1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 int (*threadfn)(void *data); 42 void *data; 43 int node; 44 45 /* Result passed back to kthread_create() from kthreadd. */ 46 struct task_struct *result; 47 struct completion *done; 48 49 struct list_head list; 50 }; 51 52 struct kthread { 53 unsigned long flags; 54 unsigned int cpu; 55 int (*threadfn)(void *); 56 void *data; 57 mm_segment_t oldfs; 58 struct completion parked; 59 struct completion exited; 60 #ifdef CONFIG_BLK_CGROUP 61 struct cgroup_subsys_state *blkcg_css; 62 #endif 63 }; 64 65 enum KTHREAD_BITS { 66 KTHREAD_IS_PER_CPU = 0, 67 KTHREAD_SHOULD_STOP, 68 KTHREAD_SHOULD_PARK, 69 }; 70 71 static inline struct kthread *to_kthread(struct task_struct *k) 72 { 73 WARN_ON(!(k->flags & PF_KTHREAD)); 74 return (__force void *)k->set_child_tid; 75 } 76 77 /* 78 * Variant of to_kthread() that doesn't assume @p is a kthread. 79 * 80 * Per construction; when: 81 * 82 * (p->flags & PF_KTHREAD) && p->set_child_tid 83 * 84 * the task is both a kthread and struct kthread is persistent. However 85 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 86 * begin_new_exec()). 87 */ 88 static inline struct kthread *__to_kthread(struct task_struct *p) 89 { 90 void *kthread = (__force void *)p->set_child_tid; 91 if (kthread && !(p->flags & PF_KTHREAD)) 92 kthread = NULL; 93 return kthread; 94 } 95 96 void set_kthread_struct(struct task_struct *p) 97 { 98 struct kthread *kthread; 99 100 if (__to_kthread(p)) 101 return; 102 103 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 104 /* 105 * We abuse ->set_child_tid to avoid the new member and because it 106 * can't be wrongly copied by copy_process(). We also rely on fact 107 * that the caller can't exec, so PF_KTHREAD can't be cleared. 108 */ 109 p->set_child_tid = (__force void __user *)kthread; 110 } 111 112 void free_kthread_struct(struct task_struct *k) 113 { 114 struct kthread *kthread; 115 116 /* 117 * Can be NULL if this kthread was created by kernel_thread() 118 * or if kmalloc() in kthread() failed. 119 */ 120 kthread = to_kthread(k); 121 #ifdef CONFIG_BLK_CGROUP 122 WARN_ON_ONCE(kthread && kthread->blkcg_css); 123 #endif 124 kfree(kthread); 125 } 126 127 /** 128 * kthread_should_stop - should this kthread return now? 129 * 130 * When someone calls kthread_stop() on your kthread, it will be woken 131 * and this will return true. You should then return, and your return 132 * value will be passed through to kthread_stop(). 133 */ 134 bool kthread_should_stop(void) 135 { 136 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 137 } 138 EXPORT_SYMBOL(kthread_should_stop); 139 140 bool __kthread_should_park(struct task_struct *k) 141 { 142 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 143 } 144 EXPORT_SYMBOL_GPL(__kthread_should_park); 145 146 /** 147 * kthread_should_park - should this kthread park now? 148 * 149 * When someone calls kthread_park() on your kthread, it will be woken 150 * and this will return true. You should then do the necessary 151 * cleanup and call kthread_parkme() 152 * 153 * Similar to kthread_should_stop(), but this keeps the thread alive 154 * and in a park position. kthread_unpark() "restarts" the thread and 155 * calls the thread function again. 156 */ 157 bool kthread_should_park(void) 158 { 159 return __kthread_should_park(current); 160 } 161 EXPORT_SYMBOL_GPL(kthread_should_park); 162 163 /** 164 * kthread_freezable_should_stop - should this freezable kthread return now? 165 * @was_frozen: optional out parameter, indicates whether %current was frozen 166 * 167 * kthread_should_stop() for freezable kthreads, which will enter 168 * refrigerator if necessary. This function is safe from kthread_stop() / 169 * freezer deadlock and freezable kthreads should use this function instead 170 * of calling try_to_freeze() directly. 171 */ 172 bool kthread_freezable_should_stop(bool *was_frozen) 173 { 174 bool frozen = false; 175 176 might_sleep(); 177 178 if (unlikely(freezing(current))) 179 frozen = __refrigerator(true); 180 181 if (was_frozen) 182 *was_frozen = frozen; 183 184 return kthread_should_stop(); 185 } 186 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 187 188 /** 189 * kthread_func - return the function specified on kthread creation 190 * @task: kthread task in question 191 * 192 * Returns NULL if the task is not a kthread. 193 */ 194 void *kthread_func(struct task_struct *task) 195 { 196 struct kthread *kthread = __to_kthread(task); 197 if (kthread) 198 return kthread->threadfn; 199 return NULL; 200 } 201 EXPORT_SYMBOL_GPL(kthread_func); 202 203 /** 204 * kthread_data - return data value specified on kthread creation 205 * @task: kthread task in question 206 * 207 * Return the data value specified when kthread @task was created. 208 * The caller is responsible for ensuring the validity of @task when 209 * calling this function. 210 */ 211 void *kthread_data(struct task_struct *task) 212 { 213 return to_kthread(task)->data; 214 } 215 EXPORT_SYMBOL_GPL(kthread_data); 216 217 /** 218 * kthread_probe_data - speculative version of kthread_data() 219 * @task: possible kthread task in question 220 * 221 * @task could be a kthread task. Return the data value specified when it 222 * was created if accessible. If @task isn't a kthread task or its data is 223 * inaccessible for any reason, %NULL is returned. This function requires 224 * that @task itself is safe to dereference. 