xref: /linux/kernel/locking/lockdep.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *lockdep_selftest_task_struct;
89 
90 static int graph_lock(void)
91 {
92 	arch_spin_lock(&lockdep_lock);
93 	/*
94 	 * Make sure that if another CPU detected a bug while
95 	 * walking the graph we dont change it (while the other
96 	 * CPU is busy printing out stuff with the graph lock
97 	 * dropped already)
98 	 */
99 	if (!debug_locks) {
100 		arch_spin_unlock(&lockdep_lock);
101 		return 0;
102 	}
103 	/* prevent any recursions within lockdep from causing deadlocks */
104 	current->lockdep_recursion++;
105 	return 1;
106 }
107 
108 static inline int graph_unlock(void)
109 {
110 	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
111 		/*
112 		 * The lockdep graph lock isn't locked while we expect it to
113 		 * be, we're confused now, bye!
114 		 */
115 		return DEBUG_LOCKS_WARN_ON(1);
116 	}
117 
118 	current->lockdep_recursion--;
119 	arch_spin_unlock(&lockdep_lock);
120 	return 0;
121 }
122 
123 /*
124  * Turn lock debugging off and return with 0 if it was off already,
125  * and also release the graph lock:
126  */
127 static inline int debug_locks_off_graph_unlock(void)
128 {
129 	int ret = debug_locks_off();
130 
131 	arch_spin_unlock(&lockdep_lock);
132 
133 	return ret;
134 }
135 
136 unsigned long nr_list_entries;
137 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
138 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
139 
140 /*
141  * All data structures here are protected by the global debug_lock.
142  *
143  * nr_lock_classes is the number of elements of lock_classes[] that is
144  * in use.
145  */
146 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
147 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
148 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
149 unsigned long nr_lock_classes;
150 #ifndef CONFIG_DEBUG_LOCKDEP
151 static
152 #endif
153 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
154 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
155 
156 static inline struct lock_class *hlock_class(struct held_lock *hlock)
157 {
158 	unsigned int class_idx = hlock->class_idx;
159 
160 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
161 	barrier();
162 
163 	if (!test_bit(class_idx, lock_classes_in_use)) {
164 		/*
165 		 * Someone passed in garbage, we give up.
166 		 */
167 		DEBUG_LOCKS_WARN_ON(1);
168 		return NULL;
169 	}
170 
171 	/*
172 	 * At this point, if the passed hlock->class_idx is still garbage,
173 	 * we just have to live with it
174 	 */
175 	return lock_classes + class_idx;
176 }
177 
178 #ifdef CONFIG_LOCK_STAT
179 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
180 
181 static inline u64 lockstat_clock(void)
182 {
183 	return local_clock();
184 }
185 
186 static int lock_point(unsigned long points[], unsigned long ip)
187 {
188 	int i;
189 
190 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
191 		if (points[i] == 0) {
192 			points[i] = ip;
193 			break;
194 		}
195 		if (points[i] == ip)
196 			break;
197 	}
198 
199 	return i;
200 }
201 
202 static void lock_time_inc(struct lock_time *lt, u64 time)
203 {
204 	if (time > lt->max)
205 		lt->max = time;
206 
207 	if (time < lt->min || !lt->nr)
208 		lt->min = time;
209 
210 	lt->total += time;
211 	lt->nr++;
212 }
213 
214 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
215 {
216 	if (!src->nr)
217 		return;
218 
219 	if (src->max > dst->max)
220 		dst->max = src->max;
221 
222 	if (src->min < dst->min || !dst->nr)
223 		dst->min = src->min;
224 
225 	dst->total += src->total;
226 	dst->nr += src->nr;
227 }
228 
229 struct lock_class_stats lock_stats(struct lock_class *class)
230 {
231 	struct lock_class_stats stats;
232 	int cpu, i;
233 
234 	memset(&stats, 0, sizeof(struct lock_class_stats));
235 	for_each_possible_cpu(cpu) {
236 		struct lock_class_stats *pcs =
237 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
238 
239 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
240 			stats.contention_point[i] += pcs->contention_point[i];
241 
242 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
243 			stats.contending_point[i] += pcs->contending_point[i];
244 
245 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
246 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
247 
248 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
249 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
250 
251 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
252 			stats.bounces[i] += pcs->bounces[i];
253 	}
254 
255 	return stats;
256 }
257 
258 void clear_lock_stats(struct lock_class *class)
259 {
260 	int cpu;
261 
262 	for_each_possible_cpu(cpu) {
263 		struct lock_class_stats *cpu_stats =
264 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
265 
266 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
267 	}
268 	memset(class->contention_point, 0, sizeof(class->contention_point));
269 	memset(class->contending_point, 0, sizeof(class->contending_point));
270 }
271 
272 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
273 {
274 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
275 }
276 
277 static void lock_release_holdtime(struct held_lock *hlock)
278 {
279 	struct lock_class_stats *stats;
280 	u64 holdtime;
281 
282 	if (!lock_stat)
283 		return;
284 
285 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
286 
287 	stats = get_lock_stats(hlock_class(hlock));
288 	if (hlock->read)
289 		lock_time_inc(&stats->read_holdtime, holdtime);
290 	else
291 		lock_time_inc(&stats->write_holdtime, holdtime);
292 }
293 #else
294 static inline void lock_release_holdtime(struct held_lock *hlock)
295 {
296 }
297 #endif
298 
299 /*
300  * We keep a global list of all lock classes. The list is only accessed with
301  * the lockdep spinlock lock held. free_lock_classes is a list with free
302  * elements. These elements are linked together by the lock_entry member in
303  * struct lock_class.
304  */
305 LIST_HEAD(all_lock_classes);
306 static LIST_HEAD(free_lock_classes);
307 
308 /**
309  * struct pending_free - information about data structures about to be freed
310  * @zapped: Head of a list with struct lock_class elements.
311  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
312  *	are about to be freed.
313  */
314 struct pending_free {
315 	struct list_head zapped;
316 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
317 };
318 
319 /**
320  * struct delayed_free - data structures used for delayed freeing
321  *
322  * A data structure for delayed freeing of data structures that may be
323  * accessed by RCU readers at the time these were freed.
324  *
325  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
326  * @index:     Index of @pf to which freed data structures are added.
327  * @scheduled: Whether or not an RCU callback has been scheduled.
328  * @pf:        Array with information about data structures about to be freed.
329  */
330 static struct delayed_free {
331 	struct rcu_head		rcu_head;
332 	int			index;
333 	int			scheduled;
334 	struct pending_free	pf[2];
335 } delayed_free;
336 
337 /*
338  * The lockdep classes are in a hash-table as well, for fast lookup:
339  */
340 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
341 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
342 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
343 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
344 
345 static struct hlist_head classhash_table[CLASSHASH_SIZE];
346 
347 /*
348  * We put the lock dependency chains into a hash-table as well, to cache
349  * their existence:
350  */
351 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
352 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
353 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
354 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
355 
356 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
357 
358 /*
359  * The hash key of the lock dependency chains is a hash itself too:
360  * it's a hash of all locks taken up to that lock, including that lock.
361  * It's a 64-bit hash, because it's important for the keys to be
362  * unique.
363  */
364 static inline u64 iterate_chain_key(u64 key, u32 idx)
365 {
366 	u32 k0 = key, k1 = key >> 32;
367 
368 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
369 
370 	return k0 | (u64)k1 << 32;
371 }
372 
373 void lockdep_init_task(struct task_struct *task)
374 {
375 	task->lockdep_depth = 0; /* no locks held yet */
376 	task->curr_chain_key = INITIAL_CHAIN_KEY;
377 	task->lockdep_recursion = 0;
378 }
379 
380 void lockdep_off(void)
381 {
382 	current->lockdep_recursion++;
383 }
384 EXPORT_SYMBOL(lockdep_off);
385 
386 void lockdep_on(void)
387 {
388 	current->lockdep_recursion--;
389 }
390 EXPORT_SYMBOL(lockdep_on);
391 
392 void lockdep_set_selftest_task(struct task_struct *task)
393 {
394 	lockdep_selftest_task_struct = task;
395 }
396 
397 /*
398  * Debugging switches:
399  */
400 
401 #define VERBOSE			0
402 #define VERY_VERBOSE		0
403 
404 #if VERBOSE
405 # define HARDIRQ_VERBOSE	1
406 # define SOFTIRQ_VERBOSE	1
407 #else
408 # define HARDIRQ_VERBOSE	0
409 # define SOFTIRQ_VERBOSE	0
410 #endif
411 
412 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
413 /*
414  * Quick filtering for interesting events:
415  */
416 static int class_filter(struct lock_class *class)
417 {
418 #if 0
419 	/* Example */
420 	if (class->name_version == 1 &&
421 			!strcmp(class->name, "lockname"))
422 		return 1;
423 	if (class->name_version == 1 &&
424 			!strcmp(class->name, "&struct->lockfield"))
425 		return 1;
426 #endif
427 	/* Filter everything else. 1 would be to allow everything else */
428 	return 0;
429 }
430 #endif
431 
432 static int verbose(struct lock_class *class)
433 {
434 #if VERBOSE
435 	return class_filter(class);
436 #endif
437 	return 0;
438 }
439 
440 static void print_lockdep_off(const char *bug_msg)
441 {
442 	printk(KERN_DEBUG "%s\n", bug_msg);
443 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
444 #ifdef CONFIG_LOCK_STAT
445 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
446 #endif
447 }
448 
449 unsigned long nr_stack_trace_entries;
450 
451 #ifdef CONFIG_PROVE_LOCKING
452 /**
453  * struct lock_trace - single stack backtrace
454  * @hash_entry:	Entry in a stack_trace_hash[] list.
455  * @hash:	jhash() of @entries.
456  * @nr_entries:	Number of entries in @entries.
457  * @entries:	Actual stack backtrace.
458  */
459 struct lock_trace {
460 	struct hlist_node	hash_entry;
461 	u32			hash;
462 	u32			nr_entries;
463 	unsigned long		entries[0] __aligned(sizeof(unsigned long));
464 };
465 #define LOCK_TRACE_SIZE_IN_LONGS				\
466 	(sizeof(struct lock_trace) / sizeof(unsigned long))
467 /*
468  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
469  */
470 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
471 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
472 
473 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
474 {
475 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
476 		memcmp(t1->entries, t2->entries,
477 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
478 }
479 
480 static struct lock_trace *save_trace(void)
481 {
482 	struct lock_trace *trace, *t2;
483 	struct hlist_head *hash_head;
484 	u32 hash;
485 	int max_entries;
486 
487 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
488 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
489 
490 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
491 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
492 		LOCK_TRACE_SIZE_IN_LONGS;
493 
494 	if (max_entries <= 0) {
495 		if (!debug_locks_off_graph_unlock())
496 			return NULL;
497 
498 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
499 		dump_stack();
500 
501 		return NULL;
502 	}
503 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
504 
505 	hash = jhash(trace->entries, trace->nr_entries *
506 		     sizeof(trace->entries[0]), 0);
507 	trace->hash = hash;
508 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
509 	hlist_for_each_entry(t2, hash_head, hash_entry) {
510 		if (traces_identical(trace, t2))
511 			return t2;
512 	}
513 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
514 	hlist_add_head(&trace->hash_entry, hash_head);
515 
516 	return trace;
517 }
518 
519 /* Return the number of stack traces in the stack_trace[] array. */
520 u64 lockdep_stack_trace_count(void)
521 {
522 	struct lock_trace *trace;
523 	u64 c = 0;
524 	int i;
525 
526 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
527 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
528 			c++;
529 		}
530 	}
531 
532 	return c;
533 }
534 
535 /* Return the number of stack hash chains that have at least one stack trace. */
536 u64 lockdep_stack_hash_count(void)
537 {
538 	u64 c = 0;
539 	int i;
540 
541 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
542 		if (!hlist_empty(&stack_trace_hash[i]))
543 			c++;
544 
545 	return c;
546 }
547 #endif
548 
549 unsigned int nr_hardirq_chains;
550 unsigned int nr_softirq_chains;
551 unsigned int nr_process_chains;
552 unsigned int max_lockdep_depth;
553 
554 #ifdef CONFIG_DEBUG_LOCKDEP
555 /*
556  * Various lockdep statistics:
557  */
558 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
559 #endif
560 
561 #ifdef CONFIG_PROVE_LOCKING
562 /*
563  * Locking printouts:
564  */
565 
566 #define __USAGE(__STATE)						\
567 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
568 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
569 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
570 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
571 
572 static const char *usage_str[] =
573 {
574 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
575 #include "lockdep_states.h"
576 #undef LOCKDEP_STATE
577 	[LOCK_USED] = "INITIAL USE",
578 };
579 #endif
580 
581 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
582 {
583 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
584 }
585 
586 static inline unsigned long lock_flag(enum lock_usage_bit bit)
587 {
588 	return 1UL << bit;
589 }
590 
591 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
592 {
593 	/*
594 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
595 	 * irq context), which is the safest usage category.
596 	 */
597 	char c = '.';
598 
599 	/*
600 	 * The order of the following usage checks matters, which will
601 	 * result in the outcome character as follows:
602 	 *
603 	 * - '+': irq is enabled and not in irq context
604 	 * - '-': in irq context and irq is disabled
605 	 * - '?': in irq context and irq is enabled
606 	 */
607 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
608 		c = '+';
609 		if (class->usage_mask & lock_flag(bit))
610 			c = '?';
611 	} else if (class->usage_mask & lock_flag(bit))
612 		c = '-';
613 
614 	return c;
615 }
616 
617 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
618 {
619 	int i = 0;
620 
621 #define LOCKDEP_STATE(__STATE) 						\
622 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
623 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626 
627 	usage[i] = '\0';
628 }
629 
630 static void __print_lock_name(struct lock_class *class)
631 {
632 	char str[KSYM_NAME_LEN];
633 	const char *name;
634 
635 	name = class->name;
636 	if (!name) {
637 		name = __get_key_name(class->key, str);
638 		printk(KERN_CONT "%s", name);
639 	} else {
640 		printk(KERN_CONT "%s", name);
641 		if (class->name_version > 1)
642 			printk(KERN_CONT "#%d", class->name_version);
643 		if (class->subclass)
644 			printk(KERN_CONT "/%d", class->subclass);
645 	}
646 }
647 
648 static void print_lock_name(struct lock_class *class)
649 {
650 	char usage[LOCK_USAGE_CHARS];
651 
652 	get_usage_chars(class, usage);
653 
654 	printk(KERN_CONT " (");
655 	__print_lock_name(class);
656 	printk(KERN_CONT "){%s}", usage);
657 }
658 
659 static void print_lockdep_cache(struct lockdep_map *lock)
660 {
661 	const char *name;
662 	char str[KSYM_NAME_LEN];
663 
664 	name = lock->name;
665 	if (!name)
666 		name = __get_key_name(lock->key->subkeys, str);
667 
668 	printk(KERN_CONT "%s", name);
669 }
670 
671 static void print_lock(struct held_lock *hlock)
672 {
673 	/*
674 	 * We can be called locklessly through debug_show_all_locks() so be
675 	 * extra careful, the hlock might have been released and cleared.
676 	 *
677 	 * If this indeed happens, lets pretend it does not hurt to continue
678 	 * to print the lock unless the hlock class_idx does not point to a
679 	 * registered class. The rationale here is: since we don't attempt
680 	 * to distinguish whether we are in this situation, if it just
681 	 * happened we can't count on class_idx to tell either.
682 	 */
683 	struct lock_class *lock = hlock_class(hlock);
684 
685 	if (!lock) {
686 		printk(KERN_CONT "<RELEASED>\n");
687 		return;
688 	}
689 
690 	printk(KERN_CONT "%px", hlock->instance);
691 	print_lock_name(lock);
692 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
693 }
694 
695 static void lockdep_print_held_locks(struct task_struct *p)
696 {
697 	int i, depth = READ_ONCE(p->lockdep_depth);
698 
699 	if (!depth)
700 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
701 	else
702 		printk("%d lock%s held by %s/%d:\n", depth,
703 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
704 	/*
705 	 * It's not reliable to print a task's held locks if it's not sleeping
706 	 * and it's not the current task.
707 	 */
708 	if (p->state == TASK_RUNNING && p != current)
709 		return;
710 	for (i = 0; i < depth; i++) {
711 		printk(" #%d: ", i);
712 		print_lock(p->held_locks + i);
713 	}
714 }
715 
716 static void print_kernel_ident(void)
717 {
718 	printk("%s %.*s %s\n", init_utsname()->release,
719 		(int)strcspn(init_utsname()->version, " "),
720 		init_utsname()->version,
721 		print_tainted());
722 }
723 
724 static int very_verbose(struct lock_class *class)
725 {
726 #if VERY_VERBOSE
727 	return class_filter(class);
728 #endif
729 	return 0;
730 }
731 
732 /*
733  * Is this the address of a static object:
734  */
735 #ifdef __KERNEL__
736 static int static_obj(const void *obj)
737 {
738 	unsigned long start = (unsigned long) &_stext,
739 		      end   = (unsigned long) &_end,
740 		      addr  = (unsigned long) obj;
741 
742 	if (arch_is_kernel_initmem_freed(addr))
743 		return 0;
744 
745 	/*
746 	 * static variable?
747 	 */
748 	if ((addr >= start) && (addr < end))
749 		return 1;
750 
751 	if (arch_is_kernel_data(addr))
752 		return 1;
753 
754 	/*
755 	 * in-kernel percpu var?
756 	 */
757 	if (is_kernel_percpu_address(addr))
758 		return 1;
759 
760 	/*
761 	 * module static or percpu var?
762 	 */
763 	return is_module_address(addr) || is_module_percpu_address(addr);
764 }
765 #endif
766 
767 /*
768  * To make lock name printouts unique, we calculate a unique
769  * class->name_version generation counter. The caller must hold the graph
770  * lock.
771  */
772 static int count_matching_names(struct lock_class *new_class)
773 {
774 	struct lock_class *class;
775 	int count = 0;
776 
777 	if (!new_class->name)
778 		return 0;
779 
780 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
781 		if (new_class->key - new_class->subclass == class->key)
782 			return class->name_version;
783 		if (class->name && !strcmp(class->name, new_class->name))
784 			count = max(count, class->name_version);
785 	}
786 
787 	return count + 1;
788 }
789 
790 static inline struct lock_class *
791 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
792 {
793 	struct lockdep_subclass_key *key;
794 	struct hlist_head *hash_head;
795 	struct lock_class *class;
796 
797 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
798 		debug_locks_off();
799 		printk(KERN_ERR
800 			"BUG: looking up invalid subclass: %u\n", subclass);
801 		printk(KERN_ERR
802 			"turning off the locking correctness validator.\n");
803 		dump_stack();
804 		return NULL;
805 	}
806 
807 	/*
808 	 * If it is not initialised then it has never been locked,
809 	 * so it won't be present in the hash table.
810 	 */
811 	if (unlikely(!lock->key))
812 		return NULL;
813 
814 	/*
815 	 * NOTE: the class-key must be unique. For dynamic locks, a static
816 	 * lock_class_key variable is passed in through the mutex_init()
817 	 * (or spin_lock_init()) call - which acts as the key. For static
818 	 * locks we use the lock object itself as the key.
819 	 */
820 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
821 			sizeof(struct lockdep_map));
822 
823 	key = lock->key->subkeys + subclass;
824 
825 	hash_head = classhashentry(key);
826 
827 	/*
828 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
829 	 */
830 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
831 		return NULL;
832 
833 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
834 		if (class->key == key) {
835 			/*
836 			 * Huh! same key, different name? Did someone trample
837 			 * on some memory? We're most confused.
838 			 */
839 			WARN_ON_ONCE(class->name != lock->name &&
840 				     lock->key != &__lockdep_no_validate__);
841 			return class;
842 		}
843 	}
844 
845 	return NULL;
846 }
847 
848 /*
849  * Static locks do not have their class-keys yet - for them the key is
850  * the lock object itself. If the lock is in the per cpu area, the
851  * canonical address of the lock (per cpu offset removed) is used.
