1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 char *full_name; 42 int (*threadfn)(void *data); 43 void *data; 44 int node; 45 46 /* Result passed back to kthread_create() from kthreadd. */ 47 struct task_struct *result; 48 struct completion *done; 49 50 struct list_head list; 51 }; 52 53 struct kthread { 54 unsigned long flags; 55 unsigned int cpu; 56 int result; 57 int (*threadfn)(void *); 58 void *data; 59 struct completion parked; 60 struct completion exited; 61 #ifdef CONFIG_BLK_CGROUP 62 struct cgroup_subsys_state *blkcg_css; 63 #endif 64 /* To store the full name if task comm is truncated. */ 65 char *full_name; 66 }; 67 68 enum KTHREAD_BITS { 69 KTHREAD_IS_PER_CPU = 0, 70 KTHREAD_SHOULD_STOP, 71 KTHREAD_SHOULD_PARK, 72 }; 73 74 static inline struct kthread *to_kthread(struct task_struct *k) 75 { 76 WARN_ON(!(k->flags & PF_KTHREAD)); 77 return k->worker_private; 78 } 79 80 /* 81 * Variant of to_kthread() that doesn't assume @p is a kthread. 82 * 83 * Per construction; when: 84 * 85 * (p->flags & PF_KTHREAD) && p->worker_private 86 * 87 * the task is both a kthread and struct kthread is persistent. However 88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 89 * begin_new_exec()). 90 */ 91 static inline struct kthread *__to_kthread(struct task_struct *p) 92 { 93 void *kthread = p->worker_private; 94 if (kthread && !(p->flags & PF_KTHREAD)) 95 kthread = NULL; 96 return kthread; 97 } 98 99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 100 { 101 struct kthread *kthread = to_kthread(tsk); 102 103 if (!kthread || !kthread->full_name) { 104 __get_task_comm(buf, buf_size, tsk); 105 return; 106 } 107 108 strscpy_pad(buf, kthread->full_name, buf_size); 109 } 110 111 bool set_kthread_struct(struct task_struct *p) 112 { 113 struct kthread *kthread; 114 115 if (WARN_ON_ONCE(to_kthread(p))) 116 return false; 117 118 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 119 if (!kthread) 120 return false; 121 122 init_completion(&kthread->exited); 123 init_completion(&kthread->parked); 124 p->vfork_done = &kthread->exited; 125 126 p->worker_private = kthread; 127 return true; 128 } 129 130 void free_kthread_struct(struct task_struct *k) 131 { 132 struct kthread *kthread; 133 134 /* 135 * Can be NULL if kmalloc() in set_kthread_struct() failed. 136 */ 137 kthread = to_kthread(k); 138 if (!kthread) 139 return; 140 141 #ifdef CONFIG_BLK_CGROUP 142 WARN_ON_ONCE(kthread->blkcg_css); 143 #endif 144 k->worker_private = NULL; 145 kfree(kthread->full_name); 146 kfree(kthread); 147 } 148 149 /** 150 * kthread_should_stop - should this kthread return now? 151 * 152 * When someone calls kthread_stop() on your kthread, it will be woken 153 * and this will return true. You should then return, and your return 154 * value will be passed through to kthread_stop(). 155 */ 156 bool kthread_should_stop(void) 157 { 158 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 159 } 160 EXPORT_SYMBOL(kthread_should_stop); 161 162 static bool __kthread_should_park(struct task_struct *k) 163 { 164 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 165 } 166 167 /** 168 * kthread_should_park - should this kthread park now? 169 * 170 * When someone calls kthread_park() on your kthread, it will be woken 171 * and this will return true. You should then do the necessary 172 * cleanup and call kthread_parkme() 173 * 174 * Similar to kthread_should_stop(), but this keeps the thread alive 175 * and in a park position. kthread_unpark() "restarts" the thread and 176 * calls the thread function again. 177 */ 178 bool kthread_should_park(void) 179 { 180 return __kthread_should_park(current); 181 } 182 EXPORT_SYMBOL_GPL(kthread_should_park); 183 184 bool kthread_should_stop_or_park(void) 185 { 186 struct kthread *kthread = __to_kthread(current); 187 188 if (!kthread) 189 return false; 190 191 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 192 } 193 194 /** 195 * kthread_freezable_should_stop - should this freezable kthread return now? 196 * @was_frozen: optional out parameter, indicates whether %current was frozen 197 * 198 * kthread_should_stop() for freezable kthreads, which will enter 199 * refrigerator if necessary. This function is safe from kthread_stop() / 200 * freezer deadlock and freezable kthreads should use this function instead 201 * of calling try_to_freeze() directly. 202 */ 203 bool kthread_freezable_should_stop(bool *was_frozen) 204 { 205 bool frozen = false; 206 207 might_sleep(); 208 209 if (unlikely(freezing(current))) 210 frozen = __refrigerator(true); 211 212 if (was_frozen) 213 *was_frozen = frozen; 214 215 return kthread_should_stop(); 216 } 217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 218 219 /** 220 * kthread_func - return the function specified on kthread creation 221 * @task: kthread task in question 222 * 223 * Returns NULL if the task is not a kthread. 224 */ 225 void *kthread_func(struct task_struct *task) 226 { 227 struct kthread *kthread = __to_kthread(task); 228 if (kthread) 229 return kthread->threadfn; 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(kthread_func); 233 234 /** 235 * kthread_data - return data value specified on kthread creation 236 * @task: kthread task in question 237 * 238 * Return the data value specified when kthread @task was created. 239 * The caller is responsible for ensuring the validity of @task when 240 * calling this function. 241 */ 242 void *kthread_data(struct task_struct *task) 243 { 244 return to_kthread(task)->data; 245 } 246 EXPORT_SYMBOL_GPL(kthread_data); 247 248 /** 249 * kthread_probe_data - speculative version of kthread_data() 250 * @task: possible kthread task in question 251 * 252 * @task could be a kthread task. Return the data value specified when it 253 * was created if accessible. If @task isn't a kthread task or its data is 254 * inaccessible for any reason, %NULL is returned. This function requires 255 * that @task itself is safe to dereference. 