xref: /linux/kernel/kthread.c (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 static LIST_HEAD(kthreads_hotplug);
39 static DEFINE_MUTEX(kthreads_hotplug_lock);
40 
41 struct kthread_create_info
42 {
43 	/* Information passed to kthread() from kthreadd. */
44 	char *full_name;
45 	int (*threadfn)(void *data);
46 	void *data;
47 	int node;
48 
49 	/* Result passed back to kthread_create() from kthreadd. */
50 	struct task_struct *result;
51 	struct completion *done;
52 
53 	struct list_head list;
54 };
55 
56 struct kthread {
57 	unsigned long flags;
58 	unsigned int cpu;
59 	unsigned int node;
60 	int started;
61 	int result;
62 	int (*threadfn)(void *);
63 	void *data;
64 	struct completion parked;
65 	struct completion exited;
66 #ifdef CONFIG_BLK_CGROUP
67 	struct cgroup_subsys_state *blkcg_css;
68 #endif
69 	/* To store the full name if task comm is truncated. */
70 	char *full_name;
71 	struct task_struct *task;
72 	struct list_head hotplug_node;
73 	struct cpumask *preferred_affinity;
74 };
75 
76 enum KTHREAD_BITS {
77 	KTHREAD_IS_PER_CPU = 0,
78 	KTHREAD_SHOULD_STOP,
79 	KTHREAD_SHOULD_PARK,
80 };
81 
82 static inline struct kthread *to_kthread(struct task_struct *k)
83 {
84 	WARN_ON(!(k->flags & PF_KTHREAD));
85 	return k->worker_private;
86 }
87 
88 /*
89  * Variant of to_kthread() that doesn't assume @p is a kthread.
90  *
91  * Per construction; when:
92  *
93  *   (p->flags & PF_KTHREAD) && p->worker_private
94  *
95  * the task is both a kthread and struct kthread is persistent. However
96  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
97  * begin_new_exec()).
98  */
99 static inline struct kthread *__to_kthread(struct task_struct *p)
100 {
101 	void *kthread = p->worker_private;
102 	if (kthread && !(p->flags & PF_KTHREAD))
103 		kthread = NULL;
104 	return kthread;
105 }
106 
107 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
108 {
109 	struct kthread *kthread = to_kthread(tsk);
110 
111 	if (!kthread || !kthread->full_name) {
112 		strscpy(buf, tsk->comm, buf_size);
113 		return;
114 	}
115 
116 	strscpy_pad(buf, kthread->full_name, buf_size);
117 }
118 
119 bool set_kthread_struct(struct task_struct *p)
120 {
121 	struct kthread *kthread;
122 
123 	if (WARN_ON_ONCE(to_kthread(p)))
124 		return false;
125 
126 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
127 	if (!kthread)
128 		return false;
129 
130 	init_completion(&kthread->exited);
131 	init_completion(&kthread->parked);
132 	INIT_LIST_HEAD(&kthread->hotplug_node);
133 	p->vfork_done = &kthread->exited;
134 
135 	kthread->task = p;
136 	kthread->node = tsk_fork_get_node(current);
137 	p->worker_private = kthread;
138 	return true;
139 }
140 
141 void free_kthread_struct(struct task_struct *k)
142 {
143 	struct kthread *kthread;
144 
145 	/*
146 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
147 	 */
148 	kthread = to_kthread(k);
149 	if (!kthread)
150 		return;
151 
152 #ifdef CONFIG_BLK_CGROUP
153 	WARN_ON_ONCE(kthread->blkcg_css);
154 #endif
155 	k->worker_private = NULL;
156 	kfree(kthread->full_name);
157 	kfree(kthread);
158 }
159 
160 /**
161  * kthread_should_stop - should this kthread return now?
162  *
163  * When someone calls kthread_stop() on your kthread, it will be woken
164  * and this will return true.  You should then return, and your return
165  * value will be passed through to kthread_stop().
166  */
167 bool kthread_should_stop(void)
168 {
169 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
170 }
171 EXPORT_SYMBOL(kthread_should_stop);
172 
173 static bool __kthread_should_park(struct task_struct *k)
174 {
175 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
176 }
177 
178 /**
179  * kthread_should_park - should this kthread park now?
180  *
181  * When someone calls kthread_park() on your kthread, it will be woken
182  * and this will return true.  You should then do the necessary
183  * cleanup and call kthread_parkme()
184  *
185  * Similar to kthread_should_stop(), but this keeps the thread alive
186  * and in a park position. kthread_unpark() "restarts" the thread and
187  * calls the thread function again.
188  */
189 bool kthread_should_park(void)
190 {
191 	return __kthread_should_park(current);
192 }
193 EXPORT_SYMBOL_GPL(kthread_should_park);
194 
195 bool kthread_should_stop_or_park(void)
196 {
197 	struct kthread *kthread = __to_kthread(current);
198 
199 	if (!kthread)
200 		return false;
201 
202 	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
203 }
204 
205 /**
206  * kthread_freezable_should_stop - should this freezable kthread return now?
207  * @was_frozen: optional out parameter, indicates whether %current was frozen
208  *
209  * kthread_should_stop() for freezable kthreads, which will enter
210  * refrigerator if necessary.  This function is safe from kthread_stop() /
211  * freezer deadlock and freezable kthreads should use this function instead
212  * of calling try_to_freeze() directly.
213  */
214 bool kthread_freezable_should_stop(bool *was_frozen)
215 {
216 	bool frozen = false;
217 
218 	might_sleep();
219 
220 	if (unlikely(freezing(current)))
221 		frozen = __refrigerator(true);
222 
223 	if (was_frozen)
224 		*was_frozen = frozen;
225 
226 	return kthread_should_stop();
227 }
228 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
229 
230 /**
231  * kthread_func - return the function specified on kthread creation
232  * @task: kthread task in question
233  *
234  * Returns NULL if the task is not a kthread.
235  */
236 void *kthread_func(struct task_struct *task)
237 {
238 	struct kthread *kthread = __to_kthread(task);
239 	if (kthread)
240 		return kthread->threadfn;
241 	return NULL;
242 }
243 EXPORT_SYMBOL_GPL(kthread_func);
244 
245 /**
246  * kthread_data - return data value specified on kthread creation
247  * @task: kthread task in question
248  *
249  * Return the data value specified when kthread @task was created.
250  * The caller is responsible for ensuring the validity of @task when
251  * calling this function.
252  */
253 void *kthread_data(struct task_struct *task)
254 {
255 	return to_kthread(task)->data;
256 }
257 EXPORT_SYMBOL_GPL(kthread_data);
258 
259 /**
260  * kthread_probe_data - speculative version of kthread_data()
261  * @task: possible kthread task in question
262  *
263  * @task could be a kthread task.  Return the data value specified when it
264  * was created if accessible.  If @task isn't a kthread task or its data is
265  * inaccessible for any reason, %NULL is returned.  This function requires
266  * that @task itself is safe to dereference.
