xref: /linux/kernel/kthread.c (revision c098564d91c55d408ed31e8885b915a5e2006249)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int (*threadfn)(void *);
56 	void *data;
57 	mm_segment_t oldfs;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64 
65 enum KTHREAD_BITS {
66 	KTHREAD_IS_PER_CPU = 0,
67 	KTHREAD_SHOULD_STOP,
68 	KTHREAD_SHOULD_PARK,
69 };
70 
71 static inline void set_kthread_struct(void *kthread)
72 {
73 	/*
74 	 * We abuse ->set_child_tid to avoid the new member and because it
75 	 * can't be wrongly copied by copy_process(). We also rely on fact
76 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
77 	 */
78 	current->set_child_tid = (__force void __user *)kthread;
79 }
80 
81 static inline struct kthread *to_kthread(struct task_struct *k)
82 {
83 	WARN_ON(!(k->flags & PF_KTHREAD));
84 	return (__force void *)k->set_child_tid;
85 }
86 
87 /*
88  * Variant of to_kthread() that doesn't assume @p is a kthread.
89  *
90  * Per construction; when:
91  *
92  *   (p->flags & PF_KTHREAD) && p->set_child_tid
93  *
94  * the task is both a kthread and struct kthread is persistent. However
95  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
96  * begin_new_exec()).
97  */
98 static inline struct kthread *__to_kthread(struct task_struct *p)
99 {
100 	void *kthread = (__force void *)p->set_child_tid;
101 	if (kthread && !(p->flags & PF_KTHREAD))
102 		kthread = NULL;
103 	return kthread;
104 }
105 
106 void free_kthread_struct(struct task_struct *k)
107 {
108 	struct kthread *kthread;
109 
110 	/*
111 	 * Can be NULL if this kthread was created by kernel_thread()
112 	 * or if kmalloc() in kthread() failed.
113 	 */
114 	kthread = to_kthread(k);
115 #ifdef CONFIG_BLK_CGROUP
116 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
117 #endif
118 	kfree(kthread);
119 }
120 
121 /**
122  * kthread_should_stop - should this kthread return now?
123  *
124  * When someone calls kthread_stop() on your kthread, it will be woken
125  * and this will return true.  You should then return, and your return
126  * value will be passed through to kthread_stop().
127  */
128 bool kthread_should_stop(void)
129 {
130 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
131 }
132 EXPORT_SYMBOL(kthread_should_stop);
133 
134 bool __kthread_should_park(struct task_struct *k)
135 {
136 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
137 }
138 EXPORT_SYMBOL_GPL(__kthread_should_park);
139 
140 /**
141  * kthread_should_park - should this kthread park now?
142  *
143  * When someone calls kthread_park() on your kthread, it will be woken
144  * and this will return true.  You should then do the necessary
145  * cleanup and call kthread_parkme()
146  *
147  * Similar to kthread_should_stop(), but this keeps the thread alive
148  * and in a park position. kthread_unpark() "restarts" the thread and
149  * calls the thread function again.
150  */
151 bool kthread_should_park(void)
152 {
153 	return __kthread_should_park(current);
154 }
155 EXPORT_SYMBOL_GPL(kthread_should_park);
156 
157 /**
158  * kthread_freezable_should_stop - should this freezable kthread return now?
159  * @was_frozen: optional out parameter, indicates whether %current was frozen
160  *
161  * kthread_should_stop() for freezable kthreads, which will enter
162  * refrigerator if necessary.  This function is safe from kthread_stop() /
163  * freezer deadlock and freezable kthreads should use this function instead
164  * of calling try_to_freeze() directly.
165  */
166 bool kthread_freezable_should_stop(bool *was_frozen)
167 {
168 	bool frozen = false;
169 
170 	might_sleep();
171 
172 	if (unlikely(freezing(current)))
173 		frozen = __refrigerator(true);
174 
175 	if (was_frozen)
176 		*was_frozen = frozen;
177 
178 	return kthread_should_stop();
179 }
180 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
181 
182 /**
183  * kthread_func - return the function specified on kthread creation
184  * @task: kthread task in question
185  *
186  * Returns NULL if the task is not a kthread.
187  */
188 void *kthread_func(struct task_struct *task)
189 {
190 	struct kthread *kthread = __to_kthread(task);
191 	if (kthread)
192 		return kthread->threadfn;
193 	return NULL;
194 }
195 EXPORT_SYMBOL_GPL(kthread_func);
196 
197 /**
198  * kthread_data - return data value specified on kthread creation
199  * @task: kthread task in question
200  *
201  * Return the data value specified when kthread @task was created.
202  * The caller is responsible for ensuring the validity of @task when
203  * calling this function.
204  */
205 void *kthread_data(struct task_struct *task)
206 {
207 	return to_kthread(task)->data;
208 }
209 EXPORT_SYMBOL_GPL(kthread_data);
210 
211 /**
212  * kthread_probe_data - speculative version of kthread_data()
213  * @task: possible kthread task in question
214  *
215  * @task could be a kthread task.  Return the data value specified when it
216  * was created if accessible.  If @task isn't a kthread task or its data is
217  * inaccessible for any reason, %NULL is returned.  This function requires
218  * that @task itself is safe to dereference.
219  */
220 void *kthread_probe_data(struct task_struct *task)
221 {
222 	struct kthread *kthread = __to_kthread(task);
223 	void *data = NULL;
224 
225 	if (kthread)
226 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
227 	return data;
228 }
229 
230 static void __kthread_parkme(struct kthread *self)
231 {
232 	for (;;) {
233 		/*
234 		 * TASK_PARKED is a special state; we must serialize against
235 		 * possible pending wakeups to avoid store-store collisions on
236 		 * task->state.
