0; 1744 } 1745 1746 /* 1747 * Check whether we are holding such a class already. 1748 * 1749 * (Note that this has to be done separately, because the graph cannot 1750 * detect such classes of deadlocks.) 1751 * 1752 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 1753 */ 1754 static int 1755 check_deadlock(struct task_struct *curr, struct held_lock *next, 1756 struct lockdep_map *next_instance, int read) 1757 { 1758 struct held_lock *prev; 1759 struct held_lock *nest = NULL; 1760 int i; 1761 1762 for (i = 0; i < curr->lockdep_depth; i++) { 1763 prev = curr->held_locks + i; 1764 1765 if (prev->instance == next->nest_lock) 1766 nest = prev; 1767 1768 if (hlock_class(prev) != hlock_class(next)) 1769 continue; 1770 1771 /* 1772 * Allow read-after-read recursion of the same 1773 * lock class (i.e. read_lock(lock)+read_lock(lock)): 1774 */ 1775 if ((read == 2) && prev->read) 1776 return 2; 1777 1778 /* 1779 * We're holding the nest_lock, which serializes this lock's 1780 * nesting behaviour. 1781 */ 1782 if (nest) 1783 return 2; 1784 1785 return print_deadlock_bug(curr, prev, next); 1786 } 1787 return 1; 1788 } 1789 1790 /* 1791 * There was a chain-cache miss, and we are about to add a new dependency 1792 * to a previous lock. We recursively validate the following rules: 1793 * 1794 * - would the adding of the <prev> -> <next> dependency create a 1795 * circular dependency in the graph? [== circular deadlock] 1796 * 1797 * - does the new prev->next dependency connect any hardirq-safe lock 1798 * (in the full backwards-subgraph starting at <prev>) with any 1799 * hardirq-unsafe lock (in the full forwards-subgraph starting at 1800 * <next>)? [== illegal lock inversion with hardirq contexts] 1801 * 1802 * - does the new prev->next dependency connect any softirq-safe lock 1803 * (in the full backwards-subgraph starting at <prev>) with any 1804 * softirq-unsafe lock (in the full forwards-subgraph starting at 1805 * <next>)? [== illegal lock inversion with softirq contexts] 1806 * 1807 * any of these scenarios could lead to a deadlock. 1808 * 1809 * Then if all the validations pass, we add the forwards and backwards 1810 * dependency. 1811 */ 1812 static int 1813 check_prev_add(struct task_struct *curr, struct held_lock *prev, 1814 struct held_lock *next, int distance, int trylock_loop) 1815 { 1816 struct lock_list *entry; 1817 int ret; 1818 struct lock_list this; 1819 struct lock_list *uninitialized_var(target_entry); 1820 /* 1821 * Static variable, serialized by the graph_lock(). 1822 * 1823 * We use this static variable to save the stack trace in case 1824 * we call into this function multiple times due to encountering 1825 * trylocks in the held lock stack. 1826 */ 1827 static struct stack_trace trace; 1828 1829 /* 1830 * Prove that the new <prev> -> <next> dependency would not 1831 * create a circular dependency in the graph. (We do this by 1832 * forward-recursing into the graph starting at <next>, and 1833 * checking whether we can reach <prev>.) 1834 * 1835 * We are using global variables to control the recursion, to 1836 * keep the stackframe size of the recursive functions low: 1837 */ 1838 this.class = hlock_class(next); 1839 this.parent = NULL; 1840 ret = check_noncircular(&this, hlock_class(prev), &target_entry); 1841 if (unlikely(!ret)) 1842 return print_circular_bug(&this, target_entry, next, prev); 1843 else if (unlikely(ret < 0)) 1844 return print_bfs_bug(ret); 1845 1846 if (!check_prev_add_irq(curr, prev, next)) 1847 return 0; 1848 1849 /* 1850 * For recursive read-locks we do all the dependency checks, 1851 * but we dont store read-triggered dependencies (only 1852 * write-triggered dependencies). This ensures that only the 1853 * write-side dependencies matter, and that if for example a 1854 * write-lock never takes any other locks, then the reads are 1855 * equivalent to a NOP. 1856 */ 1857 if (next->read == 2 || prev->read == 2) 1858 return 1; 1859 /* 1860 * Is the <prev> -> <next> dependency already present? 1861 * 1862 * (this may occur even though this is a new chain: consider 1863 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 1864 * chains - the second one will be new, but L1 already has 1865 * L2 added to its dependency list, due to the first chain.) 1866 */ 1867 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 1868 if (entry->class == hlock_class(next)) { 1869 if (distance == 1) 1870 entry->distance = 1; 1871 return 2; 1872 } 1873 } 1874 1875 if (!trylock_loop && !save_trace(&trace)) 1876 return 0; 1877 1878 /* 1879 * Ok, all validations passed, add the new lock 1880 * to the previous lock's dependency list: 1881 */ 1882 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 1883 &hlock_class(prev)->locks_after, 1884 next->acquire_ip, distance, &trace); 1885 1886 if (!ret) 1887 return 0; 1888 1889 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 1890 &hlock_class(next)->locks_before, 1891 next->acquire_ip, distance, &trace); 1892 if (!ret) 1893 return 0; 1894 1895 /* 1896 * Debugging printouts: 1897 */ 1898 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) { 1899 graph_unlock(); 1900 printk("\n new dependency: "); 1901 print_lock_name(hlock_class(prev)); 1902 printk(" => "); 1903 print_lock_name(hlock_class(next)); 1904 printk("\n"); 1905 dump_stack(); 1906 return graph_lock(); 1907 } 1908 return 1; 1909 } 1910 1911 /* 1912 * Add the dependency to all directly-previous locks that are 'relevant'. 1913 * The ones that are relevant are (in increasing distance from curr): 1914 * all consecutive trylock entries and the final non-trylock entry - or 1915 * the end of this context's lock-chain - whichever comes first. 1916 */ 1917 static int 1918 check_prevs_add(struct task_struct *curr, struct held_lock *next) 1919 { 1920 int depth = curr->lockdep_depth; 1921 int trylock_loop = 0; 1922 struct held_lock *hlock; 1923 1924 /* 1925 * Debugging checks. 1926 * 1927 * Depth must not be zero for a non-head lock: 1928 */ 1929 if (!depth) 1930 goto out_bug; 1931 /* 1932 * At least two relevant locks must exist for this 1933 * to be a head: 1934 */ 1935 if (curr->held_locks[depth].irq_context != 1936 curr->held_locks[depth-1].irq_context) 1937 goto out_bug; 1938 1939 for (;;) { 1940 int distance = curr->lockdep_depth - depth + 1; 1941 hlock = curr->held_locks + depth - 1; 1942 /* 1943 * Only non-recursive-read entries get new dependencies 1944 * added: 1945 */ 1946 if (hlock->read != 2 && hlock->check) { 1947 if (!check_prev_add(curr, hlock, next, 1948 distance, trylock_loop)) 1949 return 0; 1950 /* 1951 * Stop after the first non-trylock entry, 1952 * as non-trylock entries have added their 1953 * own direct dependencies already, so this 1954 * lock is connected to them indirectly: 1955 */ 1956 if (!hlock->trylock) 1957 break; 1958 } 1959 depth--; 1960 /* 1961 * End of lock-stack? 1962 */ 1963 if (!depth) 1964 break; 1965 /* 1966 * Stop the search if we cross into another context: 1967 */ 1968 if (curr->held_locks[depth].irq_context != 1969 curr->held_locks[depth-1].irq_context) 1970 break; 1971 trylock_loop = 1; 1972 } 1973 return 1; 1974 out_bug: 1975 if (!debug_locks_off_graph_unlock()) 1976 return 0; 1977 1978 /* 1979 * Clearly we all shouldn't be here, but since we made it we 1980 * can reliable say we messed up our state. See the above two 1981 * gotos for reasons why we could possibly end up here. 1982 */ 1983 WARN_ON(1); 1984 1985 return 0; 1986 } 1987 1988 unsigned long nr_lock_chains; 1989 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 1990 int nr_chain_hlocks; 1991 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1992 1993 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 1994 { 1995 return lock_classes + chain_hlocks[chain->base + i]; 1996 } 1997 1998 /* 1999 * Look up a dependency chain. If the key is not present yet then 2000 * add it and return 1 - in this case the new dependency chain is 2001 * validated. If the key is already hashed, return 0. 2002 * (On return with 1 graph_lock is held.) 2003 */ 2004 static inline int lookup_chain_cache(struct task_struct *curr, 2005 struct held_lock *hlock, 2006 u64 chain_key) 2007 { 2008 struct lock_class *class = hlock_class(hlock); 2009 struct list_head *hash_head = chainhashentry(chain_key); 2010 struct lock_chain *chain; 2011 struct held_lock *hlock_curr; 2012 int i, j; 2013 2014 /* 2015 * We might need to take the graph lock, ensure we've got IRQs 2016 * disabled to make this an IRQ-safe lock.. for recursion reasons 2017 * lockdep won't complain about its own locking errors. 