267  */
268 void *kthread_probe_data(struct task_struct *task)
269 {
270 	struct kthread *kthread = __to_kthread(task);
271 	void *data = NULL;
272 
273 	if (kthread)
274 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
275 	return data;
276 }
277 
278 static void __kthread_parkme(struct kthread *self)
279 {
280 	for (;;) {
281 		/*
282 		 * TASK_PARKED is a special state; we must serialize against
283 		 * possible pending wakeups to avoid store-store collisions on
284 		 * task->state.
285 		 *
286 		 * Such a collision might possibly result in the task state
287 		 * changin from TASK_PARKED and us failing the
288 		 * wait_task_inactive() in kthread_park().
289 		 */
290 		set_special_state(TASK_PARKED);
291 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
292 			break;
293 
294 		/*
295 		 * Thread is going to call schedule(), do not preempt it,
296 		 * or the caller of kthread_park() may spend more time in
297 		 * wait_task_inactive().
298 		 */
299 		preempt_disable();
300 		complete(&self->parked);
301 		schedule_preempt_disabled();
302 		preempt_enable();
303 	}
304 	__set_current_state(TASK_RUNNING);
305 }
306 
307 void kthread_parkme(void)
308 {
309 	__kthread_parkme(to_kthread(current));
310 }
311 EXPORT_SYMBOL_GPL(kthread_parkme);
312 
313 /**
314  * kthread_exit - Cause the current kthread return @result to kthread_stop().
315  * @result: The integer value to return to kthread_stop().
316  *
317  * While kthread_exit can be called directly, it exists so that
318  * functions which do some additional work in non-modular code such as
319  * module_put_and_kthread_exit can be implemented.
320  *
321  * Does not return.
322  */
323 void __noreturn kthread_exit(long result)
324 {
325 	struct kthread *kthread = to_kthread(current);
326 	kthread->result = result;
327 	if (!list_empty(&kthread->hotplug_node)) {
328 		mutex_lock(&kthreads_hotplug_lock);
329 		list_del(&kthread->hotplug_node);
330 		mutex_unlock(&kthreads_hotplug_lock);
331 
332 		if (kthread->preferred_affinity) {
333 			kfree(kthread->preferred_affinity);
334 			kthread->preferred_affinity = NULL;
335 		}
336 	}
337 	do_exit(0);
338 }
339 EXPORT_SYMBOL(kthread_exit);
340 
341 /**
342  * kthread_complete_and_exit - Exit the current kthread.
343  * @comp: Completion to complete
344  * @code: The integer value to return to kthread_stop().
345  *
346  * If present, complete @comp and then return code to kthread_stop().
347  *
348  * A kernel thread whose module may be removed after the completion of
349  * @comp can use this function to exit safely.
350  *
351  * Does not return.
352  */
353 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
354 {
355 	if (comp)
356 		complete(comp);
357 
358 	kthread_exit(code);
359 }
360 EXPORT_SYMBOL(kthread_complete_and_exit);
361 
362 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask)
363 {
364 	const struct cpumask *pref;
365 
366 	if (kthread->preferred_affinity) {
367 		pref = kthread->preferred_affinity;
368 	} else {
369 		if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE))
370 			return;
371 		pref = cpumask_of_node(kthread->node);
372 	}
373 
374 	cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD));
375 	if (cpumask_empty(cpumask))
376 		cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD));
377 }
378 
379 static void kthread_affine_node(void)
380 {
381 	struct kthread *kthread = to_kthread(current);
382 	cpumask_var_t affinity;
383 
384 	WARN_ON_ONCE(kthread_is_per_cpu(current));
385 
386 	if (kthread->node == NUMA_NO_NODE) {
387 		housekeeping_affine(current, HK_TYPE_KTHREAD);
388 	} else {
389 		if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) {
390 			WARN_ON_ONCE(1);
391 			return;
392 		}
393 
394 		mutex_lock(&kthreads_hotplug_lock);
395 		WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
396 		list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
397 		/*
398 		 * The node cpumask is racy when read from kthread() but:
399 		 * - a racing CPU going down will either fail on the subsequent
400 		 *   call to set_cpus_allowed_ptr() or be migrated to housekeepers
401 		 *   afterwards by the scheduler.
402 		 * - a racing CPU going up will be handled by kthreads_online_cpu()
403 		 */
404 		kthread_fetch_affinity(kthread, affinity);
405 		set_cpus_allowed_ptr(current, affinity);
406 		mutex_unlock(&kthreads_hotplug_lock);
407 
408 		free_cpumask_var(affinity);
409 	}
410 }
411 
412 static int kthread(void *_create)
413 {
414 	static const struct sched_param param = { .sched_priority = 0 };
415 	/* Copy data: it's on kthread's stack */
416 	struct kthread_create_info *create = _create;
417 	int (*threadfn)(void *data) = create->threadfn;
418 	void *data = create->data;
419 	struct completion *done;
420 	struct kthread *self;
421 	int ret;
422 
423 	self = to_kthread(current);
424 
425 	/* Release the structure when caller killed by a fatal signal. */
426 	done = xchg(&create->done, NULL);
427 	if (!done) {
428 		kfree(create->full_name);
429 		kfree(create);
430 		kthread_exit(-EINTR);
431 	}
432 
433 	self->full_name = create->full_name;
434 	self->threadfn = threadfn;
435 	self->data = data;
436 
437 	/*
438 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
439 	 * back to default in case they have been changed.
440 	 */
441 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
442 
443 	/* OK, tell user we're spawned, wait for stop or wakeup */
444 	__set_current_state(TASK_UNINTERRUPTIBLE);
445 	create->result = current;
446 	/*
447 	 * Thread is going to call schedule(), do not preempt it,
448 	 * or the creator may spend more time in wait_task_inactive().
