1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * transition.c - Kernel Live Patching transition functions 4 * 5 * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/cpu.h> 11 #include <linux/stacktrace.h> 12 #include <linux/static_call.h> 13 #include "core.h" 14 #include "patch.h" 15 #include "transition.h" 16 17 #define MAX_STACK_ENTRIES 100 18 static DEFINE_PER_CPU(unsigned long[MAX_STACK_ENTRIES], klp_stack_entries); 19 20 #define STACK_ERR_BUF_SIZE 128 21 22 #define SIGNALS_TIMEOUT 15 23 24 struct klp_patch *klp_transition_patch; 25 26 static int klp_target_state = KLP_TRANSITION_IDLE; 27 28 static unsigned int klp_signals_cnt; 29 30 /* 31 * When a livepatch is in progress, enable klp stack checking in 32 * cond_resched(). This helps CPU-bound kthreads get patched. 33 */ 34 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 35 36 #define klp_cond_resched_enable() sched_dynamic_klp_enable() 37 #define klp_cond_resched_disable() sched_dynamic_klp_disable() 38 39 #else /* !CONFIG_PREEMPT_DYNAMIC || !CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 40 41 DEFINE_STATIC_KEY_FALSE(klp_sched_try_switch_key); 42 EXPORT_SYMBOL(klp_sched_try_switch_key); 43 44 #define klp_cond_resched_enable() static_branch_enable(&klp_sched_try_switch_key) 45 #define klp_cond_resched_disable() static_branch_disable(&klp_sched_try_switch_key) 46 47 #endif /* CONFIG_PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 48 49 /* 50 * This work can be performed periodically to finish patching or unpatching any 51 * "straggler" tasks which failed to transition in the first attempt. 52 */ 53 static void klp_transition_work_fn(struct work_struct *work) 54 { 55 mutex_lock(&klp_mutex); 56 57 if (klp_transition_patch) 58 klp_try_complete_transition(); 59 60 mutex_unlock(&klp_mutex); 61 } 62 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 63 64 /* 65 * This function is just a stub to implement a hard force 66 * of synchronize_rcu(). This requires synchronizing 67 * tasks even in userspace and idle. 68 */ 69 static void klp_sync(struct work_struct *work) 70 { 71 } 72 73 /* 74 * We allow to patch also functions where RCU is not watching, 75 * e.g. before user_exit(). We can not rely on the RCU infrastructure 76 * to do the synchronization. Instead hard force the sched synchronization. 77 * 78 * This approach allows to use RCU functions for manipulating func_stack 79 * safely. 80 */ 81 static void klp_synchronize_transition(void) 82 { 83 schedule_on_each_cpu(klp_sync); 84 } 85 86 /* 87 * The transition to the target patch state is complete. Clean up the data 88 * structures. 89 */ 90 static void klp_complete_transition(void) 91 { 92 struct klp_object *obj; 93 struct klp_func *func; 94 struct task_struct *g, *task; 95 unsigned int cpu; 96 97 pr_debug("'%s': completing %s transition\n", 98 klp_transition_patch->mod->name, 99 klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching"); 100 101 if (klp_transition_patch->replace && klp_target_state == KLP_TRANSITION_PATCHED) { 102 klp_unpatch_replaced_patches(klp_transition_patch); 103 klp_discard_nops(klp_transition_patch); 104 } 105 106 if (klp_target_state == KLP_TRANSITION_UNPATCHED) { 107 /* 108 * All tasks have transitioned to KLP_TRANSITION_UNPATCHED so we can now 109 * remove the new functions from the func_stack. 110 */ 111 klp_unpatch_objects(klp_transition_patch); 112 113 /* 114 * Make sure klp_ftrace_handler() can no longer see functions 115 * from this patch on the ops->func_stack. Otherwise, after 116 * func->transition gets cleared, the handler may choose a 117 * removed function. 