237 		 *
238 		 * Such a collision might possibly result in the task state
239 		 * changin from TASK_PARKED and us failing the
240 		 * wait_task_inactive() in kthread_park().
241 		 */
242 		set_special_state(TASK_PARKED);
243 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
244 			break;
245 
246 		/*
247 		 * Thread is going to call schedule(), do not preempt it,
248 		 * or the caller of kthread_park() may spend more time in
249 		 * wait_task_inactive().
250 		 */
251 		preempt_disable();
252 		complete(&self->parked);
253 		schedule_preempt_disabled();
254 		preempt_enable();
255 	}
256 	__set_current_state(TASK_RUNNING);
257 }
258 
259 void kthread_parkme(void)
260 {
261 	__kthread_parkme(to_kthread(current));
262 }
263 EXPORT_SYMBOL_GPL(kthread_parkme);
264 
265 static int kthread(void *_create)
266 {
267 	/* Copy data: it's on kthread's stack */
268 	struct kthread_create_info *create = _create;
269 	int (*threadfn)(void *data) = create->threadfn;
270 	void *data = create->data;
271 	struct completion *done;
272 	struct kthread *self;
273 	int ret;
274 
275 	self = kzalloc(sizeof(*self), GFP_KERNEL);
276 	set_kthread_struct(self);
277 
278 	/* If user was SIGKILLed, I release the structure. */
279 	done = xchg(&create->done, NULL);
280 	if (!done) {
281 		kfree(create);
282 		do_exit(-EINTR);
283 	}
284 
285 	if (!self) {
286 		create->result = ERR_PTR(-ENOMEM);
287 		complete(done);
288 		do_exit(-ENOMEM);
289 	}
290 
291 	self->threadfn = threadfn;
292 	self->data = data;
293 	init_completion(&self->exited);
294 	init_completion(&self->parked);
295 	current->vfork_done = &self->exited;
296 
297 	/* OK, tell user we're spawned, wait for stop or wakeup */
298 	__set_current_state(TASK_UNINTERRUPTIBLE);
299 	create->result = current;
300 	/*
301 	 * Thread is going to call schedule(), do not preempt it,
302 	 * or the creator may spend more time in wait_task_inactive().
303 	 */
304 	preempt_disable();
305 	complete(done);
306 	schedule_preempt_disabled();
307 	preempt_enable();
308 
309 	ret = -EINTR;
310 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
311 		cgroup_kthread_ready();
312 		__kthread_parkme(self);
313 		ret = threadfn(data);
314 	}
315 	do_exit(ret);
316 }
317 
318 /* called from kernel_clone() to get node information for about to be created task */
319 int tsk_fork_get_node(struct task_struct *tsk)
320 {
321 #ifdef CONFIG_NUMA
322 	if (tsk == kthreadd_task)
323 		return tsk->pref_node_fork;
324 #endif
325 	return NUMA_NO_NODE;
326 }
327 
328 static void create_kthread(struct kthread_create_info *create)
329 {
330 	int pid;
331 
332 #ifdef CONFIG_NUMA
333 	current->pref_node_fork = create->node;
334 #endif
335 	/* We want our own signal handler (we take no signals by default). */
336 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
337 	if (pid < 0) {
338 		/* If user was SIGKILLed, I release the structure. */
339 		struct completion *done = xchg(&create->done, NULL);
340 
341 		if (!done) {
342 			kfree(create);
343 			return;
344 		}
345 		create->result = ERR_PTR(pid);
346 		complete(done);
347 	}
348 }
349 
350 static __printf(4, 0)
351 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
352 						    void *data, int node,
353 						    const char namefmt[],
354 						    va_list args)
355 {
356 	DECLARE_COMPLETION_ONSTACK(done);
357 	struct task_struct *task;
358 	struct kthread_create_info *create = kmalloc(sizeof(*create),
359 						     GFP_KERNEL);
360 
361 	if (!create)
362 		return ERR_PTR(-ENOMEM);
363 	create->threadfn = threadfn;
364 	create->data = data;
365 	create->node = node;
366 	create->done = &done;
367 
368 	spin_lock(&kthread_create_lock);
369 	list_add_tail(&create->list, &kthread_create_list);
370 	spin_unlock(&kthread_create_lock);
371 
372 	wake_up_process(kthreadd_task);
373 	/*
374 	 * Wait for completion in killable state, for I might be chosen by
375 	 * the OOM killer while kthreadd is trying to allocate memory for
376 	 * new kernel thread.
377 	 */
378 	if (unlikely(wait_for_completion_killable(&done))) {
379 		/*
380 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
381 		 * calls complete(), leave the cleanup of this structure to
382 		 * that thread.
383 		 */
384 		if (xchg(&create->done, NULL))
385 			return ERR_PTR(-EINTR);
386 		/*
387 		 * kthreadd (or new kernel thread) will call complete()
388 		 * shortly.
389 		 */
390 		wait_for_completion(&done);
391 	}
392 	task = create->result;
393 	if (!IS_ERR(task)) {
394 		static const struct sched_param param = { .sched_priority = 0 };
395 		char name[TASK_COMM_LEN];
396 
397 		/*
398 		 * task is already visible to other tasks, so updating
399 		 * COMM must be protected.
