xref: /linux/kernel/livepatch/core.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  * - __klp_sched_try_switch()
37  */
38 DEFINE_MUTEX(klp_mutex);
39 
40 /*
41  * Actively used patches: enabled or in transition. Note that replaced
42  * or disabled patches are not listed even though the related kernel
43  * module still can be loaded.
44  */
45 LIST_HEAD(klp_patches);
46 
47 static struct kobject *klp_root_kobj;
48 
49 static bool klp_is_module(struct klp_object *obj)
50 {
51 	return obj->name;
52 }
53 
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 	struct module *mod;
58 
59 	if (!klp_is_module(obj))
60 		return;
61 
62 	rcu_read_lock_sched();
63 	/*
64 	 * We do not want to block removal of patched modules and therefore
65 	 * we do not take a reference here. The patches are removed by
66 	 * klp_module_going() instead.
67 	 */
68 	mod = find_module(obj->name);
69 	/*
70 	 * Do not mess work of klp_module_coming() and klp_module_going().
71 	 * Note that the patch might still be needed before klp_module_going()
72 	 * is called. Module functions can be called even in the GOING state
73 	 * until mod->exit() finishes. This is especially important for
74 	 * patches that modify semantic of the functions.
75 	 */
76 	if (mod && mod->klp_alive)
77 		obj->mod = mod;
78 
79 	rcu_read_unlock_sched();
80 }
81 
82 static bool klp_initialized(void)
83 {
84 	return !!klp_root_kobj;
85 }
86 
87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 				      struct klp_func *old_func)
89 {
90 	struct klp_func *func;
91 
92 	klp_for_each_func(obj, func) {
93 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 		    (old_func->old_sympos == func->old_sympos)) {
95 			return func;
96 		}
97 	}
98 
99 	return NULL;
100 }
101 
102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 					  struct klp_object *old_obj)
104 {
105 	struct klp_object *obj;
106 
107 	klp_for_each_object(patch, obj) {
108 		if (klp_is_module(old_obj)) {
109 			if (klp_is_module(obj) &&
110 			    strcmp(old_obj->name, obj->name) == 0) {
111 				return obj;
112 			}
113 		} else if (!klp_is_module(obj)) {
114 			return obj;
115 		}
116 	}
117 
118 	return NULL;
119 }
120 
121 struct klp_find_arg {
122 	const char *name;
123 	unsigned long addr;
124 	unsigned long count;
125 	unsigned long pos;
126 };
127 
128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 	struct klp_find_arg *args = data;
131 
132 	args->addr = addr;
133 	args->count++;
134 
135 	/*
136 	 * Finish the search when the symbol is found for the desired position
137 	 * or the position is not defined for a non-unique symbol.
138 	 */
139 	if ((args->pos && (args->count == args->pos)) ||
140 	    (!args->pos && (args->count > 1)))
141 		return 1;
142 
143 	return 0;
144 }
145 
146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 	struct klp_find_arg *args = data;
149 
150 	if (strcmp(args->name, name))
151 		return 0;
152 
153 	return klp_match_callback(data, addr);
154 }
155 
156 static int klp_find_object_symbol(const char *objname, const char *name,
157 				  unsigned long sympos, unsigned long *addr)
158 {
159 	struct klp_find_arg args = {
160 		.name = name,
161 		.addr = 0,
162 		.count = 0,
163 		.pos = sympos,
164 	};
165 
166 	if (objname)
167 		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 	else
169 		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170 
171 	/*
172 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 	 * otherwise ensure the symbol position count matches sympos.
174 	 */
175 	if (args.addr == 0)
176 		pr_err("symbol '%s' not found in symbol table\n", name);
177 	else if (args.count > 1 && sympos == 0) {
178 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 		       name, objname);
180 	} else if (sympos != args.count && sympos > 0) {
181 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 		       sympos, name, objname ? objname : "vmlinux");
183 	} else {
184 		*addr = args.addr;
185 		return 0;
186 	}
187 
188 	*addr = 0;
189 	return -EINVAL;
190 }
191 
192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 			       unsigned int symndx, Elf_Shdr *relasec,
194 			       const char *sec_objname)
195 {
196 	int i, cnt, ret;
197 	char sym_objname[MODULE_NAME_LEN];
198 	char sym_name[KSYM_NAME_LEN];
199 	Elf_Rela *relas;
200 	Elf_Sym *sym;
201 	unsigned long sympos, addr;
202 	bool sym_vmlinux;
203 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204 
205 	/*
206 	 * Since the field widths for sym_objname and sym_name in the sscanf()
207 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 	 * and KSYM_NAME_LEN have the values we expect them to have.
