xref: /linux/kernel/kthread.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int (*threadfn)(void *);
56 	void *data;
57 	mm_segment_t oldfs;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64 
65 enum KTHREAD_BITS {
66 	KTHREAD_IS_PER_CPU = 0,
67 	KTHREAD_SHOULD_STOP,
68 	KTHREAD_SHOULD_PARK,
69 };
70 
71 static inline void set_kthread_struct(void *kthread)
72 {
73 	/*
74 	 * We abuse ->set_child_tid to avoid the new member and because it
75 	 * can't be wrongly copied by copy_process(). We also rely on fact
76 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
77 	 */
78 	current->set_child_tid = (__force void __user *)kthread;
79 }
80 
81 static inline struct kthread *to_kthread(struct task_struct *k)
82 {
83 	WARN_ON(!(k->flags & PF_KTHREAD));
84 	return (__force void *)k->set_child_tid;
85 }
86 
87 void free_kthread_struct(struct task_struct *k)
88 {
89 	struct kthread *kthread;
90 
91 	/*
92 	 * Can be NULL if this kthread was created by kernel_thread()
93 	 * or if kmalloc() in kthread() failed.
94 	 */
95 	kthread = to_kthread(k);
96 #ifdef CONFIG_BLK_CGROUP
97 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
98 #endif
99 	kfree(kthread);
100 }
101 
102 /**
103  * kthread_should_stop - should this kthread return now?
104  *
105  * When someone calls kthread_stop() on your kthread, it will be woken
106  * and this will return true.  You should then return, and your return
107  * value will be passed through to kthread_stop().
108  */
109 bool kthread_should_stop(void)
110 {
111 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
112 }
113 EXPORT_SYMBOL(kthread_should_stop);
114 
115 bool __kthread_should_park(struct task_struct *k)
116 {
117 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
118 }
119 EXPORT_SYMBOL_GPL(__kthread_should_park);
120 
121 /**
122  * kthread_should_park - should this kthread park now?
123  *
124  * When someone calls kthread_park() on your kthread, it will be woken
125  * and this will return true.  You should then do the necessary
126  * cleanup and call kthread_parkme()
127  *
128  * Similar to kthread_should_stop(), but this keeps the thread alive
129  * and in a park position. kthread_unpark() "restarts" the thread and
130  * calls the thread function again.
131  */
132 bool kthread_should_park(void)
133 {
134 	return __kthread_should_park(current);
135 }
136 EXPORT_SYMBOL_GPL(kthread_should_park);
137 
138 /**
139  * kthread_freezable_should_stop - should this freezable kthread return now?
140  * @was_frozen: optional out parameter, indicates whether %current was frozen
141  *
142  * kthread_should_stop() for freezable kthreads, which will enter
143  * refrigerator if necessary.  This function is safe from kthread_stop() /
144  * freezer deadlock and freezable kthreads should use this function instead
145  * of calling try_to_freeze() directly.
146  */
147 bool kthread_freezable_should_stop(bool *was_frozen)
148 {
149 	bool frozen = false;
150 
151 	might_sleep();
152 
153 	if (unlikely(freezing(current)))
154 		frozen = __refrigerator(true);
155 
156 	if (was_frozen)
157 		*was_frozen = frozen;
158 
159 	return kthread_should_stop();
160 }
161 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
162 
163 /**
164  * kthread_func - return the function specified on kthread creation
165  * @task: kthread task in question
166  *
167  * Returns NULL if the task is not a kthread.
168  */
169 void *kthread_func(struct task_struct *task)
170 {
171 	if (task->flags & PF_KTHREAD)
172 		return to_kthread(task)->threadfn;
173 	return NULL;
174 }
175 EXPORT_SYMBOL_GPL(kthread_func);
176 
177 /**
178  * kthread_data - return data value specified on kthread creation
179  * @task: kthread task in question
180  *
181  * Return the data value specified when kthread @task was created.
182  * The caller is responsible for ensuring the validity of @task when
183  * calling this function.
184  */
185 void *kthread_data(struct task_struct *task)
186 {
187 	return to_kthread(task)->data;
188 }
189 EXPORT_SYMBOL_GPL(kthread_data);
190 
191 /**
192  * kthread_probe_data - speculative version of kthread_data()
193  * @task: possible kthread task in question
194  *
195  * @task could be a kthread task.  Return the data value specified when it
196  * was created if accessible.  If @task isn't a kthread task or its data is
197  * inaccessible for any reason, %NULL is returned.  This function requires
198  * that @task itself is safe to dereference.
199  */
200 void *kthread_probe_data(struct task_struct *task)
201 {
202 	struct kthread *kthread = to_kthread(task);
203 	void *data = NULL;
204 
205 	copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
206 	return data;
207 }
208 
209 static void __kthread_parkme(struct kthread *self)
210 {
211 	for (;;) {
212 		/*
213 		 * TASK_PARKED is a special state; we must serialize against
214 		 * possible pending wakeups to avoid store-store collisions on
215 		 * task->state.
216 		 *
217 		 * Such a collision might possibly result in the task state
218 		 * changin from TASK_PARKED and us failing the
219 		 * wait_task_inactive() in kthread_park().
220 		 */
221 		set_special_state(TASK_PARKED);
222 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
223 			break;
224 
225 		/*
226 		 * Thread is going to call schedule(), do not preempt it,
227 		 * or the caller of kthread_park() may spend more time in
228 		 * wait_task_inactive().