400 		 */
401 		vsnprintf(name, sizeof(name), namefmt, args);
402 		set_task_comm(task, name);
403 		/*
404 		 * root may have changed our (kthreadd's) priority or CPU mask.
405 		 * The kernel thread should not inherit these properties.
406 		 */
407 		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
408 		set_cpus_allowed_ptr(task,
409 				     housekeeping_cpumask(HK_FLAG_KTHREAD));
410 	}
411 	kfree(create);
412 	return task;
413 }
414 
415 /**
416  * kthread_create_on_node - create a kthread.
417  * @threadfn: the function to run until signal_pending(current).
418  * @data: data ptr for @threadfn.
419  * @node: task and thread structures for the thread are allocated on this node
420  * @namefmt: printf-style name for the thread.
421  *
422  * Description: This helper function creates and names a kernel
423  * thread.  The thread will be stopped: use wake_up_process() to start
424  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
425  * is affine to all CPUs.
426  *
427  * If thread is going to be bound on a particular cpu, give its node
428  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
429  * When woken, the thread will run @threadfn() with @data as its
430  * argument. @threadfn() can either call do_exit() directly if it is a
431  * standalone thread for which no one will call kthread_stop(), or
432  * return when 'kthread_should_stop()' is true (which means
433  * kthread_stop() has been called).  The return value should be zero
434  * or a negative error number; it will be passed to kthread_stop().
435  *
436  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
437  */
438 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
439 					   void *data, int node,
440 					   const char namefmt[],
441 					   ...)
442 {
443 	struct task_struct *task;
444 	va_list args;
445 
446 	va_start(args, namefmt);
447 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
448 	va_end(args);
449 
450 	return task;
451 }
452 EXPORT_SYMBOL(kthread_create_on_node);
453 
454 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
455 {
456 	unsigned long flags;
457 
458 	if (!wait_task_inactive(p, state)) {
459 		WARN_ON(1);
460 		return;
461 	}
462 
463 	/* It's safe because the task is inactive. */
464 	raw_spin_lock_irqsave(&p->pi_lock, flags);
465 	do_set_cpus_allowed(p, mask);
466 	p->flags |= PF_NO_SETAFFINITY;
467 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
468 }
469 
470 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
471 {
472 	__kthread_bind_mask(p, cpumask_of(cpu), state);
473 }
474 
475 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
476 {
477 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
478 }
479 
480 /**
481  * kthread_bind - bind a just-created kthread to a cpu.
482  * @p: thread created by kthread_create().
483  * @cpu: cpu (might not be online, must be possible) for @k to run on.
484  *
485  * Description: This function is equivalent to set_cpus_allowed(),
486  * except that @cpu doesn't need to be online, and the thread must be
487  * stopped (i.e., just returned from kthread_create()).
488  */
489 void kthread_bind(struct task_struct *p, unsigned int cpu)
490 {
491 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
492 }
493 EXPORT_SYMBOL(kthread_bind);
494 
495 /**
496  * kthread_create_on_cpu - Create a cpu bound kthread
497  * @threadfn: the function to run until signal_pending(current).
498  * @data: data ptr for @threadfn.
499  * @cpu: The cpu on which the thread should be bound,
500  * @namefmt: printf-style name for the thread. Format is restricted
501  *	     to "name.*%u". Code fills in cpu number.
502  *
503  * Description: This helper function creates and names a kernel thread
504  */
505 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
506 					  void *data, unsigned int cpu,
507 					  const char *namefmt)
508 {
509 	struct task_struct *p;
510 
511 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
512 				   cpu);
513 	if (IS_ERR(p))
514 		return p;
515 	kthread_bind(p, cpu);
516 	/* CPU hotplug need to bind once again when unparking the thread. */
517 	to_kthread(p)->cpu = cpu;
518 	return p;
519 }
520 
521 void kthread_set_per_cpu(struct task_struct *k, int cpu)
522 {
523 	struct kthread *kthread = to_kthread(k);
524 	if (!kthread)
525 		return;
526 
527 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
528 
529 	if (cpu < 0) {
530 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
531 		return;
532 	}
533 
534 	kthread->cpu = cpu;
535 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
536 }
537 
538 bool kthread_is_per_cpu(struct task_struct *p)
539 {
540 	struct kthread *kthread = __to_kthread(p);
541 	if (!kthread)
542 		return false;
543 
544 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
545 }
546 
547 /**
548  * kthread_unpark - unpark a thread created by kthread_create().
549  * @k:		thread created by kthread_create().
550  *
551  * Sets kthread_should_park() for @k to return false, wakes it, and
552  * waits for it to return. If the thread is marked percpu then its
553  * bound to the cpu again.
554  */
555 void kthread_unpark(struct task_struct *k)
556 {
557 	struct kthread *kthread = to_kthread(k);
558 
559 	/*
560 	 * Newly created kthread was parked when the CPU was offline.
561 	 * The binding was lost and we need to set it again.
562 	 */
563 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
564 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
565 
566 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
567 	/*
568 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
569 	 */
570 	wake_up_state(k, TASK_PARKED);
571 }
572 EXPORT_SYMBOL_GPL(kthread_unpark);
573 
574 /**
575  * kthread_park - park a thread created by kthread_create().
576  * @k: thread created by kthread_create().
577  *
578  * Sets kthread_should_park() for @k to return true, wakes it, and
579  * waits for it to return. This can also be called after kthread_create()
580  * instead of calling wake_up_process(): the thread will park without
581  * calling threadfn().
582  *
583  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
584  * If called by the kthread itself just the park bit is set.
