1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 static LIST_HEAD(kthreads_hotplug); 39 static DEFINE_MUTEX(kthreads_hotplug_lock); 40 41 struct kthread_create_info 42 { 43 /* Information passed to kthread() from kthreadd. */ 44 char *full_name; 45 int (*threadfn)(void *data); 46 void *data; 47 int node; 48 49 /* Result passed back to kthread_create() from kthreadd. */ 50 struct task_struct *result; 51 struct completion *done; 52 53 struct list_head list; 54 }; 55 56 struct kthread { 57 unsigned long flags; 58 unsigned int cpu; 59 unsigned int node; 60 int started; 61 int result; 62 int (*threadfn)(void *); 63 void *data; 64 struct completion parked; 65 struct completion exited; 66 #ifdef CONFIG_BLK_CGROUP 67 struct cgroup_subsys_state *blkcg_css; 68 #endif 69 /* To store the full name if task comm is truncated. */ 70 char *full_name; 71 struct task_struct *task; 72 struct list_head hotplug_node; 73 struct cpumask *preferred_affinity; 74 }; 75 76 enum KTHREAD_BITS { 77 KTHREAD_IS_PER_CPU = 0, 78 KTHREAD_SHOULD_STOP, 79 KTHREAD_SHOULD_PARK, 80 }; 81 82 static inline struct kthread *to_kthread(struct task_struct *k) 83 { 84 WARN_ON(!(k->flags & PF_KTHREAD)); 85 return k->worker_private; 86 } 87 88 /* 89 * Variant of to_kthread() that doesn't assume @p is a kthread. 90 * 91 * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will 92 * always remain a kthread. For kthreads p->worker_private always 93 * points to a struct kthread. For tasks that are not kthreads 94 * p->worker_private is used to point to other things. 95 * 96 * Return NULL for any task that is not a kthread. 97 */ 98 static inline struct kthread *__to_kthread(struct task_struct *p) 99 { 100 void *kthread = p->worker_private; 101 if (kthread && !(p->flags & PF_KTHREAD)) 102 kthread = NULL; 103 return kthread; 104 } 105 106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 107 { 108 struct kthread *kthread = to_kthread(tsk); 109 110 if (!kthread || !kthread->full_name) { 111 strscpy(buf, tsk->comm, buf_size); 112 return; 113 } 114 115 strscpy_pad(buf, kthread->full_name, buf_size); 116 } 117 118 bool set_kthread_struct(struct task_struct *p) 119 { 120 struct kthread *kthread; 121 122 if (WARN_ON_ONCE(to_kthread(p))) 123 return false; 124 125 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 126 if (!kthread) 127 return false; 128 129 init_completion(&kthread->exited); 130 init_completion(&kthread->parked); 131 INIT_LIST_HEAD(&kthread->hotplug_node); 132 p->vfork_done = &kthread->exited; 133 134 kthread->task = p; 135 kthread->node = tsk_fork_get_node(current); 136 p->worker_private = kthread; 137 return true; 138 } 139 140 void free_kthread_struct(struct task_struct *k) 141 { 142 struct kthread *kthread; 143 144 /* 145 * Can be NULL if kmalloc() in set_kthread_struct() failed. 146 */ 147 kthread = to_kthread(k); 148 if (!kthread) 149 return; 150 151 #ifdef CONFIG_BLK_CGROUP 152 WARN_ON_ONCE(kthread->blkcg_css); 153 #endif 154 k->worker_private = NULL; 155 kfree(kthread->full_name); 156 kfree(kthread); 157 } 158 159 /** 160 * kthread_should_stop - should this kthread return now? 161 * 162 * When someone calls kthread_stop() on your kthread, it will be woken 163 * and this will return true. You should then return, and your return 164 * value will be passed through to kthread_stop(). 165 */ 166 bool kthread_should_stop(void) 167 { 168 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 169 } 170 EXPORT_SYMBOL(kthread_should_stop); 171 172 static bool __kthread_should_park(struct task_struct *k) 173 { 174 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 175 } 176 177 /** 178 * kthread_should_park - should this kthread park now? 179 * 180 * When someone calls kthread_park() on your kthread, it will be woken 181 * and this will return true. You should then do the necessary 182 * cleanup and call kthread_parkme() 183 * 184 * Similar to kthread_should_stop(), but this keeps the thread alive 185 * and in a park position. kthread_unpark() "restarts" the thread and 186 * calls the thread function again. 187 */ 188 bool kthread_should_park(void) 189 { 190 return __kthread_should_park(current); 191 } 192 EXPORT_SYMBOL_GPL(kthread_should_park); 193 194 bool kthread_should_stop_or_park(void) 195 { 196 struct kthread *kthread = __to_kthread(current); 197 198 if (!kthread) 199 return false; 200 201 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 202 } 203 204 /** 205 * kthread_freezable_should_stop - should this freezable kthread return now? 206 * @was_frozen: optional out parameter, indicates whether %current was frozen 207 * 208 * kthread_should_stop() for freezable kthreads, which will enter 209 * refrigerator if necessary. This function is safe from kthread_stop() / 210 * freezer deadlock and freezable kthreads should use this function instead 211 * of calling try_to_freeze() directly. 212 */ 213 bool kthread_freezable_should_stop(bool *was_frozen) 214 { 215 bool frozen = false; 216 217 might_sleep(); 218 219 if (unlikely(freezing(current))) 220 frozen = __refrigerator(true); 221 222 if (was_frozen) 223 *was_frozen = frozen; 224 225 return kthread_should_stop(); 226 } 227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 228 229 /** 230 * kthread_func - return the function specified on kthread creation 231 * @task: kthread task in question 232 * 233 * Returns NULL if the task is not a kthread. 234 */ 235 void *kthread_func(struct task_struct *task) 236 { 237 struct kthread *kthread = __to_kthread(task); 238 if (kthread) 239 return kthread->threadfn; 240 return NULL; 241 } 242 EXPORT_SYMBOL_GPL(kthread_func); 243 244 /** 245 * kthread_data - return data value specified on kthread creation 246 * @task: kthread task in question 247 * 248 * Return the data value specified when kthread @task was created. 249 * The caller is responsible for ensuring the validity of @task when 250 * calling this function. 251 */ 252 void *kthread_data(struct task_struct *task) 253 { 254 return to_kthread(task)->data; 255 } 256 EXPORT_SYMBOL_GPL(kthread_data); 257 258 /** 259 * kthread_probe_data - speculative version of kthread_data() 260 * @task: possible kthread task in question 261 * 262 * @task could be a kthread task. Return the data value specified when it 263 * was created if accessible. If @task isn't a kthread task or its data is 264 * inaccessible for any reason, %NULL is returned. This function requires 265 * that @task itself is safe to dereference. 