xref: /linux/kernel/livepatch/core.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  * - __klp_sched_try_switch()
37  */
38 DEFINE_MUTEX(klp_mutex);
39 
40 /*
41  * Actively used patches: enabled or in transition. Note that replaced
42  * or disabled patches are not listed even though the related kernel
43  * module still can be loaded.
44  */
45 LIST_HEAD(klp_patches);
46 
47 static struct kobject *klp_root_kobj;
48 
49 static bool klp_is_module(struct klp_object *obj)
50 {
51 	return obj->name;
52 }
53 
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 	struct module *mod;
58 
59 	if (!klp_is_module(obj))
60 		return;
61 
62 	rcu_read_lock_sched();
63 	/*
64 	 * We do not want to block removal of patched modules and therefore
65 	 * we do not take a reference here. The patches are removed by
66 	 * klp_module_going() instead.
67 	 */
68 	mod = find_module(obj->name);
69 	/*
70 	 * Do not mess work of klp_module_coming() and klp_module_going().
71 	 * Note that the patch might still be needed before klp_module_going()
72 	 * is called. Module functions can be called even in the GOING state
73 	 * until mod->exit() finishes. This is especially important for
74 	 * patches that modify semantic of the functions.
75 	 */
76 	if (mod && mod->klp_alive)
77 		obj->mod = mod;
78 
79 	rcu_read_unlock_sched();
80 }
81 
82 static bool klp_initialized(void)
83 {
84 	return !!klp_root_kobj;
85 }
86 
87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 				      struct klp_func *old_func)
89 {
90 	struct klp_func *func;
91 
92 	klp_for_each_func(obj, func) {
93 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 		    (old_func->old_sympos == func->old_sympos)) {
95 			return func;
96 		}
97 	}
98 
99 	return NULL;
100 }
101 
102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 					  struct klp_object *old_obj)
104 {
105 	struct klp_object *obj;
106 
107 	klp_for_each_object(patch, obj) {
108 		if (klp_is_module(old_obj)) {
109 			if (klp_is_module(obj) &&
110 			    strcmp(old_obj->name, obj->name) == 0) {
111 				return obj;
112 			}
113 		} else if (!klp_is_module(obj)) {
114 			return obj;
115 		}
116 	}
117 
118 	return NULL;
119 }
120 
121 struct klp_find_arg {
122 	const char *name;
123 	unsigned long addr;
124 	unsigned long count;
125 	unsigned long pos;
126 };
127 
128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 	struct klp_find_arg *args = data;
131 
132 	args->addr = addr;
133 	args->count++;
134 
135 	/*
136 	 * Finish the search when the symbol is found for the desired position
137 	 * or the position is not defined for a non-unique symbol.
138 	 */
139 	if ((args->pos && (args->count == args->pos)) ||
140 	    (!args->pos && (args->count > 1)))
141 		return 1;
142 
143 	return 0;
144 }
145 
146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 	struct klp_find_arg *args = data;
149 
150 	if (strcmp(args->name, name))
151 		return 0;
152 
153 	return klp_match_callback(data, addr);
154 }
155 
156 static int klp_find_object_symbol(const char *objname, const char *name,
157 				  unsigned long sympos, unsigned long *addr)
158 {
159 	struct klp_find_arg args = {
160 		.name = name,
161 		.addr = 0,
162 		.count = 0,
163 		.pos = sympos,
164 	};
165 
166 	if (objname)
167 		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 	else
169 		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170 
171 	/*
172 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 	 * otherwise ensure the symbol position count matches sympos.
174 	 */
175 	if (args.addr == 0)
176 		pr_err("symbol '%s' not found in symbol table\n", name);
177 	else if (args.count > 1 && sympos == 0) {
178 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 		       name, objname);
180 	} else if (sympos != args.count && sympos > 0) {
181 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 		       sympos, name, objname ? objname : "vmlinux");
183 	} else {
184 		*addr = args.addr;
185 		return 0;
186 	}
187 
188 	*addr = 0;
189 	return -EINVAL;
190 }
191 
192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 			       unsigned int symndx, Elf_Shdr *relasec,
194 			       const char *sec_objname)
195 {
196 	int i, cnt, ret;
197 	char sym_objname[MODULE_NAME_LEN];
198 	char sym_name[KSYM_NAME_LEN];
199 	Elf_Rela *relas;
200 	Elf_Sym *sym;
201 	unsigned long sympos, addr;
202 	bool sym_vmlinux;
203 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204 
205 	/*
206 	 * Since the field widths for sym_objname and sym_name in the sscanf()
207 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 	 * and KSYM_NAME_LEN have the values we expect them to have.
