1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 static LIST_HEAD(kthreads_hotplug); 39 static DEFINE_MUTEX(kthreads_hotplug_lock); 40 41 struct kthread_create_info 42 { 43 /* Information passed to kthread() from kthreadd. */ 44 char *full_name; 45 int (*threadfn)(void *data); 46 void *data; 47 int node; 48 49 /* Result passed back to kthread_create() from kthreadd. */ 50 struct task_struct *result; 51 struct completion *done; 52 53 struct list_head list; 54 }; 55 56 struct kthread { 57 unsigned long flags; 58 unsigned int cpu; 59 unsigned int node; 60 int started; 61 int result; 62 int (*threadfn)(void *); 63 void *data; 64 struct completion parked; 65 struct completion exited; 66 #ifdef CONFIG_BLK_CGROUP 67 struct cgroup_subsys_state *blkcg_css; 68 #endif 69 /* To store the full name if task comm is truncated. */ 70 char *full_name; 71 struct task_struct *task; 72 struct list_head hotplug_node; 73 struct cpumask *preferred_affinity; 74 }; 75 76 enum KTHREAD_BITS { 77 KTHREAD_IS_PER_CPU = 0, 78 KTHREAD_SHOULD_STOP, 79 KTHREAD_SHOULD_PARK, 80 }; 81 82 static inline struct kthread *to_kthread(struct task_struct *k) 83 { 84 WARN_ON(!(k->flags & PF_KTHREAD)); 85 return k->worker_private; 86 } 87 88 /* 89 * Variant of to_kthread() that doesn't assume @p is a kthread. 90 * 91 * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will 92 * always remain a kthread. For kthreads p->worker_private always 93 * points to a struct kthread. For tasks that are not kthreads 94 * p->worker_private is used to point to other things. 95 * 96 * Return NULL for any task that is not a kthread. 97 */ 98 static inline struct kthread *__to_kthread(struct task_struct *p) 99 { 100 void *kthread = p->worker_private; 101 if (kthread && !(p->flags & PF_KTHREAD)) 102 kthread = NULL; 103 return kthread; 104 } 105 106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 107 { 108 struct kthread *kthread = to_kthread(tsk); 109 110 if (!kthread || !kthread->full_name) { 111 strscpy(buf, tsk->comm, buf_size); 112 return; 113 } 114 115 strscpy_pad(buf, kthread->full_name, buf_size); 116 } 117 118 bool set_kthread_struct(struct task_struct *p) 119 { 120 struct kthread *kthread; 121 122 if (WARN_ON_ONCE(to_kthread(p))) 123 return false; 124 125 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 126 if (!kthread) 127 return false; 128 129 init_completion(&kthread->exited); 130 init_completion(&kthread->parked); 131 INIT_LIST_HEAD(&kthread->hotplug_node); 132 p->vfork_done = &kthread->exited; 133 134 kthread->task = p; 135 kthread->node = tsk_fork_get_node(current); 136 p->worker_private = kthread; 137 return true; 138 } 139 140 void free_kthread_struct(struct task_struct *k) 141 { 142 struct kthread *kthread; 143 144 /* 145 * Can be NULL if kmalloc() in set_kthread_struct() failed. 146 */ 147 kthread = to_kthread(k); 148 if (!kthread) 149 return; 150 151 #ifdef CONFIG_BLK_CGROUP 152 WARN_ON_ONCE(kthread->blkcg_css); 153 #endif 154 k->worker_private = NULL; 155 kfree(kthread->full_name); 156 kfree(kthread); 157 } 158 159 /** 160 * kthread_should_stop - should this kthread return now? 161 * 162 * When someone calls kthread_stop() on your kthread, it will be woken 163 * and this will return true. You should then return, and your return 164 * value will be passed through to kthread_stop(). 165 */ 166 bool kthread_should_stop(void) 167 { 168 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 169 } 170 EXPORT_SYMBOL(kthread_should_stop); 171 172 static bool __kthread_should_park(struct task_struct *k) 173 { 174 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 175 } 176 177 /** 178 * kthread_should_park - should this kthread park now? 179 * 180 * When someone calls kthread_park() on your kthread, it will be woken 181 * and this will return true. You should then do the necessary 182 * cleanup and call kthread_parkme() 183 * 184 * Similar to kthread_should_stop(), but this keeps the thread alive 185 * and in a park position. kthread_unpark() "restarts" the thread and 186 * calls the thread function again. 187 */ 188 bool kthread_should_park(void) 189 { 190 return __kthread_should_park(current); 191 } 192 EXPORT_SYMBOL_GPL(kthread_should_park); 193 194 bool kthread_should_stop_or_park(void) 195 { 196 struct kthread *kthread = __to_kthread(current); 197 198 if (!kthread) 199 return false; 200 201 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 202 } 203 204 /** 205 * kthread_freezable_should_stop - should this freezable kthread return now? 206 * @was_frozen: optional out parameter, indicates whether %current was frozen 207 * 208 * kthread_should_stop() for freezable kthreads, which will enter 209 * refrigerator if necessary. This function is safe from kthread_stop() / 210 * freezer deadlock and freezable kthreads should use this function instead 211 * of calling try_to_freeze() directly. 212 */ 213 bool kthread_freezable_should_stop(bool *was_frozen) 214 { 215 bool frozen = false; 216 217 might_sleep(); 218 219 if (unlikely(freezing(current))) 220 frozen = __refrigerator(true); 221 222 if (was_frozen) 223 *was_frozen = frozen; 224 225 return kthread_should_stop(); 226 } 227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 228 229 /** 230 * kthread_func - return the function specified on kthread creation 231 * @task: kthread task in question 232 * 233 * Returns NULL if the task is not a kthread. 234 */ 235 void *kthread_func(struct task_struct *task) 236 { 237 struct kthread *kthread = __to_kthread(task); 238 if (kthread) 239 return kthread->threadfn; 240 return NULL; 241 } 242 EXPORT_SYMBOL_GPL(kthread_func); 243 244 /** 245 * kthread_data - return data value specified on kthread creation 246 * @task: kthread task in question 247 * 248 * Return the data value specified when kthread @task was created. 249 * The caller is responsible for ensuring the validity of @task when 250 * calling this function. 251 */ 252 void *kthread_data(struct task_struct *task) 253 { 254 return to_kthread(task)->data; 255 } 256 EXPORT_SYMBOL_GPL(kthread_data); 257 258 /** 259 * kthread_probe_data - speculative version of kthread_data() 260 * @task: possible kthread task in question 261 * 262 * @task could be a kthread task. Return the data value specified when it 263 * was created if accessible. If @task isn't a kthread task or its data is 264 * inaccessible for any reason, %NULL is returned. This function requires 265 * that @task itself is safe to dereference. 