xref: /linux/kernel/kthread.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	char *full_name;
42 	int (*threadfn)(void *data);
43 	void *data;
44 	int node;
45 
46 	/* Result passed back to kthread_create() from kthreadd. */
47 	struct task_struct *result;
48 	struct completion *done;
49 
50 	struct list_head list;
51 };
52 
53 struct kthread {
54 	unsigned long flags;
55 	unsigned int cpu;
56 	int result;
57 	int (*threadfn)(void *);
58 	void *data;
59 	struct completion parked;
60 	struct completion exited;
61 #ifdef CONFIG_BLK_CGROUP
62 	struct cgroup_subsys_state *blkcg_css;
63 #endif
64 	/* To store the full name if task comm is truncated. */
65 	char *full_name;
66 };
67 
68 enum KTHREAD_BITS {
69 	KTHREAD_IS_PER_CPU = 0,
70 	KTHREAD_SHOULD_STOP,
71 	KTHREAD_SHOULD_PARK,
72 };
73 
74 static inline struct kthread *to_kthread(struct task_struct *k)
75 {
76 	WARN_ON(!(k->flags & PF_KTHREAD));
77 	return k->worker_private;
78 }
79 
80 /*
81  * Variant of to_kthread() that doesn't assume @p is a kthread.
82  *
83  * Per construction; when:
84  *
85  *   (p->flags & PF_KTHREAD) && p->worker_private
86  *
87  * the task is both a kthread and struct kthread is persistent. However
88  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
89  * begin_new_exec()).
90  */
91 static inline struct kthread *__to_kthread(struct task_struct *p)
92 {
93 	void *kthread = p->worker_private;
94 	if (kthread && !(p->flags & PF_KTHREAD))
95 		kthread = NULL;
96 	return kthread;
97 }
98 
99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100 {
101 	struct kthread *kthread = to_kthread(tsk);
102 
103 	if (!kthread || !kthread->full_name) {
104 		__get_task_comm(buf, buf_size, tsk);
105 		return;
106 	}
107 
108 	strscpy_pad(buf, kthread->full_name, buf_size);
109 }
110 
111 bool set_kthread_struct(struct task_struct *p)
112 {
113 	struct kthread *kthread;
114 
115 	if (WARN_ON_ONCE(to_kthread(p)))
116 		return false;
117 
118 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119 	if (!kthread)
120 		return false;
121 
122 	init_completion(&kthread->exited);
123 	init_completion(&kthread->parked);
124 	p->vfork_done = &kthread->exited;
125 
126 	p->worker_private = kthread;
127 	return true;
128 }
129 
130 void free_kthread_struct(struct task_struct *k)
131 {
132 	struct kthread *kthread;
133 
134 	/*
135 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
136 	 */
137 	kthread = to_kthread(k);
138 	if (!kthread)
139 		return;
140 
141 #ifdef CONFIG_BLK_CGROUP
142 	WARN_ON_ONCE(kthread->blkcg_css);
143 #endif
144 	k->worker_private = NULL;
145 	kfree(kthread->full_name);
146 	kfree(kthread);
147 }
148 
149 /**
150  * kthread_should_stop - should this kthread return now?
151  *
152  * When someone calls kthread_stop() on your kthread, it will be woken
153  * and this will return true.  You should then return, and your return
154  * value will be passed through to kthread_stop().
155  */
156 bool kthread_should_stop(void)
157 {
158 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159 }
160 EXPORT_SYMBOL(kthread_should_stop);
161 
162 bool __kthread_should_park(struct task_struct *k)
163 {
164 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165 }
166 EXPORT_SYMBOL_GPL(__kthread_should_park);
167 
168 /**
169  * kthread_should_park - should this kthread park now?
170  *
171  * When someone calls kthread_park() on your kthread, it will be woken
172  * and this will return true.  You should then do the necessary
173  * cleanup and call kthread_parkme()
174  *
175  * Similar to kthread_should_stop(), but this keeps the thread alive
176  * and in a park position. kthread_unpark() "restarts" the thread and
177  * calls the thread function again.
178  */
179 bool kthread_should_park(void)
180 {
181 	return __kthread_should_park(current);
182 }
183 EXPORT_SYMBOL_GPL(kthread_should_park);
184 
185 /**
186  * kthread_freezable_should_stop - should this freezable kthread return now?
187  * @was_frozen: optional out parameter, indicates whether %current was frozen
188  *
189  * kthread_should_stop() for freezable kthreads, which will enter
190  * refrigerator if necessary.  This function is safe from kthread_stop() /
191  * freezer deadlock and freezable kthreads should use this function instead
192  * of calling try_to_freeze() directly.
193  */
194 bool kthread_freezable_should_stop(bool *was_frozen)
195 {
196 	bool frozen = false;
197 
198 	might_sleep();
199 
200 	if (unlikely(freezing(current)))
201 		frozen = __refrigerator(true);
202 
203 	if (was_frozen)
204 		*was_frozen = frozen;
205 
206 	return kthread_should_stop();
207 }
208 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
209 
210 /**
211  * kthread_func - return the function specified on kthread creation
212  * @task: kthread task in question
213  *
214  * Returns NULL if the task is not a kthread.
215  */
216 void *kthread_func(struct task_struct *task)
217 {
218 	struct kthread *kthread = __to_kthread(task);
219 	if (kthread)
220 		return kthread->threadfn;
221 	return NULL;
222 }
223 EXPORT_SYMBOL_GPL(kthread_func);
224 
225 /**
226  * kthread_data - return data value specified on kthread creation
227  * @task: kthread task in question
228  *
229  * Return the data value specified when kthread @task was created.
230  * The caller is responsible for ensuring the validity of @task when
231  * calling this function.