210 	 *
211 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 	 * we use the smallest/strictest upper bound possible (56, based on
213 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 	 */
215 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216 
217 	relas = (Elf_Rela *) relasec->sh_addr;
218 	/* For each rela in this klp relocation section */
219 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 		if (sym->st_shndx != SHN_LIVEPATCH) {
222 			pr_err("symbol %s is not marked as a livepatch symbol\n",
223 			       strtab + sym->st_name);
224 			return -EINVAL;
225 		}
226 
227 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
228 		cnt = sscanf(strtab + sym->st_name,
229 			     ".klp.sym.%55[^.].%511[^,],%lu",
230 			     sym_objname, sym_name, &sympos);
231 		if (cnt != 3) {
232 			pr_err("symbol %s has an incorrectly formatted name\n",
233 			       strtab + sym->st_name);
234 			return -EINVAL;
235 		}
236 
237 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238 
239 		/*
240 		 * Prevent module-specific KLP rela sections from referencing
241 		 * vmlinux symbols.  This helps prevent ordering issues with
242 		 * module special section initializations.  Presumably such
243 		 * symbols are exported and normal relas can be used instead.
244 		 */
245 		if (!sec_vmlinux && sym_vmlinux) {
246 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 			       sym_name);
248 			return -EINVAL;
249 		}
250 
251 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 					     sym_name, sympos, &addr);
254 		if (ret)
255 			return ret;
256 
257 		sym->st_value = addr;
258 	}
259 
260 	return 0;
261 }
262 
263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 		   const char *strtab,
265 		   unsigned int symindex,
266 		   unsigned int relsec,
267 		   struct module *me)
268 {
269 }
270 
271 /*
272  * At a high-level, there are two types of klp relocation sections: those which
273  * reference symbols which live in vmlinux; and those which reference symbols
274  * which live in other modules.  This function is called for both types:
275  *
276  * 1) When a klp module itself loads, the module code calls this function to
277  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278  *    These relocations are written to the klp module text to allow the patched
279  *    code/data to reference unexported vmlinux symbols.  They're written as
280  *    early as possible to ensure that other module init code (.e.g.,
281  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
282  *    might be referenced by the klp module's special sections.
283  *
284  * 2) When a to-be-patched module loads -- or is already loaded when a
285  *    corresponding klp module loads -- klp code calls this function to write
286  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
287  *    are written to the klp module text to allow the patched code/data to
288  *    reference symbols which live in the to-be-patched module or one of its
289  *    module dependencies.  Exported symbols are supported, in addition to
290  *    unexported symbols, in order to enable late module patching, which allows
291  *    the to-be-patched module to be loaded and patched sometime *after* the
292  *    klp module is loaded.
293  */
294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 				    const char *shstrtab, const char *strtab,
296 				    unsigned int symndx, unsigned int secndx,
297 				    const char *objname, bool apply)
298 {
299 	int cnt, ret;
300 	char sec_objname[MODULE_NAME_LEN];
301 	Elf_Shdr *sec = sechdrs + secndx;
302 
303 	/*
304 	 * Format: .klp.rela.sec_objname.section_name
305 	 * See comment in klp_resolve_symbols() for an explanation
306 	 * of the selected field width value.
307 	 */
308 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 		     sec_objname);
310 	if (cnt != 1) {
311 		pr_err("section %s has an incorrectly formatted name\n",
312 		       shstrtab + sec->sh_name);
313 		return -EINVAL;
314 	}
315 
316 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 		return 0;
318 
319 	if (apply) {
320 		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 					  sec, sec_objname);
322 		if (ret)
323 			return ret;
324 
325 		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 	}
327 
328 	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 	return 0;
330 }
331 
332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 			     const char *shstrtab, const char *strtab,
334 			     unsigned int symndx, unsigned int secndx,
335 			     const char *objname)
336 {
337 	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 					secndx, objname, true);
339 }
340 
341 /*
342  * Sysfs Interface
343  *
344  * /sys/kernel/livepatch
345  * /sys/kernel/livepatch/<patch>
346  * /sys/kernel/livepatch/<patch>/enabled
347  * /sys/kernel/livepatch/<patch>/transition
348  * /sys/kernel/livepatch/<patch>/force
349  * /sys/kernel/livepatch/<patch>/replace
350  * /sys/kernel/livepatch/<patch>/<object>
351  * /sys/kernel/livepatch/<patch>/<object>/patched
352  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
353  */
354 static int __klp_disable_patch(struct klp_patch *patch);
355 
356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
357 			     const char *buf, size_t count)
358 {
359 	struct klp_patch *patch;
360 	int ret;
361 	bool enabled;
362 
363 	ret = kstrtobool(buf, &enabled);
364 	if (ret)
365 		return ret;
366 
367 	patch = container_of(kobj, struct klp_patch, kobj);
368 
369 	mutex_lock(&klp_mutex);
370 
371 	if (patch->enabled == enabled) {
372 		/* already in requested state */
373 		ret = -EINVAL;
374 		goto out;
375 	}
376 
377 	/*
378 	 * Allow to reverse a pending transition in both ways. It might be
379 	 * necessary to complete the transition without forcing and breaking
380 	 * the system integrity.