210 	 *
211 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 	 * we use the smallest/strictest upper bound possible (56, based on
213 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 	 */
215 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216 
217 	relas = (Elf_Rela *) relasec->sh_addr;
218 	/* For each rela in this klp relocation section */
219 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 		if (sym->st_shndx != SHN_LIVEPATCH) {
222 			pr_err("symbol %s is not marked as a livepatch symbol\n",
223 			       strtab + sym->st_name);
224 			return -EINVAL;
225 		}
226 
227 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
228 		cnt = sscanf(strtab + sym->st_name,
229 			     ".klp.sym.%55[^.].%511[^,],%lu",
230 			     sym_objname, sym_name, &sympos);
231 		if (cnt != 3) {
232 			pr_err("symbol %s has an incorrectly formatted name\n",
233 			       strtab + sym->st_name);
234 			return -EINVAL;
235 		}
236 
237 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238 
239 		/*
240 		 * Prevent module-specific KLP rela sections from referencing
241 		 * vmlinux symbols.  This helps prevent ordering issues with
242 		 * module special section initializations.  Presumably such
243 		 * symbols are exported and normal relas can be used instead.
244 		 */
245 		if (!sec_vmlinux && sym_vmlinux) {
246 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 			       sym_name);
248 			return -EINVAL;
249 		}
250 
251 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 					     sym_name, sympos, &addr);
254 		if (ret)
255 			return ret;
256 
257 		sym->st_value = addr;
258 	}
259 
260 	return 0;
261 }
262 
263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 		   const char *strtab,
265 		   unsigned int symindex,
266 		   unsigned int relsec,
267 		   struct module *me)
268 {
269 }
270 
271 /*
272  * At a high-level, there are two types of klp relocation sections: those which
273  * reference symbols which live in vmlinux; and those which reference symbols
274  * which live in other modules.  This function is called for both types:
275  *
276  * 1) When a klp module itself loads, the module code calls this function to
277  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278  *    These relocations are written to the klp module text to allow the patched
279  *    code/data to reference unexported vmlinux symbols.  They're written as
280  *    early as possible to ensure that other module init code (.e.g.,
281  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
282  *    might be referenced by the klp module's special sections.
283  *
284  * 2) When a to-be-patched module loads -- or is already loaded when a
285  *    corresponding klp module loads -- klp code calls this function to write
286  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
287  *    are written to the klp module text to allow the patched code/data to
288  *    reference symbols which live in the to-be-patched module or one of its
289  *    module dependencies.  Exported symbols are supported, in addition to
290  *    unexported symbols, in order to enable late module patching, which allows
291  *    the to-be-patched module to be loaded and patched sometime *after* the
292  *    klp module is loaded.
293  */
294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 				    const char *shstrtab, const char *strtab,
296 				    unsigned int symndx, unsigned int secndx,
297 				    const char *objname, bool apply)
298 {
299 	int cnt, ret;
300 	char sec_objname[MODULE_NAME_LEN];
301 	Elf_Shdr *sec = sechdrs + secndx;
302 
303 	/*
304 	 * Format: .klp.rela.sec_objname.section_name
305 	 * See comment in klp_resolve_symbols() for an explanation
306 	 * of the selected field width value.
307 	 */
308 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 		     sec_objname);
310 	if (cnt != 1) {
311 		pr_err("section %s has an incorrectly formatted name\n",
312 		       shstrtab + sec->sh_name);
313 		return -EINVAL;
314 	}
315 
316 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 		return 0;
318 
319 	if (apply) {
320 		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 					  sec, sec_objname);
322 		if (ret)
323 			return ret;
324 
325 		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 	}
327 
328 	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 	return 0;
330 }
331 
332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 			     const char *shstrtab, const char *strtab,
334 			     unsigned int symndx, unsigned int secndx,
335 			     const char *objname)
336 {
337 	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 					secndx, objname, true);
339 }
340 
341 /*
342  * Sysfs Interface
343  *
344  * /sys/kernel/livepatch
345  * /sys/kernel/livepatch/<patch>
346  * /sys/kernel/livepatch/<patch>/enabled
347  * /sys/kernel/livepatch/<patch>/transition
348  * /sys/kernel/livepatch/<patch>/force
349  * /sys/kernel/livepatch/<patch>/replace
350  * /sys/kernel/livepatch/<patch>/stack_order
351  * /sys/kernel/livepatch/<patch>/<object>
352  * /sys/kernel/livepatch/<patch>/<object>/patched
353  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
354  */
355 static int __klp_disable_patch(struct klp_patch *patch);
356 
357 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
358 			     const char *buf, size_t count)
359 {
360 	struct klp_patch *patch;
361 	int ret;
362 	bool enabled;
363 
364 	ret = kstrtobool(buf, &enabled);
365 	if (ret)
366 		return ret;
367 
368 	patch = container_of(kobj, struct klp_patch, kobj);
369 
370 	mutex_lock(&klp_mutex);
371 
372 	if (patch->enabled == enabled) {
373 		/* already in requested state */
374 		ret = -EINVAL;
375 		goto out;
376 	}
377 
378 	/*
379 	 * Allow to reverse a pending transition in both ways. It might be
380 	 * necessary to complete the transition without forcing and breaking
381 	 * the system integrity.