118 */ 119 klp_synchronize_transition(); 120 } 121 122 klp_for_each_object(klp_transition_patch, obj) 123 klp_for_each_func(obj, func) 124 func->transition = false; 125 126 /* Prevent klp_ftrace_handler() from seeing KLP_TRANSITION_IDLE state */ 127 if (klp_target_state == KLP_TRANSITION_PATCHED) 128 klp_synchronize_transition(); 129 130 read_lock(&tasklist_lock); 131 for_each_process_thread(g, task) { 132 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 133 task->patch_state = KLP_TRANSITION_IDLE; 134 } 135 read_unlock(&tasklist_lock); 136 137 for_each_possible_cpu(cpu) { 138 task = idle_task(cpu); 139 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 140 task->patch_state = KLP_TRANSITION_IDLE; 141 } 142 143 klp_for_each_object(klp_transition_patch, obj) { 144 if (!klp_is_object_loaded(obj)) 145 continue; 146 if (klp_target_state == KLP_TRANSITION_PATCHED) 147 klp_post_patch_callback(obj); 148 else if (klp_target_state == KLP_TRANSITION_UNPATCHED) 149 klp_post_unpatch_callback(obj); 150 } 151 152 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 153 klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching"); 154 155 klp_target_state = KLP_TRANSITION_IDLE; 156 klp_transition_patch = NULL; 157 } 158 159 /* 160 * This is called in the error path, to cancel a transition before it has 161 * started, i.e. klp_init_transition() has been called but 162 * klp_start_transition() hasn't. If the transition *has* been started, 163 * klp_reverse_transition() should be used instead. 164 */ 165 void klp_cancel_transition(void) 166 { 167 if (WARN_ON_ONCE(klp_target_state != KLP_TRANSITION_PATCHED)) 168 return; 169 170 pr_debug("'%s': canceling patching transition, going to unpatch\n", 171 klp_transition_patch->mod->name); 172 173 klp_target_state = KLP_TRANSITION_UNPATCHED; 174 klp_complete_transition(); 175 } 176 177 /* 178 * Switch the patched state of the task to the set of functions in the target 179 * patch state. 180 * 181 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 182 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 183 */ 184 void klp_update_patch_state(struct task_struct *task) 185 { 186 /* 187 * A variant of synchronize_rcu() is used to allow patching functions 188 * where RCU is not watching, see klp_synchronize_transition(). 189 */ 190 preempt_disable_notrace(); 191 192 /* 193 * This test_and_clear_tsk_thread_flag() call also serves as a read 194 * barrier (smp_rmb) for two cases: 195 * 196 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 197 * klp_target_state read. The corresponding write barriers are in 198 * klp_init_transition() and klp_reverse_transition(). 199 * 200 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 201 * of func->transition, if klp_ftrace_handler() is called later on 202 * the same CPU. See __klp_disable_patch(). 203 */ 204 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 205 task->patch_state = READ_ONCE(klp_target_state); 206 207 preempt_enable_notrace(); 208 } 209 210 /* 211 * Determine whether the given stack trace includes any references to a 212 * to-be-patched or to-be-unpatched function. 213 */ 214 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries, 215 unsigned int nr_entries) 216 { 217 unsigned long func_addr, func_size, address; 218 struct klp_ops *ops; 219 int i; 220 221 if (klp_target_state == KLP_TRANSITION_UNPATCHED) { 222 /* 223 * Check for the to-be-unpatched function 224 * (the func itself). 225 */ 226 func_addr = (unsigned long)func->new_func; 227 func_size = func->new_size; 228 } else { 229 /* 230 * Check for the to-be-patched function 231 * (the previous func). 