585  */
586 int kthread_park(struct task_struct *k)
587 {
588 	struct kthread *kthread = to_kthread(k);
589 
590 	if (WARN_ON(k->flags & PF_EXITING))
591 		return -ENOSYS;
592 
593 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
594 		return -EBUSY;
595 
596 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
597 	if (k != current) {
598 		wake_up_process(k);
599 		/*
600 		 * Wait for __kthread_parkme() to complete(), this means we
601 		 * _will_ have TASK_PARKED and are about to call schedule().
602 		 */
603 		wait_for_completion(&kthread->parked);
604 		/*
605 		 * Now wait for that schedule() to complete and the task to
606 		 * get scheduled out.
607 		 */
608 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
609 	}
610 
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(kthread_park);
614 
615 /**
616  * kthread_stop - stop a thread created by kthread_create().
617  * @k: thread created by kthread_create().
618  *
619  * Sets kthread_should_stop() for @k to return true, wakes it, and
620  * waits for it to exit. This can also be called after kthread_create()
621  * instead of calling wake_up_process(): the thread will exit without
622  * calling threadfn().
623  *
624  * If threadfn() may call do_exit() itself, the caller must ensure
625  * task_struct can't go away.
626  *
627  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
628  * was never called.
629  */
630 int kthread_stop(struct task_struct *k)
631 {
632 	struct kthread *kthread;
633 	int ret;
634 
635 	trace_sched_kthread_stop(k);
636 
637 	get_task_struct(k);
638 	kthread = to_kthread(k);
639 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
640 	kthread_unpark(k);
641 	wake_up_process(k);
642 	wait_for_completion(&kthread->exited);
643 	ret = k->exit_code;
644 	put_task_struct(k);
645 
646 	trace_sched_kthread_stop_ret(ret);
647 	return ret;
648 }
649 EXPORT_SYMBOL(kthread_stop);
650 
651 int kthreadd(void *unused)
652 {
653 	struct task_struct *tsk = current;
654 
655 	/* Setup a clean context for our children to inherit. */
656 	set_task_comm(tsk, "kthreadd");
657 	ignore_signals(tsk);
658 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
659 	set_mems_allowed(node_states[N_MEMORY]);
660 
661 	current->flags |= PF_NOFREEZE;
662 	cgroup_init_kthreadd();
663 
664 	for (;;) {
665 		set_current_state(TASK_INTERRUPTIBLE);
666 		if (list_empty(&kthread_create_list))
667 			schedule();
668 		__set_current_state(TASK_RUNNING);
669 
670 		spin_lock(&kthread_create_lock);
671 		while (!list_empty(&kthread_create_list)) {
672 			struct kthread_create_info *create;
673 
674 			create = list_entry(kthread_create_list.next,
675 					    struct kthread_create_info, list);
676 			list_del_init(&create->list);
677 			spin_unlock(&kthread_create_lock);
678 
679 			create_kthread(create);
680 
681 			spin_lock(&kthread_create_lock);
682 		}
683 		spin_unlock(&kthread_create_lock);
684 	}
685 
686 	return 0;
687 }
688 
689 void __kthread_init_worker(struct kthread_worker *worker,
690 				const char *name,
691 				struct lock_class_key *key)
692 {
693 	memset(worker, 0, sizeof(struct kthread_worker));
694 	raw_spin_lock_init(&worker->lock);
695 	lockdep_set_class_and_name(&worker->lock, key, name);
696 	INIT_LIST_HEAD(&worker->work_list);
697 	INIT_LIST_HEAD(&worker->delayed_work_list);
698 }
699 EXPORT_SYMBOL_GPL(__kthread_init_worker);
700 
701 /**
702  * kthread_worker_fn - kthread function to process kthread_worker
703  * @worker_ptr: pointer to initialized kthread_worker
704  *
705  * This function implements the main cycle of kthread worker. It processes
706  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
707  * is empty.
708  *
709  * The works are not allowed to keep any locks, disable preemption or interrupts
710  * when they finish. There is defined a safe point for freezing when one work
711  * finishes and before a new one is started.
712  *
713  * Also the works must not be handled by more than one worker at the same time,
714  * see also kthread_queue_work().
715  */
716 int kthread_worker_fn(void *worker_ptr)
717 {
718 	struct kthread_worker *worker = worker_ptr;
719 	struct kthread_work *work;
720 
721 	/*
722 	 * FIXME: Update the check and remove the assignment when all kthread
723 	 * worker users are created using kthread_create_worker*() functions.
724 	 */
725 	WARN_ON(worker->task && worker->task != current);
726 	worker->task = current;
727 
728 	if (worker->flags & KTW_FREEZABLE)
729 		set_freezable();
730 
731 repeat:
732 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
733 
734 	if (kthread_should_stop()) {
735 		__set_current_state(TASK_RUNNING);
736 		raw_spin_lock_irq(&worker->lock);
737 		worker->task = NULL;
738 		raw_spin_unlock_irq(&worker->lock);
739 		return 0;
740 	}
741 
742 	work = NULL;
743 	raw_spin_lock_irq(&worker->lock);
744 	if (!list_empty(&worker->work_list)) {
745 		work = list_first_entry(&worker->work_list,
746 					struct kthread_work, node);
747 		list_del_init(&work->node);
748 	}
749 	worker->current_work = work;
750 	raw_spin_unlock_irq(&worker->lock);
751 
752 	if (work) {
753 		kthread_work_func_t func = work->func;
754 		__set_current_state(TASK_RUNNING);
755 		trace_sched_kthread_work_execute_start(work);
756 		work->func(work);
757 		/*
758 		 * Avoid dereferencing work after this point.  The trace
759 		 * event only cares about the address.