256 */ 257 void *kthread_probe_data(struct task_struct *task) 258 { 259 struct kthread *kthread = __to_kthread(task); 260 void *data = NULL; 261 262 if (kthread) 263 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 264 return data; 265 } 266 267 static void __kthread_parkme(struct kthread *self) 268 { 269 for (;;) { 270 /* 271 * TASK_PARKED is a special state; we must serialize against 272 * possible pending wakeups to avoid store-store collisions on 273 * task->state. 274 * 275 * Such a collision might possibly result in the task state 276 * changin from TASK_PARKED and us failing the 277 * wait_task_inactive() in kthread_park(). 278 */ 279 set_special_state(TASK_PARKED); 280 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 281 break; 282 283 /* 284 * Thread is going to call schedule(), do not preempt it, 285 * or the caller of kthread_park() may spend more time in 286 * wait_task_inactive(). 287 */ 288 preempt_disable(); 289 complete(&self->parked); 290 schedule_preempt_disabled(); 291 preempt_enable(); 292 } 293 __set_current_state(TASK_RUNNING); 294 } 295 296 void kthread_parkme(void) 297 { 298 __kthread_parkme(to_kthread(current)); 299 } 300 EXPORT_SYMBOL_GPL(kthread_parkme); 301 302 /** 303 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 304 * @result: The integer value to return to kthread_stop(). 305 * 306 * While kthread_exit can be called directly, it exists so that 307 * functions which do some additional work in non-modular code such as 308 * module_put_and_kthread_exit can be implemented. 309 * 310 * Does not return. 311 */ 312 void __noreturn kthread_exit(long result) 313 { 314 struct kthread *kthread = to_kthread(current); 315 kthread->result = result; 316 do_exit(0); 317 } 318 EXPORT_SYMBOL(kthread_exit); 319 320 /** 321 * kthread_complete_and_exit - Exit the current kthread. 322 * @comp: Completion to complete 323 * @code: The integer value to return to kthread_stop(). 324 * 325 * If present, complete @comp and then return code to kthread_stop(). 326 * 327 * A kernel thread whose module may be removed after the completion of 328 * @comp can use this function to exit safely. 329 * 330 * Does not return. 331 */ 332 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 333 { 334 if (comp) 335 complete(comp); 336 337 kthread_exit(code); 338 } 339 EXPORT_SYMBOL(kthread_complete_and_exit); 340 341 static int kthread(void *_create) 342 { 343 static const struct sched_param param = { .sched_priority = 0 }; 344 /* Copy data: it's on kthread's stack */ 345 struct kthread_create_info *create = _create; 346 int (*threadfn)(void *data) = create->threadfn; 347 void *data = create->data; 348 struct completion *done; 349 struct kthread *self; 350 int ret; 351 352 self = to_kthread(current); 353 354 /* Release the structure when caller killed by a fatal signal. */ 355 done = xchg(&create->done, NULL); 356 if (!done) { 357 kfree(create->full_name); 358 kfree(create); 359 kthread_exit(-EINTR); 360 } 361 362 self->full_name = create->full_name; 363 self->threadfn = threadfn; 364 self->data = data; 365 366 /* 367 * The new thread inherited kthreadd's priority and CPU mask. Reset 368 * back to default in case they have been changed. 369 */ 370 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 371 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD)); 372 373 /* OK, tell user we're spawned, wait for stop or wakeup */ 374 __set_current_state(TASK_UNINTERRUPTIBLE); 375 create->result = current; 376 /* 377 * Thread is going to call schedule(), do not preempt it, 378 * or the creator may spend more time in wait_task_inactive(). 379 */ 380 preempt_disable(); 381 complete(done); 382 schedule_preempt_disabled(); 383 preempt_enable(); 384 385 ret = -EINTR; 386 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 387 cgroup_kthread_ready(); 388 __kthread_parkme(self); 389 ret = threadfn(data); 390 } 391 kthread_exit(ret); 392 } 393 394 /* called from kernel_clone() to get node information for about to be created task */ 395 int tsk_fork_get_node(struct task_struct *tsk) 396 { 397 #ifdef CONFIG_NUMA 398 if (tsk == kthreadd_task) 399 return tsk->pref_node_fork; 400 #endif 401 return NUMA_NO_NODE; 402 } 403 404 static void create_kthread(struct kthread_create_info *create) 405 { 406 int pid; 407 408 #ifdef CONFIG_NUMA 409 current->pref_node_fork = create->node; 410 #endif 411 /* We want our own signal handler (we take no signals by default). */ 412 pid = kernel_thread(kthread, create, create->full_name, 413 CLONE_FS | CLONE_FILES | SIGCHLD); 414 if (pid < 0) { 415 /* Release the structure when caller killed by a fatal signal. */ 416 struct completion *done = xchg(&create->done, NULL); 417 418 kfree(create->full_name); 419 if (!done) { 420 kfree(create); 421 return; 422 } 423 create->result = ERR_PTR(pid); 424 complete(done); 425 } 426 } 427 428 static __printf(4, 0) 429 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 430 void *data, int node, 431 const char namefmt[], 432 va_list args) 433 { 434 DECLARE_COMPLETION_ONSTACK(done); 435 struct task_struct *task; 436 struct kthread_create_info *create = kmalloc(sizeof(*create), 437 GFP_KERNEL); 438 439 if (!create) 440 return ERR_PTR(-ENOMEM); 441 create->threadfn = threadfn; 442 create->data = data; 443 create->node = node; 444 create->done = &done; 445 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 446 if (!create->full_name) { 447 task = ERR_PTR(-ENOMEM); 448 goto free_create; 449 } 450 451 spin_lock(&kthread_create_lock); 452 list_add_tail(&create->list, &kthread_create_list); 453 spin_unlock(&kthread_create_lock); 454 455 wake_up_process(kthreadd_task); 456 /* 457 * Wait for completion in killable state, for I might be chosen by 458 * the OOM killer while kthreadd is trying to allocate memory for 459 * new kernel thread. 