225 */ 226 void *kthread_probe_data(struct task_struct *task) 227 { 228 struct kthread *kthread = __to_kthread(task); 229 void *data = NULL; 230 231 if (kthread) 232 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 233 return data; 234 } 235 236 static void __kthread_parkme(struct kthread *self) 237 { 238 for (;;) { 239 /* 240 * TASK_PARKED is a special state; we must serialize against 241 * possible pending wakeups to avoid store-store collisions on 242 * task->state. 243 * 244 * Such a collision might possibly result in the task state 245 * changin from TASK_PARKED and us failing the 246 * wait_task_inactive() in kthread_park(). 247 */ 248 set_special_state(TASK_PARKED); 249 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 250 break; 251 252 /* 253 * Thread is going to call schedule(), do not preempt it, 254 * or the caller of kthread_park() may spend more time in 255 * wait_task_inactive(). 256 */ 257 preempt_disable(); 258 complete(&self->parked); 259 schedule_preempt_disabled(); 260 preempt_enable(); 261 } 262 __set_current_state(TASK_RUNNING); 263 } 264 265 void kthread_parkme(void) 266 { 267 __kthread_parkme(to_kthread(current)); 268 } 269 EXPORT_SYMBOL_GPL(kthread_parkme); 270 271 /** 272 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 273 * @result: The integer value to return to kthread_stop(). 274 * 275 * While kthread_exit can be called directly, it exists so that 276 * functions which do some additional work in non-modular code such as 277 * module_put_and_kthread_exit can be implemented. 278 * 279 * Does not return. 280 */ 281 void __noreturn kthread_exit(long result) 282 { 283 do_exit(result); 284 } 285 286 static int kthread(void *_create) 287 { 288 static const struct sched_param param = { .sched_priority = 0 }; 289 /* Copy data: it's on kthread's stack */ 290 struct kthread_create_info *create = _create; 291 int (*threadfn)(void *data) = create->threadfn; 292 void *data = create->data; 293 struct completion *done; 294 struct kthread *self; 295 int ret; 296 297 set_kthread_struct(current); 298 self = to_kthread(current); 299 300 /* If user was SIGKILLed, I release the structure. */ 301 done = xchg(&create->done, NULL); 302 if (!done) { 303 kfree(create); 304 kthread_exit(-EINTR); 305 } 306 307 if (!self) { 308 create->result = ERR_PTR(-ENOMEM); 309 complete(done); 310 kthread_exit(-ENOMEM); 311 } 312 313 self->threadfn = threadfn; 314 self->data = data; 315 init_completion(&self->exited); 316 init_completion(&self->parked); 317 current->vfork_done = &self->exited; 318 319 /* 320 * The new thread inherited kthreadd's priority and CPU mask. Reset 321 * back to default in case they have been changed. 322 */ 323 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 324 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_KTHREAD)); 325 326 /* OK, tell user we're spawned, wait for stop or wakeup */ 327 __set_current_state(TASK_UNINTERRUPTIBLE); 328 create->result = current; 329 /* 330 * Thread is going to call schedule(), do not preempt it, 331 * or the creator may spend more time in wait_task_inactive(). 332 */ 333 preempt_disable(); 334 complete(done); 335 schedule_preempt_disabled(); 336 preempt_enable(); 337 338 ret = -EINTR; 339 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 340 cgroup_kthread_ready(); 341 __kthread_parkme(self); 342 ret = threadfn(data); 343 } 344 kthread_exit(ret); 345 } 346 347 /* called from kernel_clone() to get node information for about to be created task */ 348 int tsk_fork_get_node(struct task_struct *tsk) 349 { 350 #ifdef CONFIG_NUMA 351 if (tsk == kthreadd_task) 352 return tsk->pref_node_fork; 353 #endif 354 return NUMA_NO_NODE; 355 } 356 357 static void create_kthread(struct kthread_create_info *create) 358 { 359 int pid; 360 361 #ifdef CONFIG_NUMA 362 current->pref_node_fork = create->node; 363 #endif 364 /* We want our own signal handler (we take no signals by default). */ 365 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); 366 if (pid < 0) { 367 /* If user was SIGKILLed, I release the structure. */ 368 struct completion *done = xchg(&create->done, NULL); 369 370 if (!done) { 371 kfree(create); 372 return; 373 } 374 create->result = ERR_PTR(pid); 375 complete(done); 376 } 377 } 378 379 static __printf(4, 0) 380 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 381 void *data, int node, 382 const char namefmt[], 383 va_list args) 384 { 385 DECLARE_COMPLETION_ONSTACK(done); 386 struct task_struct *task; 387 struct kthread_create_info *create = kmalloc(sizeof(*create), 388 GFP_KERNEL); 389 390 if (!create) 391 return ERR_PTR(-ENOMEM); 392 create->threadfn = threadfn; 393 create->data = data; 394 create->node = node; 395 create->done = &done; 396 397 spin_lock(&kthread_create_lock); 398 list_add_tail(&create->list, &kthread_create_list); 399 spin_unlock(&kthread_create_lock); 400 401 wake_up_process(kthreadd_task); 402 /* 403 * Wait for completion in killable state, for I might be chosen by 404 * the OOM killer while kthreadd is trying to allocate memory for 405 * new kernel thread. 406 */ 407 if (unlikely(wait_for_completion_killable(&done))) { 408 /* 409 * If I was SIGKILLed before kthreadd (or new kernel thread) 410 * calls complete(), leave the cleanup of this structure to 411 * that thread. 412 */ 413 if (xchg(&create->done, NULL)) 414 return ERR_PTR(-EINTR); 415 /* 416 * kthreadd (or new kernel thread) will call complete() 417 * shortly. 418 */ 419 wait_for_completion(&done); 420 } 421 task = create->result; 422 if (!IS_ERR(task)) { 423 char name[TASK_COMM_LEN]; 424 425 /* 426 * task is already visible to other tasks, so updating 427 * COMM must be protected. 