382 	 *
383 	 * Do not allow to re-enable a disabled patch.
384 	 */
385 	if (patch == klp_transition_patch)
386 		klp_reverse_transition();
387 	else if (!enabled)
388 		ret = __klp_disable_patch(patch);
389 	else
390 		ret = -EINVAL;
391 
392 out:
393 	mutex_unlock(&klp_mutex);
394 
395 	if (ret)
396 		return ret;
397 	return count;
398 }
399 
400 static ssize_t enabled_show(struct kobject *kobj,
401 			    struct kobj_attribute *attr, char *buf)
402 {
403 	struct klp_patch *patch;
404 
405 	patch = container_of(kobj, struct klp_patch, kobj);
406 	return sysfs_emit(buf, "%d\n", patch->enabled);
407 }
408 
409 static ssize_t transition_show(struct kobject *kobj,
410 			       struct kobj_attribute *attr, char *buf)
411 {
412 	struct klp_patch *patch;
413 
414 	patch = container_of(kobj, struct klp_patch, kobj);
415 	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
416 }
417 
418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419 			   const char *buf, size_t count)
420 {
421 	struct klp_patch *patch;
422 	int ret;
423 	bool val;
424 
425 	ret = kstrtobool(buf, &val);
426 	if (ret)
427 		return ret;
428 
429 	if (!val)
430 		return count;
431 
432 	mutex_lock(&klp_mutex);
433 
434 	patch = container_of(kobj, struct klp_patch, kobj);
435 	if (patch != klp_transition_patch) {
436 		mutex_unlock(&klp_mutex);
437 		return -EINVAL;
438 	}
439 
440 	klp_force_transition();
441 
442 	mutex_unlock(&klp_mutex);
443 
444 	return count;
445 }
446 
447 static ssize_t replace_show(struct kobject *kobj,
448 			    struct kobj_attribute *attr, char *buf)
449 {
450 	struct klp_patch *patch;
451 
452 	patch = container_of(kobj, struct klp_patch, kobj);
453 	return sysfs_emit(buf, "%d\n", patch->replace);
454 }
455 
456 static ssize_t stack_order_show(struct kobject *kobj,
457 				struct kobj_attribute *attr, char *buf)
458 {
459 	struct klp_patch *patch, *this_patch;
460 	int stack_order = 0;
461 
462 	this_patch = container_of(kobj, struct klp_patch, kobj);
463 
464 	mutex_lock(&klp_mutex);
465 
466 	klp_for_each_patch(patch) {
467 		stack_order++;
468 		if (patch == this_patch)
469 			break;
470 	}
471 
472 	mutex_unlock(&klp_mutex);
473 
474 	return sysfs_emit(buf, "%d\n", stack_order);
475 }
476 
477 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
478 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
479 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
480 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
481 static struct kobj_attribute stack_order_kobj_attr = __ATTR_RO(stack_order);
482 static struct attribute *klp_patch_attrs[] = {
483 	&enabled_kobj_attr.attr,
484 	&transition_kobj_attr.attr,
485 	&force_kobj_attr.attr,
486 	&replace_kobj_attr.attr,
487 	&stack_order_kobj_attr.attr,
488 	NULL
489 };
490 ATTRIBUTE_GROUPS(klp_patch);
491 
492 static ssize_t patched_show(struct kobject *kobj,
493 			    struct kobj_attribute *attr, char *buf)
494 {
495 	struct klp_object *obj;
496 
497 	obj = container_of(kobj, struct klp_object, kobj);
498 	return sysfs_emit(buf, "%d\n", obj->patched);
499 }
500 
501 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
502 static struct attribute *klp_object_attrs[] = {
503 	&patched_kobj_attr.attr,
504 	NULL,
505 };
506 ATTRIBUTE_GROUPS(klp_object);
507 
508 static void klp_free_object_dynamic(struct klp_object *obj)
509 {
510 	kfree(obj->name);
511 	kfree(obj);
512 }
513 
514 static void klp_init_func_early(struct klp_object *obj,
515 				struct klp_func *func);
516 static void klp_init_object_early(struct klp_patch *patch,
517 				  struct klp_object *obj);
518 
519 static struct klp_object *klp_alloc_object_dynamic(const char *name,
520 						   struct klp_patch *patch)
521 {
522 	struct klp_object *obj;
523 
524 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
525 	if (!obj)
526 		return NULL;
527 
528 	if (name) {
529 		obj->name = kstrdup(name, GFP_KERNEL);
530 		if (!obj->name) {
531 			kfree(obj);
532 			return NULL;
533 		}
534 	}
535 
536 	klp_init_object_early(patch, obj);
537 	obj->dynamic = true;
538 
539 	return obj;
540 }
541 
542 static void klp_free_func_nop(struct klp_func *func)
543 {
544 	kfree(func->old_name);
545 	kfree(func);
546 }
547 
548 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
549 					   struct klp_object *obj)
550 {
551 	struct klp_func *func;
552 
553 	func = kzalloc(sizeof(*func), GFP_KERNEL);
554 	if (!func)
555 		return NULL;
556 
557 	if (old_func->old_name) {
558 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
559 		if (!func->old_name) {
560 			kfree(func);
561 			return NULL;
562 		}
563 	}
564 
565 	klp_init_func_early(obj, func);
566 	/*
567 	 * func->new_func is same as func->old_func. These addresses are
568 	 * set when the object is loaded, see klp_init_object_loaded().
