1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 static LIST_HEAD(kthreads_hotplug); 39 static DEFINE_MUTEX(kthreads_hotplug_lock); 40 41 struct kthread_create_info 42 { 43 /* Information passed to kthread() from kthreadd. */ 44 char *full_name; 45 int (*threadfn)(void *data); 46 void *data; 47 int node; 48 49 /* Result passed back to kthread_create() from kthreadd. */ 50 struct task_struct *result; 51 struct completion *done; 52 53 struct list_head list; 54 }; 55 56 struct kthread { 57 unsigned long flags; 58 unsigned int cpu; 59 unsigned int node; 60 int started; 61 int result; 62 int (*threadfn)(void *); 63 void *data; 64 struct completion parked; 65 struct completion exited; 66 #ifdef CONFIG_BLK_CGROUP 67 struct cgroup_subsys_state *blkcg_css; 68 #endif 69 /* To store the full name if task comm is truncated. */ 70 char *full_name; 71 struct task_struct *task; 72 struct list_head hotplug_node; 73 struct cpumask *preferred_affinity; 74 }; 75 76 enum KTHREAD_BITS { 77 KTHREAD_IS_PER_CPU = 0, 78 KTHREAD_SHOULD_STOP, 79 KTHREAD_SHOULD_PARK, 80 }; 81 82 static inline struct kthread *to_kthread(struct task_struct *k) 83 { 84 WARN_ON(!(k->flags & PF_KTHREAD)); 85 return k->worker_private; 86 } 87 88 /* 89 * Variant of to_kthread() that doesn't assume @p is a kthread. 90 * 91 * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will 92 * always remain a kthread. For kthreads p->worker_private always 93 * points to a struct kthread. For tasks that are not kthreads 94 * p->worker_private is used to point to other things. 95 * 96 * Return NULL for any task that is not a kthread. 97 */ 98 static inline struct kthread *__to_kthread(struct task_struct *p) 99 { 100 void *kthread = p->worker_private; 101 if (kthread && !(p->flags & PF_KTHREAD)) 102 kthread = NULL; 103 return kthread; 104 } 105 106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 107 { 108 struct kthread *kthread = to_kthread(tsk); 109 110 if (!kthread || !kthread->full_name) { 111 strscpy(buf, tsk->comm, buf_size); 112 return; 113 } 114 115 strscpy_pad(buf, kthread->full_name, buf_size); 116 } 117 118 bool set_kthread_struct(struct task_struct *p) 119 { 120 struct kthread *kthread; 121 122 if (WARN_ON_ONCE(to_kthread(p))) 123 return false; 124 125 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 126 if (!kthread) 127 return false; 128 129 init_completion(&kthread->exited); 130 init_completion(&kthread->parked); 131 INIT_LIST_HEAD(&kthread->hotplug_node); 132 p->vfork_done = &kthread->exited; 133 134 kthread->task = p; 135 kthread->node = tsk_fork_get_node(current); 136 p->worker_private = kthread; 137 return true; 138 } 139 140 void free_kthread_struct(struct task_struct *k) 141 { 142 struct kthread *kthread; 143 144 /* 145 * Can be NULL if kmalloc() in set_kthread_struct() failed. 146 */ 147 kthread = to_kthread(k); 148 if (!kthread) 149 return; 150 151 #ifdef CONFIG_BLK_CGROUP 152 WARN_ON_ONCE(kthread->blkcg_css); 153 #endif 154 k->worker_private = NULL; 155 kfree(kthread->full_name); 156 kfree(kthread); 157 } 158 159 /** 160 * kthread_should_stop - should this kthread return now? 161 * 162 * When someone calls kthread_stop() on your kthread, it will be woken 163 * and this will return true. You should then return, and your return 164 * value will be passed through to kthread_stop(). 165 */ 166 bool kthread_should_stop(void) 167 { 168 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 169 } 170 EXPORT_SYMBOL(kthread_should_stop); 171 172 static bool __kthread_should_park(struct task_struct *k) 173 { 174 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 175 } 176 177 /** 178 * kthread_should_park - should this kthread park now? 179 * 180 * When someone calls kthread_park() on your kthread, it will be woken 181 * and this will return true. You should then do the necessary 182 * cleanup and call kthread_parkme() 183 * 184 * Similar to kthread_should_stop(), but this keeps the thread alive 185 * and in a park position. kthread_unpark() "restarts" the thread and 186 * calls the thread function again. 187 */ 188 bool kthread_should_park(void) 189 { 190 return __kthread_should_park(current); 191 } 192 EXPORT_SYMBOL_GPL(kthread_should_park); 193 194 bool kthread_should_stop_or_park(void) 195 { 196 struct kthread *kthread = __to_kthread(current); 197 198 if (!kthread) 199 return false; 200 201 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 202 } 203 204 /** 205 * kthread_freezable_should_stop - should this freezable kthread return now? 206 * @was_frozen: optional out parameter, indicates whether %current was frozen 207 * 208 * kthread_should_stop() for freezable kthreads, which will enter 209 * refrigerator if necessary. This function is safe from kthread_stop() / 210 * freezer deadlock and freezable kthreads should use this function instead 211 * of calling try_to_freeze() directly. 212 */ 213 bool kthread_freezable_should_stop(bool *was_frozen) 214 { 215 bool frozen = false; 216 217 might_sleep(); 218 219 if (unlikely(freezing(current))) 220 frozen = __refrigerator(true); 221 222 if (was_frozen) 223 *was_frozen = frozen; 224 225 return kthread_should_stop(); 226 } 227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 228 229 /** 230 * kthread_func - return the function specified on kthread creation 231 * @task: kthread task in question 232 * 233 * Returns NULL if the task is not a kthread. 234 */ 235 void *kthread_func(struct task_struct *task) 236 { 237 struct kthread *kthread = __to_kthread(task); 238 if (kthread) 239 return kthread->threadfn; 240 return NULL; 241 } 242 EXPORT_SYMBOL_GPL(kthread_func); 243 244 /** 245 * kthread_data - return data value specified on kthread creation 246 * @task: kthread task in question 247 * 248 * Return the data value specified when kthread @task was created. 249 * The caller is responsible for ensuring the validity of @task when 250 * calling this function. 251 */ 252 void *kthread_data(struct task_struct *task) 253 { 254 return to_kthread(task)->data; 255 } 256 EXPORT_SYMBOL_GPL(kthread_data); 257 258 /** 259 * kthread_probe_data - speculative version of kthread_data() 260 * @task: possible kthread task in question 261 * 262 * @task could be a kthread task. Return the data value specified when it 263 * was created if accessible. If @task isn't a kthread task or its data is 264 * inaccessible for any reason, %NULL is returned. This function requires 265 * that @task itself is safe to dereference. 