460 */ 461 if (unlikely(wait_for_completion_killable(&done))) { 462 /* 463 * If I was killed by a fatal signal before kthreadd (or new 464 * kernel thread) calls complete(), leave the cleanup of this 465 * structure to that thread. 466 */ 467 if (xchg(&create->done, NULL)) 468 return ERR_PTR(-EINTR); 469 /* 470 * kthreadd (or new kernel thread) will call complete() 471 * shortly. 472 */ 473 wait_for_completion(&done); 474 } 475 task = create->result; 476 free_create: 477 kfree(create); 478 return task; 479 } 480 481 /** 482 * kthread_create_on_node - create a kthread. 483 * @threadfn: the function to run until signal_pending(current). 484 * @data: data ptr for @threadfn. 485 * @node: task and thread structures for the thread are allocated on this node 486 * @namefmt: printf-style name for the thread. 487 * 488 * Description: This helper function creates and names a kernel 489 * thread. The thread will be stopped: use wake_up_process() to start 490 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 491 * is affine to all CPUs. 492 * 493 * If thread is going to be bound on a particular cpu, give its node 494 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 495 * When woken, the thread will run @threadfn() with @data as its 496 * argument. @threadfn() can either return directly if it is a 497 * standalone thread for which no one will call kthread_stop(), or 498 * return when 'kthread_should_stop()' is true (which means 499 * kthread_stop() has been called). The return value should be zero 500 * or a negative error number; it will be passed to kthread_stop(). 501 * 502 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 503 */ 504 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 505 void *data, int node, 506 const char namefmt[], 507 ...) 508 { 509 struct task_struct *task; 510 va_list args; 511 512 va_start(args, namefmt); 513 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 514 va_end(args); 515 516 return task; 517 } 518 EXPORT_SYMBOL(kthread_create_on_node); 519 520 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 521 { 522 unsigned long flags; 523 524 if (!wait_task_inactive(p, state)) { 525 WARN_ON(1); 526 return; 527 } 528 529 /* It's safe because the task is inactive. */ 530 raw_spin_lock_irqsave(&p->pi_lock, flags); 531 do_set_cpus_allowed(p, mask); 532 p->flags |= PF_NO_SETAFFINITY; 533 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 534 } 535 536 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 537 { 538 __kthread_bind_mask(p, cpumask_of(cpu), state); 539 } 540 541 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 542 { 543 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 544 } 545 546 /** 547 * kthread_bind - bind a just-created kthread to a cpu. 548 * @p: thread created by kthread_create(). 549 * @cpu: cpu (might not be online, must be possible) for @k to run on. 550 * 551 * Description: This function is equivalent to set_cpus_allowed(), 552 * except that @cpu doesn't need to be online, and the thread must be 553 * stopped (i.e., just returned from kthread_create()). 554 */ 555 void kthread_bind(struct task_struct *p, unsigned int cpu) 556 { 557 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 558 } 559 EXPORT_SYMBOL(kthread_bind); 560 561 /** 562 * kthread_create_on_cpu - Create a cpu bound kthread 563 * @threadfn: the function to run until signal_pending(current). 564 * @data: data ptr for @threadfn. 565 * @cpu: The cpu on which the thread should be bound, 566 * @namefmt: printf-style name for the thread. Format is restricted 567 * to "name.*%u". Code fills in cpu number. 568 * 569 * Description: This helper function creates and names a kernel thread 570 */ 571 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 572 void *data, unsigned int cpu, 573 const char *namefmt) 574 { 575 struct task_struct *p; 576 577 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 578 cpu); 579 if (IS_ERR(p)) 580 return p; 581 kthread_bind(p, cpu); 582 /* CPU hotplug need to bind once again when unparking the thread. */ 583 to_kthread(p)->cpu = cpu; 584 return p; 585 } 586 EXPORT_SYMBOL(kthread_create_on_cpu); 587 588 void kthread_set_per_cpu(struct task_struct *k, int cpu) 589 { 590 struct kthread *kthread = to_kthread(k); 591 if (!kthread) 592 return; 593 594 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 595 596 if (cpu < 0) { 597 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 598 return; 599 } 600 601 kthread->cpu = cpu; 602 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 603 } 604 605 bool kthread_is_per_cpu(struct task_struct *p) 606 { 607 struct kthread *kthread = __to_kthread(p); 608 if (!kthread) 609 return false; 610 611 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 612 } 613 614 /** 615 * kthread_unpark - unpark a thread created by kthread_create(). 616 * @k: thread created by kthread_create(). 617 * 618 * Sets kthread_should_park() for @k to return false, wakes it, and 619 * waits for it to return. If the thread is marked percpu then its 620 * bound to the cpu again. 621 */ 622 void kthread_unpark(struct task_struct *k) 623 { 624 struct kthread *kthread = to_kthread(k); 625 626 /* 627 * Newly created kthread was parked when the CPU was offline. 628 * The binding was lost and we need to set it again. 629 */ 630 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 631 __kthread_bind(k, kthread->cpu, TASK_PARKED); 632 633 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 634 /* 635 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 636 */ 637 wake_up_state(k, TASK_PARKED); 638 } 639 EXPORT_SYMBOL_GPL(kthread_unpark); 640 641 /** 642 * kthread_park - park a thread created by kthread_create(). 