266 */ 267 void *kthread_probe_data(struct task_struct *task) 268 { 269 struct kthread *kthread = __to_kthread(task); 270 void *data = NULL; 271 272 if (kthread) 273 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 274 return data; 275 } 276 277 static void __kthread_parkme(struct kthread *self) 278 { 279 for (;;) { 280 /* 281 * TASK_PARKED is a special state; we must serialize against 282 * possible pending wakeups to avoid store-store collisions on 283 * task->state. 284 * 285 * Such a collision might possibly result in the task state 286 * changin from TASK_PARKED and us failing the 287 * wait_task_inactive() in kthread_park(). 288 */ 289 set_special_state(TASK_PARKED); 290 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 291 break; 292 293 /* 294 * Thread is going to call schedule(), do not preempt it, 295 * or the caller of kthread_park() may spend more time in 296 * wait_task_inactive(). 297 */ 298 preempt_disable(); 299 complete(&self->parked); 300 schedule_preempt_disabled(); 301 preempt_enable(); 302 } 303 __set_current_state(TASK_RUNNING); 304 } 305 306 void kthread_parkme(void) 307 { 308 __kthread_parkme(to_kthread(current)); 309 } 310 EXPORT_SYMBOL_GPL(kthread_parkme); 311 312 /** 313 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 314 * @result: The integer value to return to kthread_stop(). 315 * 316 * While kthread_exit can be called directly, it exists so that 317 * functions which do some additional work in non-modular code such as 318 * module_put_and_kthread_exit can be implemented. 319 * 320 * Does not return. 321 */ 322 void __noreturn kthread_exit(long result) 323 { 324 struct kthread *kthread = to_kthread(current); 325 kthread->result = result; 326 if (!list_empty(&kthread->hotplug_node)) { 327 mutex_lock(&kthreads_hotplug_lock); 328 list_del(&kthread->hotplug_node); 329 mutex_unlock(&kthreads_hotplug_lock); 330 331 if (kthread->preferred_affinity) { 332 kfree(kthread->preferred_affinity); 333 kthread->preferred_affinity = NULL; 334 } 335 } 336 do_exit(0); 337 } 338 EXPORT_SYMBOL(kthread_exit); 339 340 /** 341 * kthread_complete_and_exit - Exit the current kthread. 342 * @comp: Completion to complete 343 * @code: The integer value to return to kthread_stop(). 344 * 345 * If present, complete @comp and then return code to kthread_stop(). 346 * 347 * A kernel thread whose module may be removed after the completion of 348 * @comp can use this function to exit safely. 349 * 350 * Does not return. 351 */ 352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 353 { 354 if (comp) 355 complete(comp); 356 357 kthread_exit(code); 358 } 359 EXPORT_SYMBOL(kthread_complete_and_exit); 360 361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask) 362 { 363 const struct cpumask *pref; 364 365 if (kthread->preferred_affinity) { 366 pref = kthread->preferred_affinity; 367 } else { 368 if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE)) 369 return; 370 pref = cpumask_of_node(kthread->node); 371 } 372 373 cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD)); 374 if (cpumask_empty(cpumask)) 375 cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD)); 376 } 377 378 static void kthread_affine_node(void) 379 { 380 struct kthread *kthread = to_kthread(current); 381 cpumask_var_t affinity; 382 383 WARN_ON_ONCE(kthread_is_per_cpu(current)); 384 385 if (kthread->node == NUMA_NO_NODE) { 386 housekeeping_affine(current, HK_TYPE_KTHREAD); 387 } else { 388 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) { 389 WARN_ON_ONCE(1); 390 return; 391 } 392 393 mutex_lock(&kthreads_hotplug_lock); 394 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 395 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 396 /* 397 * The node cpumask is racy when read from kthread() but: 398 * - a racing CPU going down will either fail on the subsequent 399 * call to set_cpus_allowed_ptr() or be migrated to housekeepers 400 * afterwards by the scheduler. 401 * - a racing CPU going up will be handled by kthreads_online_cpu() 402 */ 403 kthread_fetch_affinity(kthread, affinity); 404 set_cpus_allowed_ptr(current, affinity); 405 mutex_unlock(&kthreads_hotplug_lock); 406 407 free_cpumask_var(affinity); 408 } 409 } 410 411 static int kthread(void *_create) 412 { 413 static const struct sched_param param = { .sched_priority = 0 }; 414 /* Copy data: it's on kthread's stack */ 415 struct kthread_create_info *create = _create; 416 int (*threadfn)(void *data) = create->threadfn; 417 void *data = create->data; 418 struct completion *done; 419 struct kthread *self; 420 int ret; 421 422 self = to_kthread(current); 423 424 /* Release the structure when caller killed by a fatal signal. */ 425 done = xchg(&create->done, NULL); 426 if (!done) { 427 kfree(create->full_name); 428 kfree(create); 429 kthread_exit(-EINTR); 430 } 431 432 self->full_name = create->full_name; 433 self->threadfn = threadfn; 434 self->data = data; 435 436 /* 437 * The new thread inherited kthreadd's priority and CPU mask. Reset 438 * back to default in case they have been changed. 439 */ 440 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 441 442 /* OK, tell user we're spawned, wait for stop or wakeup */ 443 __set_current_state(TASK_UNINTERRUPTIBLE); 444 create->result = current; 445 /* 446 * Thread is going to call schedule(), do not preempt it, 447 * or the creator may spend more time in wait_task_inactive(). 448 */ 449 preempt_disable(); 450 complete(done); 451 schedule_preempt_disabled(); 452 preempt_enable(); 453 454 self->started = 1; 455 456 if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity) 457 kthread_affine_node(); 458 459 ret = -EINTR; 460 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 461 cgroup_kthread_ready(); 462 __kthread_parkme(self); 463 ret = threadfn(data); 464 } 465 kthread_exit(ret); 466 } 467 468 /* called from kernel_clone() to get node information for about to be created task */ 469 int tsk_fork_get_node(struct task_struct *tsk) 470 { 471 #ifdef CONFIG_NUMA 472 if (tsk == kthreadd_task) 473 return tsk->pref_node_fork; 474 #endif 475 return NUMA_NO_NODE; 476 } 477 478 static void create_kthread(struct kthread_create_info *create) 479 { 480 int pid; 481 482 #ifdef CONFIG_NUMA 483 current->pref_node_fork = create->node; 484 #endif 485 /* We want our own signal handler (we take no signals by default). */ 486 pid = kernel_thread(kthread, create, create->full_name, 487 CLONE_FS | CLONE_FILES | SIGCHLD); 488 if (pid < 0) { 489 /* Release the