xref: /linux/kernel/kthread.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 static LIST_HEAD(kthreads_hotplug);
39 static DEFINE_MUTEX(kthreads_hotplug_lock);
40 
41 struct kthread_create_info
42 {
43 	/* Information passed to kthread() from kthreadd. */
44 	char *full_name;
45 	int (*threadfn)(void *data);
46 	void *data;
47 	int node;
48 
49 	/* Result passed back to kthread_create() from kthreadd. */
50 	struct task_struct *result;
51 	struct completion *done;
52 
53 	struct list_head list;
54 };
55 
56 struct kthread {
57 	unsigned long flags;
58 	unsigned int cpu;
59 	unsigned int node;
60 	int started;
61 	int result;
62 	int (*threadfn)(void *);
63 	void *data;
64 	struct completion parked;
65 	struct completion exited;
66 #ifdef CONFIG_BLK_CGROUP
67 	struct cgroup_subsys_state *blkcg_css;
68 #endif
69 	/* To store the full name if task comm is truncated. */
70 	char *full_name;
71 	struct task_struct *task;
72 	struct list_head hotplug_node;
73 	struct cpumask *preferred_affinity;
74 };
75 
76 enum KTHREAD_BITS {
77 	KTHREAD_IS_PER_CPU = 0,
78 	KTHREAD_SHOULD_STOP,
79 	KTHREAD_SHOULD_PARK,
80 };
81 
82 static inline struct kthread *to_kthread(struct task_struct *k)
83 {
84 	WARN_ON(!(k->flags & PF_KTHREAD));
85 	return k->worker_private;
86 }
87 
88 /*
89  * Variant of to_kthread() that doesn't assume @p is a kthread.
90  *
91  * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will
92  * always remain a kthread.  For kthreads p->worker_private always
93  * points to a struct kthread.  For tasks that are not kthreads
94  * p->worker_private is used to point to other things.
95  *
96  * Return NULL for any task that is not a kthread.
97  */
98 static inline struct kthread *__to_kthread(struct task_struct *p)
99 {
100 	void *kthread = p->worker_private;
101 	if (kthread && !(p->flags & PF_KTHREAD))
102 		kthread = NULL;
103 	return kthread;
104 }
105 
106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
107 {
108 	struct kthread *kthread = to_kthread(tsk);
109 
110 	if (!kthread || !kthread->full_name) {
111 		strscpy(buf, tsk->comm, buf_size);
112 		return;
113 	}
114 
115 	strscpy_pad(buf, kthread->full_name, buf_size);
116 }
117 
118 bool set_kthread_struct(struct task_struct *p)
119 {
120 	struct kthread *kthread;
121 
122 	if (WARN_ON_ONCE(to_kthread(p)))
123 		return false;
124 
125 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
126 	if (!kthread)
127 		return false;
128 
129 	init_completion(&kthread->exited);
130 	init_completion(&kthread->parked);
131 	INIT_LIST_HEAD(&kthread->hotplug_node);
132 	p->vfork_done = &kthread->exited;
133 
134 	kthread->task = p;
135 	kthread->node = tsk_fork_get_node(current);
136 	p->worker_private = kthread;
137 	return true;
138 }
139 
140 void free_kthread_struct(struct task_struct *k)
141 {
142 	struct kthread *kthread;
143 
144 	/*
145 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
146 	 */
147 	kthread = to_kthread(k);
148 	if (!kthread)
149 		return;
150 
151 #ifdef CONFIG_BLK_CGROUP
152 	WARN_ON_ONCE(kthread->blkcg_css);
153 #endif
154 	k->worker_private = NULL;
155 	kfree(kthread->full_name);
156 	kfree(kthread);
157 }
158 
159 /**
160  * kthread_should_stop - should this kthread return now?
161  *
162  * When someone calls kthread_stop() on your kthread, it will be woken
163  * and this will return true.  You should then return, and your return
164  * value will be passed through to kthread_stop().
165  */
166 bool kthread_should_stop(void)
167 {
168 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
169 }
170 EXPORT_SYMBOL(kthread_should_stop);
171 
172 static bool __kthread_should_park(struct task_struct *k)
173 {
174 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
175 }
176 
177 /**
178  * kthread_should_park - should this kthread park now?
179  *
180  * When someone calls kthread_park() on your kthread, it will be woken
181  * and this will return true.  You should then do the necessary
182  * cleanup and call kthread_parkme()
183  *
184  * Similar to kthread_should_stop(), but this keeps the thread alive
185  * and in a park position. kthread_unpark() "restarts" the thread and
186  * calls the thread function again.
187  */
188 bool kthread_should_park(void)
189 {
190 	return __kthread_should_park(current);
191 }
192 EXPORT_SYMBOL_GPL(kthread_should_park);
193 
194 bool kthread_should_stop_or_park(void)
195 {
196 	struct kthread *kthread = __to_kthread(current);
197 
198 	if (!kthread)
199 		return false;
200 
201 	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
202 }
203 
204 /**
205  * kthread_freezable_should_stop - should this freezable kthread return now?
206  * @was_frozen: optional out parameter, indicates whether %current was frozen
207  *
208  * kthread_should_stop() for freezable kthreads, which will enter
209  * refrigerator if necessary.  This function is safe from kthread_stop() /
210  * freezer deadlock and freezable kthreads should use this function instead
211  * of calling try_to_freeze() directly.
212  */
213 bool kthread_freezable_should_stop(bool *was_frozen)
214 {
215 	bool frozen = false;
216 
217 	might_sleep();
218 
219 	if (unlikely(freezing(current)))
220 		frozen = __refrigerator(true);
221 
222 	if (was_frozen)
223 		*was_frozen = frozen;
224 
225 	return kthread_should_stop();
226 }
227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
228 
229 /**
230  * kthread_func - return the function specified on kthread creation
231  * @task: kthread task in question
232  *
233  * Returns NULL if the task is not a kthread.
234  */
235 void *kthread_func(struct task_struct *task)
236 {
237 	struct kthread *kthread = __to_kthread(task);
238 	if (kthread)
239 		return kthread->threadfn;
240 	return NULL;
241 }
242 EXPORT_SYMBOL_GPL(kthread_func);
243 
244 /**
245  * kthread_data - return data value specified on kthread creation
246  * @task: kthread task in question
247  *
248  * Return the data value specified when kthread @task was created.
249  * The caller is responsible for ensuring the validity of @task when
250  * calling this function.