852  */
853 static bool assign_lock_key(struct lockdep_map *lock)
854 {
855 	unsigned long can_addr, addr = (unsigned long)lock;
856 
857 #ifdef __KERNEL__
858 	/*
859 	 * lockdep_free_key_range() assumes that struct lock_class_key
860 	 * objects do not overlap. Since we use the address of lock
861 	 * objects as class key for static objects, check whether the
862 	 * size of lock_class_key objects does not exceed the size of
863 	 * the smallest lock object.
864 	 */
865 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
866 #endif
867 
868 	if (__is_kernel_percpu_address(addr, &can_addr))
869 		lock->key = (void *)can_addr;
870 	else if (__is_module_percpu_address(addr, &can_addr))
871 		lock->key = (void *)can_addr;
872 	else if (static_obj(lock))
873 		lock->key = (void *)lock;
874 	else {
875 		/* Debug-check: all keys must be persistent! */
876 		debug_locks_off();
877 		pr_err("INFO: trying to register non-static key.\n");
878 		pr_err("the code is fine but needs lockdep annotation.\n");
879 		pr_err("turning off the locking correctness validator.\n");
880 		dump_stack();
881 		return false;
882 	}
883 
884 	return true;
885 }
886 
887 #ifdef CONFIG_DEBUG_LOCKDEP
888 
889 /* Check whether element @e occurs in list @h */
890 static bool in_list(struct list_head *e, struct list_head *h)
891 {
892 	struct list_head *f;
893 
894 	list_for_each(f, h) {
895 		if (e == f)
896 			return true;
897 	}
898 
899 	return false;
900 }
901 
902 /*
903  * Check whether entry @e occurs in any of the locks_after or locks_before
904  * lists.
905  */
906 static bool in_any_class_list(struct list_head *e)
907 {
908 	struct lock_class *class;
909 	int i;
910 
911 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
912 		class = &lock_classes[i];
913 		if (in_list(e, &class->locks_after) ||
914 		    in_list(e, &class->locks_before))
915 			return true;
916 	}
917 	return false;
918 }
919 
920 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
921 {
922 	struct lock_list *e;
923 
924 	list_for_each_entry(e, h, entry) {
925 		if (e->links_to != c) {
926 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
927 			       c->name ? : "(?)",
928 			       (unsigned long)(e - list_entries),
929 			       e->links_to && e->links_to->name ?
930 			       e->links_to->name : "(?)",
931 			       e->class && e->class->name ? e->class->name :
932 			       "(?)");
933 			return false;
934 		}
935 	}
936 	return true;
937 }
938 
939 #ifdef CONFIG_PROVE_LOCKING
940 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
941 #endif
942 
943 static bool check_lock_chain_key(struct lock_chain *chain)
944 {
945 #ifdef CONFIG_PROVE_LOCKING
946 	u64 chain_key = INITIAL_CHAIN_KEY;
947 	int i;
948 
949 	for (i = chain->base; i < chain->base + chain->depth; i++)
950 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
951 	/*
952 	 * The 'unsigned long long' casts avoid that a compiler warning
953 	 * is reported when building tools/lib/lockdep.
954 	 */
955 	if (chain->chain_key != chain_key) {
956 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
957 		       (unsigned long long)(chain - lock_chains),
958 		       (unsigned long long)chain->chain_key,
959 		       (unsigned long long)chain_key);
960 		return false;
961 	}
962 #endif
963 	return true;
964 }
965 
966 static bool in_any_zapped_class_list(struct lock_class *class)
967 {
968 	struct pending_free *pf;
969 	int i;
970 
971 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
972 		if (in_list(&class->lock_entry, &pf->zapped))
973 			return true;
974 	}
975 
976 	return false;
977 }
978 
979 static bool __check_data_structures(void)
980 {
981 	struct lock_class *class;
982 	struct lock_chain *chain;
983 	struct hlist_head *head;
984 	struct lock_list *e;
985 	int i;
986 
987 	/* Check whether all classes occur in a lock list. */
988 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
989 		class = &lock_classes[i];
990 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
991 		    !in_list(&class->lock_entry, &free_lock_classes) &&
992 		    !in_any_zapped_class_list(class)) {
993 			printk(KERN_INFO "class %px/%s is not in any class list\n",
994 			       class, class->name ? : "(?)");
995 			return false;
996 		}
997 	}
998 
999 	/* Check whether all classes have valid lock lists. */
1000 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1001 		class = &lock_classes[i];
1002 		if (!class_lock_list_valid(class, &class->locks_before))
1003 			return false;
1004 		if (!class_lock_list_valid(class, &class->locks_after))
1005 			return false;
1006 	}
1007 
1008 	/* Check the chain_key of all lock chains. */
1009 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1010 		head = chainhash_table + i;
1011 		hlist_for_each_entry_rcu(chain, head, entry) {
1012 			if (!check_lock_chain_key(chain))
1013 				return false;
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * Check whether all list entries that are in use occur in a class
1019 	 * lock list.
1020 	 */
1021 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1022 		e = list_entries + i;
1023 		if (!in_any_class_list(&e->entry)) {
1024 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1025 			       (unsigned int)(e - list_entries),
1026 			       e->class->name ? : "(?)",
1027 			       e->links_to->name ? : "(?)");
1028 			return false;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Check whether all list entries that are not in use do not occur in
1034 	 * a class lock list.
1035 	 */
1036 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1037 		e = list_entries + i;
1038 		if (in_any_class_list(&e->entry)) {
1039 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1040 			       (unsigned int)(e - list_entries),
1041 			       e->class && e->class->name ? e->class->name :
1042 			       "(?)",
1043 			       e->links_to && e->links_to->name ?
1044 			       e->links_to->name : "(?)");
1045 			return false;
1046 		}
1047 	}
1048 
1049 	return true;
1050 }
1051 
1052 int check_consistency = 0;
1053 module_param(check_consistency, int, 0644);
1054 
1055 static void check_data_structures(void)
1056 {
1057 	static bool once = false;
1058 
1059 	if (check_consistency && !once) {
1060 		if (!__check_data_structures()) {
1061 			once = true;
1062 			WARN_ON(once);
1063 		}
1064 	}
1065 }
1066 
1067 #else /* CONFIG_DEBUG_LOCKDEP */
1068 
1069 static inline void check_data_structures(void) { }
1070 
1071 #endif /* CONFIG_DEBUG_LOCKDEP */
1072 
1073 /*
1074  * Initialize the lock_classes[] array elements, the free_lock_classes list
1075  * and also the delayed_free structure.
1076  */
1077 static void init_data_structures_once(void)
1078 {
1079 	static bool ds_initialized, rcu_head_initialized;
1080 	int i;
1081 
1082 	if (likely(rcu_head_initialized))
1083 		return;
1084 
1085 	if (system_state >= SYSTEM_SCHEDULING) {
1086 		init_rcu_head(&delayed_free.rcu_head);
1087 		rcu_head_initialized = true;
1088 	}
1089 
1090 	if (ds_initialized)
1091 		return;
1092 
1093 	ds_initialized = true;
1094 
1095 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1096 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1097 
1098 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1099 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1100 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1101 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1102 	}
1103 }
1104 
1105 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1106 {
1107 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1108 
1109 	return lock_keys_hash + hash;
1110 }
1111 
1112 /* Register a dynamically allocated key. */
1113 void lockdep_register_key(struct lock_class_key *key)
1114 {
1115 	struct hlist_head *hash_head;
1116 	struct lock_class_key *k;
1117 	unsigned long flags;
1118 
1119 	if (WARN_ON_ONCE(static_obj(key)))
1120 		return;
1121 	hash_head = keyhashentry(key);
1122 
1123 	raw_local_irq_save(flags);
1124 	if (!graph_lock())
1125 		goto restore_irqs;
1126 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1127 		if (WARN_ON_ONCE(k == key))
1128 			goto out_unlock;
1129 	}
1130 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1131 out_unlock:
1132 	graph_unlock();
1133 restore_irqs:
1134 	raw_local_irq_restore(flags);
1135 }
1136 EXPORT_SYMBOL_GPL(lockdep_register_key);
1137 
1138 /* Check whether a key has been registered as a dynamic key. */
1139 static bool is_dynamic_key(const struct lock_class_key *key)
1140 {
1141 	struct hlist_head *hash_head;
1142 	struct lock_class_key *k;
1143 	bool found = false;
1144 
1145 	if (WARN_ON_ONCE(static_obj(key)))
1146 		return false;
1147 
1148 	/*
1149 	 * If lock debugging is disabled lock_keys_hash[] may contain
1150 	 * pointers to memory that has already been freed. Avoid triggering
1151 	 * a use-after-free in that case by returning early.
1152 	 */
1153 	if (!debug_locks)
1154 		return true;
1155 
1156 	hash_head = keyhashentry(key);
1157 
1158 	rcu_read_lock();
1159 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1160 		if (k == key) {
1161 			found = true;
1162 			break;
1163 		}
1164 	}
1165 	rcu_read_unlock();
1166 
1167 	return found;
1168 }
1169 
1170 /*
1171  * Register a lock's class in the hash-table, if the class is not present
1172  * yet. Otherwise we look it up. We cache the result in the lock object
1173  * itself, so actual lookup of the hash should be once per lock object.
1174  */
1175 static struct lock_class *
1176 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1177 {
1178 	struct lockdep_subclass_key *key;
1179 	struct hlist_head *hash_head;
1180 	struct lock_class *class;
1181 
1182 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1183 
1184 	class = look_up_lock_class(lock, subclass);
1185 	if (likely(class))
1186 		goto out_set_class_cache;
1187 
1188 	if (!lock->key) {
1189 		if (!assign_lock_key(lock))
1190 			return NULL;
1191 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1192 		return NULL;
1193 	}
1194 
1195 	key = lock->key->subkeys + subclass;
1196 	hash_head = classhashentry(key);
1197 
1198 	if (!graph_lock()) {
1199 		return NULL;
1200 	}
1201 	/*
1202 	 * We have to do the hash-walk again, to avoid races
1203 	 * with another CPU:
1204 	 */
1205 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1206 		if (class->key == key)
1207 			goto out_unlock_set;
1208 	}
1209 
1210 	init_data_structures_once();
1211 
1212 	/* Allocate a new lock class and add it to the hash. */
1213 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1214 					 lock_entry);
1215 	if (!class) {
1216 		if (!debug_locks_off_graph_unlock()) {
1217 			return NULL;
1218 		}
1219 
1220 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1221 		dump_stack();
1222 		return NULL;
1223 	}
1224 	nr_lock_classes++;
1225 	__set_bit(class - lock_classes, lock_classes_in_use);
1226 	debug_atomic_inc(nr_unused_locks);
1227 	class->key = key;
1228 	class->name = lock->name;
1229 	class->subclass = subclass;
1230 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1231 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1232 	class->name_version = count_matching_names(class);
1233 	/*
1234 	 * We use RCU's safe list-add method to make
1235 	 * parallel walking of the hash-list safe:
1236 	 */
1237 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1238 	/*
1239 	 * Remove the class from the free list and add it to the global list
1240 	 * of classes.
1241 	 */
1242 	list_move_tail(&class->lock_entry, &all_lock_classes);
1243 
1244 	if (verbose(class)) {
1245 		graph_unlock();
1246 
1247 		printk("\nnew class %px: %s", class->key, class->name);
1248 		if (class->name_version > 1)
1249 			printk(KERN_CONT "#%d", class->name_version);
1250 		printk(KERN_CONT "\n");
1251 		dump_stack();
1252 
1253 		if (!graph_lock()) {
1254 			return NULL;
1255 		}
1256 	}
1257 out_unlock_set:
1258 	graph_unlock();
1259 
1260 out_set_class_cache:
1261 	if (!subclass || force)
1262 		lock->class_cache[0] = class;
1263 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1264 		lock->class_cache[subclass] = class;
1265 
1266 	/*
1267 	 * Hash collision, did we smoke some? We found a class with a matching
1268 	 * hash but the subclass -- which is hashed in -- didn't match.
1269 	 */
1270 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1271 		return NULL;
1272 
1273 	return class;
1274 }
1275 
1276 #ifdef CONFIG_PROVE_LOCKING
1277 /*
1278  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1279  * with NULL on failure)
1280  */
1281 static struct lock_list *alloc_list_entry(void)
1282 {
1283 	int idx = find_first_zero_bit(list_entries_in_use,
1284 				      ARRAY_SIZE(list_entries));
1285 
1286 	if (idx >= ARRAY_SIZE(list_entries)) {
1287 		if (!debug_locks_off_graph_unlock())
1288 			return NULL;
1289 
1290 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1291 		dump_stack();
1292 		return NULL;
1293 	}
1294 	nr_list_entries++;
1295 	__set_bit(idx, list_entries_in_use);
1296 	return list_entries + idx;
1297 }
1298 
1299 /*
1300  * Add a new dependency to the head of the list:
1301  */
1302 static int add_lock_to_list(struct lock_class *this,
1303 			    struct lock_class *links_to, struct list_head *head,
1304 			    unsigned long ip, int distance,
1305 			    const struct lock_trace *trace)
1306 {
1307 	struct lock_list *entry;
1308 	/*
1309 	 * Lock not present yet - get a new dependency struct and
1310 	 * add it to the list:
1311 	 */
1312 	entry = alloc_list_entry();
1313 	if (!entry)
1314 		return 0;
1315 
1316 	entry->class = this;
1317 	entry->links_to = links_to;
1318 	entry->distance = distance;
1319 	entry->trace = trace;
1320 	/*
1321 	 * Both allocation and removal are done under the graph lock; but
1322 	 * iteration is under RCU-sched; see look_up_lock_class() and
1323 	 * lockdep_free_key_range().
1324 	 */
1325 	list_add_tail_rcu(&entry->entry, head);
1326 
1327 	return 1;
1328 }
1329 
1330 /*
1331  * For good efficiency of modular, we use power of 2
1332  */
1333 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1334 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1335 
1336 /*
1337  * The circular_queue and helpers are used to implement graph
1338  * breadth-first search (BFS) algorithm, by which we can determine
1339  * whether there is a path from a lock to another. In deadlock checks,
1340  * a path from the next lock to be acquired to a previous held lock
1341  * indicates that adding the <prev> -> <next> lock dependency will
1342  * produce a circle in the graph. Breadth-first search instead of
1343  * depth-first search is used in order to find the shortest (circular)
1344  * path.
1345  */
1346 struct circular_queue {
1347 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1348 	unsigned int  front, rear;
1349 };
1350 
1351 static struct circular_queue lock_cq;
1352 
1353 unsigned int max_bfs_queue_depth;
1354 
1355 static unsigned int lockdep_dependency_gen_id;
1356 
1357 static inline void __cq_init(struct circular_queue *cq)
1358 {
1359 	cq->front = cq->rear = 0;
1360 	lockdep_dependency_gen_id++;
1361 }
1362 
1363 static inline int __cq_empty(struct circular_queue *cq)
1364 {
1365 	return (cq->front == cq->rear);
1366 }
1367 
1368 static inline int __cq_full(struct circular_queue *cq)
1369 {
1370 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1371 }
1372 
1373 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1374 {
1375 	if (__cq_full(cq))
1376 		return -1;
1377 
1378 	cq->element[cq->rear] = elem;
1379 	cq->rear = (cq->rear + 1) & CQ_MASK;
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Dequeue an element from the circular_queue, return a lock_list if
1385  * the queue is not empty, or NULL if otherwise.
1386  */
1387 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1388 {
1389 	struct lock_list * lock;
1390 
1391 	if (__cq_empty(cq))
1392 		return NULL;
1393 
1394 	lock = cq->element[cq->front];
1395 	cq->front = (cq->front + 1) & CQ_MASK;
1396 
1397 	return lock;
1398 }
1399 
1400 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1401 {
1402 	return (cq->rear - cq->front) & CQ_MASK;
1403 }
1404 
1405 static inline void mark_lock_accessed(struct lock_list *lock,
1406 					struct lock_list *parent)
1407 {
1408 	unsigned long nr;
1409 
1410 	nr = lock - list_entries;
1411 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1412 	lock->parent = parent;
1413 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1414 }
1415 
1416 static inline unsigned long lock_accessed(struct lock_list *lock)
1417 {
1418 	unsigned long nr;
1419 
1420 	nr = lock - list_entries;
1421 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1422 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1423 }
1424 
1425 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1426 {
1427 	return child->parent;
1428 }
1429 
1430 static inline int get_lock_depth(struct lock_list *child)
1431 {
1432 	int depth = 0;
1433 	struct lock_list *parent;
1434 
1435 	while ((parent = get_lock_parent(child))) {
1436 		child = parent;
1437 		depth++;
1438 	}
1439 	return depth;
1440 }
1441 
1442 /*
1443  * Return the forward or backward dependency list.
1444  *
1445  * @lock:   the lock_list to get its class's dependency list
1446  * @offset: the offset to struct lock_class to determine whether it is
1447  *          locks_after or locks_before
1448  */
1449 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1450 {
1451 	void *lock_class = lock->class;
1452 
1453 	return lock_class + offset;
1454 }
1455 
1456 /*
1457  * Forward- or backward-dependency search, used for both circular dependency
1458  * checking and hardirq-unsafe/softirq-unsafe checking.
1459  */
1460 static int __bfs(struct lock_list *source_entry,
1461 		 void *data,
1462 		 int (*match)(struct lock_list *entry, void *data),
1463 		 struct lock_list **target_entry,
1464 		 int offset)
1465 {
1466 	struct lock_list *entry;
1467 	struct lock_list *lock;
1468 	struct list_head *head;
1469 	struct circular_queue *cq = &lock_cq;
1470 	int ret = 1;
1471 
1472 	if (match(source_entry, data)) {
1473 		*target_entry = source_entry;
1474 		ret = 0;
1475 		goto exit;
1476 	}
1477 
1478 	head = get_dep_list(source_entry, offset);
1479 	if (list_empty(head))
1480 		goto exit;
1481 
1482 	__cq_init(cq);
1483 	__cq_enqueue(cq, source_entry);
1484 
1485 	while ((lock = __cq_dequeue(cq))) {
1486 
1487 		if (!lock->class) {
1488 			ret = -2;
1489 			goto exit;
1490 		}
1491 
1492 		head = get_dep_list(lock, offset);
1493 
1494 		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1495 
1496 		list_for_each_entry_rcu(entry, head, entry) {
1497 			if (!lock_accessed(entry)) {
1498 				unsigned int cq_depth;
1499 				mark_lock_accessed(entry, lock);
1500 				if (match(entry, data)) {
1501 					*target_entry = entry;
1502 					ret = 0;
1503 					goto exit;
1504 				}
1505 
1506 				if (__cq_enqueue(cq, entry)) {
1507 					ret = -1;
1508 					goto exit;
1509 				}
1510 				cq_depth = __cq_get_elem_count(cq);
1511 				if (max_bfs_queue_depth < cq_depth)
1512 					max_bfs_queue_depth = cq_depth;
1513 			}
1514 		}
1515 	}
1516 exit:
1517 	return ret;
1518 }
1519 
1520 static inline int __bfs_forwards(struct lock_list *src_entry,
1521 			void *data,
1522 			int (*match)(struct lock_list *entry, void *data),
1523 			struct lock_list **target_entry)
1524 {
1525 	return __bfs(src_entry, data, match, target_entry,
1526 		     offsetof(struct lock_class, locks_after));
1527 
1528 }
1529 
1530 static inline int __bfs_backwards(struct lock_list *src_entry,
1531 			void *data,
1532 			int (*match)(struct lock_list *entry, void *data),
1533 			struct lock_list **target_entry)
1534 {
1535 	return __bfs(src_entry, data, match, target_entry,
1536 		     offsetof(struct lock_class, locks_before));
1537 
1538 }
1539 
1540 static void print_lock_trace(const struct lock_trace *trace,
1541 			     unsigned int spaces)
1542 {
1543 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1544 }
1545 
1546 /*
1547  * Print a dependency chain entry (this is only done when a deadlock
1548  * has been detected):
1549  */
1550 static noinline void
1551 print_circular_bug_entry(struct lock_list *target, int depth)
1552 {
1553 	if (debug_locks_silent)
1554 		return;
1555 	printk("\n-> #%u", depth);
1556 	print_lock_name(target->class);
1557 	printk(KERN_CONT ":\n");
1558 	print_lock_trace(target->trace, 6);
1559 }
1560 
1561 static void
1562 print_circular_lock_scenario(struct held_lock *src,
1563 			     struct held_lock *tgt,
1564 			     struct lock_list *prt)
1565 {
1566 	struct lock_class *source = hlock_class(src);
1567 	struct lock_class *target = hlock_class(tgt);
1568 	struct lock_class *parent = prt->class;
1569 
1570 	/*
1571 	 * A direct locking problem where unsafe_class lock is taken
1572 	 * directly by safe_class lock, then all we need to show
1573 	 * is the deadlock scenario, as it is obvious that the
1574 	 * unsafe lock is taken under the safe lock.