232 */ 233 ops = klp_find_ops(func->old_func); 234 235 if (list_is_singular(&ops->func_stack)) { 236 /* original function */ 237 func_addr = (unsigned long)func->old_func; 238 func_size = func->old_size; 239 } else { 240 /* previously patched function */ 241 struct klp_func *prev; 242 243 prev = list_next_entry(func, stack_node); 244 func_addr = (unsigned long)prev->new_func; 245 func_size = prev->new_size; 246 } 247 } 248 249 for (i = 0; i < nr_entries; i++) { 250 address = entries[i]; 251 252 if (address >= func_addr && address < func_addr + func_size) 253 return -EAGAIN; 254 } 255 256 return 0; 257 } 258 259 /* 260 * Determine whether it's safe to transition the task to the target patch state 261 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 262 */ 263 static int klp_check_stack(struct task_struct *task, const char **oldname) 264 { 265 unsigned long *entries = this_cpu_ptr(klp_stack_entries); 266 struct klp_object *obj; 267 struct klp_func *func; 268 int ret, nr_entries; 269 270 /* Protect 'klp_stack_entries' */ 271 lockdep_assert_preemption_disabled(); 272 273 ret = stack_trace_save_tsk_reliable(task, entries, MAX_STACK_ENTRIES); 274 if (ret < 0) 275 return -EINVAL; 276 nr_entries = ret; 277 278 klp_for_each_object(klp_transition_patch, obj) { 279 if (!obj->patched) 280 continue; 281 klp_for_each_func(obj, func) { 282 ret = klp_check_stack_func(func, entries, nr_entries); 283 if (ret) { 284 *oldname = func->old_name; 285 return -EADDRINUSE; 286 } 287 } 288 } 289 290 return 0; 291 } 292 293 static int klp_check_and_switch_task(struct task_struct *task, void *arg) 294 { 295 int ret; 296 297 if (task_curr(task) && task != current) 298 return -EBUSY; 299 300 ret = klp_check_stack(task, arg); 301 if (ret) 302 return ret; 303 304 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 305 task->patch_state = klp_target_state; 306 return 0; 307 } 308 309 /* 310 * Try to safely switch a task to the target patch state. If it's currently 311 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 312 * if the stack is unreliable, return false. 313 */ 314 static bool klp_try_switch_task(struct task_struct *task) 315 { 316 const char *old_name; 317 int ret; 318 319 /* check if this task has already switched over */ 320 if (task->patch_state == klp_target_state) 321 return true; 322 323 /* 324 * For arches which don't have reliable stack traces, we have to rely 325 * on other methods (e.g., switching tasks at kernel exit). 326 */ 327 if (!klp_have_reliable_stack()) 328 return false; 329 330 /* 331 * Now try to check the stack for any to-be-patched or to-be-unpatched 332 * functions. If all goes well, switch the task to the target patch 333 * state. 334 */ 335 if (task == current) 336 ret = klp_check_and_switch_task(current, &old_name); 337 else 338 ret = task_call_func(task, klp_check_and_switch_task, &old_name); 339 340 switch (ret) { 341 case 0: /* success */ 342 break; 343 344 case -EBUSY: /* klp_check_and_switch_task() */ 345 pr_debug("%s: %s:%d is running\n", 346 __func__, task->comm, task->pid); 347 break; 348 case -EINVAL: /* klp_check_and_switch_task() */ 349 pr_debug("%s: %s:%d has an unreliable stack\n", 350 __func__, task->comm, task->pid); 351 break; 352 case -EADDRINUSE: /* klp_check_and_switch_task() */ 353 pr_debug("%s: %s:%d is sleeping on function %s\n", 354 __func__, task->comm, task->pid, old_name); 355 break; 356 357 default: 358 pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n", 359 __func__, ret, task->comm, task->pid); 360 break; 361 } 362 363 return !ret; 364 } 365 366 void __klp_sched_try_switch(void) 367 { 368 if (likely(!klp_patch_pending(current))) 369 return; 370 371 /* 372 * This function is called from cond_resched() which is called in many 373 * places throughout the kernel. Using the klp_mutex here might 374 * deadlock. 375 * 376 * Instead, disable preemption to prevent racing with other callers of 377 * klp_try_switch_task(). Thanks to task_call_func() they won't be 378 * able to switch this task while it's running. 379 */ 380 preempt_disable(); 381 382 /* 383 * Make sure current didn't get patched between the above check and 384 * preempt_disable(). 