1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 * - __klp_sched_try_switch() 37 */ 38 DEFINE_MUTEX(klp_mutex); 39 40 /* 41 * Actively used patches: enabled or in transition. Note that replaced 42 * or disabled patches are not listed even though the related kernel 43 * module still can be loaded. 44 */ 45 LIST_HEAD(klp_patches); 46 47 static struct kobject *klp_root_kobj; 48 49 static bool klp_is_module(struct klp_object *obj) 50 { 51 return obj->name; 52 } 53 54 /* sets obj->mod if object is not vmlinux and module is found */ 55 static void klp_find_object_module(struct klp_object *obj) 56 { 57 struct module *mod; 58 59 if (!klp_is_module(obj)) 60 return; 61 62 rcu_read_lock_sched(); 63 /* 64 * We do not want to block removal of patched modules and therefore 65 * we do not take a reference here. The patches are removed by 66 * klp_module_going() instead. 67 */ 68 mod = find_module(obj->name); 69 /* 70 * Do not mess work of klp_module_coming() and klp_module_going(). 71 * Note that the patch might still be needed before klp_module_going() 72 * is called. Module functions can be called even in the GOING state 73 * until mod->exit() finishes. This is especially important for 74 * patches that modify semantic of the functions. 75 */ 76 if (mod && mod->klp_alive) 77 obj->mod = mod; 78 79 rcu_read_unlock_sched(); 80 } 81 82 static bool klp_initialized(void) 83 { 84 return !!klp_root_kobj; 85 } 86 87 static struct klp_func *klp_find_func(struct klp_object *obj, 88 struct klp_func *old_func) 89 { 90 struct klp_func *func; 91 92 klp_for_each_func(obj, func) { 93 if ((strcmp(old_func->old_name, func->old_name) == 0) && 94 (old_func->old_sympos == func->old_sympos)) { 95 return func; 96 } 97 } 98 99 return NULL; 100 } 101 102 static struct klp_object *klp_find_object(struct klp_patch *patch, 103 struct klp_object *old_obj) 104 { 105 struct klp_object *obj; 106 107 klp_for_each_object(patch, obj) { 108 if (klp_is_module(old_obj)) { 109 if (klp_is_module(obj) && 110 strcmp(old_obj->name, obj->name) == 0) { 111 return obj; 112 } 113 } else if (!klp_is_module(obj)) { 114 return obj; 115 } 116 } 117 118 return NULL; 119 } 120 121 struct klp_find_arg { 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_match_callback(void *data, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 args->addr = addr; 133 args->count++; 134 135 /* 136 * Finish the search when the symbol is found for the desired position 137 * or the position is not defined for a non-unique symbol. 138 */ 139 if ((args->pos && (args->count == args->pos)) || 140 (!args->pos && (args->count > 1))) 141 return 1; 142 143 return 0; 144 } 145 146 static int klp_find_callback(void *data, const char *name, unsigned long addr) 147 { 148 struct klp_find_arg *args = data; 149 150 if (strcmp(args->name, name)) 151 return 0; 152 153 return klp_match_callback(data, addr); 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 if (objname) 167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 168 else 169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 170 171 /* 172 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 173 * otherwise ensure the symbol position count matches sympos. 174 */ 175 if (args.addr == 0) 176 pr_err("symbol '%s' not found in symbol table\n", name); 177 else if (args.count > 1 && sympos == 0) { 178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 179 name, objname); 180 } else if (sympos != args.count && sympos > 0) { 181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 182 sympos, name, objname ? objname : "vmlinux"); 183 } else { 184 *addr = args.addr; 185 return 0; 186 } 187 188 *addr = 0; 189 return -EINVAL; 190 } 191 192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 193 unsigned int symndx, Elf_Shdr *relasec, 194 const char *sec_objname) 195 { 196 int i, cnt, ret; 197 char sym_objname[MODULE_NAME_LEN]; 198 char sym_name[KSYM_NAME_LEN]; 199 Elf_Rela *relas; 200 Elf_Sym *sym; 201 unsigned long sympos, addr; 202 bool sym_vmlinux; 203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 204 205 /* 206 * Since the field widths for sym_objname and sym_name in the sscanf() 207 * call are hard-coded and correspond to MODULE_NAME_LEN and 208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 209 * and KSYM_NAME_LEN have the values we expect them to have. 210 * 211 * Because the value of MODULE_NAME_LEN can differ among architectures, 212 * we use the smallest/strictest upper bound possible (56, based on 213 * the current definition of MODULE_NAME_LEN) to prevent overflows. 