1575 	 *
1576 	 * But if there is a chain instead, where the safe lock takes
1577 	 * an intermediate lock (middle_class) where this lock is
1578 	 * not the same as the safe lock, then the lock chain is
1579 	 * used to describe the problem. Otherwise we would need
1580 	 * to show a different CPU case for each link in the chain
1581 	 * from the safe_class lock to the unsafe_class lock.
1582 	 */
1583 	if (parent != source) {
1584 		printk("Chain exists of:\n  ");
1585 		__print_lock_name(source);
1586 		printk(KERN_CONT " --> ");
1587 		__print_lock_name(parent);
1588 		printk(KERN_CONT " --> ");
1589 		__print_lock_name(target);
1590 		printk(KERN_CONT "\n\n");
1591 	}
1592 
1593 	printk(" Possible unsafe locking scenario:\n\n");
1594 	printk("       CPU0                    CPU1\n");
1595 	printk("       ----                    ----\n");
1596 	printk("  lock(");
1597 	__print_lock_name(target);
1598 	printk(KERN_CONT ");\n");
1599 	printk("                               lock(");
1600 	__print_lock_name(parent);
1601 	printk(KERN_CONT ");\n");
1602 	printk("                               lock(");
1603 	__print_lock_name(target);
1604 	printk(KERN_CONT ");\n");
1605 	printk("  lock(");
1606 	__print_lock_name(source);
1607 	printk(KERN_CONT ");\n");
1608 	printk("\n *** DEADLOCK ***\n\n");
1609 }
1610 
1611 /*
1612  * When a circular dependency is detected, print the
1613  * header first:
1614  */
1615 static noinline void
1616 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1617 			struct held_lock *check_src,
1618 			struct held_lock *check_tgt)
1619 {
1620 	struct task_struct *curr = current;
1621 
1622 	if (debug_locks_silent)
1623 		return;
1624 
1625 	pr_warn("\n");
1626 	pr_warn("======================================================\n");
1627 	pr_warn("WARNING: possible circular locking dependency detected\n");
1628 	print_kernel_ident();
1629 	pr_warn("------------------------------------------------------\n");
1630 	pr_warn("%s/%d is trying to acquire lock:\n",
1631 		curr->comm, task_pid_nr(curr));
1632 	print_lock(check_src);
1633 
1634 	pr_warn("\nbut task is already holding lock:\n");
1635 
1636 	print_lock(check_tgt);
1637 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1638 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1639 
1640 	print_circular_bug_entry(entry, depth);
1641 }
1642 
1643 static inline int class_equal(struct lock_list *entry, void *data)
1644 {
1645 	return entry->class == data;
1646 }
1647 
1648 static noinline void print_circular_bug(struct lock_list *this,
1649 					struct lock_list *target,
1650 					struct held_lock *check_src,
1651 					struct held_lock *check_tgt)
1652 {
1653 	struct task_struct *curr = current;
1654 	struct lock_list *parent;
1655 	struct lock_list *first_parent;
1656 	int depth;
1657 
1658 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1659 		return;
1660 
1661 	this->trace = save_trace();
1662 	if (!this->trace)
1663 		return;
1664 
1665 	depth = get_lock_depth(target);
1666 
1667 	print_circular_bug_header(target, depth, check_src, check_tgt);
1668 
1669 	parent = get_lock_parent(target);
1670 	first_parent = parent;
1671 
1672 	while (parent) {
1673 		print_circular_bug_entry(parent, --depth);
1674 		parent = get_lock_parent(parent);
1675 	}
1676 
1677 	printk("\nother info that might help us debug this:\n\n");
1678 	print_circular_lock_scenario(check_src, check_tgt,
1679 				     first_parent);
1680 
1681 	lockdep_print_held_locks(curr);
1682 
1683 	printk("\nstack backtrace:\n");
1684 	dump_stack();
1685 }
1686 
1687 static noinline void print_bfs_bug(int ret)
1688 {
1689 	if (!debug_locks_off_graph_unlock())
1690 		return;
1691 
1692 	/*
1693 	 * Breadth-first-search failed, graph got corrupted?
1694 	 */
1695 	WARN(1, "lockdep bfs error:%d\n", ret);
1696 }
1697 
1698 static int noop_count(struct lock_list *entry, void *data)
1699 {
1700 	(*(unsigned long *)data)++;
1701 	return 0;
1702 }
1703 
1704 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1705 {
1706 	unsigned long  count = 0;
1707 	struct lock_list *uninitialized_var(target_entry);
1708 
1709 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1710 
1711 	return count;
1712 }
1713 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1714 {
1715 	unsigned long ret, flags;
1716 	struct lock_list this;
1717 
1718 	this.parent = NULL;
1719 	this.class = class;
1720 
1721 	raw_local_irq_save(flags);
1722 	arch_spin_lock(&lockdep_lock);
1723 	ret = __lockdep_count_forward_deps(&this);
1724 	arch_spin_unlock(&lockdep_lock);
1725 	raw_local_irq_restore(flags);
1726 
1727 	return ret;
1728 }
1729 
1730 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1731 {
1732 	unsigned long  count = 0;
1733 	struct lock_list *uninitialized_var(target_entry);
1734 
1735 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1736 
1737 	return count;
1738 }
1739 
1740 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1741 {
1742 	unsigned long ret, flags;
1743 	struct lock_list this;
1744 
1745 	this.parent = NULL;
1746 	this.class = class;
1747 
1748 	raw_local_irq_save(flags);
1749 	arch_spin_lock(&lockdep_lock);
1750 	ret = __lockdep_count_backward_deps(&this);
1751 	arch_spin_unlock(&lockdep_lock);
1752 	raw_local_irq_restore(flags);
1753 
1754 	return ret;
1755 }
1756 
1757 /*
1758  * Check that the dependency graph starting at <src> can lead to
1759  * <target> or not. Print an error and return 0 if it does.
1760  */
1761 static noinline int
1762 check_path(struct lock_class *target, struct lock_list *src_entry,
1763 	   struct lock_list **target_entry)
1764 {
1765 	int ret;
1766 
1767 	ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1768 			     target_entry);
1769 
1770 	if (unlikely(ret < 0))
1771 		print_bfs_bug(ret);
1772 
1773 	return ret;
1774 }
1775 
1776 /*
1777  * Prove that the dependency graph starting at <src> can not
1778  * lead to <target>. If it can, there is a circle when adding
1779  * <target> -> <src> dependency.
1780  *
1781  * Print an error and return 0 if it does.
1782  */
1783 static noinline int
1784 check_noncircular(struct held_lock *src, struct held_lock *target,
1785 		  struct lock_trace **const trace)
1786 {
1787 	int ret;
1788 	struct lock_list *uninitialized_var(target_entry);
1789 	struct lock_list src_entry = {
1790 		.class = hlock_class(src),
1791 		.parent = NULL,
1792 	};
1793 
1794 	debug_atomic_inc(nr_cyclic_checks);
1795 
1796 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1797 
1798 	if (unlikely(!ret)) {
1799 		if (!*trace) {
1800 			/*
1801 			 * If save_trace fails here, the printing might
1802 			 * trigger a WARN but because of the !nr_entries it
1803 			 * should not do bad things.
1804 			 */
1805 			*trace = save_trace();
1806 		}
1807 
1808 		print_circular_bug(&src_entry, target_entry, src, target);
1809 	}
1810 
1811 	return ret;
1812 }
1813 
1814 #ifdef CONFIG_LOCKDEP_SMALL
1815 /*
1816  * Check that the dependency graph starting at <src> can lead to
1817  * <target> or not. If it can, <src> -> <target> dependency is already
1818  * in the graph.
1819  *
1820  * Print an error and return 2 if it does or 1 if it does not.
1821  */
1822 static noinline int
1823 check_redundant(struct held_lock *src, struct held_lock *target)
1824 {
1825 	int ret;
1826 	struct lock_list *uninitialized_var(target_entry);
1827 	struct lock_list src_entry = {
1828 		.class = hlock_class(src),
1829 		.parent = NULL,
1830 	};
1831 
1832 	debug_atomic_inc(nr_redundant_checks);
1833 
1834 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1835 
1836 	if (!ret) {
1837 		debug_atomic_inc(nr_redundant);
1838 		ret = 2;
1839 	} else if (ret < 0)
1840 		ret = 0;
1841 
1842 	return ret;
1843 }
1844 #endif
1845 
1846 #ifdef CONFIG_TRACE_IRQFLAGS
1847 
1848 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1849 {
1850 	*(unsigned long *)mask |= entry->class->usage_mask;
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Forwards and backwards subgraph searching, for the purposes of
1857  * proving that two subgraphs can be connected by a new dependency
1858  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1859  */
1860 
1861 static inline int usage_match(struct lock_list *entry, void *mask)
1862 {
1863 	return entry->class->usage_mask & *(unsigned long *)mask;
1864 }
1865 
1866 /*
1867  * Find a node in the forwards-direction dependency sub-graph starting
1868  * at @root->class that matches @bit.
1869  *
1870  * Return 0 if such a node exists in the subgraph, and put that node
1871  * into *@target_entry.
1872  *
1873  * Return 1 otherwise and keep *@target_entry unchanged.
1874  * Return <0 on error.
1875  */
1876 static int
1877 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1878 			struct lock_list **target_entry)
1879 {
1880 	int result;
1881 
1882 	debug_atomic_inc(nr_find_usage_forwards_checks);
1883 
1884 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1885 
1886 	return result;
1887 }
1888 
1889 /*
1890  * Find a node in the backwards-direction dependency sub-graph starting
1891  * at @root->class that matches @bit.
1892  *
1893  * Return 0 if such a node exists in the subgraph, and put that node
1894  * into *@target_entry.
1895  *
1896  * Return 1 otherwise and keep *@target_entry unchanged.
1897  * Return <0 on error.
1898  */
1899 static int
1900 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1901 			struct lock_list **target_entry)
1902 {
1903 	int result;
1904 
1905 	debug_atomic_inc(nr_find_usage_backwards_checks);
1906 
1907 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1908 
1909 	return result;
1910 }
1911 
1912 static void print_lock_class_header(struct lock_class *class, int depth)
1913 {
1914 	int bit;
1915 
1916 	printk("%*s->", depth, "");
1917 	print_lock_name(class);
1918 #ifdef CONFIG_DEBUG_LOCKDEP
1919 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1920 #endif
1921 	printk(KERN_CONT " {\n");
1922 
1923 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1924 		if (class->usage_mask & (1 << bit)) {
1925 			int len = depth;
1926 
1927 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1928 			len += printk(KERN_CONT " at:\n");
1929 			print_lock_trace(class->usage_traces[bit], len);
1930 		}
1931 	}
1932 	printk("%*s }\n", depth, "");
1933 
1934 	printk("%*s ... key      at: [<%px>] %pS\n",
1935 		depth, "", class->key, class->key);
1936 }
1937 
1938 /*
1939  * printk the shortest lock dependencies from @start to @end in reverse order:
1940  */
1941 static void __used
1942 print_shortest_lock_dependencies(struct lock_list *leaf,
1943 				 struct lock_list *root)
1944 {
1945 	struct lock_list *entry = leaf;
1946 	int depth;
1947 
1948 	/*compute depth from generated tree by BFS*/
1949 	depth = get_lock_depth(leaf);
1950 
1951 	do {
1952 		print_lock_class_header(entry->class, depth);
1953 		printk("%*s ... acquired at:\n", depth, "");
1954 		print_lock_trace(entry->trace, 2);
1955 		printk("\n");
1956 
1957 		if (depth == 0 && (entry != root)) {
1958 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1959 			break;
1960 		}
1961 
1962 		entry = get_lock_parent(entry);
1963 		depth--;
1964 	} while (entry && (depth >= 0));
1965 }
1966 
1967 static void
1968 print_irq_lock_scenario(struct lock_list *safe_entry,
1969 			struct lock_list *unsafe_entry,
1970 			struct lock_class *prev_class,
1971 			struct lock_class *next_class)
1972 {
1973 	struct lock_class *safe_class = safe_entry->class;
1974 	struct lock_class *unsafe_class = unsafe_entry->class;
1975 	struct lock_class *middle_class = prev_class;
1976 
1977 	if (middle_class == safe_class)
1978 		middle_class = next_class;
1979 
1980 	/*
1981 	 * A direct locking problem where unsafe_class lock is taken
1982 	 * directly by safe_class lock, then all we need to show
1983 	 * is the deadlock scenario, as it is obvious that the
1984 	 * unsafe lock is taken under the safe lock.
1985 	 *
1986 	 * But if there is a chain instead, where the safe lock takes
1987 	 * an intermediate lock (middle_class) where this lock is
1988 	 * not the same as the safe lock, then the lock chain is
1989 	 * used to describe the problem. Otherwise we would need
1990 	 * to show a different CPU case for each link in the chain
1991 	 * from the safe_class lock to the unsafe_class lock.
1992 	 */
1993 	if (middle_class != unsafe_class) {
1994 		printk("Chain exists of:\n  ");
1995 		__print_lock_name(safe_class);
1996 		printk(KERN_CONT " --> ");
1997 		__print_lock_name(middle_class);
1998 		printk(KERN_CONT " --> ");
1999 		__print_lock_name(unsafe_class);
2000 		printk(KERN_CONT "\n\n");
2001 	}
2002 
2003 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2004 	printk("       CPU0                    CPU1\n");
2005 	printk("       ----                    ----\n");
2006 	printk("  lock(");
2007 	__print_lock_name(unsafe_class);
2008 	printk(KERN_CONT ");\n");
2009 	printk("                               local_irq_disable();\n");
2010 	printk("                               lock(");
2011 	__print_lock_name(safe_class);
2012 	printk(KERN_CONT ");\n");
2013 	printk("                               lock(");
2014 	__print_lock_name(middle_class);
2015 	printk(KERN_CONT ");\n");
2016 	printk("  <Interrupt>\n");
2017 	printk("    lock(");
2018 	__print_lock_name(safe_class);
2019 	printk(KERN_CONT ");\n");
2020 	printk("\n *** DEADLOCK ***\n\n");
2021 }
2022 
2023 static void
2024 print_bad_irq_dependency(struct task_struct *curr,
2025 			 struct lock_list *prev_root,
2026 			 struct lock_list *next_root,
2027 			 struct lock_list *backwards_entry,
2028 			 struct lock_list *forwards_entry,
2029 			 struct held_lock *prev,
2030 			 struct held_lock *next,
2031 			 enum lock_usage_bit bit1,
2032 			 enum lock_usage_bit bit2,
2033 			 const char *irqclass)
2034 {
2035 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2036 		return;
2037 
2038 	pr_warn("\n");
2039 	pr_warn("=====================================================\n");
2040 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2041 		irqclass, irqclass);
2042 	print_kernel_ident();
2043 	pr_warn("-----------------------------------------------------\n");
2044 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2045 		curr->comm, task_pid_nr(curr),
2046 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2047 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2048 		curr->hardirqs_enabled,
2049 		curr->softirqs_enabled);
2050 	print_lock(next);
2051 
2052 	pr_warn("\nand this task is already holding:\n");
2053 	print_lock(prev);
2054 	pr_warn("which would create a new lock dependency:\n");
2055 	print_lock_name(hlock_class(prev));
2056 	pr_cont(" ->");
2057 	print_lock_name(hlock_class(next));
2058 	pr_cont("\n");
2059 
2060 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2061 		irqclass);
2062 	print_lock_name(backwards_entry->class);
2063 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2064 
2065 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2066 
2067 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2068 	print_lock_name(forwards_entry->class);
2069 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2070 	pr_warn("...");
2071 
2072 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2073 
2074 	pr_warn("\nother info that might help us debug this:\n\n");
2075 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2076 				hlock_class(prev), hlock_class(next));
2077 
2078 	lockdep_print_held_locks(curr);
2079 
2080 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2081 	prev_root->trace = save_trace();
2082 	if (!prev_root->trace)
2083 		return;
2084 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2085 
2086 	pr_warn("\nthe dependencies between the lock to be acquired");
2087 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2088 	next_root->trace = save_trace();
2089 	if (!next_root->trace)
2090 		return;
2091 	print_shortest_lock_dependencies(forwards_entry, next_root);
2092 
2093 	pr_warn("\nstack backtrace:\n");
2094 	dump_stack();
2095 }
2096 
2097 static const char *state_names[] = {
2098 #define LOCKDEP_STATE(__STATE) \
2099 	__stringify(__STATE),
2100 #include "lockdep_states.h"
2101 #undef LOCKDEP_STATE
2102 };
2103 
2104 static const char *state_rnames[] = {
2105 #define LOCKDEP_STATE(__STATE) \
2106 	__stringify(__STATE)"-READ",
2107 #include "lockdep_states.h"
2108 #undef LOCKDEP_STATE
2109 };
2110 
2111 static inline const char *state_name(enum lock_usage_bit bit)
2112 {
2113 	if (bit & LOCK_USAGE_READ_MASK)
2114 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2115 	else
2116 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2117 }
2118 
2119 /*
2120  * The bit number is encoded like:
2121  *
2122  *  bit0: 0 exclusive, 1 read lock
2123  *  bit1: 0 used in irq, 1 irq enabled
2124  *  bit2-n: state
2125  */
2126 static int exclusive_bit(int new_bit)
2127 {
2128 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2129 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2130 
2131 	/*
2132 	 * keep state, bit flip the direction and strip read.
2133 	 */
2134 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2135 }
2136 
2137 /*
2138  * Observe that when given a bitmask where each bitnr is encoded as above, a
2139  * right shift of the mask transforms the individual bitnrs as -1 and
2140  * conversely, a left shift transforms into +1 for the individual bitnrs.
2141  *
2142  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2143  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2144  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2145  *
2146  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2147  *
2148  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2149  * all bits set) and recompose with bitnr1 flipped.
2150  */
2151 static unsigned long invert_dir_mask(unsigned long mask)
2152 {
2153 	unsigned long excl = 0;
2154 
2155 	/* Invert dir */
2156 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2157 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2158 
2159 	return excl;
2160 }
2161 
2162 /*
2163  * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2164  * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2165  * And then mask out all bitnr0.
2166  */
2167 static unsigned long exclusive_mask(unsigned long mask)
2168 {
2169 	unsigned long excl = invert_dir_mask(mask);
2170 
2171 	/* Strip read */
2172 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2173 	excl &= ~LOCKF_IRQ_READ;
2174 
2175 	return excl;
2176 }
2177 
2178 /*
2179  * Retrieve the _possible_ original mask to which @mask is
2180  * exclusive. Ie: this is the opposite of exclusive_mask().
2181  * Note that 2 possible original bits can match an exclusive
2182  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2183  * cleared. So both are returned for each exclusive bit.
2184  */
2185 static unsigned long original_mask(unsigned long mask)
2186 {
2187 	unsigned long excl = invert_dir_mask(mask);
2188 
2189 	/* Include read in existing usages */
2190 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2191 
2192 	return excl;
2193 }
2194 
2195 /*
2196  * Find the first pair of bit match between an original
2197  * usage mask and an exclusive usage mask.