2018 */ 2019 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2020 return 0; 2021 /* 2022 * We can walk it lock-free, because entries only get added 2023 * to the hash: 2024 */ 2025 list_for_each_entry(chain, hash_head, entry) { 2026 if (chain->chain_key == chain_key) { 2027 cache_hit: 2028 debug_atomic_inc(chain_lookup_hits); 2029 if (very_verbose(class)) 2030 printk("\nhash chain already cached, key: " 2031 "%016Lx tail class: [%p] %s\n", 2032 (unsigned long long)chain_key, 2033 class->key, class->name); 2034 return 0; 2035 } 2036 } 2037 if (very_verbose(class)) 2038 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n", 2039 (unsigned long long)chain_key, class->key, class->name); 2040 /* 2041 * Allocate a new chain entry from the static array, and add 2042 * it to the hash: 2043 */ 2044 if (!graph_lock()) 2045 return 0; 2046 /* 2047 * We have to walk the chain again locked - to avoid duplicates: 2048 */ 2049 list_for_each_entry(chain, hash_head, entry) { 2050 if (chain->chain_key == chain_key) { 2051 graph_unlock(); 2052 goto cache_hit; 2053 } 2054 } 2055 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2056 if (!debug_locks_off_graph_unlock()) 2057 return 0; 2058 2059 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2060 dump_stack(); 2061 return 0; 2062 } 2063 chain = lock_chains + nr_lock_chains++; 2064 chain->chain_key = chain_key; 2065 chain->irq_context = hlock->irq_context; 2066 /* Find the first held_lock of current chain */ 2067 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 2068 hlock_curr = curr->held_locks + i; 2069 if (hlock_curr->irq_context != hlock->irq_context) 2070 break; 2071 } 2072 i++; 2073 chain->depth = curr->lockdep_depth + 1 - i; 2074 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2075 chain->base = nr_chain_hlocks; 2076 nr_chain_hlocks += chain->depth; 2077 for (j = 0; j < chain->depth - 1; j++, i++) { 2078 int lock_id = curr->held_locks[i].class_idx - 1; 2079 chain_hlocks[chain->base + j] = lock_id; 2080 } 2081 chain_hlocks[chain->base + j] = class - lock_classes; 2082 } 2083 list_add_tail_rcu(&chain->entry, hash_head); 2084 debug_atomic_inc(chain_lookup_misses); 2085 inc_chains(); 2086 2087 return 1; 2088 } 2089 2090 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock, 2091 struct held_lock *hlock, int chain_head, u64 chain_key) 2092 { 2093 /* 2094 * Trylock needs to maintain the stack of held locks, but it 2095 * does not add new dependencies, because trylock can be done 2096 * in any order. 2097 * 2098 * We look up the chain_key and do the O(N^2) check and update of 2099 * the dependencies only if this is a new dependency chain. 2100 * (If lookup_chain_cache() returns with 1 it acquires 2101 * graph_lock for us) 2102 */ 2103 if (!hlock->trylock && hlock->check && 2104 lookup_chain_cache(curr, hlock, chain_key)) { 2105 /* 2106 * Check whether last held lock: 2107 * 2108 * - is irq-safe, if this lock is irq-unsafe 2109 * - is softirq-safe, if this lock is hardirq-unsafe 2110 * 2111 * And check whether the new lock's dependency graph 2112 * could lead back to the previous lock. 2113 * 2114 * any of these scenarios could lead to a deadlock. If 2115 * All validations 2116 */ 2117 int ret = check_deadlock(curr, hlock, lock, hlock->read); 2118 2119 if (!ret) 2120 return 0; 2121 /* 2122 * Mark recursive read, as we jump over it when 2123 * building dependencies (just like we jump over 2124 * trylock entries): 2125 */ 2126 if (ret == 2) 2127 hlock->read = 2; 2128 /* 2129 * Add dependency only if this lock is not the head 2130 * of the chain, and if it's not a secondary read-lock: 2131 */ 2132 if (!chain_head && ret != 2) 2133 if (!check_prevs_add(curr, hlock)) 2134 return 0; 2135 graph_unlock(); 2136 } else 2137 /* after lookup_chain_cache(): */ 2138 if (unlikely(!debug_locks)) 2139 return 0; 2140 2141 return 1; 2142 } 2143 #else 2144 static inline int validate_chain(struct task_struct *curr, 2145 struct lockdep_map *lock, struct held_lock *hlock, 2146 int chain_head, u64 chain_key) 2147 { 2148 return 1; 2149 } 2150 #endif 2151 2152 /* 2153 * We are building curr_chain_key incrementally, so double-check 2154 * it from scratch, to make sure that it's done correctly: 2155 */ 2156 static void check_chain_key(struct task_struct *curr) 2157 { 2158 #ifdef CONFIG_DEBUG_LOCKDEP 2159 struct held_lock *hlock, *prev_hlock = NULL; 2160 unsigned int i, id; 2161 u64 chain_key = 0; 2162 2163 for (i = 0; i < curr->lockdep_depth; i++) { 2164 hlock = curr->held_locks + i; 2165 if (chain_key != hlock->prev_chain_key) { 2166 debug_locks_off(); 2167 /* 2168 * We got mighty confused, our chain keys don't match 2169 * with what we expect, someone trample on our task state? 2170 */ 2171 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 2172 curr->lockdep_depth, i, 2173 (unsigned long long)chain_key, 2174 (unsigned long long)hlock->prev_chain_key); 2175 return; 2176 } 2177 id = hlock->class_idx - 1; 2178 /* 2179 * Whoops ran out of static storage again? 2180 */ 2181 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS)) 2182 return; 2183 2184 if (prev_hlock && (prev_hlock->irq_context != 2185 hlock->irq_context)) 2186 chain_key = 0; 2187 chain_key = iterate_chain_key(chain_key, id); 2188 prev_hlock = hlock; 2189 } 2190 if (chain_key != curr->curr_chain_key) { 2191 debug_locks_off(); 2192 /* 2193 * More smoking hash instead of calculating it, damn see these 2194 * numbers float.. I bet that a pink elephant stepped on my memory. 2195 */ 2196 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 2197 curr->lockdep_depth, i, 2198 (unsigned long long)chain_key, 2199 (unsigned long long)curr->curr_chain_key); 2200 } 2201 #endif 2202 } 2203 2204 static void 2205 print_usage_bug_scenario(struct held_lock *lock) 2206 { 2207 struct lock_class *class = hlock_class(lock); 2208 2209 printk(" Possible unsafe locking scenario:\n\n"); 2210 printk(" CPU0\n"); 2211 printk(" ----\n"); 2212 printk(" lock("); 2213 __print_lock_name(class); 2214 printk(");\n"); 2215 printk(" <Interrupt>\n"); 2216 printk(" lock("); 2217 __print_lock_name(class); 2218 printk(");\n"); 2219 printk("\n *** DEADLOCK ***\n\n"); 2220 } 2221 2222 static int 2223 print_usage_bug(struct task_struct *curr, struct held_lock *this, 2224 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 2225 { 2226 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2227 return 0; 2228 2229 printk("\n"); 2230 printk("=================================\n"); 2231 printk("[ INFO: inconsistent lock state ]\n"); 2232 print_kernel_ident(); 2233 printk("---------------------------------\n"); 2234 2235 printk("inconsistent {%s} -> {%s} usage.\n", 2236 usage_str[prev_bit], usage_str[new_bit]); 2237 2238 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 2239 curr->comm, task_pid_nr(curr), 2240 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 2241 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 2242 trace_hardirqs_enabled(curr), 2243 trace_softirqs_enabled(curr)); 2244 print_lock(this); 2245 2246 printk("{%s} state was registered at:\n", usage_str[prev_bit]); 2247 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1); 2248 2249 print_irqtrace_events(curr); 2250 printk("\nother info that might help us debug this:\n"); 2251 print_usage_bug_scenario(this); 2252 2253 lockdep_print_held_locks(curr); 2254 2255 printk("\nstack backtrace:\n"); 2256 dump_stack(); 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * Print out an error if an invalid bit is set: 2263 */ 2264 static inline int 2265 valid_state(struct task_struct *curr, struct held_lock *this, 2266 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 2267 { 2268 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) 2269 return print_usage_bug(curr, this, bad_bit, new_bit); 2270 return 1; 2271 } 2272 2273 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2274 enum lock_usage_bit new_bit); 2275 2276 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 2277 2278 /* 2279 * print irq inversion bug: 2280 */ 2281 static int 2282 print_irq_inversion_bug(struct task_struct *curr, 2283 struct lock_list *root, struct lock_list *other, 2284 struct held_lock *this, int forwards, 2285 const char *irqclass) 2286 { 2287 struct lock_list *entry = other; 2288 struct lock_list *middle = NULL; 2289 int depth; 2290 2291 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2292 return 0; 2293 2294 printk("\n"); 2295 printk("=========================================================\n"); 2296 printk("[ INFO: possible irq lock inversion dependency detected ]\n"); 2297 print_kernel_ident(); 2298 printk("---------------------------------------------------------\n"); 2299 printk("%s/%d just changed the state of lock:\n", 2300 curr->comm, task_pid_nr(curr)); 2301 print_lock(this); 2302 if (forwards) 2303 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2304 else 2305 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2306 print_lock_name(other->class); 2307 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2308 2309 printk("\nother info that might help us debug this:\n"); 2310 2311 /* Find a middle lock (if one exists) */ 2312 depth = get_lock_depth(other); 2313 do { 2314 if (depth == 0 && (entry != root)) { 2315 printk("lockdep:%s bad path found in chain graph\n", __func__); 2316 break; 2317 } 2318 middle = entry; 2319 entry = get_lock_parent(entry); 2320 depth--; 2321 } while (entry && entry != root && (depth >= 0)); 2322 if (forwards) 2323 print_irq_lock_scenario(root, other, 2324 middle ? middle->class : root->class, other->class); 2325 else 2326 print_irq_lock_scenario(other, root, 2327 middle ? middle->class : other->class, root->class); 2328 2329 lockdep_print_held_locks(curr); 2330 2331 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 2332 if (!save_trace(&root->trace)) 2333 return 0; 2334 print_shortest_lock_dependencies(other, root); 2335 2336 printk("\nstack backtrace:\n"); 2337 dump_stack(); 2338 2339 return 0; 2340 } 2341 2342 /* 2343 * Prove that in the forwards-direction subgraph starting at <this> 2344 * there is no lock matching <mask>: 2345 */ 2346 static int 2347 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 2348 enum lock_usage_bit bit, const char *irqclass) 2349 { 2350 int ret; 2351 struct lock_list root; 2352 struct lock_list *uninitialized_var(target_entry); 2353 2354 root.parent = NULL; 2355 root.class = hlock_class(this); 2356 ret = find_usage_forwards(&root, bit, &target_entry); 2357 if (ret < 0) 2358 return print_bfs_bug(ret); 2359 if (ret == 1) 2360 return ret; 2361 2362 return print_irq_inversion_bug(curr, &root, target_entry, 2363 this, 1, irqclass); 2364 } 2365 2366 /* 2367 * Prove that in the backwards-direction subgraph starting at <this> 2368 * there is no lock matching <mask>: 2369 */ 2370 static int 2371 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 2372 enum lock_usage_bit bit, const char *irqclass) 2373 { 2374 int ret; 2375 struct lock_list root; 2376 struct lock_list *uninitialized_var(target_entry); 2377 2378 root.parent = NULL; 2379 root.class = hlock_class(this); 2380 ret = find_usage_backwards(&root, bit, &target_entry); 2381 if (ret < 0) 2382 return print_bfs_bug(ret); 2383 if (ret == 1) 2384 return ret; 2385 2386 return print_irq_inversion_bug(curr, &root, target_entry, 2387 this, 0, irqclass); 2388 } 2389 2390 void print_irqtrace_events(struct task_struct *curr) 2391 { 2392 printk("irq event stamp: %u\n", curr->irq_events); 2393 printk("hardirqs last enabled at (%u): ", curr->hardirq_enable_event); 2394 print_ip_sym(curr->hardirq_enable_ip); 2395 printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event); 2396 print_ip_sym(curr->hardirq_disable_ip); 2397 printk("softirqs last enabled at (%u): ", curr->softirq_enable_event); 2398 print_ip_sym(curr->softirq_enable_ip); 2399 printk("softirqs last disabled at (%u): ", curr->softirq_disable_event); 2400 print_ip_sym(curr->softirq_disable_ip); 2401 } 2402 2403 static int HARDIRQ_verbose(struct lock_class *class) 2404 { 2405 #if HARDIRQ_VERBOSE 2406 return class_filter(class); 2407 #endif 2408 return 0; 2409 } 2410 2411 static int SOFTIRQ_verbose(struct lock_class *class) 2412 { 2413 #if SOFTIRQ_VERBOSE 2414 return class_filter(class); 2415 #endif 2416 return 0; 2417 } 2418 2419 static int RECLAIM_FS_verbose(struct lock_class *class) 2420 { 2421 #if RECLAIM_VERBOSE 2422 return class_filter(class); 2423 #endif 2424 return 0; 2425 } 2426 2427 #define STRICT_READ_CHECKS 1 2428 2429 static int (*state_verbose_f[])(struct lock_class *class) = { 2430 #define LOCKDEP_STATE(__STATE) \ 2431 __STATE##_verbose, 2432 #include "lockdep_states.h" 2433 #undef LOCKDEP_STATE 2434 }; 2435 2436 static inline int state_verbose(enum lock_usage_bit bit, 2437 struct lock_class *class) 2438 { 2439 return state_verbose_f[bit >> 2](class); 2440 } 2441 2442 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 2443 enum lock_usage_bit bit, const char *name); 2444 2445 static int 2446 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2447 enum lock_usage_bit new_bit) 2448 { 2449 int excl_bit = exclusive_bit(new_bit); 2450 int read = new_bit & 1; 2451 int dir = new_bit & 2; 2452 2453 /* 2454 * mark USED_IN has to look forwards -- to ensure no dependency 2455 * has ENABLED state, which would allow recursion deadlocks. 2456 * 2457 * mark ENABLED has to look backwards -- to ensure no dependee 2458 * has USED_IN state, which, again, would allow recursion deadlocks. 2459 */ 2460 check_usage_f usage = dir ? 2461 check_usage_backwards : check_usage_forwards; 2462 2463 /* 2464 * Validate that this particular lock does not have conflicting 2465 * usage states. 2466 */ 2467 if (!valid_state(curr, this, new_bit, excl_bit)) 2468 return 0; 2469 2470 /* 2471 * Validate that the lock dependencies don't have conflicting usage 2472 * states. 2473 */ 2474 if ((!read || !dir || STRICT_READ_CHECKS) && 2475 !usage(curr, this, excl_bit, state_name(new_bit & ~1))) 2476 return 0; 2477 2478 /* 2479 * Check for read in write conflicts 2480 */ 2481 if (!read) { 2482 if (!valid_state(curr, this, new_bit, excl_bit + 1)) 2483 return 0; 2484 2485 if (STRICT_READ_CHECKS && 2486 !usage(curr, this, excl_bit + 1, 2487 state_name(new_bit + 1))) 2488 return 0; 2489 } 2490 2491 if (state_verbose(new_bit, hlock_class(this))) 2492 return 2; 2493 2494 return 1; 2495 } 2496 2497 enum mark_type { 2498 #define LOCKDEP_STATE(__STATE) __STATE, 2499 #include "lockdep_states.h" 2500 #undef LOCKDEP_STATE 2501 }; 2502 2503 /* 2504 * Mark all held locks with a usage bit: 2505 */ 2506 static int 2507 mark_held_locks(struct task_struct *curr, enum mark_type mark) 2508 { 2509 enum lock_usage_bit usage_bit; 2510 struct held_lock *hlock; 2511 int i; 2512 2513 for (i = 0; i < curr->lockdep_depth; i++) { 2514 hlock = curr->held_locks + i; 2515 2516 usage_bit = 2 + (mark << 2); /* ENABLED */ 2517 if (hlock->read) 2518 usage_bit += 1; /* READ */ 2519 2520 BUG_ON(usage_bit >= LOCK_USAGE_STATES); 2521 2522 if (!hlock->check) 2523 continue; 2524 2525 if (!mark_lock(curr, hlock, usage_bit)) 2526 return 0; 2527 } 2528 2529 return 1; 2530 } 2531 2532 /* 2533 * Hardirqs will be enabled: 2534 */ 2535 static void __trace_hardirqs_on_caller(unsigned long ip) 2536 { 2537 struct task_struct *curr = current; 2538 2539 /* we'll do an OFF -> ON transition: */ 2540 curr->hardirqs_enabled = 1; 2541 2542 /* 2543 * We are going to turn hardirqs on, so set the 2544 * usage bit for all held locks: 2545 */ 2546 if (!mark_held_locks(curr, HARDIRQ)) 2547 return; 2548 /* 2549 * If we have softirqs enabled, then set the usage 2550 * bit for all held locks. (disabled hardirqs prevented 2551 * this bit from being set before) 2552 */ 2553 if (curr->softirqs_enabled) 2554 if (!mark_held_locks(curr, SOFTIRQ)) 2555 return; 2556 2557 curr->hardirq_enable_ip = ip; 2558 curr->hardirq_enable_event = ++curr->irq_events; 2559 debug_atomic_inc(hardirqs_on_events); 2560 } 2561 2562 __visible void trace_hardirqs_on_caller(unsigned long ip) 2563 { 2564 time_hardirqs_on(CALLER_ADDR0, ip); 2565 2566 if (unlikely(!debug_locks || current->lockdep_recursion)) 2567 return; 2568 2569 if (unlikely(current->hardirqs_enabled)) { 2570 /* 2571 * Neither irq nor preemption are disabled here 2572 * so this is racy by nature but losing one hit 2573 * in a stat is not a big deal. 2574 */ 2575 __debug_atomic_inc(redundant_hardirqs_on); 2576 return; 2577 } 2578 2579 /* 2580 * We're enabling irqs and according to our state above irqs weren't 2581 * already enabled, yet we find the hardware thinks they are in fact 2582 * enabled.. someone messed up their IRQ state tracing. 2583 */ 2584 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2585 return; 2586 2587 /* 2588 * See the fine text that goes along with this variable definition. 2589 */ 2590 if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled))) 2591 return; 2592 2593 /* 2594 * Can't allow enabling interrupts while in an interrupt handler, 2595 * that's general bad form and such. Recursion, limited stack etc.. 2596 */ 2597 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 2598 return; 2599 2600 current->lockdep_recursion = 1; 2601 __trace_hardirqs_on_caller(ip); 2602 current->lockdep_recursion = 0; 2603 } 2604 EXPORT_SYMBOL(trace_hardirqs_on_caller); 2605 2606 void trace_hardirqs_on(void) 2607 { 2608 trace_hardirqs_on_caller(CALLER_ADDR0); 2609 } 2610 EXPORT_SYMBOL(trace_hardirqs_on); 2611 2612 /* 2613 * Hardirqs were disabled: 2614 */ 2615 __visible void trace_hardirqs_off_caller(unsigned long ip) 2616 { 2617 struct task_struct *curr = current; 2618 2619 time_hardirqs_off(CALLER_ADDR0, ip); 2620 2621 if (unlikely(!debug_locks || current->lockdep_recursion)) 2622 return; 2623 2624 /* 2625 * So we're supposed to get called after you mask local IRQs, but for 2626 * some reason the hardware doesn't quite think you did a proper job. 2627 */ 2628 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2629 return; 2630 2631 if (curr->hardirqs_enabled) { 2632 /* 2633 * We have done an ON -> OFF transition: 2634 */ 2635 curr->hardirqs_enabled = 0; 2636 curr->hardirq_disable_ip = ip; 2637 curr->hardirq_disable_event = ++curr->irq_events; 2638 debug_atomic_inc(hardirqs_off_events); 2639 } else 2640 debug_atomic_inc(redundant_hardirqs_off); 2641 } 2642 EXPORT_SYMBOL(trace_hardirqs_off_caller); 2643 2644 void trace_hardirqs_off(void) 2645 { 2646 trace_hardirqs_off_caller(CALLER_ADDR0); 2647 } 2648 EXPORT_SYMBOL(trace_hardirqs_off); 2649 2650 /* 2651 * Softirqs will be enabled: 2652 */ 2653 void trace_softirqs_on(unsigned long ip) 2654 { 2655 struct task_struct *curr = current; 2656 2657 if (unlikely(!debug_locks || current->lockdep_recursion)) 2658 return; 2659 2660 /* 2661 * We fancy IRQs being disabled here, see softirq.c, avoids 2662 * funny state and nesting things. 