229 		 */
230 		preempt_disable();
231 		complete(&self->parked);
232 		schedule_preempt_disabled();
233 		preempt_enable();
234 	}
235 	__set_current_state(TASK_RUNNING);
236 }
237 
238 void kthread_parkme(void)
239 {
240 	__kthread_parkme(to_kthread(current));
241 }
242 EXPORT_SYMBOL_GPL(kthread_parkme);
243 
244 static int kthread(void *_create)
245 {
246 	/* Copy data: it's on kthread's stack */
247 	struct kthread_create_info *create = _create;
248 	int (*threadfn)(void *data) = create->threadfn;
249 	void *data = create->data;
250 	struct completion *done;
251 	struct kthread *self;
252 	int ret;
253 
254 	self = kzalloc(sizeof(*self), GFP_KERNEL);
255 	set_kthread_struct(self);
256 
257 	/* If user was SIGKILLed, I release the structure. */
258 	done = xchg(&create->done, NULL);
259 	if (!done) {
260 		kfree(create);
261 		do_exit(-EINTR);
262 	}
263 
264 	if (!self) {
265 		create->result = ERR_PTR(-ENOMEM);
266 		complete(done);
267 		do_exit(-ENOMEM);
268 	}
269 
270 	self->threadfn = threadfn;
271 	self->data = data;
272 	init_completion(&self->exited);
273 	init_completion(&self->parked);
274 	current->vfork_done = &self->exited;
275 
276 	/* OK, tell user we're spawned, wait for stop or wakeup */
277 	__set_current_state(TASK_UNINTERRUPTIBLE);
278 	create->result = current;
279 	/*
280 	 * Thread is going to call schedule(), do not preempt it,
281 	 * or the creator may spend more time in wait_task_inactive().
282 	 */
283 	preempt_disable();
284 	complete(done);
285 	schedule_preempt_disabled();
286 	preempt_enable();
287 
288 	ret = -EINTR;
289 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
290 		cgroup_kthread_ready();
291 		__kthread_parkme(self);
292 		ret = threadfn(data);
293 	}
294 	do_exit(ret);
295 }
296 
297 /* called from do_fork() to get node information for about to be created task */
298 int tsk_fork_get_node(struct task_struct *tsk)
299 {
300 #ifdef CONFIG_NUMA
301 	if (tsk == kthreadd_task)
302 		return tsk->pref_node_fork;
303 #endif
304 	return NUMA_NO_NODE;
305 }
306 
307 static void create_kthread(struct kthread_create_info *create)
308 {
309 	int pid;
310 
311 #ifdef CONFIG_NUMA
312 	current->pref_node_fork = create->node;
313 #endif
314 	/* We want our own signal handler (we take no signals by default). */
315 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
316 	if (pid < 0) {
317 		/* If user was SIGKILLed, I release the structure. */
318 		struct completion *done = xchg(&create->done, NULL);
319 
320 		if (!done) {
321 			kfree(create);
322 			return;
323 		}
324 		create->result = ERR_PTR(pid);
325 		complete(done);
326 	}
327 }
328 
329 static __printf(4, 0)
330 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
331 						    void *data, int node,
332 						    const char namefmt[],
333 						    va_list args)
334 {
335 	DECLARE_COMPLETION_ONSTACK(done);
336 	struct task_struct *task;
337 	struct kthread_create_info *create = kmalloc(sizeof(*create),
338 						     GFP_KERNEL);
339 
340 	if (!create)
341 		return ERR_PTR(-ENOMEM);
342 	create->threadfn = threadfn;
343 	create->data = data;
344 	create->node = node;
345 	create->done = &done;
346 
347 	spin_lock(&kthread_create_lock);
348 	list_add_tail(&create->list, &kthread_create_list);
349 	spin_unlock(&kthread_create_lock);
350 
351 	wake_up_process(kthreadd_task);
352 	/*
353 	 * Wait for completion in killable state, for I might be chosen by
354 	 * the OOM killer while kthreadd is trying to allocate memory for
355 	 * new kernel thread.
356 	 */
357 	if (unlikely(wait_for_completion_killable(&done))) {
358 		/*
359 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
360 		 * calls complete(), leave the cleanup of this structure to
361 		 * that thread.
362 		 */
363 		if (xchg(&create->done, NULL))
364 			return ERR_PTR(-EINTR);
365 		/*
366 		 * kthreadd (or new kernel thread) will call complete()
367 		 * shortly.
368 		 */
369 		wait_for_completion(&done);
370 	}
371 	task = create->result;
372 	if (!IS_ERR(task)) {
373 		static const struct sched_param param = { .sched_priority = 0 };
374 		char name[TASK_COMM_LEN];
375 
376 		/*
377 		 * task is already visible to other tasks, so updating
378 		 * COMM must be protected.
379 		 */
380 		vsnprintf(name, sizeof(name), namefmt, args);
381 		set_task_comm(task, name);
382 		/*
383 		 * root may have changed our (kthreadd's) priority or CPU mask.
384 		 * The kernel thread should not inherit these properties.
385 		 */
386 		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
387 		set_cpus_allowed_ptr(task,
388 				     housekeeping_cpumask(HK_FLAG_KTHREAD));
389 	}
390 	kfree(create);
391 	return task;
392 }
393 
394 /**
395  * kthread_create_on_node - create a kthread.