643 * @k: thread created by kthread_create(). 644 * 645 * Sets kthread_should_park() for @k to return true, wakes it, and 646 * waits for it to return. This can also be called after kthread_create() 647 * instead of calling wake_up_process(): the thread will park without 648 * calling threadfn(). 649 * 650 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 651 * If called by the kthread itself just the park bit is set. 652 */ 653 int kthread_park(struct task_struct *k) 654 { 655 struct kthread *kthread = to_kthread(k); 656 657 if (WARN_ON(k->flags & PF_EXITING)) 658 return -ENOSYS; 659 660 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 661 return -EBUSY; 662 663 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 664 if (k != current) { 665 wake_up_process(k); 666 /* 667 * Wait for __kthread_parkme() to complete(), this means we 668 * _will_ have TASK_PARKED and are about to call schedule(). 669 */ 670 wait_for_completion(&kthread->parked); 671 /* 672 * Now wait for that schedule() to complete and the task to 673 * get scheduled out. 674 */ 675 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 676 } 677 678 return 0; 679 } 680 EXPORT_SYMBOL_GPL(kthread_park); 681 682 /** 683 * kthread_stop - stop a thread created by kthread_create(). 684 * @k: thread created by kthread_create(). 685 * 686 * Sets kthread_should_stop() for @k to return true, wakes it, and 687 * waits for it to exit. This can also be called after kthread_create() 688 * instead of calling wake_up_process(): the thread will exit without 689 * calling threadfn(). 690 * 691 * If threadfn() may call kthread_exit() itself, the caller must ensure 692 * task_struct can't go away. 693 * 694 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 695 * was never called. 696 */ 697 int kthread_stop(struct task_struct *k) 698 { 699 struct kthread *kthread; 700 int ret; 701 702 trace_sched_kthread_stop(k); 703 704 get_task_struct(k); 705 kthread = to_kthread(k); 706 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 707 kthread_unpark(k); 708 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 709 wake_up_process(k); 710 wait_for_completion(&kthread->exited); 711 ret = kthread->result; 712 put_task_struct(k); 713 714 trace_sched_kthread_stop_ret(ret); 715 return ret; 716 } 717 EXPORT_SYMBOL(kthread_stop); 718 719 /** 720 * kthread_stop_put - stop a thread and put its task struct 721 * @k: thread created by kthread_create(). 722 * 723 * Stops a thread created by kthread_create() and put its task_struct. 724 * Only use when holding an extra task struct reference obtained by 725 * calling get_task_struct(). 726 */ 727 int kthread_stop_put(struct task_struct *k) 728 { 729 int ret; 730 731 ret = kthread_stop(k); 732 put_task_struct(k); 733 return ret; 734 } 735 EXPORT_SYMBOL(kthread_stop_put); 736 737 int kthreadd(void *unused) 738 { 739 struct task_struct *tsk = current; 740 741 /* Setup a clean context for our children to inherit. */ 742 set_task_comm(tsk, "kthreadd"); 743 ignore_signals(tsk); 744 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 745 set_mems_allowed(node_states[N_MEMORY]); 746 747 current->flags |= PF_NOFREEZE; 748 cgroup_init_kthreadd(); 749 750 for (;;) { 751 set_current_state(TASK_INTERRUPTIBLE); 752 if (list_empty(&kthread_create_list)) 753 schedule(); 754 __set_current_state(TASK_RUNNING); 755 756 spin_lock(&kthread_create_lock); 757 while (!list_empty(&kthread_create_list)) { 758 struct kthread_create_info *create; 759 760 create = list_entry(kthread_create_list.next, 761 struct kthread_create_info, list); 762 list_del_init(&create->list); 763 spin_unlock(&kthread_create_lock); 764 765 create_kthread(create); 766 767 spin_lock(&kthread_create_lock); 768 } 769 spin_unlock(&kthread_create_lock); 770 } 771 772 return 0; 773 } 774 775 void __kthread_init_worker(struct kthread_worker *worker, 776 const char *name, 777 struct lock_class_key *key) 778 { 779 memset(worker, 0, sizeof(struct kthread_worker)); 780 raw_spin_lock_init(&worker->lock); 781 lockdep_set_class_and_name(&worker->lock, key, name); 782 INIT_LIST_HEAD(&worker->work_list); 783 INIT_LIST_HEAD(&worker->delayed_work_list); 784 } 785 EXPORT_SYMBOL_GPL(__kthread_init_worker); 786 787 /** 788 * kthread_worker_fn - kthread function to process kthread_worker 789 * @worker_ptr: pointer to initialized kthread_worker 790 * 791 * This function implements the main cycle of kthread worker. It processes 792 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 793 * is empty. 794 * 795 * The works are not allowed to keep any locks, disable preemption or interrupts 796 * when they finish. There is defined a safe point for freezing when one work 797 * finishes and before a new one is started. 798 * 799 * Also the works must not be handled by more than one worker at the same time, 800 * see also kthread_queue_work(). 801 */ 802 int kthread_worker_fn(void *worker_ptr) 803 { 804 struct kthread_worker *worker = worker_ptr; 805 struct kthread_work *work; 806 807 /* 808 * FIXME: Update the check and remove the assignment when all kthread 809 * worker users are created using kthread_create_worker*() functions. 810 */ 811 WARN_ON(worker->task && worker->task != current); 812 worker->task = current; 813 814 if (worker->flags & KTW_FREEZABLE) 815 set_freezable(); 816 817 repeat: 818 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 819 820 if (kthread_should_stop()) { 821 __set_current_state(TASK_RUNNING); 822 raw_spin_lock_irq(&worker->lock); 823 worker->task = NULL; 824 raw_spin_unlock_irq(&worker->lock); 825 return 0; 826 } 827 828 work = NULL; 829 raw_spin_lock_irq(&worker->lock); 830 if (!list_empty(&worker->work_list)) { 831 work = list_first_entry(&worker->work_list, 832 struct kthread_work, node); 833 list_del_init(&work->node); 834 } 835 worker->current_work = work; 836 raw_spin_unlock_irq(&worker->lock); 837 838 if (work) { 839 kthread_work_func_t func = work->func; 840 __set_current_state(TASK_RUNNING); 841 trace_sched_kthread_work_execute_start(work); 842 work->func(work); 843 /* 844 * Avoid dereferencing work after this point. The trace 845 * event only cares about the address. 