251  */
252 void *kthread_data(struct task_struct *task)
253 {
254 	return to_kthread(task)->data;
255 }
256 EXPORT_SYMBOL_GPL(kthread_data);
257 
258 /**
259  * kthread_probe_data - speculative version of kthread_data()
260  * @task: possible kthread task in question
261  *
262  * @task could be a kthread task.  Return the data value specified when it
263  * was created if accessible.  If @task isn't a kthread task or its data is
264  * inaccessible for any reason, %NULL is returned.  This function requires
265  * that @task itself is safe to dereference.
266  */
267 void *kthread_probe_data(struct task_struct *task)
268 {
269 	struct kthread *kthread = __to_kthread(task);
270 	void *data = NULL;
271 
272 	if (kthread)
273 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
274 	return data;
275 }
276 
277 static void __kthread_parkme(struct kthread *self)
278 {
279 	for (;;) {
280 		/*
281 		 * TASK_PARKED is a special state; we must serialize against
282 		 * possible pending wakeups to avoid store-store collisions on
283 		 * task->state.
284 		 *
285 		 * Such a collision might possibly result in the task state
286 		 * changin from TASK_PARKED and us failing the
287 		 * wait_task_inactive() in kthread_park().
288 		 */
289 		set_special_state(TASK_PARKED);
290 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
291 			break;
292 
293 		/*
294 		 * Thread is going to call schedule(), do not preempt it,
295 		 * or the caller of kthread_park() may spend more time in
296 		 * wait_task_inactive().
297 		 */
298 		preempt_disable();
299 		complete(&self->parked);
300 		schedule_preempt_disabled();
301 		preempt_enable();
302 	}
303 	__set_current_state(TASK_RUNNING);
304 }
305 
306 void kthread_parkme(void)
307 {
308 	__kthread_parkme(to_kthread(current));
309 }
310 EXPORT_SYMBOL_GPL(kthread_parkme);
311 
312 /**
313  * kthread_exit - Cause the current kthread return @result to kthread_stop().
314  * @result: The integer value to return to kthread_stop().
315  *
316  * While kthread_exit can be called directly, it exists so that
317  * functions which do some additional work in non-modular code such as
318  * module_put_and_kthread_exit can be implemented.
319  *
320  * Does not return.
321  */
322 void __noreturn kthread_exit(long result)
323 {
324 	struct kthread *kthread = to_kthread(current);
325 	kthread->result = result;
326 	if (!list_empty(&kthread->hotplug_node)) {
327 		mutex_lock(&kthreads_hotplug_lock);
328 		list_del(&kthread->hotplug_node);
329 		mutex_unlock(&kthreads_hotplug_lock);
330 
331 		if (kthread->preferred_affinity) {
332 			kfree(kthread->preferred_affinity);
333 			kthread->preferred_affinity = NULL;
334 		}
335 	}
336 	do_exit(0);
337 }
338 EXPORT_SYMBOL(kthread_exit);
339 
340 /**
341  * kthread_complete_and_exit - Exit the current kthread.
342  * @comp: Completion to complete
343  * @code: The integer value to return to kthread_stop().
344  *
345  * If present, complete @comp and then return code to kthread_stop().
346  *
347  * A kernel thread whose module may be removed after the completion of
348  * @comp can use this function to exit safely.
349  *
350  * Does not return.
351  */
352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
353 {
354 	if (comp)
355 		complete(comp);
356 
357 	kthread_exit(code);
358 }
359 EXPORT_SYMBOL(kthread_complete_and_exit);
360 
361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask)
362 {
363 	const struct cpumask *pref;
364 
365 	if (kthread->preferred_affinity) {
366 		pref = kthread->preferred_affinity;
367 	} else {
368 		if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE))
369 			return;
370 		pref = cpumask_of_node(kthread->node);
371 	}
372 
373 	cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD));
374 	if (cpumask_empty(cpumask))
375 		cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD));
376 }
377 
378 static void kthread_affine_node(void)
379 {
380 	struct kthread *kthread = to_kthread(current);
381 	cpumask_var_t affinity;
382 
383 	WARN_ON_ONCE(kthread_is_per_cpu(current));
384 
385 	if (kthread->node == NUMA_NO_NODE) {
386 		housekeeping_affine(current, HK_TYPE_KTHREAD);
387 	} else {
388 		if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) {
389 			WARN_ON_ONCE(1);
390 			return;
391 		}
392 
393 		mutex_lock(&kthreads_hotplug_lock);
394 		WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
395 		list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
396 		/*
397 		 * The node cpumask is racy when read from kthread() but:
398 		 * - a racing CPU going down will either fail on the subsequent
399 		 *   call to set_cpus_allowed_ptr() or be migrated to housekeepers
400 		 *   afterwards by the scheduler.
401 		 * - a racing CPU going up will be handled by kthreads_online_cpu()
402 		 */
403 		kthread_fetch_affinity(kthread, affinity);
404 		set_cpus_allowed_ptr(current, affinity);
405 		mutex_unlock(&kthreads_hotplug_lock);
406 
407 		free_cpumask_var(affinity);
408 	}
409 }
410 
411 static int kthread(void *_create)
412 {
413 	static const struct sched_param param = { .sched_priority = 0 };
414 	/* Copy data: it's on kthread's stack */
415 	struct kthread_create_info *create = _create;
416 	int (*threadfn)(void *data) = create->threadfn;
417 	void *data = create->data;
418 	struct completion *done;
419 	struct kthread *self;
420 	int ret;
421 
422 	self = to_kthread(current);
423 
424 	/* Release the structure when caller killed by a fatal signal. */
425 	done = xchg(&create->done, NULL);
426 	if (!done) {
427 		kfree(create->full_name);
428 		kfree(create);
429 		kthread_exit(-EINTR);
430 	}
431 
432 	self->full_name = create->full_name;
433 	self->threadfn = threadfn;
434 	self->data = data;
435 
436 	/*
437 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
438 	 * back to default in case they have been changed.
439 	 */
440 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
441 
442 	/* OK, tell user we're spawned, wait for stop or wakeup */
443 	__set_current_state(TASK_UNINTERRUPTIBLE);
444 	create->result = current;
445 	/*
446 	 * Thread is going to call schedule(), do not preempt it,
447 	 * or the creator may spend more time in wait_task_inactive().