structure when caller killed by a fatal signal. */ 490 struct completion *done = xchg(&create->done, NULL); 491 492 kfree(create->full_name); 493 if (!done) { 494 kfree(create); 495 return; 496 } 497 create->result = ERR_PTR(pid); 498 complete(done); 499 } 500 } 501 502 static __printf(4, 0) 503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 504 void *data, int node, 505 const char namefmt[], 506 va_list args) 507 { 508 DECLARE_COMPLETION_ONSTACK(done); 509 struct task_struct *task; 510 struct kthread_create_info *create = kmalloc(sizeof(*create), 511 GFP_KERNEL); 512 513 if (!create) 514 return ERR_PTR(-ENOMEM); 515 create->threadfn = threadfn; 516 create->data = data; 517 create->node = node; 518 create->done = &done; 519 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 520 if (!create->full_name) { 521 task = ERR_PTR(-ENOMEM); 522 goto free_create; 523 } 524 525 spin_lock(&kthread_create_lock); 526 list_add_tail(&create->list, &kthread_create_list); 527 spin_unlock(&kthread_create_lock); 528 529 wake_up_process(kthreadd_task); 530 /* 531 * Wait for completion in killable state, for I might be chosen by 532 * the OOM killer while kthreadd is trying to allocate memory for 533 * new kernel thread. 534 */ 535 if (unlikely(wait_for_completion_killable(&done))) { 536 /* 537 * If I was killed by a fatal signal before kthreadd (or new 538 * kernel thread) calls complete(), leave the cleanup of this 539 * structure to that thread. 540 */ 541 if (xchg(&create->done, NULL)) 542 return ERR_PTR(-EINTR); 543 /* 544 * kthreadd (or new kernel thread) will call complete() 545 * shortly. 546 */ 547 wait_for_completion(&done); 548 } 549 task = create->result; 550 free_create: 551 kfree(create); 552 return task; 553 } 554 555 /** 556 * kthread_create_on_node - create a kthread. 557 * @threadfn: the function to run until signal_pending(current). 558 * @data: data ptr for @threadfn. 559 * @node: task and thread structures for the thread are allocated on this node 560 * @namefmt: printf-style name for the thread. 561 * 562 * Description: This helper function creates and names a kernel 563 * thread. The thread will be stopped: use wake_up_process() to start 564 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 565 * is affine to all CPUs. 566 * 567 * If thread is going to be bound on a particular cpu, give its node 568 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 569 * When woken, the thread will run @threadfn() with @data as its 570 * argument. @threadfn() can either return directly if it is a 571 * standalone thread for which no one will call kthread_stop(), or 572 * return when 'kthread_should_stop()' is true (which means 573 * kthread_stop() has been called). The return value should be zero 574 * or a negative error number; it will be passed to kthread_stop(). 575 * 576 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 577 */ 578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 579 void *data, int node, 580 const char namefmt[], 581 ...) 582 { 583 struct task_struct *task; 584 va_list args; 585 586 va_start(args, namefmt); 587 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 588 va_end(args); 589 590 return task; 591 } 592 EXPORT_SYMBOL(kthread_create_on_node); 593 594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 595 { 596 unsigned long flags; 597 598 if (!wait_task_inactive(p, state)) { 599 WARN_ON(1); 600 return; 601 } 602 603 /* It's safe because the task is inactive. */ 604 raw_spin_lock_irqsave(&p->pi_lock, flags); 605 do_set_cpus_allowed(p, mask); 606 p->flags |= PF_NO_SETAFFINITY; 607 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 608 } 609 610 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 611 { 612 __kthread_bind_mask(p, cpumask_of(cpu), state); 613 } 614 615 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 616 { 617 struct kthread *kthread = to_kthread(p); 618 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 619 WARN_ON_ONCE(kthread->started); 620 } 621 622 /** 623 * kthread_bind - bind a just-created kthread to a cpu. 624 * @p: thread created by kthread_create(). 625 * @cpu: cpu (might not be online, must be possible) for @k to run on. 626 * 627 * Description: This function is equivalent to set_cpus_allowed(), 628 * except that @cpu doesn't need to be online, and the thread must be 629 * stopped (i.e., just returned from kthread_create()). 630 */ 631 void kthread_bind(struct task_struct *p, unsigned int cpu) 632 { 633 struct kthread *kthread = to_kthread(p); 634 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 635 WARN_ON_ONCE(kthread->started); 636 } 637 EXPORT_SYMBOL(kthread_bind); 638 639 /** 640 * kthread_create_on_cpu - Create a cpu bound kthread 641 * @threadfn: the function to run until signal_pending(current). 642 * @data: data ptr for @threadfn. 643 * @cpu: The cpu on which the thread should be bound, 644 * @namefmt: printf-style name for the thread. Format is restricted 645 * to "name.*%u". Code fills in cpu number. 646 * 647 * Description: This helper function creates and names a kernel thread 648 */ 649 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 650 void *data, unsigned int cpu, 651 const char *namefmt) 652 { 653 struct task_struct *p; 654 655 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 656 cpu); 657 if (IS_ERR(p)) 658 return p; 659 kthread_bind(p, cpu); 660 /* CPU hotplug need to bind once again when unparking the thread. */ 661 to_kthread(p)->cpu = cpu; 662 return p; 663 } 664 EXPORT_SYMBOL(kthread_create_on_cpu); 665 666 void kthread_set_per_cpu(struct task_struct *k, int cpu) 667 { 668 struct kthread *kthread = to_kthread(k); 669 if (!kthread) 670 return; 671 672 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 673 674 if (cpu < 0) { 675 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 676 return; 677 } 678 679 kthread->cpu = cpu; 680 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 681 } 682 683 bool kthread_is_per_cpu(struct task_struct *p) 684 { 685 struct kthread *kthread = __to_kthread(p); 686 if (!kthread) 687 return false; 688 689 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 690 } 691 692 /** 693 * kthread_unpark - unpark a thread created by kthread_create(). 694 * @k: thread created by kthread_create(). 695 * 696 * Sets kthread_should_park() for @k to return false, wakes it, and 697 * waits for it to return. If the thread is marked percpu then its 698 * bound to the cpu again. 