232  */
233 void *kthread_data(struct task_struct *task)
234 {
235 	return to_kthread(task)->data;
236 }
237 EXPORT_SYMBOL_GPL(kthread_data);
238 
239 /**
240  * kthread_probe_data - speculative version of kthread_data()
241  * @task: possible kthread task in question
242  *
243  * @task could be a kthread task.  Return the data value specified when it
244  * was created if accessible.  If @task isn't a kthread task or its data is
245  * inaccessible for any reason, %NULL is returned.  This function requires
246  * that @task itself is safe to dereference.
247  */
248 void *kthread_probe_data(struct task_struct *task)
249 {
250 	struct kthread *kthread = __to_kthread(task);
251 	void *data = NULL;
252 
253 	if (kthread)
254 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
255 	return data;
256 }
257 
258 static void __kthread_parkme(struct kthread *self)
259 {
260 	for (;;) {
261 		/*
262 		 * TASK_PARKED is a special state; we must serialize against
263 		 * possible pending wakeups to avoid store-store collisions on
264 		 * task->state.
265 		 *
266 		 * Such a collision might possibly result in the task state
267 		 * changin from TASK_PARKED and us failing the
268 		 * wait_task_inactive() in kthread_park().
269 		 */
270 		set_special_state(TASK_PARKED);
271 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
272 			break;
273 
274 		/*
275 		 * Thread is going to call schedule(), do not preempt it,
276 		 * or the caller of kthread_park() may spend more time in
277 		 * wait_task_inactive().
278 		 */
279 		preempt_disable();
280 		complete(&self->parked);
281 		schedule_preempt_disabled();
282 		preempt_enable();
283 	}
284 	__set_current_state(TASK_RUNNING);
285 }
286 
287 void kthread_parkme(void)
288 {
289 	__kthread_parkme(to_kthread(current));
290 }
291 EXPORT_SYMBOL_GPL(kthread_parkme);
292 
293 /**
294  * kthread_exit - Cause the current kthread return @result to kthread_stop().
295  * @result: The integer value to return to kthread_stop().
296  *
297  * While kthread_exit can be called directly, it exists so that
298  * functions which do some additional work in non-modular code such as
299  * module_put_and_kthread_exit can be implemented.
300  *
301  * Does not return.
302  */
303 void __noreturn kthread_exit(long result)
304 {
305 	struct kthread *kthread = to_kthread(current);
306 	kthread->result = result;
307 	do_exit(0);
308 }
309 
310 /**
311  * kthread_complete_and_exit - Exit the current kthread.
312  * @comp: Completion to complete
313  * @code: The integer value to return to kthread_stop().
314  *
315  * If present complete @comp and the reuturn code to kthread_stop().
316  *
317  * A kernel thread whose module may be removed after the completion of
318  * @comp can use this function exit safely.
319  *
320  * Does not return.
321  */
322 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
323 {
324 	if (comp)
325 		complete(comp);
326 
327 	kthread_exit(code);
328 }
329 EXPORT_SYMBOL(kthread_complete_and_exit);
330 
331 static int kthread(void *_create)
332 {
333 	static const struct sched_param param = { .sched_priority = 0 };
334 	/* Copy data: it's on kthread's stack */
335 	struct kthread_create_info *create = _create;
336 	int (*threadfn)(void *data) = create->threadfn;
337 	void *data = create->data;
338 	struct completion *done;
339 	struct kthread *self;
340 	int ret;
341 
342 	self = to_kthread(current);
343 
344 	/* Release the structure when caller killed by a fatal signal. */
345 	done = xchg(&create->done, NULL);
346 	if (!done) {
347 		kfree(create->full_name);
348 		kfree(create);
349 		kthread_exit(-EINTR);
350 	}
351 
352 	self->full_name = create->full_name;
353 	self->threadfn = threadfn;
354 	self->data = data;
355 
356 	/*
357 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
358 	 * back to default in case they have been changed.
359 	 */
360 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
361 	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
362 
363 	/* OK, tell user we're spawned, wait for stop or wakeup */
364 	__set_current_state(TASK_UNINTERRUPTIBLE);
365 	create->result = current;
366 	/*
367 	 * Thread is going to call schedule(), do not preempt it,
368 	 * or the creator may spend more time in wait_task_inactive().
369 	 */
370 	preempt_disable();
371 	complete(done);
372 	schedule_preempt_disabled();
373 	preempt_enable();
374 
375 	ret = -EINTR;
376 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
377 		cgroup_kthread_ready();
378 		__kthread_parkme(self);
379 		ret = threadfn(data);
380 	}
381 	kthread_exit(ret);
382 }
383 
384 /* called from kernel_clone() to get node information for about to be created task */
385 int tsk_fork_get_node(struct task_struct *tsk)
386 {
387 #ifdef CONFIG_NUMA
388 	if (tsk == kthreadd_task)
389 		return tsk->pref_node_fork;
390 #endif
391 	return NUMA_NO_NODE;
392 }
393 
394 static void create_kthread(struct kthread_create_info *create)
395 {
396 	int pid;
397 
398 #ifdef CONFIG_NUMA
399 	current->pref_node_fork = create->node;
400 #endif
401 	/* We want our own signal handler (we take no signals by default). */
402 	pid = kernel_thread(kthread, create, create->full_name,
403 			    CLONE_FS | CLONE_FILES | SIGCHLD);
404 	if (pid < 0) {
405 		/* Release the structure when caller killed by a fatal signal. */
406 		struct completion *done = xchg(&create->done, NULL);
407 
408 		kfree(create->full_name);
409 		if (!done) {
410 			kfree(create);
411 			return;
412 		}
413 		create->result = ERR_PTR(pid);
414 		complete(done);
415 	}
416 }
417 
418 static __printf(4, 0)
419 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
420 						    void *data, int node,
421 						    const char namefmt[],
422 						    va_list args)
423 {
424 	DECLARE_COMPLETION_ONSTACK(done);
425 	struct task_struct *task;
426 	struct kthread_create_info *create = kmalloc(sizeof(*create),
427 						     GFP_KERNEL);
428 
429 	if (!create)
430 		return ERR_PTR(-ENOMEM);
431 	create->threadfn = threadfn;
432 	create->data = data;
433 	create->node = node;
434 	create->done = &done;
435 	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
436 	if (!create->full_name) {
437 		task = ERR_PTR(-ENOMEM);
438 		goto free_create;
439 	}
440 
441 	spin_lock(&kthread_create_lock);
442 	list_add_tail(&create->list, &kthread_create_list);
443 	spin_unlock(&kthread_create_lock);
444 
445 	wake_up_process(kthreadd_task);
446 	/*
447 	 * Wait for completion in killable state, for I might be chosen by
448 	 * the OOM killer while kthreadd is trying to allocate memory for
449 	 * new kernel thread.