448 	 */
449 	preempt_disable();
450 	complete(done);
451 	schedule_preempt_disabled();
452 	preempt_enable();
453 
454 	self->started = 1;
455 
456 	if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity)
457 		kthread_affine_node();
458 
459 	ret = -EINTR;
460 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
461 		cgroup_kthread_ready();
462 		__kthread_parkme(self);
463 		ret = threadfn(data);
464 	}
465 	kthread_exit(ret);
466 }
467 
468 /* called from kernel_clone() to get node information for about to be created task */
469 int tsk_fork_get_node(struct task_struct *tsk)
470 {
471 #ifdef CONFIG_NUMA
472 	if (tsk == kthreadd_task)
473 		return tsk->pref_node_fork;
474 #endif
475 	return NUMA_NO_NODE;
476 }
477 
478 static void create_kthread(struct kthread_create_info *create)
479 {
480 	int pid;
481 
482 #ifdef CONFIG_NUMA
483 	current->pref_node_fork = create->node;
484 #endif
485 	/* We want our own signal handler (we take no signals by default). */
486 	pid = kernel_thread(kthread, create, create->full_name,
487 			    CLONE_FS | CLONE_FILES | SIGCHLD);
488 	if (pid < 0) {
489 		/* Release the structure when caller killed by a fatal signal. */
490 		struct completion *done = xchg(&create->done, NULL);
491 
492 		kfree(create->full_name);
493 		if (!done) {
494 			kfree(create);
495 			return;
496 		}
497 		create->result = ERR_PTR(pid);
498 		complete(done);
499 	}
500 }
501 
502 static __printf(4, 0)
503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
504 						    void *data, int node,
505 						    const char namefmt[],
506 						    va_list args)
507 {
508 	DECLARE_COMPLETION_ONSTACK(done);
509 	struct task_struct *task;
510 	struct kthread_create_info *create = kmalloc(sizeof(*create),
511 						     GFP_KERNEL);
512 
513 	if (!create)
514 		return ERR_PTR(-ENOMEM);
515 	create->threadfn = threadfn;
516 	create->data = data;
517 	create->node = node;
518 	create->done = &done;
519 	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
520 	if (!create->full_name) {
521 		task = ERR_PTR(-ENOMEM);
522 		goto free_create;
523 	}
524 
525 	spin_lock(&kthread_create_lock);
526 	list_add_tail(&create->list, &kthread_create_list);
527 	spin_unlock(&kthread_create_lock);
528 
529 	wake_up_process(kthreadd_task);
530 	/*
531 	 * Wait for completion in killable state, for I might be chosen by
532 	 * the OOM killer while kthreadd is trying to allocate memory for
533 	 * new kernel thread.
534 	 */
535 	if (unlikely(wait_for_completion_killable(&done))) {
536 		/*
537 		 * If I was killed by a fatal signal before kthreadd (or new
538 		 * kernel thread) calls complete(), leave the cleanup of this
539 		 * structure to that thread.
540 		 */
541 		if (xchg(&create->done, NULL))
542 			return ERR_PTR(-EINTR);
543 		/*
544 		 * kthreadd (or new kernel thread) will call complete()
545 		 * shortly.
546 		 */
547 		wait_for_completion(&done);
548 	}
549 	task = create->result;
550 free_create:
551 	kfree(create);
552 	return task;
553 }
554 
555 /**
556  * kthread_create_on_node - create a kthread.
557  * @threadfn: the function to run until signal_pending(current).
558  * @data: data ptr for @threadfn.
559  * @node: task and thread structures for the thread are allocated on this node
560  * @namefmt: printf-style name for the thread.
561  *
562  * Description: This helper function creates and names a kernel
563  * thread.  The thread will be stopped: use wake_up_process() to start
564  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
565  * is affine to all CPUs.
566  *
567  * If thread is going to be bound on a particular cpu, give its node
568  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
569  * When woken, the thread will run @threadfn() with @data as its
570  * argument. @threadfn() can either return directly if it is a
571  * standalone thread for which no one will call kthread_stop(), or
572  * return when 'kthread_should_stop()' is true (which means
573  * kthread_stop() has been called).  The return value should be zero
574  * or a negative error number; it will be passed to kthread_stop().
575  *
576  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
577  */
578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
579 					   void *data, int node,
580 					   const char namefmt[],
581 					   ...)
582 {
583 	struct task_struct *task;
584 	va_list args;
585 
586 	va_start(args, namefmt);
587 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
588 	va_end(args);
589 
590 	return task;
591 }
592 EXPORT_SYMBOL(kthread_create_on_node);
593 
594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
595 {
596 	if (!wait_task_inactive(p, state)) {
597 		WARN_ON(1);
598 		return;
599 	}
600 
601 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock)
602 		set_cpus_allowed_force(p, mask);
603 
604 	/* It's safe because the task is inactive. */
605 	p->flags |= PF_NO_SETAFFINITY;
606 }
607 
608 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
609 {
610 	__kthread_bind_mask(p, cpumask_of(cpu), state);
611 }
612 
613 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
614 {
615 	struct kthread *kthread = to_kthread(p);
616 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
617 	WARN_ON_ONCE(kthread->started);
618 }
619 
620 /**
621  * kthread_bind - bind a just-created kthread to a cpu.
622  * @p: thread created by kthread_create().
623  * @cpu: cpu (might not be online, must be possible) for @k to run on.
624  *
625  * Description: This function is equivalent to set_cpus_allowed(),
626  * except that @cpu doesn't need to be online, and the thread must be
627  * stopped (i.e., just returned from kthread_create()).
628  */
629 void kthread_bind(struct task_struct *p, unsigned int cpu)
630 {
631 	struct kthread *kthread = to_kthread(p);
632 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
633 	WARN_ON_ONCE(kthread->started);
634 }
635 EXPORT_SYMBOL(kthread_bind);
636 
637 /**
638  * kthread_create_on_cpu - Create a cpu bound kthread
639  * @threadfn: the function to run until signal_pending(current).
640  * @data: data ptr for @threadfn.
641  * @cpu: The cpu on which the thread should be bound,
642  * @namefmt: printf-style name for the thread. Format is restricted
643  *	     to "name.*%u". Code fills in cpu number.
644  *
645  * Description: This helper function creates and names a kernel thread
646  */
647 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
648 					  void *data, unsigned int cpu,
649 					  const char *namefmt)
650 {
651 	struct task_struct *p;
652 
653 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
654 				   cpu);
655 	if (IS_ERR(p))
656 		return p;
657 	kthread_bind(p, cpu);
658 	/* CPU hotplug need to bind once again when unparking the thread. */
659 	to_kthread(p)->cpu = cpu;
660 	return p;
661 }
662 EXPORT_SYMBOL(kthread_create_on_cpu);
663 
664 void kthread_set_per_cpu(struct task_struct *k, int cpu)
665 {
666 	struct kthread *kthread = to_kthread(k);
667 	if (!kthread)
668 		return;
669 
670 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
671 
672 	if (cpu < 0) {
673 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
674 		return;
675 	}
676 
677 	kthread->cpu = cpu;
678 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
679 }
680 
681 bool kthread_is_per_cpu(struct task_struct *p)
682 {
683 	struct kthread *kthread = __to_kthread(p);
684 	if (!kthread)
685 		return false;
686 
687 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
688 }
689 
690 /**
691  * kthread_unpark - unpark a thread created by kthread_create().