760 		 */
761 		trace_sched_kthread_work_execute_end(work, func);
762 	} else if (!freezing(current))
763 		schedule();
764 
765 	try_to_freeze();
766 	cond_resched();
767 	goto repeat;
768 }
769 EXPORT_SYMBOL_GPL(kthread_worker_fn);
770 
771 static __printf(3, 0) struct kthread_worker *
772 __kthread_create_worker(int cpu, unsigned int flags,
773 			const char namefmt[], va_list args)
774 {
775 	struct kthread_worker *worker;
776 	struct task_struct *task;
777 	int node = NUMA_NO_NODE;
778 
779 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
780 	if (!worker)
781 		return ERR_PTR(-ENOMEM);
782 
783 	kthread_init_worker(worker);
784 
785 	if (cpu >= 0)
786 		node = cpu_to_node(cpu);
787 
788 	task = __kthread_create_on_node(kthread_worker_fn, worker,
789 						node, namefmt, args);
790 	if (IS_ERR(task))
791 		goto fail_task;
792 
793 	if (cpu >= 0)
794 		kthread_bind(task, cpu);
795 
796 	worker->flags = flags;
797 	worker->task = task;
798 	wake_up_process(task);
799 	return worker;
800 
801 fail_task:
802 	kfree(worker);
803 	return ERR_CAST(task);
804 }
805 
806 /**
807  * kthread_create_worker - create a kthread worker
808  * @flags: flags modifying the default behavior of the worker
809  * @namefmt: printf-style name for the kthread worker (task).
810  *
811  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
812  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
813  * when the worker was SIGKILLed.
814  */
815 struct kthread_worker *
816 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
817 {
818 	struct kthread_worker *worker;
819 	va_list args;
820 
821 	va_start(args, namefmt);
822 	worker = __kthread_create_worker(-1, flags, namefmt, args);
823 	va_end(args);
824 
825 	return worker;
826 }
827 EXPORT_SYMBOL(kthread_create_worker);
828 
829 /**
830  * kthread_create_worker_on_cpu - create a kthread worker and bind it
831  *	to a given CPU and the associated NUMA node.
832  * @cpu: CPU number
833  * @flags: flags modifying the default behavior of the worker
834  * @namefmt: printf-style name for the kthread worker (task).
835  *
836  * Use a valid CPU number if you want to bind the kthread worker
837  * to the given CPU and the associated NUMA node.
838  *
839  * A good practice is to add the cpu number also into the worker name.
840  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
841  *
842  * CPU hotplug:
843  * The kthread worker API is simple and generic. It just provides a way
844  * to create, use, and destroy workers.
845  *
846  * It is up to the API user how to handle CPU hotplug. They have to decide
847  * how to handle pending work items, prevent queuing new ones, and
848  * restore the functionality when the CPU goes off and on. There are a
849  * few catches:
850  *
851  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
852  *
853  *    - The worker might not exist when the CPU was off when the user
854  *      created the workers.
855  *
856  * Good practice is to implement two CPU hotplug callbacks and to
857  * destroy/create the worker when the CPU goes down/up.
858  *
859  * Return:
860  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
861  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
862  * when the worker was SIGKILLed.
863  */
864 struct kthread_worker *
865 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
866 			     const char namefmt[], ...)
867 {
868 	struct kthread_worker *worker;
869 	va_list args;
870 
871 	va_start(args, namefmt);
872 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
873 	va_end(args);
874 
875 	return worker;
876 }
877 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
878 
879 /*
880  * Returns true when the work could not be queued at the moment.
881  * It happens when it is already pending in a worker list
882  * or when it is being cancelled.
883  */
884 static inline bool queuing_blocked(struct kthread_worker *worker,
885 				   struct kthread_work *work)
886 {
887 	lockdep_assert_held(&worker->lock);
888 
889 	return !list_empty(&work->node) || work->canceling;
890 }
891 
892 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
893 					     struct kthread_work *work)
894 {
895 	lockdep_assert_held(&worker->lock);
896 	WARN_ON_ONCE(!list_empty(&work->node));
897 	/* Do not use a work with >1 worker, see kthread_queue_work() */
898 	WARN_ON_ONCE(work->worker && work->worker != worker);
899 }
900 
901 /* insert @work before @pos in @worker */
902 static void kthread_insert_work(struct kthread_worker *worker,
903 				struct kthread_work *work,
904 				struct list_head *pos)
905 {
906 	kthread_insert_work_sanity_check(worker, work);
907 
908 	trace_sched_kthread_work_queue_work(worker, work);
909 
910 	list_add_tail(&work->node, pos);
911 	work->worker = worker;
912 	if (!worker->current_work && likely(worker->task))
913 		wake_up_process(worker->task);
914 }
915 
916 /**
917  * kthread_queue_work - queue a kthread_work
918  * @worker: target kthread_worker
919  * @work: kthread_work to queue
920  *
921  * Queue @work to work processor @task for async execution.  @task
922  * must have been created with kthread_worker_create().  Returns %true
923  * if @work was successfully queued, %false if it was already pending.
924  *
925  * Reinitialize the work if it needs to be used by another worker.
926  * For example, when the worker was stopped and started again.