396  * @threadfn: the function to run until signal_pending(current).
397  * @data: data ptr for @threadfn.
398  * @node: task and thread structures for the thread are allocated on this node
399  * @namefmt: printf-style name for the thread.
400  *
401  * Description: This helper function creates and names a kernel
402  * thread.  The thread will be stopped: use wake_up_process() to start
403  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
404  * is affine to all CPUs.
405  *
406  * If thread is going to be bound on a particular cpu, give its node
407  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
408  * When woken, the thread will run @threadfn() with @data as its
409  * argument. @threadfn() can either call do_exit() directly if it is a
410  * standalone thread for which no one will call kthread_stop(), or
411  * return when 'kthread_should_stop()' is true (which means
412  * kthread_stop() has been called).  The return value should be zero
413  * or a negative error number; it will be passed to kthread_stop().
414  *
415  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
416  */
417 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
418 					   void *data, int node,
419 					   const char namefmt[],
420 					   ...)
421 {
422 	struct task_struct *task;
423 	va_list args;
424 
425 	va_start(args, namefmt);
426 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
427 	va_end(args);
428 
429 	return task;
430 }
431 EXPORT_SYMBOL(kthread_create_on_node);
432 
433 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
434 {
435 	unsigned long flags;
436 
437 	if (!wait_task_inactive(p, state)) {
438 		WARN_ON(1);
439 		return;
440 	}
441 
442 	/* It's safe because the task is inactive. */
443 	raw_spin_lock_irqsave(&p->pi_lock, flags);
444 	do_set_cpus_allowed(p, mask);
445 	p->flags |= PF_NO_SETAFFINITY;
446 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
447 }
448 
449 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
450 {
451 	__kthread_bind_mask(p, cpumask_of(cpu), state);
452 }
453 
454 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
455 {
456 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
457 }
458 
459 /**
460  * kthread_bind - bind a just-created kthread to a cpu.
461  * @p: thread created by kthread_create().
462  * @cpu: cpu (might not be online, must be possible) for @k to run on.
463  *
464  * Description: This function is equivalent to set_cpus_allowed(),
465  * except that @cpu doesn't need to be online, and the thread must be
466  * stopped (i.e., just returned from kthread_create()).
467  */
468 void kthread_bind(struct task_struct *p, unsigned int cpu)
469 {
470 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
471 }
472 EXPORT_SYMBOL(kthread_bind);
473 
474 /**
475  * kthread_create_on_cpu - Create a cpu bound kthread
476  * @threadfn: the function to run until signal_pending(current).
477  * @data: data ptr for @threadfn.
478  * @cpu: The cpu on which the thread should be bound,
479  * @namefmt: printf-style name for the thread. Format is restricted
480  *	     to "name.*%u". Code fills in cpu number.
481  *
482  * Description: This helper function creates and names a kernel thread
483  */
484 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
485 					  void *data, unsigned int cpu,
486 					  const char *namefmt)
487 {
488 	struct task_struct *p;
489 
490 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
491 				   cpu);
492 	if (IS_ERR(p))
493 		return p;
494 	kthread_bind(p, cpu);
495 	/* CPU hotplug need to bind once again when unparking the thread. */
496 	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
497 	to_kthread(p)->cpu = cpu;
498 	return p;
499 }
500 
501 /**
502  * kthread_unpark - unpark a thread created by kthread_create().
503  * @k:		thread created by kthread_create().
504  *
505  * Sets kthread_should_park() for @k to return false, wakes it, and
506  * waits for it to return. If the thread is marked percpu then its
507  * bound to the cpu again.
508  */
509 void kthread_unpark(struct task_struct *k)
510 {
511 	struct kthread *kthread = to_kthread(k);
512 
513 	/*
514 	 * Newly created kthread was parked when the CPU was offline.
515 	 * The binding was lost and we need to set it again.
516 	 */
517 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
518 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
519 
520 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
521 	/*
522 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
523 	 */
524 	wake_up_state(k, TASK_PARKED);
525 }
526 EXPORT_SYMBOL_GPL(kthread_unpark);
527 
528 /**
529  * kthread_park - park a thread created by kthread_create().
530  * @k: thread created by kthread_create().
531  *
532  * Sets kthread_should_park() for @k to return true, wakes it, and
533  * waits for it to return. This can also be called after kthread_create()
534  * instead of calling wake_up_process(): the thread will park without
535  * calling threadfn().
536  *
537  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
538  * If called by the kthread itself just the park bit is set.
539  */
540 int kthread_park(struct task_struct *k)
541 {
542 	struct kthread *kthread = to_kthread(k);
543 
544 	if (WARN_ON(k->flags & PF_EXITING))
545 		return -ENOSYS;
546 
547 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
548 		return -EBUSY;
549 
550 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
551 	if (k != current) {
552 		wake_up_process(k);
553 		/*
554 		 * Wait for __kthread_parkme() to complete(), this means we
555 		 * _will_ have TASK_PARKED and are about to call schedule().
556 		 */
557 		wait_for_completion(&kthread->parked);
558 		/*
559 		 * Now wait for that schedule() to complete and the task to
560 		 * get scheduled out.
561 		 */
562 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
563 	}
564 
565 	return 0;
566 }
567 EXPORT_SYMBOL_GPL(kthread_park);
568 
569 /**
570  * kthread_stop - stop a thread created by kthread_create().