569 	 */
570 	func->old_sympos = old_func->old_sympos;
571 	func->nop = true;
572 
573 	return func;
574 }
575 
576 static int klp_add_object_nops(struct klp_patch *patch,
577 			       struct klp_object *old_obj)
578 {
579 	struct klp_object *obj;
580 	struct klp_func *func, *old_func;
581 
582 	obj = klp_find_object(patch, old_obj);
583 
584 	if (!obj) {
585 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
586 		if (!obj)
587 			return -ENOMEM;
588 	}
589 
590 	klp_for_each_func(old_obj, old_func) {
591 		func = klp_find_func(obj, old_func);
592 		if (func)
593 			continue;
594 
595 		func = klp_alloc_func_nop(old_func, obj);
596 		if (!func)
597 			return -ENOMEM;
598 	}
599 
600 	return 0;
601 }
602 
603 /*
604  * Add 'nop' functions which simply return to the caller to run
605  * the original function. The 'nop' functions are added to a
606  * patch to facilitate a 'replace' mode.
607  */
608 static int klp_add_nops(struct klp_patch *patch)
609 {
610 	struct klp_patch *old_patch;
611 	struct klp_object *old_obj;
612 
613 	klp_for_each_patch(old_patch) {
614 		klp_for_each_object(old_patch, old_obj) {
615 			int err;
616 
617 			err = klp_add_object_nops(patch, old_obj);
618 			if (err)
619 				return err;
620 		}
621 	}
622 
623 	return 0;
624 }
625 
626 static void klp_kobj_release_patch(struct kobject *kobj)
627 {
628 	struct klp_patch *patch;
629 
630 	patch = container_of(kobj, struct klp_patch, kobj);
631 	complete(&patch->finish);
632 }
633 
634 static const struct kobj_type klp_ktype_patch = {
635 	.release = klp_kobj_release_patch,
636 	.sysfs_ops = &kobj_sysfs_ops,
637 	.default_groups = klp_patch_groups,
638 };
639 
640 static void klp_kobj_release_object(struct kobject *kobj)
641 {
642 	struct klp_object *obj;
643 
644 	obj = container_of(kobj, struct klp_object, kobj);
645 
646 	if (obj->dynamic)
647 		klp_free_object_dynamic(obj);
648 }
649 
650 static const struct kobj_type klp_ktype_object = {
651 	.release = klp_kobj_release_object,
652 	.sysfs_ops = &kobj_sysfs_ops,
653 	.default_groups = klp_object_groups,
654 };
655 
656 static void klp_kobj_release_func(struct kobject *kobj)
657 {
658 	struct klp_func *func;
659 
660 	func = container_of(kobj, struct klp_func, kobj);
661 
662 	if (func->nop)
663 		klp_free_func_nop(func);
664 }
665 
666 static const struct kobj_type klp_ktype_func = {
667 	.release = klp_kobj_release_func,
668 	.sysfs_ops = &kobj_sysfs_ops,
669 };
670 
671 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
672 {
673 	struct klp_func *func, *tmp_func;
674 
675 	klp_for_each_func_safe(obj, func, tmp_func) {
676 		if (nops_only && !func->nop)
677 			continue;
678 
679 		list_del(&func->node);
680 		kobject_put(&func->kobj);
681 	}
682 }
683 
684 /* Clean up when a patched object is unloaded */
685 static void klp_free_object_loaded(struct klp_object *obj)
686 {
687 	struct klp_func *func;
688 
689 	obj->mod = NULL;
690 
691 	klp_for_each_func(obj, func) {
692 		func->old_func = NULL;
693 
694 		if (func->nop)
695 			func->new_func = NULL;
696 	}
697 }
698 
699 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
700 {
701 	struct klp_object *obj, *tmp_obj;
702 
703 	klp_for_each_object_safe(patch, obj, tmp_obj) {
704 		__klp_free_funcs(obj, nops_only);
705 
706 		if (nops_only && !obj->dynamic)
707 			continue;
708 
709 		list_del(&obj->node);
710 		kobject_put(&obj->kobj);
711 	}
712 }
713 
714 static void klp_free_objects(struct klp_patch *patch)
715 {
716 	__klp_free_objects(patch, false);
717 }
718 
719 static void klp_free_objects_dynamic(struct klp_patch *patch)
720 {
721 	__klp_free_objects(patch, true);
722 }
723 
724 /*
725  * This function implements the free operations that can be called safely
726  * under klp_mutex.
