xref: /linux/kernel/latencytop.c (revision d9fef76e89498bf99cdb03f77b7091d7e95d7edd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * latencytop.c: Latency display infrastructure
4  *
5  * (C) Copyright 2008 Intel Corporation
6  * Author: Arjan van de Ven <arjan@linux.intel.com>
7  */
8 
9 /*
10  * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
11  * used by the "latencytop" userspace tool. The latency that is tracked is not
12  * the 'traditional' interrupt latency (which is primarily caused by something
13  * else consuming CPU), but instead, it is the latency an application encounters
14  * because the kernel sleeps on its behalf for various reasons.
15  *
16  * This code tracks 2 levels of statistics:
17  * 1) System level latency
18  * 2) Per process latency
19  *
20  * The latency is stored in fixed sized data structures in an accumulated form;
21  * if the "same" latency cause is hit twice, this will be tracked as one entry
22  * in the data structure. Both the count, total accumulated latency and maximum
23  * latency are tracked in this data structure. When the fixed size structure is
24  * full, no new causes are tracked until the buffer is flushed by writing to
25  * the /proc file; the userspace tool does this on a regular basis.
26  *
27  * A latency cause is identified by a stringified backtrace at the point that
28  * the scheduler gets invoked. The userland tool will use this string to
29  * identify the cause of the latency in human readable form.
30  *
31  * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
32  * These files look like this:
33  *
34  * Latency Top version : v0.1
35  * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
36  * |    |    |    |
37  * |    |    |    +----> the stringified backtrace
38  * |    |    +---------> The maximum latency for this entry in microseconds
39  * |    +--------------> The accumulated latency for this entry (microseconds)
40  * +-------------------> The number of times this entry is hit
41  *
42  * (note: the average latency is the accumulated latency divided by the number
43  * of times)
44  */
45 
46 #include <linux/kallsyms.h>
47 #include <linux/seq_file.h>
48 #include <linux/notifier.h>
49 #include <linux/spinlock.h>
50 #include <linux/proc_fs.h>
51 #include <linux/latencytop.h>
52 #include <linux/export.h>
53 #include <linux/sched.h>
54 #include <linux/sched/debug.h>
55 #include <linux/sched/stat.h>
56 #include <linux/list.h>
57 #include <linux/stacktrace.h>
58 #include <linux/sysctl.h>
59 
60 static DEFINE_RAW_SPINLOCK(latency_lock);
61 
62 #define MAXLR 128
63 static struct latency_record latency_record[MAXLR];
64 
65 int latencytop_enabled;
66 
67 #ifdef CONFIG_SYSCTL
68 static int sysctl_latencytop(struct ctl_table *table, int write, void *buffer,
69 		size_t *lenp, loff_t *ppos)
70 {
71 	int err;
72 
73 	err = proc_dointvec(table, write, buffer, lenp, ppos);
74 	if (latencytop_enabled)
75 		force_schedstat_enabled();
76 
77 	return err;
78 }
79 
80 static struct ctl_table latencytop_sysctl[] = {
81 	{
82 		.procname   = "latencytop",
83 		.data       = &latencytop_enabled,
84 		.maxlen     = sizeof(int),
85 		.mode       = 0644,
86 		.proc_handler   = sysctl_latencytop,
87 	},
88 };
89 #endif
90 
91 void clear_tsk_latency_tracing(struct task_struct *p)
92 {
93 	unsigned long flags;
94 
95 	raw_spin_lock_irqsave(&latency_lock, flags);
96 	memset(&p->latency_record, 0, sizeof(p->latency_record));
97 	p->latency_record_count = 0;
98 	raw_spin_unlock_irqrestore(&latency_lock, flags);
99 }
100 
101 static void clear_global_latency_tracing(void)
102 {
103 	unsigned long flags;
104 
105 	raw_spin_lock_irqsave(&latency_lock, flags);
106 	memset(&latency_record, 0, sizeof(latency_record));
107 	raw_spin_unlock_irqrestore(&latency_lock, flags);
108 }
109 
110 static void __sched
111 account_global_scheduler_latency(struct task_struct *tsk,
112 				 struct latency_record *lat)
113 {
114 	int firstnonnull = MAXLR;
115 	int i;
116 
117 	/* skip kernel threads for now */
118 	if (!tsk->mm)
119 		return;
120 
121 	for (i = 0; i < MAXLR; i++) {
122 		int q, same = 1;
123 
124 		/* Nothing stored: */
125 		if (!latency_record[i].backtrace[0]) {
126 			if (firstnonnull > i)
127 				firstnonnull = i;
128 			continue;
129 		}
130 		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
131 			unsigned long record = lat->backtrace[q];
132 
133 			if (latency_record[i].backtrace[q] != record) {
134 				same = 0;
135 				break;
136 			}
137 
138 			/* 0 entry marks end of backtrace: */
139 			if (!record)
140 				break;
141 		}
142 		if (same) {
143 			latency_record[i].count++;
144 			latency_record[i].time += lat->time;
145 			if (lat->time > latency_record[i].max)
146 				latency_record[i].max = lat->time;
147 			return;
148 		}
149 	}
150 
151 	i = firstnonnull;
152 	if (i >= MAXLR)
153 		return;
154 
155 	/* Allocted a new one: */
156 	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
157 }
158 
159 /**
160  * __account_scheduler_latency - record an occurred latency
161  * @tsk - the task struct of the task hitting the latency
162  * @usecs - the duration of the latency in microseconds
163  * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
164  *
165  * This function is the main entry point for recording latency entries
166  * as called by the scheduler.