428 */ 429 vsnprintf(name, sizeof(name), namefmt, args); 430 set_task_comm(task, name); 431 } 432 kfree(create); 433 return task; 434 } 435 436 /** 437 * kthread_create_on_node - create a kthread. 438 * @threadfn: the function to run until signal_pending(current). 439 * @data: data ptr for @threadfn. 440 * @node: task and thread structures for the thread are allocated on this node 441 * @namefmt: printf-style name for the thread. 442 * 443 * Description: This helper function creates and names a kernel 444 * thread. The thread will be stopped: use wake_up_process() to start 445 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 446 * is affine to all CPUs. 447 * 448 * If thread is going to be bound on a particular cpu, give its node 449 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 450 * When woken, the thread will run @threadfn() with @data as its 451 * argument. @threadfn() can either return directly if it is a 452 * standalone thread for which no one will call kthread_stop(), or 453 * return when 'kthread_should_stop()' is true (which means 454 * kthread_stop() has been called). The return value should be zero 455 * or a negative error number; it will be passed to kthread_stop(). 456 * 457 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 458 */ 459 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 460 void *data, int node, 461 const char namefmt[], 462 ...) 463 { 464 struct task_struct *task; 465 va_list args; 466 467 va_start(args, namefmt); 468 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 469 va_end(args); 470 471 return task; 472 } 473 EXPORT_SYMBOL(kthread_create_on_node); 474 475 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 476 { 477 unsigned long flags; 478 479 if (!wait_task_inactive(p, state)) { 480 WARN_ON(1); 481 return; 482 } 483 484 /* It's safe because the task is inactive. */ 485 raw_spin_lock_irqsave(&p->pi_lock, flags); 486 do_set_cpus_allowed(p, mask); 487 p->flags |= PF_NO_SETAFFINITY; 488 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 489 } 490 491 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 492 { 493 __kthread_bind_mask(p, cpumask_of(cpu), state); 494 } 495 496 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 497 { 498 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 499 } 500 501 /** 502 * kthread_bind - bind a just-created kthread to a cpu. 503 * @p: thread created by kthread_create(). 504 * @cpu: cpu (might not be online, must be possible) for @k to run on. 505 * 506 * Description: This function is equivalent to set_cpus_allowed(), 507 * except that @cpu doesn't need to be online, and the thread must be 508 * stopped (i.e., just returned from kthread_create()). 509 */ 510 void kthread_bind(struct task_struct *p, unsigned int cpu) 511 { 512 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 513 } 514 EXPORT_SYMBOL(kthread_bind); 515 516 /** 517 * kthread_create_on_cpu - Create a cpu bound kthread 518 * @threadfn: the function to run until signal_pending(current). 519 * @data: data ptr for @threadfn. 520 * @cpu: The cpu on which the thread should be bound, 521 * @namefmt: printf-style name for the thread. Format is restricted 522 * to "name.*%u". Code fills in cpu number. 523 * 524 * Description: This helper function creates and names a kernel thread 525 */ 526 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 527 void *data, unsigned int cpu, 528 const char *namefmt) 529 { 530 struct task_struct *p; 531 532 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 533 cpu); 534 if (IS_ERR(p)) 535 return p; 536 kthread_bind(p, cpu); 537 /* CPU hotplug need to bind once again when unparking the thread. */ 538 to_kthread(p)->cpu = cpu; 539 return p; 540 } 541 542 void kthread_set_per_cpu(struct task_struct *k, int cpu) 543 { 544 struct kthread *kthread = to_kthread(k); 545 if (!kthread) 546 return; 547 548 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 549 550 if (cpu < 0) { 551 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 552 return; 553 } 554 555 kthread->cpu = cpu; 556 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 557 } 558 559 bool kthread_is_per_cpu(struct task_struct *p) 560 { 561 struct kthread *kthread = __to_kthread(p); 562 if (!kthread) 563 return false; 564 565 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 566 } 567 568 /** 569 * kthread_unpark - unpark a thread created by kthread_create(). 570 * @k: thread created by kthread_create(). 571 * 572 * Sets kthread_should_park() for @k to return false, wakes it, and 573 * waits for it to return. If the thread is marked percpu then its 574 * bound to the cpu again. 575 */ 576 void kthread_unpark(struct task_struct *k) 577 { 578 struct kthread *kthread = to_kthread(k); 579 580 /* 581 * Newly created kthread was parked when the CPU was offline. 582 * The binding was lost and we need to set it again. 583 */ 584 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 585 __kthread_bind(k, kthread->cpu, TASK_PARKED); 586 587 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 588 /* 589 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 590 */ 591 wake_up_state(k, TASK_PARKED); 592 } 593 EXPORT_SYMBOL_GPL(kthread_unpark); 594 595 /** 596 * kthread_park - park a thread created by kthread_create(). 597 * @k: thread created by kthread_create(). 598 * 599 * Sets kthread_should_park() for @k to return true, wakes it, and 600 * waits for it to return. This can also be called after kthread_create() 601 * instead of calling wake_up_process(): the thread will park without 602 * calling threadfn(). 