450 	 */
451 	if (unlikely(wait_for_completion_killable(&done))) {
452 		/*
453 		 * If I was killed by a fatal signal before kthreadd (or new
454 		 * kernel thread) calls complete(), leave the cleanup of this
455 		 * structure to that thread.
456 		 */
457 		if (xchg(&create->done, NULL))
458 			return ERR_PTR(-EINTR);
459 		/*
460 		 * kthreadd (or new kernel thread) will call complete()
461 		 * shortly.
462 		 */
463 		wait_for_completion(&done);
464 	}
465 	task = create->result;
466 free_create:
467 	kfree(create);
468 	return task;
469 }
470 
471 /**
472  * kthread_create_on_node - create a kthread.
473  * @threadfn: the function to run until signal_pending(current).
474  * @data: data ptr for @threadfn.
475  * @node: task and thread structures for the thread are allocated on this node
476  * @namefmt: printf-style name for the thread.
477  *
478  * Description: This helper function creates and names a kernel
479  * thread.  The thread will be stopped: use wake_up_process() to start
480  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
481  * is affine to all CPUs.
482  *
483  * If thread is going to be bound on a particular cpu, give its node
484  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
485  * When woken, the thread will run @threadfn() with @data as its
486  * argument. @threadfn() can either return directly if it is a
487  * standalone thread for which no one will call kthread_stop(), or
488  * return when 'kthread_should_stop()' is true (which means
489  * kthread_stop() has been called).  The return value should be zero
490  * or a negative error number; it will be passed to kthread_stop().
491  *
492  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
493  */
494 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
495 					   void *data, int node,
496 					   const char namefmt[],
497 					   ...)
498 {
499 	struct task_struct *task;
500 	va_list args;
501 
502 	va_start(args, namefmt);
503 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
504 	va_end(args);
505 
506 	return task;
507 }
508 EXPORT_SYMBOL(kthread_create_on_node);
509 
510 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
511 {
512 	unsigned long flags;
513 
514 	if (!wait_task_inactive(p, state)) {
515 		WARN_ON(1);
516 		return;
517 	}
518 
519 	/* It's safe because the task is inactive. */
520 	raw_spin_lock_irqsave(&p->pi_lock, flags);
521 	do_set_cpus_allowed(p, mask);
522 	p->flags |= PF_NO_SETAFFINITY;
523 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
524 }
525 
526 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
527 {
528 	__kthread_bind_mask(p, cpumask_of(cpu), state);
529 }
530 
531 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
532 {
533 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
534 }
535 
536 /**
537  * kthread_bind - bind a just-created kthread to a cpu.
538  * @p: thread created by kthread_create().
539  * @cpu: cpu (might not be online, must be possible) for @k to run on.
540  *
541  * Description: This function is equivalent to set_cpus_allowed(),
542  * except that @cpu doesn't need to be online, and the thread must be
543  * stopped (i.e., just returned from kthread_create()).
544  */
545 void kthread_bind(struct task_struct *p, unsigned int cpu)
546 {
547 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
548 }
549 EXPORT_SYMBOL(kthread_bind);
550 
551 /**
552  * kthread_create_on_cpu - Create a cpu bound kthread
553  * @threadfn: the function to run until signal_pending(current).
554  * @data: data ptr for @threadfn.
555  * @cpu: The cpu on which the thread should be bound,
556  * @namefmt: printf-style name for the thread. Format is restricted
557  *	     to "name.*%u". Code fills in cpu number.
558  *
559  * Description: This helper function creates and names a kernel thread
560  */
561 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
562 					  void *data, unsigned int cpu,
563 					  const char *namefmt)
564 {
565 	struct task_struct *p;
566 
567 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
568 				   cpu);
569 	if (IS_ERR(p))
570 		return p;
571 	kthread_bind(p, cpu);
572 	/* CPU hotplug need to bind once again when unparking the thread. */
573 	to_kthread(p)->cpu = cpu;
574 	return p;
575 }
576 EXPORT_SYMBOL(kthread_create_on_cpu);
577 
578 void kthread_set_per_cpu(struct task_struct *k, int cpu)
579 {
580 	struct kthread *kthread = to_kthread(k);
581 	if (!kthread)
582 		return;
583 
584 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
585 
586 	if (cpu < 0) {
587 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
588 		return;
589 	}
590 
591 	kthread->cpu = cpu;
592 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
593 }
594 
595 bool kthread_is_per_cpu(struct task_struct *p)
596 {
597 	struct kthread *kthread = __to_kthread(p);
598 	if (!kthread)
599 		return false;
600 
601 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
602 }
603 
604 /**
605  * kthread_unpark - unpark a thread created by kthread_create().