381 	 *
382 	 * Do not allow to re-enable a disabled patch.
383 	 */
384 	if (patch == klp_transition_patch)
385 		klp_reverse_transition();
386 	else if (!enabled)
387 		ret = __klp_disable_patch(patch);
388 	else
389 		ret = -EINVAL;
390 
391 out:
392 	mutex_unlock(&klp_mutex);
393 
394 	if (ret)
395 		return ret;
396 	return count;
397 }
398 
399 static ssize_t enabled_show(struct kobject *kobj,
400 			    struct kobj_attribute *attr, char *buf)
401 {
402 	struct klp_patch *patch;
403 
404 	patch = container_of(kobj, struct klp_patch, kobj);
405 	return sysfs_emit(buf, "%d\n", patch->enabled);
406 }
407 
408 static ssize_t transition_show(struct kobject *kobj,
409 			       struct kobj_attribute *attr, char *buf)
410 {
411 	struct klp_patch *patch;
412 
413 	patch = container_of(kobj, struct klp_patch, kobj);
414 	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
415 }
416 
417 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
418 			   const char *buf, size_t count)
419 {
420 	struct klp_patch *patch;
421 	int ret;
422 	bool val;
423 
424 	ret = kstrtobool(buf, &val);
425 	if (ret)
426 		return ret;
427 
428 	if (!val)
429 		return count;
430 
431 	mutex_lock(&klp_mutex);
432 
433 	patch = container_of(kobj, struct klp_patch, kobj);
434 	if (patch != klp_transition_patch) {
435 		mutex_unlock(&klp_mutex);
436 		return -EINVAL;
437 	}
438 
439 	klp_force_transition();
440 
441 	mutex_unlock(&klp_mutex);
442 
443 	return count;
444 }
445 
446 static ssize_t replace_show(struct kobject *kobj,
447 			    struct kobj_attribute *attr, char *buf)
448 {
449 	struct klp_patch *patch;
450 
451 	patch = container_of(kobj, struct klp_patch, kobj);
452 	return sysfs_emit(buf, "%d\n", patch->replace);
453 }
454 
455 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
456 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
457 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
458 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
459 static struct attribute *klp_patch_attrs[] = {
460 	&enabled_kobj_attr.attr,
461 	&transition_kobj_attr.attr,
462 	&force_kobj_attr.attr,
463 	&replace_kobj_attr.attr,
464 	NULL
465 };
466 ATTRIBUTE_GROUPS(klp_patch);
467 
468 static ssize_t patched_show(struct kobject *kobj,
469 			    struct kobj_attribute *attr, char *buf)
470 {
471 	struct klp_object *obj;
472 
473 	obj = container_of(kobj, struct klp_object, kobj);
474 	return sysfs_emit(buf, "%d\n", obj->patched);
475 }
476 
477 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
478 static struct attribute *klp_object_attrs[] = {
479 	&patched_kobj_attr.attr,
480 	NULL,
481 };
482 ATTRIBUTE_GROUPS(klp_object);
483 
484 static void klp_free_object_dynamic(struct klp_object *obj)
485 {
486 	kfree(obj->name);
487 	kfree(obj);
488 }
489 
490 static void klp_init_func_early(struct klp_object *obj,
491 				struct klp_func *func);
492 static void klp_init_object_early(struct klp_patch *patch,
493 				  struct klp_object *obj);
494 
495 static struct klp_object *klp_alloc_object_dynamic(const char *name,
496 						   struct klp_patch *patch)
497 {
498 	struct klp_object *obj;
499 
500 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
501 	if (!obj)
502 		return NULL;
503 
504 	if (name) {
505 		obj->name = kstrdup(name, GFP_KERNEL);
506 		if (!obj->name) {
507 			kfree(obj);
508 			return NULL;
509 		}
510 	}
511 
512 	klp_init_object_early(patch, obj);
513 	obj->dynamic = true;
514 
515 	return obj;
516 }
517 
518 static void klp_free_func_nop(struct klp_func *func)
519 {
520 	kfree(func->old_name);
521 	kfree(func);
522 }
523 
524 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
525 					   struct klp_object *obj)
526 {
527 	struct klp_func *func;
528 
529 	func = kzalloc(sizeof(*func), GFP_KERNEL);
530 	if (!func)
531 		return NULL;
532 
533 	if (old_func->old_name) {
534 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
535 		if (!func->old_name) {
536 			kfree(func);
537 			return NULL;
538 		}
539 	}
540 
541 	klp_init_func_early(obj, func);
542 	/*
543 	 * func->new_func is same as func->old_func. These addresses are
544 	 * set when the object is loaded, see klp_init_object_loaded().
