1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 * - __klp_sched_try_switch() 37 */ 38 DEFINE_MUTEX(klp_mutex); 39 40 /* 41 * Actively used patches: enabled or in transition. Note that replaced 42 * or disabled patches are not listed even though the related kernel 43 * module still can be loaded. 44 */ 45 LIST_HEAD(klp_patches); 46 47 static struct kobject *klp_root_kobj; 48 49 static bool klp_is_module(struct klp_object *obj) 50 { 51 return obj->name; 52 } 53 54 /* sets obj->mod if object is not vmlinux and module is found */ 55 static void klp_find_object_module(struct klp_object *obj) 56 { 57 struct module *mod; 58 59 if (!klp_is_module(obj)) 60 return; 61 62 rcu_read_lock_sched(); 63 /* 64 * We do not want to block removal of patched modules and therefore 65 * we do not take a reference here. The patches are removed by 66 * klp_module_going() instead. 67 */ 68 mod = find_module(obj->name); 69 /* 70 * Do not mess work of klp_module_coming() and klp_module_going(). 71 * Note that the patch might still be needed before klp_module_going() 72 * is called. Module functions can be called even in the GOING state 73 * until mod->exit() finishes. This is especially important for 74 * patches that modify semantic of the functions. 75 */ 76 if (mod && mod->klp_alive) 77 obj->mod = mod; 78 79 rcu_read_unlock_sched(); 80 } 81 82 static bool klp_initialized(void) 83 { 84 return !!klp_root_kobj; 85 } 86 87 static struct klp_func *klp_find_func(struct klp_object *obj, 88 struct klp_func *old_func) 89 { 90 struct klp_func *func; 91 92 klp_for_each_func(obj, func) { 93 if ((strcmp(old_func->old_name, func->old_name) == 0) && 94 (old_func->old_sympos == func->old_sympos)) { 95 return func; 96 } 97 } 98 99 return NULL; 100 } 101 102 static struct klp_object *klp_find_object(struct klp_patch *patch, 103 struct klp_object *old_obj) 104 { 105 struct klp_object *obj; 106 107 klp_for_each_object(patch, obj) { 108 if (klp_is_module(old_obj)) { 109 if (klp_is_module(obj) && 110 strcmp(old_obj->name, obj->name) == 0) { 111 return obj; 112 } 113 } else if (!klp_is_module(obj)) { 114 return obj; 115 } 116 } 117 118 return NULL; 119 } 120 121 struct klp_find_arg { 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_match_callback(void *data, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 args->addr = addr; 133 args->count++; 134 135 /* 136 * Finish the search when the symbol is found for the desired position 137 * or the position is not defined for a non-unique symbol. 138 */ 139 if ((args->pos && (args->count == args->pos)) || 140 (!args->pos && (args->count > 1))) 141 return 1; 142 143 return 0; 144 } 145 146 static int klp_find_callback(void *data, const char *name, unsigned long addr) 147 { 148 struct klp_find_arg *args = data; 149 150 if (strcmp(args->name, name)) 151 return 0; 152 153 return klp_match_callback(data, addr); 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 if (objname) 167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 168 else 169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 170 171 /* 172 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 173 * otherwise ensure the symbol position count matches sympos. 174 */ 175 if (args.addr == 0) 176 pr_err("symbol '%s' not found in symbol table\n", name); 177 else if (args.count > 1 && sympos == 0) { 178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 179 name, objname); 180 } else if (sympos != args.count && sympos > 0) { 181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 182 sympos, name, objname ? objname : "vmlinux"); 183 } else { 184 *addr = args.addr; 185 return 0; 186 } 187 188 *addr = 0; 189 return -EINVAL; 190 } 191 192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 193 unsigned int symndx, Elf_Shdr *relasec, 194 const char *sec_objname) 195 { 196 int i, cnt, ret; 197 char sym_objname[MODULE_NAME_LEN]; 198 char sym_name[KSYM_NAME_LEN]; 199 Elf_Rela *relas; 200 Elf_Sym *sym; 201 unsigned long sympos, addr; 202 bool sym_vmlinux; 203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 204 205 /* 206 * Since the field widths for sym_objname and sym_name in the sscanf() 207 * call are hard-coded and correspond to MODULE_NAME_LEN and 208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 209 * and KSYM_NAME_LEN have the values we expect them to have. 210 * 211 * Because the value of MODULE_NAME_LEN can differ among architectures, 212 * we use the smallest/strictest upper bound possible (56, based on 213 * the current definition of MODULE_NAME_LEN) to prevent overflows. 