603 * 604 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 605 * If called by the kthread itself just the park bit is set. 606 */ 607 int kthread_park(struct task_struct *k) 608 { 609 struct kthread *kthread = to_kthread(k); 610 611 if (WARN_ON(k->flags & PF_EXITING)) 612 return -ENOSYS; 613 614 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 615 return -EBUSY; 616 617 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 618 if (k != current) { 619 wake_up_process(k); 620 /* 621 * Wait for __kthread_parkme() to complete(), this means we 622 * _will_ have TASK_PARKED and are about to call schedule(). 623 */ 624 wait_for_completion(&kthread->parked); 625 /* 626 * Now wait for that schedule() to complete and the task to 627 * get scheduled out. 628 */ 629 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 630 } 631 632 return 0; 633 } 634 EXPORT_SYMBOL_GPL(kthread_park); 635 636 /** 637 * kthread_stop - stop a thread created by kthread_create(). 638 * @k: thread created by kthread_create(). 639 * 640 * Sets kthread_should_stop() for @k to return true, wakes it, and 641 * waits for it to exit. This can also be called after kthread_create() 642 * instead of calling wake_up_process(): the thread will exit without 643 * calling threadfn(). 644 * 645 * If threadfn() may call kthread_exit() itself, the caller must ensure 646 * task_struct can't go away. 647 * 648 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 649 * was never called. 650 */ 651 int kthread_stop(struct task_struct *k) 652 { 653 struct kthread *kthread; 654 int ret; 655 656 trace_sched_kthread_stop(k); 657 658 get_task_struct(k); 659 kthread = to_kthread(k); 660 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 661 kthread_unpark(k); 662 wake_up_process(k); 663 wait_for_completion(&kthread->exited); 664 ret = k->exit_code; 665 put_task_struct(k); 666 667 trace_sched_kthread_stop_ret(ret); 668 return ret; 669 } 670 EXPORT_SYMBOL(kthread_stop); 671 672 int kthreadd(void *unused) 673 { 674 struct task_struct *tsk = current; 675 676 /* Setup a clean context for our children to inherit. */ 677 set_task_comm(tsk, "kthreadd"); 678 ignore_signals(tsk); 679 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD)); 680 set_mems_allowed(node_states[N_MEMORY]); 681 682 current->flags |= PF_NOFREEZE; 683 cgroup_init_kthreadd(); 684 685 for (;;) { 686 set_current_state(TASK_INTERRUPTIBLE); 687 if (list_empty(&kthread_create_list)) 688 schedule(); 689 __set_current_state(TASK_RUNNING); 690 691 spin_lock(&kthread_create_lock); 692 while (!list_empty(&kthread_create_list)) { 693 struct kthread_create_info *create; 694 695 create = list_entry(kthread_create_list.next, 696 struct kthread_create_info, list); 697 list_del_init(&create->list); 698 spin_unlock(&kthread_create_lock); 699 700 create_kthread(create); 701 702 spin_lock(&kthread_create_lock); 703 } 704 spin_unlock(&kthread_create_lock); 705 } 706 707 return 0; 708 } 709 710 void __kthread_init_worker(struct kthread_worker *worker, 711 const char *name, 712 struct lock_class_key *key) 713 { 714 memset(worker, 0, sizeof(struct kthread_worker)); 715 raw_spin_lock_init(&worker->lock); 716 lockdep_set_class_and_name(&worker->lock, key, name); 717 INIT_LIST_HEAD(&worker->work_list); 718 INIT_LIST_HEAD(&worker->delayed_work_list); 719 } 720 EXPORT_SYMBOL_GPL(__kthread_init_worker); 721 722 /** 723 * kthread_worker_fn - kthread function to process kthread_worker 724 * @worker_ptr: pointer to initialized kthread_worker 725 * 726 * This function implements the main cycle of kthread worker. It processes 727 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 728 * is empty. 729 * 730 * The works are not allowed to keep any locks, disable preemption or interrupts 731 * when they finish. There is defined a safe point for freezing when one work 732 * finishes and before a new one is started. 733 * 734 * Also the works must not be handled by more than one worker at the same time, 735 * see also kthread_queue_work(). 736 */ 737 int kthread_worker_fn(void *worker_ptr) 738 { 739 struct kthread_worker *worker = worker_ptr; 740 struct kthread_work *work; 741 742 /* 743 * FIXME: Update the check and remove the assignment when all kthread 744 * worker users are created using kthread_create_worker*() functions. 745 */ 746 WARN_ON(worker->task && worker->task != current); 747 worker->task = current; 748 749 if (worker->flags & KTW_FREEZABLE) 750 set_freezable(); 751 752 repeat: 753 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 754 755 if (kthread_should_stop()) { 756 __set_current_state(TASK_RUNNING); 757 raw_spin_lock_irq(&worker->lock); 758 worker->task = NULL; 759 raw_spin_unlock_irq(&worker->lock); 760 return 0; 761 } 762 763 work = NULL; 764 raw_spin_lock_irq(&worker->lock); 765 if (!list_empty(&worker->work_list)) { 766 work = list_first_entry(&worker->work_list, 767 struct kthread_work, node); 768 list_del_init(&work->node); 769 } 770 worker->current_work = work; 771 raw_spin_unlock_irq(&worker->lock); 772 773 if (work) { 774 kthread_work_func_t func = work->func; 775 __set_current_state(TASK_RUNNING); 776 trace_sched_kthread_work_execute_start(work); 777 work->func(work); 778 /* 779 * Avoid dereferencing work after this point. The trace 780 * event only cares about the address. 