214 */ 215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 216 217 relas = (Elf_Rela *) relasec->sh_addr; 218 /* For each rela in this klp relocation section */ 219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 221 if (sym->st_shndx != SHN_LIVEPATCH) { 222 pr_err("symbol %s is not marked as a livepatch symbol\n", 223 strtab + sym->st_name); 224 return -EINVAL; 225 } 226 227 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 228 cnt = sscanf(strtab + sym->st_name, 229 ".klp.sym.%55[^.].%511[^,],%lu", 230 sym_objname, sym_name, &sympos); 231 if (cnt != 3) { 232 pr_err("symbol %s has an incorrectly formatted name\n", 233 strtab + sym->st_name); 234 return -EINVAL; 235 } 236 237 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 238 239 /* 240 * Prevent module-specific KLP rela sections from referencing 241 * vmlinux symbols. This helps prevent ordering issues with 242 * module special section initializations. Presumably such 243 * symbols are exported and normal relas can be used instead. 244 */ 245 if (!sec_vmlinux && sym_vmlinux) { 246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n", 247 sym_name); 248 return -EINVAL; 249 } 250 251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 253 sym_name, sympos, &addr); 254 if (ret) 255 return ret; 256 257 sym->st_value = addr; 258 } 259 260 return 0; 261 } 262 263 void __weak clear_relocate_add(Elf_Shdr *sechdrs, 264 const char *strtab, 265 unsigned int symindex, 266 unsigned int relsec, 267 struct module *me) 268 { 269 } 270 271 /* 272 * At a high-level, there are two types of klp relocation sections: those which 273 * reference symbols which live in vmlinux; and those which reference symbols 274 * which live in other modules. This function is called for both types: 275 * 276 * 1) When a klp module itself loads, the module code calls this function to 277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 278 * These relocations are written to the klp module text to allow the patched 279 * code/data to reference unexported vmlinux symbols. They're written as 280 * early as possible to ensure that other module init code (.e.g., 281 * jump_label_apply_nops) can access any unexported vmlinux symbols which 282 * might be referenced by the klp module's special sections. 283 * 284 * 2) When a to-be-patched module loads -- or is already loaded when a 285 * corresponding klp module loads -- klp code calls this function to write 286 * module-specific klp relocations (.klp.rela.{module}.* sections). These 287 * are written to the klp module text to allow the patched code/data to 288 * reference symbols which live in the to-be-patched module or one of its 289 * module dependencies. Exported symbols are supported, in addition to 290 * unexported symbols, in order to enable late module patching, which allows 291 * the to-be-patched module to be loaded and patched sometime *after* the 292 * klp module is loaded. 293 */ 294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 295 const char *shstrtab, const char *strtab, 296 unsigned int symndx, unsigned int secndx, 297 const char *objname, bool apply) 298 { 299 int cnt, ret; 300 char sec_objname[MODULE_NAME_LEN]; 301 Elf_Shdr *sec = sechdrs + secndx; 302 303 /* 304 * Format: .klp.rela.sec_objname.section_name 305 * See comment in klp_resolve_symbols() for an explanation 306 * of the selected field width value. 307 */ 308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 309 sec_objname); 310 if (cnt != 1) { 311 pr_err("section %s has an incorrectly formatted name\n", 312 shstrtab + sec->sh_name); 313 return -EINVAL; 314 } 315 316 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 317 return 0; 318 319 if (apply) { 320 ret = klp_resolve_symbols(sechdrs, strtab, symndx, 321 sec, sec_objname); 322 if (ret) 323 return ret; 324 325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 326 } 327 328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 329 return 0; 330 } 331 332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 333 const char *shstrtab, const