571  * @k: thread created by kthread_create().
572  *
573  * Sets kthread_should_stop() for @k to return true, wakes it, and
574  * waits for it to exit. This can also be called after kthread_create()
575  * instead of calling wake_up_process(): the thread will exit without
576  * calling threadfn().
577  *
578  * If threadfn() may call do_exit() itself, the caller must ensure
579  * task_struct can't go away.
580  *
581  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
582  * was never called.
583  */
584 int kthread_stop(struct task_struct *k)
585 {
586 	struct kthread *kthread;
587 	int ret;
588 
589 	trace_sched_kthread_stop(k);
590 
591 	get_task_struct(k);
592 	kthread = to_kthread(k);
593 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
594 	kthread_unpark(k);
595 	wake_up_process(k);
596 	wait_for_completion(&kthread->exited);
597 	ret = k->exit_code;
598 	put_task_struct(k);
599 
600 	trace_sched_kthread_stop_ret(ret);
601 	return ret;
602 }
603 EXPORT_SYMBOL(kthread_stop);
604 
605 int kthreadd(void *unused)
606 {
607 	struct task_struct *tsk = current;
608 
609 	/* Setup a clean context for our children to inherit. */
610 	set_task_comm(tsk, "kthreadd");
611 	ignore_signals(tsk);
612 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
613 	set_mems_allowed(node_states[N_MEMORY]);
614 
615 	current->flags |= PF_NOFREEZE;
616 	cgroup_init_kthreadd();
617 
618 	for (;;) {
619 		set_current_state(TASK_INTERRUPTIBLE);
620 		if (list_empty(&kthread_create_list))
621 			schedule();
622 		__set_current_state(TASK_RUNNING);
623 
624 		spin_lock(&kthread_create_lock);
625 		while (!list_empty(&kthread_create_list)) {
626 			struct kthread_create_info *create;
627 
628 			create = list_entry(kthread_create_list.next,
629 					    struct kthread_create_info, list);
630 			list_del_init(&create->list);
631 			spin_unlock(&kthread_create_lock);
632 
633 			create_kthread(create);
634 
635 			spin_lock(&kthread_create_lock);
636 		}
637 		spin_unlock(&kthread_create_lock);
638 	}
639 
640 	return 0;
641 }
642 
643 void __kthread_init_worker(struct kthread_worker *worker,
644 				const char *name,
645 				struct lock_class_key *key)
646 {
647 	memset(worker, 0, sizeof(struct kthread_worker));
648 	raw_spin_lock_init(&worker->lock);
649 	lockdep_set_class_and_name(&worker->lock, key, name);
650 	INIT_LIST_HEAD(&worker->work_list);
651 	INIT_LIST_HEAD(&worker->delayed_work_list);
652 }
653 EXPORT_SYMBOL_GPL(__kthread_init_worker);
654 
655 /**
656  * kthread_worker_fn - kthread function to process kthread_worker
657  * @worker_ptr: pointer to initialized kthread_worker
658  *
659  * This function implements the main cycle of kthread worker. It processes
660  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
661  * is empty.
662  *
663  * The works are not allowed to keep any locks, disable preemption or interrupts
664  * when they finish. There is defined a safe point for freezing when one work
665  * finishes and before a new one is started.
666  *
667  * Also the works must not be handled by more than one worker at the same time,
668  * see also kthread_queue_work().
669  */
670 int kthread_worker_fn(void *worker_ptr)
671 {
672 	struct kthread_worker *worker = worker_ptr;
673 	struct kthread_work *work;
674 
675 	/*
676 	 * FIXME: Update the check and remove the assignment when all kthread
677 	 * worker users are created using kthread_create_worker*() functions.
678 	 */
679 	WARN_ON(worker->task && worker->task != current);
680 	worker->task = current;
681 
682 	if (worker->flags & KTW_FREEZABLE)
683 		set_freezable();
684 
685 repeat:
686 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
687 
688 	if (kthread_should_stop()) {
689 		__set_current_state(TASK_RUNNING);
690 		raw_spin_lock_irq(&worker->lock);
691 		worker->task = NULL;
692 		raw_spin_unlock_irq(&worker->lock);
693 		return 0;
694 	}
695 
696 	work = NULL;
697 	raw_spin_lock_irq(&worker->lock);
698 	if (!list_empty(&worker->work_list)) {
699 		work = list_first_entry(&worker->work_list,
700 					struct kthread_work, node);
701 		list_del_init(&work->node);
702 	}
703 	worker->current_work = work;
704 	raw_spin_unlock_irq(&worker->lock);
705 
706 	if (work) {
707 		kthread_work_func_t func = work->func;
708 		__set_current_state(TASK_RUNNING);
709 		trace_sched_kthread_work_execute_start(work);
710 		work->func(work);
711 		/*
712 		 * Avoid dereferencing work after this point.  The trace
713 		 * event only cares about the address.