266 */ 267 void *kthread_probe_data(struct task_struct *task) 268 { 269 struct kthread *kthread = __to_kthread(task); 270 void *data = NULL; 271 272 if (kthread) 273 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 274 return data; 275 } 276 277 static void __kthread_parkme(struct kthread *self) 278 { 279 for (;;) { 280 /* 281 * TASK_PARKED is a special state; we must serialize against 282 * possible pending wakeups to avoid store-store collisions on 283 * task->state. 284 * 285 * Such a collision might possibly result in the task state 286 * changin from TASK_PARKED and us failing the 287 * wait_task_inactive() in kthread_park(). 288 */ 289 set_special_state(TASK_PARKED); 290 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 291 break; 292 293 /* 294 * Thread is going to call schedule(), do not preempt it, 295 * or the caller of kthread_park() may spend more time in 296 * wait_task_inactive(). 297 */ 298 preempt_disable(); 299 complete(&self->parked); 300 schedule_preempt_disabled(); 301 preempt_enable(); 302 } 303 __set_current_state(TASK_RUNNING); 304 } 305 306 void kthread_parkme(void) 307 { 308 __kthread_parkme(to_kthread(current)); 309 } 310 EXPORT_SYMBOL_GPL(kthread_parkme); 311 312 /** 313 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 314 * @result: The integer value to return to kthread_stop(). 315 * 316 * While kthread_exit can be called directly, it exists so that 317 * functions which do some additional work in non-modular code such as 318 * module_put_and_kthread_exit can be implemented. 319 * 320 * Does not return. 321 */ 322 void __noreturn kthread_exit(long result) 323 { 324 struct kthread *kthread = to_kthread(current); 325 kthread->result = result; 326 if (!list_empty(&kthread->hotplug_node)) { 327 mutex_lock(&kthreads_hotplug_lock); 328 list_del(&kthread->hotplug_node); 329 mutex_unlock(&kthreads_hotplug_lock); 330 331 if (kthread->preferred_affinity) { 332 kfree(kthread->preferred_affinity); 333 kthread->preferred_affinity = NULL; 334 } 335 } 336 do_exit(0); 337 } 338 EXPORT_SYMBOL(kthread_exit); 339 340 /** 341 * kthread_complete_and_exit - Exit the current kthread. 342 * @comp: Completion to complete 343 * @code: The integer value to return to kthread_stop(). 344 * 345 * If present, complete @comp and then return code to kthread_stop(). 346 * 347 * A kernel thread whose module may be removed after the completion of 348 * @comp can use this function to exit safely. 349 * 350 * Does not return. 351 */ 352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 353 { 354 if (comp) 355 complete(comp); 356 357 kthread_exit(code); 358 } 359 EXPORT_SYMBOL(kthread_complete_and_exit); 360 361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask) 362 { 363 const struct cpumask *pref; 364 365 if (kthread->preferred_affinity) { 366 pref = kthread->preferred_affinity; 367 } else { 368 if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE)) 369 return; 370 pref = cpumask_of_node(kthread->node); 371 } 372 373 cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD)); 374 if (cpumask_empty(cpumask)) 375 cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD)); 376 } 377 378 static void kthread_affine_node(void) 379 { 380 struct kthread *kthread = to_kthread(current); 381 cpumask_var_t affinity; 382 383 WARN_ON_ONCE(kthread_is_per_cpu(current)); 384 385 if (kthread->node == NUMA_NO_NODE) { 386 housekeeping_affine(current, HK_TYPE_KTHREAD); 387 } else { 388 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) { 389 WARN_ON_ONCE(1); 390 return; 391 } 392 393 mutex_lock(&kthreads_hotplug_lock); 394 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 395 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 396 /* 397 * The node cpumask is racy when read from kthread() but: 398 * - a racing CPU going down will either fail on the subsequent 399 * call to set_cpus_allowed_ptr() or be migrated to housekeepers 400 * afterwards by the scheduler. 401 * - a racing CPU going up will be handled by kthreads_online_cpu() 402 */ 403 kthread_fetch_affinity(kthread, affinity); 404 set_cpus_allowed_ptr(current, affinity); 405 mutex_unlock(&kthreads_hotplug_lock); 406 407 free_cpumask_var(affinity); 408 } 409 } 410 411 static int kthread(void *_create) 412 { 413 static const struct sched_param param = { .sched_priority = 0 }; 414 /* Copy data: it's on kthread's stack */ 415 struct kthread_create_info *create = _create; 416 int (*threadfn)(void *data) = create->threadfn; 417 void *data = create->data; 418 struct completion *done; 419 struct kthread *self; 420 int ret; 421 422 self = to_kthread(current); 423 424 /* Release the structure when caller killed by a fatal signal. */ 425 done = xchg(&create->done, NULL); 426 if (!done) { 427 kfree(create->full_name); 428 kfree(create); 429 kthread_exit(-EINTR); 430 } 431 432 self->full_name = create->full_name; 433 self->threadfn = threadfn; 434 self->data = data; 435 436 /* 437 * The new thread inherited kthreadd's priority and CPU mask. Reset 438 * back to default in case they have been changed. 439 */ 440 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 441 442 /* OK, tell user we're spawned, wait for stop or wakeup */ 443 __set_current_state(TASK_UNINTERRUPTIBLE); 444 create->result = current; 445 /* 446 * Thread is going to call schedule(), do not preempt it, 447 * or the creator may spend more time in wait_task_inactive(). 448 */ 449 preempt_disable(); 450 complete(done); 451 schedule_preempt_disabled(); 452 preempt_enable(); 453 454 self->started = 1; 455 456 if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity) 457 kthread_affine_node(); 458 459 ret = -EINTR; 460 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 461 cgroup_kthread_ready(); 462 __kthread_parkme(self); 463 ret = threadfn(data); 464 } 465 kthread_exit(ret); 466 } 467 468 /* called from kernel_clone() to get node information for about to be created task */ 469 int tsk_fork_get_node(struct task_struct *tsk) 470 { 471 #ifdef CONFIG_NUMA 472 if (tsk == kthreadd_task) 473 return tsk->pref_node_fork; 474 #endif 475 return NUMA_NO_NODE; 476 } 477 478 static void create_kthread(struct kthread_create_info *create) 479 { 480 int pid; 481 482 #ifdef CONFIG_NUMA 483 current->pref_node_fork = create->node; 484 #endif 485 /* We want our own signal handler (we take no signals by default). */ 486 pid = kernel_thread(kthread, create, create->full_name, 487 CLONE_FS | CLONE_FILES | SIGCHLD); 