2198  */
2199 static int find_exclusive_match(unsigned long mask,
2200 				unsigned long excl_mask,
2201 				enum lock_usage_bit *bitp,
2202 				enum lock_usage_bit *excl_bitp)
2203 {
2204 	int bit, excl;
2205 
2206 	for_each_set_bit(bit, &mask, LOCK_USED) {
2207 		excl = exclusive_bit(bit);
2208 		if (excl_mask & lock_flag(excl)) {
2209 			*bitp = bit;
2210 			*excl_bitp = excl;
2211 			return 0;
2212 		}
2213 	}
2214 	return -1;
2215 }
2216 
2217 /*
2218  * Prove that the new dependency does not connect a hardirq-safe(-read)
2219  * lock with a hardirq-unsafe lock - to achieve this we search
2220  * the backwards-subgraph starting at <prev>, and the
2221  * forwards-subgraph starting at <next>:
2222  */
2223 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2224 			   struct held_lock *next)
2225 {
2226 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2227 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2228 	struct lock_list *uninitialized_var(target_entry1);
2229 	struct lock_list *uninitialized_var(target_entry);
2230 	struct lock_list this, that;
2231 	int ret;
2232 
2233 	/*
2234 	 * Step 1: gather all hard/soft IRQs usages backward in an
2235 	 * accumulated usage mask.
2236 	 */
2237 	this.parent = NULL;
2238 	this.class = hlock_class(prev);
2239 
2240 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2241 	if (ret < 0) {
2242 		print_bfs_bug(ret);
2243 		return 0;
2244 	}
2245 
2246 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2247 	if (!usage_mask)
2248 		return 1;
2249 
2250 	/*
2251 	 * Step 2: find exclusive uses forward that match the previous
2252 	 * backward accumulated mask.
2253 	 */
2254 	forward_mask = exclusive_mask(usage_mask);
2255 
2256 	that.parent = NULL;
2257 	that.class = hlock_class(next);
2258 
2259 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2260 	if (ret < 0) {
2261 		print_bfs_bug(ret);
2262 		return 0;
2263 	}
2264 	if (ret == 1)
2265 		return ret;
2266 
2267 	/*
2268 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2269 	 * list whose usage mask matches the exclusive usage mask from the
2270 	 * lock found on the forward list.
2271 	 */
2272 	backward_mask = original_mask(target_entry1->class->usage_mask);
2273 
2274 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2275 	if (ret < 0) {
2276 		print_bfs_bug(ret);
2277 		return 0;
2278 	}
2279 	if (DEBUG_LOCKS_WARN_ON(ret == 1))
2280 		return 1;
2281 
2282 	/*
2283 	 * Step 4: narrow down to a pair of incompatible usage bits
2284 	 * and report it.
2285 	 */
2286 	ret = find_exclusive_match(target_entry->class->usage_mask,
2287 				   target_entry1->class->usage_mask,
2288 				   &backward_bit, &forward_bit);
2289 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2290 		return 1;
2291 
2292 	print_bad_irq_dependency(curr, &this, &that,
2293 				 target_entry, target_entry1,
2294 				 prev, next,
2295 				 backward_bit, forward_bit,
2296 				 state_name(backward_bit));
2297 
2298 	return 0;
2299 }
2300 
2301 static void inc_chains(void)
2302 {
2303 	if (current->hardirq_context)
2304 		nr_hardirq_chains++;
2305 	else {
2306 		if (current->softirq_context)
2307 			nr_softirq_chains++;
2308 		else
2309 			nr_process_chains++;
2310 	}
2311 }
2312 
2313 #else
2314 
2315 static inline int check_irq_usage(struct task_struct *curr,
2316 				  struct held_lock *prev, struct held_lock *next)
2317 {
2318 	return 1;
2319 }
2320 
2321 static inline void inc_chains(void)
2322 {
2323 	nr_process_chains++;
2324 }
2325 
2326 #endif /* CONFIG_TRACE_IRQFLAGS */
2327 
2328 static void
2329 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2330 {
2331 	struct lock_class *next = hlock_class(nxt);
2332 	struct lock_class *prev = hlock_class(prv);
2333 
2334 	printk(" Possible unsafe locking scenario:\n\n");
2335 	printk("       CPU0\n");
2336 	printk("       ----\n");
2337 	printk("  lock(");
2338 	__print_lock_name(prev);
2339 	printk(KERN_CONT ");\n");
2340 	printk("  lock(");
2341 	__print_lock_name(next);
2342 	printk(KERN_CONT ");\n");
2343 	printk("\n *** DEADLOCK ***\n\n");
2344 	printk(" May be due to missing lock nesting notation\n\n");
2345 }
2346 
2347 static void
2348 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2349 		   struct held_lock *next)
2350 {
2351 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2352 		return;
2353 
2354 	pr_warn("\n");
2355 	pr_warn("============================================\n");
2356 	pr_warn("WARNING: possible recursive locking detected\n");
2357 	print_kernel_ident();
2358 	pr_warn("--------------------------------------------\n");
2359 	pr_warn("%s/%d is trying to acquire lock:\n",
2360 		curr->comm, task_pid_nr(curr));
2361 	print_lock(next);
2362 	pr_warn("\nbut task is already holding lock:\n");
2363 	print_lock(prev);
2364 
2365 	pr_warn("\nother info that might help us debug this:\n");
2366 	print_deadlock_scenario(next, prev);
2367 	lockdep_print_held_locks(curr);
2368 
2369 	pr_warn("\nstack backtrace:\n");
2370 	dump_stack();
2371 }
2372 
2373 /*
2374  * Check whether we are holding such a class already.
2375  *
2376  * (Note that this has to be done separately, because the graph cannot
2377  * detect such classes of deadlocks.)
2378  *
2379  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2380  */
2381 static int
2382 check_deadlock(struct task_struct *curr, struct held_lock *next)
2383 {
2384 	struct held_lock *prev;
2385 	struct held_lock *nest = NULL;
2386 	int i;
2387 
2388 	for (i = 0; i < curr->lockdep_depth; i++) {
2389 		prev = curr->held_locks + i;
2390 
2391 		if (prev->instance == next->nest_lock)
2392 			nest = prev;
2393 
2394 		if (hlock_class(prev) != hlock_class(next))
2395 			continue;
2396 
2397 		/*
2398 		 * Allow read-after-read recursion of the same
2399 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2400 		 */
2401 		if ((next->read == 2) && prev->read)
2402 			return 2;
2403 
2404 		/*
2405 		 * We're holding the nest_lock, which serializes this lock's
2406 		 * nesting behaviour.
2407 		 */
2408 		if (nest)
2409 			return 2;
2410 
2411 		print_deadlock_bug(curr, prev, next);
2412 		return 0;
2413 	}
2414 	return 1;
2415 }
2416 
2417 /*
2418  * There was a chain-cache miss, and we are about to add a new dependency
2419  * to a previous lock. We validate the following rules:
2420  *
2421  *  - would the adding of the <prev> -> <next> dependency create a
2422  *    circular dependency in the graph? [== circular deadlock]
2423  *
2424  *  - does the new prev->next dependency connect any hardirq-safe lock
2425  *    (in the full backwards-subgraph starting at <prev>) with any
2426  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2427  *    <next>)? [== illegal lock inversion with hardirq contexts]
2428  *
2429  *  - does the new prev->next dependency connect any softirq-safe lock
2430  *    (in the full backwards-subgraph starting at <prev>) with any
2431  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2432  *    <next>)? [== illegal lock inversion with softirq contexts]
2433  *
2434  * any of these scenarios could lead to a deadlock.
2435  *
2436  * Then if all the validations pass, we add the forwards and backwards
2437  * dependency.
2438  */
2439 static int
2440 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2441 	       struct held_lock *next, int distance,
2442 	       struct lock_trace **const trace)
2443 {
2444 	struct lock_list *entry;
2445 	int ret;
2446 
2447 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2448 		/*
2449 		 * The warning statements below may trigger a use-after-free
2450 		 * of the class name. It is better to trigger a use-after free
2451 		 * and to have the class name most of the time instead of not
2452 		 * having the class name available.
2453 		 */
2454 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2455 			  "Detected use-after-free of lock class %px/%s\n",
2456 			  hlock_class(prev),
2457 			  hlock_class(prev)->name);
2458 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2459 			  "Detected use-after-free of lock class %px/%s\n",
2460 			  hlock_class(next),
2461 			  hlock_class(next)->name);
2462 		return 2;
2463 	}
2464 
2465 	/*
2466 	 * Prove that the new <prev> -> <next> dependency would not
2467 	 * create a circular dependency in the graph. (We do this by
2468 	 * a breadth-first search into the graph starting at <next>,
2469 	 * and check whether we can reach <prev>.)
2470 	 *
2471 	 * The search is limited by the size of the circular queue (i.e.,
2472 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2473 	 * in the graph whose neighbours are to be checked.
2474 	 */
2475 	ret = check_noncircular(next, prev, trace);
2476 	if (unlikely(ret <= 0))
2477 		return 0;
2478 
2479 	if (!check_irq_usage(curr, prev, next))
2480 		return 0;
2481 
2482 	/*
2483 	 * For recursive read-locks we do all the dependency checks,
2484 	 * but we dont store read-triggered dependencies (only
2485 	 * write-triggered dependencies). This ensures that only the
2486 	 * write-side dependencies matter, and that if for example a
2487 	 * write-lock never takes any other locks, then the reads are
2488 	 * equivalent to a NOP.
2489 	 */
2490 	if (next->read == 2 || prev->read == 2)
2491 		return 1;
2492 	/*
2493 	 * Is the <prev> -> <next> dependency already present?
2494 	 *
2495 	 * (this may occur even though this is a new chain: consider
2496 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2497 	 *  chains - the second one will be new, but L1 already has
2498 	 *  L2 added to its dependency list, due to the first chain.)
2499 	 */
2500 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2501 		if (entry->class == hlock_class(next)) {
2502 			if (distance == 1)
2503 				entry->distance = 1;
2504 			return 1;
2505 		}
2506 	}
2507 
2508 #ifdef CONFIG_LOCKDEP_SMALL
2509 	/*
2510 	 * Is the <prev> -> <next> link redundant?
2511 	 */
2512 	ret = check_redundant(prev, next);
2513 	if (ret != 1)
2514 		return ret;
2515 #endif
2516 
2517 	if (!*trace) {
2518 		*trace = save_trace();
2519 		if (!*trace)
2520 			return 0;
2521 	}
2522 
2523 	/*
2524 	 * Ok, all validations passed, add the new lock
2525 	 * to the previous lock's dependency list:
2526 	 */
2527 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2528 			       &hlock_class(prev)->locks_after,
2529 			       next->acquire_ip, distance, *trace);
2530 
2531 	if (!ret)
2532 		return 0;
2533 
2534 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2535 			       &hlock_class(next)->locks_before,
2536 			       next->acquire_ip, distance, *trace);
2537 	if (!ret)
2538 		return 0;
2539 
2540 	return 2;
2541 }
2542 
2543 /*
2544  * Add the dependency to all directly-previous locks that are 'relevant'.
2545  * The ones that are relevant are (in increasing distance from curr):
2546  * all consecutive trylock entries and the final non-trylock entry - or
2547  * the end of this context's lock-chain - whichever comes first.
2548  */
2549 static int
2550 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2551 {
2552 	struct lock_trace *trace = NULL;
2553 	int depth = curr->lockdep_depth;
2554 	struct held_lock *hlock;
2555 
2556 	/*
2557 	 * Debugging checks.
2558 	 *
2559 	 * Depth must not be zero for a non-head lock:
2560 	 */
2561 	if (!depth)
2562 		goto out_bug;
2563 	/*
2564 	 * At least two relevant locks must exist for this
2565 	 * to be a head:
2566 	 */
2567 	if (curr->held_locks[depth].irq_context !=
2568 			curr->held_locks[depth-1].irq_context)
2569 		goto out_bug;
2570 
2571 	for (;;) {
2572 		int distance = curr->lockdep_depth - depth + 1;
2573 		hlock = curr->held_locks + depth - 1;
2574 
2575 		/*
2576 		 * Only non-recursive-read entries get new dependencies
2577 		 * added:
2578 		 */
2579 		if (hlock->read != 2 && hlock->check) {
2580 			int ret = check_prev_add(curr, hlock, next, distance,
2581 						 &trace);
2582 			if (!ret)
2583 				return 0;
2584 
2585 			/*
2586 			 * Stop after the first non-trylock entry,
2587 			 * as non-trylock entries have added their
2588 			 * own direct dependencies already, so this
2589 			 * lock is connected to them indirectly:
2590 			 */
2591 			if (!hlock->trylock)
2592 				break;
2593 		}
2594 
2595 		depth--;
2596 		/*
2597 		 * End of lock-stack?
2598 		 */
2599 		if (!depth)
2600 			break;
2601 		/*
2602 		 * Stop the search if we cross into another context:
2603 		 */
2604 		if (curr->held_locks[depth].irq_context !=
2605 				curr->held_locks[depth-1].irq_context)
2606 			break;
2607 	}
2608 	return 1;
2609 out_bug:
2610 	if (!debug_locks_off_graph_unlock())
2611 		return 0;
2612 
2613 	/*
2614 	 * Clearly we all shouldn't be here, but since we made it we
2615 	 * can reliable say we messed up our state. See the above two
2616 	 * gotos for reasons why we could possibly end up here.
2617 	 */
2618 	WARN_ON(1);
2619 
2620 	return 0;
2621 }
2622 
2623 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2624 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2625 int nr_chain_hlocks;
2626 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2627 
2628 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2629 {
2630 	return lock_classes + chain_hlocks[chain->base + i];
2631 }
2632 
2633 /*
2634  * Returns the index of the first held_lock of the current chain
2635  */
2636 static inline int get_first_held_lock(struct task_struct *curr,
2637 					struct held_lock *hlock)
2638 {
2639 	int i;
2640 	struct held_lock *hlock_curr;
2641 
2642 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2643 		hlock_curr = curr->held_locks + i;
2644 		if (hlock_curr->irq_context != hlock->irq_context)
2645 			break;
2646 
2647 	}
2648 
2649 	return ++i;
2650 }
2651 
2652 #ifdef CONFIG_DEBUG_LOCKDEP
2653 /*
2654  * Returns the next chain_key iteration
2655  */
2656 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2657 {
2658 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2659 
2660 	printk(" class_idx:%d -> chain_key:%016Lx",
2661 		class_idx,
2662 		(unsigned long long)new_chain_key);
2663 	return new_chain_key;
2664 }
2665 
2666 static void
2667 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2668 {
2669 	struct held_lock *hlock;
2670 	u64 chain_key = INITIAL_CHAIN_KEY;
2671 	int depth = curr->lockdep_depth;
2672 	int i = get_first_held_lock(curr, hlock_next);
2673 
2674 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
2675 		hlock_next->irq_context);
2676 	for (; i < depth; i++) {
2677 		hlock = curr->held_locks + i;
2678 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2679 
2680 		print_lock(hlock);
2681 	}
2682 
2683 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2684 	print_lock(hlock_next);
2685 }
2686 
2687 static void print_chain_keys_chain(struct lock_chain *chain)
2688 {
2689 	int i;
2690 	u64 chain_key = INITIAL_CHAIN_KEY;
2691 	int class_id;
2692 
2693 	printk("depth: %u\n", chain->depth);
2694 	for (i = 0; i < chain->depth; i++) {
2695 		class_id = chain_hlocks[chain->base + i];
2696 		chain_key = print_chain_key_iteration(class_id, chain_key);
2697 
2698 		print_lock_name(lock_classes + class_id);
2699 		printk("\n");
2700 	}
2701 }
2702 
2703 static void print_collision(struct task_struct *curr,
2704 			struct held_lock *hlock_next,
2705 			struct lock_chain *chain)
2706 {
2707 	pr_warn("\n");
2708 	pr_warn("============================\n");
2709 	pr_warn("WARNING: chain_key collision\n");
2710 	print_kernel_ident();
2711 	pr_warn("----------------------------\n");
2712 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2713 	pr_warn("Hash chain already cached but the contents don't match!\n");
2714 
2715 	pr_warn("Held locks:");
2716 	print_chain_keys_held_locks(curr, hlock_next);
2717 
2718 	pr_warn("Locks in cached chain:");
2719 	print_chain_keys_chain(chain);
2720 
2721 	pr_warn("\nstack backtrace:\n");
2722 	dump_stack();
2723 }
2724 #endif
2725 
2726 /*
2727  * Checks whether the chain and the current held locks are consistent
2728  * in depth and also in content. If they are not it most likely means
2729  * that there was a collision during the calculation of the chain_key.
2730  * Returns: 0 not passed, 1 passed
2731  */
2732 static int check_no_collision(struct task_struct *curr,
2733 			struct held_lock *hlock,
2734 			struct lock_chain *chain)
2735 {
2736 #ifdef CONFIG_DEBUG_LOCKDEP
2737 	int i, j, id;
2738 
2739 	i = get_first_held_lock(curr, hlock);
2740 
2741 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2742 		print_collision(curr, hlock, chain);
2743 		return 0;
2744 	}
2745 
2746 	for (j = 0; j < chain->depth - 1; j++, i++) {
2747 		id = curr->held_locks[i].class_idx;
2748 
2749 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2750 			print_collision(curr, hlock, chain);
2751 			return 0;
2752 		}
2753 	}
2754 #endif
2755 	return 1;
2756 }
2757 
2758 /*
2759  * Given an index that is >= -1, return the index of the next lock chain.
2760  * Return -2 if there is no next lock chain.
2761  */
2762 long lockdep_next_lockchain(long i)
2763 {
2764 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2765 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
2766 }
2767 
2768 unsigned long lock_chain_count(void)
2769 {
2770 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2771 }
2772 
2773 /* Must be called with the graph lock held. */
2774 static struct lock_chain *alloc_lock_chain(void)
2775 {
2776 	int idx = find_first_zero_bit(lock_chains_in_use,
2777 				      ARRAY_SIZE(lock_chains));
2778 
2779 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2780 		return NULL;
2781 	__set_bit(idx, lock_chains_in_use);
2782 	return lock_chains + idx;
2783 }
2784 
2785 /*
2786  * Adds a dependency chain into chain hashtable. And must be called with
2787  * graph_lock held.
2788  *
2789  * Return 0 if fail, and graph_lock is released.
2790  * Return 1 if succeed, with graph_lock held.
2791  */
2792 static inline int add_chain_cache(struct task_struct *curr,
2793 				  struct held_lock *hlock,
2794 				  u64 chain_key)
2795 {
2796 	struct lock_class *class = hlock_class(hlock);
2797 	struct hlist_head *hash_head = chainhashentry(chain_key);
2798 	struct lock_chain *chain;
2799 	int i, j;
2800 
2801 	/*
2802 	 * The caller must hold the graph lock, ensure we've got IRQs
2803 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2804 	 * lockdep won't complain about its own locking errors.
2805 	 */
2806 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2807 		return 0;
2808 
2809 	chain = alloc_lock_chain();
2810 	if (!chain) {
2811 		if (!debug_locks_off_graph_unlock())
2812 			return 0;
2813 
2814 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2815 		dump_stack();
2816 		return 0;
2817 	}
2818 	chain->chain_key = chain_key;
2819 	chain->irq_context = hlock->irq_context;
2820 	i = get_first_held_lock(curr, hlock);
2821 	chain->depth = curr->lockdep_depth + 1 - i;
2822 
2823 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2824 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2825 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2826 
2827 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2828 		chain->base = nr_chain_hlocks;
2829 		for (j = 0; j < chain->depth - 1; j++, i++) {
2830 			int lock_id = curr->held_locks[i].class_idx;
2831 			chain_hlocks[chain->base + j] = lock_id;
2832 		}
2833 		chain_hlocks[chain->base + j] = class - lock_classes;
2834 		nr_chain_hlocks += chain->depth;
2835 	} else {
2836 		if (!debug_locks_off_graph_unlock())
2837 			return 0;
2838 
2839 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2840 		dump_stack();
2841 		return 0;
2842 	}
2843 
2844 	hlist_add_head_rcu(&chain->entry, hash_head);
2845 	debug_atomic_inc(chain_lookup_misses);
2846 	inc_chains();
2847 
2848 	return 1;
2849 }
2850 
2851 /*
2852  * Look up a dependency chain. Must be called with either the graph lock or
2853  * the RCU read lock held.
2854  */
2855 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2856 {
2857 	struct hlist_head *hash_head = chainhashentry(chain_key);
2858 	struct lock_chain *chain;
2859 
2860 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2861 		if (READ_ONCE(chain->chain_key) == chain_key) {
2862 			debug_atomic_inc(chain_lookup_hits);
2863 			return chain;
2864 		}
2865 	}
2866 	return NULL;
2867 }
2868 
2869 /*
2870  * If the key is not present yet in dependency chain cache then
2871  * add it and return 1 - in this case the new dependency chain is
2872  * validated. If the key is already hashed, return 0.