714 		 */
715 		trace_sched_kthread_work_execute_end(work, func);
716 	} else if (!freezing(current))
717 		schedule();
718 
719 	try_to_freeze();
720 	cond_resched();
721 	goto repeat;
722 }
723 EXPORT_SYMBOL_GPL(kthread_worker_fn);
724 
725 static __printf(3, 0) struct kthread_worker *
726 __kthread_create_worker(int cpu, unsigned int flags,
727 			const char namefmt[], va_list args)
728 {
729 	struct kthread_worker *worker;
730 	struct task_struct *task;
731 	int node = NUMA_NO_NODE;
732 
733 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
734 	if (!worker)
735 		return ERR_PTR(-ENOMEM);
736 
737 	kthread_init_worker(worker);
738 
739 	if (cpu >= 0)
740 		node = cpu_to_node(cpu);
741 
742 	task = __kthread_create_on_node(kthread_worker_fn, worker,
743 						node, namefmt, args);
744 	if (IS_ERR(task))
745 		goto fail_task;
746 
747 	if (cpu >= 0)
748 		kthread_bind(task, cpu);
749 
750 	worker->flags = flags;
751 	worker->task = task;
752 	wake_up_process(task);
753 	return worker;
754 
755 fail_task:
756 	kfree(worker);
757 	return ERR_CAST(task);
758 }
759 
760 /**
761  * kthread_create_worker - create a kthread worker
762  * @flags: flags modifying the default behavior of the worker
763  * @namefmt: printf-style name for the kthread worker (task).
764  *
765  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
766  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
767  * when the worker was SIGKILLed.
768  */
769 struct kthread_worker *
770 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
771 {
772 	struct kthread_worker *worker;
773 	va_list args;
774 
775 	va_start(args, namefmt);
776 	worker = __kthread_create_worker(-1, flags, namefmt, args);
777 	va_end(args);
778 
779 	return worker;
780 }
781 EXPORT_SYMBOL(kthread_create_worker);
782 
783 /**
784  * kthread_create_worker_on_cpu - create a kthread worker and bind it
785  *	to a given CPU and the associated NUMA node.
786  * @cpu: CPU number
787  * @flags: flags modifying the default behavior of the worker
788  * @namefmt: printf-style name for the kthread worker (task).
789  *
790  * Use a valid CPU number if you want to bind the kthread worker
791  * to the given CPU and the associated NUMA node.
792  *
793  * A good practice is to add the cpu number also into the worker name.
794  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
795  *
796  * CPU hotplug:
797  * The kthread worker API is simple and generic. It just provides a way
798  * to create, use, and destroy workers.
799  *
800  * It is up to the API user how to handle CPU hotplug. They have to decide
801  * how to handle pending work items, prevent queuing new ones, and
802  * restore the functionality when the CPU goes off and on. There are a
803  * few catches:
804  *
805  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
806  *
807  *    - The worker might not exist when the CPU was off when the user
808  *      created the workers.
809  *
810  * Good practice is to implement two CPU hotplug callbacks and to
811  * destroy/create the worker when the CPU goes down/up.
812  *
813  * Return:
814  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
815  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
816  * when the worker was SIGKILLed.
817  */
818 struct kthread_worker *
819 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
820 			     const char namefmt[], ...)
821 {
822 	struct kthread_worker *worker;
823 	va_list args;
824 
825 	va_start(args, namefmt);
826 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
827 	va_end(args);
828 
829 	return worker;
830 }
831 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
832 
833 /*
834  * Returns true when the work could not be queued at the moment.
835  * It happens when it is already pending in a worker list
836  * or when it is being cancelled.
837  */
838 static inline bool queuing_blocked(struct kthread_worker *worker,
839 				   struct kthread_work *work)
840 {
841 	lockdep_assert_held(&worker->lock);
842 
843 	return !list_empty(&work->node) || work->canceling;
844 }
845 
846 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
847 					     struct kthread_work *work)
848 {
849 	lockdep_assert_held(&worker->lock);
850 	WARN_ON_ONCE(!list_empty(&work->node));
851 	/* Do not use a work with >1 worker, see kthread_queue_work() */
852 	WARN_ON_ONCE(work->worker && work->worker != worker);
853 }
854 
855 /* insert @work before @pos in @worker */
856 static void kthread_insert_work(struct kthread_worker *worker,
857 				struct kthread_work *work,
858 				struct list_head *pos)
859 {
860 	kthread_insert_work_sanity_check(worker, work);
861 
862 	trace_sched_kthread_work_queue_work(worker, work);
863 
864 	list_add_tail(&work->node, pos);
865 	work->worker = worker;
866 	if (!worker->current_work && likely(worker->task))
867 		wake_up_process(worker->task);
868 }
869 
870 /**
871  * kthread_queue_work - queue a kthread_work
872  * @worker: target kthread_worker
873  * @work: kthread_work to queue
874  *
875  * Queue @work to work processor @task for async execution.  @task
876  * must have been created with kthread_worker_create().  Returns %true
877  * if @work was successfully queued, %false if it was already pending.
878  *
879  * Reinitialize the work if it needs to be used by another worker.
880  * For example, when the worker was stopped and started again.
881  */
882 bool kthread_queue_work(struct kthread_worker *worker,
883 			struct kthread_work *work)
884 {
885 	bool ret = false;
886 	unsigned long flags;
887 
888 	raw_spin_lock_irqsave(&worker->lock, flags);
889 	if (!queuing_blocked(worker, work)) {
890 		kthread_insert_work(worker, work, &worker->work_list);
891 		ret = true;
892 	}
893 	raw_spin_unlock_irqrestore(&worker->lock, flags);
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(kthread_queue_work);
897 
898 /**
899  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
900  *	delayed work when the timer expires.