781 */ 782 trace_sched_kthread_work_execute_end(work, func); 783 } else if (!freezing(current)) 784 schedule(); 785 786 try_to_freeze(); 787 cond_resched(); 788 goto repeat; 789 } 790 EXPORT_SYMBOL_GPL(kthread_worker_fn); 791 792 static __printf(3, 0) struct kthread_worker * 793 __kthread_create_worker(int cpu, unsigned int flags, 794 const char namefmt[], va_list args) 795 { 796 struct kthread_worker *worker; 797 struct task_struct *task; 798 int node = NUMA_NO_NODE; 799 800 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 801 if (!worker) 802 return ERR_PTR(-ENOMEM); 803 804 kthread_init_worker(worker); 805 806 if (cpu >= 0) 807 node = cpu_to_node(cpu); 808 809 task = __kthread_create_on_node(kthread_worker_fn, worker, 810 node, namefmt, args); 811 if (IS_ERR(task)) 812 goto fail_task; 813 814 if (cpu >= 0) 815 kthread_bind(task, cpu); 816 817 worker->flags = flags; 818 worker->task = task; 819 wake_up_process(task); 820 return worker; 821 822 fail_task: 823 kfree(worker); 824 return ERR_CAST(task); 825 } 826 827 /** 828 * kthread_create_worker - create a kthread worker 829 * @flags: flags modifying the default behavior of the worker 830 * @namefmt: printf-style name for the kthread worker (task). 831 * 832 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 833 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 834 * when the worker was SIGKILLed. 835 */ 836 struct kthread_worker * 837 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 838 { 839 struct kthread_worker *worker; 840 va_list args; 841 842 va_start(args, namefmt); 843 worker = __kthread_create_worker(-1, flags, namefmt, args); 844 va_end(args); 845 846 return worker; 847 } 848 EXPORT_SYMBOL(kthread_create_worker); 849 850 /** 851 * kthread_create_worker_on_cpu - create a kthread worker and bind it 852 * to a given CPU and the associated NUMA node. 853 * @cpu: CPU number 854 * @flags: flags modifying the default behavior of the worker 855 * @namefmt: printf-style name for the kthread worker (task). 856 * 857 * Use a valid CPU number if you want to bind the kthread worker 858 * to the given CPU and the associated NUMA node. 859 * 860 * A good practice is to add the cpu number also into the worker name. 861 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 862 * 863 * CPU hotplug: 864 * The kthread worker API is simple and generic. It just provides a way 865 * to create, use, and destroy workers. 866 * 867 * It is up to the API user how to handle CPU hotplug. They have to decide 868 * how to handle pending work items, prevent queuing new ones, and 869 * restore the functionality when the CPU goes off and on. There are a 870 * few catches: 871 * 872 * - CPU affinity gets lost when it is scheduled on an offline CPU. 873 * 874 * - The worker might not exist when the CPU was off when the user 875 * created the workers. 876 * 877 * Good practice is to implement two CPU hotplug callbacks and to 878 * destroy/create the worker when the CPU goes down/up. 879 * 880 * Return: 881 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 882 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 883 * when the worker was SIGKILLed. 884 */ 885 struct kthread_worker * 886 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 887 const char namefmt[], ...) 888 { 889 struct kthread_worker *worker; 890 va_list args; 891 892 va_start(args, namefmt); 893 worker = __kthread_create_worker(cpu, flags, namefmt, args); 894 va_end(args); 895 896 return worker; 897 } 898 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 899 900 /* 901 * Returns true when the work could not be queued at the moment. 902 * It happens when it is already pending in a worker list 903 * or when it is being cancelled. 904 */ 905 static inline bool queuing_blocked(struct kthread_worker *worker, 906 struct kthread_work *work) 907 { 908 lockdep_assert_held(&worker->lock); 909 910 return !list_empty(&work->node) || work->canceling; 911 } 912 913 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 914 struct kthread_work *work) 915 { 916 lockdep_assert_held(&worker->lock); 917 WARN_ON_ONCE(!list_empty(&work->node)); 918 /* Do not use a work with >1 worker, see kthread_queue_work() */ 919 WARN_ON_ONCE(work->worker && work->worker != worker); 920 } 921 922 /* insert @work before @pos in @worker */ 923 static void kthread_insert_work(struct kthread_worker *worker, 924 struct kthread_work *work, 925 struct list_head *pos) 926 { 927 kthread_insert_work_sanity_check(worker, work); 928 929 trace_sched_kthread_work_queue_work(worker, work); 930 931 list_add_tail(&work->node, pos); 932 work->worker = worker; 933 if (!worker->current_work && likely(worker->task)) 934 wake_up_process(worker->task); 935 } 936 937 /** 938 * kthread_queue_work - queue a kthread_work 939 * @worker: target kthread_worker 940 * @work: kthread_work to queue 941 * 942 * Queue @work to work processor @task for async execution. @task 943 * must have been created with kthread_worker_create(). Returns %true 944 * if @work was successfully queued, %false if it was already pending. 945 * 946 * Reinitialize the work if it needs to be used by another worker. 947 * For example, when the worker was stopped and started again. 948 */ 949 bool kthread_queue_work(struct kthread_worker *worker, 950 struct kthread_work *work) 951 { 952 bool ret = false; 953 unsigned long flags; 954 955 raw_spin_lock_irqsave(&worker->lock, flags); 956 if (!queuing_blocked(worker, work)) { 957 kthread_insert_work(worker, work, &worker->work_list); 958 ret = true; 959 } 960 raw_spin_unlock_irqrestore(&worker->lock, flags); 961 return ret; 962 } 963 EXPORT_SYMBOL_GPL(kthread_queue_work); 964 965 /** 966 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 967 * delayed work when the timer expires. 