214 */ 215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 216 217 relas = (Elf_Rela *) relasec->sh_addr; 218 /* For each rela in this klp relocation section */ 219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 221 if (sym->st_shndx != SHN_LIVEPATCH) { 222 pr_err("symbol %s is not marked as a livepatch symbol\n", 223 strtab + sym->st_name); 224 return -EINVAL; 225 } 226 227 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 228 cnt = sscanf(strtab + sym->st_name, 229 ".klp.sym.%55[^.].%511[^,],%lu", 230 sym_objname, sym_name, &sympos); 231 if (cnt != 3) { 232 pr_err("symbol %s has an incorrectly formatted name\n", 233 strtab + sym->st_name); 234 return -EINVAL; 235 } 236 237 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 238 239 /* 240 * Prevent module-specific KLP rela sections from referencing 241 * vmlinux symbols. This helps prevent ordering issues with 242 * module special section initializations. Presumably such 243 * symbols are exported and normal relas can be used instead. 244 */ 245 if (!sec_vmlinux && sym_vmlinux) { 246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n", 247 sym_name); 248 return -EINVAL; 249 } 250 251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 253 sym_name, sympos, &addr); 254 if (ret) 255 return ret; 256 257 sym->st_value = addr; 258 } 259 260 return 0; 261 } 262 263 void __weak clear_relocate_add(Elf_Shdr *sechdrs, 264 const char *strtab, 265 unsigned int symindex, 266 unsigned int relsec, 267 struct module *me) 268 { 269 } 270 271 /* 272 * At a high-level, there are two types of klp relocation sections: those which 273 * reference symbols which live in vmlinux; and those which reference symbols 274 * which live in other modules. This function is called for both types: 275 * 276 * 1) When a klp module itself loads, the module code calls this function to 277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 278 * These relocations are written to the klp module text to allow the patched 279 * code/data to reference unexported vmlinux symbols. They're written as 280 * early as possible to ensure that other module init code (.e.g., 281 * jump_label_apply_nops) can access any unexported vmlinux symbols which 282 * might be referenced by the klp module's special sections. 283 * 284 * 2) When a to-be-patched module loads -- or is already loaded when a 285 * corresponding klp module loads -- klp code calls this function to write 286 * module-specific klp relocations (.klp.rela.{module}.* sections). These 287 * are written to the klp module text to allow the patched code/data to 288 * reference symbols which live in the to-be-patched module or one of its 289 * module dependencies. Exported symbols are supported, in addition to 290 * unexported symbols, in order to enable late module patching, which allows 291 * the to-be-patched module to be loaded and patched sometime *after* the 292 * klp module is loaded. 293 */ 294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 295 const char *shstrtab, const char *strtab, 296 unsigned int symndx, unsigned int secndx, 297 const char *objname, bool apply) 298 { 299 int cnt, ret; 300 char sec_objname[MODULE_NAME_LEN]; 301 Elf_Shdr *sec = sechdrs + secndx; 302 303 /* 304 * Format: .klp.rela.sec_objname.section_name 305 * See comment in klp_resolve_symbols() for an explanation 306 * of the selected field width value. 