488 if (pid < 0) { 489 /* Release the structure when caller killed by a fatal signal. */ 490 struct completion *done = xchg(&create->done, NULL); 491 492 kfree(create->full_name); 493 if (!done) { 494 kfree(create); 495 return; 496 } 497 create->result = ERR_PTR(pid); 498 complete(done); 499 } 500 } 501 502 static __printf(4, 0) 503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 504 void *data, int node, 505 const char namefmt[], 506 va_list args) 507 { 508 DECLARE_COMPLETION_ONSTACK(done); 509 struct task_struct *task; 510 struct kthread_create_info *create = kmalloc(sizeof(*create), 511 GFP_KERNEL); 512 513 if (!create) 514 return ERR_PTR(-ENOMEM); 515 create->threadfn = threadfn; 516 create->data = data; 517 create->node = node; 518 create->done = &done; 519 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 520 if (!create->full_name) { 521 task = ERR_PTR(-ENOMEM); 522 goto free_create; 523 } 524 525 spin_lock(&kthread_create_lock); 526 list_add_tail(&create->list, &kthread_create_list); 527 spin_unlock(&kthread_create_lock); 528 529 wake_up_process(kthreadd_task); 530 /* 531 * Wait for completion in killable state, for I might be chosen by 532 * the OOM killer while kthreadd is trying to allocate memory for 533 * new kernel thread. 534 */ 535 if (unlikely(wait_for_completion_killable(&done))) { 536 /* 537 * If I was killed by a fatal signal before kthreadd (or new 538 * kernel thread) calls complete(), leave the cleanup of this 539 * structure to that thread. 540 */ 541 if (xchg(&create->done, NULL)) 542 return ERR_PTR(-EINTR); 543 /* 544 * kthreadd (or new kernel thread) will call complete() 545 * shortly. 546 */ 547 wait_for_completion(&done); 548 } 549 task = create->result; 550 free_create: 551 kfree(create); 552 return task; 553 } 554 555 /** 556 * kthread_create_on_node - create a kthread. 557 * @threadfn: the function to run until signal_pending(current). 558 * @data: data ptr for @threadfn. 559 * @node: task and thread structures for the thread are allocated on this node 560 * @namefmt: printf-style name for the thread. 561 * 562 * Description: This helper function creates and names a kernel 563 * thread. The thread will be stopped: use wake_up_process() to start 564 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 565 * is affine to all CPUs. 566 * 567 * If thread is going to be bound on a particular cpu, give its node 568 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 569 * When woken, the thread will run @threadfn() with @data as its 570 * argument. @threadfn() can either return directly if it is a 571 * standalone thread for which no one will call kthread_stop(), or 572 * return when 'kthread_should_stop()' is true (which means 573 * kthread_stop() has been called). The return value should be zero 574 * or a negative error number; it will be passed to kthread_stop(). 575 * 576 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 577 */ 578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 579 void *data, int node, 580 const char namefmt[], 581 ...) 582 { 583 struct task_struct *task; 584 va_list args; 585 586 va_start(args, namefmt); 587 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 588 va_end(args); 589 590 return task; 591 } 592 EXPORT_SYMBOL(kthread_create_on_node); 593 594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 595 { 596 if (!wait_task_inactive(p, state)) { 597 WARN_ON(1); 598 return; 599 } 600 601 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) 602 set_cpus_allowed_force(p, mask); 603 604 /* It's safe because the task is inactive. */ 605 p->flags |= PF_NO_SETAFFINITY; 606 } 607 608 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 609 { 610 __kthread_bind_mask(p, cpumask_of(cpu), state); 611 } 612 613 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 614 { 615 struct kthread *kthread = to_kthread(p); 616 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 617 WARN_ON_ONCE(kthread->started); 618 } 619 620 /** 621 * kthread_bind - bind a just-created kthread to a cpu. 622 * @p: thread created by kthread_create(). 623 * @cpu: cpu (might not be online, must be possible) for @k to run on. 624 * 625 * Description: This function is equivalent to set_cpus_allowed(), 626 * except that @cpu doesn't need to be online, and the thread must be 627 * stopped (i.e., just returned from kthread_create()). 628 */ 629 void kthread_bind(struct task_struct *p, unsigned int cpu) 630 { 631 struct kthread *kthread = to_kthread(p); 632 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 633 WARN_ON_ONCE(kthread->started); 634 } 635 EXPORT_SYMBOL(kthread_bind); 636 637 /** 638 * kthread_create_on_cpu - Create a cpu bound kthread 639 * @threadfn: the function to run until signal_pending(current). 640 * @data: data ptr for @threadfn. 641 * @cpu: The cpu on which the thread should be bound, 642 * @namefmt: printf-style name for the thread. Format is restricted 643 * to "name.*%u". Code fills in cpu number. 644 * 645 * Description: This helper function creates and names a kernel thread 646 */ 647 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 648 void *data, unsigned int cpu, 649 const char *namefmt) 650 { 651 struct task_struct *p; 652 653 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 654 cpu); 655 if (IS_ERR(p)) 656 return p; 657 kthread_bind(p, cpu); 658 /* CPU hotplug need to bind once again when unparking the thread. */ 659 to_kthread(p)->cpu = cpu; 660 return p; 661 } 662 EXPORT_SYMBOL(kthread_create_on_cpu); 663 664 void kthread_set_per_cpu(struct task_struct *k, int cpu) 665 { 666 struct kthread *kthread = to_kthread(k); 667 if (!kthread) 668 return; 669 670 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 671 672 if (cpu < 0) { 673 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 674 return; 675 } 676 677 kthread->cpu = cpu; 678 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 679 } 680 681 bool kthread_is_per_cpu(struct task_struct *p) 682 { 683 struct kthread *kthread = __to_kthread(p); 684 if (!kthread) 685 return false; 686 687 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 688 } 689 690 /** 691 * kthread_unpark - unpark a thread created by kthread_create(). 692 * @k: thread created by kthread_create(). 693 * 694 * Sets kthread_should_park() for @k to return false, wakes it, and 695 * waits for it to return. If the thread is marked percpu then its 696 * bound to the cpu again. 