char *strtab, 334 unsigned int symndx, unsigned int secndx, 335 const char *objname) 336 { 337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx, 338 secndx, objname, true); 339 } 340 341 /* 342 * Sysfs Interface 343 * 344 * /sys/kernel/livepatch 345 * /sys/kernel/livepatch/<patch> 346 * /sys/kernel/livepatch/<patch>/enabled 347 * /sys/kernel/livepatch/<patch>/transition 348 * /sys/kernel/livepatch/<patch>/force 349 * /sys/kernel/livepatch/<patch>/replace 350 * /sys/kernel/livepatch/<patch>/<object> 351 * /sys/kernel/livepatch/<patch>/<object>/patched 352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 353 */ 354 static int __klp_disable_patch(struct klp_patch *patch); 355 356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 357 const char *buf, size_t count) 358 { 359 struct klp_patch *patch; 360 int ret; 361 bool enabled; 362 363 ret = kstrtobool(buf, &enabled); 364 if (ret) 365 return ret; 366 367 patch = container_of(kobj, struct klp_patch, kobj); 368 369 mutex_lock(&klp_mutex); 370 371 if (patch->enabled == enabled) { 372 /* already in requested state */ 373 ret = -EINVAL; 374 goto out; 375 } 376 377 /* 378 * Allow to reverse a pending transition in both ways. It might be 379 * necessary to complete the transition without forcing and breaking 380 * the system integrity. 381 * 382 * Do not allow to re-enable a disabled patch. 383 */ 384 if (patch == klp_transition_patch) 385 klp_reverse_transition(); 386 else if (!enabled) 387 ret = __klp_disable_patch(patch); 388 else 389 ret = -EINVAL; 390 391 out: 392 mutex_unlock(&klp_mutex); 393 394 if (ret) 395 return ret; 396 return count; 397 } 398 399 static ssize_t enabled_show(struct kobject *kobj, 400 struct kobj_attribute *attr, char *buf) 401 { 402 struct klp_patch *patch; 403 404 patch = container_of(kobj, struct klp_patch, kobj); 405 return sysfs_emit(buf, "%d\n", patch->enabled); 406 } 407 408 static ssize_t transition_show(struct kobject *kobj, 409 struct kobj_attribute *attr, char *buf) 410 { 411 struct klp_patch *patch; 412 413 patch = container_of(kobj, struct klp_patch, kobj); 414 return sysfs_emit(buf, "%d\n", patch == klp_transition_patch); 415 } 416 417 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 418 const char *buf, size_t count) 419 { 420 struct klp_patch *patch; 421 int ret; 422 bool val; 423 424 ret = kstrtobool(buf, &val); 425 if (ret) 426 return ret; 427 428 if (!val) 429 return count; 430 431 mutex_lock(&klp_mutex); 432 433 patch = container_of(kobj, struct klp_patch, kobj); 434 if (patch != klp_transition_patch) { 435 mutex_unlock(&klp_mutex); 436 return -EINVAL; 437 } 438 439 klp_force_transition(); 440 441 mutex_unlock(&klp_mutex); 442 443 return count; 444 } 445 446 static ssize_t replace_show(struct kobject *kobj, 447 struct kobj_attribute *attr, char *buf) 448 { 449 struct klp_patch *patch; 450 451 patch = container_of(kobj, struct klp_patch, kobj); 452 return sysfs_emit(buf, "%d\n", patch->replace); 453 } 454 455 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 456 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 457 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 458 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace); 459 static struct attribute *klp_patch_attrs[] = { 460 &enabled_kobj_attr.attr, 461 &transition_kobj_attr.attr, 462 &force_kobj_attr.attr, 463 &replace_kobj_attr.attr, 464 NULL 465 }; 466 ATTRIBUTE_GROUPS(klp_patch); 467 468 static ssize_t patched_show(struct kobject *kobj, 469 struct kobj_attribute *attr, char *buf) 470 { 471 struct klp_object *obj; 472 473 obj = container_of(kobj, struct klp_object, kobj); 474 return sysfs_emit(buf, "%d\n", obj->patched); 475 } 476 477 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 478 static struct attribute *klp_object_attrs[] = { 479 &patched_kobj_attr.attr, 480 NULL, 481 }; 482 ATTRIBUTE_GROUPS(klp_object); 483 484 static void klp_free_object_dynamic(struct klp_object *obj) 485 { 486 kfree(obj->name); 487 kfree(obj); 488 } 489 490 static void klp_init_func_early(struct klp_object *obj, 491 struct klp_func *func); 492 static void klp_init_object_early(struct klp_patch *patch, 493 struct klp_object *obj); 494 495 static struct klp_object *klp_alloc_object_dynamic(const char *name, 496 struct klp_patch *patch) 497 { 498 struct klp_object *obj; 499 500 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 501 if (!obj) 502 return NULL; 503 504 if (name) { 505 obj->name = kstrdup(name, GFP_KERNEL); 506 if (!obj->name) { 507 kfree(obj); 508 return NULL; 509 } 510 } 511 512 klp_init_object_early(patch, obj); 513 obj->dynamic = true; 514 515 return obj; 516 } 517 518 static void klp_free_func_nop(struct klp_func *func) 519 { 520 kfree(func->old_name); 521 kfree(func); 522 } 523 524 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 525 struct klp_object *obj) 526 { 527 struct klp_func *func; 528 529 func = kzalloc(sizeof(*func), GFP_KERNEL); 530 if (!func) 531 return NULL; 532 533 if (old_func->old_name) { 534 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 535 if (!func->old_name) { 536 kfree(func); 537 return NULL; 538 } 539 } 540 541 klp_init_func_early(obj, func); 542 /* 543 * func->new_func is same as func->old_func. These addresses are 544 * set when the object is loaded, see klp_init_object_loaded(). 545 */ 546 func->old_sympos = old_func->old_sympos; 547 func->nop = true; 548 549 return func; 550 } 551 552 static int klp_add_object_nops(struct klp_patch *patch, 553 struct klp_object *old_obj) 554 { 555 struct klp_object *obj; 556 struct klp_func *func, *old_func; 557 558 obj = klp_find_object(patch, old_obj); 559 560 if (!obj) { 561 obj = klp_alloc_object_dynamic(old_obj->name, patch); 562 if (!obj) 563 return -ENOMEM; 564 } 565 566 klp_for_each_func(old_obj, old_func) { 567 func = klp_find_func(obj, old_func); 568 if (func) 569 continue; 570 571 func = klp_alloc_func_nop(old_func, obj); 572 if (!func) 573 return -ENOMEM; 574 } 575 576 return 0; 577 } 578 579 /* 580 * Add 'nop' functions which simply return to the caller to run 581 * the original function. The 'nop' functions are added to a 582 * patch to facilitate a 'replace' mode. 583 */ 584 static int klp_add_nops(struct klp_patch *patch) 585 { 586 struct klp_patch *old_patch; 587 struct klp_object *old_obj; 588 589 klp_for_each_patch(old_patch) { 590 klp_for_each_object(old_patch, old_obj) { 591 int err; 592 593 err = klp_add_object_nops(patch, old_obj); 594 if (err) 595 return err; 596 } 597 } 598 599 return 0; 600 } 601 602 static void klp_kobj_release_patch(struct kobject *kobj) 603 { 604 struct klp_patch *patch; 605 606 patch = container_of(kobj, struct klp_patch, kobj); 607 complete(&patch->finish); 608 } 609 610 static const struct kobj_type klp_ktype_patch = { 611 .release = klp_kobj_release_patch, 612 .sysfs_ops = &kobj_sysfs_ops, 613 .default_groups = klp_patch_groups, 614 }; 615 616 static void klp_kobj_release_object(struct kobject *kobj) 617 { 618 struct klp_object *obj; 619 620 obj = container_of(kobj, struct klp_object, kobj); 621 622 if (obj->dynamic) 623 klp_free_object_dynamic(obj); 624 } 625 626 static const struct kobj_type klp_ktype_object = { 627 .release = klp_kobj_release_object, 628 .sysfs_ops = &kobj_sysfs_ops, 629 .default_groups = klp_object_groups, 630 }; 631 632 static void klp_kobj_release_func(struct kobject *kobj) 633 { 634 struct klp_func *func; 635 636 func = container_of(kobj, struct klp_func, kobj); 637 638 if (func->nop) 639 klp_free_func_nop(func); 640 } 641 642 static const struct kobj_type klp_ktype_func = { 643 .release = klp_kobj_release_func, 644 .sysfs_ops = &kobj_sysfs_ops, 645 }; 646 647 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 648 { 649 struct klp_func *func, *tmp_func; 650 651 klp_for_each_func_safe(obj, func, tmp_func) { 652 if (nops_only && !func->nop) 653 continue; 654 655 list_del(&func->node); 656 kobject_put(&func->kobj); 657 } 658 } 659 660 /* Clean up when a patched object is unloaded */ 661 static void klp_free_object_loaded(struct klp_object *obj) 662 { 663 struct klp_func *func; 664 665 obj->mod = NULL; 666 667 klp_for_each_func(obj, func) { 668 func->old_func = NULL; 669 670 if (func->nop) 671 func->new_func = NULL; 672 } 673 } 674 675 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 676 { 677 struct klp_object *obj, *tmp_obj; 678 679 klp_for_each_object_safe(patch, obj, tmp_obj) { 680 __klp_free_funcs(obj, nops_only); 681 682 if (nops_only && !obj->dynamic) 683 continue; 684 685 list_del(&obj->node); 686 kobject_put(&obj->kobj); 687 } 688 } 689 690 static void klp_free_objects(struct klp_patch *patch) 691 { 692 __klp_free_objects(patch, false); 693 } 694 695 static void klp_free_objects_dynamic(struct klp_patch *patch) 696 { 697 __klp_free_objects(patch, true); 698 } 699 700 /* 701 * This function implements the free operations that can be called safely 702 * under klp_mutex. 