727  *
728  * The operation must be completed by calling klp_free_patch_finish()
729  * outside klp_mutex.
730  */
731 static void klp_free_patch_start(struct klp_patch *patch)
732 {
733 	if (!list_empty(&patch->list))
734 		list_del(&patch->list);
735 
736 	klp_free_objects(patch);
737 }
738 
739 /*
740  * This function implements the free part that must be called outside
741  * klp_mutex.
742  *
743  * It must be called after klp_free_patch_start(). And it has to be
744  * the last function accessing the livepatch structures when the patch
745  * gets disabled.
746  */
747 static void klp_free_patch_finish(struct klp_patch *patch)
748 {
749 	/*
750 	 * Avoid deadlock with enabled_store() sysfs callback by
751 	 * calling this outside klp_mutex. It is safe because
752 	 * this is called when the patch gets disabled and it
753 	 * cannot get enabled again.
754 	 */
755 	kobject_put(&patch->kobj);
756 	wait_for_completion(&patch->finish);
757 
758 	/* Put the module after the last access to struct klp_patch. */
759 	if (!patch->forced)
760 		module_put(patch->mod);
761 }
762 
763 /*
764  * The livepatch might be freed from sysfs interface created by the patch.
765  * This work allows to wait until the interface is destroyed in a separate
766  * context.
767  */
768 static void klp_free_patch_work_fn(struct work_struct *work)
769 {
770 	struct klp_patch *patch =
771 		container_of(work, struct klp_patch, free_work);
772 
773 	klp_free_patch_finish(patch);
774 }
775 
776 void klp_free_patch_async(struct klp_patch *patch)
777 {
778 	klp_free_patch_start(patch);
779 	schedule_work(&patch->free_work);
780 }
781 
782 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
783 {
784 	struct klp_patch *old_patch, *tmp_patch;
785 
786 	klp_for_each_patch_safe(old_patch, tmp_patch) {
787 		if (old_patch == new_patch)
788 			return;
789 		klp_free_patch_async(old_patch);
790 	}
791 }
792 
793 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
794 {
795 	if (!func->old_name)
796 		return -EINVAL;
797 
798 	/*
799 	 * NOPs get the address later. The patched module must be loaded,
800 	 * see klp_init_object_loaded().
801 	 */
802 	if (!func->new_func && !func->nop)
803 		return -EINVAL;
804 
805 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
806 		return -EINVAL;
807 
808 	INIT_LIST_HEAD(&func->stack_node);
809 	func->patched = false;
810 	func->transition = false;
811 
812 	/* The format for the sysfs directory is <function,sympos> where sympos
813 	 * is the nth occurrence of this symbol in kallsyms for the patched
814 	 * object. If the user selects 0 for old_sympos, then 1 will be used
815 	 * since a unique symbol will be the first occurrence.
816 	 */
817 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
818 			   func->old_name,
819 			   func->old_sympos ? func->old_sympos : 1);
820 }
821 
822 static int klp_write_object_relocs(struct klp_patch *patch,
823 				   struct klp_object *obj,
824 				   bool apply)
825 {
826 	int i, ret;
827 	struct klp_modinfo *info = patch->mod->klp_info;
828 
829 	for (i = 1; i < info->hdr.e_shnum; i++) {
830 		Elf_Shdr *sec = info->sechdrs + i;
831 
832 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
833 			continue;
834 
835 		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
836 					       info->secstrings,
837 					       patch->mod->core_kallsyms.strtab,
838 					       info->symndx, i, obj->name, apply);
839 		if (ret)
840 			return ret;
841 	}
842 
843 	return 0;
844 }
845 
846 static int klp_apply_object_relocs(struct klp_patch *patch,
847 				   struct klp_object *obj)
848 {
849 	return klp_write_object_relocs(patch, obj, true);
850 }
851 
852 static void klp_clear_object_relocs(struct klp_patch *patch,
853 				    struct klp_object *obj)
854 {
855 	klp_write_object_relocs(patch, obj, false);
856 }
857 
858 /* parts of the initialization that is done only when the object is loaded */
859 static int klp_init_object_loaded(struct klp_patch *patch,
860 				  struct klp_object *obj)
861 {
862 	struct klp_func *func;
863 	int ret;
864 
865 	if (klp_is_module(obj)) {
866 		/*
867 		 * Only write module-specific relocations here
868 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
869 		 * written earlier during the initialization of the klp module
870 		 * itself.