692  * @k:		thread created by kthread_create().
693  *
694  * Sets kthread_should_park() for @k to return false, wakes it, and
695  * waits for it to return. If the thread is marked percpu then its
696  * bound to the cpu again.
697  */
698 void kthread_unpark(struct task_struct *k)
699 {
700 	struct kthread *kthread = to_kthread(k);
701 
702 	if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
703 		return;
704 	/*
705 	 * Newly created kthread was parked when the CPU was offline.
706 	 * The binding was lost and we need to set it again.
707 	 */
708 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
709 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
710 
711 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
712 	/*
713 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
714 	 */
715 	wake_up_state(k, TASK_PARKED);
716 }
717 EXPORT_SYMBOL_GPL(kthread_unpark);
718 
719 /**
720  * kthread_park - park a thread created by kthread_create().
721  * @k: thread created by kthread_create().
722  *
723  * Sets kthread_should_park() for @k to return true, wakes it, and
724  * waits for it to return. This can also be called after kthread_create()
725  * instead of calling wake_up_process(): the thread will park without
726  * calling threadfn().
727  *
728  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
729  * If called by the kthread itself just the park bit is set.
730  */
731 int kthread_park(struct task_struct *k)
732 {
733 	struct kthread *kthread = to_kthread(k);
734 
735 	if (WARN_ON(k->flags & PF_EXITING))
736 		return -ENOSYS;
737 
738 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
739 		return -EBUSY;
740 
741 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
742 	if (k != current) {
743 		wake_up_process(k);
744 		/*
745 		 * Wait for __kthread_parkme() to complete(), this means we
746 		 * _will_ have TASK_PARKED and are about to call schedule().
747 		 */
748 		wait_for_completion(&kthread->parked);
749 		/*
750 		 * Now wait for that schedule() to complete and the task to
751 		 * get scheduled out.
752 		 */
753 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
754 	}
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(kthread_park);
759 
760 /**
761  * kthread_stop - stop a thread created by kthread_create().
762  * @k: thread created by kthread_create().
763  *
764  * Sets kthread_should_stop() for @k to return true, wakes it, and
765  * waits for it to exit. This can also be called after kthread_create()
766  * instead of calling wake_up_process(): the thread will exit without
767  * calling threadfn().
768  *
769  * If threadfn() may call kthread_exit() itself, the caller must ensure
770  * task_struct can't go away.
771  *
772  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
773  * was never called.
774  */
775 int kthread_stop(struct task_struct *k)
776 {
777 	struct kthread *kthread;
778 	int ret;
779 
780 	trace_sched_kthread_stop(k);
781 
782 	get_task_struct(k);
783 	kthread = to_kthread(k);
784 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
785 	kthread_unpark(k);
786 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
787 	wake_up_process(k);
788 	wait_for_completion(&kthread->exited);
789 	ret = kthread->result;
790 	put_task_struct(k);
791 
792 	trace_sched_kthread_stop_ret(ret);
793 	return ret;
794 }
795 EXPORT_SYMBOL(kthread_stop);
796 
797 /**
798  * kthread_stop_put - stop a thread and put its task struct
799  * @k: thread created by kthread_create().
800  *
801  * Stops a thread created by kthread_create() and put its task_struct.
802  * Only use when holding an extra task struct reference obtained by
803  * calling get_task_struct().
804  */
805 int kthread_stop_put(struct task_struct *k)
806 {
807 	int ret;
808 
809 	ret = kthread_stop(k);
810 	put_task_struct(k);
811 	return ret;
812 }
813 EXPORT_SYMBOL(kthread_stop_put);
814 
815 int kthreadd(void *unused)
816 {
817 	static const char comm[TASK_COMM_LEN] = "kthreadd";
818 	struct task_struct *tsk = current;
819 
820 	/* Setup a clean context for our children to inherit. */
821 	set_task_comm(tsk, comm);
822 	ignore_signals(tsk);
823 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
824 	set_mems_allowed(node_states[N_MEMORY]);
825 
826 	current->flags |= PF_NOFREEZE;
827 	cgroup_init_kthreadd();
828 
829 	for (;;) {
830 		set_current_state(TASK_INTERRUPTIBLE);
831 		if (list_empty(&kthread_create_list))
832 			schedule();
833 		__set_current_state(TASK_RUNNING);
834 
835 		spin_lock(&kthread_create_lock);
836 		while (!list_empty(&kthread_create_list)) {
837 			struct kthread_create_info *create;
838 
839 			create = list_entry(kthread_create_list.next,
840 					    struct kthread_create_info, list);
841 			list_del_init(&create->list);
842 			spin_unlock(&kthread_create_lock);
843 
844 			create_kthread(create);
845 
846 			spin_lock(&kthread_create_lock);
847 		}
848 		spin_unlock(&kthread_create_lock);
849 	}
850 
851 	return 0;
852 }
853 
854 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask)
855 {
856 	struct kthread *kthread = to_kthread(p);
857 	cpumask_var_t affinity;
858 	int ret = 0;
859 
860 	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) {
861 		WARN_ON(1);
862 		return -EINVAL;
863 	}
864 
865 	WARN_ON_ONCE(kthread->preferred_affinity);
866 
867 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
868 		return -ENOMEM;
869 
870 	kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL);
871 	if (!kthread->preferred_affinity) {
872 		ret = -ENOMEM;
873 		goto out;
874 	}
875 
876 	mutex_lock(&kthreads_hotplug_lock);
877 	cpumask_copy(kthread->preferred_affinity, mask);
878 	WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
879 	list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
880 	kthread_fetch_affinity(kthread, affinity);
881 
882 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock)
883 		set_cpus_allowed_force(p, affinity);
884 
885 	mutex_unlock(&kthreads_hotplug_lock);
886 out:
887 	free_cpumask_var(affinity);
888 
889 	return ret;
890 }
891 EXPORT_SYMBOL_GPL(kthread_affine_preferred);
892 
893 /*
894  * Re-affine kthreads according to their preferences
895  * and the newly online CPU. The CPU down part is handled
896  * by select_fallback_rq() which default re-affines to
897  * housekeepers from other nodes in case the preferred
898  * affinity doesn't apply anymore.