545 	 */
546 	func->old_sympos = old_func->old_sympos;
547 	func->nop = true;
548 
549 	return func;
550 }
551 
552 static int klp_add_object_nops(struct klp_patch *patch,
553 			       struct klp_object *old_obj)
554 {
555 	struct klp_object *obj;
556 	struct klp_func *func, *old_func;
557 
558 	obj = klp_find_object(patch, old_obj);
559 
560 	if (!obj) {
561 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
562 		if (!obj)
563 			return -ENOMEM;
564 	}
565 
566 	klp_for_each_func(old_obj, old_func) {
567 		func = klp_find_func(obj, old_func);
568 		if (func)
569 			continue;
570 
571 		func = klp_alloc_func_nop(old_func, obj);
572 		if (!func)
573 			return -ENOMEM;
574 	}
575 
576 	return 0;
577 }
578 
579 /*
580  * Add 'nop' functions which simply return to the caller to run
581  * the original function. The 'nop' functions are added to a
582  * patch to facilitate a 'replace' mode.
583  */
584 static int klp_add_nops(struct klp_patch *patch)
585 {
586 	struct klp_patch *old_patch;
587 	struct klp_object *old_obj;
588 
589 	klp_for_each_patch(old_patch) {
590 		klp_for_each_object(old_patch, old_obj) {
591 			int err;
592 
593 			err = klp_add_object_nops(patch, old_obj);
594 			if (err)
595 				return err;
596 		}
597 	}
598 
599 	return 0;
600 }
601 
602 static void klp_kobj_release_patch(struct kobject *kobj)
603 {
604 	struct klp_patch *patch;
605 
606 	patch = container_of(kobj, struct klp_patch, kobj);
607 	complete(&patch->finish);
608 }
609 
610 static const struct kobj_type klp_ktype_patch = {
611 	.release = klp_kobj_release_patch,
612 	.sysfs_ops = &kobj_sysfs_ops,
613 	.default_groups = klp_patch_groups,
614 };
615 
616 static void klp_kobj_release_object(struct kobject *kobj)
617 {
618 	struct klp_object *obj;
619 
620 	obj = container_of(kobj, struct klp_object, kobj);
621 
622 	if (obj->dynamic)
623 		klp_free_object_dynamic(obj);
624 }
625 
626 static const struct kobj_type klp_ktype_object = {
627 	.release = klp_kobj_release_object,
628 	.sysfs_ops = &kobj_sysfs_ops,
629 	.default_groups = klp_object_groups,
630 };
631 
632 static void klp_kobj_release_func(struct kobject *kobj)
633 {
634 	struct klp_func *func;
635 
636 	func = container_of(kobj, struct klp_func, kobj);
637 
638 	if (func->nop)
639 		klp_free_func_nop(func);
640 }
641 
642 static const struct kobj_type klp_ktype_func = {
643 	.release = klp_kobj_release_func,
644 	.sysfs_ops = &kobj_sysfs_ops,
645 };
646 
647 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
648 {
649 	struct klp_func *func, *tmp_func;
650 
651 	klp_for_each_func_safe(obj, func, tmp_func) {
652 		if (nops_only && !func->nop)
653 			continue;
654 
655 		list_del(&func->node);
656 		kobject_put(&func->kobj);
657 	}
658 }
659 
660 /* Clean up when a patched object is unloaded */
661 static void klp_free_object_loaded(struct klp_object *obj)
662 {
663 	struct klp_func *func;
664 
665 	obj->mod = NULL;
666 
667 	klp_for_each_func(obj, func) {
668 		func->old_func = NULL;
669 
670 		if (func->nop)
671 			func->new_func = NULL;
672 	}
673 }
674 
675 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
676 {
677 	struct klp_object *obj, *tmp_obj;
678 
679 	klp_for_each_object_safe(patch, obj, tmp_obj) {
680 		__klp_free_funcs(obj, nops_only);
681 
682 		if (nops_only && !obj->dynamic)
683 			continue;
684 
685 		list_del(&obj->node);
686 		kobject_put(&obj->kobj);
687 	}
688 }
689 
690 static void klp_free_objects(struct klp_patch *patch)
691 {
692 	__klp_free_objects(patch, false);
693 }
694 
695 static void klp_free_objects_dynamic(struct klp_patch *patch)
696 {
697 	__klp_free_objects(patch, true);
698 }
699 
700 /*
701  * This function implements the free operations that can be called safely
702  * under klp_mutex.
703  *
704  * The operation must be completed by calling klp_free_patch_finish()
705  * outside klp_mutex.