699 */ 700 void kthread_unpark(struct task_struct *k) 701 { 702 struct kthread *kthread = to_kthread(k); 703 704 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 705 return; 706 /* 707 * Newly created kthread was parked when the CPU was offline. 708 * The binding was lost and we need to set it again. 709 */ 710 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 711 __kthread_bind(k, kthread->cpu, TASK_PARKED); 712 713 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 714 /* 715 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 716 */ 717 wake_up_state(k, TASK_PARKED); 718 } 719 EXPORT_SYMBOL_GPL(kthread_unpark); 720 721 /** 722 * kthread_park - park a thread created by kthread_create(). 723 * @k: thread created by kthread_create(). 724 * 725 * Sets kthread_should_park() for @k to return true, wakes it, and 726 * waits for it to return. This can also be called after kthread_create() 727 * instead of calling wake_up_process(): the thread will park without 728 * calling threadfn(). 729 * 730 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 731 * If called by the kthread itself just the park bit is set. 732 */ 733 int kthread_park(struct task_struct *k) 734 { 735 struct kthread *kthread = to_kthread(k); 736 737 if (WARN_ON(k->flags & PF_EXITING)) 738 return -ENOSYS; 739 740 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 741 return -EBUSY; 742 743 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 744 if (k != current) { 745 wake_up_process(k); 746 /* 747 * Wait for __kthread_parkme() to complete(), this means we 748 * _will_ have TASK_PARKED and are about to call schedule(). 749 */ 750 wait_for_completion(&kthread->parked); 751 /* 752 * Now wait for that schedule() to complete and the task to 753 * get scheduled out. 754 */ 755 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 756 } 757 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(kthread_park); 761 762 /** 763 * kthread_stop - stop a thread created by kthread_create(). 764 * @k: thread created by kthread_create(). 765 * 766 * Sets kthread_should_stop() for @k to return true, wakes it, and 767 * waits for it to exit. This can also be called after kthread_create() 768 * instead of calling wake_up_process(): the thread will exit without 769 * calling threadfn(). 770 * 771 * If threadfn() may call kthread_exit() itself, the caller must ensure 772 * task_struct can't go away. 773 * 774 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 775 * was never called. 776 */ 777 int kthread_stop(struct task_struct *k) 778 { 779 struct kthread *kthread; 780 int ret; 781 782 trace_sched_kthread_stop(k); 783 784 get_task_struct(k); 785 kthread = to_kthread(k); 786 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 787 kthread_unpark(k); 788 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 789 wake_up_process(k); 790 wait_for_completion(&kthread->exited); 791 ret = kthread->result; 792 put_task_struct(k); 793 794 trace_sched_kthread_stop_ret(ret); 795 return ret; 796 } 797 EXPORT_SYMBOL(kthread_stop); 798 799 /** 800 * kthread_stop_put - stop a thread and put its task struct 801 * @k: thread created by kthread_create(). 802 * 803 * Stops a thread created by kthread_create() and put its task_struct. 804 * Only use when holding an extra task struct reference obtained by 805 * calling get_task_struct(). 806 */ 807 int kthread_stop_put(struct task_struct *k) 808 { 809 int ret; 810 811 ret = kthread_stop(k); 812 put_task_struct(k); 813 return ret; 814 } 815 EXPORT_SYMBOL(kthread_stop_put); 816 817 int kthreadd(void *unused) 818 { 819 static const char comm[TASK_COMM_LEN] = "kthreadd"; 820 struct task_struct *tsk = current; 821 822 /* Setup a clean context for our children to inherit. */ 823 set_task_comm(tsk, comm); 824 ignore_signals(tsk); 825 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 826 set_mems_allowed(node_states[N_MEMORY]); 827 828 current->flags |= PF_NOFREEZE; 829 cgroup_init_kthreadd(); 830 831 for (;;) { 832 set_current_state(TASK_INTERRUPTIBLE); 833 if (list_empty(&kthread_create_list)) 834 schedule(); 835 __set_current_state(TASK_RUNNING); 836 837 spin_lock(&kthread_create_lock); 838 while (!list_empty(&kthread_create_list)) { 839 struct kthread_create_info *create; 840 841 create = list_entry(kthread_create_list.next, 842 struct kthread_create_info, list); 843 list_del_init(&create->list); 844 spin_unlock(&kthread_create_lock); 845 846 create_kthread(create); 847 848 spin_lock(&kthread_create_lock); 849 } 850 spin_unlock(&kthread_create_lock); 851 } 852 853 return 0; 854 } 855 856 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask) 857 { 858 struct kthread *kthread = to_kthread(p); 859 cpumask_var_t affinity; 860 unsigned long flags; 861 int ret = 0; 862 863 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) { 864 WARN_ON(1); 865 return -EINVAL; 866 } 867 868 WARN_ON_ONCE(kthread->preferred_affinity); 869 870 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 871 return -ENOMEM; 872 873 kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL); 874 if (!kthread->preferred_affinity) { 875 ret = -ENOMEM; 876 goto out; 877 } 878 879 mutex_lock(&kthreads_hotplug_lock); 880 cpumask_copy(kthread->preferred_affinity, mask); 881 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 882 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 883 kthread_fetch_affinity(kthread, affinity); 884 885 /* It's safe because the task is inactive. */ 886 raw_spin_lock_irqsave(&p->pi_lock, flags); 887 do_set_cpus_allowed(p, affinity); 888 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 889 890 mutex_unlock(&kthreads_hotplug_lock); 891 out: 892 free_cpumask_var(affinity); 893 894 return ret; 895 } 896 897 /* 898 * Re-affine kthreads according to their preferences 899 * and the newly online CPU. The CPU down part is handled 900 * by select_fallback_rq() which default re-affines to 901 * housekeepers from other nodes in case the preferred 902 * affinity doesn't apply anymore. 