2663 */ 2664 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2665 return; 2666 2667 if (curr->softirqs_enabled) { 2668 debug_atomic_inc(redundant_softirqs_on); 2669 return; 2670 } 2671 2672 current->lockdep_recursion = 1; 2673 /* 2674 * We'll do an OFF -> ON transition: 2675 */ 2676 curr->softirqs_enabled = 1; 2677 curr->softirq_enable_ip = ip; 2678 curr->softirq_enable_event = ++curr->irq_events; 2679 debug_atomic_inc(softirqs_on_events); 2680 /* 2681 * We are going to turn softirqs on, so set the 2682 * usage bit for all held locks, if hardirqs are 2683 * enabled too: 2684 */ 2685 if (curr->hardirqs_enabled) 2686 mark_held_locks(curr, SOFTIRQ); 2687 current->lockdep_recursion = 0; 2688 } 2689 2690 /* 2691 * Softirqs were disabled: 2692 */ 2693 void trace_softirqs_off(unsigned long ip) 2694 { 2695 struct task_struct *curr = current; 2696 2697 if (unlikely(!debug_locks || current->lockdep_recursion)) 2698 return; 2699 2700 /* 2701 * We fancy IRQs being disabled here, see softirq.c 2702 */ 2703 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2704 return; 2705 2706 if (curr->softirqs_enabled) { 2707 /* 2708 * We have done an ON -> OFF transition: 2709 */ 2710 curr->softirqs_enabled = 0; 2711 curr->softirq_disable_ip = ip; 2712 curr->softirq_disable_event = ++curr->irq_events; 2713 debug_atomic_inc(softirqs_off_events); 2714 /* 2715 * Whoops, we wanted softirqs off, so why aren't they? 2716 */ 2717 DEBUG_LOCKS_WARN_ON(!softirq_count()); 2718 } else 2719 debug_atomic_inc(redundant_softirqs_off); 2720 } 2721 2722 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) 2723 { 2724 struct task_struct *curr = current; 2725 2726 if (unlikely(!debug_locks)) 2727 return; 2728 2729 /* no reclaim without waiting on it */ 2730 if (!(gfp_mask & __GFP_WAIT)) 2731 return; 2732 2733 /* this guy won't enter reclaim */ 2734 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 2735 return; 2736 2737 /* We're only interested __GFP_FS allocations for now */ 2738 if (!(gfp_mask & __GFP_FS)) 2739 return; 2740 2741 /* 2742 * Oi! Can't be having __GFP_FS allocations with IRQs disabled. 2743 */ 2744 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags))) 2745 return; 2746 2747 mark_held_locks(curr, RECLAIM_FS); 2748 } 2749 2750 static void check_flags(unsigned long flags); 2751 2752 void lockdep_trace_alloc(gfp_t gfp_mask) 2753 { 2754 unsigned long flags; 2755 2756 if (unlikely(current->lockdep_recursion)) 2757 return; 2758 2759 raw_local_irq_save(flags); 2760 check_flags(flags); 2761 current->lockdep_recursion = 1; 2762 __lockdep_trace_alloc(gfp_mask, flags); 2763 current->lockdep_recursion = 0; 2764 raw_local_irq_restore(flags); 2765 } 2766 2767 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) 2768 { 2769 /* 2770 * If non-trylock use in a hardirq or softirq context, then 2771 * mark the lock as used in these contexts: 2772 */ 2773 if (!hlock->trylock) { 2774 if (hlock->read) { 2775 if (curr->hardirq_context) 2776 if (!mark_lock(curr, hlock, 2777 LOCK_USED_IN_HARDIRQ_READ)) 2778 return 0; 2779 if (curr->softirq_context) 2780 if (!mark_lock(curr, hlock, 2781 LOCK_USED_IN_SOFTIRQ_READ)) 2782 return 0; 2783 } else { 2784 if (curr->hardirq_context) 2785 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 2786 return 0; 2787 if (curr->softirq_context) 2788 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 2789 return 0; 2790 } 2791 } 2792 if (!hlock->hardirqs_off) { 2793 if (hlock->read) { 2794 if (!mark_lock(curr, hlock, 2795 LOCK_ENABLED_HARDIRQ_READ)) 2796 return 0; 2797 if (curr->softirqs_enabled) 2798 if (!mark_lock(curr, hlock, 2799 LOCK_ENABLED_SOFTIRQ_READ)) 2800 return 0; 2801 } else { 2802 if (!mark_lock(curr, hlock, 2803 LOCK_ENABLED_HARDIRQ)) 2804 return 0; 2805 if (curr->softirqs_enabled) 2806 if (!mark_lock(curr, hlock, 2807 LOCK_ENABLED_SOFTIRQ)) 2808 return 0; 2809 } 2810 } 2811 2812 /* 2813 * We reuse the irq context infrastructure more broadly as a general 2814 * context checking code. This tests GFP_FS recursion (a lock taken 2815 * during reclaim for a GFP_FS allocation is held over a GFP_FS 2816 * allocation). 2817 */ 2818 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) { 2819 if (hlock->read) { 2820 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ)) 2821 return 0; 2822 } else { 2823 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS)) 2824 return 0; 2825 } 2826 } 2827 2828 return 1; 2829 } 2830 2831 static int separate_irq_context(struct task_struct *curr, 2832 struct held_lock *hlock) 2833 { 2834 unsigned int depth = curr->lockdep_depth; 2835 2836 /* 2837 * Keep track of points where we cross into an interrupt context: 2838 */ 2839 hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) + 2840 curr->softirq_context; 2841 if (depth) { 2842 struct held_lock *prev_hlock; 2843 2844 prev_hlock = curr->held_locks + depth-1; 2845 /* 2846 * If we cross into another context, reset the 2847 * hash key (this also prevents the checking and the 2848 * adding of the dependency to 'prev'): 2849 */ 2850 if (prev_hlock->irq_context != hlock->irq_context) 2851 return 1; 2852 } 2853 return 0; 2854 } 2855 2856 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 2857 2858 static inline 2859 int mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2860 enum lock_usage_bit new_bit) 2861 { 2862 WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */ 2863 return 1; 2864 } 2865 2866 static inline int mark_irqflags(struct task_struct *curr, 2867 struct held_lock *hlock) 2868 { 2869 return 1; 2870 } 2871 2872 static inline int separate_irq_context(struct task_struct *curr, 2873 struct held_lock *hlock) 2874 { 2875 return 0; 2876 } 2877 2878 void lockdep_trace_alloc(gfp_t gfp_mask) 2879 { 2880 } 2881 2882 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 2883 2884 /* 2885 * Mark a lock with a usage bit, and validate the state transition: 2886 */ 2887 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2888 enum lock_usage_bit new_bit) 2889 { 2890 unsigned int new_mask = 1 << new_bit, ret = 1; 2891 2892 /* 2893 * If already set then do not dirty the cacheline, 2894 * nor do any checks: 2895 */ 2896 if (likely(hlock_class(this)->usage_mask & new_mask)) 2897 return 1; 2898 2899 if (!graph_lock()) 2900 return 0; 2901 /* 2902 * Make sure we didn't race: 2903 */ 2904 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 2905 graph_unlock(); 2906 return 1; 2907 } 2908 2909 hlock_class(this)->usage_mask |= new_mask; 2910 2911 if (!save_trace(hlock_class(this)->usage_traces + new_bit)) 2912 return 0; 2913 2914 switch (new_bit) { 2915 #define LOCKDEP_STATE(__STATE) \ 2916 case LOCK_USED_IN_##__STATE: \ 2917 case LOCK_USED_IN_##__STATE##_READ: \ 2918 case LOCK_ENABLED_##__STATE: \ 2919 case LOCK_ENABLED_##__STATE##_READ: 2920 #include "lockdep_states.h" 2921 #undef LOCKDEP_STATE 2922 ret = mark_lock_irq(curr, this, new_bit); 2923 if (!ret) 2924 return 0; 2925 break; 2926 case LOCK_USED: 2927 debug_atomic_dec(nr_unused_locks); 2928 break; 2929 default: 2930 if (!debug_locks_off_graph_unlock()) 2931 return 0; 2932 WARN_ON(1); 2933 return 0; 2934 } 2935 2936 graph_unlock(); 2937 2938 /* 2939 * We must printk outside of the graph_lock: 2940 */ 2941 if (ret == 2) { 2942 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 2943 print_lock(this); 2944 print_irqtrace_events(curr); 2945 dump_stack(); 2946 } 2947 2948 return ret; 2949 } 2950 2951 /* 2952 * Initialize a lock instance's lock-class mapping info: 2953 */ 2954 void lockdep_init_map(struct lockdep_map *lock, const char *name, 2955 struct lock_class_key *key, int subclass) 2956 { 2957 int i; 2958 2959 kmemcheck_mark_initialized(lock, sizeof(*lock)); 2960 2961 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 2962 lock->class_cache[i] = NULL; 2963 2964 #ifdef CONFIG_LOCK_STAT 2965 lock->cpu = raw_smp_processor_id(); 2966 #endif 2967 2968 /* 2969 * Can't be having no nameless bastards around this place! 2970 */ 2971 if (DEBUG_LOCKS_WARN_ON(!name)) { 2972 lock->name = "NULL"; 2973 return; 2974 } 2975 2976 lock->name = name; 2977 2978 /* 2979 * No key, no joy, we need to hash something. 2980 */ 2981 if (DEBUG_LOCKS_WARN_ON(!key)) 2982 return; 2983 /* 2984 * Sanity check, the lock-class key must be persistent: 2985 */ 2986 if (!static_obj(key)) { 2987 printk("BUG: key %p not in .data!