697 */ 698 void kthread_unpark(struct task_struct *k) 699 { 700 struct kthread *kthread = to_kthread(k); 701 702 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 703 return; 704 /* 705 * Newly created kthread was parked when the CPU was offline. 706 * The binding was lost and we need to set it again. 707 */ 708 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 709 __kthread_bind(k, kthread->cpu, TASK_PARKED); 710 711 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 712 /* 713 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 714 */ 715 wake_up_state(k, TASK_PARKED); 716 } 717 EXPORT_SYMBOL_GPL(kthread_unpark); 718 719 /** 720 * kthread_park - park a thread created by kthread_create(). 721 * @k: thread created by kthread_create(). 722 * 723 * Sets kthread_should_park() for @k to return true, wakes it, and 724 * waits for it to return. This can also be called after kthread_create() 725 * instead of calling wake_up_process(): the thread will park without 726 * calling threadfn(). 727 * 728 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 729 * If called by the kthread itself just the park bit is set. 730 */ 731 int kthread_park(struct task_struct *k) 732 { 733 struct kthread *kthread = to_kthread(k); 734 735 if (WARN_ON(k->flags & PF_EXITING)) 736 return -ENOSYS; 737 738 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 739 return -EBUSY; 740 741 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 742 if (k != current) { 743 wake_up_process(k); 744 /* 745 * Wait for __kthread_parkme() to complete(), this means we 746 * _will_ have TASK_PARKED and are about to call schedule(). 747 */ 748 wait_for_completion(&kthread->parked); 749 /* 750 * Now wait for that schedule() to complete and the task to 751 * get scheduled out. 752 */ 753 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 754 } 755 756 return 0; 757 } 758 EXPORT_SYMBOL_GPL(kthread_park); 759 760 /** 761 * kthread_stop - stop a thread created by kthread_create(). 762 * @k: thread created by kthread_create(). 763 * 764 * Sets kthread_should_stop() for @k to return true, wakes it, and 765 * waits for it to exit. This can also be called after kthread_create() 766 * instead of calling wake_up_process(): the thread will exit without 767 * calling threadfn(). 768 * 769 * If threadfn() may call kthread_exit() itself, the caller must ensure 770 * task_struct can't go away. 771 * 772 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 773 * was never called. 774 */ 775 int kthread_stop(struct task_struct *k) 776 { 777 struct kthread *kthread; 778 int ret; 779 780 trace_sched_kthread_stop(k); 781 782 get_task_struct(k); 783 kthread = to_kthread(k); 784 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 785 kthread_unpark(k); 786 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 787 wake_up_process(k); 788 wait_for_completion(&kthread->exited); 789 ret = kthread->result; 790 put_task_struct(k); 791 792 trace_sched_kthread_stop_ret(ret); 793 return ret; 794 } 795 EXPORT_SYMBOL(kthread_stop); 796 797 /** 798 * kthread_stop_put - stop a thread and put its task struct 799 * @k: thread created by kthread_create(). 800 * 801 * Stops a thread created by kthread_create() and put its task_struct. 802 * Only use when holding an extra task struct reference obtained by 803 * calling get_task_struct(). 804 */ 805 int kthread_stop_put(struct task_struct *k) 806 { 807 int ret; 808 809 ret = kthread_stop(k); 810 put_task_struct(k); 811 return ret; 812 } 813 EXPORT_SYMBOL(kthread_stop_put); 814 815 int kthreadd(void *unused) 816 { 817 static const char comm[TASK_COMM_LEN] = "kthreadd"; 818 struct task_struct *tsk = current; 819 820 /* Setup a clean context for our children to inherit. */ 821 set_task_comm(tsk, comm); 822 ignore_signals(tsk); 823 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 824 set_mems_allowed(node_states[N_MEMORY]); 825 826 current->flags |= PF_NOFREEZE; 827 cgroup_init_kthreadd(); 828 829 for (;;) { 830 set_current_state(TASK_INTERRUPTIBLE); 831 if (list_empty(&kthread_create_list)) 832 schedule(); 833 __set_current_state(TASK_RUNNING); 834 835 spin_lock(&kthread_create_lock); 836 while (!list_empty(&kthread_create_list)) { 837 struct kthread_create_info *create; 838 839 create = list_entry(kthread_create_list.next, 840 struct kthread_create_info, list); 841 list_del_init(&create->list); 842 spin_unlock(&kthread_create_lock); 843 844 create_kthread(create); 845 846 spin_lock(&kthread_create_lock); 847 } 848 spin_unlock(&kthread_create_lock); 849 } 850 851 return 0; 852 } 853 854 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask) 855 { 856 struct kthread *kthread = to_kthread(p); 857 cpumask_var_t affinity; 858 int ret = 0; 859 860 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) { 861 WARN_ON(1); 862 return -EINVAL; 863 } 864 865 WARN_ON_ONCE(kthread->preferred_affinity); 866 867 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 868 return -ENOMEM; 869 870 kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL); 871 if (!kthread->preferred_affinity) { 872 ret = -ENOMEM; 873 goto out; 874 } 875 876 mutex_lock(&kthreads_hotplug_lock); 877 cpumask_copy(kthread->preferred_affinity, mask); 878 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 879 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 880 kthread_fetch_affinity(kthread, affinity); 881 882 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) 883 set_cpus_allowed_force(p, affinity); 884 885 mutex_unlock(&kthreads_hotplug_lock); 886 out: 887 free_cpumask_var(affinity); 888 889 return ret; 890 } 891 EXPORT_SYMBOL_GPL(kthread_affine_preferred); 892 893 /* 894 * Re-affine kthreads according to their preferences 895 * and the newly online CPU. The CPU down part is handled 896 * by select_fallback_rq() which default re-affines to 897 * housekeepers from other nodes in case the preferred 898 * affinity doesn't apply anymore. 