385 */ 386 if (unlikely(!klp_patch_pending(current))) 387 goto out; 388 389 /* 390 * Enforce the order of the TIF_PATCH_PENDING read above and the 391 * klp_target_state read in klp_try_switch_task(). The corresponding 392 * write barriers are in klp_init_transition() and 393 * klp_reverse_transition(). 394 */ 395 smp_rmb(); 396 397 klp_try_switch_task(current); 398 399 out: 400 preempt_enable(); 401 } 402 EXPORT_SYMBOL(__klp_sched_try_switch); 403 404 /* 405 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. 406 * Kthreads with TIF_PATCH_PENDING set are woken up. 407 */ 408 static void klp_send_signals(void) 409 { 410 struct task_struct *g, *task; 411 412 if (klp_signals_cnt == SIGNALS_TIMEOUT) 413 pr_notice("signaling remaining tasks\n"); 414 415 read_lock(&tasklist_lock); 416 for_each_process_thread(g, task) { 417 if (!klp_patch_pending(task)) 418 continue; 419 420 /* 421 * There is a small race here. We could see TIF_PATCH_PENDING 422 * set and decide to wake up a kthread or send a fake signal. 423 * Meanwhile the task could migrate itself and the action 424 * would be meaningless. It is not serious though. 425 */ 426 if (task->flags & PF_KTHREAD) { 427 /* 428 * Wake up a kthread which sleeps interruptedly and 429 * still has not been migrated. 430 */ 431 wake_up_state(task, TASK_INTERRUPTIBLE); 432 } else { 433 /* 434 * Send fake signal to all non-kthread tasks which are 435 * still not migrated. 436 */ 437 set_notify_signal(task); 438 } 439 } 440 read_unlock(&tasklist_lock); 441 } 442 443 /* 444 * Try to switch all remaining tasks to the target patch state by walking the 445 * stacks of sleeping tasks and looking for any to-be-patched or 446 * to-be-unpatched functions. If such functions are found, the task can't be 447 * switched yet. 448 * 449 * If any tasks are still stuck in the initial patch state, schedule a retry. 450 */ 451 void klp_try_complete_transition(void) 452 { 453 unsigned int cpu; 454 struct task_struct *g, *task; 455 struct klp_patch *patch; 456 bool complete = true; 457 458 WARN_ON_ONCE(klp_target_state == KLP_TRANSITION_IDLE); 459 460 /* 461 * Try to switch the tasks to the target patch state by walking their 462 * stacks and looking for any to-be-patched or to-be-unpatched 463 * functions. If such functions are found on a stack, or if the stack 464 * is deemed unreliable, the task can't be switched yet. 465 * 466 * Usually this will transition most (or all) of the tasks on a system 467 * unless the patch includes changes to a very common function. 468 */ 469 read_lock(&tasklist_lock); 470 for_each_process_thread(g, task) 471 if (!klp_try_switch_task(task)) 472 complete = false; 473 read_unlock(&tasklist_lock); 474 475 /* 476 * Ditto for the idle "swapper" tasks. 477 */ 478 cpus_read_lock(); 479 for_each_possible_cpu(cpu) { 480 task = idle_task(cpu); 481 if (cpu_online(cpu)) { 482 if (!klp_try_switch_task(task)) { 483 complete = false; 484 /* Make idle task go through the main loop. */ 485 wake_up_if_idle(cpu); 486 } 487 } else if (task->patch_state != klp_target_state) { 488 /* offline idle tasks can be switched immediately */ 489 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 490 task->patch_state = klp_target_state; 491 } 492 } 493 cpus_read_unlock(); 494 495 if (!complete) { 496 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT)) 497 klp_send_signals(); 498 klp_signals_cnt++; 499 500 /* 501 * Some tasks weren't able to be switched over. Try again 502 * later and/or wait for other methods like kernel exit 503 * switching. 504 */ 505 schedule_delayed_work(&klp_transition_work, 506 round_jiffies_relative(HZ)); 507 return; 508 } 509 510 /* Done! Now cleanup the data structures. */ 511 klp_cond_resched_disable(); 512 patch = klp_transition_patch; 513 klp_complete_transition(); 514 515 /* 516 * It would make more sense to free the unused patches in 517 * klp_complete_transition() but it is called also 518 * from klp_cancel_transition(). 