846 */ 847 trace_sched_kthread_work_execute_end(work, func); 848 } else if (!freezing(current)) { 849 schedule(); 850 } else { 851 /* 852 * Handle the case where the current remains 853 * TASK_INTERRUPTIBLE. try_to_freeze() expects 854 * the current to be TASK_RUNNING. 855 */ 856 __set_current_state(TASK_RUNNING); 857 } 858 859 try_to_freeze(); 860 cond_resched(); 861 goto repeat; 862 } 863 EXPORT_SYMBOL_GPL(kthread_worker_fn); 864 865 static __printf(3, 0) struct kthread_worker * 866 __kthread_create_worker(int cpu, unsigned int flags, 867 const char namefmt[], va_list args) 868 { 869 struct kthread_worker *worker; 870 struct task_struct *task; 871 int node = NUMA_NO_NODE; 872 873 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 874 if (!worker) 875 return ERR_PTR(-ENOMEM); 876 877 kthread_init_worker(worker); 878 879 if (cpu >= 0) 880 node = cpu_to_node(cpu); 881 882 task = __kthread_create_on_node(kthread_worker_fn, worker, 883 node, namefmt, args); 884 if (IS_ERR(task)) 885 goto fail_task; 886 887 if (cpu >= 0) 888 kthread_bind(task, cpu); 889 890 worker->flags = flags; 891 worker->task = task; 892 wake_up_process(task); 893 return worker; 894 895 fail_task: 896 kfree(worker); 897 return ERR_CAST(task); 898 } 899 900 /** 901 * kthread_create_worker - create a kthread worker 902 * @flags: flags modifying the default behavior of the worker 903 * @namefmt: printf-style name for the kthread worker (task). 904 * 905 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 906 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 907 * when the caller was killed by a fatal signal. 908 */ 909 struct kthread_worker * 910 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 911 { 912 struct kthread_worker *worker; 913 va_list args; 914 915 va_start(args, namefmt); 916 worker = __kthread_create_worker(-1, flags, namefmt, args); 917 va_end(args); 918 919 return worker; 920 } 921 EXPORT_SYMBOL(kthread_create_worker); 922 923 /** 924 * kthread_create_worker_on_cpu - create a kthread worker and bind it 925 * to a given CPU and the associated NUMA node. 926 * @cpu: CPU number 927 * @flags: flags modifying the default behavior of the worker 928 * @namefmt: printf-style name for the kthread worker (task). 929 * 930 * Use a valid CPU number if you want to bind the kthread worker 931 * to the given CPU and the associated NUMA node. 932 * 933 * A good practice is to add the cpu number also into the worker name. 934 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 935 * 936 * CPU hotplug: 937 * The kthread worker API is simple and generic. It just provides a way 938 * to create, use, and destroy workers. 939 * 940 * It is up to the API user how to handle CPU hotplug. They have to decide 941 * how to handle pending work items, prevent queuing new ones, and 942 * restore the functionality when the CPU goes off and on. There are a 943 * few catches: 944 * 945 * - CPU affinity gets lost when it is scheduled on an offline CPU. 946 * 947 * - The worker might not exist when the CPU was off when the user 948 * created the workers. 949 * 950 * Good practice is to implement two CPU hotplug callbacks and to 951 * destroy/create the worker when the CPU goes down/up. 952 * 953 * Return: 954 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 955 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 956 * when the caller was killed by a fatal signal. 957 */ 958 struct kthread_worker * 959 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 960 const char namefmt[], ...) 961 { 962 struct kthread_worker *worker; 963 va_list args; 964 965 va_start(args, namefmt); 966 worker = __kthread_create_worker(cpu, flags, namefmt, args); 967 va_end(args); 968 969 return worker; 970 } 971 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 972 973 /* 974 * Returns true when the work could not be queued at the moment. 975 * It happens when it is already pending in a worker list 976 * or when it is being cancelled. 977 */ 978 static inline bool queuing_blocked(struct kthread_worker *worker, 979 struct kthread_work *work) 980 { 981 lockdep_assert_held(&worker->lock); 982 983 return !list_empty(&work->node) || work->canceling; 984 } 985 986 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 987 struct kthread_work *work) 988 { 989 lockdep_assert_held(&worker->lock); 990 WARN_ON_ONCE(!list_empty(&work->node)); 991 /* Do not use a work with >1 worker, see kthread_queue_work() */ 992 WARN_ON_ONCE(work->worker && work->worker != worker); 993 } 994 995 /* insert @work before @pos in @worker */ 996 static void kthread_insert_work(struct kthread_worker *worker, 997 struct kthread_work *work, 998 struct list_head *pos) 999 { 1000 kthread_insert_work_sanity_check(worker, work); 1001 1002 trace_sched_kthread_work_queue_work(worker, work); 1003 1004 list_add_tail(&work->node, pos); 1005 work->worker = worker; 1006 if (!worker->current_work && likely(worker->task)) 1007 wake_up_process(worker->task); 1008 } 1009 1010 /** 1011 * kthread_queue_work - queue a kthread_work 1012 * @worker: target kthread_worker 1013 * @work: kthread_work to queue 1014 * 1015 * Queue @work to work processor @task for async execution. @task 1016 * must have been created with kthread_worker_create(). Returns %true 1017 * if @work was successfully queued, %false if it was already pending. 1018 * 1019 * Reinitialize the work if it needs to be used by another worker. 1020 * For example, when the worker was stopped and started again. 