266 */ 267 void *kthread_probe_data(struct task_struct *task) 268 { 269 struct kthread *kthread = __to_kthread(task); 270 void *data = NULL; 271 272 if (kthread) 273 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 274 return data; 275 } 276 277 static void __kthread_parkme(struct kthread *self) 278 { 279 for (;;) { 280 /* 281 * TASK_PARKED is a special state; we must serialize against 282 * possible pending wakeups to avoid store-store collisions on 283 * task->state. 284 * 285 * Such a collision might possibly result in the task state 286 * changin from TASK_PARKED and us failing the 287 * wait_task_inactive() in kthread_park(). 288 */ 289 set_special_state(TASK_PARKED); 290 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 291 break; 292 293 /* 294 * Thread is going to call schedule(), do not preempt it, 295 * or the caller of kthread_park() may spend more time in 296 * wait_task_inactive(). 297 */ 298 preempt_disable(); 299 complete(&self->parked); 300 schedule_preempt_disabled(); 301 preempt_enable(); 302 } 303 __set_current_state(TASK_RUNNING); 304 } 305 306 void kthread_parkme(void) 307 { 308 __kthread_parkme(to_kthread(current)); 309 } 310 EXPORT_SYMBOL_GPL(kthread_parkme); 311 312 /** 313 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 314 * @result: The integer value to return to kthread_stop(). 315 * 316 * While kthread_exit can be called directly, it exists so that 317 * functions which do some additional work in non-modular code such as 318 * module_put_and_kthread_exit can be implemented. 319 * 320 * Does not return. 321 */ 322 void __noreturn kthread_exit(long result) 323 { 324 struct kthread *kthread = to_kthread(current); 325 kthread->result = result; 326 if (!list_empty(&kthread->hotplug_node)) { 327 mutex_lock(&kthreads_hotplug_lock); 328 list_del(&kthread->hotplug_node); 329 mutex_unlock(&kthreads_hotplug_lock); 330 331 if (kthread->preferred_affinity) { 332 kfree(kthread->preferred_affinity); 333 kthread->preferred_affinity = NULL; 334 } 335 } 336 do_exit(0); 337 } 338 EXPORT_SYMBOL(kthread_exit); 339 340 /** 341 * kthread_complete_and_exit - Exit the current kthread. 342 * @comp: Completion to complete 343 * @code: The integer value to return to kthread_stop(). 344 * 345 * If present, complete @comp and then return code to kthread_stop(). 346 * 347 * A kernel thread whose module may be removed after the completion of 348 * @comp can use this function to exit safely. 349 * 350 * Does not return. 351 */ 352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 353 { 354 if (comp) 355 complete(comp); 356 357 kthread_exit(code); 358 } 359 EXPORT_SYMBOL(kthread_complete_and_exit); 360 361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask) 362 { 363 const struct cpumask *pref; 364 365 if (kthread->preferred_affinity) { 366 pref = kthread->preferred_affinity; 367 } else { 368 if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE)) 369 return; 370 pref = cpumask_of_node(kthread->node); 371 } 372 373 cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD)); 374 if (cpumask_empty(cpumask)) 375 cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD)); 376 } 377 378 static void kthread_affine_node(void) 379 { 380 struct kthread *kthread = to_kthread(current); 381 cpumask_var_t affinity; 382 383 WARN_ON_ONCE(kthread_is_per_cpu(current)); 384 385 if (kthread->node == NUMA_NO_NODE) { 386 housekeeping_affine(current, HK_TYPE_KTHREAD); 387 } else { 388 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) { 389 WARN_ON_ONCE(1); 390 return; 391 } 392 393 mutex_lock(&kthreads_hotplug_lock); 394 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 395 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 396 /* 397 * The node cpumask is racy when read from kthread() but: 398 * - a racing CPU going down will either fail on the subsequent 399 * call to set_cpus_allowed_ptr() or be migrated to housekeepers 400 * afterwards by the scheduler. 401 * - a racing CPU going up will be handled by kthreads_online_cpu() 402 */ 403 kthread_fetch_affinity(kthread, affinity); 404 set_cpus_allowed_ptr(current, affinity); 405 mutex_unlock(&kthreads_hotplug_lock); 406 407 free_cpumask_var(affinity); 408 } 409 } 410 411 static int kthread(void *_create) 412 { 413 static const struct sched_param param = { .sched_priority = 0 }; 414 /* Copy data: it's on kthread's stack */ 415 struct kthread_create_info *create = _create; 416 int (*threadfn)(void *data) = create->threadfn; 417 void *data = create->data; 418 struct completion *done; 419 struct kthread *self; 420 int ret; 421 422 self = to_kthread(current); 423 424 /* Release the structure when caller killed by a fatal signal. */ 425 done = xchg(&create->done, NULL); 426 if (!done) { 427 kfree(create->full_name); 428 kfree(create); 429 kthread_exit(-EINTR); 430 } 431 432 self->full_name = create->full_name; 433 self->threadfn = threadfn; 434 self->data = data; 435 436 /* 437 * The new thread inherited kthreadd's priority and CPU mask. Reset 438 * back to default in case they have been changed. 439 */ 440 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 441 442 /* OK, tell user we're spawned, wait for stop or wakeup */ 443 __set_current_state(TASK_UNINTERRUPTIBLE); 444 create->result = current; 445 /* 446 * Thread is going to call schedule(), do not preempt it, 447 * or the creator may spend more time in wait_task_inactive(). 448 */ 449 preempt_disable(); 450 complete(done); 451 schedule_preempt_disabled(); 452 preempt_enable(); 453 454 self->started = 1; 455 456 if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity) 457 kthread_affine_node(); 458 459 ret = -EINTR; 460 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 461 cgroup_kthread_ready(); 462 __kthread_parkme(self); 463 ret = threadfn(data); 464 } 465 kthread_exit(ret); 466 } 467 468 /* called from kernel_clone() to get node information for about to be created task */ 469 int tsk_fork_get_node(struct task_struct *tsk) 470 { 471 #ifdef CONFIG_NUMA 472 if (tsk == kthreadd_task) 473 return tsk->pref_node_fork; 474 #endif 475 return NUMA_NO_NODE; 476 } 477 478 static void create_kthread(struct kthread_create_info *create) 479 { 480 int pid; 481 482 #ifdef CONFIG_NUMA 483 current->pref_node_fork = create->node; 484 #endif 485 /* We want our own signal handler (we take no signals by default). */ 486 pid = kernel_thread(kthread, create, create->full_name, 487 CLONE_FS | CLONE_FILES | SIGCHLD); 488 if (pid < 0) { 489 /* Release the structure when