519 */ 520 if (!patch->enabled) 521 klp_free_patch_async(patch); 522 else if (patch->replace) 523 klp_free_replaced_patches_async(patch); 524 } 525 526 /* 527 * Start the transition to the specified target patch state so tasks can begin 528 * switching to it. 529 */ 530 void klp_start_transition(void) 531 { 532 struct task_struct *g, *task; 533 unsigned int cpu; 534 535 WARN_ON_ONCE(klp_target_state == KLP_TRANSITION_IDLE); 536 537 pr_notice("'%s': starting %s transition\n", 538 klp_transition_patch->mod->name, 539 klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching"); 540 541 /* 542 * Mark all normal tasks as needing a patch state update. They'll 543 * switch either in klp_try_complete_transition() or as they exit the 544 * kernel. 545 */ 546 read_lock(&tasklist_lock); 547 for_each_process_thread(g, task) 548 if (task->patch_state != klp_target_state) 549 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 550 read_unlock(&tasklist_lock); 551 552 /* 553 * Mark all idle tasks as needing a patch state update. They'll switch 554 * either in klp_try_complete_transition() or at the idle loop switch 555 * point. 556 */ 557 for_each_possible_cpu(cpu) { 558 task = idle_task(cpu); 559 if (task->patch_state != klp_target_state) 560 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 561 } 562 563 klp_cond_resched_enable(); 564 565 klp_signals_cnt = 0; 566 } 567 568 /* 569 * Initialize the global target patch state and all tasks to the initial patch 570 * state, and initialize all function transition states to true in preparation 571 * for patching or unpatching. 572 */ 573 void klp_init_transition(struct klp_patch *patch, int state) 574 { 575 struct task_struct *g, *task; 576 unsigned int cpu; 577 struct klp_object *obj; 578 struct klp_func *func; 579 int initial_state = !state; 580 581 WARN_ON_ONCE(klp_target_state != KLP_TRANSITION_IDLE); 582 583 klp_transition_patch = patch; 584 585 /* 586 * Set the global target patch state which tasks will switch to. This 587 * has no effect until the TIF_PATCH_PENDING flags get set later. 588 */ 589 klp_target_state = state; 590 591 pr_debug("'%s': initializing %s transition\n", patch->mod->name, 592 klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching"); 593 594 /* 595 * Initialize all tasks to the initial patch state to prepare them for 596 * switching to the target state. 597 */ 598 read_lock(&tasklist_lock); 599 for_each_process_thread(g, task) { 600 WARN_ON_ONCE(task->patch_state != KLP_TRANSITION_IDLE); 601 task->patch_state = initial_state; 602 } 603 read_unlock(&tasklist_lock); 604 605 /* 606 * Ditto for the idle "swapper" tasks. 607 */ 608 for_each_possible_cpu(cpu) { 609 task = idle_task(cpu); 610 WARN_ON_ONCE(task->patch_state != KLP_TRANSITION_IDLE); 611 task->patch_state = initial_state; 612 } 613 614 /* 615 * Enforce the order of the task->patch_state initializations and the 616 * func->transition updates to ensure that klp_ftrace_handler() doesn't 617 * see a func in transition with a task->patch_state of KLP_TRANSITION_IDLE. 618 * 619 * Also enforce the order of the klp_target_state write and future 620 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() and 621 * __klp_sched_try_switch() don't set a task->patch_state to 622 * KLP_TRANSITION_IDLE. 623 */ 624 smp_wmb(); 625 626 /* 627 * Set the func transition states so klp_ftrace_handler() will know to 628 * switch to the transition logic. 629 * 630 * When patching, the funcs aren't yet in the func_stack and will be 631 * made visible to the ftrace handler shortly by the calls to 632 * klp_patch_object(). 633 * 634 * When unpatching, the funcs are already in the func_stack and so are 635 * already visible to the ftrace handler. 