449 	 */
450 	preempt_disable();
451 	complete(done);
452 	schedule_preempt_disabled();
453 	preempt_enable();
454 
455 	self->started = 1;
456 
457 	if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity)
458 		kthread_affine_node();
459 
460 	ret = -EINTR;
461 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
462 		cgroup_kthread_ready();
463 		__kthread_parkme(self);
464 		ret = threadfn(data);
465 	}
466 	kthread_exit(ret);
467 }
468 
469 /* called from kernel_clone() to get node information for about to be created task */
470 int tsk_fork_get_node(struct task_struct *tsk)
471 {
472 #ifdef CONFIG_NUMA
473 	if (tsk == kthreadd_task)
474 		return tsk->pref_node_fork;
475 #endif
476 	return NUMA_NO_NODE;
477 }
478 
479 static void create_kthread(struct kthread_create_info *create)
480 {
481 	int pid;
482 
483 #ifdef CONFIG_NUMA
484 	current->pref_node_fork = create->node;
485 #endif
486 	/* We want our own signal handler (we take no signals by default). */
487 	pid = kernel_thread(kthread, create, create->full_name,
488 			    CLONE_FS | CLONE_FILES | SIGCHLD);
489 	if (pid < 0) {
490 		/* Release the structure when caller killed by a fatal signal. */
491 		struct completion *done = xchg(&create->done, NULL);
492 
493 		kfree(create->full_name);
494 		if (!done) {
495 			kfree(create);
496 			return;
497 		}
498 		create->result = ERR_PTR(pid);
499 		complete(done);
500 	}
501 }
502 
503 static __printf(4, 0)
504 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
505 						    void *data, int node,
506 						    const char namefmt[],
507 						    va_list args)
508 {
509 	DECLARE_COMPLETION_ONSTACK(done);
510 	struct task_struct *task;
511 	struct kthread_create_info *create = kmalloc(sizeof(*create),
512 						     GFP_KERNEL);
513 
514 	if (!create)
515 		return ERR_PTR(-ENOMEM);
516 	create->threadfn = threadfn;
517 	create->data = data;
518 	create->node = node;
519 	create->done = &done;
520 	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
521 	if (!create->full_name) {
522 		task = ERR_PTR(-ENOMEM);
523 		goto free_create;
524 	}
525 
526 	spin_lock(&kthread_create_lock);
527 	list_add_tail(&create->list, &kthread_create_list);
528 	spin_unlock(&kthread_create_lock);
529 
530 	wake_up_process(kthreadd_task);
531 	/*
532 	 * Wait for completion in killable state, for I might be chosen by
533 	 * the OOM killer while kthreadd is trying to allocate memory for
534 	 * new kernel thread.
535 	 */
536 	if (unlikely(wait_for_completion_killable(&done))) {
537 		/*
538 		 * If I was killed by a fatal signal before kthreadd (or new
539 		 * kernel thread) calls complete(), leave the cleanup of this
540 		 * structure to that thread.
541 		 */
542 		if (xchg(&create->done, NULL))
543 			return ERR_PTR(-EINTR);
544 		/*
545 		 * kthreadd (or new kernel thread) will call complete()
546 		 * shortly.
547 		 */
548 		wait_for_completion(&done);
549 	}
550 	task = create->result;
551 free_create:
552 	kfree(create);
553 	return task;
554 }
555 
556 /**
557  * kthread_create_on_node - create a kthread.
558  * @threadfn: the function to run until signal_pending(current).
559  * @data: data ptr for @threadfn.
560  * @node: task and thread structures for the thread are allocated on this node
561  * @namefmt: printf-style name for the thread.
562  *
563  * Description: This helper function creates and names a kernel
564  * thread.  The thread will be stopped: use wake_up_process() to start
565  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
566  * is affine to all CPUs.
567  *
568  * If thread is going to be bound on a particular cpu, give its node
569  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
570  * When woken, the thread will run @threadfn() with @data as its
571  * argument. @threadfn() can either return directly if it is a
572  * standalone thread for which no one will call kthread_stop(), or
573  * return when 'kthread_should_stop()' is true (which means
574  * kthread_stop() has been called).  The return value should be zero
575  * or a negative error number; it will be passed to kthread_stop().
576  *
577  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
578  */
579 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
580 					   void *data, int node,
581 					   const char namefmt[],
582 					   ...)
583 {
584 	struct task_struct *task;
585 	va_list args;
586 
587 	va_start(args, namefmt);
588 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
589 	va_end(args);
590 
591 	return task;
592 }
593 EXPORT_SYMBOL(kthread_create_on_node);
594 
595 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
596 {
597 	unsigned long flags;
598 
599 	if (!wait_task_inactive(p, state)) {
600 		WARN_ON(1);
601 		return;
602 	}
603 
604 	/* It's safe because the task is inactive. */
605 	raw_spin_lock_irqsave(&p->pi_lock, flags);
606 	do_set_cpus_allowed(p, mask);
607 	p->flags |= PF_NO_SETAFFINITY;
608 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
609 }
610 
611 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
612 {
613 	__kthread_bind_mask(p, cpumask_of(cpu), state);
614 }
615 
616 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
617 {
618 	struct kthread *kthread = to_kthread(p);
619 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
620 	WARN_ON_ONCE(kthread->started);
621 }
622 
623 /**
624  * kthread_bind - bind a just-created kthread to a cpu.
625  * @p: thread created by kthread_create().
626  * @cpu: cpu (might not be online, must be possible) for @k to run on.
627  *
628  * Description: This function is equivalent to set_cpus_allowed(),
629  * except that @cpu doesn't need to be online, and the thread must be
630  * stopped (i.e., just returned from kthread_create()).
631  */
632 void kthread_bind(struct task_struct *p, unsigned int cpu)
633 {
634 	struct kthread *kthread = to_kthread(p);
635 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
636 	WARN_ON_ONCE(kthread->started);
637 }
638 EXPORT_SYMBOL(kthread_bind);
639 
640 /**
641  * kthread_create_on_cpu - Create a cpu bound kthread
642  * @threadfn: the function to run until signal_pending(current).
643  * @data: data ptr for @threadfn.
644  * @cpu: The cpu on which the thread should be bound,
645  * @namefmt: printf-style name for the thread. Format is restricted
646  *	     to "name.*%u". Code fills in cpu number.
647  *
648  * Description: This helper function creates and names a kernel thread
649  */
650 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
651 					  void *data, unsigned int cpu,
652 					  const char *namefmt)
653 {
654 	struct task_struct *p;
655 
656 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
657 				   cpu);
658 	if (IS_ERR(p))
659 		return p;
660 	kthread_bind(p, cpu);
661 	/* CPU hotplug need to bind once again when unparking the thread. */
662 	to_kthread(p)->cpu = cpu;
663 	return p;
664 }
665 EXPORT_SYMBOL(kthread_create_on_cpu);
666 
667 void kthread_set_per_cpu(struct task_struct *k, int cpu)
668 {
669 	struct kthread *kthread = to_kthread(k);
670 	if (!kthread)
671 		return;
672 
673 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
674 
675 	if (cpu < 0) {
676 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
677 		return;
678 	}
679 
680 	kthread->cpu = cpu;
681 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
682 }
683 
684 bool kthread_is_per_cpu(struct task_struct *p)
685 {
686 	struct kthread *kthread = __to_kthread(p);
687 	if (!kthread)
688 		return false;
689 
690 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
691 }
692 
693 /**
694  * kthread_unpark - unpark a thread created by kthread_create().