968 * @t: pointer to the expired timer 969 * 970 * The format of the function is defined by struct timer_list. 971 * It should have been called from irqsafe timer with irq already off. 972 */ 973 void kthread_delayed_work_timer_fn(struct timer_list *t) 974 { 975 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 976 struct kthread_work *work = &dwork->work; 977 struct kthread_worker *worker = work->worker; 978 unsigned long flags; 979 980 /* 981 * This might happen when a pending work is reinitialized. 982 * It means that it is used a wrong way. 983 */ 984 if (WARN_ON_ONCE(!worker)) 985 return; 986 987 raw_spin_lock_irqsave(&worker->lock, flags); 988 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 989 WARN_ON_ONCE(work->worker != worker); 990 991 /* Move the work from worker->delayed_work_list. */ 992 WARN_ON_ONCE(list_empty(&work->node)); 993 list_del_init(&work->node); 994 if (!work->canceling) 995 kthread_insert_work(worker, work, &worker->work_list); 996 997 raw_spin_unlock_irqrestore(&worker->lock, flags); 998 } 999 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1000 1001 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1002 struct kthread_delayed_work *dwork, 1003 unsigned long delay) 1004 { 1005 struct timer_list *timer = &dwork->timer; 1006 struct kthread_work *work = &dwork->work; 1007 1008 WARN_ON_FUNCTION_MISMATCH(timer->function, 1009 kthread_delayed_work_timer_fn); 1010 1011 /* 1012 * If @delay is 0, queue @dwork->work immediately. This is for 1013 * both optimization and correctness. The earliest @timer can 1014 * expire is on the closest next tick and delayed_work users depend 1015 * on that there's no such delay when @delay is 0. 1016 */ 1017 if (!delay) { 1018 kthread_insert_work(worker, work, &worker->work_list); 1019 return; 1020 } 1021 1022 /* Be paranoid and try to detect possible races already now. */ 1023 kthread_insert_work_sanity_check(worker, work); 1024 1025 list_add(&work->node, &worker->delayed_work_list); 1026 work->worker = worker; 1027 timer->expires = jiffies + delay; 1028 add_timer(timer); 1029 } 1030 1031 /** 1032 * kthread_queue_delayed_work - queue the associated kthread work 1033 * after a delay. 1034 * @worker: target kthread_worker 1035 * @dwork: kthread_delayed_work to queue 1036 * @delay: number of jiffies to wait before queuing 1037 * 1038 * If the work has not been pending it starts a timer that will queue 1039 * the work after the given @delay. If @delay is zero, it queues the 1040 * work immediately. 1041 * 1042 * Return: %false if the @work has already been pending. It means that 1043 * either the timer was running or the work was queued. It returns %true 1044 * otherwise. 1045 */ 1046 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1047 struct kthread_delayed_work *dwork, 1048 unsigned long delay) 1049 { 1050 struct kthread_work *work = &dwork->work; 1051 unsigned long flags; 1052 bool ret = false; 1053 1054 raw_spin_lock_irqsave(&worker->lock, flags); 1055 1056 if (!queuing_blocked(worker, work)) { 1057 __kthread_queue_delayed_work(worker, dwork, delay); 1058 ret = true; 1059 } 1060 1061 raw_spin_unlock_irqrestore(&worker->lock, flags); 1062 return ret; 1063 } 1064 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1065 1066 struct kthread_flush_work { 1067 struct kthread_work work; 1068 struct completion done; 1069 }; 1070 1071 static void kthread_flush_work_fn(struct kthread_work *work) 1072 { 1073 struct kthread_flush_work *fwork = 1074 container_of(work, struct kthread_flush_work, work); 1075 complete(&fwork->done); 1076 } 1077 1078 /** 1079 * kthread_flush_work - flush a kthread_work 1080 * @work: work to flush 1081 * 1082 * If @work is queued or executing, wait for it to finish execution. 1083 */ 1084 void kthread_flush_work(struct kthread_work *work) 1085 { 1086 struct kthread_flush_work fwork = { 1087 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1088 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1089 }; 1090 struct kthread_worker *worker; 1091 bool noop = false; 1092 1093 worker = work->worker; 1094 if (!worker) 1095 return; 1096 1097 raw_spin_lock_irq(&worker->lock); 1098 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1099 WARN_ON_ONCE(work->worker != worker); 1100 1101 if (!list_empty(&work->node)) 1102 kthread_insert_work(worker, &fwork.work, work->node.next); 1103 else if (worker->current_work == work) 1104 kthread_insert_work(worker, &fwork.work, 1105 worker->work_list.next); 1106 else 1107 noop = true; 1108 1109 raw_spin_unlock_irq(&worker->lock); 1110 1111 if (!noop) 1112 wait_for_completion(&fwork.done); 1113 } 1114 EXPORT_SYMBOL_GPL(kthread_flush_work); 1115 1116 /* 1117 * Make sure that the timer is neither set nor running and could 1118 * not manipulate the work list_head any longer. 1119 * 1120 * The function is called under worker->lock. The lock is temporary 1121 * released but the timer can't be set again in the meantime. 1122 */ 1123 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1124 unsigned long *flags) 1125 { 1126 struct kthread_delayed_work *dwork = 1127 container_of(work, struct kthread_delayed_work, work); 1128 struct kthread_worker *worker = work->worker; 1129 1130 /* 1131 * del_timer_sync() must be called to make sure that the timer 1132 * callback is not running. The lock must be temporary released 1133 * to avoid a deadlock with the callback. In the meantime, 1134 * any queuing is blocked by setting the canceling counter. 