caller killed by a fatal signal. */ 490 struct completion *done = xchg(&create->done, NULL); 491 492 kfree(create->full_name); 493 if (!done) { 494 kfree(create); 495 return; 496 } 497 create->result = ERR_PTR(pid); 498 complete(done); 499 } 500 } 501 502 static __printf(4, 0) 503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 504 void *data, int node, 505 const char namefmt[], 506 va_list args) 507 { 508 DECLARE_COMPLETION_ONSTACK(done); 509 struct task_struct *task; 510 struct kthread_create_info *create = kmalloc(sizeof(*create), 511 GFP_KERNEL); 512 513 if (!create) 514 return ERR_PTR(-ENOMEM); 515 create->threadfn = threadfn; 516 create->data = data; 517 create->node = node; 518 create->done = &done; 519 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 520 if (!create->full_name) { 521 task = ERR_PTR(-ENOMEM); 522 goto free_create; 523 } 524 525 spin_lock(&kthread_create_lock); 526 list_add_tail(&create->list, &kthread_create_list); 527 spin_unlock(&kthread_create_lock); 528 529 wake_up_process(kthreadd_task); 530 /* 531 * Wait for completion in killable state, for I might be chosen by 532 * the OOM killer while kthreadd is trying to allocate memory for 533 * new kernel thread. 534 */ 535 if (unlikely(wait_for_completion_killable(&done))) { 536 /* 537 * If I was killed by a fatal signal before kthreadd (or new 538 * kernel thread) calls complete(), leave the cleanup of this 539 * structure to that thread. 540 */ 541 if (xchg(&create->done, NULL)) 542 return ERR_PTR(-EINTR); 543 /* 544 * kthreadd (or new kernel thread) will call complete() 545 * shortly. 546 */ 547 wait_for_completion(&done); 548 } 549 task = create->result; 550 free_create: 551 kfree(create); 552 return task; 553 } 554 555 /** 556 * kthread_create_on_node - create a kthread. 557 * @threadfn: the function to run until signal_pending(current). 558 * @data: data ptr for @threadfn. 559 * @node: task and thread structures for the thread are allocated on this node 560 * @namefmt: printf-style name for the thread. 561 * 562 * Description: This helper function creates and names a kernel 563 * thread. The thread will be stopped: use wake_up_process() to start 564 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 565 * is affine to all CPUs. 566 * 567 * If thread is going to be bound on a particular cpu, give its node 568 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 569 * When woken, the thread will run @threadfn() with @data as its 570 * argument. @threadfn() can either return directly if it is a 571 * standalone thread for which no one will call kthread_stop(), or 572 * return when 'kthread_should_stop()' is true (which means 573 * kthread_stop() has been called). The return value should be zero 574 * or a negative error number; it will be passed to kthread_stop(). 575 * 576 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 577 */ 578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 579 void *data, int node, 580 const char namefmt[], 581 ...) 582 { 583 struct task_struct *task; 584 va_list args; 585 586 va_start(args, namefmt); 587 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 588 va_end(args); 589 590 return task; 591 } 592 EXPORT_SYMBOL(kthread_create_on_node); 593 594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 595 { 596 unsigned long flags; 597 598 if (!wait_task_inactive(p, state)) { 599 WARN_ON(1); 600 return; 601 } 602 603 /* It's safe because the task is inactive. */ 604 raw_spin_lock_irqsave(&p->pi_lock, flags); 605 do_set_cpus_allowed(p, mask); 606 p->flags |= PF_NO_SETAFFINITY; 607 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 608 } 609 610 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 611 { 612 __kthread_bind_mask(p, cpumask_of(cpu), state); 613 } 614 615 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 616 { 617 struct kthread *kthread = to_kthread(p); 618 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 619 WARN_ON_ONCE(kthread->started); 620 } 621 622 /** 623 * kthread_bind - bind a just-created kthread to a cpu. 624 * @p: thread created by kthread_create(). 625 * @cpu: cpu (might not be online, must be possible) for @k to run on. 626 * 627 * Description: This function is equivalent to set_cpus_allowed(), 628 * except that @cpu doesn't need to be online, and the thread must be 629 * stopped (i.e., just returned from kthread_create()). 630 */ 631 void kthread_bind(struct task_struct *p, unsigned int cpu) 632 { 633 struct kthread *kthread = to_kthread(p); 634 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 635 WARN_ON_ONCE(kthread->started); 636 } 637 EXPORT_SYMBOL(kthread_bind); 638 639 /** 640 * kthread_create_on_cpu - Create a cpu bound kthread 641 * @threadfn: the function to run until signal_pending(current). 642 * @data: data ptr for @threadfn. 643 * @cpu: The cpu on which the thread should be bound, 644 * @namefmt: printf-style name for the thread. Format is restricted 645 * to "name.*%u". Code fills in cpu number. 646 * 647 * Description: This helper function creates and names a kernel thread 648 */ 649 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 650 void *data, unsigned int cpu, 651 const char *namefmt) 652 { 653 struct task_struct *p; 654 655 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 656 cpu); 657 if (IS_ERR(p)) 658 return p; 659 kthread_bind(p, cpu); 660 /* CPU hotplug need to bind once again when unparking the thread. */ 661 to_kthread(p)->cpu = cpu; 662 return p; 663 } 664 EXPORT_SYMBOL(kthread_create_on_cpu); 665 666 void kthread_set_per_cpu(struct task_struct *k, int cpu) 667 { 668 struct kthread *kthread = to_kthread(k); 669 if (!kthread) 670 return; 671 672 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 673 674 if (cpu < 0) { 675 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 676 return; 677 } 678 679 kthread->cpu = cpu; 680 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 681 } 682 683 bool kthread_is_per_cpu(struct task_struct *p) 684 { 685 struct kthread *kthread = __to_kthread(p); 686 if (!kthread) 687 return false; 688 689 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 690 } 691 692 /** 693 * kthread_unpark - unpark a thread created by kthread_create(). 694 * @k: thread created by kthread_create(). 695 * 696 * Sets kthread_should_park() for @k to return false, wakes it, and 697 * waits for it to return. If the thread is marked percpu then its 698 * bound to the cpu again. 