695  * @k:		thread created by kthread_create().
696  *
697  * Sets kthread_should_park() for @k to return false, wakes it, and
698  * waits for it to return. If the thread is marked percpu then its
699  * bound to the cpu again.
700  */
701 void kthread_unpark(struct task_struct *k)
702 {
703 	struct kthread *kthread = to_kthread(k);
704 
705 	if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
706 		return;
707 	/*
708 	 * Newly created kthread was parked when the CPU was offline.
709 	 * The binding was lost and we need to set it again.
710 	 */
711 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
712 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
713 
714 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
715 	/*
716 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
717 	 */
718 	wake_up_state(k, TASK_PARKED);
719 }
720 EXPORT_SYMBOL_GPL(kthread_unpark);
721 
722 /**
723  * kthread_park - park a thread created by kthread_create().
724  * @k: thread created by kthread_create().
725  *
726  * Sets kthread_should_park() for @k to return true, wakes it, and
727  * waits for it to return. This can also be called after kthread_create()
728  * instead of calling wake_up_process(): the thread will park without
729  * calling threadfn().
730  *
731  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
732  * If called by the kthread itself just the park bit is set.
733  */
734 int kthread_park(struct task_struct *k)
735 {
736 	struct kthread *kthread = to_kthread(k);
737 
738 	if (WARN_ON(k->flags & PF_EXITING))
739 		return -ENOSYS;
740 
741 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
742 		return -EBUSY;
743 
744 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
745 	if (k != current) {
746 		wake_up_process(k);
747 		/*
748 		 * Wait for __kthread_parkme() to complete(), this means we
749 		 * _will_ have TASK_PARKED and are about to call schedule().
750 		 */
751 		wait_for_completion(&kthread->parked);
752 		/*
753 		 * Now wait for that schedule() to complete and the task to
754 		 * get scheduled out.
755 		 */
756 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
757 	}
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(kthread_park);
762 
763 /**
764  * kthread_stop - stop a thread created by kthread_create().
765  * @k: thread created by kthread_create().
766  *
767  * Sets kthread_should_stop() for @k to return true, wakes it, and
768  * waits for it to exit. This can also be called after kthread_create()
769  * instead of calling wake_up_process(): the thread will exit without
770  * calling threadfn().
771  *
772  * If threadfn() may call kthread_exit() itself, the caller must ensure
773  * task_struct can't go away.
774  *
775  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
776  * was never called.
777  */
778 int kthread_stop(struct task_struct *k)
779 {
780 	struct kthread *kthread;
781 	int ret;
782 
783 	trace_sched_kthread_stop(k);
784 
785 	get_task_struct(k);
786 	kthread = to_kthread(k);
787 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
788 	kthread_unpark(k);
789 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
790 	wake_up_process(k);
791 	wait_for_completion(&kthread->exited);
792 	ret = kthread->result;
793 	put_task_struct(k);
794 
795 	trace_sched_kthread_stop_ret(ret);
796 	return ret;
797 }
798 EXPORT_SYMBOL(kthread_stop);
799 
800 /**
801  * kthread_stop_put - stop a thread and put its task struct
802  * @k: thread created by kthread_create().
803  *
804  * Stops a thread created by kthread_create() and put its task_struct.
805  * Only use when holding an extra task struct reference obtained by
806  * calling get_task_struct().
807  */
808 int kthread_stop_put(struct task_struct *k)
809 {
810 	int ret;
811 
812 	ret = kthread_stop(k);
813 	put_task_struct(k);
814 	return ret;
815 }
816 EXPORT_SYMBOL(kthread_stop_put);
817 
818 int kthreadd(void *unused)
819 {
820 	static const char comm[TASK_COMM_LEN] = "kthreadd";
821 	struct task_struct *tsk = current;
822 
823 	/* Setup a clean context for our children to inherit. */
824 	set_task_comm(tsk, comm);
825 	ignore_signals(tsk);
826 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
827 	set_mems_allowed(node_states[N_MEMORY]);
828 
829 	current->flags |= PF_NOFREEZE;
830 	cgroup_init_kthreadd();
831 
832 	for (;;) {
833 		set_current_state(TASK_INTERRUPTIBLE);
834 		if (list_empty(&kthread_create_list))
835 			schedule();
836 		__set_current_state(TASK_RUNNING);
837 
838 		spin_lock(&kthread_create_lock);
839 		while (!list_empty(&kthread_create_list)) {
840 			struct kthread_create_info *create;
841 
842 			create = list_entry(kthread_create_list.next,
843 					    struct kthread_create_info, list);
844 			list_del_init(&create->list);
845 			spin_unlock(&kthread_create_lock);
846 
847 			create_kthread(create);
848 
849 			spin_lock(&kthread_create_lock);
850 		}
851 		spin_unlock(&kthread_create_lock);
852 	}
853 
854 	return 0;
855 }
856 
857 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask)
858 {
859 	struct kthread *kthread = to_kthread(p);
860 	cpumask_var_t affinity;
861 	unsigned long flags;
862 	int ret;
863 
864 	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) {
865 		WARN_ON(1);
866 		return -EINVAL;
867 	}
868 
869 	WARN_ON_ONCE(kthread->preferred_affinity);
870 
871 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
872 		return -ENOMEM;
873 
874 	kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL);
875 	if (!kthread->preferred_affinity) {
876 		ret = -ENOMEM;
877 		goto out;
878 	}
879 
880 	mutex_lock(&kthreads_hotplug_lock);
881 	cpumask_copy(kthread->preferred_affinity, mask);
882 	WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
883 	list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
884 	kthread_fetch_affinity(kthread, affinity);
885 
886 	/* It's safe because the task is inactive. */
887 	raw_spin_lock_irqsave(&p->pi_lock, flags);
888 	do_set_cpus_allowed(p, affinity);
889 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
890 
891 	mutex_unlock(&kthreads_hotplug_lock);
892 out:
893 	free_cpumask_var(affinity);
894 
895 	return 0;
896 }
897 
898 /*
899  * Re-affine kthreads according to their preferences
900  * and the newly online CPU. The CPU down part is handled
901  * by select_fallback_rq() which default re-affines to
902  * housekeepers from other nodes in case the preferred
903  * affinity doesn't apply anymore.