871 		 */
872 		ret = klp_apply_object_relocs(patch, obj);
873 		if (ret)
874 			return ret;
875 	}
876 
877 	klp_for_each_func(obj, func) {
878 		ret = klp_find_object_symbol(obj->name, func->old_name,
879 					     func->old_sympos,
880 					     (unsigned long *)&func->old_func);
881 		if (ret)
882 			return ret;
883 
884 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
885 						  &func->old_size, NULL);
886 		if (!ret) {
887 			pr_err("kallsyms size lookup failed for '%s'\n",
888 			       func->old_name);
889 			return -ENOENT;
890 		}
891 
892 		if (func->nop)
893 			func->new_func = func->old_func;
894 
895 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
896 						  &func->new_size, NULL);
897 		if (!ret) {
898 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
899 			       func->old_name);
900 			return -ENOENT;
901 		}
902 	}
903 
904 	return 0;
905 }
906 
907 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
908 {
909 	struct klp_func *func;
910 	int ret;
911 	const char *name;
912 
913 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
914 		return -EINVAL;
915 
916 	obj->patched = false;
917 	obj->mod = NULL;
918 
919 	klp_find_object_module(obj);
920 
921 	name = klp_is_module(obj) ? obj->name : "vmlinux";
922 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
923 	if (ret)
924 		return ret;
925 
926 	klp_for_each_func(obj, func) {
927 		ret = klp_init_func(obj, func);
928 		if (ret)
929 			return ret;
930 	}
931 
932 	if (klp_is_object_loaded(obj))
933 		ret = klp_init_object_loaded(patch, obj);
934 
935 	return ret;
936 }
937 
938 static void klp_init_func_early(struct klp_object *obj,
939 				struct klp_func *func)
940 {
941 	kobject_init(&func->kobj, &klp_ktype_func);
942 	list_add_tail(&func->node, &obj->func_list);
943 }
944 
945 static void klp_init_object_early(struct klp_patch *patch,
946 				  struct klp_object *obj)
947 {
948 	INIT_LIST_HEAD(&obj->func_list);
949 	kobject_init(&obj->kobj, &klp_ktype_object);
950 	list_add_tail(&obj->node, &patch->obj_list);
951 }
952 
953 static void klp_init_patch_early(struct klp_patch *patch)
954 {
955 	struct klp_object *obj;
956 	struct klp_func *func;
957 
958 	INIT_LIST_HEAD(&patch->list);
959 	INIT_LIST_HEAD(&patch->obj_list);
960 	kobject_init(&patch->kobj, &klp_ktype_patch);
961 	patch->enabled = false;
962 	patch->forced = false;
963 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
964 	init_completion(&patch->finish);
965 
966 	klp_for_each_object_static(patch, obj) {
967 		klp_init_object_early(patch, obj);
968 
969 		klp_for_each_func_static(obj, func) {
970 			klp_init_func_early(obj, func);
971 		}
972 	}
973 }
974 
975 static int klp_init_patch(struct klp_patch *patch)
976 {
977 	struct klp_object *obj;
978 	int ret;
979 
980 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
981 	if (ret)
982 		return ret;
983 
984 	if (patch->replace) {
985 		ret = klp_add_nops(patch);
986 		if (ret)
987 			return ret;
988 	}
989 
990 	klp_for_each_object(patch, obj) {
991 		ret = klp_init_object(patch, obj);
992 		if (ret)
993 			return ret;
994 	}
995 
996 	list_add_tail(&patch->list, &klp_patches);
997 
998 	return 0;
999 }
1000 
1001 static int __klp_disable_patch(struct klp_patch *patch)
1002 {
1003 	struct klp_object *obj;
1004 
1005 	if (WARN_ON(!patch->enabled))
1006 		return -EINVAL;
1007 
1008 	if (klp_transition_patch)
1009 		return -EBUSY;
1010 
1011 	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
1012 
1013 	klp_for_each_object(patch, obj)
1014 		if (obj->patched)
1015 			klp_pre_unpatch_callback(obj);
1016 
1017 	/*
1018 	 * Enforce the order of the func->transition writes in
1019 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
1020 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
1021 	 * is called shortly after klp_update_patch_state() switches the task,
1022 	 * this ensures the handler sees that func->transition is set.
1023 	 */
1024 	smp_wmb();
1025 
1026 	klp_start_transition();
1027 	patch->enabled = false;
1028 	klp_try_complete_transition();
1029 
1030 	return 0;
1031 }
1032 
1033 static int __klp_enable_patch(struct klp_patch *patch)
1034 {
1035 	struct klp_object *obj;
1036 	int ret;
1037 
1038 	if (klp_transition_patch)
1039 		return -EBUSY;
1040 
1041 	if (WARN_ON(patch->enabled))
1042 		return -EINVAL;
1043 
1044 	pr_notice("enabling patch '%s'\n", patch->mod->name);
1045 
1046 	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1047 
1048 	/*
1049 	 * Enforce the order of the func->transition writes in
1050 	 * klp_init_transition() and the ops->func_stack writes in
1051 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1052 	 * func->transition updates before the handler is registered and the
1053 	 * new funcs become visible to the handler.