\n", key); 2988 /* 2989 * What it says above ^^^^^, I suggest you read it. 2990 */ 2991 DEBUG_LOCKS_WARN_ON(1); 2992 return; 2993 } 2994 lock->key = key; 2995 2996 if (unlikely(!debug_locks)) 2997 return; 2998 2999 if (subclass) 3000 register_lock_class(lock, subclass, 1); 3001 } 3002 EXPORT_SYMBOL_GPL(lockdep_init_map); 3003 3004 struct lock_class_key __lockdep_no_validate__; 3005 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 3006 3007 static int 3008 print_lock_nested_lock_not_held(struct task_struct *curr, 3009 struct held_lock *hlock, 3010 unsigned long ip) 3011 { 3012 if (!debug_locks_off()) 3013 return 0; 3014 if (debug_locks_silent) 3015 return 0; 3016 3017 printk("\n"); 3018 printk("==================================\n"); 3019 printk("[ BUG: Nested lock was not taken ]\n"); 3020 print_kernel_ident(); 3021 printk("----------------------------------\n"); 3022 3023 printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 3024 print_lock(hlock); 3025 3026 printk("\nbut this task is not holding:\n"); 3027 printk("%s\n", hlock->nest_lock->name); 3028 3029 printk("\nstack backtrace:\n"); 3030 dump_stack(); 3031 3032 printk("\nother info that might help us debug this:\n"); 3033 lockdep_print_held_locks(curr); 3034 3035 printk("\nstack backtrace:\n"); 3036 dump_stack(); 3037 3038 return 0; 3039 } 3040 3041 static int __lock_is_held(struct lockdep_map *lock); 3042 3043 /* 3044 * This gets called for every mutex_lock*()/spin_lock*() operation. 3045 * We maintain the dependency maps and validate the locking attempt: 3046 */ 3047 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3048 int trylock, int read, int check, int hardirqs_off, 3049 struct lockdep_map *nest_lock, unsigned long ip, 3050 int references) 3051 { 3052 struct task_struct *curr = current; 3053 struct lock_class *class = NULL; 3054 struct held_lock *hlock; 3055 unsigned int depth, id; 3056 int chain_head = 0; 3057 int class_idx; 3058 u64 chain_key; 3059 3060 if (unlikely(!debug_locks)) 3061 return 0; 3062 3063 /* 3064 * Lockdep should run with IRQs disabled, otherwise we could 3065 * get an interrupt which would want to take locks, which would 3066 * end up in lockdep and have you got a head-ache already? 3067 */ 3068 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3069 return 0; 3070 3071 if (!prove_locking || lock->key == &__lockdep_no_validate__) 3072 check = 0; 3073 3074 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 3075 class = lock->class_cache[subclass]; 3076 /* 3077 * Not cached? 3078 */ 3079 if (unlikely(!class)) { 3080 class = register_lock_class(lock, subclass, 0); 3081 if (!class) 3082 return 0; 3083 } 3084 atomic_inc((atomic_t *)&class->ops); 3085 if (very_verbose(class)) { 3086 printk("\nacquire class [%p] %s", class->key, class->name); 3087 if (class->name_version > 1) 3088 printk("#%d", class->name_version); 3089 printk("\n"); 3090 dump_stack(); 3091 } 3092 3093 /* 3094 * Add the lock to the list of currently held locks. 3095 * (we dont increase the depth just yet, up until the 3096 * dependency checks are done) 3097 */ 3098 depth = curr->lockdep_depth; 3099 /* 3100 * Ran out of static storage for our per-task lock stack again have we? 3101 */ 3102 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 3103 return 0; 3104 3105 class_idx = class - lock_classes + 1; 3106 3107 if (depth) { 3108 hlock = curr->held_locks + depth - 1; 3109 if (hlock->class_idx == class_idx && nest_lock) { 3110 if (hlock->references) 3111 hlock->references++; 3112 else 3113 hlock->references = 2; 3114 3115 return 1; 3116 } 3117 } 3118 3119 hlock = curr->held_locks + depth; 3120 /* 3121 * Plain impossible, we just registered it and checked it weren't no 3122 * NULL like.. I bet this mushroom I ate was good! 3123 */ 3124 if (DEBUG_LOCKS_WARN_ON(!class)) 3125 return 0; 3126 hlock->class_idx = class_idx; 3127 hlock->acquire_ip = ip; 3128 hlock->instance = lock; 3129 hlock->nest_lock = nest_lock; 3130 hlock->trylock = trylock; 3131 hlock->read = read; 3132 hlock->check = check; 3133 hlock->hardirqs_off = !!hardirqs_off; 3134 hlock->references = references; 3135 #ifdef CONFIG_LOCK_STAT 3136 hlock->waittime_stamp = 0; 3137 hlock->holdtime_stamp = lockstat_clock(); 3138 #endif 3139 3140 if (check && !mark_irqflags(curr, hlock)) 3141 return 0; 3142 3143 /* mark it as used: */ 3144 if (!mark_lock(curr, hlock, LOCK_USED)) 3145 return 0; 3146 3147 /* 3148 * Calculate the chain hash: it's the combined hash of all the 3149 * lock keys along the dependency chain. We save the hash value 3150 * at every step so that we can get the current hash easily 3151 * after unlock. The chain hash is then used to cache dependency 3152 * results. 3153 * 3154 * The 'key ID' is what is the most compact key value to drive 3155 * the hash, not class->key. 3156 */ 3157 id = class - lock_classes; 3158 /* 3159 * Whoops, we did it again.. ran straight out of our static allocation. 3160 */ 3161 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS)) 3162 return 0; 3163 3164 chain_key = curr->curr_chain_key; 3165 if (!depth) { 3166 /* 3167 * How can we have a chain hash when we ain't got no keys?! 3168 */ 3169 if (DEBUG_LOCKS_WARN_ON(chain_key != 0)) 3170 return 0; 3171 chain_head = 1; 3172 } 3173 3174 hlock->prev_chain_key = chain_key; 3175 if (separate_irq_context(curr, hlock)) { 3176 chain_key = 0; 3177 chain_head = 1; 3178 } 3179 chain_key = iterate_chain_key(chain_key, id); 3180 3181 if (nest_lock && !__lock_is_held(nest_lock)) 3182 return print_lock_nested_lock_not_held(curr, hlock, ip); 3183 3184 if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) 3185 return 0; 3186 3187 curr->curr_chain_key = chain_key; 3188 curr->lockdep_depth++; 3189 check_chain_key(curr); 3190 #ifdef CONFIG_DEBUG_LOCKDEP 3191 if (unlikely(!debug_locks)) 3192 return 0; 3193 #endif 3194 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 3195 debug_locks_off(); 3196 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 3197 printk(KERN_DEBUG "depth: %i max: %lu!\n", 3198 curr->lockdep_depth, MAX_LOCK_DEPTH); 3199 3200 lockdep_print_held_locks(current); 3201 debug_show_all_locks(); 3202 dump_stack(); 3203 3204 return 0; 3205 } 3206 3207 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 3208 max_lockdep_depth = curr->lockdep_depth; 3209 3210 return 1; 3211 } 3212 3213 static int 3214 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock, 3215 unsigned long ip) 3216 { 3217 if (!debug_locks_off()) 3218 return 0; 3219 if (debug_locks_silent) 3220 return 0; 3221 3222 printk("\n"); 3223 printk("=====================================\n"); 3224 printk("[ BUG: bad unlock balance detected! ]\n"); 3225 print_kernel_ident(); 3226 printk("-------------------------------------\n"); 3227 printk("%s/%d is trying to release lock (", 3228 curr->comm, task_pid_nr(curr)); 3229 print_lockdep_cache(lock); 3230 printk(") at:\n"); 3231 print_ip_sym(ip); 3232 printk("but there are no more locks to release!\n"); 3233 printk("\nother info that might help us debug this:\n"); 3234 lockdep_print_held_locks(curr); 3235 3236 printk("\nstack backtrace:\n"); 3237 dump_stack(); 3238 3239 return 0; 3240 } 3241 3242 /* 3243 * Common debugging checks for both nested and non-nested unlock: 3244 */ 3245 static int check_unlock(struct task_struct *curr, struct lockdep_map *lock, 3246 unsigned long ip) 3247 { 3248 if (unlikely(!debug_locks)) 3249 return 0; 3250 /* 3251 * Lockdep should run with IRQs disabled, recursion, head-ache, etc.. 3252 */ 3253 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3254 return 0; 3255 3256 if (curr->lockdep_depth <= 0) 3257 return print_unlock_imbalance_bug(curr, lock, ip); 3258 3259 return 1; 3260 } 3261 3262 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) 3263 { 3264 if (hlock->instance == lock) 3265 return 1; 3266 3267 if (hlock->references) { 3268 struct lock_class *class = lock->class_cache[0]; 3269 3270 if (!class) 3271 class = look_up_lock_class(lock, 0); 3272 3273 /* 3274 * If look_up_lock_class() failed to find a class, we're trying 3275 * to test if we hold a lock that has never yet been acquired. 3276 * Clearly if the lock hasn't been acquired _ever_, we're not 3277 * holding it either, so report failure. 3278 */ 3279 if (!class) 3280 return 0; 3281 3282 /* 3283 * References, but not a lock we're actually ref-counting? 3284 * State got messed up, follow the sites that change ->references 3285 * and try to make sense of it. 3286 */ 3287 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 3288 return 0; 3289 3290 if (hlock->class_idx == class - lock_classes + 1) 3291 return 1; 3292 } 3293 3294 return 0; 3295 } 3296 3297 static int 3298 __lock_set_class(struct lockdep_map *lock, const char *name, 3299 struct lock_class_key *key, unsigned int subclass, 3300 unsigned long ip) 3301 { 3302 struct task_struct *curr = current; 3303 struct held_lock *hlock, *prev_hlock; 3304 struct lock_class *class; 3305 unsigned int depth; 3306 int i; 3307 3308 depth = curr->lockdep_depth; 3309 /* 3310 * This function is about (re)setting the class of a held lock, 3311 * yet we're not actually holding any locks. Naughty user! 3312 */ 3313 if (DEBUG_LOCKS_WARN_ON(!depth)) 3314 return 0; 3315 3316 prev_hlock = NULL; 3317 for (i = depth-1; i >= 0; i--) { 3318 hlock = curr->held_locks + i; 3319 /* 3320 * We must not cross into another context: 3321 */ 3322 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3323 break; 3324 if (match_held_lock(hlock, lock)) 3325 goto found_it; 3326 prev_hlock = hlock; 3327 } 3328 return print_unlock_imbalance_bug(curr, lock, ip); 3329 3330 found_it: 3331 lockdep_init_map(lock, name, key, 0); 3332 class = register_lock_class(lock, subclass, 0); 3333 hlock->class_idx = class - lock_classes + 1; 3334 3335 curr->lockdep_depth = i; 3336 curr->curr_chain_key = hlock->prev_chain_key; 3337 3338 for (; i < depth; i++) { 3339 hlock = curr->held_locks + i; 3340 if (!