899  */
900 static int kthreads_online_cpu(unsigned int cpu)
901 {
902 	cpumask_var_t affinity;
903 	struct kthread *k;
904 	int ret;
905 
906 	guard(mutex)(&kthreads_hotplug_lock);
907 
908 	if (list_empty(&kthreads_hotplug))
909 		return 0;
910 
911 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
912 		return -ENOMEM;
913 
914 	ret = 0;
915 
916 	list_for_each_entry(k, &kthreads_hotplug, hotplug_node) {
917 		if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) ||
918 				 kthread_is_per_cpu(k->task))) {
919 			ret = -EINVAL;
920 			continue;
921 		}
922 		kthread_fetch_affinity(k, affinity);
923 		set_cpus_allowed_ptr(k->task, affinity);
924 	}
925 
926 	free_cpumask_var(affinity);
927 
928 	return ret;
929 }
930 
931 static int kthreads_init(void)
932 {
933 	return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online",
934 				kthreads_online_cpu, NULL);
935 }
936 early_initcall(kthreads_init);
937 
938 void __kthread_init_worker(struct kthread_worker *worker,
939 				const char *name,
940 				struct lock_class_key *key)
941 {
942 	memset(worker, 0, sizeof(struct kthread_worker));
943 	raw_spin_lock_init(&worker->lock);
944 	lockdep_set_class_and_name(&worker->lock, key, name);
945 	INIT_LIST_HEAD(&worker->work_list);
946 	INIT_LIST_HEAD(&worker->delayed_work_list);
947 }
948 EXPORT_SYMBOL_GPL(__kthread_init_worker);
949 
950 /**
951  * kthread_worker_fn - kthread function to process kthread_worker
952  * @worker_ptr: pointer to initialized kthread_worker
953  *
954  * This function implements the main cycle of kthread worker. It processes
955  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
956  * is empty.
957  *
958  * The works are not allowed to keep any locks, disable preemption or interrupts
959  * when they finish. There is defined a safe point for freezing when one work
960  * finishes and before a new one is started.
961  *
962  * Also the works must not be handled by more than one worker at the same time,
963  * see also kthread_queue_work().
964  */
965 int kthread_worker_fn(void *worker_ptr)
966 {
967 	struct kthread_worker *worker = worker_ptr;
968 	struct kthread_work *work;
969 
970 	/*
971 	 * FIXME: Update the check and remove the assignment when all kthread
972 	 * worker users are created using kthread_create_worker*() functions.
973 	 */
974 	WARN_ON(worker->task && worker->task != current);
975 	worker->task = current;
976 
977 	if (worker->flags & KTW_FREEZABLE)
978 		set_freezable();
979 
980 repeat:
981 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
982 
983 	if (kthread_should_stop()) {
984 		__set_current_state(TASK_RUNNING);
985 		raw_spin_lock_irq(&worker->lock);
986 		worker->task = NULL;
987 		raw_spin_unlock_irq(&worker->lock);
988 		return 0;
989 	}
990 
991 	work = NULL;
992 	raw_spin_lock_irq(&worker->lock);
993 	if (!list_empty(&worker->work_list)) {
994 		work = list_first_entry(&worker->work_list,
995 					struct kthread_work, node);
996 		list_del_init(&work->node);
997 	}
998 	worker->current_work = work;
999 	raw_spin_unlock_irq(&worker->lock);
1000 
1001 	if (work) {
1002 		kthread_work_func_t func = work->func;
1003 		__set_current_state(TASK_RUNNING);
1004 		trace_sched_kthread_work_execute_start(work);
1005 		work->func(work);
1006 		/*
1007 		 * Avoid dereferencing work after this point.  The trace
1008 		 * event only cares about the address.
1009 		 */
1010 		trace_sched_kthread_work_execute_end(work, func);
1011 	} else if (!freezing(current)) {
1012 		schedule();
1013 	} else {
1014 		/*
1015 		 * Handle the case where the current remains
1016 		 * TASK_INTERRUPTIBLE. try_to_freeze() expects
1017 		 * the current to be TASK_RUNNING.
1018 		 */
1019 		__set_current_state(TASK_RUNNING);
1020 	}
1021 
1022 	try_to_freeze();
1023 	cond_resched();
1024 	goto repeat;
1025 }
1026 EXPORT_SYMBOL_GPL(kthread_worker_fn);
1027 
1028 static __printf(3, 0) struct kthread_worker *
1029 __kthread_create_worker_on_node(unsigned int flags, int node,
1030 				const char namefmt[], va_list args)
1031 {
1032 	struct kthread_worker *worker;
1033 	struct task_struct *task;
1034 
1035 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1036 	if (!worker)
1037 		return ERR_PTR(-ENOMEM);
1038 
1039 	kthread_init_worker(worker);
1040 
1041 	task = __kthread_create_on_node(kthread_worker_fn, worker,
1042 					node, namefmt, args);
1043 	if (IS_ERR(task))
1044 		goto fail_task;
1045 
1046 	worker->flags = flags;
1047 	worker->task = task;
1048 
1049 	return worker;
1050 
1051 fail_task:
1052 	kfree(worker);
1053 	return ERR_CAST(task);
1054 }
1055 
1056 /**
1057  * kthread_create_worker_on_node - create a kthread worker
1058  * @flags: flags modifying the default behavior of the worker
1059  * @node: task structure for the thread is allocated on this node
1060  * @namefmt: printf-style name for the kthread worker (task).
1061  *
1062  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1063  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1064  * when the caller was killed by a fatal signal.
1065  */
1066 struct kthread_worker *
1067 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...)
1068 {
1069 	struct kthread_worker *worker;
1070 	va_list args;
1071 
1072 	va_start(args, namefmt);
1073 	worker = __kthread_create_worker_on_node(flags, node, namefmt, args);
1074 	va_end(args);
1075 
1076 	return worker;
1077 }
1078 EXPORT_SYMBOL(kthread_create_worker_on_node);
1079 
1080 /**
1081  * kthread_create_worker_on_cpu - create a kthread worker and bind it
1082  *	to a given CPU and the associated NUMA node.
1083  * @cpu: CPU number
1084  * @flags: flags modifying the default behavior of the worker
1085  * @namefmt: printf-style name for the thread. Format is restricted
1086  *	     to "name.*%u". Code fills in cpu number.
1087  *
1088  * Use a valid CPU number if you want to bind the kthread worker
1089  * to the given CPU and the associated NUMA node.
1090  *
1091  * A good practice is to add the cpu number also into the worker name.
1092  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
1093  *
1094  * CPU hotplug:
1095  * The kthread worker API is simple and generic. It just provides a way
1096  * to create, use, and destroy workers.
1097  *
1098  * It is up to the API user how to handle CPU hotplug. They have to decide
1099  * how to handle pending work items, prevent queuing new ones, and
1100  * restore the functionality when the CPU goes off and on. There are a
1101  * few catches:
1102  *
1103  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
1104  *
1105  *    - The worker might not exist when the CPU was off when the user
1106  *      created the workers.
1107  *
1108  * Good practice is to implement two CPU hotplug callbacks and to
1109  * destroy/create the worker when the CPU goes down/up.