927  */
928 bool kthread_queue_work(struct kthread_worker *worker,
929 			struct kthread_work *work)
930 {
931 	bool ret = false;
932 	unsigned long flags;
933 
934 	raw_spin_lock_irqsave(&worker->lock, flags);
935 	if (!queuing_blocked(worker, work)) {
936 		kthread_insert_work(worker, work, &worker->work_list);
937 		ret = true;
938 	}
939 	raw_spin_unlock_irqrestore(&worker->lock, flags);
940 	return ret;
941 }
942 EXPORT_SYMBOL_GPL(kthread_queue_work);
943 
944 /**
945  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
946  *	delayed work when the timer expires.
947  * @t: pointer to the expired timer
948  *
949  * The format of the function is defined by struct timer_list.
950  * It should have been called from irqsafe timer with irq already off.
951  */
952 void kthread_delayed_work_timer_fn(struct timer_list *t)
953 {
954 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
955 	struct kthread_work *work = &dwork->work;
956 	struct kthread_worker *worker = work->worker;
957 	unsigned long flags;
958 
959 	/*
960 	 * This might happen when a pending work is reinitialized.
961 	 * It means that it is used a wrong way.
962 	 */
963 	if (WARN_ON_ONCE(!worker))
964 		return;
965 
966 	raw_spin_lock_irqsave(&worker->lock, flags);
967 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
968 	WARN_ON_ONCE(work->worker != worker);
969 
970 	/* Move the work from worker->delayed_work_list. */
971 	WARN_ON_ONCE(list_empty(&work->node));
972 	list_del_init(&work->node);
973 	if (!work->canceling)
974 		kthread_insert_work(worker, work, &worker->work_list);
975 
976 	raw_spin_unlock_irqrestore(&worker->lock, flags);
977 }
978 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
979 
980 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
981 					 struct kthread_delayed_work *dwork,
982 					 unsigned long delay)
983 {
984 	struct timer_list *timer = &dwork->timer;
985 	struct kthread_work *work = &dwork->work;
986 
987 	WARN_ON_FUNCTION_MISMATCH(timer->function,
988 				  kthread_delayed_work_timer_fn);
989 
990 	/*
991 	 * If @delay is 0, queue @dwork->work immediately.  This is for
992 	 * both optimization and correctness.  The earliest @timer can
993 	 * expire is on the closest next tick and delayed_work users depend
994 	 * on that there's no such delay when @delay is 0.
995 	 */
996 	if (!delay) {
997 		kthread_insert_work(worker, work, &worker->work_list);
998 		return;
999 	}
1000 
1001 	/* Be paranoid and try to detect possible races already now. */
1002 	kthread_insert_work_sanity_check(worker, work);
1003 
1004 	list_add(&work->node, &worker->delayed_work_list);
1005 	work->worker = worker;
1006 	timer->expires = jiffies + delay;
1007 	add_timer(timer);
1008 }
1009 
1010 /**
1011  * kthread_queue_delayed_work - queue the associated kthread work
1012  *	after a delay.
1013  * @worker: target kthread_worker
1014  * @dwork: kthread_delayed_work to queue
1015  * @delay: number of jiffies to wait before queuing
1016  *
1017  * If the work has not been pending it starts a timer that will queue
1018  * the work after the given @delay. If @delay is zero, it queues the
1019  * work immediately.
1020  *
1021  * Return: %false if the @work has already been pending. It means that
1022  * either the timer was running or the work was queued. It returns %true
1023  * otherwise.
1024  */
1025 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1026 				struct kthread_delayed_work *dwork,
1027 				unsigned long delay)
1028 {
1029 	struct kthread_work *work = &dwork->work;
1030 	unsigned long flags;
1031 	bool ret = false;
1032 
1033 	raw_spin_lock_irqsave(&worker->lock, flags);
1034 
1035 	if (!queuing_blocked(worker, work)) {
1036 		__kthread_queue_delayed_work(worker, dwork, delay);
1037 		ret = true;
1038 	}
1039 
1040 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1041 	return ret;
1042 }
1043 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1044 
1045 struct kthread_flush_work {
1046 	struct kthread_work	work;
1047 	struct completion	done;
1048 };
1049 
1050 static void kthread_flush_work_fn(struct kthread_work *work)
1051 {
1052 	struct kthread_flush_work *fwork =
1053 		container_of(work, struct kthread_flush_work, work);
1054 	complete(&fwork->done);
1055 }
1056 
1057 /**
1058  * kthread_flush_work - flush a kthread_work
1059  * @work: work to flush
1060  *
1061  * If @work is queued or executing, wait for it to finish execution.
1062  */
1063 void kthread_flush_work(struct kthread_work *work)
1064 {
1065 	struct kthread_flush_work fwork = {
1066 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1067 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1068 	};
1069 	struct kthread_worker *worker;
1070 	bool noop = false;
1071 
1072 	worker = work->worker;
1073 	if (!worker)
1074 		return;
1075 
1076 	raw_spin_lock_irq(&worker->lock);
1077 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1078 	WARN_ON_ONCE(work->worker != worker);
1079 
1080 	if (!list_empty(&work->node))
1081 		kthread_insert_work(worker, &fwork.work, work->node.next);
1082 	else if (worker->current_work == work)
1083 		kthread_insert_work(worker, &fwork.work,
1084 				    worker->work_list.next);
1085 	else
1086 		noop = true;
1087 
1088 	raw_spin_unlock_irq(&worker->lock);
1089 
1090 	if (!noop)
1091 		wait_for_completion(&fwork.done);
1092 }
1093 EXPORT_SYMBOL_GPL(kthread_flush_work);
1094 
1095 /*
1096  * This function removes the work from the worker queue. Also it makes sure
1097  * that it won't get queued later via the delayed work's timer.