307 */ 308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 309 sec_objname); 310 if (cnt != 1) { 311 pr_err("section %s has an incorrectly formatted name\n", 312 shstrtab + sec->sh_name); 313 return -EINVAL; 314 } 315 316 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 317 return 0; 318 319 if (apply) { 320 ret = klp_resolve_symbols(sechdrs, strtab, symndx, 321 sec, sec_objname); 322 if (ret) 323 return ret; 324 325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 326 } 327 328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 329 return 0; 330 } 331 332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 333 const char *shstrtab, const char *strtab, 334 unsigned int symndx, unsigned int secndx, 335 const char *objname) 336 { 337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx, 338 secndx, objname, true); 339 } 340 341 /* 342 * Sysfs Interface 343 * 344 * /sys/kernel/livepatch 345 * /sys/kernel/livepatch/<patch> 346 * /sys/kernel/livepatch/<patch>/enabled 347 * /sys/kernel/livepatch/<patch>/transition 348 * /sys/kernel/livepatch/<patch>/force 349 * /sys/kernel/livepatch/<patch>/<object> 350 * /sys/kernel/livepatch/<patch>/<object>/patched 351 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 352 */ 353 static int __klp_disable_patch(struct klp_patch *patch); 354 355 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 356 const char *buf, size_t count) 357 { 358 struct klp_patch *patch; 359 int ret; 360 bool enabled; 361 362 ret = kstrtobool(buf, &enabled); 363 if (ret) 364 return ret; 365 366 patch = container_of(kobj, struct klp_patch, kobj); 367 368 mutex_lock(&klp_mutex); 369 370 if (patch->enabled == enabled) { 371 /* already in requested state */ 372 ret = -EINVAL; 373 goto out; 374 } 375 376 /* 377 * Allow to reverse a pending transition in both ways. It might be 378 * necessary to complete the transition without forcing and breaking 379 * the system integrity. 380 * 381 * Do not allow to re-enable a disabled patch. 382 */ 383 if (patch == klp_transition_patch) 384 klp_reverse_transition(); 385 else if (!enabled) 386 ret = __klp_disable_patch(patch); 387 else 388 ret = -EINVAL; 389 390 out: 391 mutex_unlock(&klp_mutex); 392 393 if (ret) 394 return ret; 395 return count; 396 } 397 398 static ssize_t enabled_show(struct kobject *kobj, 399 struct kobj_attribute *attr, char *buf) 400 { 401 struct klp_patch *patch; 402 403 patch = container_of(kobj, struct klp_patch, kobj); 404 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 405 } 406 407 static ssize_t transition_show(struct kobject *kobj, 408 struct kobj_attribute *attr, char *buf) 409 { 410 struct klp_patch *patch; 411 412 patch = container_of(kobj, struct klp_patch, kobj); 413 return snprintf(buf, PAGE_SIZE-1, "%d\n", 414 patch == klp_transition_patch); 415 } 416 417 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 418 const char *buf, size_t count) 419 { 420 struct klp_patch *patch; 421 int ret; 422 bool val; 423 424 ret = kstrtobool(buf, &val); 425 if (ret) 426 return ret; 427 428 if (!val) 429 return count; 430 431 mutex_lock(&klp_mutex); 432 433 patch = container_of(kobj, struct klp_patch, kobj); 434 if (patch != klp_transition_patch) { 435 mutex_unlock(&klp_mutex); 436 return -EINVAL; 437 } 438 439 klp_force_transition(); 440 441 mutex_unlock(&klp_mutex); 442 443 return count; 444 } 445 446 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 447 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 448 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 449 static struct attribute *klp_patch_attrs[] = { 450 &enabled_kobj_attr.attr, 451 &transition_kobj_attr.attr, 452 &force_kobj_attr.attr, 453 NULL 454 }; 455 ATTRIBUTE_GROUPS(klp_patch); 456 457 static ssize_t patched_show(struct kobject *kobj, 458 struct kobj_attribute *attr, char *buf) 459 { 460 struct klp_object *obj; 461 462 obj = container_of(kobj, struct klp_object, kobj); 463 return sysfs_emit(buf, "%d\n", obj->patched); 464 } 465 466 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 467 static struct attribute *klp_object_attrs[] = { 468 &patched_kobj_attr.attr, 469 NULL, 470 }; 471 ATTRIBUTE_GROUPS(klp_object); 472 473 static void klp_free_object_dynamic(struct klp_object *obj) 474 { 475 kfree(obj->name); 476 kfree(obj); 477 } 478 479 static void klp_init_func_early(struct klp_object *obj, 480 struct klp_func *func); 481 static void klp_init_object_early(struct klp_patch *patch, 482 struct klp_object *obj); 483 484 static struct klp_object *klp_alloc_object_dynamic(const char *name, 485 struct klp_patch *patch) 486 { 487 struct klp_object *obj; 488 489 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 490 if (!obj) 491 return NULL; 492 493 if (name) { 494 obj->name = kstrdup(name, GFP_KERNEL); 495 if (!obj->name) { 496 kfree(obj); 497 return NULL; 