904  */
905 static int kthreads_online_cpu(unsigned int cpu)
906 {
907 	cpumask_var_t affinity;
908 	struct kthread *k;
909 	int ret;
910 
911 	guard(mutex)(&kthreads_hotplug_lock);
912 
913 	if (list_empty(&kthreads_hotplug))
914 		return 0;
915 
916 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
917 		return -ENOMEM;
918 
919 	ret = 0;
920 
921 	list_for_each_entry(k, &kthreads_hotplug, hotplug_node) {
922 		if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) ||
923 				 kthread_is_per_cpu(k->task))) {
924 			ret = -EINVAL;
925 			continue;
926 		}
927 		kthread_fetch_affinity(k, affinity);
928 		set_cpus_allowed_ptr(k->task, affinity);
929 	}
930 
931 	free_cpumask_var(affinity);
932 
933 	return ret;
934 }
935 
936 static int kthreads_init(void)
937 {
938 	return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online",
939 				kthreads_online_cpu, NULL);
940 }
941 early_initcall(kthreads_init);
942 
943 void __kthread_init_worker(struct kthread_worker *worker,
944 				const char *name,
945 				struct lock_class_key *key)
946 {
947 	memset(worker, 0, sizeof(struct kthread_worker));
948 	raw_spin_lock_init(&worker->lock);
949 	lockdep_set_class_and_name(&worker->lock, key, name);
950 	INIT_LIST_HEAD(&worker->work_list);
951 	INIT_LIST_HEAD(&worker->delayed_work_list);
952 }
953 EXPORT_SYMBOL_GPL(__kthread_init_worker);
954 
955 /**
956  * kthread_worker_fn - kthread function to process kthread_worker
957  * @worker_ptr: pointer to initialized kthread_worker
958  *
959  * This function implements the main cycle of kthread worker. It processes
960  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
961  * is empty.
962  *
963  * The works are not allowed to keep any locks, disable preemption or interrupts
964  * when they finish. There is defined a safe point for freezing when one work
965  * finishes and before a new one is started.
966  *
967  * Also the works must not be handled by more than one worker at the same time,
968  * see also kthread_queue_work().
969  */
970 int kthread_worker_fn(void *worker_ptr)
971 {
972 	struct kthread_worker *worker = worker_ptr;
973 	struct kthread_work *work;
974 
975 	/*
976 	 * FIXME: Update the check and remove the assignment when all kthread
977 	 * worker users are created using kthread_create_worker*() functions.
978 	 */
979 	WARN_ON(worker->task && worker->task != current);
980 	worker->task = current;
981 
982 	if (worker->flags & KTW_FREEZABLE)
983 		set_freezable();
984 
985 repeat:
986 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
987 
988 	if (kthread_should_stop()) {
989 		__set_current_state(TASK_RUNNING);
990 		raw_spin_lock_irq(&worker->lock);
991 		worker->task = NULL;
992 		raw_spin_unlock_irq(&worker->lock);
993 		return 0;
994 	}
995 
996 	work = NULL;
997 	raw_spin_lock_irq(&worker->lock);
998 	if (!list_empty(&worker->work_list)) {
999 		work = list_first_entry(&worker->work_list,
1000 					struct kthread_work, node);
1001 		list_del_init(&work->node);
1002 	}
1003 	worker->current_work = work;
1004 	raw_spin_unlock_irq(&worker->lock);
1005 
1006 	if (work) {
1007 		kthread_work_func_t func = work->func;
1008 		__set_current_state(TASK_RUNNING);
1009 		trace_sched_kthread_work_execute_start(work);
1010 		work->func(work);
1011 		/*
1012 		 * Avoid dereferencing work after this point.  The trace
1013 		 * event only cares about the address.
1014 		 */
1015 		trace_sched_kthread_work_execute_end(work, func);
1016 	} else if (!freezing(current)) {
1017 		schedule();
1018 	} else {
1019 		/*
1020 		 * Handle the case where the current remains
1021 		 * TASK_INTERRUPTIBLE. try_to_freeze() expects
1022 		 * the current to be TASK_RUNNING.
1023 		 */
1024 		__set_current_state(TASK_RUNNING);
1025 	}
1026 
1027 	try_to_freeze();
1028 	cond_resched();
1029 	goto repeat;
1030 }
1031 EXPORT_SYMBOL_GPL(kthread_worker_fn);
1032 
1033 static __printf(3, 0) struct kthread_worker *
1034 __kthread_create_worker_on_node(unsigned int flags, int node,
1035 				const char namefmt[], va_list args)
1036 {
1037 	struct kthread_worker *worker;
1038 	struct task_struct *task;
1039 
1040 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1041 	if (!worker)
1042 		return ERR_PTR(-ENOMEM);
1043 
1044 	kthread_init_worker(worker);
1045 
1046 	task = __kthread_create_on_node(kthread_worker_fn, worker,
1047 					node, namefmt, args);
1048 	if (IS_ERR(task))
1049 		goto fail_task;
1050 
1051 	worker->flags = flags;
1052 	worker->task = task;
1053 
1054 	return worker;
1055 
1056 fail_task:
1057 	kfree(worker);
1058 	return ERR_CAST(task);
1059 }
1060 
1061 /**
1062  * kthread_create_worker_on_node - create a kthread worker
1063  * @flags: flags modifying the default behavior of the worker
1064  * @node: task structure for the thread is allocated on this node
1065  * @namefmt: printf-style name for the kthread worker (task).
1066  *
1067  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1068  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1069  * when the caller was killed by a fatal signal.
1070  */
1071 struct kthread_worker *
1072 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...)
1073 {
1074 	struct kthread_worker *worker;
1075 	va_list args;
1076 
1077 	va_start(args, namefmt);
1078 	worker = __kthread_create_worker_on_node(flags, node, namefmt, args);
1079 	va_end(args);
1080 
1081 	return worker;
1082 }
1083 EXPORT_SYMBOL(kthread_create_worker_on_node);
1084 
1085 /**
1086  * kthread_create_worker_on_cpu - create a kthread worker and bind it
1087  *	to a given CPU and the associated NUMA node.
1088  * @cpu: CPU number
1089  * @flags: flags modifying the default behavior of the worker
1090  * @namefmt: printf-style name for the thread. Format is restricted
1091  *	     to "name.*%u". Code fills in cpu number.
1092  *
1093  * Use a valid CPU number if you want to bind the kthread worker
1094  * to the given CPU and the associated NUMA node.
1095  *
1096  * A good practice is to add the cpu number also into the worker name.
1097  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
1098  *
1099  * CPU hotplug:
1100  * The kthread worker API is simple and generic. It just provides a way
1101  * to create, use, and destroy workers.
1102  *
1103  * It is up to the API user how to handle CPU hotplug. They have to decide
1104  * how to handle pending work items, prevent queuing new ones, and
1105  * restore the functionality when the CPU goes off and on. There are a
1106  * few catches:
1107  *
1108  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
1109  *
1110  *    - The worker might not exist when the CPU was off when the user
1111  *      created the workers.