903 */ 904 static int kthreads_online_cpu(unsigned int cpu) 905 { 906 cpumask_var_t affinity; 907 struct kthread *k; 908 int ret; 909 910 guard(mutex)(&kthreads_hotplug_lock); 911 912 if (list_empty(&kthreads_hotplug)) 913 return 0; 914 915 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 916 return -ENOMEM; 917 918 ret = 0; 919 920 list_for_each_entry(k, &kthreads_hotplug, hotplug_node) { 921 if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) || 922 kthread_is_per_cpu(k->task))) { 923 ret = -EINVAL; 924 continue; 925 } 926 kthread_fetch_affinity(k, affinity); 927 set_cpus_allowed_ptr(k->task, affinity); 928 } 929 930 free_cpumask_var(affinity); 931 932 return ret; 933 } 934 935 static int kthreads_init(void) 936 { 937 return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online", 938 kthreads_online_cpu, NULL); 939 } 940 early_initcall(kthreads_init); 941 942 void __kthread_init_worker(struct kthread_worker *worker, 943 const char *name, 944 struct lock_class_key *key) 945 { 946 memset(worker, 0, sizeof(struct kthread_worker)); 947 raw_spin_lock_init(&worker->lock); 948 lockdep_set_class_and_name(&worker->lock, key, name); 949 INIT_LIST_HEAD(&worker->work_list); 950 INIT_LIST_HEAD(&worker->delayed_work_list); 951 } 952 EXPORT_SYMBOL_GPL(__kthread_init_worker); 953 954 /** 955 * kthread_worker_fn - kthread function to process kthread_worker 956 * @worker_ptr: pointer to initialized kthread_worker 957 * 958 * This function implements the main cycle of kthread worker. It processes 959 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 960 * is empty. 961 * 962 * The works are not allowed to keep any locks, disable preemption or interrupts 963 * when they finish. There is defined a safe point for freezing when one work 964 * finishes and before a new one is started. 965 * 966 * Also the works must not be handled by more than one worker at the same time, 967 * see also kthread_queue_work(). 968 */ 969 int kthread_worker_fn(void *worker_ptr) 970 { 971 struct kthread_worker *worker = worker_ptr; 972 struct kthread_work *work; 973 974 /* 975 * FIXME: Update the check and remove the assignment when all kthread 976 * worker users are created using kthread_create_worker*() functions. 977 */ 978 WARN_ON(worker->task && worker->task != current); 979 worker->task = current; 980 981 if (worker->flags & KTW_FREEZABLE) 982 set_freezable(); 983 984 repeat: 985 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 986 987 if (kthread_should_stop()) { 988 __set_current_state(TASK_RUNNING); 989 raw_spin_lock_irq(&worker->lock); 990 worker->task = NULL; 991 raw_spin_unlock_irq(&worker->lock); 992 return 0; 993 } 994 995 work = NULL; 996 raw_spin_lock_irq(&worker->lock); 997 if (!list_empty(&worker->work_list)) { 998 work = list_first_entry(&worker->work_list, 999 struct kthread_work, node); 1000 list_del_init(&work->node); 1001 } 1002 worker->current_work = work; 1003 raw_spin_unlock_irq(&worker->lock); 1004 1005 if (work) { 1006 kthread_work_func_t func = work->func; 1007 __set_current_state(TASK_RUNNING); 1008 trace_sched_kthread_work_execute_start(work); 1009 work->func(work); 1010 /* 1011 * Avoid dereferencing work after this point. The trace 1012 * event only cares about the address. 1013 */ 1014 trace_sched_kthread_work_execute_end(work, func); 1015 } else if (!freezing(current)) { 1016 schedule(); 1017 } else { 1018 /* 1019 * Handle the case where the current remains 1020 * TASK_INTERRUPTIBLE. try_to_freeze() expects 1021 * the current to be TASK_RUNNING. 1022 */ 1023 __set_current_state(TASK_RUNNING); 1024 } 1025 1026 try_to_freeze(); 1027 cond_resched(); 1028 goto repeat; 1029 } 1030 EXPORT_SYMBOL_GPL(kthread_worker_fn); 1031 1032 static __printf(3, 0) struct kthread_worker * 1033 __kthread_create_worker_on_node(unsigned int flags, int node, 1034 const char namefmt[], va_list args) 1035 { 1036 struct kthread_worker *worker; 1037 struct task_struct *task; 1038 1039 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1040 if (!worker) 1041 return ERR_PTR(-ENOMEM); 1042 1043 kthread_init_worker(worker); 1044 1045 task = __kthread_create_on_node(kthread_worker_fn, worker, 1046 node, namefmt, args); 1047 if (IS_ERR(task)) 1048 goto fail_task; 1049 1050 worker->flags = flags; 1051 worker->task = task; 1052 1053 return worker; 1054 1055 fail_task: 1056 kfree(worker); 1057 return ERR_CAST(task); 1058 } 1059 1060 /** 1061 * kthread_create_worker_on_node - create a kthread worker 1062 * @flags: flags modifying the default behavior of the worker 1063 * @node: task structure for the thread is allocated on this node 1064 * @namefmt: printf-style name for the kthread worker (task). 1065 * 1066 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1067 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1068 * when the caller was killed by a fatal signal. 1069 */ 1070 struct kthread_worker * 1071 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...) 1072 { 1073 struct kthread_worker *worker; 1074 va_list args; 1075 1076 va_start(args, namefmt); 1077 worker = __kthread_create_worker_on_node(flags, node, namefmt, args); 1078 va_end(args); 1079 1080 return worker; 1081 } 1082 EXPORT_SYMBOL(kthread_create_worker_on_node); 1083 1084 /** 1085 * kthread_create_worker_on_cpu - create a kthread worker and bind it 1086 * to a given CPU and the associated NUMA node. 1087 * @cpu: CPU number 1088 * @flags: flags modifying the default behavior of the worker 1089 * @namefmt: printf-style name for the thread. Format is restricted 1090 * to "name.*%u". Code fills in cpu number. 1091 * 1092 * Use a valid CPU number if you want to bind the kthread worker 1093 * to the given CPU and the associated NUMA node. 1094 * 1095 * A good practice is to add the cpu number also into the worker name. 1096 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 1097 * 1098 * CPU hotplug: 1099 * The kthread worker API is simple and generic. It just provides a way 1100 * to create, use, and destroy workers. 1101 * 1102 * It is up to the API user how to handle CPU hotplug. They have to decide 1103 * how to handle pending work items, prevent queuing new ones, and 1104 * restore the functionality when the CPU goes off and on. There are a 1105 * few catches: 1106 * 1107 * - CPU affinity gets lost when it is scheduled on an offline CPU. 1108 * 1109 * - The worker might not exist when the CPU was off when the user 1110 * created the workers. 1111 * 1112 * Good practice is to implement two CPU hotplug callbacks and to 1113 * destroy/create the worker when the CPU goes down/up. 1114 * 1115 * Return: 1116 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1117 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1118 * when the caller was killed by a fatal signal. 