901  * @t: pointer to the expired timer
902  *
903  * The format of the function is defined by struct timer_list.
904  * It should have been called from irqsafe timer with irq already off.
905  */
906 void kthread_delayed_work_timer_fn(struct timer_list *t)
907 {
908 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
909 	struct kthread_work *work = &dwork->work;
910 	struct kthread_worker *worker = work->worker;
911 	unsigned long flags;
912 
913 	/*
914 	 * This might happen when a pending work is reinitialized.
915 	 * It means that it is used a wrong way.
916 	 */
917 	if (WARN_ON_ONCE(!worker))
918 		return;
919 
920 	raw_spin_lock_irqsave(&worker->lock, flags);
921 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
922 	WARN_ON_ONCE(work->worker != worker);
923 
924 	/* Move the work from worker->delayed_work_list. */
925 	WARN_ON_ONCE(list_empty(&work->node));
926 	list_del_init(&work->node);
927 	if (!work->canceling)
928 		kthread_insert_work(worker, work, &worker->work_list);
929 
930 	raw_spin_unlock_irqrestore(&worker->lock, flags);
931 }
932 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
933 
934 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
935 					 struct kthread_delayed_work *dwork,
936 					 unsigned long delay)
937 {
938 	struct timer_list *timer = &dwork->timer;
939 	struct kthread_work *work = &dwork->work;
940 
941 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
942 
943 	/*
944 	 * If @delay is 0, queue @dwork->work immediately.  This is for
945 	 * both optimization and correctness.  The earliest @timer can
946 	 * expire is on the closest next tick and delayed_work users depend
947 	 * on that there's no such delay when @delay is 0.
948 	 */
949 	if (!delay) {
950 		kthread_insert_work(worker, work, &worker->work_list);
951 		return;
952 	}
953 
954 	/* Be paranoid and try to detect possible races already now. */
955 	kthread_insert_work_sanity_check(worker, work);
956 
957 	list_add(&work->node, &worker->delayed_work_list);
958 	work->worker = worker;
959 	timer->expires = jiffies + delay;
960 	add_timer(timer);
961 }
962 
963 /**
964  * kthread_queue_delayed_work - queue the associated kthread work
965  *	after a delay.
966  * @worker: target kthread_worker
967  * @dwork: kthread_delayed_work to queue
968  * @delay: number of jiffies to wait before queuing
969  *
970  * If the work has not been pending it starts a timer that will queue
971  * the work after the given @delay. If @delay is zero, it queues the
972  * work immediately.
973  *
974  * Return: %false if the @work has already been pending. It means that
975  * either the timer was running or the work was queued. It returns %true
976  * otherwise.
977  */
978 bool kthread_queue_delayed_work(struct kthread_worker *worker,
979 				struct kthread_delayed_work *dwork,
980 				unsigned long delay)
981 {
982 	struct kthread_work *work = &dwork->work;
983 	unsigned long flags;
984 	bool ret = false;
985 
986 	raw_spin_lock_irqsave(&worker->lock, flags);
987 
988 	if (!queuing_blocked(worker, work)) {
989 		__kthread_queue_delayed_work(worker, dwork, delay);
990 		ret = true;
991 	}
992 
993 	raw_spin_unlock_irqrestore(&worker->lock, flags);
994 	return ret;
995 }
996 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
997 
998 struct kthread_flush_work {
999 	struct kthread_work	work;
1000 	struct completion	done;
1001 };
1002 
1003 static void kthread_flush_work_fn(struct kthread_work *work)
1004 {
1005 	struct kthread_flush_work *fwork =
1006 		container_of(work, struct kthread_flush_work, work);
1007 	complete(&fwork->done);
1008 }
1009 
1010 /**
1011  * kthread_flush_work - flush a kthread_work
1012  * @work: work to flush
1013  *
1014  * If @work is queued or executing, wait for it to finish execution.
1015  */
1016 void kthread_flush_work(struct kthread_work *work)
1017 {
1018 	struct kthread_flush_work fwork = {
1019 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1020 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1021 	};
1022 	struct kthread_worker *worker;
1023 	bool noop = false;
1024 
1025 	worker = work->worker;
1026 	if (!worker)
1027 		return;
1028 
1029 	raw_spin_lock_irq(&worker->lock);
1030 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1031 	WARN_ON_ONCE(work->worker != worker);
1032 
1033 	if (!list_empty(&work->node))
1034 		kthread_insert_work(worker, &fwork.work, work->node.next);
1035 	else if (worker->current_work == work)
1036 		kthread_insert_work(worker, &fwork.work,
1037 				    worker->work_list.next);
1038 	else
1039 		noop = true;
1040 
1041 	raw_spin_unlock_irq(&worker->lock);
1042 
1043 	if (!noop)
1044 		wait_for_completion(&fwork.done);
1045 }
1046 EXPORT_SYMBOL_GPL(kthread_flush_work);
1047 
1048 /*
1049  * This function removes the work from the worker queue. Also it makes sure
1050  * that it won't get queued later via the delayed work's timer.
1051  *
1052  * The work might still be in use when this function finishes. See the
1053  * current_work proceed by the worker.