498 } 499 } 500 501 klp_init_object_early(patch, obj); 502 obj->dynamic = true; 503 504 return obj; 505 } 506 507 static void klp_free_func_nop(struct klp_func *func) 508 { 509 kfree(func->old_name); 510 kfree(func); 511 } 512 513 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 514 struct klp_object *obj) 515 { 516 struct klp_func *func; 517 518 func = kzalloc(sizeof(*func), GFP_KERNEL); 519 if (!func) 520 return NULL; 521 522 if (old_func->old_name) { 523 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 524 if (!func->old_name) { 525 kfree(func); 526 return NULL; 527 } 528 } 529 530 klp_init_func_early(obj, func); 531 /* 532 * func->new_func is same as func->old_func. These addresses are 533 * set when the object is loaded, see klp_init_object_loaded(). 534 */ 535 func->old_sympos = old_func->old_sympos; 536 func->nop = true; 537 538 return func; 539 } 540 541 static int klp_add_object_nops(struct klp_patch *patch, 542 struct klp_object *old_obj) 543 { 544 struct klp_object *obj; 545 struct klp_func *func, *old_func; 546 547 obj = klp_find_object(patch, old_obj); 548 549 if (!obj) { 550 obj = klp_alloc_object_dynamic(old_obj->name, patch); 551 if (!obj) 552 return -ENOMEM; 553 } 554 555 klp_for_each_func(old_obj, old_func) { 556 func = klp_find_func(obj, old_func); 557 if (func) 558 continue; 559 560 func = klp_alloc_func_nop(old_func, obj); 561 if (!func) 562 return -ENOMEM; 563 } 564 565 return 0; 566 } 567 568 /* 569 * Add 'nop' functions which simply return to the caller to run 570 * the original function. The 'nop' functions are added to a 571 * patch to facilitate a 'replace' mode. 572 */ 573 static int klp_add_nops(struct klp_patch *patch) 574 { 575 struct klp_patch *old_patch; 576 struct klp_object *old_obj; 577 578 klp_for_each_patch(old_patch) { 579 klp_for_each_object(old_patch, old_obj) { 580 int err; 581 582 err = klp_add_object_nops(patch, old_obj); 583 if (err) 584 return err; 585 } 586 } 587 588 return 0; 589 } 590 591 static void klp_kobj_release_patch(struct kobject *kobj) 592 { 593 struct klp_patch *patch; 594 595 patch = container_of(kobj, struct klp_patch, kobj); 596 complete(&patch->finish); 597 } 598 599 static const struct kobj_type klp_ktype_patch = { 600 .release = klp_kobj_release_patch, 601 .sysfs_ops = &kobj_sysfs_ops, 602 .default_groups = klp_patch_groups, 603 }; 604 605 static void klp_kobj_release_object(struct kobject *kobj) 606 { 607 struct klp_object *obj; 608 609 obj = container_of(kobj, struct klp_object, kobj); 610 611 if (obj->dynamic) 612 klp_free_object_dynamic(obj); 613 } 614 615 static const struct kobj_type klp_ktype_object = { 616 .release = klp_kobj_release_object, 617 .sysfs_ops = &kobj_sysfs_ops, 618 .default_groups = klp_object_groups, 619 }; 620 621 static void klp_kobj_release_func(struct kobject *kobj) 622 { 623 struct klp_func *func; 624 625 func = container_of(kobj, struct klp_func, kobj); 626 627 if (func->nop) 628 klp_free_func_nop(func); 629 } 630 631 static const struct kobj_type klp_ktype_func = { 632 .release = klp_kobj_release_func, 633 .sysfs_ops = &kobj_sysfs_ops, 634 }; 635 636 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 637 { 638 struct klp_func *func, *tmp_func; 639 640 klp_for_each_func_safe(obj, func, tmp_func) { 641 if (nops_only && !func->nop) 642 continue; 643 644 list_del(&func->node); 645 kobject_put(&func->kobj); 646 } 647 } 648 649 /* Clean up when a patched object is unloaded */ 650 static void klp_free_object_loaded(struct klp_object *obj) 651 { 652 struct klp_func *func; 653 654 obj->mod = NULL; 655 656 klp_for_each_func(obj, func) { 657 func->old_func = NULL; 658 659 if (func->nop) 660 func->new_func = NULL; 661 } 662 } 663 664 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 665 { 666 struct klp_object *obj, *tmp_obj; 667 668 klp_for_each_object_safe(patch, obj, tmp_obj) { 669 __klp_free_funcs(obj, nops_only); 670 671 if (nops_only && !obj->dynamic) 672 continue; 673 674 list_del(&obj->node); 675 kobject_put(&obj->kobj); 676 } 677 } 678 679 static void klp_free_objects(struct klp_patch *patch) 680 { 681 __klp_free_objects(patch, false); 682 } 683 684 static void klp_free_objects_dynamic(struct klp_patch *patch) 685 { 686 __klp_free_objects(patch, true); 687 } 688 689 /* 690 * This function implements the free operations that can be called safely 691 * under klp_mutex. 