1054 	 */
1055 	smp_wmb();
1056 
1057 	klp_for_each_object(patch, obj) {
1058 		if (!klp_is_object_loaded(obj))
1059 			continue;
1060 
1061 		ret = klp_pre_patch_callback(obj);
1062 		if (ret) {
1063 			pr_warn("pre-patch callback failed for object '%s'\n",
1064 				klp_is_module(obj) ? obj->name : "vmlinux");
1065 			goto err;
1066 		}
1067 
1068 		ret = klp_patch_object(obj);
1069 		if (ret) {
1070 			pr_warn("failed to patch object '%s'\n",
1071 				klp_is_module(obj) ? obj->name : "vmlinux");
1072 			goto err;
1073 		}
1074 	}
1075 
1076 	klp_start_transition();
1077 	patch->enabled = true;
1078 	klp_try_complete_transition();
1079 
1080 	return 0;
1081 err:
1082 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1083 
1084 	klp_cancel_transition();
1085 	return ret;
1086 }
1087 
1088 /**
1089  * klp_enable_patch() - enable the livepatch
1090  * @patch:	patch to be enabled
1091  *
1092  * Initializes the data structure associated with the patch, creates the sysfs
1093  * interface, performs the needed symbol lookups and code relocations,
1094  * registers the patched functions with ftrace.
1095  *
1096  * This function is supposed to be called from the livepatch module_init()
1097  * callback.
1098  *
1099  * Return: 0 on success, otherwise error
1100  */
1101 int klp_enable_patch(struct klp_patch *patch)
1102 {
1103 	int ret;
1104 	struct klp_object *obj;
1105 
1106 	if (!patch || !patch->mod || !patch->objs)
1107 		return -EINVAL;
1108 
1109 	klp_for_each_object_static(patch, obj) {
1110 		if (!obj->funcs)
1111 			return -EINVAL;
1112 	}
1113 
1114 
1115 	if (!is_livepatch_module(patch->mod)) {
1116 		pr_err("module %s is not marked as a livepatch module\n",
1117 		       patch->mod->name);
1118 		return -EINVAL;
1119 	}
1120 
1121 	if (!klp_initialized())
1122 		return -ENODEV;
1123 
1124 	if (!klp_have_reliable_stack()) {
1125 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1126 		pr_warn("The livepatch transition may never complete.\n");
1127 	}
1128 
1129 	mutex_lock(&klp_mutex);
1130 
1131 	if (!klp_is_patch_compatible(patch)) {
1132 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1133 			patch->mod->name);
1134 		mutex_unlock(&klp_mutex);
1135 		return -EINVAL;
1136 	}
1137 
1138 	if (!try_module_get(patch->mod)) {
1139 		mutex_unlock(&klp_mutex);
1140 		return -ENODEV;
1141 	}
1142 
1143 	klp_init_patch_early(patch);
1144 
1145 	ret = klp_init_patch(patch);
1146 	if (ret)
1147 		goto err;
1148 
1149 	ret = __klp_enable_patch(patch);
1150 	if (ret)
1151 		goto err;
1152 
1153 	mutex_unlock(&klp_mutex);
1154 
1155 	return 0;
1156 
1157 err:
1158 	klp_free_patch_start(patch);
1159 
1160 	mutex_unlock(&klp_mutex);
1161 
1162 	klp_free_patch_finish(patch);
1163 
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(klp_enable_patch);
1167 
1168 /*
1169  * This function unpatches objects from the replaced livepatches.
1170  *
1171  * We could be pretty aggressive here. It is called in the situation where
1172  * these structures are no longer accessed from the ftrace handler.
1173  * All functions are redirected by the klp_transition_patch. They
1174  * use either a new code or they are in the original code because
1175  * of the special nop function patches.
1176  *
1177  * The only exception is when the transition was forced. In this case,
1178  * klp_ftrace_handler() might still see the replaced patch on the stack.
1179  * Fortunately, it is carefully designed to work with removed functions
1180  * thanks to RCU. We only have to keep the patches on the system. Also
1181  * this is handled transparently by patch->module_put.
1182  */
1183 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1184 {
1185 	struct klp_patch *old_patch;
1186 
1187 	klp_for_each_patch(old_patch) {
1188 		if (old_patch == new_patch)
1189 			return;
1190 
1191 		old_patch->enabled = false;
1192 		klp_unpatch_objects(old_patch);
1193 	}
1194 }
1195 
1196 /*
1197  * This function removes the dynamically allocated 'nop' functions.
1198  *
1199  * We could be pretty aggressive. NOPs do not change the existing
1200  * behavior except for adding unnecessary delay by the ftrace handler.
1201  *
1202  * It is safe even when the transition was forced. The ftrace handler
1203  * will see a valid ops->func_stack entry thanks to RCU.