1119 */ 1120 struct kthread_worker * 1121 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 1122 const char namefmt[]) 1123 { 1124 struct kthread_worker *worker; 1125 1126 worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu); 1127 if (!IS_ERR(worker)) 1128 kthread_bind(worker->task, cpu); 1129 1130 return worker; 1131 } 1132 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 1133 1134 /* 1135 * Returns true when the work could not be queued at the moment. 1136 * It happens when it is already pending in a worker list 1137 * or when it is being cancelled. 1138 */ 1139 static inline bool queuing_blocked(struct kthread_worker *worker, 1140 struct kthread_work *work) 1141 { 1142 lockdep_assert_held(&worker->lock); 1143 1144 return !list_empty(&work->node) || work->canceling; 1145 } 1146 1147 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 1148 struct kthread_work *work) 1149 { 1150 lockdep_assert_held(&worker->lock); 1151 WARN_ON_ONCE(!list_empty(&work->node)); 1152 /* Do not use a work with >1 worker, see kthread_queue_work() */ 1153 WARN_ON_ONCE(work->worker && work->worker != worker); 1154 } 1155 1156 /* insert @work before @pos in @worker */ 1157 static void kthread_insert_work(struct kthread_worker *worker, 1158 struct kthread_work *work, 1159 struct list_head *pos) 1160 { 1161 kthread_insert_work_sanity_check(worker, work); 1162 1163 trace_sched_kthread_work_queue_work(worker, work); 1164 1165 list_add_tail(&work->node, pos); 1166 work->worker = worker; 1167 if (!worker->current_work && likely(worker->task)) 1168 wake_up_process(worker->task); 1169 } 1170 1171 /** 1172 * kthread_queue_work - queue a kthread_work 1173 * @worker: target kthread_worker 1174 * @work: kthread_work to queue 1175 * 1176 * Queue @work to work processor @task for async execution. @task 1177 * must have been created with kthread_create_worker(). Returns %true 1178 * if @work was successfully queued, %false if it was already pending. 1179 * 1180 * Reinitialize the work if it needs to be used by another worker. 1181 * For example, when the worker was stopped and started again. 1182 */ 1183 bool kthread_queue_work(struct kthread_worker *worker, 1184 struct kthread_work *work) 1185 { 1186 bool ret = false; 1187 unsigned long flags; 1188 1189 raw_spin_lock_irqsave(&worker->lock, flags); 1190 if (!queuing_blocked(worker, work)) { 1191 kthread_insert_work(worker, work, &worker->work_list); 1192 ret = true; 1193 } 1194 raw_spin_unlock_irqrestore(&worker->lock, flags); 1195 return ret; 1196 } 1197 EXPORT_SYMBOL_GPL(kthread_queue_work); 1198 1199 /** 1200 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1201 * delayed work when the timer expires. 1202 * @t: pointer to the expired timer 1203 * 1204 * The format of the function is defined by struct timer_list. 1205 * It should have been called from irqsafe timer with irq already off. 1206 */ 1207 void kthread_delayed_work_timer_fn(struct timer_list *t) 1208 { 1209 struct kthread_delayed_work *dwork = timer_container_of(dwork, t, 1210 timer); 1211 struct kthread_work *work = &dwork->work; 1212 struct kthread_worker *worker = work->worker; 1213 unsigned long flags; 1214 1215 /* 1216 * This might happen when a pending work is reinitialized. 1217 * It means that it is used a wrong way. 1218 */ 1219 if (WARN_ON_ONCE(!worker)) 1220 return; 1221 1222 raw_spin_lock_irqsave(&worker->lock, flags); 1223 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1224 WARN_ON_ONCE(work->worker != worker); 1225 1226 /* Move the work from worker->delayed_work_list. */ 1227 WARN_ON_ONCE(list_empty(&work->node)); 1228 list_del_init(&work->node); 1229 if (!work->canceling) 1230 kthread_insert_work(worker, work, &worker->work_list); 1231 1232 raw_spin_unlock_irqrestore(&worker->lock, flags); 1233 } 1234 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1235 1236 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1237 struct kthread_delayed_work *dwork, 1238 unsigned long delay) 1239 { 1240 struct timer_list *timer = &dwork->timer; 1241 struct kthread_work *work = &dwork->work; 1242 1243 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1244 1245 /* 1246 * If @delay is 0, queue @dwork->work immediately. This is for 1247 * both optimization and correctness. The earliest @timer can 1248 * expire is on the closest next tick and delayed_work users depend 1249 * on that there's no such delay when @delay is 0. 1250 */ 1251 if (!delay) { 1252 kthread_insert_work(worker, work, &worker->work_list); 1253 return; 1254 } 1255 1256 /* Be paranoid and try to detect possible races already now. */ 1257 kthread_insert_work_sanity_check(worker, work); 1258 1259 list_add(&work->node, &worker->delayed_work_list); 1260 work->worker = worker; 1261 timer->expires = jiffies + delay; 1262 add_timer(timer); 1263 } 1264 1265 /** 1266 * kthread_queue_delayed_work - queue the associated kthread work 1267 * after a delay. 1268 * @worker: target kthread_worker 1269 * @dwork: kthread_delayed_work to queue 1270 * @delay: number of jiffies to wait before queuing 1271 * 1272 * If the work has not been pending it starts a timer that will queue 1273 * the work after the given @delay. If @delay is zero, it queues the 1274 * work immediately. 1275 * 1276 * Return: %false if the @work has already been pending. It means that 1277 * either the timer was running or the work was queued. It returns %true 1278 * otherwise. 1279 */ 1280 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1281 struct kthread_delayed_work *dwork, 1282 unsigned long delay) 1283 { 1284 struct kthread_work *work = &dwork->work; 1285 unsigned long flags; 1286 bool ret = false; 1287 1288 raw_spin_lock_irqsave(&worker->lock, flags); 1289 1290 if (!queuing_blocked(worker, work)) { 1291 __kthread_queue_delayed_work(worker, dwork, delay); 1292 ret = true; 1293 } 1294 1295 raw_spin_unlock_irqrestore(&worker->lock, flags); 1296 return ret; 1297 } 1298 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1299 1300 struct kthread_flush_work { 1301 struct kthread_work work; 1302 struct completion done; 1303 }; 1304 1305 static void kthread_flush_work_fn(struct kthread_work *work) 1306 { 1307 struct kthread_flush_work *fwork = 1308 container_of(work, struct kthread_flush_work, work); 1309 complete(&fwork->done); 1310 } 1311 1312 /** 1313 * kthread_flush_work - flush a kthread_work 1314 * @work: work to flush 1315 * 1316 * If @work is queued or executing, wait for it to finish execution. 