1098  *
1099  * The work might still be in use when this function finishes. See the
1100  * current_work proceed by the worker.
1101  *
1102  * Return: %true if @work was pending and successfully canceled,
1103  *	%false if @work was not pending
1104  */
1105 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1106 				  unsigned long *flags)
1107 {
1108 	/* Try to cancel the timer if exists. */
1109 	if (is_dwork) {
1110 		struct kthread_delayed_work *dwork =
1111 			container_of(work, struct kthread_delayed_work, work);
1112 		struct kthread_worker *worker = work->worker;
1113 
1114 		/*
1115 		 * del_timer_sync() must be called to make sure that the timer
1116 		 * callback is not running. The lock must be temporary released
1117 		 * to avoid a deadlock with the callback. In the meantime,
1118 		 * any queuing is blocked by setting the canceling counter.
1119 		 */
1120 		work->canceling++;
1121 		raw_spin_unlock_irqrestore(&worker->lock, *flags);
1122 		del_timer_sync(&dwork->timer);
1123 		raw_spin_lock_irqsave(&worker->lock, *flags);
1124 		work->canceling--;
1125 	}
1126 
1127 	/*
1128 	 * Try to remove the work from a worker list. It might either
1129 	 * be from worker->work_list or from worker->delayed_work_list.
1130 	 */
1131 	if (!list_empty(&work->node)) {
1132 		list_del_init(&work->node);
1133 		return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 /**
1140  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1141  * @worker: kthread worker to use
1142  * @dwork: kthread delayed work to queue
1143  * @delay: number of jiffies to wait before queuing
1144  *
1145  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1146  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1147  * @work is guaranteed to be queued immediately.
1148  *
1149  * Return: %true if @dwork was pending and its timer was modified,
1150  * %false otherwise.
1151  *
1152  * A special case is when the work is being canceled in parallel.
1153  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1154  * or yet another kthread_mod_delayed_work() call. We let the other command
1155  * win and return %false here. The caller is supposed to synchronize these
1156  * operations a reasonable way.
1157  *
1158  * This function is safe to call from any context including IRQ handler.
1159  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1160  * for details.
1161  */
1162 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1163 			      struct kthread_delayed_work *dwork,
1164 			      unsigned long delay)
1165 {
1166 	struct kthread_work *work = &dwork->work;
1167 	unsigned long flags;
1168 	int ret = false;
1169 
1170 	raw_spin_lock_irqsave(&worker->lock, flags);
1171 
1172 	/* Do not bother with canceling when never queued. */
1173 	if (!work->worker)
1174 		goto fast_queue;
1175 
1176 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1177 	WARN_ON_ONCE(work->worker != worker);
1178 
1179 	/* Do not fight with another command that is canceling this work. */
1180 	if (work->canceling)
1181 		goto out;
1182 
1183 	ret = __kthread_cancel_work(work, true, &flags);
1184 fast_queue:
1185 	__kthread_queue_delayed_work(worker, dwork, delay);
1186 out:
1187 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1188 	return ret;
1189 }
1190 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1191 
1192 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1193 {
1194 	struct kthread_worker *worker = work->worker;
1195 	unsigned long flags;
1196 	int ret = false;
1197 
1198 	if (!worker)
1199 		goto out;
1200 
1201 	raw_spin_lock_irqsave(&worker->lock, flags);
1202 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1203 	WARN_ON_ONCE(work->worker != worker);
1204 
1205 	ret = __kthread_cancel_work(work, is_dwork, &flags);
1206 
1207 	if (worker->current_work != work)
1208 		goto out_fast;
1209 
1210 	/*
1211 	 * The work is in progress and we need to wait with the lock released.
1212 	 * In the meantime, block any queuing by setting the canceling counter.
1213 	 */
1214 	work->canceling++;
1215 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1216 	kthread_flush_work(work);
1217 	raw_spin_lock_irqsave(&worker->lock, flags);
1218 	work->canceling--;
1219 
1220 out_fast:
1221 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1222 out:
1223 	return ret;
1224 }
1225 
1226 /**
1227  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1228  * @work: the kthread work to cancel
1229  *
1230  * Cancel @work and wait for its execution to finish.  This function
1231  * can be used even if the work re-queues itself. On return from this
1232  * function, @work is guaranteed to be not pending or executing on any CPU.
1233  *
1234  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1235  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1236  *
1237  * The caller must ensure that the worker on which @work was last
1238  * queued can't be destroyed before this function returns.
1239  *
1240  * Return: %true if @work was pending, %false otherwise.
1241  */
1242 bool kthread_cancel_work_sync(struct kthread_work *work)
1243 {
1244 	return __kthread_cancel_work_sync(work, false);
1245 }
1246 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1247 
1248 /**
1249  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1250  *	wait for it to finish.
1251  * @dwork: the kthread delayed work to cancel
1252  *
1253  * This is kthread_cancel_work_sync() for delayed works.
1254  *
1255  * Return: %true if @dwork was pending, %false otherwise.
1256  */
1257 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1258 {
1259 	return __kthread_cancel_work_sync(&dwork->work, true);
1260 }
1261 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1262 
1263 /**
1264  * kthread_flush_worker - flush all current works on a kthread_worker
1265  * @worker: worker to flush
1266  *
1267  * Wait until all currently executing or pending works on @worker are
1268  * finished.