__lock_acquire(hlock->instance, 3341 hlock_class(hlock)->subclass, hlock->trylock, 3342 hlock->read, hlock->check, hlock->hardirqs_off, 3343 hlock->nest_lock, hlock->acquire_ip, 3344 hlock->references)) 3345 return 0; 3346 } 3347 3348 /* 3349 * I took it apart and put it back together again, except now I have 3350 * these 'spare' parts.. where shall I put them. 3351 */ 3352 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3353 return 0; 3354 return 1; 3355 } 3356 3357 /* 3358 * Remove the lock to the list of currently held locks in a 3359 * potentially non-nested (out of order) manner. This is a 3360 * relatively rare operation, as all the unlock APIs default 3361 * to nested mode (which uses lock_release()): 3362 */ 3363 static int 3364 lock_release_non_nested(struct task_struct *curr, 3365 struct lockdep_map *lock, unsigned long ip) 3366 { 3367 struct held_lock *hlock, *prev_hlock; 3368 unsigned int depth; 3369 int i; 3370 3371 /* 3372 * Check whether the lock exists in the current stack 3373 * of held locks: 3374 */ 3375 depth = curr->lockdep_depth; 3376 /* 3377 * So we're all set to release this lock.. wait what lock? We don't 3378 * own any locks, you've been drinking again? 3379 */ 3380 if (DEBUG_LOCKS_WARN_ON(!depth)) 3381 return 0; 3382 3383 prev_hlock = NULL; 3384 for (i = depth-1; i >= 0; i--) { 3385 hlock = curr->held_locks + i; 3386 /* 3387 * We must not cross into another context: 3388 */ 3389 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3390 break; 3391 if (match_held_lock(hlock, lock)) 3392 goto found_it; 3393 prev_hlock = hlock; 3394 } 3395 return print_unlock_imbalance_bug(curr, lock, ip); 3396 3397 found_it: 3398 if (hlock->instance == lock) 3399 lock_release_holdtime(hlock); 3400 3401 if (hlock->references) { 3402 hlock->references--; 3403 if (hlock->references) { 3404 /* 3405 * We had, and after removing one, still have 3406 * references, the current lock stack is still 3407 * valid. We're done! 3408 */ 3409 return 1; 3410 } 3411 } 3412 3413 /* 3414 * We have the right lock to unlock, 'hlock' points to it. 3415 * Now we remove it from the stack, and add back the other 3416 * entries (if any), recalculating the hash along the way: 3417 */ 3418 3419 curr->lockdep_depth = i; 3420 curr->curr_chain_key = hlock->prev_chain_key; 3421 3422 for (i++; i < depth; i++) { 3423 hlock = curr->held_locks + i; 3424 if (!__lock_acquire(hlock->instance, 3425 hlock_class(hlock)->subclass, hlock->trylock, 3426 hlock->read, hlock->check, hlock->hardirqs_off, 3427 hlock->nest_lock, hlock->acquire_ip, 3428 hlock->references)) 3429 return 0; 3430 } 3431 3432 /* 3433 * We had N bottles of beer on the wall, we drank one, but now 3434 * there's not N-1 bottles of beer left on the wall... 3435 */ 3436 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1)) 3437 return 0; 3438 return 1; 3439 } 3440 3441 /* 3442 * Remove the lock to the list of currently held locks - this gets 3443 * called on mutex_unlock()/spin_unlock*() (or on a failed 3444 * mutex_lock_interruptible()). This is done for unlocks that nest 3445 * perfectly. (i.e. the current top of the lock-stack is unlocked) 3446 */ 3447 static int lock_release_nested(struct task_struct *curr, 3448 struct lockdep_map *lock, unsigned long ip) 3449 { 3450 struct held_lock *hlock; 3451 unsigned int depth; 3452 3453 /* 3454 * Pop off the top of the lock stack: 3455 */ 3456 depth = curr->lockdep_depth - 1; 3457 hlock = curr->held_locks + depth; 3458 3459 /* 3460 * Is the unlock non-nested: 3461 */ 3462 if (hlock->instance != lock || hlock->references) 3463 return lock_release_non_nested(curr, lock, ip); 3464 curr->lockdep_depth--; 3465 3466 /* 3467 * No more locks, but somehow we've got hash left over, who left it? 3468 */ 3469 if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0))) 3470 return 0; 3471 3472 curr->curr_chain_key = hlock->prev_chain_key; 3473 3474 lock_release_holdtime(hlock); 3475 3476 #ifdef CONFIG_DEBUG_LOCKDEP 3477 hlock->prev_chain_key = 0; 3478 hlock->class_idx = 0; 3479 hlock->acquire_ip = 0; 3480 hlock->irq_context = 0; 3481 #endif 3482 return 1; 3483 } 3484 3485 /* 3486 * Remove the lock to the list of currently held locks - this gets 3487 * called on mutex_unlock()/spin_unlock*() (or on a failed 3488 * mutex_lock_interruptible()). This is done for unlocks that nest 3489 * perfectly. (i.e. the current top of the lock-stack is unlocked) 3490 */ 3491 static void 3492 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) 3493 { 3494 struct task_struct *curr = current; 3495 3496 if (!check_unlock(curr, lock, ip)) 3497 return; 3498 3499 if (nested) { 3500 if (!lock_release_nested(curr, lock, ip)) 3501 return; 3502 } else { 3503 if (!lock_release_non_nested(curr, lock, ip)) 3504 return; 3505 } 3506 3507 check_chain_key(curr); 3508 } 3509 3510 static int __lock_is_held(struct lockdep_map *lock) 3511 { 3512 struct task_struct *curr = current; 3513 int i; 3514 3515 for (i = 0; i < curr->lockdep_depth; i++) { 3516 struct held_lock *hlock = curr->held_locks + i; 3517 3518 if (match_held_lock(hlock, lock)) 3519 return 1; 3520 } 3521 3522 return 0; 3523 } 3524 3525 /* 3526 * Check whether we follow the irq-flags state precisely: 3527 */ 3528 static void check_flags(unsigned long flags) 3529 { 3530 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \ 3531 defined(CONFIG_TRACE_IRQFLAGS) 3532 if (!debug_locks) 3533 return; 3534 3535 if (irqs_disabled_flags(flags)) { 3536 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 3537 printk("possible reason: unannotated irqs-off.\n"); 3538 } 3539 } else { 3540 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 3541 printk("possible reason: unannotated irqs-on.\n"); 3542 } 3543 } 3544 3545 /* 3546 * We dont accurately track softirq state in e.g. 3547 * hardirq contexts (such as on 4KSTACKS), so only 3548 * check if not in hardirq contexts: 3549 */ 3550 if (!hardirq_count()) { 3551 if (softirq_count()) { 3552 /* like the above, but with softirqs */ 3553 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 3554 } else { 3555 /* lick the above, does it taste good? */ 3556 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 3557 } 3558 } 3559 3560 if (!debug_locks) 3561 print_irqtrace_events(current); 3562 #endif 3563 } 3564 3565 void lock_set_class(struct lockdep_map *lock, const char *name, 3566 struct lock_class_key *key, unsigned int subclass, 3567 unsigned long ip) 3568 { 3569 unsigned long flags; 3570 3571 if (unlikely(current->lockdep_recursion)) 3572 return; 3573 3574 raw_local_irq_save(flags); 3575 current->lockdep_recursion = 1; 3576 check_flags(flags); 3577 if (__lock_set_class(lock, name, key, subclass, ip)) 3578 check_chain_key(current); 3579 current->lockdep_recursion = 0; 3580 raw_local_irq_restore(flags); 3581 } 3582 EXPORT_SYMBOL_GPL(lock_set_class); 3583 3584 /* 3585 * We are not always called with irqs disabled - do that here, 3586 * and also avoid lockdep recursion: 3587 */ 3588 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3589 int trylock, int read, int check, 3590 struct lockdep_map *nest_lock, unsigned long ip) 3591 { 3592 unsigned long flags; 3593 3594 if (unlikely(current->lockdep_recursion)) 3595 return; 3596 3597 raw_local_irq_save(flags); 3598 check_flags(flags); 3599 3600 current->lockdep_recursion = 1; 3601 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 3602 __lock_acquire(lock, subclass, trylock, read, check, 3603 irqs_disabled_flags(flags), nest_lock, ip, 0); 3604 current->lockdep_recursion = 0; 3605 raw_local_irq_restore(flags); 3606 } 3607 EXPORT_SYMBOL_GPL(lock_acquire); 3608 3609 void lock_release(struct lockdep_map *lock, int nested, 3610 unsigned long ip) 3611 { 3612 unsigned long flags; 3613 3614 if (unlikely(current->lockdep_recursion)) 3615 return; 3616 3617 raw_local_irq_save(flags); 3618 check_flags(flags); 3619 current->lockdep_recursion = 1; 3620 trace_lock_release(lock, ip); 3621 __lock_release(lock, nested, ip); 3622 current->lockdep_recursion = 0; 3623 raw_local_irq_restore(flags); 3624 } 3625 EXPORT_SYMBOL_GPL(lock_release); 3626 3627 int lock_is_held(struct lockdep_map *lock) 3628 { 3629 unsigned long flags; 3630 int ret = 0; 3631 3632 if (unlikely(current->lockdep_recursion)) 3633 return 1; /* avoid false negative lockdep_assert_held() */ 3634 3635 raw_local_irq_save(flags); 3636 check_flags(flags); 3637 3638 current->lockdep_recursion = 1; 3639 ret = __lock_is_held(lock); 3640 current->lockdep_recursion = 0; 3641 raw_local_irq_restore(flags); 3642 3643 return ret; 3644 } 3645 EXPORT_SYMBOL_GPL(lock_is_held); 3646 3647 void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3648 { 3649 current->lockdep_reclaim_gfp = gfp_mask; 3650 } 3651 3652 void lockdep_clear_current_reclaim_state(void) 3653 { 3654 current->lockdep_reclaim_gfp = 0; 3655 } 3656 3657 #ifdef CONFIG_LOCK_STAT 3658 static int 3659 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, 3660 unsigned long ip) 3661 { 3662 if (!debug_locks_off()) 3663 return 0; 3664 if (debug_locks_silent) 3665 return 0; 3666 3667 printk("\n"); 3668 printk("=================================\n"); 3669 printk("[ BUG: bad contention detected! ]\n"); 3670 print_kernel_ident(); 3671 printk("---------------------------------\n"); 3672 printk("%s/%d is trying to contend lock (", 3673 curr->comm, task_pid_nr(curr)); 3674 print_lockdep_cache(lock); 3675 printk(") at:\n"); 3676 print_ip_sym(ip); 3677 printk("but there are no locks held!