1112  *
1113  * Good practice is to implement two CPU hotplug callbacks and to
1114  * destroy/create the worker when the CPU goes down/up.
1115  *
1116  * Return:
1117  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1118  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1119  * when the caller was killed by a fatal signal.
1120  */
1121 struct kthread_worker *
1122 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
1123 			     const char namefmt[])
1124 {
1125 	struct kthread_worker *worker;
1126 
1127 	worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu);
1128 	if (!IS_ERR(worker))
1129 		kthread_bind(worker->task, cpu);
1130 
1131 	return worker;
1132 }
1133 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
1134 
1135 /*
1136  * Returns true when the work could not be queued at the moment.
1137  * It happens when it is already pending in a worker list
1138  * or when it is being cancelled.
1139  */
1140 static inline bool queuing_blocked(struct kthread_worker *worker,
1141 				   struct kthread_work *work)
1142 {
1143 	lockdep_assert_held(&worker->lock);
1144 
1145 	return !list_empty(&work->node) || work->canceling;
1146 }
1147 
1148 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
1149 					     struct kthread_work *work)
1150 {
1151 	lockdep_assert_held(&worker->lock);
1152 	WARN_ON_ONCE(!list_empty(&work->node));
1153 	/* Do not use a work with >1 worker, see kthread_queue_work() */
1154 	WARN_ON_ONCE(work->worker && work->worker != worker);
1155 }
1156 
1157 /* insert @work before @pos in @worker */
1158 static void kthread_insert_work(struct kthread_worker *worker,
1159 				struct kthread_work *work,
1160 				struct list_head *pos)
1161 {
1162 	kthread_insert_work_sanity_check(worker, work);
1163 
1164 	trace_sched_kthread_work_queue_work(worker, work);
1165 
1166 	list_add_tail(&work->node, pos);
1167 	work->worker = worker;
1168 	if (!worker->current_work && likely(worker->task))
1169 		wake_up_process(worker->task);
1170 }
1171 
1172 /**
1173  * kthread_queue_work - queue a kthread_work
1174  * @worker: target kthread_worker
1175  * @work: kthread_work to queue
1176  *
1177  * Queue @work to work processor @task for async execution.  @task
1178  * must have been created with kthread_worker_create().  Returns %true
1179  * if @work was successfully queued, %false if it was already pending.
1180  *
1181  * Reinitialize the work if it needs to be used by another worker.
1182  * For example, when the worker was stopped and started again.
1183  */
1184 bool kthread_queue_work(struct kthread_worker *worker,
1185 			struct kthread_work *work)
1186 {
1187 	bool ret = false;
1188 	unsigned long flags;
1189 
1190 	raw_spin_lock_irqsave(&worker->lock, flags);
1191 	if (!queuing_blocked(worker, work)) {
1192 		kthread_insert_work(worker, work, &worker->work_list);
1193 		ret = true;
1194 	}
1195 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(kthread_queue_work);
1199 
1200 /**
1201  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1202  *	delayed work when the timer expires.
1203  * @t: pointer to the expired timer
1204  *
1205  * The format of the function is defined by struct timer_list.
1206  * It should have been called from irqsafe timer with irq already off.
1207  */
1208 void kthread_delayed_work_timer_fn(struct timer_list *t)
1209 {
1210 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1211 	struct kthread_work *work = &dwork->work;
1212 	struct kthread_worker *worker = work->worker;
1213 	unsigned long flags;
1214 
1215 	/*
1216 	 * This might happen when a pending work is reinitialized.
1217 	 * It means that it is used a wrong way.
1218 	 */
1219 	if (WARN_ON_ONCE(!worker))
1220 		return;
1221 
1222 	raw_spin_lock_irqsave(&worker->lock, flags);
1223 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1224 	WARN_ON_ONCE(work->worker != worker);
1225 
1226 	/* Move the work from worker->delayed_work_list. */
1227 	WARN_ON_ONCE(list_empty(&work->node));
1228 	list_del_init(&work->node);
1229 	if (!work->canceling)
1230 		kthread_insert_work(worker, work, &worker->work_list);
1231 
1232 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1233 }
1234 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1235 
1236 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1237 					 struct kthread_delayed_work *dwork,
1238 					 unsigned long delay)
1239 {
1240 	struct timer_list *timer = &dwork->timer;
1241 	struct kthread_work *work = &dwork->work;
1242 
1243 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1244 
1245 	/*
1246 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1247 	 * both optimization and correctness.  The earliest @timer can
1248 	 * expire is on the closest next tick and delayed_work users depend
1249 	 * on that there's no such delay when @delay is 0.
1250 	 */
1251 	if (!delay) {
1252 		kthread_insert_work(worker, work, &worker->work_list);
1253 		return;
1254 	}
1255 
1256 	/* Be paranoid and try to detect possible races already now. */
1257 	kthread_insert_work_sanity_check(worker, work);
1258 
1259 	list_add(&work->node, &worker->delayed_work_list);
1260 	work->worker = worker;
1261 	timer->expires = jiffies + delay;
1262 	add_timer(timer);
1263 }
1264 
1265 /**
1266  * kthread_queue_delayed_work - queue the associated kthread work
1267  *	after a delay.
1268  * @worker: target kthread_worker
1269  * @dwork: kthread_delayed_work to queue
1270  * @delay: number of jiffies to wait before queuing
1271  *
1272  * If the work has not been pending it starts a timer that will queue
1273  * the work after the given @delay. If @delay is zero, it queues the
1274  * work immediately.
1275  *
1276  * Return: %false if the @work has already been pending. It means that
1277  * either the timer was running or the work was queued. It returns %true
1278  * otherwise.
1279  */
1280 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1281 				struct kthread_delayed_work *dwork,
1282 				unsigned long delay)
1283 {
1284 	struct kthread_work *work = &dwork->work;
1285 	unsigned long flags;
1286 	bool ret = false;
1287 
1288 	raw_spin_lock_irqsave(&worker->lock, flags);
1289 
1290 	if (!queuing_blocked(worker, work)) {
1291 		__kthread_queue_delayed_work(worker, dwork, delay);
1292 		ret = true;
1293 	}
1294 
1295 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1299 
1300 struct kthread_flush_work {
1301 	struct kthread_work	work;
1302 	struct completion	done;
1303 };
1304 
1305 static void kthread_flush_work_fn(struct kthread_work *work)
1306 {
1307 	struct kthread_flush_work *fwork =
1308 		container_of(work, struct kthread_flush_work, work);
1309 	complete(&fwork->done);
1310 }
1311 
1312 /**
1313  * kthread_flush_work - flush a kthread_work
1314  * @work: work to flush
1315  *
1316  * If @work is queued or executing, wait for it to finish execution.