703 * 704 * The operation must be completed by calling klp_free_patch_finish() 705 * outside klp_mutex. 706 */ 707 static void klp_free_patch_start(struct klp_patch *patch) 708 { 709 if (!list_empty(&patch->list)) 710 list_del(&patch->list); 711 712 klp_free_objects(patch); 713 } 714 715 /* 716 * This function implements the free part that must be called outside 717 * klp_mutex. 718 * 719 * It must be called after klp_free_patch_start(). And it has to be 720 * the last function accessing the livepatch structures when the patch 721 * gets disabled. 722 */ 723 static void klp_free_patch_finish(struct klp_patch *patch) 724 { 725 /* 726 * Avoid deadlock with enabled_store() sysfs callback by 727 * calling this outside klp_mutex. It is safe because 728 * this is called when the patch gets disabled and it 729 * cannot get enabled again. 730 */ 731 kobject_put(&patch->kobj); 732 wait_for_completion(&patch->finish); 733 734 /* Put the module after the last access to struct klp_patch. */ 735 if (!patch->forced) 736 module_put(patch->mod); 737 } 738 739 /* 740 * The livepatch might be freed from sysfs interface created by the patch. 741 * This work allows to wait until the interface is destroyed in a separate 742 * context. 743 */ 744 static void klp_free_patch_work_fn(struct work_struct *work) 745 { 746 struct klp_patch *patch = 747 container_of(work, struct klp_patch, free_work); 748 749 klp_free_patch_finish(patch); 750 } 751 752 void klp_free_patch_async(struct klp_patch *patch) 753 { 754 klp_free_patch_start(patch); 755 schedule_work(&patch->free_work); 756 } 757 758 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 759 { 760 struct klp_patch *old_patch, *tmp_patch; 761 762 klp_for_each_patch_safe(old_patch, tmp_patch) { 763 if (old_patch == new_patch) 764 return; 765 klp_free_patch_async(old_patch); 766 } 767 } 768 769 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 770 { 771 if (!func->old_name) 772 return -EINVAL; 773 774 /* 775 * NOPs get the address later. The patched module must be loaded, 776 * see klp_init_object_loaded(). 777 */ 778 if (!func->new_func && !func->nop) 779 return -EINVAL; 780 781 if (strlen(func->old_name) >= KSYM_NAME_LEN) 782 return -EINVAL; 783 784 INIT_LIST_HEAD(&func->stack_node); 785 func->patched = false; 786 func->transition = false; 787 788 /* The format for the sysfs directory is <function,sympos> where sympos 789 * is the nth occurrence of this symbol in kallsyms for the patched 790 * object. If the user selects 0 for old_sympos, then 1 will be used 791 * since a unique symbol will be the first occurrence. 792 */ 793 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 794 func->old_name, 795 func->old_sympos ? func->old_sympos : 1); 796 } 797 798 static int klp_write_object_relocs(struct klp_patch *patch, 799 struct klp_object *obj, 800 bool apply) 801 { 802 int i, ret; 803 struct klp_modinfo *info = patch->mod->klp_info; 804 805 for (i = 1; i < info->hdr.e_shnum; i++) { 806 Elf_Shdr *sec = info->sechdrs + i; 807 808 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 809 continue; 810 811 ret = klp_write_section_relocs(patch->mod, info->sechdrs, 812 info->secstrings, 813 patch->mod->core_kallsyms.strtab, 814 info->symndx, i, obj->name, apply); 815 if (ret) 816 return ret; 817 } 818 819 return 0; 820 } 821 822 static int klp_apply_object_relocs(struct klp_patch *patch, 823 struct klp_object *obj) 824 { 825 return klp_write_object_relocs(patch, obj, true); 826 } 827 828 static void klp_clear_object_relocs(struct klp_patch *patch, 829 struct klp_object *obj) 830 { 831 klp_write_object_relocs(patch, obj, false); 832 } 833 834 /* parts of the initialization that is done only when the object is loaded */ 835 static int klp_init_object_loaded(struct klp_patch *patch, 836 struct klp_object *obj) 837 { 838 struct klp_func *func; 839 int ret; 840 841 if (klp_is_module(obj)) { 842 /* 843 * Only write module-specific relocations here 844 * (.klp.rela.{module}.