692 * 693 * The operation must be completed by calling klp_free_patch_finish() 694 * outside klp_mutex. 695 */ 696 static void klp_free_patch_start(struct klp_patch *patch) 697 { 698 if (!list_empty(&patch->list)) 699 list_del(&patch->list); 700 701 klp_free_objects(patch); 702 } 703 704 /* 705 * This function implements the free part that must be called outside 706 * klp_mutex. 707 * 708 * It must be called after klp_free_patch_start(). And it has to be 709 * the last function accessing the livepatch structures when the patch 710 * gets disabled. 711 */ 712 static void klp_free_patch_finish(struct klp_patch *patch) 713 { 714 /* 715 * Avoid deadlock with enabled_store() sysfs callback by 716 * calling this outside klp_mutex. It is safe because 717 * this is called when the patch gets disabled and it 718 * cannot get enabled again. 719 */ 720 kobject_put(&patch->kobj); 721 wait_for_completion(&patch->finish); 722 723 /* Put the module after the last access to struct klp_patch. */ 724 if (!patch->forced) 725 module_put(patch->mod); 726 } 727 728 /* 729 * The livepatch might be freed from sysfs interface created by the patch. 730 * This work allows to wait until the interface is destroyed in a separate 731 * context. 732 */ 733 static void klp_free_patch_work_fn(struct work_struct *work) 734 { 735 struct klp_patch *patch = 736 container_of(work, struct klp_patch, free_work); 737 738 klp_free_patch_finish(patch); 739 } 740 741 void klp_free_patch_async(struct klp_patch *patch) 742 { 743 klp_free_patch_start(patch); 744 schedule_work(&patch->free_work); 745 } 746 747 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 748 { 749 struct klp_patch *old_patch, *tmp_patch; 750 751 klp_for_each_patch_safe(old_patch, tmp_patch) { 752 if (old_patch == new_patch) 753 return; 754 klp_free_patch_async(old_patch); 755 } 756 } 757 758 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 759 { 760 if (!func->old_name) 761 return -EINVAL; 762 763 /* 764 * NOPs get the address later. The patched module must be loaded, 765 * see klp_init_object_loaded(). 766 */ 767 if (!func->new_func && !func->nop) 768 return -EINVAL; 769 770 if (strlen(func->old_name) >= KSYM_NAME_LEN) 771 return -EINVAL; 772 773 INIT_LIST_HEAD(&func->stack_node); 774 func->patched = false; 775 func->transition = false; 776 777 /* The format for the sysfs directory is <function,sympos> where sympos 778 * is the nth occurrence of this symbol in kallsyms for the patched 779 * object. If the user selects 0 for old_sympos, then 1 will be used 780 * since a unique symbol will be the first occurrence. 781 */ 782 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 783 func->old_name, 784 func->old_sympos ? func->old_sympos : 1); 785 } 786 787 static int klp_write_object_relocs(struct klp_patch *patch, 788 struct klp_object *obj, 789 bool apply) 790 { 791 int i, ret; 792 struct klp_modinfo *info = patch->mod->klp_info; 793 794 for (i = 1; i < info->hdr.e_shnum; i++) { 795 Elf_Shdr *sec = info->sechdrs + i; 796 797 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 798 continue; 799 800 ret = klp_write_section_relocs(patch->mod, info->sechdrs, 801 info->secstrings, 802 patch->mod->core_kallsyms.strtab, 803 info->symndx, i, obj->name, apply); 804 if (ret) 805 return ret; 806 } 807 808 return 0; 809 } 810 811 static int klp_apply_object_relocs(struct klp_patch *patch, 812 struct klp_object *obj) 813 { 814 return klp_write_object_relocs(patch, obj, true); 815 } 816 817 static void klp_clear_object_relocs(struct klp_patch *patch, 818 struct klp_object *obj) 819 { 820 klp_write_object_relocs(patch, obj, false); 821 } 822 823 /* parts of the initialization that is done only when the object is loaded */ 824 static int klp_init_object_loaded(struct klp_patch *patch, 825 struct klp_object *obj) 826 { 827 struct klp_func *func; 828 int ret; 829 830 if (klp_is_module(obj)) { 831 /* 832 * Only write module-specific relocations here 833 * (.klp.rela.{module}.*). vmlinux-specific relocations were 834 * written earlier during the initialization of the klp module 835 * itself. 