606  * @k:		thread created by kthread_create().
607  *
608  * Sets kthread_should_park() for @k to return false, wakes it, and
609  * waits for it to return. If the thread is marked percpu then its
610  * bound to the cpu again.
611  */
612 void kthread_unpark(struct task_struct *k)
613 {
614 	struct kthread *kthread = to_kthread(k);
615 
616 	/*
617 	 * Newly created kthread was parked when the CPU was offline.
618 	 * The binding was lost and we need to set it again.
619 	 */
620 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
621 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
622 
623 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
624 	/*
625 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
626 	 */
627 	wake_up_state(k, TASK_PARKED);
628 }
629 EXPORT_SYMBOL_GPL(kthread_unpark);
630 
631 /**
632  * kthread_park - park a thread created by kthread_create().
633  * @k: thread created by kthread_create().
634  *
635  * Sets kthread_should_park() for @k to return true, wakes it, and
636  * waits for it to return. This can also be called after kthread_create()
637  * instead of calling wake_up_process(): the thread will park without
638  * calling threadfn().
639  *
640  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
641  * If called by the kthread itself just the park bit is set.
642  */
643 int kthread_park(struct task_struct *k)
644 {
645 	struct kthread *kthread = to_kthread(k);
646 
647 	if (WARN_ON(k->flags & PF_EXITING))
648 		return -ENOSYS;
649 
650 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
651 		return -EBUSY;
652 
653 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
654 	if (k != current) {
655 		wake_up_process(k);
656 		/*
657 		 * Wait for __kthread_parkme() to complete(), this means we
658 		 * _will_ have TASK_PARKED and are about to call schedule().
659 		 */
660 		wait_for_completion(&kthread->parked);
661 		/*
662 		 * Now wait for that schedule() to complete and the task to
663 		 * get scheduled out.
664 		 */
665 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
666 	}
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL_GPL(kthread_park);
671 
672 /**
673  * kthread_stop - stop a thread created by kthread_create().
674  * @k: thread created by kthread_create().
675  *
676  * Sets kthread_should_stop() for @k to return true, wakes it, and
677  * waits for it to exit. This can also be called after kthread_create()
678  * instead of calling wake_up_process(): the thread will exit without
679  * calling threadfn().
680  *
681  * If threadfn() may call kthread_exit() itself, the caller must ensure
682  * task_struct can't go away.
683  *
684  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
685  * was never called.
686  */
687 int kthread_stop(struct task_struct *k)
688 {
689 	struct kthread *kthread;
690 	int ret;
691 
692 	trace_sched_kthread_stop(k);
693 
694 	get_task_struct(k);
695 	kthread = to_kthread(k);
696 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
697 	kthread_unpark(k);
698 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
699 	wake_up_process(k);
700 	wait_for_completion(&kthread->exited);
701 	ret = kthread->result;
702 	put_task_struct(k);
703 
704 	trace_sched_kthread_stop_ret(ret);
705 	return ret;
706 }
707 EXPORT_SYMBOL(kthread_stop);
708 
709 int kthreadd(void *unused)
710 {
711 	struct task_struct *tsk = current;
712 
713 	/* Setup a clean context for our children to inherit. */
714 	set_task_comm(tsk, "kthreadd");
715 	ignore_signals(tsk);
716 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
717 	set_mems_allowed(node_states[N_MEMORY]);
718 
719 	current->flags |= PF_NOFREEZE;
720 	cgroup_init_kthreadd();
721 
722 	for (;;) {
723 		set_current_state(TASK_INTERRUPTIBLE);
724 		if (list_empty(&kthread_create_list))
725 			schedule();
726 		__set_current_state(TASK_RUNNING);
727 
728 		spin_lock(&kthread_create_lock);
729 		while (!list_empty(&kthread_create_list)) {
730 			struct kthread_create_info *create;
731 
732 			create = list_entry(kthread_create_list.next,
733 					    struct kthread_create_info, list);
734 			list_del_init(&create->list);
735 			spin_unlock(&kthread_create_lock);
736 
737 			create_kthread(create);
738 
739 			spin_lock(&kthread_create_lock);
740 		}
741 		spin_unlock(&kthread_create_lock);
742 	}
743 
744 	return 0;
745 }
746 
747 void __kthread_init_worker(struct kthread_worker *worker,
748 				const char *name,
749 				struct lock_class_key *key)
750 {
751 	memset(worker, 0, sizeof(struct kthread_worker));
752 	raw_spin_lock_init(&worker->lock);
753 	lockdep_set_class_and_name(&worker->lock, key, name);
754 	INIT_LIST_HEAD(&worker->work_list);
755 	INIT_LIST_HEAD(&worker->delayed_work_list);
756 }
757 EXPORT_SYMBOL_GPL(__kthread_init_worker);
758 
759 /**
760  * kthread_worker_fn - kthread function to process kthread_worker
761  * @worker_ptr: pointer to initialized kthread_worker
762  *
763  * This function implements the main cycle of kthread worker. It processes
764  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
765  * is empty.
766  *
767  * The works are not allowed to keep any locks, disable preemption or interrupts
768  * when they finish. There is defined a safe point for freezing when one work
769  * finishes and before a new one is started.
770  *
771  * Also the works must not be handled by more than one worker at the same time,
772  * see also kthread_queue_work().
773  */
774 int kthread_worker_fn(void *worker_ptr)
775 {
776 	struct kthread_worker *worker = worker_ptr;
777 	struct kthread_work *work;
778 
779 	/*
780 	 * FIXME: Update the check and remove the assignment when all kthread
781 	 * worker users are created using kthread_create_worker*() functions.