899 */ 900 static int kthreads_online_cpu(unsigned int cpu) 901 { 902 cpumask_var_t affinity; 903 struct kthread *k; 904 int ret; 905 906 guard(mutex)(&kthreads_hotplug_lock); 907 908 if (list_empty(&kthreads_hotplug)) 909 return 0; 910 911 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 912 return -ENOMEM; 913 914 ret = 0; 915 916 list_for_each_entry(k, &kthreads_hotplug, hotplug_node) { 917 if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) || 918 kthread_is_per_cpu(k->task))) { 919 ret = -EINVAL; 920 continue; 921 } 922 kthread_fetch_affinity(k, affinity); 923 set_cpus_allowed_ptr(k->task, affinity); 924 } 925 926 free_cpumask_var(affinity); 927 928 return ret; 929 } 930 931 static int kthreads_init(void) 932 { 933 return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online", 934 kthreads_online_cpu, NULL); 935 } 936 early_initcall(kthreads_init); 937 938 void __kthread_init_worker(struct kthread_worker *worker, 939 const char *name, 940 struct lock_class_key *key) 941 { 942 memset(worker, 0, sizeof(struct kthread_worker)); 943 raw_spin_lock_init(&worker->lock); 944 lockdep_set_class_and_name(&worker->lock, key, name); 945 INIT_LIST_HEAD(&worker->work_list); 946 INIT_LIST_HEAD(&worker->delayed_work_list); 947 } 948 EXPORT_SYMBOL_GPL(__kthread_init_worker); 949 950 /** 951 * kthread_worker_fn - kthread function to process kthread_worker 952 * @worker_ptr: pointer to initialized kthread_worker 953 * 954 * This function implements the main cycle of kthread worker. It processes 955 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 956 * is empty. 957 * 958 * The works are not allowed to keep any locks, disable preemption or interrupts 959 * when they finish. There is defined a safe point for freezing when one work 960 * finishes and before a new one is started. 961 * 962 * Also the works must not be handled by more than one worker at the same time, 963 * see also kthread_queue_work(). 964 */ 965 int kthread_worker_fn(void *worker_ptr) 966 { 967 struct kthread_worker *worker = worker_ptr; 968 struct kthread_work *work; 969 970 /* 971 * FIXME: Update the check and remove the assignment when all kthread 972 * worker users are created using kthread_create_worker*() functions. 973 */ 974 WARN_ON(worker->task && worker->task != current); 975 worker->task = current; 976 977 if (worker->flags & KTW_FREEZABLE) 978 set_freezable(); 979 980 repeat: 981 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 982 983 if (kthread_should_stop()) { 984 __set_current_state(TASK_RUNNING); 985 raw_spin_lock_irq(&worker->lock); 986 worker->task = NULL; 987 raw_spin_unlock_irq(&worker->lock); 988 return 0; 989 } 990 991 work = NULL; 992 raw_spin_lock_irq(&worker->lock); 993 if (!list_empty(&worker->work_list)) { 994 work = list_first_entry(&worker->work_list, 995 struct kthread_work, node); 996 list_del_init(&work->node); 997 } 998 worker->current_work = work; 999 raw_spin_unlock_irq(&worker->lock); 1000 1001 if (work) { 1002 kthread_work_func_t func = work->func; 1003 __set_current_state(TASK_RUNNING); 1004 trace_sched_kthread_work_execute_start(work); 1005 work->func(work); 1006 /* 1007 * Avoid dereferencing work after this point. The trace 1008 * event only cares about the address. 1009 */ 1010 trace_sched_kthread_work_execute_end(work, func); 1011 } else if (!freezing(current)) { 1012 schedule(); 1013 } else { 1014 /* 1015 * Handle the case where the current remains 1016 * TASK_INTERRUPTIBLE. try_to_freeze() expects 1017 * the current to be TASK_RUNNING. 1018 */ 1019 __set_current_state(TASK_RUNNING); 1020 } 1021 1022 try_to_freeze(); 1023 cond_resched(); 1024 goto repeat; 1025 } 1026 EXPORT_SYMBOL_GPL(kthread_worker_fn); 1027 1028 static __printf(3, 0) struct kthread_worker * 1029 __kthread_create_worker_on_node(unsigned int flags, int node, 1030 const char namefmt[], va_list args) 1031 { 1032 struct kthread_worker *worker; 1033 struct task_struct *task; 1034 1035 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1036 if (!worker) 1037 return ERR_PTR(-ENOMEM); 1038 1039 kthread_init_worker(worker); 1040 1041 task = __kthread_create_on_node(kthread_worker_fn, worker, 1042 node, namefmt, args); 1043 if (IS_ERR(task)) 1044 goto fail_task; 1045 1046 worker->flags = flags; 1047 worker->task = task; 1048 1049 return worker; 1050 1051 fail_task: 1052 kfree(worker); 1053 return ERR_CAST(task); 1054 } 1055 1056 /** 1057 * kthread_create_worker_on_node - create a kthread worker 1058 * @flags: flags modifying the default behavior of the worker 1059 * @node: task structure for the thread is allocated on this node 1060 * @namefmt: printf-style name for the kthread worker (task). 1061 * 1062 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1063 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1064 * when the caller was killed by a fatal signal. 1065 */ 1066 struct kthread_worker * 1067 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...) 1068 { 1069 struct kthread_worker *worker; 1070 va_list args; 1071 1072 va_start(args, namefmt); 1073 worker = __kthread_create_worker_on_node(flags, node, namefmt, args); 1074 va_end(args); 1075 1076 return worker; 1077 } 1078 EXPORT_SYMBOL(kthread_create_worker_on_node); 1079 1080 /** 1081 * kthread_create_worker_on_cpu - create a kthread worker and bind it 1082 * to a given CPU and the associated NUMA node. 1083 * @cpu: CPU number 1084 * @flags: flags modifying the default behavior of the worker 1085 * @namefmt: printf-style name for the thread. Format is restricted 1086 * to "name.*%u". Code fills in cpu number. 1087 * 1088 * Use a valid CPU number if you want to bind the kthread worker 1089 * to the given CPU and the associated NUMA node. 1090 * 1091 * A good practice is to add the cpu number also into the worker name. 1092 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 1093 * 1094 * CPU hotplug: 1095 * The kthread worker API is simple and generic. It just provides a way 1096 * to create, use, and destroy workers. 1097 * 1098 * It is up to the API user how to handle CPU hotplug. They have to decide 1099 * how to handle pending work items, prevent queuing new ones, and 1100 * restore the functionality when the CPU goes off and on. There are a 1101 * few catches: 1102 * 1103 * - CPU affinity gets lost when it is scheduled on an offline CPU. 1104 * 1105 * - The worker might not exist when the CPU was off when the user 1106 * created the workers. 1107 * 1108 * Good practice is to implement two CPU hotplug callbacks and to 1109 * destroy/create the worker when the CPU goes down/up. 1110 * 1111 * Return: 1112 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1113 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1114 * when the caller was killed by a fatal signal. 1115 */ 1116 struct kthread_worker * 1117 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 1118 const char namefmt[]) 1119 { 1120 struct kthread_worker *worker; 1121 1122 worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu); 1123 if (!IS_ERR(worker)) 1124 kthread_bind(worker->task, cpu); 1125 1126 return worker; 1127 } 1128 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 1129 1130 /* 1131 * Returns true when the work could not be queued at the moment. 