699 */ 700 void kthread_unpark(struct task_struct *k) 701 { 702 struct kthread *kthread = to_kthread(k); 703 704 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 705 return; 706 /* 707 * Newly created kthread was parked when the CPU was offline. 708 * The binding was lost and we need to set it again. 709 */ 710 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 711 __kthread_bind(k, kthread->cpu, TASK_PARKED); 712 713 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 714 /* 715 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 716 */ 717 wake_up_state(k, TASK_PARKED); 718 } 719 EXPORT_SYMBOL_GPL(kthread_unpark); 720 721 /** 722 * kthread_park - park a thread created by kthread_create(). 723 * @k: thread created by kthread_create(). 724 * 725 * Sets kthread_should_park() for @k to return true, wakes it, and 726 * waits for it to return. This can also be called after kthread_create() 727 * instead of calling wake_up_process(): the thread will park without 728 * calling threadfn(). 729 * 730 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 731 * If called by the kthread itself just the park bit is set. 732 */ 733 int kthread_park(struct task_struct *k) 734 { 735 struct kthread *kthread = to_kthread(k); 736 737 if (WARN_ON(k->flags & PF_EXITING)) 738 return -ENOSYS; 739 740 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 741 return -EBUSY; 742 743 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 744 if (k != current) { 745 wake_up_process(k); 746 /* 747 * Wait for __kthread_parkme() to complete(), this means we 748 * _will_ have TASK_PARKED and are about to call schedule(). 749 */ 750 wait_for_completion(&kthread->parked); 751 /* 752 * Now wait for that schedule() to complete and the task to 753 * get scheduled out. 754 */ 755 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 756 } 757 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(kthread_park); 761 762 /** 763 * kthread_stop - stop a thread created by kthread_create(). 764 * @k: thread created by kthread_create(). 765 * 766 * Sets kthread_should_stop() for @k to return true, wakes it, and 767 * waits for it to exit. This can also be called after kthread_create() 768 * instead of calling wake_up_process(): the thread will exit without 769 * calling threadfn(). 770 * 771 * If threadfn() may call kthread_exit() itself, the caller must ensure 772 * task_struct can't go away. 773 * 774 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 775 * was never called. 776 */ 777 int kthread_stop(struct task_struct *k) 778 { 779 struct kthread *kthread; 780 int ret; 781 782 trace_sched_kthread_stop(k); 783 784 get_task_struct(k); 785 kthread = to_kthread(k); 786 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 787 kthread_unpark(k); 788 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 789 wake_up_process(k); 790 wait_for_completion(&kthread->exited); 791 ret = kthread->result; 792 put_task_struct(k); 793 794 trace_sched_kthread_stop_ret(ret); 795 return ret; 796 } 797 EXPORT_SYMBOL(kthread_stop); 798 799 /** 800 * kthread_stop_put - stop a thread and put its task struct 801 * @k: thread created by kthread_create(). 802 * 803 * Stops a thread created by kthread_create() and put its task_struct. 804 * Only use when holding an extra task struct reference obtained by 805 * calling get_task_struct(). 806 */ 807 int kthread_stop_put(struct task_struct *k) 808 { 809 int ret; 810 811 ret = kthread_stop(k); 812 put_task_struct(k); 813 return ret; 814 } 815 EXPORT_SYMBOL(kthread_stop_put); 816 817 int kthreadd(void *unused) 818 { 819 static const char comm[TASK_COMM_LEN] = "kthreadd"; 820 struct task_struct *tsk = current; 821 822 /* Setup a clean context for our children to inherit. */ 823 set_task_comm(tsk, comm); 824 ignore_signals(tsk); 825 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 826 set_mems_allowed(node_states[N_MEMORY]); 827 828 current->flags |= PF_NOFREEZE; 829 cgroup_init_kthreadd(); 830 831 for (;;) { 832 set_current_state(TASK_INTERRUPTIBLE); 833 if (list_empty(&kthread_create_list)) 834 schedule(); 835 __set_current_state(TASK_RUNNING); 836 837 spin_lock(&kthread_create_lock); 838 while (!list_empty(&kthread_create_list)) { 839 struct kthread_create_info *create; 840 841 create = list_entry(kthread_create_list.next, 842 struct kthread_create_info, list); 843 list_del_init(&create->list); 844 spin_unlock(&kthread_create_lock); 845 846 create_kthread(create); 847 848 spin_lock(&kthread_create_lock); 849 } 850 spin_unlock(&kthread_create_lock); 851 } 852 853 return 0; 854 } 855 856 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask) 857 { 858 struct kthread *kthread = to_kthread(p); 859 cpumask_var_t affinity; 860 unsigned long flags; 861 int ret = 0; 862 863 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) { 864 WARN_ON(1); 865 return -EINVAL; 866 } 867 868 WARN_ON_ONCE(kthread->preferred_affinity); 869 870 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 871 return -ENOMEM; 872 873 kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL); 874 if (!kthread->preferred_affinity) { 875 ret = -ENOMEM; 876 goto out; 877 } 878 879 mutex_lock(&kthreads_hotplug_lock); 880 cpumask_copy(kthread->preferred_affinity, mask); 881 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 882 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 883 kthread_fetch_affinity(kthread, affinity); 884 885 /* It's safe because the task is inactive. */ 886 raw_spin_lock_irqsave(&p->pi_lock, flags); 887 do_set_cpus_allowed(p, affinity); 888 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 889 890 mutex_unlock(&kthreads_hotplug_lock); 891 out: 892 free_cpumask_var(affinity); 893 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(kthread_affine_preferred); 897 898 /* 899 * Re-affine kthreads according to their preferences 900 * and the newly online CPU. The CPU down part is handled 901 * by select_fallback_rq() which default re-affines to 902 * housekeepers from other nodes in case the preferred 903 * affinity doesn't apply anymore. 