*). vmlinux-specific relocations were 845 * written earlier during the initialization of the klp module 846 * itself. 847 */ 848 ret = klp_apply_object_relocs(patch, obj); 849 if (ret) 850 return ret; 851 } 852 853 klp_for_each_func(obj, func) { 854 ret = klp_find_object_symbol(obj->name, func->old_name, 855 func->old_sympos, 856 (unsigned long *)&func->old_func); 857 if (ret) 858 return ret; 859 860 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 861 &func->old_size, NULL); 862 if (!ret) { 863 pr_err("kallsyms size lookup failed for '%s'\n", 864 func->old_name); 865 return -ENOENT; 866 } 867 868 if (func->nop) 869 func->new_func = func->old_func; 870 871 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 872 &func->new_size, NULL); 873 if (!ret) { 874 pr_err("kallsyms size lookup failed for '%s' replacement\n", 875 func->old_name); 876 return -ENOENT; 877 } 878 } 879 880 return 0; 881 } 882 883 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 884 { 885 struct klp_func *func; 886 int ret; 887 const char *name; 888 889 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 890 return -EINVAL; 891 892 obj->patched = false; 893 obj->mod = NULL; 894 895 klp_find_object_module(obj); 896 897 name = klp_is_module(obj) ? obj->name : "vmlinux"; 898 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 899 if (ret) 900 return ret; 901 902 klp_for_each_func(obj, func) { 903 ret = klp_init_func(obj, func); 904 if (ret) 905 return ret; 906 } 907 908 if (klp_is_object_loaded(obj)) 909 ret = klp_init_object_loaded(patch, obj); 910 911 return ret; 912 } 913 914 static void klp_init_func_early(struct klp_object *obj, 915 struct klp_func *func) 916 { 917 kobject_init(&func->kobj, &klp_ktype_func); 918 list_add_tail(&func->node, &obj->func_list); 919 } 920 921 static void klp_init_object_early(struct klp_patch *patch, 922 struct klp_object *obj) 923 { 924 INIT_LIST_HEAD(&obj->func_list); 925 kobject_init(&obj->kobj, &klp_ktype_object); 926 list_add_tail(&obj->node, &patch->obj_list); 927 } 928 929 static void klp_init_patch_early(struct klp_patch *patch) 930 { 931 struct klp_object *obj; 932 struct klp_func *func; 933 934 INIT_LIST_HEAD(&patch->list); 935 INIT_LIST_HEAD(&patch->obj_list); 936 kobject_init(&patch->kobj, &klp_ktype_patch); 937 patch->enabled = false; 938 patch->forced = false; 939 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 940 init_completion(&patch->finish); 941 942 klp_for_each_object_static(patch, obj) { 943 klp_init_object_early(patch, obj); 944 945 klp_for_each_func_static(obj, func) { 946 klp_init_func_early(obj, func); 947 } 948 } 949 } 950 951 static int klp_init_patch(struct klp_patch *patch) 952 { 953 struct klp_object *obj; 954 int ret; 955 956 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 957 if (ret) 958 return ret; 959 960 if (patch->replace) { 961 ret = klp_add_nops(patch); 962 if (ret) 963 return ret; 964 } 965 966 klp_for_each_object(patch, obj) { 967 ret = klp_init_object(patch, obj); 968 if (ret) 969 return ret; 970 } 971 972 list_add_tail(&patch->list, &klp_patches); 973 974 return 0; 975 } 976 977 static int __klp_disable_patch(struct klp_patch *patch) 978 { 979 struct klp_object *obj; 980 981 if (WARN_ON(!patch->enabled)) 982 return -EINVAL; 983 984 if (klp_transition_patch) 985 return -EBUSY; 986 987 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED); 988 989 klp_for_each_object(patch, obj) 990 if (obj->patched) 991 klp_pre_unpatch_callback(obj); 992 993 /* 994 * Enforce the order of the func->transition writes in 995 * klp_init_transition() and the TIF_PATCH_PENDING writes in 996 * klp_start_transition(). In the rare case where klp_ftrace_handler() 997 * is called shortly after klp_update_patch_state() switches the task, 998 * this ensures the handler sees that func->transition is set. 999 */ 1000 smp_wmb(); 1001 1002 klp_start_transition(); 1003 patch->enabled = false; 1004 klp_try_complete_transition(); 1005 1006 return 0; 1007 } 1008 1009 static int __klp_enable_patch(struct klp_patch *patch) 1010 { 1011 struct klp_object *obj; 1012 int ret; 1013 1014 if (klp_transition_patch) 1015 return -EBUSY; 1016 1017 if (WARN_ON(patch->enabled)) 1018 return -EINVAL; 1019 1020 pr_notice("enabling patch '%s'\n", patch->mod->name); 1021 1022 klp_init_transition(patch, KLP_TRANSITION_PATCHED); 1023 1024 /* 1025 * Enforce the order of the func->transition writes in 1026 * klp_init_transition() and the ops->func_stack writes in 1027 * klp_patch_object(), so that klp_ftrace_handler() will see the 1028 * func->transition updates before the handler is registered and the 1029 * new funcs become visible to the handler. 