1132 * It happens when it is already pending in a worker list 1133 * or when it is being cancelled. 1134 */ 1135 static inline bool queuing_blocked(struct kthread_worker *worker, 1136 struct kthread_work *work) 1137 { 1138 lockdep_assert_held(&worker->lock); 1139 1140 return !list_empty(&work->node) || work->canceling; 1141 } 1142 1143 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 1144 struct kthread_work *work) 1145 { 1146 lockdep_assert_held(&worker->lock); 1147 WARN_ON_ONCE(!list_empty(&work->node)); 1148 /* Do not use a work with >1 worker, see kthread_queue_work() */ 1149 WARN_ON_ONCE(work->worker && work->worker != worker); 1150 } 1151 1152 /* insert @work before @pos in @worker */ 1153 static void kthread_insert_work(struct kthread_worker *worker, 1154 struct kthread_work *work, 1155 struct list_head *pos) 1156 { 1157 kthread_insert_work_sanity_check(worker, work); 1158 1159 trace_sched_kthread_work_queue_work(worker, work); 1160 1161 list_add_tail(&work->node, pos); 1162 work->worker = worker; 1163 if (!worker->current_work && likely(worker->task)) 1164 wake_up_process(worker->task); 1165 } 1166 1167 /** 1168 * kthread_queue_work - queue a kthread_work 1169 * @worker: target kthread_worker 1170 * @work: kthread_work to queue 1171 * 1172 * Queue @work to work processor @task for async execution. @task 1173 * must have been created with kthread_create_worker(). Returns %true 1174 * if @work was successfully queued, %false if it was already pending. 1175 * 1176 * Reinitialize the work if it needs to be used by another worker. 1177 * For example, when the worker was stopped and started again. 1178 */ 1179 bool kthread_queue_work(struct kthread_worker *worker, 1180 struct kthread_work *work) 1181 { 1182 bool ret = false; 1183 unsigned long flags; 1184 1185 raw_spin_lock_irqsave(&worker->lock, flags); 1186 if (!queuing_blocked(worker, work)) { 1187 kthread_insert_work(worker, work, &worker->work_list); 1188 ret = true; 1189 } 1190 raw_spin_unlock_irqrestore(&worker->lock, flags); 1191 return ret; 1192 } 1193 EXPORT_SYMBOL_GPL(kthread_queue_work); 1194 1195 /** 1196 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1197 * delayed work when the timer expires. 1198 * @t: pointer to the expired timer 1199 * 1200 * The format of the function is defined by struct timer_list. 1201 * It should have been called from irqsafe timer with irq already off. 1202 */ 1203 void kthread_delayed_work_timer_fn(struct timer_list *t) 1204 { 1205 struct kthread_delayed_work *dwork = timer_container_of(dwork, t, 1206 timer); 1207 struct kthread_work *work = &dwork->work; 1208 struct kthread_worker *worker = work->worker; 1209 unsigned long flags; 1210 1211 /* 1212 * This might happen when a pending work is reinitialized. 1213 * It means that it is used a wrong way. 1214 */ 1215 if (WARN_ON_ONCE(!worker)) 1216 return; 1217 1218 raw_spin_lock_irqsave(&worker->lock, flags); 1219 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1220 WARN_ON_ONCE(work->worker != worker); 1221 1222 /* Move the work from worker->delayed_work_list. */ 1223 WARN_ON_ONCE(list_empty(&work->node)); 1224 list_del_init(&work->node); 1225 if (!work->canceling) 1226 kthread_insert_work(worker, work, &worker->work_list); 1227 1228 raw_spin_unlock_irqrestore(&worker->lock, flags); 1229 } 1230 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1231 1232 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1233 struct kthread_delayed_work *dwork, 1234 unsigned long delay) 1235 { 1236 struct timer_list *timer = &dwork->timer; 1237 struct kthread_work *work = &dwork->work; 1238 1239 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1240 1241 /* 1242 * If @delay is 0, queue @dwork->work immediately. This is for 1243 * both optimization and correctness. The earliest @timer can 1244 * expire is on the closest next tick and delayed_work users depend 1245 * on that there's no such delay when @delay is 0. 1246 */ 1247 if (!delay) { 1248 kthread_insert_work(worker, work, &worker->work_list); 1249 return; 1250 } 1251 1252 /* Be paranoid and try to detect possible races already now. */ 1253 kthread_insert_work_sanity_check(worker, work); 1254 1255 list_add(&work->node, &worker->delayed_work_list); 1256 work->worker = worker; 1257 timer->expires = jiffies + delay; 1258 add_timer(timer); 1259 } 1260 1261 /** 1262 * kthread_queue_delayed_work - queue the associated kthread work 1263 * after a delay. 1264 * @worker: target kthread_worker 1265 * @dwork: kthread_delayed_work to queue 1266 * @delay: number of jiffies to wait before queuing 1267 * 1268 * If the work has not been pending it starts a timer that will queue 1269 * the work after the given @delay. If @delay is zero, it queues the 1270 * work immediately. 1271 * 1272 * Return: %false if the @work has already been pending. It means that 1273 * either the timer was running or the work was queued. It returns %true 1274 * otherwise. 1275 */ 1276 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1277 struct kthread_delayed_work *dwork, 1278 unsigned long delay) 1279 { 1280 struct kthread_work *work = &dwork->work; 1281 unsigned long flags; 1282 bool ret = false; 1283 1284 raw_spin_lock_irqsave(&worker->lock, flags); 1285 1286 if (!queuing_blocked(worker, work)) { 1287 __kthread_queue_delayed_work(worker, dwork, delay); 1288 ret = true; 1289 } 1290 1291 raw_spin_unlock_irqrestore(&worker->lock, flags); 1292 return ret; 1293 } 1294 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1295 1296 struct kthread_flush_work { 1297 struct kthread_work work; 1298 struct completion done; 1299 }; 1300 1301 static void kthread_flush_work_fn(struct kthread_work *work) 1302 { 1303 struct kthread_flush_work *fwork = 1304 container_of(work, struct kthread_flush_work, work); 1305 complete(&fwork->done); 1306 } 1307 1308 /** 1309 * kthread_flush_work - flush a kthread_work 1310 * @work: work to flush 1311 * 1312 * If @work is queued or executing, wait for it to finish execution. 