706  */
707 static void klp_free_patch_start(struct klp_patch *patch)
708 {
709 	if (!list_empty(&patch->list))
710 		list_del(&patch->list);
711 
712 	klp_free_objects(patch);
713 }
714 
715 /*
716  * This function implements the free part that must be called outside
717  * klp_mutex.
718  *
719  * It must be called after klp_free_patch_start(). And it has to be
720  * the last function accessing the livepatch structures when the patch
721  * gets disabled.
722  */
723 static void klp_free_patch_finish(struct klp_patch *patch)
724 {
725 	/*
726 	 * Avoid deadlock with enabled_store() sysfs callback by
727 	 * calling this outside klp_mutex. It is safe because
728 	 * this is called when the patch gets disabled and it
729 	 * cannot get enabled again.
730 	 */
731 	kobject_put(&patch->kobj);
732 	wait_for_completion(&patch->finish);
733 
734 	/* Put the module after the last access to struct klp_patch. */
735 	if (!patch->forced)
736 		module_put(patch->mod);
737 }
738 
739 /*
740  * The livepatch might be freed from sysfs interface created by the patch.
741  * This work allows to wait until the interface is destroyed in a separate
742  * context.
743  */
744 static void klp_free_patch_work_fn(struct work_struct *work)
745 {
746 	struct klp_patch *patch =
747 		container_of(work, struct klp_patch, free_work);
748 
749 	klp_free_patch_finish(patch);
750 }
751 
752 void klp_free_patch_async(struct klp_patch *patch)
753 {
754 	klp_free_patch_start(patch);
755 	schedule_work(&patch->free_work);
756 }
757 
758 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
759 {
760 	struct klp_patch *old_patch, *tmp_patch;
761 
762 	klp_for_each_patch_safe(old_patch, tmp_patch) {
763 		if (old_patch == new_patch)
764 			return;
765 		klp_free_patch_async(old_patch);
766 	}
767 }
768 
769 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
770 {
771 	if (!func->old_name)
772 		return -EINVAL;
773 
774 	/*
775 	 * NOPs get the address later. The patched module must be loaded,
776 	 * see klp_init_object_loaded().
777 	 */
778 	if (!func->new_func && !func->nop)
779 		return -EINVAL;
780 
781 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
782 		return -EINVAL;
783 
784 	INIT_LIST_HEAD(&func->stack_node);
785 	func->patched = false;
786 	func->transition = false;
787 
788 	/* The format for the sysfs directory is <function,sympos> where sympos
789 	 * is the nth occurrence of this symbol in kallsyms for the patched
790 	 * object. If the user selects 0 for old_sympos, then 1 will be used
791 	 * since a unique symbol will be the first occurrence.
792 	 */
793 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
794 			   func->old_name,
795 			   func->old_sympos ? func->old_sympos : 1);
796 }
797 
798 static int klp_write_object_relocs(struct klp_patch *patch,
799 				   struct klp_object *obj,
800 				   bool apply)
801 {
802 	int i, ret;
803 	struct klp_modinfo *info = patch->mod->klp_info;
804 
805 	for (i = 1; i < info->hdr.e_shnum; i++) {
806 		Elf_Shdr *sec = info->sechdrs + i;
807 
808 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
809 			continue;
810 
811 		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
812 					       info->secstrings,
813 					       patch->mod->core_kallsyms.strtab,
814 					       info->symndx, i, obj->name, apply);
815 		if (ret)
816 			return ret;
817 	}
818 
819 	return 0;
820 }
821 
822 static int klp_apply_object_relocs(struct klp_patch *patch,
823 				   struct klp_object *obj)
824 {
825 	return klp_write_object_relocs(patch, obj, true);
826 }
827 
828 static void klp_clear_object_relocs(struct klp_patch *patch,
829 				    struct klp_object *obj)
830 {
831 	klp_write_object_relocs(patch, obj, false);
832 }
833 
834 /* parts of the initialization that is done only when the object is loaded */
835 static int klp_init_object_loaded(struct klp_patch *patch,
836 				  struct klp_object *obj)
837 {
838 	struct klp_func *func;
839 	int ret;
840 
841 	if (klp_is_module(obj)) {
842 		/*
843 		 * Only write module-specific relocations here
844 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
845 		 * written earlier during the initialization of the klp module
846 		 * itself.