\n"); 3678 printk("\nother info that might help us debug this:\n"); 3679 lockdep_print_held_locks(curr); 3680 3681 printk("\nstack backtrace:\n"); 3682 dump_stack(); 3683 3684 return 0; 3685 } 3686 3687 static void 3688 __lock_contended(struct lockdep_map *lock, unsigned long ip) 3689 { 3690 struct task_struct *curr = current; 3691 struct held_lock *hlock, *prev_hlock; 3692 struct lock_class_stats *stats; 3693 unsigned int depth; 3694 int i, contention_point, contending_point; 3695 3696 depth = curr->lockdep_depth; 3697 /* 3698 * Whee, we contended on this lock, except it seems we're not 3699 * actually trying to acquire anything much at all.. 3700 */ 3701 if (DEBUG_LOCKS_WARN_ON(!depth)) 3702 return; 3703 3704 prev_hlock = NULL; 3705 for (i = depth-1; i >= 0; i--) { 3706 hlock = curr->held_locks + i; 3707 /* 3708 * We must not cross into another context: 3709 */ 3710 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3711 break; 3712 if (match_held_lock(hlock, lock)) 3713 goto found_it; 3714 prev_hlock = hlock; 3715 } 3716 print_lock_contention_bug(curr, lock, ip); 3717 return; 3718 3719 found_it: 3720 if (hlock->instance != lock) 3721 return; 3722 3723 hlock->waittime_stamp = lockstat_clock(); 3724 3725 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3726 contending_point = lock_point(hlock_class(hlock)->contending_point, 3727 lock->ip); 3728 3729 stats = get_lock_stats(hlock_class(hlock)); 3730 if (contention_point < LOCKSTAT_POINTS) 3731 stats->contention_point[contention_point]++; 3732 if (contending_point < LOCKSTAT_POINTS) 3733 stats->contending_point[contending_point]++; 3734 if (lock->cpu != smp_processor_id()) 3735 stats->bounces[bounce_contended + !!hlock->read]++; 3736 put_lock_stats(stats); 3737 } 3738 3739 static void 3740 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 3741 { 3742 struct task_struct *curr = current; 3743 struct held_lock *hlock, *prev_hlock; 3744 struct lock_class_stats *stats; 3745 unsigned int depth; 3746 u64 now, waittime = 0; 3747 int i, cpu; 3748 3749 depth = curr->lockdep_depth; 3750 /* 3751 * Yay, we acquired ownership of this lock we didn't try to 3752 * acquire, how the heck did that happen? 3753 */ 3754 if (DEBUG_LOCKS_WARN_ON(!depth)) 3755 return; 3756 3757 prev_hlock = NULL; 3758 for (i = depth-1; i >= 0; i--) { 3759 hlock = curr->held_locks + i; 3760 /* 3761 * We must not cross into another context: 3762 */ 3763 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3764 break; 3765 if (match_held_lock(hlock, lock)) 3766 goto found_it; 3767 prev_hlock = hlock; 3768 } 3769 print_lock_contention_bug(curr, lock, _RET_IP_); 3770 return; 3771 3772 found_it: 3773 if (hlock->instance != lock) 3774 return; 3775 3776 cpu = smp_processor_id(); 3777 if (hlock->waittime_stamp) { 3778 now = lockstat_clock(); 3779 waittime = now - hlock->waittime_stamp; 3780 hlock->holdtime_stamp = now; 3781 } 3782 3783 trace_lock_acquired(lock, ip); 3784 3785 stats = get_lock_stats(hlock_class(hlock)); 3786 if (waittime) { 3787 if (hlock->read) 3788 lock_time_inc(&stats->read_waittime, waittime); 3789 else 3790 lock_time_inc(&stats->write_waittime, waittime); 3791 } 3792 if (lock->cpu != cpu) 3793 stats->bounces[bounce_acquired + !!hlock->read]++; 3794 put_lock_stats(stats); 3795 3796 lock->cpu = cpu; 3797 lock->ip = ip; 3798 } 3799 3800 void lock_contended(struct lockdep_map *lock, unsigned long ip) 3801 { 3802 unsigned long flags; 3803 3804 if (unlikely(!lock_stat)) 3805 return; 3806 3807 if (unlikely(current->lockdep_recursion)) 3808 return; 3809 3810 raw_local_irq_save(flags); 3811 check_flags(flags); 3812 current->lockdep_recursion = 1; 3813 trace_lock_contended(lock, ip); 3814 __lock_contended(lock, ip); 3815 current->lockdep_recursion = 0; 3816 raw_local_irq_restore(flags); 3817 } 3818 EXPORT_SYMBOL_GPL(lock_contended); 3819 3820 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 3821 { 3822 unsigned long flags; 3823 3824 if (unlikely(!lock_stat)) 3825 return; 3826 3827 if (unlikely(current->lockdep_recursion)) 3828 return; 3829 3830 raw_local_irq_save(flags); 3831 check_flags(flags); 3832 current->lockdep_recursion = 1; 3833 __lock_acquired(lock, ip); 3834 current->lockdep_recursion = 0; 3835 raw_local_irq_restore(flags); 3836 } 3837 EXPORT_SYMBOL_GPL(lock_acquired); 3838 #endif 3839 3840 /* 3841 * Used by the testsuite, sanitize the validator state 3842 * after a simulated failure: 3843 */ 3844 3845 void lockdep_reset(void) 3846 { 3847 unsigned long flags; 3848 int i; 3849 3850 raw_local_irq_save(flags); 3851 current->curr_chain_key = 0; 3852 current->lockdep_depth = 0; 3853 current->lockdep_recursion = 0; 3854 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 3855 nr_hardirq_chains = 0; 3856 nr_softirq_chains = 0; 3857 nr_process_chains = 0; 3858 debug_locks = 1; 3859 for (i = 0; i < CHAINHASH_SIZE; i++) 3860 INIT_LIST_HEAD(chainhash_table + i); 3861 raw_local_irq_restore(flags); 3862 } 3863 3864 static void zap_class(struct lock_class *class) 3865 { 3866 int i; 3867 3868 /* 3869 * Remove all dependencies this lock is 3870 * involved in: 3871 */ 3872 for (i = 0; i < nr_list_entries; i++) { 3873 if (list_entries[i].class == class) 3874 list_del_rcu(&list_entries[i].entry); 3875 } 3876 /* 3877 * Unhash the class and remove it from the all_lock_classes list: 3878 */ 3879 list_del_rcu(&class->hash_entry); 3880 list_del_rcu(&class->lock_entry); 3881 3882 class->key = NULL; 3883 } 3884 3885 static inline int within(const void *addr, void *start, unsigned long size) 3886 { 3887 return addr >= start && addr < start + size; 3888 } 3889 3890 void lockdep_free_key_range(void *start, unsigned long size) 3891 { 3892 struct lock_class *class, *next; 3893 struct list_head *head; 3894 unsigned long flags; 3895 int i; 3896 int locked; 3897 3898 raw_local_irq_save(flags); 3899 locked = graph_lock(); 3900 3901 /* 3902 * Unhash all classes that were created by this module: 3903 */ 3904 for (i = 0; i < CLASSHASH_SIZE; i++) { 3905 head = classhash_table + i; 3906 if (list_empty(head)) 3907 continue; 3908 list_for_each_entry_safe(class, next, head, hash_entry) { 3909 if (within(class->key, start, size)) 3910 zap_class(class); 3911 else if (within(class->name, start, size)) 3912 zap_class(class); 3913 } 3914 } 3915 3916 if (locked) 3917 graph_unlock(); 3918 raw_local_irq_restore(flags); 3919 } 3920 3921 void lockdep_reset_lock(struct lockdep_map *lock) 3922 { 3923 struct lock_class *class, *next; 3924 struct list_head *head; 3925 unsigned long flags; 3926 int i, j; 3927 int locked; 3928 3929 raw_local_irq_save(flags); 3930 3931 /* 3932 * Remove all classes this lock might have: 3933 */ 3934 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 3935 /* 3936 * If the class exists we look it up and zap it: 3937 */ 3938 class = look_up_lock_class(lock, j); 3939 if (class) 3940 zap_class(class); 3941 } 3942 /* 3943 * Debug check: in the end all mapped classes should 3944 * be gone. 3945 */ 3946 locked = graph_lock(); 3947 for (i = 0; i < CLASSHASH_SIZE; i++) { 3948 head = classhash_table + i; 3949 if (list_empty(head)) 3950 continue; 3951 list_for_each_entry_safe(class, next, head, hash_entry) { 3952 int match = 0; 3953 3954 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 3955 match |= class == lock->class_cache[j]; 3956 3957 if (unlikely(match)) { 3958 if (debug_locks_off_graph_unlock()) { 3959 /* 3960 * We all just reset everything, how did it match? 