904 */ 905 static int kthreads_online_cpu(unsigned int cpu) 906 { 907 cpumask_var_t affinity; 908 struct kthread *k; 909 int ret; 910 911 guard(mutex)(&kthreads_hotplug_lock); 912 913 if (list_empty(&kthreads_hotplug)) 914 return 0; 915 916 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 917 return -ENOMEM; 918 919 ret = 0; 920 921 list_for_each_entry(k, &kthreads_hotplug, hotplug_node) { 922 if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) || 923 kthread_is_per_cpu(k->task))) { 924 ret = -EINVAL; 925 continue; 926 } 927 kthread_fetch_affinity(k, affinity); 928 set_cpus_allowed_ptr(k->task, affinity); 929 } 930 931 free_cpumask_var(affinity); 932 933 return ret; 934 } 935 936 static int kthreads_init(void) 937 { 938 return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online", 939 kthreads_online_cpu, NULL); 940 } 941 early_initcall(kthreads_init); 942 943 void __kthread_init_worker(struct kthread_worker *worker, 944 const char *name, 945 struct lock_class_key *key) 946 { 947 memset(worker, 0, sizeof(struct kthread_worker)); 948 raw_spin_lock_init(&worker->lock); 949 lockdep_set_class_and_name(&worker->lock, key, name); 950 INIT_LIST_HEAD(&worker->work_list); 951 INIT_LIST_HEAD(&worker->delayed_work_list); 952 } 953 EXPORT_SYMBOL_GPL(__kthread_init_worker); 954 955 /** 956 * kthread_worker_fn - kthread function to process kthread_worker 957 * @worker_ptr: pointer to initialized kthread_worker 958 * 959 * This function implements the main cycle of kthread worker. It processes 960 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 961 * is empty. 962 * 963 * The works are not allowed to keep any locks, disable preemption or interrupts 964 * when they finish. There is defined a safe point for freezing when one work 965 * finishes and before a new one is started. 966 * 967 * Also the works must not be handled by more than one worker at the same time, 968 * see also kthread_queue_work(). 969 */ 970 int kthread_worker_fn(void *worker_ptr) 971 { 972 struct kthread_worker *worker = worker_ptr; 973 struct kthread_work *work; 974 975 /* 976 * FIXME: Update the check and remove the assignment when all kthread 977 * worker users are created using kthread_create_worker*() functions. 978 */ 979 WARN_ON(worker->task && worker->task != current); 980 worker->task = current; 981 982 if (worker->flags & KTW_FREEZABLE) 983 set_freezable(); 984 985 repeat: 986 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 987 988 if (kthread_should_stop()) { 989 __set_current_state(TASK_RUNNING); 990 raw_spin_lock_irq(&worker->lock); 991 worker->task = NULL; 992 raw_spin_unlock_irq(&worker->lock); 993 return 0; 994 } 995 996 work = NULL; 997 raw_spin_lock_irq(&worker->lock); 998 if (!list_empty(&worker->work_list)) { 999 work = list_first_entry(&worker->work_list, 1000 struct kthread_work, node); 1001 list_del_init(&work->node); 1002 } 1003 worker->current_work = work; 1004 raw_spin_unlock_irq(&worker->lock); 1005 1006 if (work) { 1007 kthread_work_func_t func = work->func; 1008 __set_current_state(TASK_RUNNING); 1009 trace_sched_kthread_work_execute_start(work); 1010 work->func(work); 1011 /* 1012 * Avoid dereferencing work after this point. The trace 1013 * event only cares about the address. 1014 */ 1015 trace_sched_kthread_work_execute_end(work, func); 1016 } else if (!freezing(current)) { 1017 schedule(); 1018 } else { 1019 /* 1020 * Handle the case where the current remains 1021 * TASK_INTERRUPTIBLE. try_to_freeze() expects 1022 * the current to be TASK_RUNNING. 1023 */ 1024 __set_current_state(TASK_RUNNING); 1025 } 1026 1027 try_to_freeze(); 1028 cond_resched(); 1029 goto repeat; 1030 } 1031 EXPORT_SYMBOL_GPL(kthread_worker_fn); 1032 1033 static __printf(3, 0) struct kthread_worker * 1034 __kthread_create_worker_on_node(unsigned int flags, int node, 1035 const char namefmt[], va_list args) 1036 { 1037 struct kthread_worker *worker; 1038 struct task_struct *task; 1039 1040 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1041 if (!worker) 1042 return ERR_PTR(-ENOMEM); 1043 1044 kthread_init_worker(worker); 1045 1046 task = __kthread_create_on_node(kthread_worker_fn, worker, 1047 node, namefmt, args); 1048 if (IS_ERR(task)) 1049 goto fail_task; 1050 1051 worker->flags = flags; 1052 worker->task = task; 1053 1054 return worker; 1055 1056 fail_task: 1057 kfree(worker); 1058 return ERR_CAST(task); 1059 } 1060 1061 /** 1062 * kthread_create_worker_on_node - create a kthread worker 1063 * @flags: flags modifying the default behavior of the worker 1064 * @node: task structure for the thread is allocated on this node 1065 * @namefmt: printf-style name for the kthread worker (task). 1066 * 1067 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1068 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1069 * when the caller was killed by a fatal signal. 1070 */ 1071 struct kthread_worker * 1072 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...) 1073 { 1074 struct kthread_worker *worker; 1075 va_list args; 1076 1077 va_start(args, namefmt); 1078 worker = __kthread_create_worker_on_node(flags, node, namefmt, args); 1079 va_end(args); 1080 1081 return worker; 1082 } 1083 EXPORT_SYMBOL(kthread_create_worker_on_node); 1084 1085 /** 1086 * kthread_create_worker_on_cpu - create a kthread worker and bind it 1087 * to a given CPU and the associated NUMA node. 1088 * @cpu: CPU number 1089 * @flags: flags modifying the default behavior of the worker 1090 * @namefmt: printf-style name for the thread. Format is restricted 1091 * to "name.*%u". Code fills in cpu number. 1092 * 1093 * Use a valid CPU number if you want to bind the kthread worker 1094 * to the given CPU and the associated NUMA node. 1095 * 1096 * A good practice is to add the cpu number also into the worker name. 1097 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 1098 * 1099 * CPU hotplug: 1100 * The kthread worker API is simple and generic. It just provides a way 1101 * to create, use, and destroy workers. 1102 * 1103 * It is up to the API user how to handle CPU hotplug. They have to decide 1104 * how to handle pending work items, prevent queuing new ones, and 1105 * restore the functionality when the CPU goes off and on. There are a 1106 * few catches: 1107 * 1108 * - CPU affinity gets lost when it is scheduled on an offline CPU. 1109 * 1110 * - The worker might not exist when the CPU was off when the user 1111 * created the workers. 1112 * 1113 * Good practice is to implement two CPU hotplug callbacks and to 1114 * destroy/create the worker when the CPU goes down/up. 1115 * 1116 * Return: 1117 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1118 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1119 * when the caller was killed by a fatal signal. 