167  *
168  * This function has a few special cases to deal with normal 'non-latency'
169  * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
170  * since this usually is caused by waiting for events via select() and co.
171  *
172  * Negative latencies (caused by time going backwards) are also explicitly
173  * skipped.
174  */
175 void __sched
176 __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
177 {
178 	unsigned long flags;
179 	int i, q;
180 	struct latency_record lat;
181 
182 	/* Long interruptible waits are generally user requested... */
183 	if (inter && usecs > 5000)
184 		return;
185 
186 	/* Negative sleeps are time going backwards */
187 	/* Zero-time sleeps are non-interesting */
188 	if (usecs <= 0)
189 		return;
190 
191 	memset(&lat, 0, sizeof(lat));
192 	lat.count = 1;
193 	lat.time = usecs;
194 	lat.max = usecs;
195 
196 	stack_trace_save_tsk(tsk, lat.backtrace, LT_BACKTRACEDEPTH, 0);
197 
198 	raw_spin_lock_irqsave(&latency_lock, flags);
199 
200 	account_global_scheduler_latency(tsk, &lat);
201 
202 	for (i = 0; i < tsk->latency_record_count; i++) {
203 		struct latency_record *mylat;
204 		int same = 1;
205 
206 		mylat = &tsk->latency_record[i];
207 		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
208 			unsigned long record = lat.backtrace[q];
209 
210 			if (mylat->backtrace[q] != record) {
211 				same = 0;
212 				break;
213 			}
214 
215 			/* 0 entry is end of backtrace */
216 			if (!record)
217 				break;
218 		}
219 		if (same) {
220 			mylat->count++;
221 			mylat->time += lat.time;
222 			if (lat.time > mylat->max)
223 				mylat->max = lat.time;
224 			goto out_unlock;
225 		}
226 	}
227 
228 	/*
229 	 * short term hack; if we're > 32 we stop; future we recycle:
230 	 */
231 	if (tsk->latency_record_count >= LT_SAVECOUNT)
232 		goto out_unlock;
233 
234 	/* Allocated a new one: */
235 	i = tsk->latency_record_count++;
236 	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
237 
238 out_unlock:
239 	raw_spin_unlock_irqrestore(&latency_lock, flags);
240 }
241 
242 static int lstats_show(struct seq_file *m, void *v)
243 {
244 	int i;
245 
246 	seq_puts(m, "Latency Top version : v0.1\n");
247 
248 	for (i = 0; i < MAXLR; i++) {
249 		struct latency_record *lr = &latency_record[i];
250 
251 		if (lr->backtrace[0]) {
252 			int q;
253 			seq_printf(m, "%i %lu %lu",
254 				   lr->count, lr->time, lr->max);
255 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
256 				unsigned long bt = lr->backtrace[q];
257 
258 				if (!bt)
259 					break;
260 
261 				seq_printf(m, " %ps", (void *)bt);
262 			}
263 			seq_puts(m, "\n");
264 		}
265 	}
266 	return 0;
267 }
268 
269 static ssize_t
270 lstats_write(struct file *file, const char __user *buf, size_t count,
271 	     loff_t *offs)
272 {
273 	clear_global_latency_tracing();
274 
275 	return count;
276 }
277 
278 static int lstats_open(struct inode *inode, struct file *filp)
279 {
280 	return single_open(filp, lstats_show, NULL);
281 }
282 
283 static const struct proc_ops lstats_proc_ops = {
284 	.proc_open	= lstats_open,
285 	.proc_read	= seq_read,
286 	.proc_write	= lstats_write,
287 	.proc_lseek	= seq_lseek,
288 	.proc_release	= single_release,
289 };
290 
291 static int __init init_lstats_procfs(void)
292 {
293 	proc_create("latency_stats", 0644, NULL, &lstats_proc_ops);
294 #ifdef CONFIG_SYSCTL
295 	register_sysctl_init("kernel", latencytop_sysctl);
296 #endif
297 	return 0;
298 }
299 device_initcall(init_lstats_procfs);
300