1110  *
1111  * Return:
1112  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1113  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1114  * when the caller was killed by a fatal signal.
1115  */
1116 struct kthread_worker *
1117 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
1118 			     const char namefmt[])
1119 {
1120 	struct kthread_worker *worker;
1121 
1122 	worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu);
1123 	if (!IS_ERR(worker))
1124 		kthread_bind(worker->task, cpu);
1125 
1126 	return worker;
1127 }
1128 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
1129 
1130 /*
1131  * Returns true when the work could not be queued at the moment.
1132  * It happens when it is already pending in a worker list
1133  * or when it is being cancelled.
1134  */
1135 static inline bool queuing_blocked(struct kthread_worker *worker,
1136 				   struct kthread_work *work)
1137 {
1138 	lockdep_assert_held(&worker->lock);
1139 
1140 	return !list_empty(&work->node) || work->canceling;
1141 }
1142 
1143 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
1144 					     struct kthread_work *work)
1145 {
1146 	lockdep_assert_held(&worker->lock);
1147 	WARN_ON_ONCE(!list_empty(&work->node));
1148 	/* Do not use a work with >1 worker, see kthread_queue_work() */
1149 	WARN_ON_ONCE(work->worker && work->worker != worker);
1150 }
1151 
1152 /* insert @work before @pos in @worker */
1153 static void kthread_insert_work(struct kthread_worker *worker,
1154 				struct kthread_work *work,
1155 				struct list_head *pos)
1156 {
1157 	kthread_insert_work_sanity_check(worker, work);
1158 
1159 	trace_sched_kthread_work_queue_work(worker, work);
1160 
1161 	list_add_tail(&work->node, pos);
1162 	work->worker = worker;
1163 	if (!worker->current_work && likely(worker->task))
1164 		wake_up_process(worker->task);
1165 }
1166 
1167 /**
1168  * kthread_queue_work - queue a kthread_work
1169  * @worker: target kthread_worker
1170  * @work: kthread_work to queue
1171  *
1172  * Queue @work to work processor @task for async execution.  @task
1173  * must have been created with kthread_create_worker().  Returns %true
1174  * if @work was successfully queued, %false if it was already pending.
1175  *
1176  * Reinitialize the work if it needs to be used by another worker.
1177  * For example, when the worker was stopped and started again.
1178  */
1179 bool kthread_queue_work(struct kthread_worker *worker,
1180 			struct kthread_work *work)
1181 {
1182 	bool ret = false;
1183 	unsigned long flags;
1184 
1185 	raw_spin_lock_irqsave(&worker->lock, flags);
1186 	if (!queuing_blocked(worker, work)) {
1187 		kthread_insert_work(worker, work, &worker->work_list);
1188 		ret = true;
1189 	}
1190 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(kthread_queue_work);
1194 
1195 /**
1196  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1197  *	delayed work when the timer expires.
1198  * @t: pointer to the expired timer
1199  *
1200  * The format of the function is defined by struct timer_list.
1201  * It should have been called from irqsafe timer with irq already off.
1202  */
1203 void kthread_delayed_work_timer_fn(struct timer_list *t)
1204 {
1205 	struct kthread_delayed_work *dwork = timer_container_of(dwork, t,
1206 								timer);
1207 	struct kthread_work *work = &dwork->work;
1208 	struct kthread_worker *worker = work->worker;
1209 	unsigned long flags;
1210 
1211 	/*
1212 	 * This might happen when a pending work is reinitialized.
1213 	 * It means that it is used a wrong way.
1214 	 */
1215 	if (WARN_ON_ONCE(!worker))
1216 		return;
1217 
1218 	raw_spin_lock_irqsave(&worker->lock, flags);
1219 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1220 	WARN_ON_ONCE(work->worker != worker);
1221 
1222 	/* Move the work from worker->delayed_work_list. */
1223 	WARN_ON_ONCE(list_empty(&work->node));
1224 	list_del_init(&work->node);
1225 	if (!work->canceling)
1226 		kthread_insert_work(worker, work, &worker->work_list);
1227 
1228 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1229 }
1230 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1231 
1232 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1233 					 struct kthread_delayed_work *dwork,
1234 					 unsigned long delay)
1235 {
1236 	struct timer_list *timer = &dwork->timer;
1237 	struct kthread_work *work = &dwork->work;
1238 
1239 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1240 
1241 	/*
1242 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1243 	 * both optimization and correctness.  The earliest @timer can
1244 	 * expire is on the closest next tick and delayed_work users depend
1245 	 * on that there's no such delay when @delay is 0.
1246 	 */
1247 	if (!delay) {
1248 		kthread_insert_work(worker, work, &worker->work_list);
1249 		return;
1250 	}
1251 
1252 	/* Be paranoid and try to detect possible races already now. */
1253 	kthread_insert_work_sanity_check(worker, work);
1254 
1255 	list_add(&work->node, &worker->delayed_work_list);
1256 	work->worker = worker;
1257 	timer->expires = jiffies + delay;
1258 	add_timer(timer);
1259 }
1260 
1261 /**
1262  * kthread_queue_delayed_work - queue the associated kthread work
1263  *	after a delay.
1264  * @worker: target kthread_worker
1265  * @dwork: kthread_delayed_work to queue
1266  * @delay: number of jiffies to wait before queuing
1267  *
1268  * If the work has not been pending it starts a timer that will queue
1269  * the work after the given @delay. If @delay is zero, it queues the
1270  * work immediately.
1271  *
1272  * Return: %false if the @work has already been pending. It means that
1273  * either the timer was running or the work was queued. It returns %true
1274  * otherwise.
1275  */
1276 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1277 				struct kthread_delayed_work *dwork,
1278 				unsigned long delay)
1279 {
1280 	struct kthread_work *work = &dwork->work;
1281 	unsigned long flags;
1282 	bool ret = false;
1283 
1284 	raw_spin_lock_irqsave(&worker->lock, flags);
1285 
1286 	if (!queuing_blocked(worker, work)) {
1287 		__kthread_queue_delayed_work(worker, dwork, delay);
1288 		ret = true;
1289 	}
1290 
1291 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1295 
1296 struct kthread_flush_work {
1297 	struct kthread_work	work;
1298 	struct completion	done;
1299 };
1300 
1301 static void kthread_flush_work_fn(struct kthread_work *work)
1302 {
1303 	struct kthread_flush_work *fwork =
1304 		container_of(work, struct kthread_flush_work, work);
1305 	complete(&fwork->done);
1306 }
1307 
1308 /**
1309  * kthread_flush_work - flush a kthread_work
1310  * @work: work to flush
1311  *
1312  * If @work is queued or executing, wait for it to finish execution.