1021 */ 1022 bool kthread_queue_work(struct kthread_worker *worker, 1023 struct kthread_work *work) 1024 { 1025 bool ret = false; 1026 unsigned long flags; 1027 1028 raw_spin_lock_irqsave(&worker->lock, flags); 1029 if (!queuing_blocked(worker, work)) { 1030 kthread_insert_work(worker, work, &worker->work_list); 1031 ret = true; 1032 } 1033 raw_spin_unlock_irqrestore(&worker->lock, flags); 1034 return ret; 1035 } 1036 EXPORT_SYMBOL_GPL(kthread_queue_work); 1037 1038 /** 1039 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1040 * delayed work when the timer expires. 1041 * @t: pointer to the expired timer 1042 * 1043 * The format of the function is defined by struct timer_list. 1044 * It should have been called from irqsafe timer with irq already off. 1045 */ 1046 void kthread_delayed_work_timer_fn(struct timer_list *t) 1047 { 1048 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1049 struct kthread_work *work = &dwork->work; 1050 struct kthread_worker *worker = work->worker; 1051 unsigned long flags; 1052 1053 /* 1054 * This might happen when a pending work is reinitialized. 1055 * It means that it is used a wrong way. 1056 */ 1057 if (WARN_ON_ONCE(!worker)) 1058 return; 1059 1060 raw_spin_lock_irqsave(&worker->lock, flags); 1061 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1062 WARN_ON_ONCE(work->worker != worker); 1063 1064 /* Move the work from worker->delayed_work_list. */ 1065 WARN_ON_ONCE(list_empty(&work->node)); 1066 list_del_init(&work->node); 1067 if (!work->canceling) 1068 kthread_insert_work(worker, work, &worker->work_list); 1069 1070 raw_spin_unlock_irqrestore(&worker->lock, flags); 1071 } 1072 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1073 1074 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1075 struct kthread_delayed_work *dwork, 1076 unsigned long delay) 1077 { 1078 struct timer_list *timer = &dwork->timer; 1079 struct kthread_work *work = &dwork->work; 1080 1081 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1082 1083 /* 1084 * If @delay is 0, queue @dwork->work immediately. This is for 1085 * both optimization and correctness. The earliest @timer can 1086 * expire is on the closest next tick and delayed_work users depend 1087 * on that there's no such delay when @delay is 0. 1088 */ 1089 if (!delay) { 1090 kthread_insert_work(worker, work, &worker->work_list); 1091 return; 1092 } 1093 1094 /* Be paranoid and try to detect possible races already now. */ 1095 kthread_insert_work_sanity_check(worker, work); 1096 1097 list_add(&work->node, &worker->delayed_work_list); 1098 work->worker = worker; 1099 timer->expires = jiffies + delay; 1100 add_timer(timer); 1101 } 1102 1103 /** 1104 * kthread_queue_delayed_work - queue the associated kthread work 1105 * after a delay. 1106 * @worker: target kthread_worker 1107 * @dwork: kthread_delayed_work to queue 1108 * @delay: number of jiffies to wait before queuing 1109 * 1110 * If the work has not been pending it starts a timer that will queue 1111 * the work after the given @delay. If @delay is zero, it queues the 1112 * work immediately. 1113 * 1114 * Return: %false if the @work has already been pending. It means that 1115 * either the timer was running or the work was queued. It returns %true 1116 * otherwise. 1117 */ 1118 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1119 struct kthread_delayed_work *dwork, 1120 unsigned long delay) 1121 { 1122 struct kthread_work *work = &dwork->work; 1123 unsigned long flags; 1124 bool ret = false; 1125 1126 raw_spin_lock_irqsave(&worker->lock, flags); 1127 1128 if (!queuing_blocked(worker, work)) { 1129 __kthread_queue_delayed_work(worker, dwork, delay); 1130 ret = true; 1131 } 1132 1133 raw_spin_unlock_irqrestore(&worker->lock, flags); 1134 return ret; 1135 } 1136 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1137 1138 struct kthread_flush_work { 1139 struct kthread_work work; 1140 struct completion done; 1141 }; 1142 1143 static void kthread_flush_work_fn(struct kthread_work *work) 1144 { 1145 struct kthread_flush_work *fwork = 1146 container_of(work, struct kthread_flush_work, work); 1147 complete(&fwork->done); 1148 } 1149 1150 /** 1151 * kthread_flush_work - flush a kthread_work 1152 * @work: work to flush 1153 * 1154 * If @work is queued or executing, wait for it to finish execution. 1155 */ 1156 void kthread_flush_work(struct kthread_work *work) 1157 { 1158 struct kthread_flush_work fwork = { 1159 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1160 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1161 }; 1162 struct kthread_worker *worker; 1163 bool noop = false; 1164 1165 worker = work->worker; 1166 if (!worker) 1167 return; 1168 1169 raw_spin_lock_irq(&worker->lock); 1170 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1171 WARN_ON_ONCE(work->worker != worker); 1172 1173 if (!list_empty(&work->node)) 1174 kthread_insert_work(worker, &fwork.work, work->node.next); 1175 else if (worker->current_work == work) 1176 kthread_insert_work(worker, &fwork.work, 1177 worker->work_list.next); 1178 else 1179 noop = true; 1180 1181 raw_spin_unlock_irq(&worker->lock); 1182 1183 if (!noop) 1184 wait_for_completion(&fwork.done); 1185 } 1186 EXPORT_SYMBOL_GPL(kthread_flush_work); 1187 1188 /* 1189 * Make sure that the timer is neither set nor running and could 1190 * not manipulate the work list_head any longer. 1191 * 1192 * The function is called under worker->lock. The lock is temporary 1193 * released but the timer can't be set again in the meantime. 1194 */ 1195 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1196 unsigned long *flags) 1197 { 1198 struct kthread_delayed_work *dwork = 1199 container_of(work, struct kthread_delayed_work, work); 1200 struct kthread_worker *worker = work->worker; 1201 1202 /* 1203 * del_timer_sync() must be called to make sure that the timer 1204 * callback is not running. The lock must be temporary released 1205 * to avoid a deadlock with the callback. In the meantime, 1206 * any queuing is blocked by setting the canceling counter. 