3961 */ 3962 WARN_ON(1); 3963 } 3964 goto out_restore; 3965 } 3966 } 3967 } 3968 if (locked) 3969 graph_unlock(); 3970 3971 out_restore: 3972 raw_local_irq_restore(flags); 3973 } 3974 3975 void lockdep_init(void) 3976 { 3977 int i; 3978 3979 /* 3980 * Some architectures have their own start_kernel() 3981 * code which calls lockdep_init(), while we also 3982 * call lockdep_init() from the start_kernel() itself, 3983 * and we want to initialize the hashes only once: 3984 */ 3985 if (lockdep_initialized) 3986 return; 3987 3988 for (i = 0; i < CLASSHASH_SIZE; i++) 3989 INIT_LIST_HEAD(classhash_table + i); 3990 3991 for (i = 0; i < CHAINHASH_SIZE; i++) 3992 INIT_LIST_HEAD(chainhash_table + i); 3993 3994 lockdep_initialized = 1; 3995 } 3996 3997 void __init lockdep_info(void) 3998 { 3999 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 4000 4001 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 4002 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 4003 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 4004 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 4005 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 4006 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 4007 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 4008 4009 printk(" memory used by lock dependency info: %lu kB\n", 4010 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS + 4011 sizeof(struct list_head) * CLASSHASH_SIZE + 4012 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 4013 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 4014 sizeof(struct list_head) * CHAINHASH_SIZE 4015 #ifdef CONFIG_PROVE_LOCKING 4016 + sizeof(struct circular_queue) 4017 #endif 4018 ) / 1024 4019 ); 4020 4021 printk(" per task-struct memory footprint: %lu bytes\n", 4022 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 4023 4024 #ifdef CONFIG_DEBUG_LOCKDEP 4025 if (lockdep_init_error) { 4026 printk("WARNING: lockdep init error! lock-%s was acquired" 4027 "before lockdep_init\n", lock_init_error); 4028 printk("Call stack leading to lockdep invocation was:\n"); 4029 print_stack_trace(&lockdep_init_trace, 0); 4030 } 4031 #endif 4032 } 4033 4034 static void 4035 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 4036 const void *mem_to, struct held_lock *hlock) 4037 { 4038 if (!debug_locks_off()) 4039 return; 4040 if (debug_locks_silent) 4041 return; 4042 4043 printk("\n"); 4044 printk("=========================\n"); 4045 printk("[ BUG: held lock freed! ]\n"); 4046 print_kernel_ident(); 4047 printk("-------------------------\n"); 4048 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n", 4049 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 4050 print_lock(hlock); 4051 lockdep_print_held_locks(curr); 4052 4053 printk("\nstack backtrace:\n"); 4054 dump_stack(); 4055 } 4056 4057 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 4058 const void* lock_from, unsigned long lock_len) 4059 { 4060 return lock_from + lock_len <= mem_from || 4061 mem_from + mem_len <= lock_from; 4062 } 4063 4064 /* 4065 * Called when kernel memory is freed (or unmapped), or if a lock 4066 * is destroyed or reinitialized - this code checks whether there is 4067 * any held lock in the memory range of <from> to <to>: 4068 */ 4069 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 4070 { 4071 struct task_struct *curr = current; 4072 struct held_lock *hlock; 4073 unsigned long flags; 4074 int i; 4075 4076 if (unlikely(!debug_locks)) 4077 return; 4078 4079 local_irq_save(flags); 4080 for (i = 0; i < curr->lockdep_depth; i++) { 4081 hlock = curr->held_locks + i; 4082 4083 if (not_in_range(mem_from, mem_len, hlock->instance, 4084 sizeof(*hlock->instance))) 4085 continue; 4086 4087 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 4088 break; 4089 } 4090 local_irq_restore(flags); 4091 } 4092 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 4093 4094 static void print_held_locks_bug(void) 4095 { 4096 if (!debug_locks_off()) 4097 return; 4098 if (debug_locks_silent) 4099 return; 4100 4101 printk("\n"); 4102 printk("=====================================\n"); 4103 printk("[ BUG: %s/%d still has locks held! ]\n", 4104 current->comm, task_pid_nr(current)); 4105 print_kernel_ident(); 4106 printk("-------------------------------------\n"); 4107 lockdep_print_held_locks(current); 4108 printk("\nstack backtrace:\n"); 4109 dump_stack(); 4110 } 4111 4112 void debug_check_no_locks_held(void) 4113 { 4114 if (unlikely(current->lockdep_depth > 0)) 4115 print_held_locks_bug(); 4116 } 4117 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 4118 4119 #ifdef __KERNEL__ 4120 void debug_show_all_locks(void) 4121 { 4122 struct task_struct *g, *p; 4123 int count = 10; 4124 int unlock = 1; 4125 4126 if (unlikely(!debug_locks)) { 4127 printk("INFO: lockdep is turned off.\n"); 4128 return; 4129 } 4130 printk("\nShowing all locks held in the system:\n"); 4131 4132 /* 4133 * Here we try to get the tasklist_lock as hard as possible, 4134 * if not successful after 2 seconds we ignore it (but keep 4135 * trying). This is to enable a debug printout even if a 4136 * tasklist_lock-holding task deadlocks or crashes. 4137 */ 4138 retry: 4139 if (!read_trylock(&tasklist_lock)) { 4140 if (count == 10) 4141 printk("hm, tasklist_lock locked, retrying... "); 4142 if (count) { 4143 count--; 4144 printk(" #%d", 10-count); 4145 mdelay(200); 4146 goto retry; 4147 } 4148 printk(" ignoring it.\n"); 4149 unlock = 0; 4150 } else { 4151 if (count != 10) 4152 printk(KERN_CONT " locked it.\n"); 4153 } 4154 4155 do_each_thread(g, p) { 4156 /* 4157 * It's not reliable to print a task's held locks 4158 * if it's not sleeping (or if it's not the current 4159 * task): 4160 */ 4161 if (p->state == TASK_RUNNING && p != current) 4162 continue; 4163 if (p->lockdep_depth) 4164 lockdep_print_held_locks(p); 4165 if (!unlock) 4166 if (read_trylock(&tasklist_lock)) 4167 unlock = 1; 4168 } while_each_thread(g, p); 4169 4170 printk("\n"); 4171 printk("=============================================\n\n"); 4172 4173 if (unlock) 4174 read_unlock(&tasklist_lock); 4175 } 4176 EXPORT_SYMBOL_GPL(debug_show_all_locks); 4177 #endif 4178 4179 /* 4180 * Careful: only use this function if you are sure that 4181 * the task cannot run in parallel! 4182 */ 4183 void debug_show_held_locks(struct task_struct *task) 4184 { 4185 if (unlikely(!debug_locks)) { 4186 printk("INFO: lockdep is turned off.\n"); 4187 return; 4188 } 4189 lockdep_print_held_locks(task); 4190 } 4191 EXPORT_SYMBOL_GPL(debug_show_held_locks); 4192 4193 asmlinkage __visible void lockdep_sys_exit(void) 4194 { 4195 struct task_struct *curr = current; 4196 4197 if (unlikely(curr->lockdep_depth)) { 4198 if (!debug_locks_off()) 4199 return; 4200 printk("\n"); 4201 printk("================================================\n"); 4202 printk("[ BUG: lock held when returning to user space! ]\n"); 4203 print_kernel_ident(); 4204 printk("------------------------------------------------\n"); 4205 printk("%s/%d is leaving the kernel with locks still held!\n", 4206 curr->comm, curr->pid); 4207 lockdep_print_held_locks(curr); 4208 } 4209 } 4210 4211 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 4212 { 4213 struct task_struct *curr = current; 4214 4215 #ifndef CONFIG_PROVE_RCU_REPEATEDLY 4216 if (!debug_locks_off()) 4217 return; 4218 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */ 4219 /* Note: the following can be executed concurrently, so be careful. */ 4220 printk("\n"); 4221 printk("===============================\n"); 4222 printk("[ INFO: suspicious RCU usage. ]\n"); 4223 print_kernel_ident(); 4224 printk("-------------------------------\n"); 4225 printk("%s:%d %s!\n", file, line, s); 4226 printk("\nother info that might help us debug this:\n\n"); 4227 printk("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 4228 !rcu_lockdep_current_cpu_online() 4229 ? "RCU used illegally from offline CPU!\n" 4230 : !rcu_is_watching() 4231 ? "RCU used illegally from idle CPU!\n" 4232 : "", 4233 rcu_scheduler_active, debug_locks); 4234 4235 /* 4236 * If a CPU is in the RCU-free window in idle (ie: in the section 4237 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 4238 * considers that CPU to be in an "extended quiescent state", 4239 * which means that RCU will be completely ignoring that CPU. 4240 * Therefore, rcu_read_lock() and friends have absolutely no 4241 * effect on a CPU running in that state. In other words, even if 4242 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 4243 * delete data structures out from under it. RCU really has no 4244 * choice here: we need to keep an RCU-free window in idle where 4245 * the CPU may possibly enter into low power mode. This way we can 4246 * notice an extended quiescent state to other CPUs that started a grace 4247 * period. Otherwise we would delay any grace period as long as we run 4248 * in the idle task. 4249 * 4250 * So complain bitterly if someone does call rcu_read_lock(), 4251 * rcu_read_lock_bh() and so on from extended quiescent states. 4252 */ 4253 if (!rcu_is_watching()) 4254 printk("RCU used illegally from extended quiescent state!\n"); 4255 4256 lockdep_print_held_locks(curr); 4257 printk("\nstack backtrace:\n"); 4258 dump_stack(); 4259 } 4260 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 4261