2873  * (On return with 1 graph_lock is held.)
2874  */
2875 static inline int lookup_chain_cache_add(struct task_struct *curr,
2876 					 struct held_lock *hlock,
2877 					 u64 chain_key)
2878 {
2879 	struct lock_class *class = hlock_class(hlock);
2880 	struct lock_chain *chain = lookup_chain_cache(chain_key);
2881 
2882 	if (chain) {
2883 cache_hit:
2884 		if (!check_no_collision(curr, hlock, chain))
2885 			return 0;
2886 
2887 		if (very_verbose(class)) {
2888 			printk("\nhash chain already cached, key: "
2889 					"%016Lx tail class: [%px] %s\n",
2890 					(unsigned long long)chain_key,
2891 					class->key, class->name);
2892 		}
2893 
2894 		return 0;
2895 	}
2896 
2897 	if (very_verbose(class)) {
2898 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
2899 			(unsigned long long)chain_key, class->key, class->name);
2900 	}
2901 
2902 	if (!graph_lock())
2903 		return 0;
2904 
2905 	/*
2906 	 * We have to walk the chain again locked - to avoid duplicates:
2907 	 */
2908 	chain = lookup_chain_cache(chain_key);
2909 	if (chain) {
2910 		graph_unlock();
2911 		goto cache_hit;
2912 	}
2913 
2914 	if (!add_chain_cache(curr, hlock, chain_key))
2915 		return 0;
2916 
2917 	return 1;
2918 }
2919 
2920 static int validate_chain(struct task_struct *curr,
2921 			  struct held_lock *hlock,
2922 			  int chain_head, u64 chain_key)
2923 {
2924 	/*
2925 	 * Trylock needs to maintain the stack of held locks, but it
2926 	 * does not add new dependencies, because trylock can be done
2927 	 * in any order.
2928 	 *
2929 	 * We look up the chain_key and do the O(N^2) check and update of
2930 	 * the dependencies only if this is a new dependency chain.
2931 	 * (If lookup_chain_cache_add() return with 1 it acquires
2932 	 * graph_lock for us)
2933 	 */
2934 	if (!hlock->trylock && hlock->check &&
2935 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
2936 		/*
2937 		 * Check whether last held lock:
2938 		 *
2939 		 * - is irq-safe, if this lock is irq-unsafe
2940 		 * - is softirq-safe, if this lock is hardirq-unsafe
2941 		 *
2942 		 * And check whether the new lock's dependency graph
2943 		 * could lead back to the previous lock:
2944 		 *
2945 		 * - within the current held-lock stack
2946 		 * - across our accumulated lock dependency records
2947 		 *
2948 		 * any of these scenarios could lead to a deadlock.
2949 		 */
2950 		/*
2951 		 * The simple case: does the current hold the same lock
2952 		 * already?
2953 		 */
2954 		int ret = check_deadlock(curr, hlock);
2955 
2956 		if (!ret)
2957 			return 0;
2958 		/*
2959 		 * Mark recursive read, as we jump over it when
2960 		 * building dependencies (just like we jump over
2961 		 * trylock entries):
2962 		 */
2963 		if (ret == 2)
2964 			hlock->read = 2;
2965 		/*
2966 		 * Add dependency only if this lock is not the head
2967 		 * of the chain, and if it's not a secondary read-lock:
2968 		 */
2969 		if (!chain_head && ret != 2) {
2970 			if (!check_prevs_add(curr, hlock))
2971 				return 0;
2972 		}
2973 
2974 		graph_unlock();
2975 	} else {
2976 		/* after lookup_chain_cache_add(): */
2977 		if (unlikely(!debug_locks))
2978 			return 0;
2979 	}
2980 
2981 	return 1;
2982 }
2983 #else
2984 static inline int validate_chain(struct task_struct *curr,
2985 				 struct held_lock *hlock,
2986 				 int chain_head, u64 chain_key)
2987 {
2988 	return 1;
2989 }
2990 #endif /* CONFIG_PROVE_LOCKING */
2991 
2992 /*
2993  * We are building curr_chain_key incrementally, so double-check
2994  * it from scratch, to make sure that it's done correctly:
2995  */
2996 static void check_chain_key(struct task_struct *curr)
2997 {
2998 #ifdef CONFIG_DEBUG_LOCKDEP
2999 	struct held_lock *hlock, *prev_hlock = NULL;
3000 	unsigned int i;
3001 	u64 chain_key = INITIAL_CHAIN_KEY;
3002 
3003 	for (i = 0; i < curr->lockdep_depth; i++) {
3004 		hlock = curr->held_locks + i;
3005 		if (chain_key != hlock->prev_chain_key) {
3006 			debug_locks_off();
3007 			/*
3008 			 * We got mighty confused, our chain keys don't match
3009 			 * with what we expect, someone trample on our task state?
3010 			 */
3011 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3012 				curr->lockdep_depth, i,
3013 				(unsigned long long)chain_key,
3014 				(unsigned long long)hlock->prev_chain_key);
3015 			return;
3016 		}
3017 
3018 		/*
3019 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3020 		 * it registered lock class index?
3021 		 */
3022 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3023 			return;
3024 
3025 		if (prev_hlock && (prev_hlock->irq_context !=
3026 							hlock->irq_context))
3027 			chain_key = INITIAL_CHAIN_KEY;
3028 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3029 		prev_hlock = hlock;
3030 	}
3031 	if (chain_key != curr->curr_chain_key) {
3032 		debug_locks_off();
3033 		/*
3034 		 * More smoking hash instead of calculating it, damn see these
3035 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3036 		 */
3037 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3038 			curr->lockdep_depth, i,
3039 			(unsigned long long)chain_key,
3040 			(unsigned long long)curr->curr_chain_key);
3041 	}
3042 #endif
3043 }
3044 
3045 #ifdef CONFIG_PROVE_LOCKING
3046 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3047 		     enum lock_usage_bit new_bit);
3048 
3049 static void print_usage_bug_scenario(struct held_lock *lock)
3050 {
3051 	struct lock_class *class = hlock_class(lock);
3052 
3053 	printk(" Possible unsafe locking scenario:\n\n");
3054 	printk("       CPU0\n");
3055 	printk("       ----\n");
3056 	printk("  lock(");
3057 	__print_lock_name(class);
3058 	printk(KERN_CONT ");\n");
3059 	printk("  <Interrupt>\n");
3060 	printk("    lock(");
3061 	__print_lock_name(class);
3062 	printk(KERN_CONT ");\n");
3063 	printk("\n *** DEADLOCK ***\n\n");
3064 }
3065 
3066 static void
3067 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3068 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3069 {
3070 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3071 		return;
3072 
3073 	pr_warn("\n");
3074 	pr_warn("================================\n");
3075 	pr_warn("WARNING: inconsistent lock state\n");
3076 	print_kernel_ident();
3077 	pr_warn("--------------------------------\n");
3078 
3079 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3080 		usage_str[prev_bit], usage_str[new_bit]);
3081 
3082 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3083 		curr->comm, task_pid_nr(curr),
3084 		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3085 		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3086 		trace_hardirqs_enabled(curr),
3087 		trace_softirqs_enabled(curr));
3088 	print_lock(this);
3089 
3090 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3091 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3092 
3093 	print_irqtrace_events(curr);
3094 	pr_warn("\nother info that might help us debug this:\n");
3095 	print_usage_bug_scenario(this);
3096 
3097 	lockdep_print_held_locks(curr);
3098 
3099 	pr_warn("\nstack backtrace:\n");
3100 	dump_stack();
3101 }
3102 
3103 /*
3104  * Print out an error if an invalid bit is set:
3105  */
3106 static inline int
3107 valid_state(struct task_struct *curr, struct held_lock *this,
3108 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3109 {
3110 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3111 		print_usage_bug(curr, this, bad_bit, new_bit);
3112 		return 0;
3113 	}
3114 	return 1;
3115 }
3116 
3117 
3118 /*
3119  * print irq inversion bug:
3120  */
3121 static void
3122 print_irq_inversion_bug(struct task_struct *curr,
3123 			struct lock_list *root, struct lock_list *other,
3124 			struct held_lock *this, int forwards,
3125 			const char *irqclass)
3126 {
3127 	struct lock_list *entry = other;
3128 	struct lock_list *middle = NULL;
3129 	int depth;
3130 
3131 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3132 		return;
3133 
3134 	pr_warn("\n");
3135 	pr_warn("========================================================\n");
3136 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3137 	print_kernel_ident();
3138 	pr_warn("--------------------------------------------------------\n");
3139 	pr_warn("%s/%d just changed the state of lock:\n",
3140 		curr->comm, task_pid_nr(curr));
3141 	print_lock(this);
3142 	if (forwards)
3143 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3144 	else
3145 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3146 	print_lock_name(other->class);
3147 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3148 
3149 	pr_warn("\nother info that might help us debug this:\n");
3150 
3151 	/* Find a middle lock (if one exists) */
3152 	depth = get_lock_depth(other);
3153 	do {
3154 		if (depth == 0 && (entry != root)) {
3155 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3156 			break;
3157 		}
3158 		middle = entry;
3159 		entry = get_lock_parent(entry);
3160 		depth--;
3161 	} while (entry && entry != root && (depth >= 0));
3162 	if (forwards)
3163 		print_irq_lock_scenario(root, other,
3164 			middle ? middle->class : root->class, other->class);
3165 	else
3166 		print_irq_lock_scenario(other, root,
3167 			middle ? middle->class : other->class, root->class);
3168 
3169 	lockdep_print_held_locks(curr);
3170 
3171 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3172 	root->trace = save_trace();
3173 	if (!root->trace)
3174 		return;
3175 	print_shortest_lock_dependencies(other, root);
3176 
3177 	pr_warn("\nstack backtrace:\n");
3178 	dump_stack();
3179 }
3180 
3181 /*
3182  * Prove that in the forwards-direction subgraph starting at <this>
3183  * there is no lock matching <mask>:
3184  */
3185 static int
3186 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3187 		     enum lock_usage_bit bit, const char *irqclass)
3188 {
3189 	int ret;
3190 	struct lock_list root;
3191 	struct lock_list *uninitialized_var(target_entry);
3192 
3193 	root.parent = NULL;
3194 	root.class = hlock_class(this);
3195 	ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3196 	if (ret < 0) {
3197 		print_bfs_bug(ret);
3198 		return 0;
3199 	}
3200 	if (ret == 1)
3201 		return ret;
3202 
3203 	print_irq_inversion_bug(curr, &root, target_entry,
3204 				this, 1, irqclass);
3205 	return 0;
3206 }
3207 
3208 /*
3209  * Prove that in the backwards-direction subgraph starting at <this>
3210  * there is no lock matching <mask>:
3211  */
3212 static int
3213 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3214 		      enum lock_usage_bit bit, const char *irqclass)
3215 {
3216 	int ret;
3217 	struct lock_list root;
3218 	struct lock_list *uninitialized_var(target_entry);
3219 
3220 	root.parent = NULL;
3221 	root.class = hlock_class(this);
3222 	ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3223 	if (ret < 0) {
3224 		print_bfs_bug(ret);
3225 		return 0;
3226 	}
3227 	if (ret == 1)
3228 		return ret;
3229 
3230 	print_irq_inversion_bug(curr, &root, target_entry,
3231 				this, 0, irqclass);
3232 	return 0;
3233 }
3234 
3235 void print_irqtrace_events(struct task_struct *curr)
3236 {
3237 	printk("irq event stamp: %u\n", curr->irq_events);
3238 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3239 		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3240 		(void *)curr->hardirq_enable_ip);
3241 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3242 		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3243 		(void *)curr->hardirq_disable_ip);
3244 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3245 		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3246 		(void *)curr->softirq_enable_ip);
3247 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3248 		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3249 		(void *)curr->softirq_disable_ip);
3250 }
3251 
3252 static int HARDIRQ_verbose(struct lock_class *class)
3253 {
3254 #if HARDIRQ_VERBOSE
3255 	return class_filter(class);
3256 #endif
3257 	return 0;
3258 }
3259 
3260 static int SOFTIRQ_verbose(struct lock_class *class)
3261 {
3262 #if SOFTIRQ_VERBOSE
3263 	return class_filter(class);
3264 #endif
3265 	return 0;
3266 }
3267 
3268 #define STRICT_READ_CHECKS	1
3269 
3270 static int (*state_verbose_f[])(struct lock_class *class) = {
3271 #define LOCKDEP_STATE(__STATE) \
3272 	__STATE##_verbose,
3273 #include "lockdep_states.h"
3274 #undef LOCKDEP_STATE
3275 };
3276 
3277 static inline int state_verbose(enum lock_usage_bit bit,
3278 				struct lock_class *class)
3279 {
3280 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3281 }
3282 
3283 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3284 			     enum lock_usage_bit bit, const char *name);
3285 
3286 static int
3287 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3288 		enum lock_usage_bit new_bit)
3289 {
3290 	int excl_bit = exclusive_bit(new_bit);
3291 	int read = new_bit & LOCK_USAGE_READ_MASK;
3292 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3293 
3294 	/*
3295 	 * mark USED_IN has to look forwards -- to ensure no dependency
3296 	 * has ENABLED state, which would allow recursion deadlocks.
3297 	 *
3298 	 * mark ENABLED has to look backwards -- to ensure no dependee
3299 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
3300 	 */
3301 	check_usage_f usage = dir ?
3302 		check_usage_backwards : check_usage_forwards;
3303 
3304 	/*
3305 	 * Validate that this particular lock does not have conflicting
3306 	 * usage states.
3307 	 */
3308 	if (!valid_state(curr, this, new_bit, excl_bit))
3309 		return 0;
3310 
3311 	/*
3312 	 * Validate that the lock dependencies don't have conflicting usage
3313 	 * states.
3314 	 */
3315 	if ((!read || STRICT_READ_CHECKS) &&
3316 			!usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3317 		return 0;
3318 
3319 	/*
3320 	 * Check for read in write conflicts
3321 	 */
3322 	if (!read) {
3323 		if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3324 			return 0;
3325 
3326 		if (STRICT_READ_CHECKS &&
3327 			!usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3328 				state_name(new_bit + LOCK_USAGE_READ_MASK)))
3329 			return 0;
3330 	}
3331 
3332 	if (state_verbose(new_bit, hlock_class(this)))
3333 		return 2;
3334 
3335 	return 1;
3336 }
3337 
3338 /*
3339  * Mark all held locks with a usage bit:
3340  */
3341 static int
3342 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3343 {
3344 	struct held_lock *hlock;
3345 	int i;
3346 
3347 	for (i = 0; i < curr->lockdep_depth; i++) {
3348 		enum lock_usage_bit hlock_bit = base_bit;
3349 		hlock = curr->held_locks + i;
3350 
3351 		if (hlock->read)
3352 			hlock_bit += LOCK_USAGE_READ_MASK;
3353 
3354 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3355 
3356 		if (!hlock->check)
3357 			continue;
3358 
3359 		if (!mark_lock(curr, hlock, hlock_bit))
3360 			return 0;
3361 	}
3362 
3363 	return 1;
3364 }
3365 
3366 /*
3367  * Hardirqs will be enabled:
3368  */
3369 static void __trace_hardirqs_on_caller(unsigned long ip)
3370 {
3371 	struct task_struct *curr = current;
3372 
3373 	/* we'll do an OFF -> ON transition: */
3374 	curr->hardirqs_enabled = 1;
3375 
3376 	/*
3377 	 * We are going to turn hardirqs on, so set the
3378 	 * usage bit for all held locks:
3379 	 */
3380 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3381 		return;
3382 	/*
3383 	 * If we have softirqs enabled, then set the usage
3384 	 * bit for all held locks. (disabled hardirqs prevented
3385 	 * this bit from being set before)
3386 	 */
3387 	if (curr->softirqs_enabled)
3388 		if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3389 			return;
3390 
3391 	curr->hardirq_enable_ip = ip;
3392 	curr->hardirq_enable_event = ++curr->irq_events;
3393 	debug_atomic_inc(hardirqs_on_events);
3394 }
3395 
3396 void lockdep_hardirqs_on(unsigned long ip)
3397 {
3398 	if (unlikely(!debug_locks || current->lockdep_recursion))
3399 		return;
3400 
3401 	if (unlikely(current->hardirqs_enabled)) {
3402 		/*
3403 		 * Neither irq nor preemption are disabled here
3404 		 * so this is racy by nature but losing one hit
3405 		 * in a stat is not a big deal.
3406 		 */
3407 		__debug_atomic_inc(redundant_hardirqs_on);
3408 		return;
3409 	}
3410 
3411 	/*
3412 	 * We're enabling irqs and according to our state above irqs weren't
3413 	 * already enabled, yet we find the hardware thinks they are in fact
3414 	 * enabled.. someone messed up their IRQ state tracing.
3415 	 */
3416 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3417 		return;
3418 
3419 	/*
3420 	 * See the fine text that goes along with this variable definition.
3421 	 */
3422 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3423 		return;
3424 
3425 	/*
3426 	 * Can't allow enabling interrupts while in an interrupt handler,
3427 	 * that's general bad form and such. Recursion, limited stack etc..
3428 	 */
3429 	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3430 		return;
3431 
3432 	current->lockdep_recursion = 1;
3433 	__trace_hardirqs_on_caller(ip);
3434 	current->lockdep_recursion = 0;
3435 }
3436 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3437 
3438 /*
3439  * Hardirqs were disabled:
3440  */
3441 void lockdep_hardirqs_off(unsigned long ip)
3442 {
3443 	struct task_struct *curr = current;
3444 
3445 	if (unlikely(!debug_locks || current->lockdep_recursion))
3446 		return;
3447 
3448 	/*
3449 	 * So we're supposed to get called after you mask local IRQs, but for
3450 	 * some reason the hardware doesn't quite think you did a proper job.
3451 	 */
3452 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3453 		return;
3454 
3455 	if (curr->hardirqs_enabled) {
3456 		/*
3457 		 * We have done an ON -> OFF transition:
3458 		 */
3459 		curr->hardirqs_enabled = 0;
3460 		curr->hardirq_disable_ip = ip;
3461 		curr->hardirq_disable_event = ++curr->irq_events;
3462 		debug_atomic_inc(hardirqs_off_events);
3463 	} else
3464 		debug_atomic_inc(redundant_hardirqs_off);
3465 }
3466 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3467 
3468 /*
3469  * Softirqs will be enabled:
3470  */
3471 void trace_softirqs_on(unsigned long ip)
3472 {
3473 	struct task_struct *curr = current;
3474 
3475 	if (unlikely(!debug_locks || current->lockdep_recursion))
3476 		return;
3477 
3478 	/*
3479 	 * We fancy IRQs being disabled here, see softirq.c, avoids
3480 	 * funny state and nesting things.
3481 	 */
3482 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3483 		return;
3484 
3485 	if (curr->softirqs_enabled) {
3486 		debug_atomic_inc(redundant_softirqs_on);
3487 		return;
3488 	}
3489 
3490 	current->lockdep_recursion = 1;
3491 	/*
3492 	 * We'll do an OFF -> ON transition:
3493 	 */
3494 	curr->softirqs_enabled = 1;
3495 	curr->softirq_enable_ip = ip;
3496 	curr->softirq_enable_event = ++curr->irq_events;
3497 	debug_atomic_inc(softirqs_on_events);
3498 	/*
3499 	 * We are going to turn softirqs on, so set the
3500 	 * usage bit for all held locks, if hardirqs are
3501 	 * enabled too:
3502 	 */
3503 	if (curr->hardirqs_enabled)
3504 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3505 	current->lockdep_recursion = 0;
3506 }
3507 
3508 /*
3509  * Softirqs were disabled:
3510  */
3511 void trace_softirqs_off(unsigned long ip)
3512 {
3513 	struct task_struct *curr = current;
3514 
3515 	if (unlikely(!debug_locks || current->lockdep_recursion))
3516 		return;
3517 
3518 	/*
3519 	 * We fancy IRQs being disabled here, see softirq.c
3520 	 */
3521 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3522 		return;
3523 
3524 	if (curr->softirqs_enabled) {
3525 		/*
3526 		 * We have done an ON -> OFF transition:
3527 		 */
3528 		curr->softirqs_enabled = 0;
3529 		curr->softirq_disable_ip = ip;
3530 		curr->softirq_disable_event = ++curr->irq_events;
3531 		debug_atomic_inc(softirqs_off_events);
3532 		/*
3533 		 * Whoops, we wanted softirqs off, so why aren't they?