1317 */ 1318 void kthread_flush_work(struct kthread_work *work) 1319 { 1320 struct kthread_flush_work fwork = { 1321 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1322 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1323 }; 1324 struct kthread_worker *worker; 1325 bool noop = false; 1326 1327 worker = work->worker; 1328 if (!worker) 1329 return; 1330 1331 raw_spin_lock_irq(&worker->lock); 1332 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1333 WARN_ON_ONCE(work->worker != worker); 1334 1335 if (!list_empty(&work->node)) 1336 kthread_insert_work(worker, &fwork.work, work->node.next); 1337 else if (worker->current_work == work) 1338 kthread_insert_work(worker, &fwork.work, 1339 worker->work_list.next); 1340 else 1341 noop = true; 1342 1343 raw_spin_unlock_irq(&worker->lock); 1344 1345 if (!noop) 1346 wait_for_completion(&fwork.done); 1347 } 1348 EXPORT_SYMBOL_GPL(kthread_flush_work); 1349 1350 /* 1351 * Make sure that the timer is neither set nor running and could 1352 * not manipulate the work list_head any longer. 1353 * 1354 * The function is called under worker->lock. The lock is temporary 1355 * released but the timer can't be set again in the meantime. 1356 */ 1357 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1358 unsigned long *flags) 1359 { 1360 struct kthread_delayed_work *dwork = 1361 container_of(work, struct kthread_delayed_work, work); 1362 struct kthread_worker *worker = work->worker; 1363 1364 /* 1365 * timer_delete_sync() must be called to make sure that the timer 1366 * callback is not running. The lock must be temporary released 1367 * to avoid a deadlock with the callback. In the meantime, 1368 * any queuing is blocked by setting the canceling counter. 1369 */ 1370 work->canceling++; 1371 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1372 timer_delete_sync(&dwork->timer); 1373 raw_spin_lock_irqsave(&worker->lock, *flags); 1374 work->canceling--; 1375 } 1376 1377 /* 1378 * This function removes the work from the worker queue. 1379 * 1380 * It is called under worker->lock. The caller must make sure that 1381 * the timer used by delayed work is not running, e.g. by calling 1382 * kthread_cancel_delayed_work_timer(). 1383 * 1384 * The work might still be in use when this function finishes. See the 1385 * current_work proceed by the worker. 1386 * 1387 * Return: %true if @work was pending and successfully canceled, 1388 * %false if @work was not pending 1389 */ 1390 static bool __kthread_cancel_work(struct kthread_work *work) 1391 { 1392 /* 1393 * Try to remove the work from a worker list. It might either 1394 * be from worker->work_list or from worker->delayed_work_list. 1395 */ 1396 if (!list_empty(&work->node)) { 1397 list_del_init(&work->node); 1398 return true; 1399 } 1400 1401 return false; 1402 } 1403 1404 /** 1405 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1406 * @worker: kthread worker to use 1407 * @dwork: kthread delayed work to queue 1408 * @delay: number of jiffies to wait before queuing 1409 * 1410 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1411 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1412 * @work is guaranteed to be queued immediately. 1413 * 1414 * Return: %false if @dwork was idle and queued, %true otherwise. 1415 * 1416 * A special case is when the work is being canceled in parallel. 1417 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1418 * or yet another kthread_mod_delayed_work() call. We let the other command 1419 * win and return %true here. The return value can be used for reference 1420 * counting and the number of queued works stays the same. Anyway, the caller 1421 * is supposed to synchronize these operations a reasonable way. 1422 * 1423 * This function is safe to call from any context including IRQ handler. 1424 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1425 * for details. 1426 */ 1427 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1428 struct kthread_delayed_work *dwork, 1429 unsigned long delay) 1430 { 1431 struct kthread_work *work = &dwork->work; 1432 unsigned long flags; 1433 int ret; 1434 1435 raw_spin_lock_irqsave(&worker->lock, flags); 1436 1437 /* Do not bother with canceling when never queued. */ 1438 if (!work->worker) { 1439 ret = false; 1440 goto fast_queue; 1441 } 1442 1443 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1444 WARN_ON_ONCE(work->worker != worker); 1445 1446 /* 1447 * Temporary cancel the work but do not fight with another command 1448 * that is canceling the work as well. 1449 * 1450 * It is a bit tricky because of possible races with another 1451 * mod_delayed_work() and cancel_delayed_work() callers. 1452 * 1453 * The timer must be canceled first because worker->lock is released 1454 * when doing so. But the work can be removed from the queue (list) 1455 * only when it can be queued again so that the return value can 1456 * be used for reference counting. 1457 */ 1458 kthread_cancel_delayed_work_timer(work, &flags); 1459 if (work->canceling) { 1460 /* The number of works in the queue does not change. */ 1461 ret = true; 1462 goto out; 1463 } 1464 ret = __kthread_cancel_work(work); 1465 1466 fast_queue: 1467 __kthread_queue_delayed_work(worker, dwork, delay); 1468 out: 1469 raw_spin_unlock_irqrestore(&worker->lock, flags); 1470 return ret; 1471 } 1472 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1473 1474 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1475 { 1476 struct kthread_worker *worker = work->worker; 1477 unsigned long flags; 1478 int ret = false; 1479 1480 if (!worker) 1481 goto out; 1482 1483 raw_spin_lock_irqsave(&worker->lock, flags); 1484 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1485 WARN_ON_ONCE(work->worker != worker); 1486 1487 if (is_dwork) 1488 kthread_cancel_delayed_work_timer(work, &flags); 1489 1490 ret = __kthread_cancel_work(work); 1491 1492 if (worker->current_work != work) 1493 goto out_fast; 1494 1495 /* 1496 * The work is in progress and we need to wait with the lock released. 1497 * In the meantime, block any queuing by setting the canceling counter. 1498 */ 1499 work->canceling++; 1500 raw_spin_unlock_irqrestore(&worker->lock, flags); 1501 kthread_flush_work(work); 1502 raw_spin_lock_irqsave(&worker->lock, flags); 1503 work->canceling--; 1504 1505 out_fast: 1506 raw_spin_unlock_irqrestore(&worker->lock, flags); 1507 out: 1508 return ret; 1509 } 1510 1511 /** 1512 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1513 * @work: the kthread work to cancel 1514 * 1515 * Cancel @work and wait for its execution to finish. This function 1516 * can be used even if the work re-queues itself. On return from this 1517 * function, @work is guaranteed to be not pending or executing on any CPU. 1518 * 1519 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1520 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1521 * 1522 * The caller must ensure that the worker on which @work was last 1523 * queued can't be destroyed before this function returns. 