1317  */
1318 void kthread_flush_work(struct kthread_work *work)
1319 {
1320 	struct kthread_flush_work fwork = {
1321 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1322 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1323 	};
1324 	struct kthread_worker *worker;
1325 	bool noop = false;
1326 
1327 	worker = work->worker;
1328 	if (!worker)
1329 		return;
1330 
1331 	raw_spin_lock_irq(&worker->lock);
1332 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1333 	WARN_ON_ONCE(work->worker != worker);
1334 
1335 	if (!list_empty(&work->node))
1336 		kthread_insert_work(worker, &fwork.work, work->node.next);
1337 	else if (worker->current_work == work)
1338 		kthread_insert_work(worker, &fwork.work,
1339 				    worker->work_list.next);
1340 	else
1341 		noop = true;
1342 
1343 	raw_spin_unlock_irq(&worker->lock);
1344 
1345 	if (!noop)
1346 		wait_for_completion(&fwork.done);
1347 }
1348 EXPORT_SYMBOL_GPL(kthread_flush_work);
1349 
1350 /*
1351  * Make sure that the timer is neither set nor running and could
1352  * not manipulate the work list_head any longer.
1353  *
1354  * The function is called under worker->lock. The lock is temporary
1355  * released but the timer can't be set again in the meantime.
1356  */
1357 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1358 					      unsigned long *flags)
1359 {
1360 	struct kthread_delayed_work *dwork =
1361 		container_of(work, struct kthread_delayed_work, work);
1362 	struct kthread_worker *worker = work->worker;
1363 
1364 	/*
1365 	 * del_timer_sync() must be called to make sure that the timer
1366 	 * callback is not running. The lock must be temporary released
1367 	 * to avoid a deadlock with the callback. In the meantime,
1368 	 * any queuing is blocked by setting the canceling counter.
1369 	 */
1370 	work->canceling++;
1371 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1372 	del_timer_sync(&dwork->timer);
1373 	raw_spin_lock_irqsave(&worker->lock, *flags);
1374 	work->canceling--;
1375 }
1376 
1377 /*
1378  * This function removes the work from the worker queue.
1379  *
1380  * It is called under worker->lock. The caller must make sure that
1381  * the timer used by delayed work is not running, e.g. by calling
1382  * kthread_cancel_delayed_work_timer().
1383  *
1384  * The work might still be in use when this function finishes. See the
1385  * current_work proceed by the worker.
1386  *
1387  * Return: %true if @work was pending and successfully canceled,
1388  *	%false if @work was not pending
1389  */
1390 static bool __kthread_cancel_work(struct kthread_work *work)
1391 {
1392 	/*
1393 	 * Try to remove the work from a worker list. It might either
1394 	 * be from worker->work_list or from worker->delayed_work_list.
1395 	 */
1396 	if (!list_empty(&work->node)) {
1397 		list_del_init(&work->node);
1398 		return true;
1399 	}
1400 
1401 	return false;
1402 }
1403 
1404 /**
1405  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1406  * @worker: kthread worker to use
1407  * @dwork: kthread delayed work to queue
1408  * @delay: number of jiffies to wait before queuing
1409  *
1410  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1411  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1412  * @work is guaranteed to be queued immediately.
1413  *
1414  * Return: %false if @dwork was idle and queued, %true otherwise.
1415  *
1416  * A special case is when the work is being canceled in parallel.
1417  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1418  * or yet another kthread_mod_delayed_work() call. We let the other command
1419  * win and return %true here. The return value can be used for reference
1420  * counting and the number of queued works stays the same. Anyway, the caller
1421  * is supposed to synchronize these operations a reasonable way.
1422  *
1423  * This function is safe to call from any context including IRQ handler.
1424  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1425  * for details.
1426  */
1427 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1428 			      struct kthread_delayed_work *dwork,
1429 			      unsigned long delay)
1430 {
1431 	struct kthread_work *work = &dwork->work;
1432 	unsigned long flags;
1433 	int ret;
1434 
1435 	raw_spin_lock_irqsave(&worker->lock, flags);
1436 
1437 	/* Do not bother with canceling when never queued. */
1438 	if (!work->worker) {
1439 		ret = false;
1440 		goto fast_queue;
1441 	}
1442 
1443 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1444 	WARN_ON_ONCE(work->worker != worker);
1445 
1446 	/*
1447 	 * Temporary cancel the work but do not fight with another command
1448 	 * that is canceling the work as well.
1449 	 *
1450 	 * It is a bit tricky because of possible races with another
1451 	 * mod_delayed_work() and cancel_delayed_work() callers.
1452 	 *
1453 	 * The timer must be canceled first because worker->lock is released
1454 	 * when doing so. But the work can be removed from the queue (list)
1455 	 * only when it can be queued again so that the return value can
1456 	 * be used for reference counting.
1457 	 */
1458 	kthread_cancel_delayed_work_timer(work, &flags);
1459 	if (work->canceling) {
1460 		/* The number of works in the queue does not change. */
1461 		ret = true;
1462 		goto out;
1463 	}
1464 	ret = __kthread_cancel_work(work);
1465 
1466 fast_queue:
1467 	__kthread_queue_delayed_work(worker, dwork, delay);
1468 out:
1469 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1473 
1474 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1475 {
1476 	struct kthread_worker *worker = work->worker;
1477 	unsigned long flags;
1478 	int ret = false;
1479 
1480 	if (!worker)
1481 		goto out;
1482 
1483 	raw_spin_lock_irqsave(&worker->lock, flags);
1484 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1485 	WARN_ON_ONCE(work->worker != worker);
1486 
1487 	if (is_dwork)
1488 		kthread_cancel_delayed_work_timer(work, &flags);
1489 
1490 	ret = __kthread_cancel_work(work);
1491 
1492 	if (worker->current_work != work)
1493 		goto out_fast;
1494 
1495 	/*
1496 	 * The work is in progress and we need to wait with the lock released.
1497 	 * In the meantime, block any queuing by setting the canceling counter.
1498 	 */
1499 	work->canceling++;
1500 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1501 	kthread_flush_work(work);
1502 	raw_spin_lock_irqsave(&worker->lock, flags);
1503 	work->canceling--;
1504 
1505 out_fast:
1506 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1507 out:
1508 	return ret;
1509 }
1510 
1511 /**
1512  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1513  * @work: the kthread work to cancel
1514  *
1515  * Cancel @work and wait for its execution to finish.  This function
1516  * can be used even if the work re-queues itself. On return from this
1517  * function, @work is guaranteed to be not pending or executing on any CPU.
1518  *
1519  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1520  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1521  *
1522  * The caller must ensure that the worker on which @work was last
1523  * queued can't be destroyed before this function returns.