1207 */ 1208 work->canceling++; 1209 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1210 del_timer_sync(&dwork->timer); 1211 raw_spin_lock_irqsave(&worker->lock, *flags); 1212 work->canceling--; 1213 } 1214 1215 /* 1216 * This function removes the work from the worker queue. 1217 * 1218 * It is called under worker->lock. The caller must make sure that 1219 * the timer used by delayed work is not running, e.g. by calling 1220 * kthread_cancel_delayed_work_timer(). 1221 * 1222 * The work might still be in use when this function finishes. See the 1223 * current_work proceed by the worker. 1224 * 1225 * Return: %true if @work was pending and successfully canceled, 1226 * %false if @work was not pending 1227 */ 1228 static bool __kthread_cancel_work(struct kthread_work *work) 1229 { 1230 /* 1231 * Try to remove the work from a worker list. It might either 1232 * be from worker->work_list or from worker->delayed_work_list. 1233 */ 1234 if (!list_empty(&work->node)) { 1235 list_del_init(&work->node); 1236 return true; 1237 } 1238 1239 return false; 1240 } 1241 1242 /** 1243 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1244 * @worker: kthread worker to use 1245 * @dwork: kthread delayed work to queue 1246 * @delay: number of jiffies to wait before queuing 1247 * 1248 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1249 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1250 * @work is guaranteed to be queued immediately. 1251 * 1252 * Return: %false if @dwork was idle and queued, %true otherwise. 1253 * 1254 * A special case is when the work is being canceled in parallel. 1255 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1256 * or yet another kthread_mod_delayed_work() call. We let the other command 1257 * win and return %true here. The return value can be used for reference 1258 * counting and the number of queued works stays the same. Anyway, the caller 1259 * is supposed to synchronize these operations a reasonable way. 1260 * 1261 * This function is safe to call from any context including IRQ handler. 1262 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1263 * for details. 1264 */ 1265 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1266 struct kthread_delayed_work *dwork, 1267 unsigned long delay) 1268 { 1269 struct kthread_work *work = &dwork->work; 1270 unsigned long flags; 1271 int ret; 1272 1273 raw_spin_lock_irqsave(&worker->lock, flags); 1274 1275 /* Do not bother with canceling when never queued. */ 1276 if (!work->worker) { 1277 ret = false; 1278 goto fast_queue; 1279 } 1280 1281 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1282 WARN_ON_ONCE(work->worker != worker); 1283 1284 /* 1285 * Temporary cancel the work but do not fight with another command 1286 * that is canceling the work as well. 1287 * 1288 * It is a bit tricky because of possible races with another 1289 * mod_delayed_work() and cancel_delayed_work() callers. 1290 * 1291 * The timer must be canceled first because worker->lock is released 1292 * when doing so. But the work can be removed from the queue (list) 1293 * only when it can be queued again so that the return value can 1294 * be used for reference counting. 1295 */ 1296 kthread_cancel_delayed_work_timer(work, &flags); 1297 if (work->canceling) { 1298 /* The number of works in the queue does not change. */ 1299 ret = true; 1300 goto out; 1301 } 1302 ret = __kthread_cancel_work(work); 1303 1304 fast_queue: 1305 __kthread_queue_delayed_work(worker, dwork, delay); 1306 out: 1307 raw_spin_unlock_irqrestore(&worker->lock, flags); 1308 return ret; 1309 } 1310 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1311 1312 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1313 { 1314 struct kthread_worker *worker = work->worker; 1315 unsigned long flags; 1316 int ret = false; 1317 1318 if (!worker) 1319 goto out; 1320 1321 raw_spin_lock_irqsave(&worker->lock, flags); 1322 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1323 WARN_ON_ONCE(work->worker != worker); 1324 1325 if (is_dwork) 1326 kthread_cancel_delayed_work_timer(work, &flags); 1327 1328 ret = __kthread_cancel_work(work); 1329 1330 if (worker->current_work != work) 1331 goto out_fast; 1332 1333 /* 1334 * The work is in progress and we need to wait with the lock released. 1335 * In the meantime, block any queuing by setting the canceling counter. 1336 */ 1337 work->canceling++; 1338 raw_spin_unlock_irqrestore(&worker->lock, flags); 1339 kthread_flush_work(work); 1340 raw_spin_lock_irqsave(&worker->lock, flags); 1341 work->canceling--; 1342 1343 out_fast: 1344 raw_spin_unlock_irqrestore(&worker->lock, flags); 1345 out: 1346 return ret; 1347 } 1348 1349 /** 1350 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1351 * @work: the kthread work to cancel 1352 * 1353 * Cancel @work and wait for its execution to finish. This function 1354 * can be used even if the work re-queues itself. On return from this 1355 * function, @work is guaranteed to be not pending or executing on any CPU. 1356 * 1357 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1358 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1359 * 1360 * The caller must ensure that the worker on which @work was last 1361 * queued can't be destroyed before this function returns. 1362 * 1363 * Return: %true if @work was pending, %false otherwise. 1364 */ 1365 bool kthread_cancel_work_sync(struct kthread_work *work) 1366 { 1367 return __kthread_cancel_work_sync(work, false); 1368 } 1369 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1370 1371 /** 1372 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1373 * wait for it to finish. 