782 	 */
783 	WARN_ON(worker->task && worker->task != current);
784 	worker->task = current;
785 
786 	if (worker->flags & KTW_FREEZABLE)
787 		set_freezable();
788 
789 repeat:
790 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
791 
792 	if (kthread_should_stop()) {
793 		__set_current_state(TASK_RUNNING);
794 		raw_spin_lock_irq(&worker->lock);
795 		worker->task = NULL;
796 		raw_spin_unlock_irq(&worker->lock);
797 		return 0;
798 	}
799 
800 	work = NULL;
801 	raw_spin_lock_irq(&worker->lock);
802 	if (!list_empty(&worker->work_list)) {
803 		work = list_first_entry(&worker->work_list,
804 					struct kthread_work, node);
805 		list_del_init(&work->node);
806 	}
807 	worker->current_work = work;
808 	raw_spin_unlock_irq(&worker->lock);
809 
810 	if (work) {
811 		kthread_work_func_t func = work->func;
812 		__set_current_state(TASK_RUNNING);
813 		trace_sched_kthread_work_execute_start(work);
814 		work->func(work);
815 		/*
816 		 * Avoid dereferencing work after this point.  The trace
817 		 * event only cares about the address.
818 		 */
819 		trace_sched_kthread_work_execute_end(work, func);
820 	} else if (!freezing(current))
821 		schedule();
822 
823 	try_to_freeze();
824 	cond_resched();
825 	goto repeat;
826 }
827 EXPORT_SYMBOL_GPL(kthread_worker_fn);
828 
829 static __printf(3, 0) struct kthread_worker *
830 __kthread_create_worker(int cpu, unsigned int flags,
831 			const char namefmt[], va_list args)
832 {
833 	struct kthread_worker *worker;
834 	struct task_struct *task;
835 	int node = NUMA_NO_NODE;
836 
837 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
838 	if (!worker)
839 		return ERR_PTR(-ENOMEM);
840 
841 	kthread_init_worker(worker);
842 
843 	if (cpu >= 0)
844 		node = cpu_to_node(cpu);
845 
846 	task = __kthread_create_on_node(kthread_worker_fn, worker,
847 						node, namefmt, args);
848 	if (IS_ERR(task))
849 		goto fail_task;
850 
851 	if (cpu >= 0)
852 		kthread_bind(task, cpu);
853 
854 	worker->flags = flags;
855 	worker->task = task;
856 	wake_up_process(task);
857 	return worker;
858 
859 fail_task:
860 	kfree(worker);
861 	return ERR_CAST(task);
862 }
863 
864 /**
865  * kthread_create_worker - create a kthread worker
866  * @flags: flags modifying the default behavior of the worker
867  * @namefmt: printf-style name for the kthread worker (task).
868  *
869  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
870  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
871  * when the caller was killed by a fatal signal.
872  */
873 struct kthread_worker *
874 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
875 {
876 	struct kthread_worker *worker;
877 	va_list args;
878 
879 	va_start(args, namefmt);
880 	worker = __kthread_create_worker(-1, flags, namefmt, args);
881 	va_end(args);
882 
883 	return worker;
884 }
885 EXPORT_SYMBOL(kthread_create_worker);
886 
887 /**
888  * kthread_create_worker_on_cpu - create a kthread worker and bind it
889  *	to a given CPU and the associated NUMA node.
890  * @cpu: CPU number
891  * @flags: flags modifying the default behavior of the worker
892  * @namefmt: printf-style name for the kthread worker (task).
893  *
894  * Use a valid CPU number if you want to bind the kthread worker
895  * to the given CPU and the associated NUMA node.
896  *
897  * A good practice is to add the cpu number also into the worker name.
898  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
899  *
900  * CPU hotplug:
901  * The kthread worker API is simple and generic. It just provides a way
902  * to create, use, and destroy workers.
903  *
904  * It is up to the API user how to handle CPU hotplug. They have to decide
905  * how to handle pending work items, prevent queuing new ones, and
906  * restore the functionality when the CPU goes off and on. There are a
907  * few catches:
908  *
909  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
910  *
911  *    - The worker might not exist when the CPU was off when the user
912  *      created the workers.
913  *
914  * Good practice is to implement two CPU hotplug callbacks and to
915  * destroy/create the worker when the CPU goes down/up.
916  *
917  * Return:
918  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
919  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
920  * when the caller was killed by a fatal signal.
921  */
922 struct kthread_worker *
923 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
924 			     const char namefmt[], ...)
925 {
926 	struct kthread_worker *worker;
927 	va_list args;
928 
929 	va_start(args, namefmt);
930 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
931 	va_end(args);
932 
933 	return worker;
934 }
935 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
936 
937 /*
938  * Returns true when the work could not be queued at the moment.
939  * It happens when it is already pending in a worker list
940  * or when it is being cancelled.
941  */
942 static inline bool queuing_blocked(struct kthread_worker *worker,
943 				   struct kthread_work *work)
944 {
945 	lockdep_assert_held(&worker->lock);
946 
947 	return !list_empty(&work->node) || work->canceling;
948 }
949 
950 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
951 					     struct kthread_work *work)
952 {
953 	lockdep_assert_held(&worker->lock);
954 	WARN_ON_ONCE(!list_empty(&work->node));
955 	/* Do not use a work with >1 worker, see kthread_queue_work() */
956 	WARN_ON_ONCE(work->worker && work->worker != worker);
957 }
958 
959 /* insert @work before @pos in @worker */
960 static void kthread_insert_work(struct kthread_worker *worker,
961 				struct kthread_work *work,
962 				struct list_head *pos)
963 {
964 	kthread_insert_work_sanity_check(worker, work);
965 
966 	trace_sched_kthread_work_queue_work(worker, work);
967 
968 	list_add_tail(&work->node, pos);
969 	work->worker = worker;
970 	if (!worker->current_work && likely(worker->task))
971 		wake_up_process(worker->task);
972 }
973 
974 /**
975  * kthread_queue_work - queue a kthread_work
976  * @worker: target kthread_worker
977  * @work: kthread_work to queue
978  *
979  * Queue @work to work processor @task for async execution.  @task
980  * must have been created with kthread_worker_create().  Returns %true
981  * if @work was successfully queued, %false if it was already pending.