1313 */ 1314 void kthread_flush_work(struct kthread_work *work) 1315 { 1316 struct kthread_flush_work fwork = { 1317 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1318 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1319 }; 1320 struct kthread_worker *worker; 1321 bool noop = false; 1322 1323 worker = work->worker; 1324 if (!worker) 1325 return; 1326 1327 raw_spin_lock_irq(&worker->lock); 1328 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1329 WARN_ON_ONCE(work->worker != worker); 1330 1331 if (!list_empty(&work->node)) 1332 kthread_insert_work(worker, &fwork.work, work->node.next); 1333 else if (worker->current_work == work) 1334 kthread_insert_work(worker, &fwork.work, 1335 worker->work_list.next); 1336 else 1337 noop = true; 1338 1339 raw_spin_unlock_irq(&worker->lock); 1340 1341 if (!noop) 1342 wait_for_completion(&fwork.done); 1343 } 1344 EXPORT_SYMBOL_GPL(kthread_flush_work); 1345 1346 /* 1347 * Make sure that the timer is neither set nor running and could 1348 * not manipulate the work list_head any longer. 1349 * 1350 * The function is called under worker->lock. The lock is temporary 1351 * released but the timer can't be set again in the meantime. 1352 */ 1353 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1354 unsigned long *flags) 1355 { 1356 struct kthread_delayed_work *dwork = 1357 container_of(work, struct kthread_delayed_work, work); 1358 struct kthread_worker *worker = work->worker; 1359 1360 /* 1361 * timer_delete_sync() must be called to make sure that the timer 1362 * callback is not running. The lock must be temporary released 1363 * to avoid a deadlock with the callback. In the meantime, 1364 * any queuing is blocked by setting the canceling counter. 1365 */ 1366 work->canceling++; 1367 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1368 timer_delete_sync(&dwork->timer); 1369 raw_spin_lock_irqsave(&worker->lock, *flags); 1370 work->canceling--; 1371 } 1372 1373 /* 1374 * This function removes the work from the worker queue. 1375 * 1376 * It is called under worker->lock. The caller must make sure that 1377 * the timer used by delayed work is not running, e.g. by calling 1378 * kthread_cancel_delayed_work_timer(). 1379 * 1380 * The work might still be in use when this function finishes. See the 1381 * current_work proceed by the worker. 1382 * 1383 * Return: %true if @work was pending and successfully canceled, 1384 * %false if @work was not pending 1385 */ 1386 static bool __kthread_cancel_work(struct kthread_work *work) 1387 { 1388 /* 1389 * Try to remove the work from a worker list. It might either 1390 * be from worker->work_list or from worker->delayed_work_list. 1391 */ 1392 if (!list_empty(&work->node)) { 1393 list_del_init(&work->node); 1394 return true; 1395 } 1396 1397 return false; 1398 } 1399 1400 /** 1401 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1402 * @worker: kthread worker to use 1403 * @dwork: kthread delayed work to queue 1404 * @delay: number of jiffies to wait before queuing 1405 * 1406 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1407 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1408 * @work is guaranteed to be queued immediately. 1409 * 1410 * Return: %false if @dwork was idle and queued, %true otherwise. 1411 * 1412 * A special case is when the work is being canceled in parallel. 1413 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1414 * or yet another kthread_mod_delayed_work() call. We let the other command 1415 * win and return %true here. The return value can be used for reference 1416 * counting and the number of queued works stays the same. Anyway, the caller 1417 * is supposed to synchronize these operations a reasonable way. 1418 * 1419 * This function is safe to call from any context including IRQ handler. 1420 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1421 * for details. 1422 */ 1423 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1424 struct kthread_delayed_work *dwork, 1425 unsigned long delay) 1426 { 1427 struct kthread_work *work = &dwork->work; 1428 unsigned long flags; 1429 int ret; 1430 1431 raw_spin_lock_irqsave(&worker->lock, flags); 1432 1433 /* Do not bother with canceling when never queued. */ 1434 if (!work->worker) { 1435 ret = false; 1436 goto fast_queue; 1437 } 1438 1439 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1440 WARN_ON_ONCE(work->worker != worker); 1441 1442 /* 1443 * Temporary cancel the work but do not fight with another command 1444 * that is canceling the work as well. 1445 * 1446 * It is a bit tricky because of possible races with another 1447 * mod_delayed_work() and cancel_delayed_work() callers. 1448 * 1449 * The timer must be canceled first because worker->lock is released 1450 * when doing so. But the work can be removed from the queue (list) 1451 * only when it can be queued again so that the return value can 1452 * be used for reference counting. 1453 */ 1454 kthread_cancel_delayed_work_timer(work, &flags); 1455 if (work->canceling) { 1456 /* The number of works in the queue does not change. */ 1457 ret = true; 1458 goto out; 1459 } 1460 ret = __kthread_cancel_work(work); 1461 1462 fast_queue: 1463 __kthread_queue_delayed_work(worker, dwork, delay); 1464 out: 1465 raw_spin_unlock_irqrestore(&worker->lock, flags); 1466 return ret; 1467 } 1468 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1469 1470 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1471 { 1472 struct kthread_worker *worker = work->worker; 1473 unsigned long flags; 1474 int ret = false; 1475 1476 if (!worker) 1477 goto out; 1478 1479 raw_spin_lock_irqsave(&worker->lock, flags); 1480 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1481 WARN_ON_ONCE(work->worker != worker); 1482 1483 if (is_dwork) 1484 kthread_cancel_delayed_work_timer(work, &flags); 1485 1486 ret = __kthread_cancel_work(work); 1487 1488 if (worker->current_work != work) 1489 goto out_fast; 1490 1491 /* 1492 * The work is in progress and we need to wait with the lock released. 1493 * In the meantime, block any queuing by setting the canceling counter. 1494 */ 1495 work->canceling++; 1496 raw_spin_unlock_irqrestore(&worker->lock, flags); 1497 kthread_flush_work(work); 1498 raw_spin_lock_irqsave(&worker->lock, flags); 1499 work->canceling--; 1500 1501 out_fast: 1502 raw_spin_unlock_irqrestore(&worker->lock, flags); 1503 out: 1504 return ret; 1505 } 1506 1507 /** 1508 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1509 * @work: the kthread work to cancel 1510 * 1511 * Cancel @work and wait for its execution to finish. This function 1512 * can be used even if the work re-queues itself. On return from this 1513 * function, @work is guaranteed to be not pending or executing on any CPU. 1514 * 1515 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1516 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1517 * 1518 * The caller must ensure that the worker on which @work was last 1519 * queued can't be destroyed before this function returns. 