1120 */ 1121 struct kthread_worker * 1122 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 1123 const char namefmt[]) 1124 { 1125 struct kthread_worker *worker; 1126 1127 worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu); 1128 if (!IS_ERR(worker)) 1129 kthread_bind(worker->task, cpu); 1130 1131 return worker; 1132 } 1133 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 1134 1135 /* 1136 * Returns true when the work could not be queued at the moment. 1137 * It happens when it is already pending in a worker list 1138 * or when it is being cancelled. 1139 */ 1140 static inline bool queuing_blocked(struct kthread_worker *worker, 1141 struct kthread_work *work) 1142 { 1143 lockdep_assert_held(&worker->lock); 1144 1145 return !list_empty(&work->node) || work->canceling; 1146 } 1147 1148 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 1149 struct kthread_work *work) 1150 { 1151 lockdep_assert_held(&worker->lock); 1152 WARN_ON_ONCE(!list_empty(&work->node)); 1153 /* Do not use a work with >1 worker, see kthread_queue_work() */ 1154 WARN_ON_ONCE(work->worker && work->worker != worker); 1155 } 1156 1157 /* insert @work before @pos in @worker */ 1158 static void kthread_insert_work(struct kthread_worker *worker, 1159 struct kthread_work *work, 1160 struct list_head *pos) 1161 { 1162 kthread_insert_work_sanity_check(worker, work); 1163 1164 trace_sched_kthread_work_queue_work(worker, work); 1165 1166 list_add_tail(&work->node, pos); 1167 work->worker = worker; 1168 if (!worker->current_work && likely(worker->task)) 1169 wake_up_process(worker->task); 1170 } 1171 1172 /** 1173 * kthread_queue_work - queue a kthread_work 1174 * @worker: target kthread_worker 1175 * @work: kthread_work to queue 1176 * 1177 * Queue @work to work processor @task for async execution. @task 1178 * must have been created with kthread_create_worker(). Returns %true 1179 * if @work was successfully queued, %false if it was already pending. 1180 * 1181 * Reinitialize the work if it needs to be used by another worker. 1182 * For example, when the worker was stopped and started again. 1183 */ 1184 bool kthread_queue_work(struct kthread_worker *worker, 1185 struct kthread_work *work) 1186 { 1187 bool ret = false; 1188 unsigned long flags; 1189 1190 raw_spin_lock_irqsave(&worker->lock, flags); 1191 if (!queuing_blocked(worker, work)) { 1192 kthread_insert_work(worker, work, &worker->work_list); 1193 ret = true; 1194 } 1195 raw_spin_unlock_irqrestore(&worker->lock, flags); 1196 return ret; 1197 } 1198 EXPORT_SYMBOL_GPL(kthread_queue_work); 1199 1200 /** 1201 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1202 * delayed work when the timer expires. 1203 * @t: pointer to the expired timer 1204 * 1205 * The format of the function is defined by struct timer_list. 1206 * It should have been called from irqsafe timer with irq already off. 1207 */ 1208 void kthread_delayed_work_timer_fn(struct timer_list *t) 1209 { 1210 struct kthread_delayed_work *dwork = timer_container_of(dwork, t, 1211 timer); 1212 struct kthread_work *work = &dwork->work; 1213 struct kthread_worker *worker = work->worker; 1214 unsigned long flags; 1215 1216 /* 1217 * This might happen when a pending work is reinitialized. 1218 * It means that it is used a wrong way. 1219 */ 1220 if (WARN_ON_ONCE(!worker)) 1221 return; 1222 1223 raw_spin_lock_irqsave(&worker->lock, flags); 1224 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1225 WARN_ON_ONCE(work->worker != worker); 1226 1227 /* Move the work from worker->delayed_work_list. */ 1228 WARN_ON_ONCE(list_empty(&work->node)); 1229 list_del_init(&work->node); 1230 if (!work->canceling) 1231 kthread_insert_work(worker, work, &worker->work_list); 1232 1233 raw_spin_unlock_irqrestore(&worker->lock, flags); 1234 } 1235 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1236 1237 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1238 struct kthread_delayed_work *dwork, 1239 unsigned long delay) 1240 { 1241 struct timer_list *timer = &dwork->timer; 1242 struct kthread_work *work = &dwork->work; 1243 1244 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1245 1246 /* 1247 * If @delay is 0, queue @dwork->work immediately. This is for 1248 * both optimization and correctness. The earliest @timer can 1249 * expire is on the closest next tick and delayed_work users depend 1250 * on that there's no such delay when @delay is 0. 1251 */ 1252 if (!delay) { 1253 kthread_insert_work(worker, work, &worker->work_list); 1254 return; 1255 } 1256 1257 /* Be paranoid and try to detect possible races already now. */ 1258 kthread_insert_work_sanity_check(worker, work); 1259 1260 list_add(&work->node, &worker->delayed_work_list); 1261 work->worker = worker; 1262 timer->expires = jiffies + delay; 1263 add_timer(timer); 1264 } 1265 1266 /** 1267 * kthread_queue_delayed_work - queue the associated kthread work 1268 * after a delay. 1269 * @worker: target kthread_worker 1270 * @dwork: kthread_delayed_work to queue 1271 * @delay: number of jiffies to wait before queuing 1272 * 1273 * If the work has not been pending it starts a timer that will queue 1274 * the work after the given @delay. If @delay is zero, it queues the 1275 * work immediately. 1276 * 1277 * Return: %false if the @work has already been pending. It means that 1278 * either the timer was running or the work was queued. It returns %true 1279 * otherwise. 1280 */ 1281 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1282 struct kthread_delayed_work *dwork, 1283 unsigned long delay) 1284 { 1285 struct kthread_work *work = &dwork->work; 1286 unsigned long flags; 1287 bool ret = false; 1288 1289 raw_spin_lock_irqsave(&worker->lock, flags); 1290 1291 if (!queuing_blocked(worker, work)) { 1292 __kthread_queue_delayed_work(worker, dwork, delay); 1293 ret = true; 1294 } 1295 1296 raw_spin_unlock_irqrestore(&worker->lock, flags); 1297 return ret; 1298 } 1299 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1300 1301 struct kthread_flush_work { 1302 struct kthread_work work; 1303 struct completion done; 1304 }; 1305 1306 static void kthread_flush_work_fn(struct kthread_work *work) 1307 { 1308 struct kthread_flush_work *fwork = 1309 container_of(work, struct kthread_flush_work, work); 1310 complete(&fwork->done); 1311 } 1312 1313 /** 1314 * kthread_flush_work - flush a kthread_work 1315 * @work: work to flush 1316 * 1317 * If @work is queued or executing, wait for it to finish execution. 