982  *
983  * Reinitialize the work if it needs to be used by another worker.
984  * For example, when the worker was stopped and started again.
985  */
986 bool kthread_queue_work(struct kthread_worker *worker,
987 			struct kthread_work *work)
988 {
989 	bool ret = false;
990 	unsigned long flags;
991 
992 	raw_spin_lock_irqsave(&worker->lock, flags);
993 	if (!queuing_blocked(worker, work)) {
994 		kthread_insert_work(worker, work, &worker->work_list);
995 		ret = true;
996 	}
997 	raw_spin_unlock_irqrestore(&worker->lock, flags);
998 	return ret;
999 }
1000 EXPORT_SYMBOL_GPL(kthread_queue_work);
1001 
1002 /**
1003  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1004  *	delayed work when the timer expires.
1005  * @t: pointer to the expired timer
1006  *
1007  * The format of the function is defined by struct timer_list.
1008  * It should have been called from irqsafe timer with irq already off.
1009  */
1010 void kthread_delayed_work_timer_fn(struct timer_list *t)
1011 {
1012 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1013 	struct kthread_work *work = &dwork->work;
1014 	struct kthread_worker *worker = work->worker;
1015 	unsigned long flags;
1016 
1017 	/*
1018 	 * This might happen when a pending work is reinitialized.
1019 	 * It means that it is used a wrong way.
1020 	 */
1021 	if (WARN_ON_ONCE(!worker))
1022 		return;
1023 
1024 	raw_spin_lock_irqsave(&worker->lock, flags);
1025 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1026 	WARN_ON_ONCE(work->worker != worker);
1027 
1028 	/* Move the work from worker->delayed_work_list. */
1029 	WARN_ON_ONCE(list_empty(&work->node));
1030 	list_del_init(&work->node);
1031 	if (!work->canceling)
1032 		kthread_insert_work(worker, work, &worker->work_list);
1033 
1034 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1035 }
1036 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1037 
1038 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1039 					 struct kthread_delayed_work *dwork,
1040 					 unsigned long delay)
1041 {
1042 	struct timer_list *timer = &dwork->timer;
1043 	struct kthread_work *work = &dwork->work;
1044 
1045 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1046 
1047 	/*
1048 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1049 	 * both optimization and correctness.  The earliest @timer can
1050 	 * expire is on the closest next tick and delayed_work users depend
1051 	 * on that there's no such delay when @delay is 0.
1052 	 */
1053 	if (!delay) {
1054 		kthread_insert_work(worker, work, &worker->work_list);
1055 		return;
1056 	}
1057 
1058 	/* Be paranoid and try to detect possible races already now. */
1059 	kthread_insert_work_sanity_check(worker, work);
1060 
1061 	list_add(&work->node, &worker->delayed_work_list);
1062 	work->worker = worker;
1063 	timer->expires = jiffies + delay;
1064 	add_timer(timer);
1065 }
1066 
1067 /**
1068  * kthread_queue_delayed_work - queue the associated kthread work
1069  *	after a delay.
1070  * @worker: target kthread_worker
1071  * @dwork: kthread_delayed_work to queue
1072  * @delay: number of jiffies to wait before queuing
1073  *
1074  * If the work has not been pending it starts a timer that will queue
1075  * the work after the given @delay. If @delay is zero, it queues the
1076  * work immediately.
1077  *
1078  * Return: %false if the @work has already been pending. It means that
1079  * either the timer was running or the work was queued. It returns %true
1080  * otherwise.
1081  */
1082 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1083 				struct kthread_delayed_work *dwork,
1084 				unsigned long delay)
1085 {
1086 	struct kthread_work *work = &dwork->work;
1087 	unsigned long flags;
1088 	bool ret = false;
1089 
1090 	raw_spin_lock_irqsave(&worker->lock, flags);
1091 
1092 	if (!queuing_blocked(worker, work)) {
1093 		__kthread_queue_delayed_work(worker, dwork, delay);
1094 		ret = true;
1095 	}
1096 
1097 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1101 
1102 struct kthread_flush_work {
1103 	struct kthread_work	work;
1104 	struct completion	done;
1105 };
1106 
1107 static void kthread_flush_work_fn(struct kthread_work *work)
1108 {
1109 	struct kthread_flush_work *fwork =
1110 		container_of(work, struct kthread_flush_work, work);
1111 	complete(&fwork->done);
1112 }
1113 
1114 /**
1115  * kthread_flush_work - flush a kthread_work
1116  * @work: work to flush
1117  *
1118  * If @work is queued or executing, wait for it to finish execution.
1119  */
1120 void kthread_flush_work(struct kthread_work *work)
1121 {
1122 	struct kthread_flush_work fwork = {
1123 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1124 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1125 	};
1126 	struct kthread_worker *worker;
1127 	bool noop = false;
1128 
1129 	worker = work->worker;
1130 	if (!worker)
1131 		return;
1132 
1133 	raw_spin_lock_irq(&worker->lock);
1134 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1135 	WARN_ON_ONCE(work->worker != worker);
1136 
1137 	if (!list_empty(&work->node))
1138 		kthread_insert_work(worker, &fwork.work, work->node.next);
1139 	else if (worker->current_work == work)
1140 		kthread_insert_work(worker, &fwork.work,
1141 				    worker->work_list.next);
1142 	else
1143 		noop = true;
1144 
1145 	raw_spin_unlock_irq(&worker->lock);
1146 
1147 	if (!noop)
1148 		wait_for_completion(&fwork.done);
1149 }
1150 EXPORT_SYMBOL_GPL(kthread_flush_work);
1151 
1152 /*
1153  * Make sure that the timer is neither set nor running and could
1154  * not manipulate the work list_head any longer.