1054  *
1055  * Return: %true if @work was pending and successfully canceled,
1056  *	%false if @work was not pending
1057  */
1058 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1059 				  unsigned long *flags)
1060 {
1061 	/* Try to cancel the timer if exists. */
1062 	if (is_dwork) {
1063 		struct kthread_delayed_work *dwork =
1064 			container_of(work, struct kthread_delayed_work, work);
1065 		struct kthread_worker *worker = work->worker;
1066 
1067 		/*
1068 		 * del_timer_sync() must be called to make sure that the timer
1069 		 * callback is not running. The lock must be temporary released
1070 		 * to avoid a deadlock with the callback. In the meantime,
1071 		 * any queuing is blocked by setting the canceling counter.
1072 		 */
1073 		work->canceling++;
1074 		raw_spin_unlock_irqrestore(&worker->lock, *flags);
1075 		del_timer_sync(&dwork->timer);
1076 		raw_spin_lock_irqsave(&worker->lock, *flags);
1077 		work->canceling--;
1078 	}
1079 
1080 	/*
1081 	 * Try to remove the work from a worker list. It might either
1082 	 * be from worker->work_list or from worker->delayed_work_list.
1083 	 */
1084 	if (!list_empty(&work->node)) {
1085 		list_del_init(&work->node);
1086 		return true;
1087 	}
1088 
1089 	return false;
1090 }
1091 
1092 /**
1093  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1094  * @worker: kthread worker to use
1095  * @dwork: kthread delayed work to queue
1096  * @delay: number of jiffies to wait before queuing
1097  *
1098  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1099  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1100  * @work is guaranteed to be queued immediately.
1101  *
1102  * Return: %true if @dwork was pending and its timer was modified,
1103  * %false otherwise.
1104  *
1105  * A special case is when the work is being canceled in parallel.
1106  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1107  * or yet another kthread_mod_delayed_work() call. We let the other command
1108  * win and return %false here. The caller is supposed to synchronize these
1109  * operations a reasonable way.
1110  *
1111  * This function is safe to call from any context including IRQ handler.
1112  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1113  * for details.
1114  */
1115 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1116 			      struct kthread_delayed_work *dwork,
1117 			      unsigned long delay)
1118 {
1119 	struct kthread_work *work = &dwork->work;
1120 	unsigned long flags;
1121 	int ret = false;
1122 
1123 	raw_spin_lock_irqsave(&worker->lock, flags);
1124 
1125 	/* Do not bother with canceling when never queued. */
1126 	if (!work->worker)
1127 		goto fast_queue;
1128 
1129 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1130 	WARN_ON_ONCE(work->worker != worker);
1131 
1132 	/* Do not fight with another command that is canceling this work. */
1133 	if (work->canceling)
1134 		goto out;
1135 
1136 	ret = __kthread_cancel_work(work, true, &flags);
1137 fast_queue:
1138 	__kthread_queue_delayed_work(worker, dwork, delay);
1139 out:
1140 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1144 
1145 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1146 {
1147 	struct kthread_worker *worker = work->worker;
1148 	unsigned long flags;
1149 	int ret = false;
1150 
1151 	if (!worker)
1152 		goto out;
1153 
1154 	raw_spin_lock_irqsave(&worker->lock, flags);
1155 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1156 	WARN_ON_ONCE(work->worker != worker);
1157 
1158 	ret = __kthread_cancel_work(work, is_dwork, &flags);
1159 
1160 	if (worker->current_work != work)
1161 		goto out_fast;
1162 
1163 	/*
1164 	 * The work is in progress and we need to wait with the lock released.
1165 	 * In the meantime, block any queuing by setting the canceling counter.
1166 	 */
1167 	work->canceling++;
1168 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1169 	kthread_flush_work(work);
1170 	raw_spin_lock_irqsave(&worker->lock, flags);
1171 	work->canceling--;
1172 
1173 out_fast:
1174 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1175 out:
1176 	return ret;
1177 }
1178 
1179 /**
1180  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1181  * @work: the kthread work to cancel
1182  *
1183  * Cancel @work and wait for its execution to finish.  This function
1184  * can be used even if the work re-queues itself. On return from this
1185  * function, @work is guaranteed to be not pending or executing on any CPU.
1186  *
1187  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1188  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1189  *
1190  * The caller must ensure that the worker on which @work was last
1191  * queued can't be destroyed before this function returns.
1192  *
1193  * Return: %true if @work was pending, %false otherwise.
1194  */
1195 bool kthread_cancel_work_sync(struct kthread_work *work)
1196 {
1197 	return __kthread_cancel_work_sync(work, false);
1198 }
1199 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1200 
1201 /**
1202  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1203  *	wait for it to finish.
1204  * @dwork: the kthread delayed work to cancel
1205  *
1206  * This is kthread_cancel_work_sync() for delayed works.
1207  *
1208  * Return: %true if @dwork was pending, %false otherwise.
1209  */
1210 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1211 {
1212 	return __kthread_cancel_work_sync(&dwork->work, true);
1213 }
1214 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1215 
1216 /**
1217  * kthread_flush_worker - flush all current works on a kthread_worker
1218  * @worker: worker to flush
1219  *
1220  * Wait until all currently executing or pending works on @worker are
1221  * finished.