1318 */ 1319 void kthread_flush_work(struct kthread_work *work) 1320 { 1321 struct kthread_flush_work fwork = { 1322 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1323 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1324 }; 1325 struct kthread_worker *worker; 1326 bool noop = false; 1327 1328 worker = work->worker; 1329 if (!worker) 1330 return; 1331 1332 raw_spin_lock_irq(&worker->lock); 1333 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1334 WARN_ON_ONCE(work->worker != worker); 1335 1336 if (!list_empty(&work->node)) 1337 kthread_insert_work(worker, &fwork.work, work->node.next); 1338 else if (worker->current_work == work) 1339 kthread_insert_work(worker, &fwork.work, 1340 worker->work_list.next); 1341 else 1342 noop = true; 1343 1344 raw_spin_unlock_irq(&worker->lock); 1345 1346 if (!noop) 1347 wait_for_completion(&fwork.done); 1348 } 1349 EXPORT_SYMBOL_GPL(kthread_flush_work); 1350 1351 /* 1352 * Make sure that the timer is neither set nor running and could 1353 * not manipulate the work list_head any longer. 1354 * 1355 * The function is called under worker->lock. The lock is temporary 1356 * released but the timer can't be set again in the meantime. 1357 */ 1358 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1359 unsigned long *flags) 1360 { 1361 struct kthread_delayed_work *dwork = 1362 container_of(work, struct kthread_delayed_work, work); 1363 struct kthread_worker *worker = work->worker; 1364 1365 /* 1366 * timer_delete_sync() must be called to make sure that the timer 1367 * callback is not running. The lock must be temporary released 1368 * to avoid a deadlock with the callback. In the meantime, 1369 * any queuing is blocked by setting the canceling counter. 1370 */ 1371 work->canceling++; 1372 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1373 timer_delete_sync(&dwork->timer); 1374 raw_spin_lock_irqsave(&worker->lock, *flags); 1375 work->canceling--; 1376 } 1377 1378 /* 1379 * This function removes the work from the worker queue. 1380 * 1381 * It is called under worker->lock. The caller must make sure that 1382 * the timer used by delayed work is not running, e.g. by calling 1383 * kthread_cancel_delayed_work_timer(). 1384 * 1385 * The work might still be in use when this function finishes. See the 1386 * current_work proceed by the worker. 1387 * 1388 * Return: %true if @work was pending and successfully canceled, 1389 * %false if @work was not pending 1390 */ 1391 static bool __kthread_cancel_work(struct kthread_work *work) 1392 { 1393 /* 1394 * Try to remove the work from a worker list. It might either 1395 * be from worker->work_list or from worker->delayed_work_list. 1396 */ 1397 if (!list_empty(&work->node)) { 1398 list_del_init(&work->node); 1399 return true; 1400 } 1401 1402 return false; 1403 } 1404 1405 /** 1406 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1407 * @worker: kthread worker to use 1408 * @dwork: kthread delayed work to queue 1409 * @delay: number of jiffies to wait before queuing 1410 * 1411 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1412 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1413 * @work is guaranteed to be queued immediately. 1414 * 1415 * Return: %false if @dwork was idle and queued, %true otherwise. 1416 * 1417 * A special case is when the work is being canceled in parallel. 1418 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1419 * or yet another kthread_mod_delayed_work() call. We let the other command 1420 * win and return %true here. The return value can be used for reference 1421 * counting and the number of queued works stays the same. Anyway, the caller 1422 * is supposed to synchronize these operations a reasonable way. 1423 * 1424 * This function is safe to call from any context including IRQ handler. 1425 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1426 * for details. 1427 */ 1428 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1429 struct kthread_delayed_work *dwork, 1430 unsigned long delay) 1431 { 1432 struct kthread_work *work = &dwork->work; 1433 unsigned long flags; 1434 int ret; 1435 1436 raw_spin_lock_irqsave(&worker->lock, flags); 1437 1438 /* Do not bother with canceling when never queued. */ 1439 if (!work->worker) { 1440 ret = false; 1441 goto fast_queue; 1442 } 1443 1444 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1445 WARN_ON_ONCE(work->worker != worker); 1446 1447 /* 1448 * Temporary cancel the work but do not fight with another command 1449 * that is canceling the work as well. 1450 * 1451 * It is a bit tricky because of possible races with another 1452 * mod_delayed_work() and cancel_delayed_work() callers. 1453 * 1454 * The timer must be canceled first because worker->lock is released 1455 * when doing so. But the work can be removed from the queue (list) 1456 * only when it can be queued again so that the return value can 1457 * be used for reference counting. 1458 */ 1459 kthread_cancel_delayed_work_timer(work, &flags); 1460 if (work->canceling) { 1461 /* The number of works in the queue does not change. */ 1462 ret = true; 1463 goto out; 1464 } 1465 ret = __kthread_cancel_work(work); 1466 1467 fast_queue: 1468 __kthread_queue_delayed_work(worker, dwork, delay); 1469 out: 1470 raw_spin_unlock_irqrestore(&worker->lock, flags); 1471 return ret; 1472 } 1473 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1474 1475 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1476 { 1477 struct kthread_worker *worker = work->worker; 1478 unsigned long flags; 1479 int ret = false; 1480 1481 if (!worker) 1482 goto out; 1483 1484 raw_spin_lock_irqsave(&worker->lock, flags); 1485 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1486 WARN_ON_ONCE(work->worker != worker); 1487 1488 if (is_dwork) 1489 kthread_cancel_delayed_work_timer(work, &flags); 1490 1491 ret = __kthread_cancel_work(work); 1492 1493 if (worker->current_work != work) 1494 goto out_fast; 1495 1496 /* 1497 * The work is in progress and we need to wait with the lock released. 1498 * In the meantime, block any queuing by setting the canceling counter. 1499 */ 1500 work->canceling++; 1501 raw_spin_unlock_irqrestore(&worker->lock, flags); 1502 kthread_flush_work(work); 1503 raw_spin_lock_irqsave(&worker->lock, flags); 1504 work->canceling--; 1505 1506 out_fast: 1507 raw_spin_unlock_irqrestore(&worker->lock, flags); 1508 out: 1509 return ret; 1510 } 1511 1512 /** 1513 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1514 * @work: the kthread work to cancel 1515 * 1516 * Cancel @work and wait for its execution to finish. This function 1517 * can be used even if the work re-queues itself. On return from this 1518 * function, @work is guaranteed to be not pending or executing on any CPU. 1519 * 1520 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1521 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1522 * 1523 * The caller must ensure that the worker on which @work was last 1524 * queued can't be destroyed before this function returns. 