1135 */ 1136 work->canceling++; 1137 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1138 del_timer_sync(&dwork->timer); 1139 raw_spin_lock_irqsave(&worker->lock, *flags); 1140 work->canceling--; 1141 } 1142 1143 /* 1144 * This function removes the work from the worker queue. 1145 * 1146 * It is called under worker->lock. The caller must make sure that 1147 * the timer used by delayed work is not running, e.g. by calling 1148 * kthread_cancel_delayed_work_timer(). 1149 * 1150 * The work might still be in use when this function finishes. See the 1151 * current_work proceed by the worker. 1152 * 1153 * Return: %true if @work was pending and successfully canceled, 1154 * %false if @work was not pending 1155 */ 1156 static bool __kthread_cancel_work(struct kthread_work *work) 1157 { 1158 /* 1159 * Try to remove the work from a worker list. It might either 1160 * be from worker->work_list or from worker->delayed_work_list. 1161 */ 1162 if (!list_empty(&work->node)) { 1163 list_del_init(&work->node); 1164 return true; 1165 } 1166 1167 return false; 1168 } 1169 1170 /** 1171 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1172 * @worker: kthread worker to use 1173 * @dwork: kthread delayed work to queue 1174 * @delay: number of jiffies to wait before queuing 1175 * 1176 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1177 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1178 * @work is guaranteed to be queued immediately. 1179 * 1180 * Return: %false if @dwork was idle and queued, %true otherwise. 1181 * 1182 * A special case is when the work is being canceled in parallel. 1183 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1184 * or yet another kthread_mod_delayed_work() call. We let the other command 1185 * win and return %true here. The return value can be used for reference 1186 * counting and the number of queued works stays the same. Anyway, the caller 1187 * is supposed to synchronize these operations a reasonable way. 1188 * 1189 * This function is safe to call from any context including IRQ handler. 1190 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1191 * for details. 1192 */ 1193 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1194 struct kthread_delayed_work *dwork, 1195 unsigned long delay) 1196 { 1197 struct kthread_work *work = &dwork->work; 1198 unsigned long flags; 1199 int ret; 1200 1201 raw_spin_lock_irqsave(&worker->lock, flags); 1202 1203 /* Do not bother with canceling when never queued. */ 1204 if (!work->worker) { 1205 ret = false; 1206 goto fast_queue; 1207 } 1208 1209 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1210 WARN_ON_ONCE(work->worker != worker); 1211 1212 /* 1213 * Temporary cancel the work but do not fight with another command 1214 * that is canceling the work as well. 1215 * 1216 * It is a bit tricky because of possible races with another 1217 * mod_delayed_work() and cancel_delayed_work() callers. 1218 * 1219 * The timer must be canceled first because worker->lock is released 1220 * when doing so. But the work can be removed from the queue (list) 1221 * only when it can be queued again so that the return value can 1222 * be used for reference counting. 1223 */ 1224 kthread_cancel_delayed_work_timer(work, &flags); 1225 if (work->canceling) { 1226 /* The number of works in the queue does not change. */ 1227 ret = true; 1228 goto out; 1229 } 1230 ret = __kthread_cancel_work(work); 1231 1232 fast_queue: 1233 __kthread_queue_delayed_work(worker, dwork, delay); 1234 out: 1235 raw_spin_unlock_irqrestore(&worker->lock, flags); 1236 return ret; 1237 } 1238 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1239 1240 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1241 { 1242 struct kthread_worker *worker = work->worker; 1243 unsigned long flags; 1244 int ret = false; 1245 1246 if (!worker) 1247 goto out; 1248 1249 raw_spin_lock_irqsave(&worker->lock, flags); 1250 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1251 WARN_ON_ONCE(work->worker != worker); 1252 1253 if (is_dwork) 1254 kthread_cancel_delayed_work_timer(work, &flags); 1255 1256 ret = __kthread_cancel_work(work); 1257 1258 if (worker->current_work != work) 1259 goto out_fast; 1260 1261 /* 1262 * The work is in progress and we need to wait with the lock released. 1263 * In the meantime, block any queuing by setting the canceling counter. 1264 */ 1265 work->canceling++; 1266 raw_spin_unlock_irqrestore(&worker->lock, flags); 1267 kthread_flush_work(work); 1268 raw_spin_lock_irqsave(&worker->lock, flags); 1269 work->canceling--; 1270 1271 out_fast: 1272 raw_spin_unlock_irqrestore(&worker->lock, flags); 1273 out: 1274 return ret; 1275 } 1276 1277 /** 1278 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1279 * @work: the kthread work to cancel 1280 * 1281 * Cancel @work and wait for its execution to finish. This function 1282 * can be used even if the work re-queues itself. On return from this 1283 * function, @work is guaranteed to be not pending or executing on any CPU. 1284 * 1285 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1286 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1287 * 1288 * The caller must ensure that the worker on which @work was last 1289 * queued can't be destroyed before this function returns. 1290 * 1291 * Return: %true if @work was pending, %false otherwise. 1292 */ 1293 bool kthread_cancel_work_sync(struct kthread_work *work) 1294 { 1295 return __kthread_cancel_work_sync(work, false); 1296 } 1297 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1298 1299 /** 1300 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1301 * wait for it to finish. 