1155  *
1156  * The function is called under worker->lock. The lock is temporary
1157  * released but the timer can't be set again in the meantime.
1158  */
1159 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1160 					      unsigned long *flags)
1161 {
1162 	struct kthread_delayed_work *dwork =
1163 		container_of(work, struct kthread_delayed_work, work);
1164 	struct kthread_worker *worker = work->worker;
1165 
1166 	/*
1167 	 * del_timer_sync() must be called to make sure that the timer
1168 	 * callback is not running. The lock must be temporary released
1169 	 * to avoid a deadlock with the callback. In the meantime,
1170 	 * any queuing is blocked by setting the canceling counter.
1171 	 */
1172 	work->canceling++;
1173 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1174 	del_timer_sync(&dwork->timer);
1175 	raw_spin_lock_irqsave(&worker->lock, *flags);
1176 	work->canceling--;
1177 }
1178 
1179 /*
1180  * This function removes the work from the worker queue.
1181  *
1182  * It is called under worker->lock. The caller must make sure that
1183  * the timer used by delayed work is not running, e.g. by calling
1184  * kthread_cancel_delayed_work_timer().
1185  *
1186  * The work might still be in use when this function finishes. See the
1187  * current_work proceed by the worker.
1188  *
1189  * Return: %true if @work was pending and successfully canceled,
1190  *	%false if @work was not pending
1191  */
1192 static bool __kthread_cancel_work(struct kthread_work *work)
1193 {
1194 	/*
1195 	 * Try to remove the work from a worker list. It might either
1196 	 * be from worker->work_list or from worker->delayed_work_list.
1197 	 */
1198 	if (!list_empty(&work->node)) {
1199 		list_del_init(&work->node);
1200 		return true;
1201 	}
1202 
1203 	return false;
1204 }
1205 
1206 /**
1207  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1208  * @worker: kthread worker to use
1209  * @dwork: kthread delayed work to queue
1210  * @delay: number of jiffies to wait before queuing
1211  *
1212  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1213  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1214  * @work is guaranteed to be queued immediately.
1215  *
1216  * Return: %false if @dwork was idle and queued, %true otherwise.
1217  *
1218  * A special case is when the work is being canceled in parallel.
1219  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1220  * or yet another kthread_mod_delayed_work() call. We let the other command
1221  * win and return %true here. The return value can be used for reference
1222  * counting and the number of queued works stays the same. Anyway, the caller
1223  * is supposed to synchronize these operations a reasonable way.
1224  *
1225  * This function is safe to call from any context including IRQ handler.
1226  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1227  * for details.
1228  */
1229 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1230 			      struct kthread_delayed_work *dwork,
1231 			      unsigned long delay)
1232 {
1233 	struct kthread_work *work = &dwork->work;
1234 	unsigned long flags;
1235 	int ret;
1236 
1237 	raw_spin_lock_irqsave(&worker->lock, flags);
1238 
1239 	/* Do not bother with canceling when never queued. */
1240 	if (!work->worker) {
1241 		ret = false;
1242 		goto fast_queue;
1243 	}
1244 
1245 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1246 	WARN_ON_ONCE(work->worker != worker);
1247 
1248 	/*
1249 	 * Temporary cancel the work but do not fight with another command
1250 	 * that is canceling the work as well.
1251 	 *
1252 	 * It is a bit tricky because of possible races with another
1253 	 * mod_delayed_work() and cancel_delayed_work() callers.
1254 	 *
1255 	 * The timer must be canceled first because worker->lock is released
1256 	 * when doing so. But the work can be removed from the queue (list)
1257 	 * only when it can be queued again so that the return value can
1258 	 * be used for reference counting.
1259 	 */
1260 	kthread_cancel_delayed_work_timer(work, &flags);
1261 	if (work->canceling) {
1262 		/* The number of works in the queue does not change. */
1263 		ret = true;
1264 		goto out;
1265 	}
1266 	ret = __kthread_cancel_work(work);
1267 
1268 fast_queue:
1269 	__kthread_queue_delayed_work(worker, dwork, delay);
1270 out:
1271 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1272 	return ret;
1273 }
1274 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1275 
1276 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1277 {
1278 	struct kthread_worker *worker = work->worker;
1279 	unsigned long flags;
1280 	int ret = false;
1281 
1282 	if (!worker)
1283 		goto out;
1284 
1285 	raw_spin_lock_irqsave(&worker->lock, flags);
1286 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1287 	WARN_ON_ONCE(work->worker != worker);
1288 
1289 	if (is_dwork)
1290 		kthread_cancel_delayed_work_timer(work, &flags);
1291 
1292 	ret = __kthread_cancel_work(work);
1293 
1294 	if (worker->current_work != work)
1295 		goto out_fast;
1296 
1297 	/*
1298 	 * The work is in progress and we need to wait with the lock released.
1299 	 * In the meantime, block any queuing by setting the canceling counter.
1300 	 */
1301 	work->canceling++;
1302 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1303 	kthread_flush_work(work);
1304 	raw_spin_lock_irqsave(&worker->lock, flags);
1305 	work->canceling--;
1306 
1307 out_fast:
1308 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1309 out:
1310 	return ret;
1311 }
1312 
1313 /**
1314  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1315  * @work: the kthread work to cancel
1316  *
1317  * Cancel @work and wait for its execution to finish.  This function
1318  * can be used even if the work re-queues itself. On return from this
1319  * function, @work is guaranteed to be not pending or executing on any CPU.