847 		 */
848 		ret = klp_apply_object_relocs(patch, obj);
849 		if (ret)
850 			return ret;
851 	}
852 
853 	klp_for_each_func(obj, func) {
854 		ret = klp_find_object_symbol(obj->name, func->old_name,
855 					     func->old_sympos,
856 					     (unsigned long *)&func->old_func);
857 		if (ret)
858 			return ret;
859 
860 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
861 						  &func->old_size, NULL);
862 		if (!ret) {
863 			pr_err("kallsyms size lookup failed for '%s'\n",
864 			       func->old_name);
865 			return -ENOENT;
866 		}
867 
868 		if (func->nop)
869 			func->new_func = func->old_func;
870 
871 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
872 						  &func->new_size, NULL);
873 		if (!ret) {
874 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
875 			       func->old_name);
876 			return -ENOENT;
877 		}
878 	}
879 
880 	return 0;
881 }
882 
883 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
884 {
885 	struct klp_func *func;
886 	int ret;
887 	const char *name;
888 
889 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
890 		return -EINVAL;
891 
892 	obj->patched = false;
893 	obj->mod = NULL;
894 
895 	klp_find_object_module(obj);
896 
897 	name = klp_is_module(obj) ? obj->name : "vmlinux";
898 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
899 	if (ret)
900 		return ret;
901 
902 	klp_for_each_func(obj, func) {
903 		ret = klp_init_func(obj, func);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	if (klp_is_object_loaded(obj))
909 		ret = klp_init_object_loaded(patch, obj);
910 
911 	return ret;
912 }
913 
914 static void klp_init_func_early(struct klp_object *obj,
915 				struct klp_func *func)
916 {
917 	kobject_init(&func->kobj, &klp_ktype_func);
918 	list_add_tail(&func->node, &obj->func_list);
919 }
920 
921 static void klp_init_object_early(struct klp_patch *patch,
922 				  struct klp_object *obj)
923 {
924 	INIT_LIST_HEAD(&obj->func_list);
925 	kobject_init(&obj->kobj, &klp_ktype_object);
926 	list_add_tail(&obj->node, &patch->obj_list);
927 }
928 
929 static void klp_init_patch_early(struct klp_patch *patch)
930 {
931 	struct klp_object *obj;
932 	struct klp_func *func;
933 
934 	INIT_LIST_HEAD(&patch->list);
935 	INIT_LIST_HEAD(&patch->obj_list);
936 	kobject_init(&patch->kobj, &klp_ktype_patch);
937 	patch->enabled = false;
938 	patch->forced = false;
939 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
940 	init_completion(&patch->finish);
941 
942 	klp_for_each_object_static(patch, obj) {
943 		klp_init_object_early(patch, obj);
944 
945 		klp_for_each_func_static(obj, func) {
946 			klp_init_func_early(obj, func);
947 		}
948 	}
949 }
950 
951 static int klp_init_patch(struct klp_patch *patch)
952 {
953 	struct klp_object *obj;
954 	int ret;
955 
956 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
957 	if (ret)
958 		return ret;
959 
960 	if (patch->replace) {
961 		ret = klp_add_nops(patch);
962 		if (ret)
963 			return ret;
964 	}
965 
966 	klp_for_each_object(patch, obj) {
967 		ret = klp_init_object(patch, obj);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	list_add_tail(&patch->list, &klp_patches);
973 
974 	return 0;
975 }
976 
977 static int __klp_disable_patch(struct klp_patch *patch)
978 {
979 	struct klp_object *obj;
980 
981 	if (WARN_ON(!patch->enabled))
982 		return -EINVAL;
983 
984 	if (klp_transition_patch)
985 		return -EBUSY;
986 
987 	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
988 
989 	klp_for_each_object(patch, obj)
990 		if (obj->patched)
991 			klp_pre_unpatch_callback(obj);
992 
993 	/*
994 	 * Enforce the order of the func->transition writes in
995 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
996 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
997 	 * is called shortly after klp_update_patch_state() switches the task,
998 	 * this ensures the handler sees that func->transition is set.
999 	 */
1000 	smp_wmb();
1001 
1002 	klp_start_transition();
1003 	patch->enabled = false;
1004 	klp_try_complete_transition();
1005 
1006 	return 0;
1007 }
1008 
1009 static int __klp_enable_patch(struct klp_patch *patch)
1010 {
1011 	struct klp_object *obj;
1012 	int ret;
1013 
1014 	if (klp_transition_patch)
1015 		return -EBUSY;
1016 
1017 	if (WARN_ON(patch->enabled))
1018 		return -EINVAL;
1019 
1020 	pr_notice("enabling patch '%s'\n", patch->mod->name);
1021 
1022 	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1023 
1024 	/*
1025 	 * Enforce the order of the func->transition writes in
1026 	 * klp_init_transition() and the ops->func_stack writes in
1027 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1028 	 * func->transition updates before the handler is registered and the
1029 	 * new funcs become visible to the handler.