836 */ 837 ret = klp_apply_object_relocs(patch, obj); 838 if (ret) 839 return ret; 840 } 841 842 klp_for_each_func(obj, func) { 843 ret = klp_find_object_symbol(obj->name, func->old_name, 844 func->old_sympos, 845 (unsigned long *)&func->old_func); 846 if (ret) 847 return ret; 848 849 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 850 &func->old_size, NULL); 851 if (!ret) { 852 pr_err("kallsyms size lookup failed for '%s'\n", 853 func->old_name); 854 return -ENOENT; 855 } 856 857 if (func->nop) 858 func->new_func = func->old_func; 859 860 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 861 &func->new_size, NULL); 862 if (!ret) { 863 pr_err("kallsyms size lookup failed for '%s' replacement\n", 864 func->old_name); 865 return -ENOENT; 866 } 867 } 868 869 return 0; 870 } 871 872 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 873 { 874 struct klp_func *func; 875 int ret; 876 const char *name; 877 878 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 879 return -EINVAL; 880 881 obj->patched = false; 882 obj->mod = NULL; 883 884 klp_find_object_module(obj); 885 886 name = klp_is_module(obj) ? obj->name : "vmlinux"; 887 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 888 if (ret) 889 return ret; 890 891 klp_for_each_func(obj, func) { 892 ret = klp_init_func(obj, func); 893 if (ret) 894 return ret; 895 } 896 897 if (klp_is_object_loaded(obj)) 898 ret = klp_init_object_loaded(patch, obj); 899 900 return ret; 901 } 902 903 static void klp_init_func_early(struct klp_object *obj, 904 struct klp_func *func) 905 { 906 kobject_init(&func->kobj, &klp_ktype_func); 907 list_add_tail(&func->node, &obj->func_list); 908 } 909 910 static void klp_init_object_early(struct klp_patch *patch, 911 struct klp_object *obj) 912 { 913 INIT_LIST_HEAD(&obj->func_list); 914 kobject_init(&obj->kobj, &klp_ktype_object); 915 list_add_tail(&obj->node, &patch->obj_list); 916 } 917 918 static void klp_init_patch_early(struct klp_patch *patch) 919 { 920 struct klp_object *obj; 921 struct klp_func *func; 922 923 INIT_LIST_HEAD(&patch->list); 924 INIT_LIST_HEAD(&patch->obj_list); 925 kobject_init(&patch->kobj, &klp_ktype_patch); 926 patch->enabled = false; 927 patch->forced = false; 928 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 929 init_completion(&patch->finish); 930 931 klp_for_each_object_static(patch, obj) { 932 klp_init_object_early(patch, obj); 933 934 klp_for_each_func_static(obj, func) { 935 klp_init_func_early(obj, func); 936 } 937 } 938 } 939 940 static int klp_init_patch(struct klp_patch *patch) 941 { 942 struct klp_object *obj; 943 int ret; 944 945 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 946 if (ret) 947 return ret; 948 949 if (patch->replace) { 950 ret = klp_add_nops(patch); 951 if (ret) 952 return ret; 953 } 954 955 klp_for_each_object(patch, obj) { 956 ret = klp_init_object(patch, obj); 957 if (ret) 958 return ret; 959 } 960 961 list_add_tail(&patch->list, &klp_patches); 962 963 return 0; 964 } 965 966 static int __klp_disable_patch(struct klp_patch *patch) 967 { 968 struct klp_object *obj; 969 970 if (WARN_ON(!patch->enabled)) 971 return -EINVAL; 972 973 if (klp_transition_patch) 974 return -EBUSY; 975 976 klp_init_transition(patch, KLP_UNPATCHED); 977 978 klp_for_each_object(patch, obj) 979 if (obj->patched) 980 klp_pre_unpatch_callback(obj); 981 982 /* 983 * Enforce the order of the func->transition writes in 984 * klp_init_transition() and the TIF_PATCH_PENDING writes in 985 * klp_start_transition(). In the rare case where klp_ftrace_handler() 986 * is called shortly after klp_update_patch_state() switches the task, 987 * this ensures the handler sees that func->transition is set. 988 */ 989 smp_wmb(); 990 991 klp_start_transition(); 992 patch->enabled = false; 993 klp_try_complete_transition(); 994 995 return 0; 996 } 997 998 static int __klp_enable_patch(struct klp_patch *patch) 999 { 1000 struct klp_object *obj; 1001 int ret; 1002 1003 if (klp_transition_patch) 1004 return -EBUSY; 1005 1006 if (WARN_ON(patch->enabled)) 1007 return -EINVAL; 1008 1009 pr_notice("enabling patch '%s'\n", patch->mod->name); 1010 1011 klp_init_transition(patch, KLP_PATCHED); 1012 1013 /* 1014 * Enforce the order of the func->transition writes in 1015 * klp_init_transition() and the ops->func_stack writes in 1016 * klp_patch_object(), so that klp_ftrace_handler() will see the 1017 * func->transition updates before the handler is registered and the 1018 * new funcs become visible to the handler. 