1524 * 1525 * Return: %true if @work was pending, %false otherwise. 1526 */ 1527 bool kthread_cancel_work_sync(struct kthread_work *work) 1528 { 1529 return __kthread_cancel_work_sync(work, false); 1530 } 1531 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1532 1533 /** 1534 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1535 * wait for it to finish. 1536 * @dwork: the kthread delayed work to cancel 1537 * 1538 * This is kthread_cancel_work_sync() for delayed works. 1539 * 1540 * Return: %true if @dwork was pending, %false otherwise. 1541 */ 1542 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1543 { 1544 return __kthread_cancel_work_sync(&dwork->work, true); 1545 } 1546 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1547 1548 /** 1549 * kthread_flush_worker - flush all current works on a kthread_worker 1550 * @worker: worker to flush 1551 * 1552 * Wait until all currently executing or pending works on @worker are 1553 * finished. 1554 */ 1555 void kthread_flush_worker(struct kthread_worker *worker) 1556 { 1557 struct kthread_flush_work fwork = { 1558 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1559 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1560 }; 1561 1562 kthread_queue_work(worker, &fwork.work); 1563 wait_for_completion(&fwork.done); 1564 } 1565 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1566 1567 /** 1568 * kthread_destroy_worker - destroy a kthread worker 1569 * @worker: worker to be destroyed 1570 * 1571 * Flush and destroy @worker. The simple flush is enough because the kthread 1572 * worker API is used only in trivial scenarios. There are no multi-step state 1573 * machines needed. 1574 * 1575 * Note that this function is not responsible for handling delayed work, so 1576 * caller should be responsible for queuing or canceling all delayed work items 1577 * before invoke this function. 1578 */ 1579 void kthread_destroy_worker(struct kthread_worker *worker) 1580 { 1581 struct task_struct *task; 1582 1583 task = worker->task; 1584 if (WARN_ON(!task)) 1585 return; 1586 1587 kthread_flush_worker(worker); 1588 kthread_stop(task); 1589 WARN_ON(!list_empty(&worker->delayed_work_list)); 1590 WARN_ON(!list_empty(&worker->work_list)); 1591 kfree(worker); 1592 } 1593 EXPORT_SYMBOL(kthread_destroy_worker); 1594 1595 /** 1596 * kthread_use_mm - make the calling kthread operate on an address space 1597 * @mm: address space to operate on 1598 */ 1599 void kthread_use_mm(struct mm_struct *mm) 1600 { 1601 struct mm_struct *active_mm; 1602 struct task_struct *tsk = current; 1603 1604 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1605 WARN_ON_ONCE(tsk->mm); 1606 1607 /* 1608 * It is possible for mm to be the same as tsk->active_mm, but 1609 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1610 * because these references are not equivalent. 1611 */ 1612 mmgrab(mm); 1613 1614 task_lock(tsk); 1615 /* Hold off tlb flush IPIs while switching mm's */ 1616 local_irq_disable(); 1617 active_mm = tsk->active_mm; 1618 tsk->active_mm = mm; 1619 tsk->mm = mm; 1620 membarrier_update_current_mm(mm); 1621 switch_mm_irqs_off(active_mm, mm, tsk); 1622 local_irq_enable(); 1623 task_unlock(tsk); 1624 #ifdef finish_arch_post_lock_switch 1625 finish_arch_post_lock_switch(); 1626 #endif 1627 1628 /* 1629 * When a kthread starts operating on an address space, the loop 1630 * in membarrier_{private,global}_expedited() may not observe 1631 * that tsk->mm, and not issue an IPI. Membarrier requires a 1632 * memory barrier after storing to tsk->mm, before accessing 1633 * user-space memory. A full memory barrier for membarrier 1634 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1635 * mmdrop_lazy_tlb(). 1636 */ 1637 mmdrop_lazy_tlb(active_mm); 1638 } 1639 EXPORT_SYMBOL_GPL(kthread_use_mm); 1640 1641 /** 1642 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1643 * @mm: address space to operate on 1644 */ 1645 void kthread_unuse_mm(struct mm_struct *mm) 1646 { 1647 struct task_struct *tsk = current; 1648 1649 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1650 WARN_ON_ONCE(!tsk->mm); 1651 1652 task_lock(tsk); 1653 /* 1654 * When a kthread stops operating on an address space, the loop 1655 * in membarrier_{private,global}_expedited() may not observe 1656 * that tsk->mm, and not issue an IPI. Membarrier requires a 1657 * memory barrier after accessing user-space memory, before 1658 * clearing tsk->mm. 1659 */ 1660 smp_mb__after_spinlock(); 1661 local_irq_disable(); 1662 tsk->mm = NULL; 1663 membarrier_update_current_mm(NULL); 1664 mmgrab_lazy_tlb(mm); 1665 /* active_mm is still 'mm' */ 1666 enter_lazy_tlb(mm, tsk); 1667 local_irq_enable(); 1668 task_unlock(tsk); 1669 1670 mmdrop(mm); 1671 } 1672 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1673 1674 #ifdef CONFIG_BLK_CGROUP 1675 /** 1676 * kthread_associate_blkcg - associate blkcg to current kthread 1677 * @css: the cgroup info 1678 * 1679 * Current thread must be a kthread. The thread is running jobs on behalf of 1680 * other threads. In some cases, we expect the jobs attach cgroup info of 1681 * original threads instead of that of current thread. This function stores 1682 * original thread's cgroup info in current kthread context for later 1683 * retrieval. 1684 */ 1685 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1686 { 1687 struct kthread *kthread; 1688 1689 if (!(current->flags & PF_KTHREAD)) 1690 return; 1691 kthread = to_kthread(current); 1692 if (!kthread) 1693 return; 1694 1695 if (kthread->blkcg_css) { 1696 css_put(kthread->blkcg_css); 1697 kthread->blkcg_css = NULL; 1698 } 1699 if (css) { 1700 css_get(css); 1701 kthread->blkcg_css = css; 1702 } 1703 } 1704 EXPORT_SYMBOL(kthread_associate_blkcg); 1705 1706 /** 1707 * kthread_blkcg - get associated blkcg css of current kthread 1708 * 1709 * Current thread must be a kthread. 1710 */ 1711 struct cgroup_subsys_state *kthread_blkcg(void) 1712 { 1713 struct kthread *kthread; 1714 1715 if (current->flags & PF_KTHREAD) { 1716 kthread = to_kthread(current); 1717 if (kthread) 1718 return kthread->blkcg_css; 1719 } 1720 return NULL; 1721 } 1722 #endif 1723