1204  *
1205  * We could even free the NOPs structures. They must be the last entry
1206  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1207  * It does the same as klp_synchronize_transition() to make sure that
1208  * nobody is inside the ftrace handler once the operation finishes.
1209  *
1210  * IMPORTANT: It must be called right after removing the replaced patches!
1211  */
1212 void klp_discard_nops(struct klp_patch *new_patch)
1213 {
1214 	klp_unpatch_objects_dynamic(klp_transition_patch);
1215 	klp_free_objects_dynamic(klp_transition_patch);
1216 }
1217 
1218 /*
1219  * Remove parts of patches that touch a given kernel module. The list of
1220  * patches processed might be limited. When limit is NULL, all patches
1221  * will be handled.
1222  */
1223 static void klp_cleanup_module_patches_limited(struct module *mod,
1224 					       struct klp_patch *limit)
1225 {
1226 	struct klp_patch *patch;
1227 	struct klp_object *obj;
1228 
1229 	klp_for_each_patch(patch) {
1230 		if (patch == limit)
1231 			break;
1232 
1233 		klp_for_each_object(patch, obj) {
1234 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1235 				continue;
1236 
1237 			if (patch != klp_transition_patch)
1238 				klp_pre_unpatch_callback(obj);
1239 
1240 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1241 				  patch->mod->name, obj->mod->name);
1242 			klp_unpatch_object(obj);
1243 
1244 			klp_post_unpatch_callback(obj);
1245 			klp_clear_object_relocs(patch, obj);
1246 			klp_free_object_loaded(obj);
1247 			break;
1248 		}
1249 	}
1250 }
1251 
1252 int klp_module_coming(struct module *mod)
1253 {
1254 	int ret;
1255 	struct klp_patch *patch;
1256 	struct klp_object *obj;
1257 
1258 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1259 		return -EINVAL;
1260 
1261 	if (!strcmp(mod->name, "vmlinux")) {
1262 		pr_err("vmlinux.ko: invalid module name\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	mutex_lock(&klp_mutex);
1267 	/*
1268 	 * Each module has to know that klp_module_coming()
1269 	 * has been called. We never know what module will
1270 	 * get patched by a new patch.
1271 	 */
1272 	mod->klp_alive = true;
1273 
1274 	klp_for_each_patch(patch) {
1275 		klp_for_each_object(patch, obj) {
1276 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1277 				continue;
1278 
1279 			obj->mod = mod;
1280 
1281 			ret = klp_init_object_loaded(patch, obj);
1282 			if (ret) {
1283 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1284 					patch->mod->name, obj->mod->name, ret);
1285 				goto err;
1286 			}
1287 
1288 			pr_notice("applying patch '%s' to loading module '%s'\n",
1289 				  patch->mod->name, obj->mod->name);
1290 
1291 			ret = klp_pre_patch_callback(obj);
1292 			if (ret) {
1293 				pr_warn("pre-patch callback failed for object '%s'\n",
1294 					obj->name);
1295 				goto err;
1296 			}
1297 
1298 			ret = klp_patch_object(obj);
1299 			if (ret) {
1300 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1301 					patch->mod->name, obj->mod->name, ret);
1302 
1303 				klp_post_unpatch_callback(obj);
1304 				goto err;
1305 			}
1306 
1307 			if (patch != klp_transition_patch)
1308 				klp_post_patch_callback(obj);
1309 
1310 			break;
1311 		}
1312 	}
1313 
1314 	mutex_unlock(&klp_mutex);
1315 
1316 	return 0;
1317 
1318 err:
1319 	/*
1320 	 * If a patch is unsuccessfully applied, return
1321 	 * error to the module loader.
1322 	 */
1323 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1324 		patch->mod->name, obj->mod->name, obj->mod->name);
1325 	mod->klp_alive = false;
1326 	obj->mod = NULL;
1327 	klp_cleanup_module_patches_limited(mod, patch);
1328 	mutex_unlock(&klp_mutex);
1329 
1330 	return ret;
1331 }
1332 
1333 void klp_module_going(struct module *mod)
1334 {
1335 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1336 		    mod->state != MODULE_STATE_COMING))
1337 		return;
1338 
1339 	mutex_lock(&klp_mutex);
1340 	/*
1341 	 * Each module has to know that klp_module_going()
1342 	 * has been called. We never know what module will
1343 	 * get patched by a new patch.
1344 	 */
1345 	mod->klp_alive = false;
1346 
1347 	klp_cleanup_module_patches_limited(mod, NULL);
1348 
1349 	mutex_unlock(&klp_mutex);
1350 }
1351 
1352 static int __init klp_init(void)
1353 {
1354 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1355 	if (!klp_root_kobj)
1356 		return -ENOMEM;
1357 
1358 	return 0;
1359 }
1360 
1361 module_init(klp_init);
1362