3534 		 */
3535 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3536 	} else
3537 		debug_atomic_inc(redundant_softirqs_off);
3538 }
3539 
3540 static int
3541 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3542 {
3543 	if (!check)
3544 		goto lock_used;
3545 
3546 	/*
3547 	 * If non-trylock use in a hardirq or softirq context, then
3548 	 * mark the lock as used in these contexts:
3549 	 */
3550 	if (!hlock->trylock) {
3551 		if (hlock->read) {
3552 			if (curr->hardirq_context)
3553 				if (!mark_lock(curr, hlock,
3554 						LOCK_USED_IN_HARDIRQ_READ))
3555 					return 0;
3556 			if (curr->softirq_context)
3557 				if (!mark_lock(curr, hlock,
3558 						LOCK_USED_IN_SOFTIRQ_READ))
3559 					return 0;
3560 		} else {
3561 			if (curr->hardirq_context)
3562 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3563 					return 0;
3564 			if (curr->softirq_context)
3565 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3566 					return 0;
3567 		}
3568 	}
3569 	if (!hlock->hardirqs_off) {
3570 		if (hlock->read) {
3571 			if (!mark_lock(curr, hlock,
3572 					LOCK_ENABLED_HARDIRQ_READ))
3573 				return 0;
3574 			if (curr->softirqs_enabled)
3575 				if (!mark_lock(curr, hlock,
3576 						LOCK_ENABLED_SOFTIRQ_READ))
3577 					return 0;
3578 		} else {
3579 			if (!mark_lock(curr, hlock,
3580 					LOCK_ENABLED_HARDIRQ))
3581 				return 0;
3582 			if (curr->softirqs_enabled)
3583 				if (!mark_lock(curr, hlock,
3584 						LOCK_ENABLED_SOFTIRQ))
3585 					return 0;
3586 		}
3587 	}
3588 
3589 lock_used:
3590 	/* mark it as used: */
3591 	if (!mark_lock(curr, hlock, LOCK_USED))
3592 		return 0;
3593 
3594 	return 1;
3595 }
3596 
3597 static inline unsigned int task_irq_context(struct task_struct *task)
3598 {
3599 	return 2 * !!task->hardirq_context + !!task->softirq_context;
3600 }
3601 
3602 static int separate_irq_context(struct task_struct *curr,
3603 		struct held_lock *hlock)
3604 {
3605 	unsigned int depth = curr->lockdep_depth;
3606 
3607 	/*
3608 	 * Keep track of points where we cross into an interrupt context:
3609 	 */
3610 	if (depth) {
3611 		struct held_lock *prev_hlock;
3612 
3613 		prev_hlock = curr->held_locks + depth-1;
3614 		/*
3615 		 * If we cross into another context, reset the
3616 		 * hash key (this also prevents the checking and the
3617 		 * adding of the dependency to 'prev'):
3618 		 */
3619 		if (prev_hlock->irq_context != hlock->irq_context)
3620 			return 1;
3621 	}
3622 	return 0;
3623 }
3624 
3625 /*
3626  * Mark a lock with a usage bit, and validate the state transition:
3627  */
3628 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3629 			     enum lock_usage_bit new_bit)
3630 {
3631 	unsigned int new_mask = 1 << new_bit, ret = 1;
3632 
3633 	if (new_bit >= LOCK_USAGE_STATES) {
3634 		DEBUG_LOCKS_WARN_ON(1);
3635 		return 0;
3636 	}
3637 
3638 	/*
3639 	 * If already set then do not dirty the cacheline,
3640 	 * nor do any checks:
3641 	 */
3642 	if (likely(hlock_class(this)->usage_mask & new_mask))
3643 		return 1;
3644 
3645 	if (!graph_lock())
3646 		return 0;
3647 	/*
3648 	 * Make sure we didn't race:
3649 	 */
3650 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3651 		graph_unlock();
3652 		return 1;
3653 	}
3654 
3655 	hlock_class(this)->usage_mask |= new_mask;
3656 
3657 	if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3658 		return 0;
3659 
3660 	switch (new_bit) {
3661 	case LOCK_USED:
3662 		debug_atomic_dec(nr_unused_locks);
3663 		break;
3664 	default:
3665 		ret = mark_lock_irq(curr, this, new_bit);
3666 		if (!ret)
3667 			return 0;
3668 	}
3669 
3670 	graph_unlock();
3671 
3672 	/*
3673 	 * We must printk outside of the graph_lock:
3674 	 */
3675 	if (ret == 2) {
3676 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3677 		print_lock(this);
3678 		print_irqtrace_events(curr);
3679 		dump_stack();
3680 	}
3681 
3682 	return ret;
3683 }
3684 
3685 #else /* CONFIG_PROVE_LOCKING */
3686 
3687 static inline int
3688 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3689 {
3690 	return 1;
3691 }
3692 
3693 static inline unsigned int task_irq_context(struct task_struct *task)
3694 {
3695 	return 0;
3696 }
3697 
3698 static inline int separate_irq_context(struct task_struct *curr,
3699 		struct held_lock *hlock)
3700 {
3701 	return 0;
3702 }
3703 
3704 #endif /* CONFIG_PROVE_LOCKING */
3705 
3706 /*
3707  * Initialize a lock instance's lock-class mapping info:
3708  */
3709 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3710 		      struct lock_class_key *key, int subclass)
3711 {
3712 	int i;
3713 
3714 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3715 		lock->class_cache[i] = NULL;
3716 
3717 #ifdef CONFIG_LOCK_STAT
3718 	lock->cpu = raw_smp_processor_id();
3719 #endif
3720 
3721 	/*
3722 	 * Can't be having no nameless bastards around this place!
3723 	 */
3724 	if (DEBUG_LOCKS_WARN_ON(!name)) {
3725 		lock->name = "NULL";
3726 		return;
3727 	}
3728 
3729 	lock->name = name;
3730 
3731 	/*
3732 	 * No key, no joy, we need to hash something.
3733 	 */
3734 	if (DEBUG_LOCKS_WARN_ON(!key))
3735 		return;
3736 	/*
3737 	 * Sanity check, the lock-class key must either have been allocated
3738 	 * statically or must have been registered as a dynamic key.
3739 	 */
3740 	if (!static_obj(key) && !is_dynamic_key(key)) {
3741 		if (debug_locks)
3742 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3743 		DEBUG_LOCKS_WARN_ON(1);
3744 		return;
3745 	}
3746 	lock->key = key;
3747 
3748 	if (unlikely(!debug_locks))
3749 		return;
3750 
3751 	if (subclass) {
3752 		unsigned long flags;
3753 
3754 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3755 			return;
3756 
3757 		raw_local_irq_save(flags);
3758 		current->lockdep_recursion = 1;
3759 		register_lock_class(lock, subclass, 1);
3760 		current->lockdep_recursion = 0;
3761 		raw_local_irq_restore(flags);
3762 	}
3763 }
3764 EXPORT_SYMBOL_GPL(lockdep_init_map);
3765 
3766 struct lock_class_key __lockdep_no_validate__;
3767 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3768 
3769 static void
3770 print_lock_nested_lock_not_held(struct task_struct *curr,
3771 				struct held_lock *hlock,
3772 				unsigned long ip)
3773 {
3774 	if (!debug_locks_off())
3775 		return;
3776 	if (debug_locks_silent)
3777 		return;
3778 
3779 	pr_warn("\n");
3780 	pr_warn("==================================\n");
3781 	pr_warn("WARNING: Nested lock was not taken\n");
3782 	print_kernel_ident();
3783 	pr_warn("----------------------------------\n");
3784 
3785 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3786 	print_lock(hlock);
3787 
3788 	pr_warn("\nbut this task is not holding:\n");
3789 	pr_warn("%s\n", hlock->nest_lock->name);
3790 
3791 	pr_warn("\nstack backtrace:\n");
3792 	dump_stack();
3793 
3794 	pr_warn("\nother info that might help us debug this:\n");
3795 	lockdep_print_held_locks(curr);
3796 
3797 	pr_warn("\nstack backtrace:\n");
3798 	dump_stack();
3799 }
3800 
3801 static int __lock_is_held(const struct lockdep_map *lock, int read);
3802 
3803 /*
3804  * This gets called for every mutex_lock*()/spin_lock*() operation.
3805  * We maintain the dependency maps and validate the locking attempt:
3806  *
3807  * The callers must make sure that IRQs are disabled before calling it,
3808  * otherwise we could get an interrupt which would want to take locks,
3809  * which would end up in lockdep again.
3810  */
3811 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3812 			  int trylock, int read, int check, int hardirqs_off,
3813 			  struct lockdep_map *nest_lock, unsigned long ip,
3814 			  int references, int pin_count)
3815 {
3816 	struct task_struct *curr = current;
3817 	struct lock_class *class = NULL;
3818 	struct held_lock *hlock;
3819 	unsigned int depth;
3820 	int chain_head = 0;
3821 	int class_idx;
3822 	u64 chain_key;
3823 
3824 	if (unlikely(!debug_locks))
3825 		return 0;
3826 
3827 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3828 		check = 0;
3829 
3830 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3831 		class = lock->class_cache[subclass];
3832 	/*
3833 	 * Not cached?
3834 	 */
3835 	if (unlikely(!class)) {
3836 		class = register_lock_class(lock, subclass, 0);
3837 		if (!class)
3838 			return 0;
3839 	}
3840 
3841 	debug_class_ops_inc(class);
3842 
3843 	if (very_verbose(class)) {
3844 		printk("\nacquire class [%px] %s", class->key, class->name);
3845 		if (class->name_version > 1)
3846 			printk(KERN_CONT "#%d", class->name_version);
3847 		printk(KERN_CONT "\n");
3848 		dump_stack();
3849 	}
3850 
3851 	/*
3852 	 * Add the lock to the list of currently held locks.
3853 	 * (we dont increase the depth just yet, up until the
3854 	 * dependency checks are done)
3855 	 */
3856 	depth = curr->lockdep_depth;
3857 	/*
3858 	 * Ran out of static storage for our per-task lock stack again have we?
3859 	 */
3860 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3861 		return 0;
3862 
3863 	class_idx = class - lock_classes;
3864 
3865 	if (depth) {
3866 		hlock = curr->held_locks + depth - 1;
3867 		if (hlock->class_idx == class_idx && nest_lock) {
3868 			if (!references)
3869 				references++;
3870 
3871 			if (!hlock->references)
3872 				hlock->references++;
3873 
3874 			hlock->references += references;
3875 
3876 			/* Overflow */
3877 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
3878 				return 0;
3879 
3880 			return 2;
3881 		}
3882 	}
3883 
3884 	hlock = curr->held_locks + depth;
3885 	/*
3886 	 * Plain impossible, we just registered it and checked it weren't no
3887 	 * NULL like.. I bet this mushroom I ate was good!
3888 	 */
3889 	if (DEBUG_LOCKS_WARN_ON(!class))
3890 		return 0;
3891 	hlock->class_idx = class_idx;
3892 	hlock->acquire_ip = ip;
3893 	hlock->instance = lock;
3894 	hlock->nest_lock = nest_lock;
3895 	hlock->irq_context = task_irq_context(curr);
3896 	hlock->trylock = trylock;
3897 	hlock->read = read;
3898 	hlock->check = check;
3899 	hlock->hardirqs_off = !!hardirqs_off;
3900 	hlock->references = references;
3901 #ifdef CONFIG_LOCK_STAT
3902 	hlock->waittime_stamp = 0;
3903 	hlock->holdtime_stamp = lockstat_clock();
3904 #endif
3905 	hlock->pin_count = pin_count;
3906 
3907 	/* Initialize the lock usage bit */
3908 	if (!mark_usage(curr, hlock, check))
3909 		return 0;
3910 
3911 	/*
3912 	 * Calculate the chain hash: it's the combined hash of all the
3913 	 * lock keys along the dependency chain. We save the hash value
3914 	 * at every step so that we can get the current hash easily
3915 	 * after unlock. The chain hash is then used to cache dependency
3916 	 * results.
3917 	 *
3918 	 * The 'key ID' is what is the most compact key value to drive
3919 	 * the hash, not class->key.
3920 	 */
3921 	/*
3922 	 * Whoops, we did it again.. class_idx is invalid.
3923 	 */
3924 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
3925 		return 0;
3926 
3927 	chain_key = curr->curr_chain_key;
3928 	if (!depth) {
3929 		/*
3930 		 * How can we have a chain hash when we ain't got no keys?!
3931 		 */
3932 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
3933 			return 0;
3934 		chain_head = 1;
3935 	}
3936 
3937 	hlock->prev_chain_key = chain_key;
3938 	if (separate_irq_context(curr, hlock)) {
3939 		chain_key = INITIAL_CHAIN_KEY;
3940 		chain_head = 1;
3941 	}
3942 	chain_key = iterate_chain_key(chain_key, class_idx);
3943 
3944 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
3945 		print_lock_nested_lock_not_held(curr, hlock, ip);
3946 		return 0;
3947 	}
3948 
3949 	if (!debug_locks_silent) {
3950 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
3951 		WARN_ON_ONCE(!hlock_class(hlock)->key);
3952 	}
3953 
3954 	if (!validate_chain(curr, hlock, chain_head, chain_key))
3955 		return 0;
3956 
3957 	curr->curr_chain_key = chain_key;
3958 	curr->lockdep_depth++;
3959 	check_chain_key(curr);
3960 #ifdef CONFIG_DEBUG_LOCKDEP
3961 	if (unlikely(!debug_locks))
3962 		return 0;
3963 #endif
3964 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3965 		debug_locks_off();
3966 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3967 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3968 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3969 
3970 		lockdep_print_held_locks(current);
3971 		debug_show_all_locks();
3972 		dump_stack();
3973 
3974 		return 0;
3975 	}
3976 
3977 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3978 		max_lockdep_depth = curr->lockdep_depth;
3979 
3980 	return 1;
3981 }
3982 
3983 static void print_unlock_imbalance_bug(struct task_struct *curr,
3984 				       struct lockdep_map *lock,
3985 				       unsigned long ip)
3986 {
3987 	if (!debug_locks_off())
3988 		return;
3989 	if (debug_locks_silent)
3990 		return;
3991 
3992 	pr_warn("\n");
3993 	pr_warn("=====================================\n");
3994 	pr_warn("WARNING: bad unlock balance detected!\n");
3995 	print_kernel_ident();
3996 	pr_warn("-------------------------------------\n");
3997 	pr_warn("%s/%d is trying to release lock (",
3998 		curr->comm, task_pid_nr(curr));
3999 	print_lockdep_cache(lock);
4000 	pr_cont(") at:\n");
4001 	print_ip_sym(ip);
4002 	pr_warn("but there are no more locks to release!\n");
4003 	pr_warn("\nother info that might help us debug this:\n");
4004 	lockdep_print_held_locks(curr);
4005 
4006 	pr_warn("\nstack backtrace:\n");
4007 	dump_stack();
4008 }
4009 
4010 static int match_held_lock(const struct held_lock *hlock,
4011 					const struct lockdep_map *lock)
4012 {
4013 	if (hlock->instance == lock)
4014 		return 1;
4015 
4016 	if (hlock->references) {
4017 		const struct lock_class *class = lock->class_cache[0];
4018 
4019 		if (!class)
4020 			class = look_up_lock_class(lock, 0);
4021 
4022 		/*
4023 		 * If look_up_lock_class() failed to find a class, we're trying
4024 		 * to test if we hold a lock that has never yet been acquired.
4025 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4026 		 * holding it either, so report failure.
4027 		 */
4028 		if (!class)
4029 			return 0;
4030 
4031 		/*
4032 		 * References, but not a lock we're actually ref-counting?
4033 		 * State got messed up, follow the sites that change ->references
4034 		 * and try to make sense of it.
4035 		 */
4036 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4037 			return 0;
4038 
4039 		if (hlock->class_idx == class - lock_classes)
4040 			return 1;
4041 	}
4042 
4043 	return 0;
4044 }
4045 
4046 /* @depth must not be zero */
4047 static struct held_lock *find_held_lock(struct task_struct *curr,
4048 					struct lockdep_map *lock,
4049 					unsigned int depth, int *idx)
4050 {
4051 	struct held_lock *ret, *hlock, *prev_hlock;
4052 	int i;
4053 
4054 	i = depth - 1;
4055 	hlock = curr->held_locks + i;
4056 	ret = hlock;
4057 	if (match_held_lock(hlock, lock))
4058 		goto out;
4059 
4060 	ret = NULL;
4061 	for (i--, prev_hlock = hlock--;
4062 	     i >= 0;
4063 	     i--, prev_hlock = hlock--) {
4064 		/*
4065 		 * We must not cross into another context:
4066 		 */
4067 		if (prev_hlock->irq_context != hlock->irq_context) {
4068 			ret = NULL;
4069 			break;
4070 		}
4071 		if (match_held_lock(hlock, lock)) {
4072 			ret = hlock;
4073 			break;
4074 		}
4075 	}
4076 
4077 out:
4078 	*idx = i;
4079 	return ret;
4080 }
4081 
4082 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4083 				int idx, unsigned int *merged)
4084 {
4085 	struct held_lock *hlock;
4086 	int first_idx = idx;
4087 
4088 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4089 		return 0;
4090 
4091 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4092 		switch (__lock_acquire(hlock->instance,
4093 				    hlock_class(hlock)->subclass,
4094 				    hlock->trylock,
4095 				    hlock->read, hlock->check,
4096 				    hlock->hardirqs_off,
4097 				    hlock->nest_lock, hlock->acquire_ip,
4098 				    hlock->references, hlock->pin_count)) {
4099 		case 0:
4100 			return 1;
4101 		case 1:
4102 			break;
4103 		case 2:
4104 			*merged += (idx == first_idx);
4105 			break;
4106 		default:
4107 			WARN_ON(1);
4108 			return 0;
4109 		}
4110 	}
4111 	return 0;
4112 }
4113 
4114 static int
4115 __lock_set_class(struct lockdep_map *lock, const char *name,
4116 		 struct lock_class_key *key, unsigned int subclass,
4117 		 unsigned long ip)
4118 {
4119 	struct task_struct *curr = current;
4120 	unsigned int depth, merged = 0;
4121 	struct held_lock *hlock;
4122 	struct lock_class *class;
4123 	int i;
4124 
4125 	if (unlikely(!debug_locks))
4126 		return 0;
4127 
4128 	depth = curr->lockdep_depth;
4129 	/*
4130 	 * This function is about (re)setting the class of a held lock,
4131 	 * yet we're not actually holding any locks. Naughty user!
4132 	 */
4133 	if (DEBUG_LOCKS_WARN_ON(!depth))
4134 		return 0;
4135 
4136 	hlock = find_held_lock(curr, lock, depth, &i);
4137 	if (!hlock) {
4138 		print_unlock_imbalance_bug(curr, lock, ip);
4139 		return 0;
4140 	}
4141 
4142 	lockdep_init_map(lock, name, key, 0);
4143 	class = register_lock_class(lock, subclass, 0);
4144 	hlock->class_idx = class - lock_classes;
4145 
4146 	curr->lockdep_depth = i;
4147 	curr->curr_chain_key = hlock->prev_chain_key;
4148 
4149 	if (reacquire_held_locks(curr, depth, i, &merged))
4150 		return 0;
4151 
4152 	/*
4153 	 * I took it apart and put it back together again, except now I have
4154 	 * these 'spare' parts.. where shall I put them.
4155 	 */
4156 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4157 		return 0;
4158 	return 1;
4159 }
4160 
4161 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4162 {
4163 	struct task_struct *curr = current;
4164 	unsigned int depth, merged = 0;
4165 	struct held_lock *hlock;
4166 	int i;
4167 
4168 	if (unlikely(!debug_locks))
4169 		return 0;
4170 
4171 	depth = curr->lockdep_depth;
4172 	/*
4173 	 * This function is about (re)setting the class of a held lock,
4174 	 * yet we're not actually holding any locks. Naughty user!