1520 * 1521 * Return: %true if @work was pending, %false otherwise. 1522 */ 1523 bool kthread_cancel_work_sync(struct kthread_work *work) 1524 { 1525 return __kthread_cancel_work_sync(work, false); 1526 } 1527 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1528 1529 /** 1530 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1531 * wait for it to finish. 1532 * @dwork: the kthread delayed work to cancel 1533 * 1534 * This is kthread_cancel_work_sync() for delayed works. 1535 * 1536 * Return: %true if @dwork was pending, %false otherwise. 1537 */ 1538 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1539 { 1540 return __kthread_cancel_work_sync(&dwork->work, true); 1541 } 1542 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1543 1544 /** 1545 * kthread_flush_worker - flush all current works on a kthread_worker 1546 * @worker: worker to flush 1547 * 1548 * Wait until all currently executing or pending works on @worker are 1549 * finished. 1550 */ 1551 void kthread_flush_worker(struct kthread_worker *worker) 1552 { 1553 struct kthread_flush_work fwork = { 1554 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1555 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1556 }; 1557 1558 kthread_queue_work(worker, &fwork.work); 1559 wait_for_completion(&fwork.done); 1560 } 1561 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1562 1563 /** 1564 * kthread_destroy_worker - destroy a kthread worker 1565 * @worker: worker to be destroyed 1566 * 1567 * Flush and destroy @worker. The simple flush is enough because the kthread 1568 * worker API is used only in trivial scenarios. There are no multi-step state 1569 * machines needed. 1570 * 1571 * Note that this function is not responsible for handling delayed work, so 1572 * caller should be responsible for queuing or canceling all delayed work items 1573 * before invoke this function. 1574 */ 1575 void kthread_destroy_worker(struct kthread_worker *worker) 1576 { 1577 struct task_struct *task; 1578 1579 task = worker->task; 1580 if (WARN_ON(!task)) 1581 return; 1582 1583 kthread_flush_worker(worker); 1584 kthread_stop(task); 1585 WARN_ON(!list_empty(&worker->delayed_work_list)); 1586 WARN_ON(!list_empty(&worker->work_list)); 1587 kfree(worker); 1588 } 1589 EXPORT_SYMBOL(kthread_destroy_worker); 1590 1591 /** 1592 * kthread_use_mm - make the calling kthread operate on an address space 1593 * @mm: address space to operate on 1594 */ 1595 void kthread_use_mm(struct mm_struct *mm) 1596 { 1597 struct mm_struct *active_mm; 1598 struct task_struct *tsk = current; 1599 1600 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1601 WARN_ON_ONCE(tsk->mm); 1602 1603 /* 1604 * It is possible for mm to be the same as tsk->active_mm, but 1605 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1606 * because these references are not equivalent. 1607 */ 1608 mmgrab(mm); 1609 1610 task_lock(tsk); 1611 /* Hold off tlb flush IPIs while switching mm's */ 1612 local_irq_disable(); 1613 active_mm = tsk->active_mm; 1614 tsk->active_mm = mm; 1615 tsk->mm = mm; 1616 membarrier_update_current_mm(mm); 1617 switch_mm_irqs_off(active_mm, mm, tsk); 1618 local_irq_enable(); 1619 task_unlock(tsk); 1620 #ifdef finish_arch_post_lock_switch 1621 finish_arch_post_lock_switch(); 1622 #endif 1623 1624 /* 1625 * When a kthread starts operating on an address space, the loop 1626 * in membarrier_{private,global}_expedited() may not observe 1627 * that tsk->mm, and not issue an IPI. Membarrier requires a 1628 * memory barrier after storing to tsk->mm, before accessing 1629 * user-space memory. A full memory barrier for membarrier 1630 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1631 * mmdrop_lazy_tlb(). 1632 */ 1633 mmdrop_lazy_tlb(active_mm); 1634 } 1635 EXPORT_SYMBOL_GPL(kthread_use_mm); 1636 1637 /** 1638 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1639 * @mm: address space to operate on 1640 */ 1641 void kthread_unuse_mm(struct mm_struct *mm) 1642 { 1643 struct task_struct *tsk = current; 1644 1645 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1646 WARN_ON_ONCE(!tsk->mm); 1647 1648 task_lock(tsk); 1649 /* 1650 * When a kthread stops operating on an address space, the loop 1651 * in membarrier_{private,global}_expedited() may not observe 1652 * that tsk->mm, and not issue an IPI. Membarrier requires a 1653 * memory barrier after accessing user-space memory, before 1654 * clearing tsk->mm. 1655 */ 1656 smp_mb__after_spinlock(); 1657 local_irq_disable(); 1658 tsk->mm = NULL; 1659 membarrier_update_current_mm(NULL); 1660 mmgrab_lazy_tlb(mm); 1661 /* active_mm is still 'mm' */ 1662 enter_lazy_tlb(mm, tsk); 1663 local_irq_enable(); 1664 task_unlock(tsk); 1665 1666 mmdrop(mm); 1667 } 1668 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1669 1670 #ifdef CONFIG_BLK_CGROUP 1671 /** 1672 * kthread_associate_blkcg - associate blkcg to current kthread 1673 * @css: the cgroup info 1674 * 1675 * Current thread must be a kthread. The thread is running jobs on behalf of 1676 * other threads. In some cases, we expect the jobs attach cgroup info of 1677 * original threads instead of that of current thread. This function stores 1678 * original thread's cgroup info in current kthread context for later 1679 * retrieval. 1680 */ 1681 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1682 { 1683 struct kthread *kthread; 1684 1685 if (!(current->flags & PF_KTHREAD)) 1686 return; 1687 kthread = to_kthread(current); 1688 if (!kthread) 1689 return; 1690 1691 if (kthread->blkcg_css) { 1692 css_put(kthread->blkcg_css); 1693 kthread->blkcg_css = NULL; 1694 } 1695 if (css) { 1696 css_get(css); 1697 kthread->blkcg_css = css; 1698 } 1699 } 1700 EXPORT_SYMBOL(kthread_associate_blkcg); 1701 1702 /** 1703 * kthread_blkcg - get associated blkcg css of current kthread 1704 * 1705 * Current thread must be a kthread. 1706 */ 1707 struct cgroup_subsys_state *kthread_blkcg(void) 1708 { 1709 struct kthread *kthread; 1710 1711 if (current->flags & PF_KTHREAD) { 1712 kthread = to_kthread(current); 1713 if (kthread) 1714 return kthread->blkcg_css; 1715 } 1716 return NULL; 1717 } 1718 #endif 1719