1374 * @dwork: the kthread delayed work to cancel 1375 * 1376 * This is kthread_cancel_work_sync() for delayed works. 1377 * 1378 * Return: %true if @dwork was pending, %false otherwise. 1379 */ 1380 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1381 { 1382 return __kthread_cancel_work_sync(&dwork->work, true); 1383 } 1384 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1385 1386 /** 1387 * kthread_flush_worker - flush all current works on a kthread_worker 1388 * @worker: worker to flush 1389 * 1390 * Wait until all currently executing or pending works on @worker are 1391 * finished. 1392 */ 1393 void kthread_flush_worker(struct kthread_worker *worker) 1394 { 1395 struct kthread_flush_work fwork = { 1396 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1397 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1398 }; 1399 1400 kthread_queue_work(worker, &fwork.work); 1401 wait_for_completion(&fwork.done); 1402 } 1403 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1404 1405 /** 1406 * kthread_destroy_worker - destroy a kthread worker 1407 * @worker: worker to be destroyed 1408 * 1409 * Flush and destroy @worker. The simple flush is enough because the kthread 1410 * worker API is used only in trivial scenarios. There are no multi-step state 1411 * machines needed. 1412 * 1413 * Note that this function is not responsible for handling delayed work, so 1414 * caller should be responsible for queuing or canceling all delayed work items 1415 * before invoke this function. 1416 */ 1417 void kthread_destroy_worker(struct kthread_worker *worker) 1418 { 1419 struct task_struct *task; 1420 1421 task = worker->task; 1422 if (WARN_ON(!task)) 1423 return; 1424 1425 kthread_flush_worker(worker); 1426 kthread_stop(task); 1427 WARN_ON(!list_empty(&worker->delayed_work_list)); 1428 WARN_ON(!list_empty(&worker->work_list)); 1429 kfree(worker); 1430 } 1431 EXPORT_SYMBOL(kthread_destroy_worker); 1432 1433 /** 1434 * kthread_use_mm - make the calling kthread operate on an address space 1435 * @mm: address space to operate on 1436 */ 1437 void kthread_use_mm(struct mm_struct *mm) 1438 { 1439 struct mm_struct *active_mm; 1440 struct task_struct *tsk = current; 1441 1442 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1443 WARN_ON_ONCE(tsk->mm); 1444 1445 /* 1446 * It is possible for mm to be the same as tsk->active_mm, but 1447 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1448 * because these references are not equivalent. 1449 */ 1450 mmgrab(mm); 1451 1452 task_lock(tsk); 1453 /* Hold off tlb flush IPIs while switching mm's */ 1454 local_irq_disable(); 1455 active_mm = tsk->active_mm; 1456 tsk->active_mm = mm; 1457 tsk->mm = mm; 1458 membarrier_update_current_mm(mm); 1459 switch_mm_irqs_off(active_mm, mm, tsk); 1460 local_irq_enable(); 1461 task_unlock(tsk); 1462 #ifdef finish_arch_post_lock_switch 1463 finish_arch_post_lock_switch(); 1464 #endif 1465 1466 /* 1467 * When a kthread starts operating on an address space, the loop 1468 * in membarrier_{private,global}_expedited() may not observe 1469 * that tsk->mm, and not issue an IPI. Membarrier requires a 1470 * memory barrier after storing to tsk->mm, before accessing 1471 * user-space memory. A full memory barrier for membarrier 1472 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1473 * mmdrop_lazy_tlb(). 1474 */ 1475 mmdrop_lazy_tlb(active_mm); 1476 } 1477 EXPORT_SYMBOL_GPL(kthread_use_mm); 1478 1479 /** 1480 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1481 * @mm: address space to operate on 1482 */ 1483 void kthread_unuse_mm(struct mm_struct *mm) 1484 { 1485 struct task_struct *tsk = current; 1486 1487 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1488 WARN_ON_ONCE(!tsk->mm); 1489 1490 task_lock(tsk); 1491 /* 1492 * When a kthread stops operating on an address space, the loop 1493 * in membarrier_{private,global}_expedited() may not observe 1494 * that tsk->mm, and not issue an IPI. Membarrier requires a 1495 * memory barrier after accessing user-space memory, before 1496 * clearing tsk->mm. 1497 */ 1498 smp_mb__after_spinlock(); 1499 local_irq_disable(); 1500 tsk->mm = NULL; 1501 membarrier_update_current_mm(NULL); 1502 mmgrab_lazy_tlb(mm); 1503 /* active_mm is still 'mm' */ 1504 enter_lazy_tlb(mm, tsk); 1505 local_irq_enable(); 1506 task_unlock(tsk); 1507 1508 mmdrop(mm); 1509 } 1510 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1511 1512 #ifdef CONFIG_BLK_CGROUP 1513 /** 1514 * kthread_associate_blkcg - associate blkcg to current kthread 1515 * @css: the cgroup info 1516 * 1517 * Current thread must be a kthread. The thread is running jobs on behalf of 1518 * other threads. In some cases, we expect the jobs attach cgroup info of 1519 * original threads instead of that of current thread. This function stores 1520 * original thread's cgroup info in current kthread context for later 1521 * retrieval. 1522 */ 1523 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1524 { 1525 struct kthread *kthread; 1526 1527 if (!(current->flags & PF_KTHREAD)) 1528 return; 1529 kthread = to_kthread(current); 1530 if (!kthread) 1531 return; 1532 1533 if (kthread->blkcg_css) { 1534 css_put(kthread->blkcg_css); 1535 kthread->blkcg_css = NULL; 1536 } 1537 if (css) { 1538 css_get(css); 1539 kthread->blkcg_css = css; 1540 } 1541 } 1542 EXPORT_SYMBOL(kthread_associate_blkcg); 1543 1544 /** 1545 * kthread_blkcg - get associated blkcg css of current kthread 1546 * 1547 * Current thread must be a kthread. 1548 */ 1549 struct cgroup_subsys_state *kthread_blkcg(void) 1550 { 1551 struct kthread *kthread; 1552 1553 if (current->flags & PF_KTHREAD) { 1554 kthread = to_kthread(current); 1555 if (kthread) 1556 return kthread->blkcg_css; 1557 } 1558 return NULL; 1559 } 1560 #endif 1561