1019 */ 1020 smp_wmb(); 1021 1022 klp_for_each_object(patch, obj) { 1023 if (!klp_is_object_loaded(obj)) 1024 continue; 1025 1026 ret = klp_pre_patch_callback(obj); 1027 if (ret) { 1028 pr_warn("pre-patch callback failed for object '%s'\n", 1029 klp_is_module(obj) ? obj->name : "vmlinux"); 1030 goto err; 1031 } 1032 1033 ret = klp_patch_object(obj); 1034 if (ret) { 1035 pr_warn("failed to patch object '%s'\n", 1036 klp_is_module(obj) ? obj->name : "vmlinux"); 1037 goto err; 1038 } 1039 } 1040 1041 klp_start_transition(); 1042 patch->enabled = true; 1043 klp_try_complete_transition(); 1044 1045 return 0; 1046 err: 1047 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1048 1049 klp_cancel_transition(); 1050 return ret; 1051 } 1052 1053 /** 1054 * klp_enable_patch() - enable the livepatch 1055 * @patch: patch to be enabled 1056 * 1057 * Initializes the data structure associated with the patch, creates the sysfs 1058 * interface, performs the needed symbol lookups and code relocations, 1059 * registers the patched functions with ftrace. 1060 * 1061 * This function is supposed to be called from the livepatch module_init() 1062 * callback. 1063 * 1064 * Return: 0 on success, otherwise error 1065 */ 1066 int klp_enable_patch(struct klp_patch *patch) 1067 { 1068 int ret; 1069 struct klp_object *obj; 1070 1071 if (!patch || !patch->mod || !patch->objs) 1072 return -EINVAL; 1073 1074 klp_for_each_object_static(patch, obj) { 1075 if (!obj->funcs) 1076 return -EINVAL; 1077 } 1078 1079 1080 if (!is_livepatch_module(patch->mod)) { 1081 pr_err("module %s is not marked as a livepatch module\n", 1082 patch->mod->name); 1083 return -EINVAL; 1084 } 1085 1086 if (!klp_initialized()) 1087 return -ENODEV; 1088 1089 if (!klp_have_reliable_stack()) { 1090 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1091 pr_warn("The livepatch transition may never complete.\n"); 1092 } 1093 1094 mutex_lock(&klp_mutex); 1095 1096 if (!klp_is_patch_compatible(patch)) { 1097 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1098 patch->mod->name); 1099 mutex_unlock(&klp_mutex); 1100 return -EINVAL; 1101 } 1102 1103 if (!try_module_get(patch->mod)) { 1104 mutex_unlock(&klp_mutex); 1105 return -ENODEV; 1106 } 1107 1108 klp_init_patch_early(patch); 1109 1110 ret = klp_init_patch(patch); 1111 if (ret) 1112 goto err; 1113 1114 ret = __klp_enable_patch(patch); 1115 if (ret) 1116 goto err; 1117 1118 mutex_unlock(&klp_mutex); 1119 1120 return 0; 1121 1122 err: 1123 klp_free_patch_start(patch); 1124 1125 mutex_unlock(&klp_mutex); 1126 1127 klp_free_patch_finish(patch); 1128 1129 return ret; 1130 } 1131 EXPORT_SYMBOL_GPL(klp_enable_patch); 1132 1133 /* 1134 * This function unpatches objects from the replaced livepatches. 1135 * 1136 * We could be pretty aggressive here. It is called in the situation where 1137 * these structures are no longer accessed from the ftrace handler. 1138 * All functions are redirected by the klp_transition_patch. They 1139 * use either a new code or they are in the original code because 1140 * of the special nop function patches. 1141 * 1142 * The only exception is when the transition was forced. In this case, 1143 * klp_ftrace_handler() might still see the replaced patch on the stack. 1144 * Fortunately, it is carefully designed to work with removed functions 1145 * thanks to RCU. We only have to keep the patches on the system. Also 1146 * this is handled transparently by patch->module_put. 1147 */ 1148 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1149 { 1150 struct klp_patch *old_patch; 1151 1152 klp_for_each_patch(old_patch) { 1153 if (old_patch == new_patch) 1154 return; 1155 1156 old_patch->enabled = false; 1157 klp_unpatch_objects(old_patch); 1158 } 1159 } 1160 1161 /* 1162 * This function removes the dynamically allocated 'nop' functions. 1163 * 1164 * We could be pretty aggressive. NOPs do not change the existing 1165 * behavior except for adding unnecessary delay by the ftrace handler. 