636 */ 637 klp_for_each_object(patch, obj) 638 klp_for_each_func(obj, func) 639 func->transition = true; 640 } 641 642 /* 643 * This function can be called in the middle of an existing transition to 644 * reverse the direction of the target patch state. This can be done to 645 * effectively cancel an existing enable or disable operation if there are any 646 * tasks which are stuck in the initial patch state. 647 */ 648 void klp_reverse_transition(void) 649 { 650 unsigned int cpu; 651 struct task_struct *g, *task; 652 653 pr_debug("'%s': reversing transition from %s\n", 654 klp_transition_patch->mod->name, 655 klp_target_state == KLP_TRANSITION_PATCHED ? "patching to unpatching" : 656 "unpatching to patching"); 657 658 /* 659 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 660 * klp_update_patch_state() or __klp_sched_try_switch() running in 661 * parallel with the reverse transition. 662 */ 663 read_lock(&tasklist_lock); 664 for_each_process_thread(g, task) 665 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 666 read_unlock(&tasklist_lock); 667 668 for_each_possible_cpu(cpu) 669 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 670 671 /* 672 * Make sure all existing invocations of klp_update_patch_state() and 673 * __klp_sched_try_switch() see the cleared TIF_PATCH_PENDING before 674 * starting the reverse transition. 675 */ 676 klp_synchronize_transition(); 677 678 /* 679 * All patching has stopped, now re-initialize the global variables to 680 * prepare for the reverse transition. 681 */ 682 klp_transition_patch->enabled = !klp_transition_patch->enabled; 683 klp_target_state = !klp_target_state; 684 685 /* 686 * Enforce the order of the klp_target_state write and the 687 * TIF_PATCH_PENDING writes in klp_start_transition() to ensure 688 * klp_update_patch_state() and __klp_sched_try_switch() don't set 689 * task->patch_state to the wrong value. 690 */ 691 smp_wmb(); 692 693 klp_start_transition(); 694 } 695 696 /* Called from copy_process() during fork */ 697 void klp_copy_process(struct task_struct *child) 698 { 699 700 /* 701 * The parent process may have gone through a KLP transition since 702 * the thread flag was copied in setup_thread_stack earlier. Bring 703 * the task flag up to date with the parent here. 704 * 705 * The operation is serialized against all klp_*_transition() 706 * operations by the tasklist_lock. The only exceptions are 707 * klp_update_patch_state(current) and __klp_sched_try_switch(), but we 708 * cannot race with them because we are current. 709 */ 710 if (test_tsk_thread_flag(current, TIF_PATCH_PENDING)) 711 set_tsk_thread_flag(child, TIF_PATCH_PENDING); 712 else 713 clear_tsk_thread_flag(child, TIF_PATCH_PENDING); 714 715 child->patch_state = current->patch_state; 716 } 717 718 /* 719 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an 720 * existing transition to finish. 721 * 722 * NOTE: klp_update_patch_state(task) requires the task to be inactive or 723 * 'current'. This is not the case here and the consistency model could be 724 * broken. Administrator, who is the only one to execute the 725 * klp_force_transitions(), has to be aware of this. 726 */ 727 void klp_force_transition(void) 728 { 729 struct klp_patch *patch; 730 struct task_struct *g, *task; 731 unsigned int cpu; 732 733 pr_warn("forcing remaining tasks to the patched state\n"); 734 735 read_lock(&tasklist_lock); 736 for_each_process_thread(g, task) 737 klp_update_patch_state(task); 738 read_unlock(&tasklist_lock); 739 740 for_each_possible_cpu(cpu) 741 klp_update_patch_state(idle_task(cpu)); 742 743 /* Set forced flag for patches being removed. */ 744 if (klp_target_state == KLP_TRANSITION_UNPATCHED) 745 klp_transition_patch->forced = true; 746 else if (klp_transition_patch->replace) { 747 klp_for_each_patch(patch) { 748 if (patch != klp_transition_patch) 749 patch->forced = true; 750 } 751 } 752 } 753