1030 */ 1031 smp_wmb(); 1032 1033 klp_for_each_object(patch, obj) { 1034 if (!klp_is_object_loaded(obj)) 1035 continue; 1036 1037 ret = klp_pre_patch_callback(obj); 1038 if (ret) { 1039 pr_warn("pre-patch callback failed for object '%s'\n", 1040 klp_is_module(obj) ? obj->name : "vmlinux"); 1041 goto err; 1042 } 1043 1044 ret = klp_patch_object(obj); 1045 if (ret) { 1046 pr_warn("failed to patch object '%s'\n", 1047 klp_is_module(obj) ? obj->name : "vmlinux"); 1048 goto err; 1049 } 1050 } 1051 1052 klp_start_transition(); 1053 patch->enabled = true; 1054 klp_try_complete_transition(); 1055 1056 return 0; 1057 err: 1058 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1059 1060 klp_cancel_transition(); 1061 return ret; 1062 } 1063 1064 /** 1065 * klp_enable_patch() - enable the livepatch 1066 * @patch: patch to be enabled 1067 * 1068 * Initializes the data structure associated with the patch, creates the sysfs 1069 * interface, performs the needed symbol lookups and code relocations, 1070 * registers the patched functions with ftrace. 1071 * 1072 * This function is supposed to be called from the livepatch module_init() 1073 * callback. 1074 * 1075 * Return: 0 on success, otherwise error 1076 */ 1077 int klp_enable_patch(struct klp_patch *patch) 1078 { 1079 int ret; 1080 struct klp_object *obj; 1081 1082 if (!patch || !patch->mod || !patch->objs) 1083 return -EINVAL; 1084 1085 klp_for_each_object_static(patch, obj) { 1086 if (!obj->funcs) 1087 return -EINVAL; 1088 } 1089 1090 1091 if (!is_livepatch_module(patch->mod)) { 1092 pr_err("module %s is not marked as a livepatch module\n", 1093 patch->mod->name); 1094 return -EINVAL; 1095 } 1096 1097 if (!klp_initialized()) 1098 return -ENODEV; 1099 1100 if (!klp_have_reliable_stack()) { 1101 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1102 pr_warn("The livepatch transition may never complete.\n"); 1103 } 1104 1105 mutex_lock(&klp_mutex); 1106 1107 if (!klp_is_patch_compatible(patch)) { 1108 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1109 patch->mod->name); 1110 mutex_unlock(&klp_mutex); 1111 return -EINVAL; 1112 } 1113 1114 if (!try_module_get(patch->mod)) { 1115 mutex_unlock(&klp_mutex); 1116 return -ENODEV; 1117 } 1118 1119 klp_init_patch_early(patch); 1120 1121 ret = klp_init_patch(patch); 1122 if (ret) 1123 goto err; 1124 1125 ret = __klp_enable_patch(patch); 1126 if (ret) 1127 goto err; 1128 1129 mutex_unlock(&klp_mutex); 1130 1131 return 0; 1132 1133 err: 1134 klp_free_patch_start(patch); 1135 1136 mutex_unlock(&klp_mutex); 1137 1138 klp_free_patch_finish(patch); 1139 1140 return ret; 1141 } 1142 EXPORT_SYMBOL_GPL(klp_enable_patch); 1143 1144 /* 1145 * This function unpatches objects from the replaced livepatches. 1146 * 1147 * We could be pretty aggressive here. It is called in the situation where 1148 * these structures are no longer accessed from the ftrace handler. 1149 * All functions are redirected by the klp_transition_patch. They 1150 * use either a new code or they are in the original code because 1151 * of the special nop function patches. 1152 * 1153 * The only exception is when the transition was forced. In this case, 1154 * klp_ftrace_handler() might still see the replaced patch on the stack. 1155 * Fortunately, it is carefully designed to work with removed functions 1156 * thanks to RCU. We only have to keep the patches on the system. Also 1157 * this is handled transparently by patch->module_put. 1158 */ 1159 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1160 { 1161 struct klp_patch *old_patch; 1162 1163 klp_for_each_patch(old_patch) { 1164 if (old_patch == new_patch) 1165 return; 1166 1167 old_patch->enabled = false; 1168 klp_unpatch_objects(old_patch); 1169 } 1170 } 1171 1172 /* 1173 * This function removes the dynamically allocated 'nop' functions. 1174 * 1175 * We could be pretty aggressive. NOPs do not change the existing 1176 * behavior except for adding unnecessary delay by the ftrace handler. 