1313  */
1314 void kthread_flush_work(struct kthread_work *work)
1315 {
1316 	struct kthread_flush_work fwork = {
1317 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1318 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1319 	};
1320 	struct kthread_worker *worker;
1321 	bool noop = false;
1322 
1323 	worker = work->worker;
1324 	if (!worker)
1325 		return;
1326 
1327 	raw_spin_lock_irq(&worker->lock);
1328 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1329 	WARN_ON_ONCE(work->worker != worker);
1330 
1331 	if (!list_empty(&work->node))
1332 		kthread_insert_work(worker, &fwork.work, work->node.next);
1333 	else if (worker->current_work == work)
1334 		kthread_insert_work(worker, &fwork.work,
1335 				    worker->work_list.next);
1336 	else
1337 		noop = true;
1338 
1339 	raw_spin_unlock_irq(&worker->lock);
1340 
1341 	if (!noop)
1342 		wait_for_completion(&fwork.done);
1343 }
1344 EXPORT_SYMBOL_GPL(kthread_flush_work);
1345 
1346 /*
1347  * Make sure that the timer is neither set nor running and could
1348  * not manipulate the work list_head any longer.
1349  *
1350  * The function is called under worker->lock. The lock is temporary
1351  * released but the timer can't be set again in the meantime.
1352  */
1353 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1354 					      unsigned long *flags)
1355 {
1356 	struct kthread_delayed_work *dwork =
1357 		container_of(work, struct kthread_delayed_work, work);
1358 	struct kthread_worker *worker = work->worker;
1359 
1360 	/*
1361 	 * timer_delete_sync() must be called to make sure that the timer
1362 	 * callback is not running. The lock must be temporary released
1363 	 * to avoid a deadlock with the callback. In the meantime,
1364 	 * any queuing is blocked by setting the canceling counter.
1365 	 */
1366 	work->canceling++;
1367 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1368 	timer_delete_sync(&dwork->timer);
1369 	raw_spin_lock_irqsave(&worker->lock, *flags);
1370 	work->canceling--;
1371 }
1372 
1373 /*
1374  * This function removes the work from the worker queue.
1375  *
1376  * It is called under worker->lock. The caller must make sure that
1377  * the timer used by delayed work is not running, e.g. by calling
1378  * kthread_cancel_delayed_work_timer().
1379  *
1380  * The work might still be in use when this function finishes. See the
1381  * current_work proceed by the worker.
1382  *
1383  * Return: %true if @work was pending and successfully canceled,
1384  *	%false if @work was not pending
1385  */
1386 static bool __kthread_cancel_work(struct kthread_work *work)
1387 {
1388 	/*
1389 	 * Try to remove the work from a worker list. It might either
1390 	 * be from worker->work_list or from worker->delayed_work_list.
1391 	 */
1392 	if (!list_empty(&work->node)) {
1393 		list_del_init(&work->node);
1394 		return true;
1395 	}
1396 
1397 	return false;
1398 }
1399 
1400 /**
1401  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1402  * @worker: kthread worker to use
1403  * @dwork: kthread delayed work to queue
1404  * @delay: number of jiffies to wait before queuing
1405  *
1406  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1407  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1408  * @work is guaranteed to be queued immediately.
1409  *
1410  * Return: %false if @dwork was idle and queued, %true otherwise.
1411  *
1412  * A special case is when the work is being canceled in parallel.
1413  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1414  * or yet another kthread_mod_delayed_work() call. We let the other command
1415  * win and return %true here. The return value can be used for reference
1416  * counting and the number of queued works stays the same. Anyway, the caller
1417  * is supposed to synchronize these operations a reasonable way.
1418  *
1419  * This function is safe to call from any context including IRQ handler.
1420  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1421  * for details.
1422  */
1423 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1424 			      struct kthread_delayed_work *dwork,
1425 			      unsigned long delay)
1426 {
1427 	struct kthread_work *work = &dwork->work;
1428 	unsigned long flags;
1429 	int ret;
1430 
1431 	raw_spin_lock_irqsave(&worker->lock, flags);
1432 
1433 	/* Do not bother with canceling when never queued. */
1434 	if (!work->worker) {
1435 		ret = false;
1436 		goto fast_queue;
1437 	}
1438 
1439 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1440 	WARN_ON_ONCE(work->worker != worker);
1441 
1442 	/*
1443 	 * Temporary cancel the work but do not fight with another command
1444 	 * that is canceling the work as well.
1445 	 *
1446 	 * It is a bit tricky because of possible races with another
1447 	 * mod_delayed_work() and cancel_delayed_work() callers.
1448 	 *
1449 	 * The timer must be canceled first because worker->lock is released
1450 	 * when doing so. But the work can be removed from the queue (list)
1451 	 * only when it can be queued again so that the return value can
1452 	 * be used for reference counting.
1453 	 */
1454 	kthread_cancel_delayed_work_timer(work, &flags);
1455 	if (work->canceling) {
1456 		/* The number of works in the queue does not change. */
1457 		ret = true;
1458 		goto out;
1459 	}
1460 	ret = __kthread_cancel_work(work);
1461 
1462 fast_queue:
1463 	__kthread_queue_delayed_work(worker, dwork, delay);
1464 out:
1465 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1469 
1470 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1471 {
1472 	struct kthread_worker *worker = work->worker;
1473 	unsigned long flags;
1474 	int ret = false;
1475 
1476 	if (!worker)
1477 		goto out;
1478 
1479 	raw_spin_lock_irqsave(&worker->lock, flags);
1480 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1481 	WARN_ON_ONCE(work->worker != worker);
1482 
1483 	if (is_dwork)
1484 		kthread_cancel_delayed_work_timer(work, &flags);
1485 
1486 	ret = __kthread_cancel_work(work);
1487 
1488 	if (worker->current_work != work)
1489 		goto out_fast;
1490 
1491 	/*
1492 	 * The work is in progress and we need to wait with the lock released.
1493 	 * In the meantime, block any queuing by setting the canceling counter.
1494 	 */
1495 	work->canceling++;
1496 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1497 	kthread_flush_work(work);
1498 	raw_spin_lock_irqsave(&worker->lock, flags);
1499 	work->canceling--;
1500 
1501 out_fast:
1502 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1503 out:
1504 	return ret;
1505 }
1506 
1507 /**
1508  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1509  * @work: the kthread work to cancel
1510  *
1511  * Cancel @work and wait for its execution to finish.  This function
1512  * can be used even if the work re-queues itself. On return from this
1513  * function, @work is guaranteed to be not pending or executing on any CPU.
1514  *
1515  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1516  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1517  *
1518  * The caller must ensure that the worker on which @work was last
1519  * queued can't be destroyed before this function returns.