1524  *
1525  * Return: %true if @work was pending, %false otherwise.
1526  */
1527 bool kthread_cancel_work_sync(struct kthread_work *work)
1528 {
1529 	return __kthread_cancel_work_sync(work, false);
1530 }
1531 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1532 
1533 /**
1534  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1535  *	wait for it to finish.
1536  * @dwork: the kthread delayed work to cancel
1537  *
1538  * This is kthread_cancel_work_sync() for delayed works.
1539  *
1540  * Return: %true if @dwork was pending, %false otherwise.
1541  */
1542 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1543 {
1544 	return __kthread_cancel_work_sync(&dwork->work, true);
1545 }
1546 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1547 
1548 /**
1549  * kthread_flush_worker - flush all current works on a kthread_worker
1550  * @worker: worker to flush
1551  *
1552  * Wait until all currently executing or pending works on @worker are
1553  * finished.
1554  */
1555 void kthread_flush_worker(struct kthread_worker *worker)
1556 {
1557 	struct kthread_flush_work fwork = {
1558 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1559 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1560 	};
1561 
1562 	kthread_queue_work(worker, &fwork.work);
1563 	wait_for_completion(&fwork.done);
1564 }
1565 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1566 
1567 /**
1568  * kthread_destroy_worker - destroy a kthread worker
1569  * @worker: worker to be destroyed
1570  *
1571  * Flush and destroy @worker.  The simple flush is enough because the kthread
1572  * worker API is used only in trivial scenarios.  There are no multi-step state
1573  * machines needed.
1574  *
1575  * Note that this function is not responsible for handling delayed work, so
1576  * caller should be responsible for queuing or canceling all delayed work items
1577  * before invoke this function.
1578  */
1579 void kthread_destroy_worker(struct kthread_worker *worker)
1580 {
1581 	struct task_struct *task;
1582 
1583 	task = worker->task;
1584 	if (WARN_ON(!task))
1585 		return;
1586 
1587 	kthread_flush_worker(worker);
1588 	kthread_stop(task);
1589 	WARN_ON(!list_empty(&worker->delayed_work_list));
1590 	WARN_ON(!list_empty(&worker->work_list));
1591 	kfree(worker);
1592 }
1593 EXPORT_SYMBOL(kthread_destroy_worker);
1594 
1595 /**
1596  * kthread_use_mm - make the calling kthread operate on an address space
1597  * @mm: address space to operate on
1598  */
1599 void kthread_use_mm(struct mm_struct *mm)
1600 {
1601 	struct mm_struct *active_mm;
1602 	struct task_struct *tsk = current;
1603 
1604 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1605 	WARN_ON_ONCE(tsk->mm);
1606 
1607 	/*
1608 	 * It is possible for mm to be the same as tsk->active_mm, but
1609 	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1610 	 * because these references are not equivalent.
1611 	 */
1612 	mmgrab(mm);
1613 
1614 	task_lock(tsk);
1615 	/* Hold off tlb flush IPIs while switching mm's */
1616 	local_irq_disable();
1617 	active_mm = tsk->active_mm;
1618 	tsk->active_mm = mm;
1619 	tsk->mm = mm;
1620 	membarrier_update_current_mm(mm);
1621 	switch_mm_irqs_off(active_mm, mm, tsk);
1622 	local_irq_enable();
1623 	task_unlock(tsk);
1624 #ifdef finish_arch_post_lock_switch
1625 	finish_arch_post_lock_switch();
1626 #endif
1627 
1628 	/*
1629 	 * When a kthread starts operating on an address space, the loop
1630 	 * in membarrier_{private,global}_expedited() may not observe
1631 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1632 	 * memory barrier after storing to tsk->mm, before accessing
1633 	 * user-space memory. A full memory barrier for membarrier
1634 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1635 	 * mmdrop_lazy_tlb().
1636 	 */
1637 	mmdrop_lazy_tlb(active_mm);
1638 }
1639 EXPORT_SYMBOL_GPL(kthread_use_mm);
1640 
1641 /**
1642  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1643  * @mm: address space to operate on
1644  */
1645 void kthread_unuse_mm(struct mm_struct *mm)
1646 {
1647 	struct task_struct *tsk = current;
1648 
1649 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1650 	WARN_ON_ONCE(!tsk->mm);
1651 
1652 	task_lock(tsk);
1653 	/*
1654 	 * When a kthread stops operating on an address space, the loop
1655 	 * in membarrier_{private,global}_expedited() may not observe
1656 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1657 	 * memory barrier after accessing user-space memory, before
1658 	 * clearing tsk->mm.
1659 	 */
1660 	smp_mb__after_spinlock();
1661 	local_irq_disable();
1662 	tsk->mm = NULL;
1663 	membarrier_update_current_mm(NULL);
1664 	mmgrab_lazy_tlb(mm);
1665 	/* active_mm is still 'mm' */
1666 	enter_lazy_tlb(mm, tsk);
1667 	local_irq_enable();
1668 	task_unlock(tsk);
1669 
1670 	mmdrop(mm);
1671 }
1672 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1673 
1674 #ifdef CONFIG_BLK_CGROUP
1675 /**
1676  * kthread_associate_blkcg - associate blkcg to current kthread
1677  * @css: the cgroup info
1678  *
1679  * Current thread must be a kthread. The thread is running jobs on behalf of
1680  * other threads. In some cases, we expect the jobs attach cgroup info of
1681  * original threads instead of that of current thread. This function stores
1682  * original thread's cgroup info in current kthread context for later
1683  * retrieval.
1684  */
1685 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1686 {
1687 	struct kthread *kthread;
1688 
1689 	if (!(current->flags & PF_KTHREAD))
1690 		return;
1691 	kthread = to_kthread(current);
1692 	if (!kthread)
1693 		return;
1694 
1695 	if (kthread->blkcg_css) {
1696 		css_put(kthread->blkcg_css);
1697 		kthread->blkcg_css = NULL;
1698 	}
1699 	if (css) {
1700 		css_get(css);
1701 		kthread->blkcg_css = css;
1702 	}
1703 }
1704 EXPORT_SYMBOL(kthread_associate_blkcg);
1705 
1706 /**
1707  * kthread_blkcg - get associated blkcg css of current kthread
1708  *
1709  * Current thread must be a kthread.
1710  */
1711 struct cgroup_subsys_state *kthread_blkcg(void)
1712 {
1713 	struct kthread *kthread;
1714 
1715 	if (current->flags & PF_KTHREAD) {
1716 		kthread = to_kthread(current);
1717 		if (kthread)
1718 			return kthread->blkcg_css;
1719 	}
1720 	return NULL;
1721 }
1722 #endif
1723