4175 	 */
4176 	if (DEBUG_LOCKS_WARN_ON(!depth))
4177 		return 0;
4178 
4179 	hlock = find_held_lock(curr, lock, depth, &i);
4180 	if (!hlock) {
4181 		print_unlock_imbalance_bug(curr, lock, ip);
4182 		return 0;
4183 	}
4184 
4185 	curr->lockdep_depth = i;
4186 	curr->curr_chain_key = hlock->prev_chain_key;
4187 
4188 	WARN(hlock->read, "downgrading a read lock");
4189 	hlock->read = 1;
4190 	hlock->acquire_ip = ip;
4191 
4192 	if (reacquire_held_locks(curr, depth, i, &merged))
4193 		return 0;
4194 
4195 	/* Merging can't happen with unchanged classes.. */
4196 	if (DEBUG_LOCKS_WARN_ON(merged))
4197 		return 0;
4198 
4199 	/*
4200 	 * I took it apart and put it back together again, except now I have
4201 	 * these 'spare' parts.. where shall I put them.
4202 	 */
4203 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4204 		return 0;
4205 
4206 	return 1;
4207 }
4208 
4209 /*
4210  * Remove the lock from the list of currently held locks - this gets
4211  * called on mutex_unlock()/spin_unlock*() (or on a failed
4212  * mutex_lock_interruptible()).
4213  */
4214 static int
4215 __lock_release(struct lockdep_map *lock, unsigned long ip)
4216 {
4217 	struct task_struct *curr = current;
4218 	unsigned int depth, merged = 1;
4219 	struct held_lock *hlock;
4220 	int i;
4221 
4222 	if (unlikely(!debug_locks))
4223 		return 0;
4224 
4225 	depth = curr->lockdep_depth;
4226 	/*
4227 	 * So we're all set to release this lock.. wait what lock? We don't
4228 	 * own any locks, you've been drinking again?
4229 	 */
4230 	if (depth <= 0) {
4231 		print_unlock_imbalance_bug(curr, lock, ip);
4232 		return 0;
4233 	}
4234 
4235 	/*
4236 	 * Check whether the lock exists in the current stack
4237 	 * of held locks:
4238 	 */
4239 	hlock = find_held_lock(curr, lock, depth, &i);
4240 	if (!hlock) {
4241 		print_unlock_imbalance_bug(curr, lock, ip);
4242 		return 0;
4243 	}
4244 
4245 	if (hlock->instance == lock)
4246 		lock_release_holdtime(hlock);
4247 
4248 	WARN(hlock->pin_count, "releasing a pinned lock\n");
4249 
4250 	if (hlock->references) {
4251 		hlock->references--;
4252 		if (hlock->references) {
4253 			/*
4254 			 * We had, and after removing one, still have
4255 			 * references, the current lock stack is still
4256 			 * valid. We're done!
4257 			 */
4258 			return 1;
4259 		}
4260 	}
4261 
4262 	/*
4263 	 * We have the right lock to unlock, 'hlock' points to it.
4264 	 * Now we remove it from the stack, and add back the other
4265 	 * entries (if any), recalculating the hash along the way:
4266 	 */
4267 
4268 	curr->lockdep_depth = i;
4269 	curr->curr_chain_key = hlock->prev_chain_key;
4270 
4271 	/*
4272 	 * The most likely case is when the unlock is on the innermost
4273 	 * lock. In this case, we are done!
4274 	 */
4275 	if (i == depth-1)
4276 		return 1;
4277 
4278 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
4279 		return 0;
4280 
4281 	/*
4282 	 * We had N bottles of beer on the wall, we drank one, but now
4283 	 * there's not N-1 bottles of beer left on the wall...
4284 	 * Pouring two of the bottles together is acceptable.
4285 	 */
4286 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4287 
4288 	/*
4289 	 * Since reacquire_held_locks() would have called check_chain_key()
4290 	 * indirectly via __lock_acquire(), we don't need to do it again
4291 	 * on return.
4292 	 */
4293 	return 0;
4294 }
4295 
4296 static nokprobe_inline
4297 int __lock_is_held(const struct lockdep_map *lock, int read)
4298 {
4299 	struct task_struct *curr = current;
4300 	int i;
4301 
4302 	for (i = 0; i < curr->lockdep_depth; i++) {
4303 		struct held_lock *hlock = curr->held_locks + i;
4304 
4305 		if (match_held_lock(hlock, lock)) {
4306 			if (read == -1 || hlock->read == read)
4307 				return 1;
4308 
4309 			return 0;
4310 		}
4311 	}
4312 
4313 	return 0;
4314 }
4315 
4316 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4317 {
4318 	struct pin_cookie cookie = NIL_COOKIE;
4319 	struct task_struct *curr = current;
4320 	int i;
4321 
4322 	if (unlikely(!debug_locks))
4323 		return cookie;
4324 
4325 	for (i = 0; i < curr->lockdep_depth; i++) {
4326 		struct held_lock *hlock = curr->held_locks + i;
4327 
4328 		if (match_held_lock(hlock, lock)) {
4329 			/*
4330 			 * Grab 16bits of randomness; this is sufficient to not
4331 			 * be guessable and still allows some pin nesting in
4332 			 * our u32 pin_count.
4333 			 */
4334 			cookie.val = 1 + (prandom_u32() >> 16);
4335 			hlock->pin_count += cookie.val;
4336 			return cookie;
4337 		}
4338 	}
4339 
4340 	WARN(1, "pinning an unheld lock\n");
4341 	return cookie;
4342 }
4343 
4344 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4345 {
4346 	struct task_struct *curr = current;
4347 	int i;
4348 
4349 	if (unlikely(!debug_locks))
4350 		return;
4351 
4352 	for (i = 0; i < curr->lockdep_depth; i++) {
4353 		struct held_lock *hlock = curr->held_locks + i;
4354 
4355 		if (match_held_lock(hlock, lock)) {
4356 			hlock->pin_count += cookie.val;
4357 			return;
4358 		}
4359 	}
4360 
4361 	WARN(1, "pinning an unheld lock\n");
4362 }
4363 
4364 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4365 {
4366 	struct task_struct *curr = current;
4367 	int i;
4368 
4369 	if (unlikely(!debug_locks))
4370 		return;
4371 
4372 	for (i = 0; i < curr->lockdep_depth; i++) {
4373 		struct held_lock *hlock = curr->held_locks + i;
4374 
4375 		if (match_held_lock(hlock, lock)) {
4376 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4377 				return;
4378 
4379 			hlock->pin_count -= cookie.val;
4380 
4381 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4382 				hlock->pin_count = 0;
4383 
4384 			return;
4385 		}
4386 	}
4387 
4388 	WARN(1, "unpinning an unheld lock\n");
4389 }
4390 
4391 /*
4392  * Check whether we follow the irq-flags state precisely:
4393  */
4394 static void check_flags(unsigned long flags)
4395 {
4396 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4397 	if (!debug_locks)
4398 		return;
4399 
4400 	if (irqs_disabled_flags(flags)) {
4401 		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4402 			printk("possible reason: unannotated irqs-off.\n");
4403 		}
4404 	} else {
4405 		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4406 			printk("possible reason: unannotated irqs-on.\n");
4407 		}
4408 	}
4409 
4410 	/*
4411 	 * We dont accurately track softirq state in e.g.
4412 	 * hardirq contexts (such as on 4KSTACKS), so only
4413 	 * check if not in hardirq contexts:
4414 	 */
4415 	if (!hardirq_count()) {
4416 		if (softirq_count()) {
4417 			/* like the above, but with softirqs */
4418 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4419 		} else {
4420 			/* lick the above, does it taste good? */
4421 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4422 		}
4423 	}
4424 
4425 	if (!debug_locks)
4426 		print_irqtrace_events(current);
4427 #endif
4428 }
4429 
4430 void lock_set_class(struct lockdep_map *lock, const char *name,
4431 		    struct lock_class_key *key, unsigned int subclass,
4432 		    unsigned long ip)
4433 {
4434 	unsigned long flags;
4435 
4436 	if (unlikely(current->lockdep_recursion))
4437 		return;
4438 
4439 	raw_local_irq_save(flags);
4440 	current->lockdep_recursion = 1;
4441 	check_flags(flags);
4442 	if (__lock_set_class(lock, name, key, subclass, ip))
4443 		check_chain_key(current);
4444 	current->lockdep_recursion = 0;
4445 	raw_local_irq_restore(flags);
4446 }
4447 EXPORT_SYMBOL_GPL(lock_set_class);
4448 
4449 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4450 {
4451 	unsigned long flags;
4452 
4453 	if (unlikely(current->lockdep_recursion))
4454 		return;
4455 
4456 	raw_local_irq_save(flags);
4457 	current->lockdep_recursion = 1;
4458 	check_flags(flags);
4459 	if (__lock_downgrade(lock, ip))
4460 		check_chain_key(current);
4461 	current->lockdep_recursion = 0;
4462 	raw_local_irq_restore(flags);
4463 }
4464 EXPORT_SYMBOL_GPL(lock_downgrade);
4465 
4466 /*
4467  * We are not always called with irqs disabled - do that here,
4468  * and also avoid lockdep recursion:
4469  */
4470 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4471 			  int trylock, int read, int check,
4472 			  struct lockdep_map *nest_lock, unsigned long ip)
4473 {
4474 	unsigned long flags;
4475 
4476 	if (unlikely(current->lockdep_recursion))
4477 		return;
4478 
4479 	raw_local_irq_save(flags);
4480 	check_flags(flags);
4481 
4482 	current->lockdep_recursion = 1;
4483 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4484 	__lock_acquire(lock, subclass, trylock, read, check,
4485 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4486 	current->lockdep_recursion = 0;
4487 	raw_local_irq_restore(flags);
4488 }
4489 EXPORT_SYMBOL_GPL(lock_acquire);
4490 
4491 void lock_release(struct lockdep_map *lock, unsigned long ip)
4492 {
4493 	unsigned long flags;
4494 
4495 	if (unlikely(current->lockdep_recursion))
4496 		return;
4497 
4498 	raw_local_irq_save(flags);
4499 	check_flags(flags);
4500 	current->lockdep_recursion = 1;
4501 	trace_lock_release(lock, ip);
4502 	if (__lock_release(lock, ip))
4503 		check_chain_key(current);
4504 	current->lockdep_recursion = 0;
4505 	raw_local_irq_restore(flags);
4506 }
4507 EXPORT_SYMBOL_GPL(lock_release);
4508 
4509 int lock_is_held_type(const struct lockdep_map *lock, int read)
4510 {
4511 	unsigned long flags;
4512 	int ret = 0;
4513 
4514 	if (unlikely(current->lockdep_recursion))
4515 		return 1; /* avoid false negative lockdep_assert_held() */
4516 
4517 	raw_local_irq_save(flags);
4518 	check_flags(flags);
4519 
4520 	current->lockdep_recursion = 1;
4521 	ret = __lock_is_held(lock, read);
4522 	current->lockdep_recursion = 0;
4523 	raw_local_irq_restore(flags);
4524 
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(lock_is_held_type);
4528 NOKPROBE_SYMBOL(lock_is_held_type);
4529 
4530 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4531 {
4532 	struct pin_cookie cookie = NIL_COOKIE;
4533 	unsigned long flags;
4534 
4535 	if (unlikely(current->lockdep_recursion))
4536 		return cookie;
4537 
4538 	raw_local_irq_save(flags);
4539 	check_flags(flags);
4540 
4541 	current->lockdep_recursion = 1;
4542 	cookie = __lock_pin_lock(lock);
4543 	current->lockdep_recursion = 0;
4544 	raw_local_irq_restore(flags);
4545 
4546 	return cookie;
4547 }
4548 EXPORT_SYMBOL_GPL(lock_pin_lock);
4549 
4550 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4551 {
4552 	unsigned long flags;
4553 
4554 	if (unlikely(current->lockdep_recursion))
4555 		return;
4556 
4557 	raw_local_irq_save(flags);
4558 	check_flags(flags);
4559 
4560 	current->lockdep_recursion = 1;
4561 	__lock_repin_lock(lock, cookie);
4562 	current->lockdep_recursion = 0;
4563 	raw_local_irq_restore(flags);
4564 }
4565 EXPORT_SYMBOL_GPL(lock_repin_lock);
4566 
4567 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4568 {
4569 	unsigned long flags;
4570 
4571 	if (unlikely(current->lockdep_recursion))
4572 		return;
4573 
4574 	raw_local_irq_save(flags);
4575 	check_flags(flags);
4576 
4577 	current->lockdep_recursion = 1;
4578 	__lock_unpin_lock(lock, cookie);
4579 	current->lockdep_recursion = 0;
4580 	raw_local_irq_restore(flags);
4581 }
4582 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4583 
4584 #ifdef CONFIG_LOCK_STAT
4585 static void print_lock_contention_bug(struct task_struct *curr,
4586 				      struct lockdep_map *lock,
4587 				      unsigned long ip)
4588 {
4589 	if (!debug_locks_off())
4590 		return;
4591 	if (debug_locks_silent)
4592 		return;
4593 
4594 	pr_warn("\n");
4595 	pr_warn("=================================\n");
4596 	pr_warn("WARNING: bad contention detected!\n");
4597 	print_kernel_ident();
4598 	pr_warn("---------------------------------\n");
4599 	pr_warn("%s/%d is trying to contend lock (",
4600 		curr->comm, task_pid_nr(curr));
4601 	print_lockdep_cache(lock);
4602 	pr_cont(") at:\n");
4603 	print_ip_sym(ip);
4604 	pr_warn("but there are no locks held!\n");
4605 	pr_warn("\nother info that might help us debug this:\n");
4606 	lockdep_print_held_locks(curr);
4607 
4608 	pr_warn("\nstack backtrace:\n");
4609 	dump_stack();
4610 }
4611 
4612 static void
4613 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4614 {
4615 	struct task_struct *curr = current;
4616 	struct held_lock *hlock;
4617 	struct lock_class_stats *stats;
4618 	unsigned int depth;
4619 	int i, contention_point, contending_point;
4620 
4621 	depth = curr->lockdep_depth;
4622 	/*
4623 	 * Whee, we contended on this lock, except it seems we're not
4624 	 * actually trying to acquire anything much at all..
4625 	 */
4626 	if (DEBUG_LOCKS_WARN_ON(!depth))
4627 		return;
4628 
4629 	hlock = find_held_lock(curr, lock, depth, &i);
4630 	if (!hlock) {
4631 		print_lock_contention_bug(curr, lock, ip);
4632 		return;
4633 	}
4634 
4635 	if (hlock->instance != lock)
4636 		return;
4637 
4638 	hlock->waittime_stamp = lockstat_clock();
4639 
4640 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4641 	contending_point = lock_point(hlock_class(hlock)->contending_point,
4642 				      lock->ip);
4643 
4644 	stats = get_lock_stats(hlock_class(hlock));
4645 	if (contention_point < LOCKSTAT_POINTS)
4646 		stats->contention_point[contention_point]++;
4647 	if (contending_point < LOCKSTAT_POINTS)
4648 		stats->contending_point[contending_point]++;
4649 	if (lock->cpu != smp_processor_id())
4650 		stats->bounces[bounce_contended + !!hlock->read]++;
4651 }
4652 
4653 static void
4654 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4655 {
4656 	struct task_struct *curr = current;
4657 	struct held_lock *hlock;
4658 	struct lock_class_stats *stats;
4659 	unsigned int depth;
4660 	u64 now, waittime = 0;
4661 	int i, cpu;
4662 
4663 	depth = curr->lockdep_depth;
4664 	/*
4665 	 * Yay, we acquired ownership of this lock we didn't try to
4666 	 * acquire, how the heck did that happen?
4667 	 */
4668 	if (DEBUG_LOCKS_WARN_ON(!depth))
4669 		return;
4670 
4671 	hlock = find_held_lock(curr, lock, depth, &i);
4672 	if (!hlock) {
4673 		print_lock_contention_bug(curr, lock, _RET_IP_);
4674 		return;
4675 	}
4676 
4677 	if (hlock->instance != lock)
4678 		return;
4679 
4680 	cpu = smp_processor_id();
4681 	if (hlock->waittime_stamp) {
4682 		now = lockstat_clock();
4683 		waittime = now - hlock->waittime_stamp;
4684 		hlock->holdtime_stamp = now;
4685 	}
4686 
4687 	trace_lock_acquired(lock, ip);
4688 
4689 	stats = get_lock_stats(hlock_class(hlock));
4690 	if (waittime) {
4691 		if (hlock->read)
4692 			lock_time_inc(&stats->read_waittime, waittime);
4693 		else
4694 			lock_time_inc(&stats->write_waittime, waittime);
4695 	}
4696 	if (lock->cpu != cpu)
4697 		stats->bounces[bounce_acquired + !!hlock->read]++;
4698 
4699 	lock->cpu = cpu;
4700 	lock->ip = ip;
4701 }
4702 
4703 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4704 {
4705 	unsigned long flags;
4706 
4707 	if (unlikely(!lock_stat || !debug_locks))
4708 		return;
4709 
4710 	if (unlikely(current->lockdep_recursion))
4711 		return;
4712 
4713 	raw_local_irq_save(flags);
4714 	check_flags(flags);
4715 	current->lockdep_recursion = 1;
4716 	trace_lock_contended(lock, ip);
4717 	__lock_contended(lock, ip);
4718 	current->lockdep_recursion = 0;
4719 	raw_local_irq_restore(flags);
4720 }
4721 EXPORT_SYMBOL_GPL(lock_contended);
4722 
4723 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4724 {
4725 	unsigned long flags;
4726 
4727 	if (unlikely(!lock_stat || !debug_locks))
4728 		return;
4729 
4730 	if (unlikely(current->lockdep_recursion))
4731 		return;
4732 
4733 	raw_local_irq_save(flags);
4734 	check_flags(flags);
4735 	current->lockdep_recursion = 1;
4736 	__lock_acquired(lock, ip);
4737 	current->lockdep_recursion = 0;
4738 	raw_local_irq_restore(flags);
4739 }
4740 EXPORT_SYMBOL_GPL(lock_acquired);
4741 #endif
4742 
4743 /*
4744  * Used by the testsuite, sanitize the validator state
4745  * after a simulated failure:
4746  */
4747 
4748 void lockdep_reset(void)
4749 {
4750 	unsigned long flags;
4751 	int i;
4752 
4753 	raw_local_irq_save(flags);
4754 	lockdep_init_task(current);
4755 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4756 	nr_hardirq_chains = 0;
4757 	nr_softirq_chains = 0;
4758 	nr_process_chains = 0;
4759 	debug_locks = 1;
4760 	for (i = 0; i < CHAINHASH_SIZE; i++)
4761 		INIT_HLIST_HEAD(chainhash_table + i);
4762 	raw_local_irq_restore(flags);
4763 }
4764 
4765 /* Remove a class from a lock chain. Must be called with the graph lock held. */
4766 static void remove_class_from_lock_chain(struct pending_free *pf,
4767 					 struct lock_chain *chain,
4768 					 struct lock_class *class)
4769 {
4770 #ifdef CONFIG_PROVE_LOCKING
4771 	struct lock_chain *new_chain;
4772 	u64 chain_key;
4773 	int i;
4774 
4775 	for (i = chain->base; i < chain->base + chain->depth; i++) {
4776 		if (chain_hlocks[i] != class - lock_classes)
4777 			continue;
4778 		/* The code below leaks one chain_hlock[] entry. */
4779 		if (--chain->depth > 0) {
4780 			memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4781 				(chain->base + chain->depth - i) *
4782 				sizeof(chain_hlocks[0]));
4783 		}
4784 		/*
4785 		 * Each lock class occurs at most once in a lock chain so once
4786 		 * we found a match we can break out of this loop.
4787 		 */
4788 		goto recalc;
4789 	}
4790 	/* Since the chain has not been modified, return. */
4791 	return;
4792 
4793 recalc:
4794 	chain_key = INITIAL_CHAIN_KEY;
4795 	for (i = chain->base; i < chain->base + chain->depth; i++)
4796 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4797 	if (chain->depth && chain->chain_key == chain_key)
4798 		return;
4799 	/* Overwrite the chain key for concurrent RCU readers. */
4800 	WRITE_ONCE(chain->chain_key, chain_key);
4801 	/*
4802 	 * Note: calling hlist_del_rcu() from inside a
4803 	 * hlist_for_each_entry_rcu() loop is safe.