1520  *
1521  * Return: %true if @work was pending, %false otherwise.
1522  */
1523 bool kthread_cancel_work_sync(struct kthread_work *work)
1524 {
1525 	return __kthread_cancel_work_sync(work, false);
1526 }
1527 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1528 
1529 /**
1530  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1531  *	wait for it to finish.
1532  * @dwork: the kthread delayed work to cancel
1533  *
1534  * This is kthread_cancel_work_sync() for delayed works.
1535  *
1536  * Return: %true if @dwork was pending, %false otherwise.
1537  */
1538 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1539 {
1540 	return __kthread_cancel_work_sync(&dwork->work, true);
1541 }
1542 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1543 
1544 /**
1545  * kthread_flush_worker - flush all current works on a kthread_worker
1546  * @worker: worker to flush
1547  *
1548  * Wait until all currently executing or pending works on @worker are
1549  * finished.
1550  */
1551 void kthread_flush_worker(struct kthread_worker *worker)
1552 {
1553 	struct kthread_flush_work fwork = {
1554 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1555 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1556 	};
1557 
1558 	kthread_queue_work(worker, &fwork.work);
1559 	wait_for_completion(&fwork.done);
1560 }
1561 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1562 
1563 /**
1564  * kthread_destroy_worker - destroy a kthread worker
1565  * @worker: worker to be destroyed
1566  *
1567  * Flush and destroy @worker.  The simple flush is enough because the kthread
1568  * worker API is used only in trivial scenarios.  There are no multi-step state
1569  * machines needed.
1570  *
1571  * Note that this function is not responsible for handling delayed work, so
1572  * caller should be responsible for queuing or canceling all delayed work items
1573  * before invoke this function.
1574  */
1575 void kthread_destroy_worker(struct kthread_worker *worker)
1576 {
1577 	struct task_struct *task;
1578 
1579 	task = worker->task;
1580 	if (WARN_ON(!task))
1581 		return;
1582 
1583 	kthread_flush_worker(worker);
1584 	kthread_stop(task);
1585 	WARN_ON(!list_empty(&worker->delayed_work_list));
1586 	WARN_ON(!list_empty(&worker->work_list));
1587 	kfree(worker);
1588 }
1589 EXPORT_SYMBOL(kthread_destroy_worker);
1590 
1591 /**
1592  * kthread_use_mm - make the calling kthread operate on an address space
1593  * @mm: address space to operate on
1594  */
1595 void kthread_use_mm(struct mm_struct *mm)
1596 {
1597 	struct mm_struct *active_mm;
1598 	struct task_struct *tsk = current;
1599 
1600 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1601 	WARN_ON_ONCE(tsk->mm);
1602 
1603 	/*
1604 	 * It is possible for mm to be the same as tsk->active_mm, but
1605 	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1606 	 * because these references are not equivalent.
1607 	 */
1608 	mmgrab(mm);
1609 
1610 	task_lock(tsk);
1611 	/* Hold off tlb flush IPIs while switching mm's */
1612 	local_irq_disable();
1613 	active_mm = tsk->active_mm;
1614 	tsk->active_mm = mm;
1615 	tsk->mm = mm;
1616 	membarrier_update_current_mm(mm);
1617 	switch_mm_irqs_off(active_mm, mm, tsk);
1618 	local_irq_enable();
1619 	task_unlock(tsk);
1620 #ifdef finish_arch_post_lock_switch
1621 	finish_arch_post_lock_switch();
1622 #endif
1623 
1624 	/*
1625 	 * When a kthread starts operating on an address space, the loop
1626 	 * in membarrier_{private,global}_expedited() may not observe
1627 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1628 	 * memory barrier after storing to tsk->mm, before accessing
1629 	 * user-space memory. A full memory barrier for membarrier
1630 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1631 	 * mmdrop_lazy_tlb().
1632 	 */
1633 	mmdrop_lazy_tlb(active_mm);
1634 }
1635 EXPORT_SYMBOL_GPL(kthread_use_mm);
1636 
1637 /**
1638  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1639  * @mm: address space to operate on
1640  */
1641 void kthread_unuse_mm(struct mm_struct *mm)
1642 {
1643 	struct task_struct *tsk = current;
1644 
1645 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1646 	WARN_ON_ONCE(!tsk->mm);
1647 
1648 	task_lock(tsk);
1649 	/*
1650 	 * When a kthread stops operating on an address space, the loop
1651 	 * in membarrier_{private,global}_expedited() may not observe
1652 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1653 	 * memory barrier after accessing user-space memory, before
1654 	 * clearing tsk->mm.
1655 	 */
1656 	smp_mb__after_spinlock();
1657 	local_irq_disable();
1658 	tsk->mm = NULL;
1659 	membarrier_update_current_mm(NULL);
1660 	mmgrab_lazy_tlb(mm);
1661 	/* active_mm is still 'mm' */
1662 	enter_lazy_tlb(mm, tsk);
1663 	local_irq_enable();
1664 	task_unlock(tsk);
1665 
1666 	mmdrop(mm);
1667 }
1668 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1669 
1670 #ifdef CONFIG_BLK_CGROUP
1671 /**
1672  * kthread_associate_blkcg - associate blkcg to current kthread
1673  * @css: the cgroup info
1674  *
1675  * Current thread must be a kthread. The thread is running jobs on behalf of
1676  * other threads. In some cases, we expect the jobs attach cgroup info of
1677  * original threads instead of that of current thread. This function stores
1678  * original thread's cgroup info in current kthread context for later
1679  * retrieval.
1680  */
1681 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1682 {
1683 	struct kthread *kthread;
1684 
1685 	if (!(current->flags & PF_KTHREAD))
1686 		return;
1687 	kthread = to_kthread(current);
1688 	if (!kthread)
1689 		return;
1690 
1691 	if (kthread->blkcg_css) {
1692 		css_put(kthread->blkcg_css);
1693 		kthread->blkcg_css = NULL;
1694 	}
1695 	if (css) {
1696 		css_get(css);
1697 		kthread->blkcg_css = css;
1698 	}
1699 }
1700 EXPORT_SYMBOL(kthread_associate_blkcg);
1701 
1702 /**
1703  * kthread_blkcg - get associated blkcg css of current kthread
1704  *
1705  * Current thread must be a kthread.
1706  */
1707 struct cgroup_subsys_state *kthread_blkcg(void)
1708 {
1709 	struct kthread *kthread;
1710 
1711 	if (current->flags & PF_KTHREAD) {
1712 		kthread = to_kthread(current);
1713 		if (kthread)
1714 			return kthread->blkcg_css;
1715 	}
1716 	return NULL;
1717 }
1718 #endif
1719