1177 * 1178 * It is safe even when the transition was forced. The ftrace handler 1179 * will see a valid ops->func_stack entry thanks to RCU. 1180 * 1181 * We could even free the NOPs structures. They must be the last entry 1182 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1183 * It does the same as klp_synchronize_transition() to make sure that 1184 * nobody is inside the ftrace handler once the operation finishes. 1185 * 1186 * IMPORTANT: It must be called right after removing the replaced patches! 1187 */ 1188 void klp_discard_nops(struct klp_patch *new_patch) 1189 { 1190 klp_unpatch_objects_dynamic(klp_transition_patch); 1191 klp_free_objects_dynamic(klp_transition_patch); 1192 } 1193 1194 /* 1195 * Remove parts of patches that touch a given kernel module. The list of 1196 * patches processed might be limited. When limit is NULL, all patches 1197 * will be handled. 1198 */ 1199 static void klp_cleanup_module_patches_limited(struct module *mod, 1200 struct klp_patch *limit) 1201 { 1202 struct klp_patch *patch; 1203 struct klp_object *obj; 1204 1205 klp_for_each_patch(patch) { 1206 if (patch == limit) 1207 break; 1208 1209 klp_for_each_object(patch, obj) { 1210 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1211 continue; 1212 1213 if (patch != klp_transition_patch) 1214 klp_pre_unpatch_callback(obj); 1215 1216 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1217 patch->mod->name, obj->mod->name); 1218 klp_unpatch_object(obj); 1219 1220 klp_post_unpatch_callback(obj); 1221 klp_clear_object_relocs(patch, obj); 1222 klp_free_object_loaded(obj); 1223 break; 1224 } 1225 } 1226 } 1227 1228 int klp_module_coming(struct module *mod) 1229 { 1230 int ret; 1231 struct klp_patch *patch; 1232 struct klp_object *obj; 1233 1234 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1235 return -EINVAL; 1236 1237 if (!strcmp(mod->name, "vmlinux")) { 1238 pr_err("vmlinux.ko: invalid module name\n"); 1239 return -EINVAL; 1240 } 1241 1242 mutex_lock(&klp_mutex); 1243 /* 1244 * Each module has to know that klp_module_coming() 1245 * has been called. We never know what module will 1246 * get patched by a new patch. 1247 */ 1248 mod->klp_alive = true; 1249 1250 klp_for_each_patch(patch) { 1251 klp_for_each_object(patch, obj) { 1252 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1253 continue; 1254 1255 obj->mod = mod; 1256 1257 ret = klp_init_object_loaded(patch, obj); 1258 if (ret) { 1259 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1260 patch->mod->name, obj->mod->name, ret); 1261 goto err; 1262 } 1263 1264 pr_notice("applying patch '%s' to loading module '%s'\n", 1265 patch->mod->name, obj->mod->name); 1266 1267 ret = klp_pre_patch_callback(obj); 1268 if (ret) { 1269 pr_warn("pre-patch callback failed for object '%s'\n", 1270 obj->name); 1271 goto err; 1272 } 1273 1274 ret = klp_patch_object(obj); 1275 if (ret) { 1276 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1277 patch->mod->name, obj->mod->name, ret); 1278 1279 klp_post_unpatch_callback(obj); 1280 goto err; 1281 } 1282 1283 if (patch != klp_transition_patch) 1284 klp_post_patch_callback(obj); 1285 1286 break; 1287 } 1288 } 1289 1290 mutex_unlock(&klp_mutex); 1291 1292 return 0; 1293 1294 err: 1295 /* 1296 * If a patch is unsuccessfully applied, return 1297 * error to the module loader. 1298 */ 1299 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1300 patch->mod->name, obj->mod->name, obj->mod->name); 1301 mod->klp_alive = false; 1302 obj->mod = NULL; 1303 klp_cleanup_module_patches_limited(mod, patch); 1304 mutex_unlock(&klp_mutex); 1305 1306 return ret; 1307 } 1308 1309 void klp_module_going(struct module *mod) 1310 { 1311 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1312 mod->state != MODULE_STATE_COMING)) 1313 return; 1314 1315 mutex_lock(&klp_mutex); 1316 /* 1317 * Each module has to know that klp_module_going() 1318 * has been called. We never know what module will 1319 * get patched by a new patch. 1320 */ 1321 mod->klp_alive = false; 1322 1323 klp_cleanup_module_patches_limited(mod, NULL); 1324 1325 mutex_unlock(&klp_mutex); 1326 } 1327 1328 static int __init klp_init(void) 1329 { 1330 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1331 if (!klp_root_kobj) 1332 return -ENOMEM; 1333 1334 return 0; 1335 } 1336 1337 module_init(klp_init); 1338