1166 * 1167 * It is safe even when the transition was forced. The ftrace handler 1168 * will see a valid ops->func_stack entry thanks to RCU. 1169 * 1170 * We could even free the NOPs structures. They must be the last entry 1171 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1172 * It does the same as klp_synchronize_transition() to make sure that 1173 * nobody is inside the ftrace handler once the operation finishes. 1174 * 1175 * IMPORTANT: It must be called right after removing the replaced patches! 1176 */ 1177 void klp_discard_nops(struct klp_patch *new_patch) 1178 { 1179 klp_unpatch_objects_dynamic(klp_transition_patch); 1180 klp_free_objects_dynamic(klp_transition_patch); 1181 } 1182 1183 /* 1184 * Remove parts of patches that touch a given kernel module. The list of 1185 * patches processed might be limited. When limit is NULL, all patches 1186 * will be handled. 1187 */ 1188 static void klp_cleanup_module_patches_limited(struct module *mod, 1189 struct klp_patch *limit) 1190 { 1191 struct klp_patch *patch; 1192 struct klp_object *obj; 1193 1194 klp_for_each_patch(patch) { 1195 if (patch == limit) 1196 break; 1197 1198 klp_for_each_object(patch, obj) { 1199 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1200 continue; 1201 1202 if (patch != klp_transition_patch) 1203 klp_pre_unpatch_callback(obj); 1204 1205 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1206 patch->mod->name, obj->mod->name); 1207 klp_unpatch_object(obj); 1208 1209 klp_post_unpatch_callback(obj); 1210 klp_clear_object_relocs(patch, obj); 1211 klp_free_object_loaded(obj); 1212 break; 1213 } 1214 } 1215 } 1216 1217 int klp_module_coming(struct module *mod) 1218 { 1219 int ret; 1220 struct klp_patch *patch; 1221 struct klp_object *obj; 1222 1223 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1224 return -EINVAL; 1225 1226 if (!strcmp(mod->name, "vmlinux")) { 1227 pr_err("vmlinux.ko: invalid module name\n"); 1228 return -EINVAL; 1229 } 1230 1231 mutex_lock(&klp_mutex); 1232 /* 1233 * Each module has to know that klp_module_coming() 1234 * has been called. We never know what module will 1235 * get patched by a new patch. 1236 */ 1237 mod->klp_alive = true; 1238 1239 klp_for_each_patch(patch) { 1240 klp_for_each_object(patch, obj) { 1241 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1242 continue; 1243 1244 obj->mod = mod; 1245 1246 ret = klp_init_object_loaded(patch, obj); 1247 if (ret) { 1248 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1249 patch->mod->name, obj->mod->name, ret); 1250 goto err; 1251 } 1252 1253 pr_notice("applying patch '%s' to loading module '%s'\n", 1254 patch->mod->name, obj->mod->name); 1255 1256 ret = klp_pre_patch_callback(obj); 1257 if (ret) { 1258 pr_warn("pre-patch callback failed for object '%s'\n", 1259 obj->name); 1260 goto err; 1261 } 1262 1263 ret = klp_patch_object(obj); 1264 if (ret) { 1265 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1266 patch->mod->name, obj->mod->name, ret); 1267 1268 klp_post_unpatch_callback(obj); 1269 goto err; 1270 } 1271 1272 if (patch != klp_transition_patch) 1273 klp_post_patch_callback(obj); 1274 1275 break; 1276 } 1277 } 1278 1279 mutex_unlock(&klp_mutex); 1280 1281 return 0; 1282 1283 err: 1284 /* 1285 * If a patch is unsuccessfully applied, return 1286 * error to the module loader. 1287 */ 1288 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1289 patch->mod->name, obj->mod->name, obj->mod->name); 1290 mod->klp_alive = false; 1291 obj->mod = NULL; 1292 klp_cleanup_module_patches_limited(mod, patch); 1293 mutex_unlock(&klp_mutex); 1294 1295 return ret; 1296 } 1297 1298 void klp_module_going(struct module *mod) 1299 { 1300 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1301 mod->state != MODULE_STATE_COMING)) 1302 return; 1303 1304 mutex_lock(&klp_mutex); 1305 /* 1306 * Each module has to know that klp_module_going() 1307 * has been called. We never know what module will 1308 * get patched by a new patch. 1309 */ 1310 mod->klp_alive = false; 1311 1312 klp_cleanup_module_patches_limited(mod, NULL); 1313 1314 mutex_unlock(&klp_mutex); 1315 } 1316 1317 static int __init klp_init(void) 1318 { 1319 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1320 if (!klp_root_kobj) 1321 return -ENOMEM; 1322 1323 return 0; 1324 } 1325 1326 module_init(klp_init); 1327