4804 	 */
4805 	hlist_del_rcu(&chain->entry);
4806 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4807 	if (chain->depth == 0)
4808 		return;
4809 	/*
4810 	 * If the modified lock chain matches an existing lock chain, drop
4811 	 * the modified lock chain.
4812 	 */
4813 	if (lookup_chain_cache(chain_key))
4814 		return;
4815 	new_chain = alloc_lock_chain();
4816 	if (WARN_ON_ONCE(!new_chain)) {
4817 		debug_locks_off();
4818 		return;
4819 	}
4820 	*new_chain = *chain;
4821 	hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4822 #endif
4823 }
4824 
4825 /* Must be called with the graph lock held. */
4826 static void remove_class_from_lock_chains(struct pending_free *pf,
4827 					  struct lock_class *class)
4828 {
4829 	struct lock_chain *chain;
4830 	struct hlist_head *head;
4831 	int i;
4832 
4833 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4834 		head = chainhash_table + i;
4835 		hlist_for_each_entry_rcu(chain, head, entry) {
4836 			remove_class_from_lock_chain(pf, chain, class);
4837 		}
4838 	}
4839 }
4840 
4841 /*
4842  * Remove all references to a lock class. The caller must hold the graph lock.
4843  */
4844 static void zap_class(struct pending_free *pf, struct lock_class *class)
4845 {
4846 	struct lock_list *entry;
4847 	int i;
4848 
4849 	WARN_ON_ONCE(!class->key);
4850 
4851 	/*
4852 	 * Remove all dependencies this lock is
4853 	 * involved in:
4854 	 */
4855 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4856 		entry = list_entries + i;
4857 		if (entry->class != class && entry->links_to != class)
4858 			continue;
4859 		__clear_bit(i, list_entries_in_use);
4860 		nr_list_entries--;
4861 		list_del_rcu(&entry->entry);
4862 	}
4863 	if (list_empty(&class->locks_after) &&
4864 	    list_empty(&class->locks_before)) {
4865 		list_move_tail(&class->lock_entry, &pf->zapped);
4866 		hlist_del_rcu(&class->hash_entry);
4867 		WRITE_ONCE(class->key, NULL);
4868 		WRITE_ONCE(class->name, NULL);
4869 		nr_lock_classes--;
4870 		__clear_bit(class - lock_classes, lock_classes_in_use);
4871 	} else {
4872 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
4873 			  class->name);
4874 	}
4875 
4876 	remove_class_from_lock_chains(pf, class);
4877 }
4878 
4879 static void reinit_class(struct lock_class *class)
4880 {
4881 	void *const p = class;
4882 	const unsigned int offset = offsetof(struct lock_class, key);
4883 
4884 	WARN_ON_ONCE(!class->lock_entry.next);
4885 	WARN_ON_ONCE(!list_empty(&class->locks_after));
4886 	WARN_ON_ONCE(!list_empty(&class->locks_before));
4887 	memset(p + offset, 0, sizeof(*class) - offset);
4888 	WARN_ON_ONCE(!class->lock_entry.next);
4889 	WARN_ON_ONCE(!list_empty(&class->locks_after));
4890 	WARN_ON_ONCE(!list_empty(&class->locks_before));
4891 }
4892 
4893 static inline int within(const void *addr, void *start, unsigned long size)
4894 {
4895 	return addr >= start && addr < start + size;
4896 }
4897 
4898 static bool inside_selftest(void)
4899 {
4900 	return current == lockdep_selftest_task_struct;
4901 }
4902 
4903 /* The caller must hold the graph lock. */
4904 static struct pending_free *get_pending_free(void)
4905 {
4906 	return delayed_free.pf + delayed_free.index;
4907 }
4908 
4909 static void free_zapped_rcu(struct rcu_head *cb);
4910 
4911 /*
4912  * Schedule an RCU callback if no RCU callback is pending. Must be called with
4913  * the graph lock held.
4914  */
4915 static void call_rcu_zapped(struct pending_free *pf)
4916 {
4917 	WARN_ON_ONCE(inside_selftest());
4918 
4919 	if (list_empty(&pf->zapped))
4920 		return;
4921 
4922 	if (delayed_free.scheduled)
4923 		return;
4924 
4925 	delayed_free.scheduled = true;
4926 
4927 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
4928 	delayed_free.index ^= 1;
4929 
4930 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
4931 }
4932 
4933 /* The caller must hold the graph lock. May be called from RCU context. */
4934 static void __free_zapped_classes(struct pending_free *pf)
4935 {
4936 	struct lock_class *class;
4937 
4938 	check_data_structures();
4939 
4940 	list_for_each_entry(class, &pf->zapped, lock_entry)
4941 		reinit_class(class);
4942 
4943 	list_splice_init(&pf->zapped, &free_lock_classes);
4944 
4945 #ifdef CONFIG_PROVE_LOCKING
4946 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
4947 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
4948 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
4949 #endif
4950 }
4951 
4952 static void free_zapped_rcu(struct rcu_head *ch)
4953 {
4954 	struct pending_free *pf;
4955 	unsigned long flags;
4956 
4957 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
4958 		return;
4959 
4960 	raw_local_irq_save(flags);
4961 	arch_spin_lock(&lockdep_lock);
4962 	current->lockdep_recursion = 1;
4963 
4964 	/* closed head */
4965 	pf = delayed_free.pf + (delayed_free.index ^ 1);
4966 	__free_zapped_classes(pf);
4967 	delayed_free.scheduled = false;
4968 
4969 	/*
4970 	 * If there's anything on the open list, close and start a new callback.
4971 	 */
4972 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
4973 
4974 	current->lockdep_recursion = 0;
4975 	arch_spin_unlock(&lockdep_lock);
4976 	raw_local_irq_restore(flags);
4977 }
4978 
4979 /*
4980  * Remove all lock classes from the class hash table and from the
4981  * all_lock_classes list whose key or name is in the address range [start,
4982  * start + size). Move these lock classes to the zapped_classes list. Must
4983  * be called with the graph lock held.
4984  */
4985 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
4986 				     unsigned long size)
4987 {
4988 	struct lock_class *class;
4989 	struct hlist_head *head;
4990 	int i;
4991 
4992 	/* Unhash all classes that were created by a module. */
4993 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4994 		head = classhash_table + i;
4995 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4996 			if (!within(class->key, start, size) &&
4997 			    !within(class->name, start, size))
4998 				continue;
4999 			zap_class(pf, class);
5000 		}
5001 	}
5002 }
5003 
5004 /*
5005  * Used in module.c to remove lock classes from memory that is going to be
5006  * freed; and possibly re-used by other modules.
5007  *
5008  * We will have had one synchronize_rcu() before getting here, so we're
5009  * guaranteed nobody will look up these exact classes -- they're properly dead
5010  * but still allocated.
5011  */
5012 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5013 {
5014 	struct pending_free *pf;
5015 	unsigned long flags;
5016 
5017 	init_data_structures_once();
5018 
5019 	raw_local_irq_save(flags);
5020 	arch_spin_lock(&lockdep_lock);
5021 	current->lockdep_recursion = 1;
5022 	pf = get_pending_free();
5023 	__lockdep_free_key_range(pf, start, size);
5024 	call_rcu_zapped(pf);
5025 	current->lockdep_recursion = 0;
5026 	arch_spin_unlock(&lockdep_lock);
5027 	raw_local_irq_restore(flags);
5028 
5029 	/*
5030 	 * Wait for any possible iterators from look_up_lock_class() to pass
5031 	 * before continuing to free the memory they refer to.
5032 	 */
5033 	synchronize_rcu();
5034 }
5035 
5036 /*
5037  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5038  * Ignores debug_locks. Must only be used by the lockdep selftests.
5039  */
5040 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5041 {
5042 	struct pending_free *pf = delayed_free.pf;
5043 	unsigned long flags;
5044 
5045 	init_data_structures_once();
5046 
5047 	raw_local_irq_save(flags);
5048 	arch_spin_lock(&lockdep_lock);
5049 	__lockdep_free_key_range(pf, start, size);
5050 	__free_zapped_classes(pf);
5051 	arch_spin_unlock(&lockdep_lock);
5052 	raw_local_irq_restore(flags);
5053 }
5054 
5055 void lockdep_free_key_range(void *start, unsigned long size)
5056 {
5057 	init_data_structures_once();
5058 
5059 	if (inside_selftest())
5060 		lockdep_free_key_range_imm(start, size);
5061 	else
5062 		lockdep_free_key_range_reg(start, size);
5063 }
5064 
5065 /*
5066  * Check whether any element of the @lock->class_cache[] array refers to a
5067  * registered lock class. The caller must hold either the graph lock or the
5068  * RCU read lock.
5069  */
5070 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5071 {
5072 	struct lock_class *class;
5073 	struct hlist_head *head;
5074 	int i, j;
5075 
5076 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5077 		head = classhash_table + i;
5078 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5079 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5080 				if (lock->class_cache[j] == class)
5081 					return true;
5082 		}
5083 	}
5084 	return false;
5085 }
5086 
5087 /* The caller must hold the graph lock. Does not sleep. */
5088 static void __lockdep_reset_lock(struct pending_free *pf,
5089 				 struct lockdep_map *lock)
5090 {
5091 	struct lock_class *class;
5092 	int j;
5093 
5094 	/*
5095 	 * Remove all classes this lock might have:
5096 	 */
5097 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5098 		/*
5099 		 * If the class exists we look it up and zap it:
5100 		 */
5101 		class = look_up_lock_class(lock, j);
5102 		if (class)
5103 			zap_class(pf, class);
5104 	}
5105 	/*
5106 	 * Debug check: in the end all mapped classes should
5107 	 * be gone.
5108 	 */
5109 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5110 		debug_locks_off();
5111 }
5112 
5113 /*
5114  * Remove all information lockdep has about a lock if debug_locks == 1. Free
5115  * released data structures from RCU context.
5116  */
5117 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5118 {
5119 	struct pending_free *pf;
5120 	unsigned long flags;
5121 	int locked;
5122 
5123 	raw_local_irq_save(flags);
5124 	locked = graph_lock();
5125 	if (!locked)
5126 		goto out_irq;
5127 
5128 	pf = get_pending_free();
5129 	__lockdep_reset_lock(pf, lock);
5130 	call_rcu_zapped(pf);
5131 
5132 	graph_unlock();
5133 out_irq:
5134 	raw_local_irq_restore(flags);
5135 }
5136 
5137 /*
5138  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5139  * lockdep selftests.
5140  */
5141 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5142 {
5143 	struct pending_free *pf = delayed_free.pf;
5144 	unsigned long flags;
5145 
5146 	raw_local_irq_save(flags);
5147 	arch_spin_lock(&lockdep_lock);
5148 	__lockdep_reset_lock(pf, lock);
5149 	__free_zapped_classes(pf);
5150 	arch_spin_unlock(&lockdep_lock);
5151 	raw_local_irq_restore(flags);
5152 }
5153 
5154 void lockdep_reset_lock(struct lockdep_map *lock)
5155 {
5156 	init_data_structures_once();
5157 
5158 	if (inside_selftest())
5159 		lockdep_reset_lock_imm(lock);
5160 	else
5161 		lockdep_reset_lock_reg(lock);
5162 }
5163 
5164 /* Unregister a dynamically allocated key. */
5165 void lockdep_unregister_key(struct lock_class_key *key)
5166 {
5167 	struct hlist_head *hash_head = keyhashentry(key);
5168 	struct lock_class_key *k;
5169 	struct pending_free *pf;
5170 	unsigned long flags;
5171 	bool found = false;
5172 
5173 	might_sleep();
5174 
5175 	if (WARN_ON_ONCE(static_obj(key)))
5176 		return;
5177 
5178 	raw_local_irq_save(flags);
5179 	if (!graph_lock())
5180 		goto out_irq;
5181 
5182 	pf = get_pending_free();
5183 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5184 		if (k == key) {
5185 			hlist_del_rcu(&k->hash_entry);
5186 			found = true;
5187 			break;
5188 		}
5189 	}
5190 	WARN_ON_ONCE(!found);
5191 	__lockdep_free_key_range(pf, key, 1);
5192 	call_rcu_zapped(pf);
5193 	graph_unlock();
5194 out_irq:
5195 	raw_local_irq_restore(flags);
5196 
5197 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5198 	synchronize_rcu();
5199 }
5200 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5201 
5202 void __init lockdep_init(void)
5203 {
5204 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5205 
5206 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5207 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5208 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5209 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5210 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5211 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5212 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5213 
5214 	printk(" memory used by lock dependency info: %zu kB\n",
5215 	       (sizeof(lock_classes) +
5216 		sizeof(lock_classes_in_use) +
5217 		sizeof(classhash_table) +
5218 		sizeof(list_entries) +
5219 		sizeof(list_entries_in_use) +
5220 		sizeof(chainhash_table) +
5221 		sizeof(delayed_free)
5222 #ifdef CONFIG_PROVE_LOCKING
5223 		+ sizeof(lock_cq)
5224 		+ sizeof(lock_chains)
5225 		+ sizeof(lock_chains_in_use)
5226 		+ sizeof(chain_hlocks)
5227 #endif
5228 		) / 1024
5229 		);
5230 
5231 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5232 	printk(" memory used for stack traces: %zu kB\n",
5233 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5234 	       );
5235 #endif
5236 
5237 	printk(" per task-struct memory footprint: %zu bytes\n",
5238 	       sizeof(((struct task_struct *)NULL)->held_locks));
5239 }
5240 
5241 static void
5242 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5243 		     const void *mem_to, struct held_lock *hlock)
5244 {
5245 	if (!debug_locks_off())
5246 		return;
5247 	if (debug_locks_silent)
5248 		return;
5249 
5250 	pr_warn("\n");
5251 	pr_warn("=========================\n");
5252 	pr_warn("WARNING: held lock freed!\n");
5253 	print_kernel_ident();
5254 	pr_warn("-------------------------\n");
5255 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5256 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5257 	print_lock(hlock);
5258 	lockdep_print_held_locks(curr);
5259 
5260 	pr_warn("\nstack backtrace:\n");
5261 	dump_stack();
5262 }
5263 
5264 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5265 				const void* lock_from, unsigned long lock_len)
5266 {
5267 	return lock_from + lock_len <= mem_from ||
5268 		mem_from + mem_len <= lock_from;
5269 }
5270 
5271 /*
5272  * Called when kernel memory is freed (or unmapped), or if a lock
5273  * is destroyed or reinitialized - this code checks whether there is
5274  * any held lock in the memory range of <from> to <to>:
5275  */
5276 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5277 {
5278 	struct task_struct *curr = current;
5279 	struct held_lock *hlock;
5280 	unsigned long flags;
5281 	int i;
5282 
5283 	if (unlikely(!debug_locks))
5284 		return;
5285 
5286 	raw_local_irq_save(flags);
5287 	for (i = 0; i < curr->lockdep_depth; i++) {
5288 		hlock = curr->held_locks + i;
5289 
5290 		if (not_in_range(mem_from, mem_len, hlock->instance,
5291 					sizeof(*hlock->instance)))
5292 			continue;
5293 
5294 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5295 		break;
5296 	}
5297 	raw_local_irq_restore(flags);
5298 }
5299 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5300 
5301 static void print_held_locks_bug(void)
5302 {
5303 	if (!debug_locks_off())
5304 		return;
5305 	if (debug_locks_silent)
5306 		return;
5307 
5308 	pr_warn("\n");
5309 	pr_warn("====================================\n");
5310 	pr_warn("WARNING: %s/%d still has locks held!\n",
5311 	       current->comm, task_pid_nr(current));
5312 	print_kernel_ident();
5313 	pr_warn("------------------------------------\n");
5314 	lockdep_print_held_locks(current);
5315 	pr_warn("\nstack backtrace:\n");
5316 	dump_stack();
5317 }
5318 
5319 void debug_check_no_locks_held(void)
5320 {
5321 	if (unlikely(current->lockdep_depth > 0))
5322 		print_held_locks_bug();
5323 }
5324 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5325 
5326 #ifdef __KERNEL__
5327 void debug_show_all_locks(void)
5328 {
5329 	struct task_struct *g, *p;
5330 
5331 	if (unlikely(!debug_locks)) {
5332 		pr_warn("INFO: lockdep is turned off.\n");
5333 		return;
5334 	}
5335 	pr_warn("\nShowing all locks held in the system:\n");
5336 
5337 	rcu_read_lock();
5338 	for_each_process_thread(g, p) {
5339 		if (!p->lockdep_depth)
5340 			continue;
5341 		lockdep_print_held_locks(p);
5342 		touch_nmi_watchdog();
5343 		touch_all_softlockup_watchdogs();
5344 	}
5345 	rcu_read_unlock();
5346 
5347 	pr_warn("\n");
5348 	pr_warn("=============================================\n\n");
5349 }
5350 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5351 #endif
5352 
5353 /*
5354  * Careful: only use this function if you are sure that
5355  * the task cannot run in parallel!
5356  */
5357 void debug_show_held_locks(struct task_struct *task)
5358 {
5359 	if (unlikely(!debug_locks)) {
5360 		printk("INFO: lockdep is turned off.\n");
5361 		return;
5362 	}
5363 	lockdep_print_held_locks(task);
5364 }
5365 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5366 
5367 asmlinkage __visible void lockdep_sys_exit(void)
5368 {
5369 	struct task_struct *curr = current;
5370 
5371 	if (unlikely(curr->lockdep_depth)) {
5372 		if (!debug_locks_off())
5373 			return;
5374 		pr_warn("\n");
5375 		pr_warn("================================================\n");
5376 		pr_warn("WARNING: lock held when returning to user space!\n");
5377 		print_kernel_ident();
5378 		pr_warn("------------------------------------------------\n");
5379 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5380 				curr->comm, curr->pid);
5381 		lockdep_print_held_locks(curr);
5382 	}
5383 
5384 	/*
5385 	 * The lock history for each syscall should be independent. So wipe the
5386 	 * slate clean on return to userspace.
5387 	 */
5388 	lockdep_invariant_state(false);
5389 }
5390 
5391 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5392 {
5393 	struct task_struct *curr = current;
5394 
5395 	/* Note: the following can be executed concurrently, so be careful. */
5396 	pr_warn("\n");
5397 	pr_warn("=============================\n");
5398 	pr_warn("WARNING: suspicious RCU usage\n");
5399 	print_kernel_ident();
5400 	pr_warn("-----------------------------\n");
5401 	pr_warn("%s:%d %s!\n", file, line, s);
5402 	pr_warn("\nother info that might help us debug this:\n\n");
5403 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5404 	       !rcu_lockdep_current_cpu_online()
5405 			? "RCU used illegally from offline CPU!\n"
5406 			: !rcu_is_watching()
5407 				? "RCU used illegally from idle CPU!\n"
5408 				: "",
5409 	       rcu_scheduler_active, debug_locks);
5410 
5411 	/*
5412 	 * If a CPU is in the RCU-free window in idle (ie: in the section
5413 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5414 	 * considers that CPU to be in an "extended quiescent state",
5415 	 * which means that RCU will be completely ignoring that CPU.
5416 	 * Therefore, rcu_read_lock() and friends have absolutely no
5417 	 * effect on a CPU running in that state. In other words, even if
5418 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5419 	 * delete data structures out from under it.  RCU really has no
5420 	 * choice here: we need to keep an RCU-free window in idle where
5421 	 * the CPU may possibly enter into low power mode. This way we can
5422 	 * notice an extended quiescent state to other CPUs that started a grace
5423 	 * period. Otherwise we would delay any grace period as long as we run
5424 	 * in the idle task.
5425 	 *
5426 	 * So complain bitterly if someone does call rcu_read_lock(),
5427 	 * rcu_read_lock_bh() and so on from extended quiescent states.
5428 	 */
5429 	if (!rcu_is_watching())
5430 		pr_warn("RCU used illegally from extended quiescent state!\n");
5431 
5432 	lockdep_print_held_locks(curr);
5433 	pr_warn("\nstack backtrace:\n");
5434 	dump_stack();
5435 }
5436 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5437