1222  */
1223 void kthread_flush_worker(struct kthread_worker *worker)
1224 {
1225 	struct kthread_flush_work fwork = {
1226 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1227 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1228 	};
1229 
1230 	kthread_queue_work(worker, &fwork.work);
1231 	wait_for_completion(&fwork.done);
1232 }
1233 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1234 
1235 /**
1236  * kthread_destroy_worker - destroy a kthread worker
1237  * @worker: worker to be destroyed
1238  *
1239  * Flush and destroy @worker.  The simple flush is enough because the kthread
1240  * worker API is used only in trivial scenarios.  There are no multi-step state
1241  * machines needed.
1242  */
1243 void kthread_destroy_worker(struct kthread_worker *worker)
1244 {
1245 	struct task_struct *task;
1246 
1247 	task = worker->task;
1248 	if (WARN_ON(!task))
1249 		return;
1250 
1251 	kthread_flush_worker(worker);
1252 	kthread_stop(task);
1253 	WARN_ON(!list_empty(&worker->work_list));
1254 	kfree(worker);
1255 }
1256 EXPORT_SYMBOL(kthread_destroy_worker);
1257 
1258 /**
1259  * kthread_use_mm - make the calling kthread operate on an address space
1260  * @mm: address space to operate on
1261  */
1262 void kthread_use_mm(struct mm_struct *mm)
1263 {
1264 	struct mm_struct *active_mm;
1265 	struct task_struct *tsk = current;
1266 
1267 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1268 	WARN_ON_ONCE(tsk->mm);
1269 
1270 	task_lock(tsk);
1271 	/* Hold off tlb flush IPIs while switching mm's */
1272 	local_irq_disable();
1273 	active_mm = tsk->active_mm;
1274 	if (active_mm != mm) {
1275 		mmgrab(mm);
1276 		tsk->active_mm = mm;
1277 	}
1278 	tsk->mm = mm;
1279 	membarrier_update_current_mm(mm);
1280 	switch_mm_irqs_off(active_mm, mm, tsk);
1281 	local_irq_enable();
1282 	task_unlock(tsk);
1283 #ifdef finish_arch_post_lock_switch
1284 	finish_arch_post_lock_switch();
1285 #endif
1286 
1287 	/*
1288 	 * When a kthread starts operating on an address space, the loop
1289 	 * in membarrier_{private,global}_expedited() may not observe
1290 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1291 	 * memory barrier after storing to tsk->mm, before accessing
1292 	 * user-space memory. A full memory barrier for membarrier
1293 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1294 	 * mmdrop(), or explicitly with smp_mb().
1295 	 */
1296 	if (active_mm != mm)
1297 		mmdrop(active_mm);
1298 	else
1299 		smp_mb();
1300 
1301 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1302 }
1303 EXPORT_SYMBOL_GPL(kthread_use_mm);
1304 
1305 /**
1306  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1307  * @mm: address space to operate on
1308  */
1309 void kthread_unuse_mm(struct mm_struct *mm)
1310 {
1311 	struct task_struct *tsk = current;
1312 
1313 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1314 	WARN_ON_ONCE(!tsk->mm);
1315 
1316 	force_uaccess_end(to_kthread(tsk)->oldfs);
1317 
1318 	task_lock(tsk);
1319 	/*
1320 	 * When a kthread stops operating on an address space, the loop
1321 	 * in membarrier_{private,global}_expedited() may not observe
1322 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1323 	 * memory barrier after accessing user-space memory, before
1324 	 * clearing tsk->mm.
1325 	 */
1326 	smp_mb__after_spinlock();
1327 	sync_mm_rss(mm);
1328 	local_irq_disable();
1329 	tsk->mm = NULL;
1330 	membarrier_update_current_mm(NULL);
1331 	/* active_mm is still 'mm' */
1332 	enter_lazy_tlb(mm, tsk);
1333 	local_irq_enable();
1334 	task_unlock(tsk);
1335 }
1336 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1337 
1338 #ifdef CONFIG_BLK_CGROUP
1339 /**
1340  * kthread_associate_blkcg - associate blkcg to current kthread
1341  * @css: the cgroup info
1342  *
1343  * Current thread must be a kthread. The thread is running jobs on behalf of
1344  * other threads. In some cases, we expect the jobs attach cgroup info of
1345  * original threads instead of that of current thread. This function stores
1346  * original thread's cgroup info in current kthread context for later
1347  * retrieval.
1348  */
1349 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1350 {
1351 	struct kthread *kthread;
1352 
1353 	if (!(current->flags & PF_KTHREAD))
1354 		return;
1355 	kthread = to_kthread(current);
1356 	if (!kthread)
1357 		return;
1358 
1359 	if (kthread->blkcg_css) {
1360 		css_put(kthread->blkcg_css);
1361 		kthread->blkcg_css = NULL;
1362 	}
1363 	if (css) {
1364 		css_get(css);
1365 		kthread->blkcg_css = css;
1366 	}
1367 }
1368 EXPORT_SYMBOL(kthread_associate_blkcg);
1369 
1370 /**
1371  * kthread_blkcg - get associated blkcg css of current kthread
1372  *
1373  * Current thread must be a kthread.
1374  */
1375 struct cgroup_subsys_state *kthread_blkcg(void)
1376 {
1377 	struct kthread *kthread;
1378 
1379 	if (current->flags & PF_KTHREAD) {
1380 		kthread = to_kthread(current);
1381 		if (kthread)
1382 			return kthread->blkcg_css;
1383 	}
1384 	return NULL;
1385 }
1386 EXPORT_SYMBOL(kthread_blkcg);
1387 #endif
1388