1302 * @dwork: the kthread delayed work to cancel 1303 * 1304 * This is kthread_cancel_work_sync() for delayed works. 1305 * 1306 * Return: %true if @dwork was pending, %false otherwise. 1307 */ 1308 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1309 { 1310 return __kthread_cancel_work_sync(&dwork->work, true); 1311 } 1312 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1313 1314 /** 1315 * kthread_flush_worker - flush all current works on a kthread_worker 1316 * @worker: worker to flush 1317 * 1318 * Wait until all currently executing or pending works on @worker are 1319 * finished. 1320 */ 1321 void kthread_flush_worker(struct kthread_worker *worker) 1322 { 1323 struct kthread_flush_work fwork = { 1324 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1325 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1326 }; 1327 1328 kthread_queue_work(worker, &fwork.work); 1329 wait_for_completion(&fwork.done); 1330 } 1331 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1332 1333 /** 1334 * kthread_destroy_worker - destroy a kthread worker 1335 * @worker: worker to be destroyed 1336 * 1337 * Flush and destroy @worker. The simple flush is enough because the kthread 1338 * worker API is used only in trivial scenarios. There are no multi-step state 1339 * machines needed. 1340 */ 1341 void kthread_destroy_worker(struct kthread_worker *worker) 1342 { 1343 struct task_struct *task; 1344 1345 task = worker->task; 1346 if (WARN_ON(!task)) 1347 return; 1348 1349 kthread_flush_worker(worker); 1350 kthread_stop(task); 1351 WARN_ON(!list_empty(&worker->work_list)); 1352 kfree(worker); 1353 } 1354 EXPORT_SYMBOL(kthread_destroy_worker); 1355 1356 /** 1357 * kthread_use_mm - make the calling kthread operate on an address space 1358 * @mm: address space to operate on 1359 */ 1360 void kthread_use_mm(struct mm_struct *mm) 1361 { 1362 struct mm_struct *active_mm; 1363 struct task_struct *tsk = current; 1364 1365 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1366 WARN_ON_ONCE(tsk->mm); 1367 1368 task_lock(tsk); 1369 /* Hold off tlb flush IPIs while switching mm's */ 1370 local_irq_disable(); 1371 active_mm = tsk->active_mm; 1372 if (active_mm != mm) { 1373 mmgrab(mm); 1374 tsk->active_mm = mm; 1375 } 1376 tsk->mm = mm; 1377 membarrier_update_current_mm(mm); 1378 switch_mm_irqs_off(active_mm, mm, tsk); 1379 local_irq_enable(); 1380 task_unlock(tsk); 1381 #ifdef finish_arch_post_lock_switch 1382 finish_arch_post_lock_switch(); 1383 #endif 1384 1385 /* 1386 * When a kthread starts operating on an address space, the loop 1387 * in membarrier_{private,global}_expedited() may not observe 1388 * that tsk->mm, and not issue an IPI. Membarrier requires a 1389 * memory barrier after storing to tsk->mm, before accessing 1390 * user-space memory. A full memory barrier for membarrier 1391 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1392 * mmdrop(), or explicitly with smp_mb(). 1393 */ 1394 if (active_mm != mm) 1395 mmdrop(active_mm); 1396 else 1397 smp_mb(); 1398 1399 to_kthread(tsk)->oldfs = force_uaccess_begin(); 1400 } 1401 EXPORT_SYMBOL_GPL(kthread_use_mm); 1402 1403 /** 1404 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1405 * @mm: address space to operate on 1406 */ 1407 void kthread_unuse_mm(struct mm_struct *mm) 1408 { 1409 struct task_struct *tsk = current; 1410 1411 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1412 WARN_ON_ONCE(!tsk->mm); 1413 1414 force_uaccess_end(to_kthread(tsk)->oldfs); 1415 1416 task_lock(tsk); 1417 /* 1418 * When a kthread stops operating on an address space, the loop 1419 * in membarrier_{private,global}_expedited() may not observe 1420 * that tsk->mm, and not issue an IPI. Membarrier requires a 1421 * memory barrier after accessing user-space memory, before 1422 * clearing tsk->mm. 1423 */ 1424 smp_mb__after_spinlock(); 1425 sync_mm_rss(mm); 1426 local_irq_disable(); 1427 tsk->mm = NULL; 1428 membarrier_update_current_mm(NULL); 1429 /* active_mm is still 'mm' */ 1430 enter_lazy_tlb(mm, tsk); 1431 local_irq_enable(); 1432 task_unlock(tsk); 1433 } 1434 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1435 1436 #ifdef CONFIG_BLK_CGROUP 1437 /** 1438 * kthread_associate_blkcg - associate blkcg to current kthread 1439 * @css: the cgroup info 1440 * 1441 * Current thread must be a kthread. The thread is running jobs on behalf of 1442 * other threads. In some cases, we expect the jobs attach cgroup info of 1443 * original threads instead of that of current thread. This function stores 1444 * original thread's cgroup info in current kthread context for later 1445 * retrieval. 1446 */ 1447 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1448 { 1449 struct kthread *kthread; 1450 1451 if (!(current->flags & PF_KTHREAD)) 1452 return; 1453 kthread = to_kthread(current); 1454 if (!kthread) 1455 return; 1456 1457 if (kthread->blkcg_css) { 1458 css_put(kthread->blkcg_css); 1459 kthread->blkcg_css = NULL; 1460 } 1461 if (css) { 1462 css_get(css); 1463 kthread->blkcg_css = css; 1464 } 1465 } 1466 EXPORT_SYMBOL(kthread_associate_blkcg); 1467 1468 /** 1469 * kthread_blkcg - get associated blkcg css of current kthread 1470 * 1471 * Current thread must be a kthread. 1472 */ 1473 struct cgroup_subsys_state *kthread_blkcg(void) 1474 { 1475 struct kthread *kthread; 1476 1477 if (current->flags & PF_KTHREAD) { 1478 kthread = to_kthread(current); 1479 if (kthread) 1480 return kthread->blkcg_css; 1481 } 1482 return NULL; 1483 } 1484 EXPORT_SYMBOL(kthread_blkcg); 1485 #endif 1486