1030 	 */
1031 	smp_wmb();
1032 
1033 	klp_for_each_object(patch, obj) {
1034 		if (!klp_is_object_loaded(obj))
1035 			continue;
1036 
1037 		ret = klp_pre_patch_callback(obj);
1038 		if (ret) {
1039 			pr_warn("pre-patch callback failed for object '%s'\n",
1040 				klp_is_module(obj) ? obj->name : "vmlinux");
1041 			goto err;
1042 		}
1043 
1044 		ret = klp_patch_object(obj);
1045 		if (ret) {
1046 			pr_warn("failed to patch object '%s'\n",
1047 				klp_is_module(obj) ? obj->name : "vmlinux");
1048 			goto err;
1049 		}
1050 	}
1051 
1052 	klp_start_transition();
1053 	patch->enabled = true;
1054 	klp_try_complete_transition();
1055 
1056 	return 0;
1057 err:
1058 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1059 
1060 	klp_cancel_transition();
1061 	return ret;
1062 }
1063 
1064 /**
1065  * klp_enable_patch() - enable the livepatch
1066  * @patch:	patch to be enabled
1067  *
1068  * Initializes the data structure associated with the patch, creates the sysfs
1069  * interface, performs the needed symbol lookups and code relocations,
1070  * registers the patched functions with ftrace.
1071  *
1072  * This function is supposed to be called from the livepatch module_init()
1073  * callback.
1074  *
1075  * Return: 0 on success, otherwise error
1076  */
1077 int klp_enable_patch(struct klp_patch *patch)
1078 {
1079 	int ret;
1080 	struct klp_object *obj;
1081 
1082 	if (!patch || !patch->mod || !patch->objs)
1083 		return -EINVAL;
1084 
1085 	klp_for_each_object_static(patch, obj) {
1086 		if (!obj->funcs)
1087 			return -EINVAL;
1088 	}
1089 
1090 
1091 	if (!is_livepatch_module(patch->mod)) {
1092 		pr_err("module %s is not marked as a livepatch module\n",
1093 		       patch->mod->name);
1094 		return -EINVAL;
1095 	}
1096 
1097 	if (!klp_initialized())
1098 		return -ENODEV;
1099 
1100 	if (!klp_have_reliable_stack()) {
1101 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1102 		pr_warn("The livepatch transition may never complete.\n");
1103 	}
1104 
1105 	mutex_lock(&klp_mutex);
1106 
1107 	if (!klp_is_patch_compatible(patch)) {
1108 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1109 			patch->mod->name);
1110 		mutex_unlock(&klp_mutex);
1111 		return -EINVAL;
1112 	}
1113 
1114 	if (!try_module_get(patch->mod)) {
1115 		mutex_unlock(&klp_mutex);
1116 		return -ENODEV;
1117 	}
1118 
1119 	klp_init_patch_early(patch);
1120 
1121 	ret = klp_init_patch(patch);
1122 	if (ret)
1123 		goto err;
1124 
1125 	ret = __klp_enable_patch(patch);
1126 	if (ret)
1127 		goto err;
1128 
1129 	mutex_unlock(&klp_mutex);
1130 
1131 	return 0;
1132 
1133 err:
1134 	klp_free_patch_start(patch);
1135 
1136 	mutex_unlock(&klp_mutex);
1137 
1138 	klp_free_patch_finish(patch);
1139 
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(klp_enable_patch);
1143 
1144 /*
1145  * This function unpatches objects from the replaced livepatches.
1146  *
1147  * We could be pretty aggressive here. It is called in the situation where
1148  * these structures are no longer accessed from the ftrace handler.
1149  * All functions are redirected by the klp_transition_patch. They
1150  * use either a new code or they are in the original code because
1151  * of the special nop function patches.
1152  *
1153  * The only exception is when the transition was forced. In this case,
1154  * klp_ftrace_handler() might still see the replaced patch on the stack.
1155  * Fortunately, it is carefully designed to work with removed functions
1156  * thanks to RCU. We only have to keep the patches on the system. Also
1157  * this is handled transparently by patch->module_put.
1158  */
1159 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1160 {
1161 	struct klp_patch *old_patch;
1162 
1163 	klp_for_each_patch(old_patch) {
1164 		if (old_patch == new_patch)
1165 			return;
1166 
1167 		old_patch->enabled = false;
1168 		klp_unpatch_objects(old_patch);
1169 	}
1170 }
1171 
1172 /*
1173  * This function removes the dynamically allocated 'nop' functions.
1174  *
1175  * We could be pretty aggressive. NOPs do not change the existing
1176  * behavior except for adding unnecessary delay by the ftrace handler.
1177  *
1178  * It is safe even when the transition was forced. The ftrace handler
1179  * will see a valid ops->func_stack entry thanks to RCU.
1180  *
1181  * We could even free the NOPs structures. They must be the last entry
1182  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1183  * It does the same as klp_synchronize_transition() to make sure that
1184  * nobody is inside the ftrace handler once the operation finishes.