1269  */
1270 void kthread_flush_worker(struct kthread_worker *worker)
1271 {
1272 	struct kthread_flush_work fwork = {
1273 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1274 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1275 	};
1276 
1277 	kthread_queue_work(worker, &fwork.work);
1278 	wait_for_completion(&fwork.done);
1279 }
1280 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1281 
1282 /**
1283  * kthread_destroy_worker - destroy a kthread worker
1284  * @worker: worker to be destroyed
1285  *
1286  * Flush and destroy @worker.  The simple flush is enough because the kthread
1287  * worker API is used only in trivial scenarios.  There are no multi-step state
1288  * machines needed.
1289  */
1290 void kthread_destroy_worker(struct kthread_worker *worker)
1291 {
1292 	struct task_struct *task;
1293 
1294 	task = worker->task;
1295 	if (WARN_ON(!task))
1296 		return;
1297 
1298 	kthread_flush_worker(worker);
1299 	kthread_stop(task);
1300 	WARN_ON(!list_empty(&worker->work_list));
1301 	kfree(worker);
1302 }
1303 EXPORT_SYMBOL(kthread_destroy_worker);
1304 
1305 /**
1306  * kthread_use_mm - make the calling kthread operate on an address space
1307  * @mm: address space to operate on
1308  */
1309 void kthread_use_mm(struct mm_struct *mm)
1310 {
1311 	struct mm_struct *active_mm;
1312 	struct task_struct *tsk = current;
1313 
1314 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1315 	WARN_ON_ONCE(tsk->mm);
1316 
1317 	task_lock(tsk);
1318 	/* Hold off tlb flush IPIs while switching mm's */
1319 	local_irq_disable();
1320 	active_mm = tsk->active_mm;
1321 	if (active_mm != mm) {
1322 		mmgrab(mm);
1323 		tsk->active_mm = mm;
1324 	}
1325 	tsk->mm = mm;
1326 	membarrier_update_current_mm(mm);
1327 	switch_mm_irqs_off(active_mm, mm, tsk);
1328 	local_irq_enable();
1329 	task_unlock(tsk);
1330 #ifdef finish_arch_post_lock_switch
1331 	finish_arch_post_lock_switch();
1332 #endif
1333 
1334 	/*
1335 	 * When a kthread starts operating on an address space, the loop
1336 	 * in membarrier_{private,global}_expedited() may not observe
1337 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1338 	 * memory barrier after storing to tsk->mm, before accessing
1339 	 * user-space memory. A full memory barrier for membarrier
1340 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1341 	 * mmdrop(), or explicitly with smp_mb().
1342 	 */
1343 	if (active_mm != mm)
1344 		mmdrop(active_mm);
1345 	else
1346 		smp_mb();
1347 
1348 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1349 }
1350 EXPORT_SYMBOL_GPL(kthread_use_mm);
1351 
1352 /**
1353  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1354  * @mm: address space to operate on
1355  */
1356 void kthread_unuse_mm(struct mm_struct *mm)
1357 {
1358 	struct task_struct *tsk = current;
1359 
1360 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1361 	WARN_ON_ONCE(!tsk->mm);
1362 
1363 	force_uaccess_end(to_kthread(tsk)->oldfs);
1364 
1365 	task_lock(tsk);
1366 	/*
1367 	 * When a kthread stops operating on an address space, the loop
1368 	 * in membarrier_{private,global}_expedited() may not observe
1369 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1370 	 * memory barrier after accessing user-space memory, before
1371 	 * clearing tsk->mm.
1372 	 */
1373 	smp_mb__after_spinlock();
1374 	sync_mm_rss(mm);
1375 	local_irq_disable();
1376 	tsk->mm = NULL;
1377 	membarrier_update_current_mm(NULL);
1378 	/* active_mm is still 'mm' */
1379 	enter_lazy_tlb(mm, tsk);
1380 	local_irq_enable();
1381 	task_unlock(tsk);
1382 }
1383 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1384 
1385 #ifdef CONFIG_BLK_CGROUP
1386 /**
1387  * kthread_associate_blkcg - associate blkcg to current kthread
1388  * @css: the cgroup info
1389  *
1390  * Current thread must be a kthread. The thread is running jobs on behalf of
1391  * other threads. In some cases, we expect the jobs attach cgroup info of
1392  * original threads instead of that of current thread. This function stores
1393  * original thread's cgroup info in current kthread context for later
1394  * retrieval.
1395  */
1396 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1397 {
1398 	struct kthread *kthread;
1399 
1400 	if (!(current->flags & PF_KTHREAD))
1401 		return;
1402 	kthread = to_kthread(current);
1403 	if (!kthread)
1404 		return;
1405 
1406 	if (kthread->blkcg_css) {
1407 		css_put(kthread->blkcg_css);
1408 		kthread->blkcg_css = NULL;
1409 	}
1410 	if (css) {
1411 		css_get(css);
1412 		kthread->blkcg_css = css;
1413 	}
1414 }
1415 EXPORT_SYMBOL(kthread_associate_blkcg);
1416 
1417 /**
1418  * kthread_blkcg - get associated blkcg css of current kthread
1419  *
1420  * Current thread must be a kthread.
1421  */
1422 struct cgroup_subsys_state *kthread_blkcg(void)
1423 {
1424 	struct kthread *kthread;
1425 
1426 	if (current->flags & PF_KTHREAD) {
1427 		kthread = to_kthread(current);
1428 		if (kthread)
1429 			return kthread->blkcg_css;
1430 	}
1431 	return NULL;
1432 }
1433 EXPORT_SYMBOL(kthread_blkcg);
1434 #endif
1435