1525 * 1526 * Return: %true if @work was pending, %false otherwise. 1527 */ 1528 bool kthread_cancel_work_sync(struct kthread_work *work) 1529 { 1530 return __kthread_cancel_work_sync(work, false); 1531 } 1532 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1533 1534 /** 1535 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1536 * wait for it to finish. 1537 * @dwork: the kthread delayed work to cancel 1538 * 1539 * This is kthread_cancel_work_sync() for delayed works. 1540 * 1541 * Return: %true if @dwork was pending, %false otherwise. 1542 */ 1543 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1544 { 1545 return __kthread_cancel_work_sync(&dwork->work, true); 1546 } 1547 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1548 1549 /** 1550 * kthread_flush_worker - flush all current works on a kthread_worker 1551 * @worker: worker to flush 1552 * 1553 * Wait until all currently executing or pending works on @worker are 1554 * finished. 1555 */ 1556 void kthread_flush_worker(struct kthread_worker *worker) 1557 { 1558 struct kthread_flush_work fwork = { 1559 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1560 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1561 }; 1562 1563 kthread_queue_work(worker, &fwork.work); 1564 wait_for_completion(&fwork.done); 1565 } 1566 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1567 1568 /** 1569 * kthread_destroy_worker - destroy a kthread worker 1570 * @worker: worker to be destroyed 1571 * 1572 * Flush and destroy @worker. The simple flush is enough because the kthread 1573 * worker API is used only in trivial scenarios. There are no multi-step state 1574 * machines needed. 1575 * 1576 * Note that this function is not responsible for handling delayed work, so 1577 * caller should be responsible for queuing or canceling all delayed work items 1578 * before invoke this function. 1579 */ 1580 void kthread_destroy_worker(struct kthread_worker *worker) 1581 { 1582 struct task_struct *task; 1583 1584 task = worker->task; 1585 if (WARN_ON(!task)) 1586 return; 1587 1588 kthread_flush_worker(worker); 1589 kthread_stop(task); 1590 WARN_ON(!list_empty(&worker->delayed_work_list)); 1591 WARN_ON(!list_empty(&worker->work_list)); 1592 kfree(worker); 1593 } 1594 EXPORT_SYMBOL(kthread_destroy_worker); 1595 1596 /** 1597 * kthread_use_mm - make the calling kthread operate on an address space 1598 * @mm: address space to operate on 1599 */ 1600 void kthread_use_mm(struct mm_struct *mm) 1601 { 1602 struct mm_struct *active_mm; 1603 struct task_struct *tsk = current; 1604 1605 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1606 WARN_ON_ONCE(tsk->mm); 1607 1608 /* 1609 * It is possible for mm to be the same as tsk->active_mm, but 1610 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1611 * because these references are not equivalent. 1612 */ 1613 mmgrab(mm); 1614 1615 task_lock(tsk); 1616 /* Hold off tlb flush IPIs while switching mm's */ 1617 local_irq_disable(); 1618 active_mm = tsk->active_mm; 1619 tsk->active_mm = mm; 1620 tsk->mm = mm; 1621 membarrier_update_current_mm(mm); 1622 switch_mm_irqs_off(active_mm, mm, tsk); 1623 local_irq_enable(); 1624 task_unlock(tsk); 1625 #ifdef finish_arch_post_lock_switch 1626 finish_arch_post_lock_switch(); 1627 #endif 1628 1629 /* 1630 * When a kthread starts operating on an address space, the loop 1631 * in membarrier_{private,global}_expedited() may not observe 1632 * that tsk->mm, and not issue an IPI. Membarrier requires a 1633 * memory barrier after storing to tsk->mm, before accessing 1634 * user-space memory. A full memory barrier for membarrier 1635 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1636 * mmdrop_lazy_tlb(). 1637 */ 1638 mmdrop_lazy_tlb(active_mm); 1639 } 1640 EXPORT_SYMBOL_GPL(kthread_use_mm); 1641 1642 /** 1643 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1644 * @mm: address space to operate on 1645 */ 1646 void kthread_unuse_mm(struct mm_struct *mm) 1647 { 1648 struct task_struct *tsk = current; 1649 1650 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1651 WARN_ON_ONCE(!tsk->mm); 1652 1653 task_lock(tsk); 1654 /* 1655 * When a kthread stops operating on an address space, the loop 1656 * in membarrier_{private,global}_expedited() may not observe 1657 * that tsk->mm, and not issue an IPI. Membarrier requires a 1658 * memory barrier after accessing user-space memory, before 1659 * clearing tsk->mm. 1660 */ 1661 smp_mb__after_spinlock(); 1662 local_irq_disable(); 1663 tsk->mm = NULL; 1664 membarrier_update_current_mm(NULL); 1665 mmgrab_lazy_tlb(mm); 1666 /* active_mm is still 'mm' */ 1667 enter_lazy_tlb(mm, tsk); 1668 local_irq_enable(); 1669 task_unlock(tsk); 1670 1671 mmdrop(mm); 1672 } 1673 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1674 1675 #ifdef CONFIG_BLK_CGROUP 1676 /** 1677 * kthread_associate_blkcg - associate blkcg to current kthread 1678 * @css: the cgroup info 1679 * 1680 * Current thread must be a kthread. The thread is running jobs on behalf of 1681 * other threads. In some cases, we expect the jobs attach cgroup info of 1682 * original threads instead of that of current thread. This function stores 1683 * original thread's cgroup info in current kthread context for later 1684 * retrieval. 1685 */ 1686 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1687 { 1688 struct kthread *kthread; 1689 1690 if (!(current->flags & PF_KTHREAD)) 1691 return; 1692 kthread = to_kthread(current); 1693 if (!kthread) 1694 return; 1695 1696 if (kthread->blkcg_css) { 1697 css_put(kthread->blkcg_css); 1698 kthread->blkcg_css = NULL; 1699 } 1700 if (css) { 1701 css_get(css); 1702 kthread->blkcg_css = css; 1703 } 1704 } 1705 EXPORT_SYMBOL(kthread_associate_blkcg); 1706 1707 /** 1708 * kthread_blkcg - get associated blkcg css of current kthread 1709 * 1710 * Current thread must be a kthread. 1711 */ 1712 struct cgroup_subsys_state *kthread_blkcg(void) 1713 { 1714 struct kthread *kthread; 1715 1716 if (current->flags & PF_KTHREAD) { 1717 kthread = to_kthread(current); 1718 if (kthread) 1719 return kthread->blkcg_css; 1720 } 1721 return NULL; 1722 } 1723 #endif 1724