1185  *
1186  * IMPORTANT: It must be called right after removing the replaced patches!
1187  */
1188 void klp_discard_nops(struct klp_patch *new_patch)
1189 {
1190 	klp_unpatch_objects_dynamic(klp_transition_patch);
1191 	klp_free_objects_dynamic(klp_transition_patch);
1192 }
1193 
1194 /*
1195  * Remove parts of patches that touch a given kernel module. The list of
1196  * patches processed might be limited. When limit is NULL, all patches
1197  * will be handled.
1198  */
1199 static void klp_cleanup_module_patches_limited(struct module *mod,
1200 					       struct klp_patch *limit)
1201 {
1202 	struct klp_patch *patch;
1203 	struct klp_object *obj;
1204 
1205 	klp_for_each_patch(patch) {
1206 		if (patch == limit)
1207 			break;
1208 
1209 		klp_for_each_object(patch, obj) {
1210 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1211 				continue;
1212 
1213 			if (patch != klp_transition_patch)
1214 				klp_pre_unpatch_callback(obj);
1215 
1216 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1217 				  patch->mod->name, obj->mod->name);
1218 			klp_unpatch_object(obj);
1219 
1220 			klp_post_unpatch_callback(obj);
1221 			klp_clear_object_relocs(patch, obj);
1222 			klp_free_object_loaded(obj);
1223 			break;
1224 		}
1225 	}
1226 }
1227 
1228 int klp_module_coming(struct module *mod)
1229 {
1230 	int ret;
1231 	struct klp_patch *patch;
1232 	struct klp_object *obj;
1233 
1234 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1235 		return -EINVAL;
1236 
1237 	if (!strcmp(mod->name, "vmlinux")) {
1238 		pr_err("vmlinux.ko: invalid module name\n");
1239 		return -EINVAL;
1240 	}
1241 
1242 	mutex_lock(&klp_mutex);
1243 	/*
1244 	 * Each module has to know that klp_module_coming()
1245 	 * has been called. We never know what module will
1246 	 * get patched by a new patch.
1247 	 */
1248 	mod->klp_alive = true;
1249 
1250 	klp_for_each_patch(patch) {
1251 		klp_for_each_object(patch, obj) {
1252 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1253 				continue;
1254 
1255 			obj->mod = mod;
1256 
1257 			ret = klp_init_object_loaded(patch, obj);
1258 			if (ret) {
1259 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1260 					patch->mod->name, obj->mod->name, ret);
1261 				goto err;
1262 			}
1263 
1264 			pr_notice("applying patch '%s' to loading module '%s'\n",
1265 				  patch->mod->name, obj->mod->name);
1266 
1267 			ret = klp_pre_patch_callback(obj);
1268 			if (ret) {
1269 				pr_warn("pre-patch callback failed for object '%s'\n",
1270 					obj->name);
1271 				goto err;
1272 			}
1273 
1274 			ret = klp_patch_object(obj);
1275 			if (ret) {
1276 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1277 					patch->mod->name, obj->mod->name, ret);
1278 
1279 				klp_post_unpatch_callback(obj);
1280 				goto err;
1281 			}
1282 
1283 			if (patch != klp_transition_patch)
1284 				klp_post_patch_callback(obj);
1285 
1286 			break;
1287 		}
1288 	}
1289 
1290 	mutex_unlock(&klp_mutex);
1291 
1292 	return 0;
1293 
1294 err:
1295 	/*
1296 	 * If a patch is unsuccessfully applied, return
1297 	 * error to the module loader.
1298 	 */
1299 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1300 		patch->mod->name, obj->mod->name, obj->mod->name);
1301 	mod->klp_alive = false;
1302 	obj->mod = NULL;
1303 	klp_cleanup_module_patches_limited(mod, patch);
1304 	mutex_unlock(&klp_mutex);
1305 
1306 	return ret;
1307 }
1308 
1309 void klp_module_going(struct module *mod)
1310 {
1311 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1312 		    mod->state != MODULE_STATE_COMING))
1313 		return;
1314 
1315 	mutex_lock(&klp_mutex);
1316 	/*
1317 	 * Each module has to know that klp_module_going()
1318 	 * has been called. We never know what module will
1319 	 * get patched by a new patch.
1320 	 */
1321 	mod->klp_alive = false;
1322 
1323 	klp_cleanup_module_patches_limited(mod, NULL);
1324 
1325 	mutex_unlock(&klp_mutex);
1326 }
1327 
1328 static int __init klp_init(void)
1329 {
1330 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1331 	if (!klp_root_kobj)
1332 		return -ENOMEM;
1333 
1334 	return 0;
1335 }
1336 
1337 module_init(klp_init);
1338