1320  *
1321  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1322  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1323  *
1324  * The caller must ensure that the worker on which @work was last
1325  * queued can't be destroyed before this function returns.
1326  *
1327  * Return: %true if @work was pending, %false otherwise.
1328  */
1329 bool kthread_cancel_work_sync(struct kthread_work *work)
1330 {
1331 	return __kthread_cancel_work_sync(work, false);
1332 }
1333 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1334 
1335 /**
1336  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1337  *	wait for it to finish.
1338  * @dwork: the kthread delayed work to cancel
1339  *
1340  * This is kthread_cancel_work_sync() for delayed works.
1341  *
1342  * Return: %true if @dwork was pending, %false otherwise.
1343  */
1344 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1345 {
1346 	return __kthread_cancel_work_sync(&dwork->work, true);
1347 }
1348 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1349 
1350 /**
1351  * kthread_flush_worker - flush all current works on a kthread_worker
1352  * @worker: worker to flush
1353  *
1354  * Wait until all currently executing or pending works on @worker are
1355  * finished.
1356  */
1357 void kthread_flush_worker(struct kthread_worker *worker)
1358 {
1359 	struct kthread_flush_work fwork = {
1360 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1361 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1362 	};
1363 
1364 	kthread_queue_work(worker, &fwork.work);
1365 	wait_for_completion(&fwork.done);
1366 }
1367 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1368 
1369 /**
1370  * kthread_destroy_worker - destroy a kthread worker
1371  * @worker: worker to be destroyed
1372  *
1373  * Flush and destroy @worker.  The simple flush is enough because the kthread
1374  * worker API is used only in trivial scenarios.  There are no multi-step state
1375  * machines needed.
1376  *
1377  * Note that this function is not responsible for handling delayed work, so
1378  * caller should be responsible for queuing or canceling all delayed work items
1379  * before invoke this function.
1380  */
1381 void kthread_destroy_worker(struct kthread_worker *worker)
1382 {
1383 	struct task_struct *task;
1384 
1385 	task = worker->task;
1386 	if (WARN_ON(!task))
1387 		return;
1388 
1389 	kthread_flush_worker(worker);
1390 	kthread_stop(task);
1391 	WARN_ON(!list_empty(&worker->delayed_work_list));
1392 	WARN_ON(!list_empty(&worker->work_list));
1393 	kfree(worker);
1394 }
1395 EXPORT_SYMBOL(kthread_destroy_worker);
1396 
1397 /**
1398  * kthread_use_mm - make the calling kthread operate on an address space
1399  * @mm: address space to operate on
1400  */
1401 void kthread_use_mm(struct mm_struct *mm)
1402 {
1403 	struct mm_struct *active_mm;
1404 	struct task_struct *tsk = current;
1405 
1406 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1407 	WARN_ON_ONCE(tsk->mm);
1408 
1409 	/*
1410 	 * It is possible for mm to be the same as tsk->active_mm, but
1411 	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1412 	 * because these references are not equivalent.
1413 	 */
1414 	mmgrab(mm);
1415 
1416 	task_lock(tsk);
1417 	/* Hold off tlb flush IPIs while switching mm's */
1418 	local_irq_disable();
1419 	active_mm = tsk->active_mm;
1420 	tsk->active_mm = mm;
1421 	tsk->mm = mm;
1422 	membarrier_update_current_mm(mm);
1423 	switch_mm_irqs_off(active_mm, mm, tsk);
1424 	local_irq_enable();
1425 	task_unlock(tsk);
1426 #ifdef finish_arch_post_lock_switch
1427 	finish_arch_post_lock_switch();
1428 #endif
1429 
1430 	/*
1431 	 * When a kthread starts operating on an address space, the loop
1432 	 * in membarrier_{private,global}_expedited() may not observe
1433 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1434 	 * memory barrier after storing to tsk->mm, before accessing
1435 	 * user-space memory. A full memory barrier for membarrier
1436 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1437 	 * mmdrop_lazy_tlb().
1438 	 */
1439 	mmdrop_lazy_tlb(active_mm);
1440 }
1441 EXPORT_SYMBOL_GPL(kthread_use_mm);
1442 
1443 /**
1444  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1445  * @mm: address space to operate on
1446  */
1447 void kthread_unuse_mm(struct mm_struct *mm)
1448 {
1449 	struct task_struct *tsk = current;
1450 
1451 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1452 	WARN_ON_ONCE(!tsk->mm);
1453 
1454 	task_lock(tsk);
1455 	/*
1456 	 * When a kthread stops operating on an address space, the loop
1457 	 * in membarrier_{private,global}_expedited() may not observe
1458 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1459 	 * memory barrier after accessing user-space memory, before
1460 	 * clearing tsk->mm.
1461 	 */
1462 	smp_mb__after_spinlock();
1463 	sync_mm_rss(mm);
1464 	local_irq_disable();
1465 	tsk->mm = NULL;
1466 	membarrier_update_current_mm(NULL);
1467 	mmgrab_lazy_tlb(mm);
1468 	/* active_mm is still 'mm' */
1469 	enter_lazy_tlb(mm, tsk);
1470 	local_irq_enable();
1471 	task_unlock(tsk);
1472 
1473 	mmdrop(mm);
1474 }
1475 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1476 
1477 #ifdef CONFIG_BLK_CGROUP
1478 /**
1479  * kthread_associate_blkcg - associate blkcg to current kthread
1480  * @css: the cgroup info
1481  *
1482  * Current thread must be a kthread. The thread is running jobs on behalf of
1483  * other threads. In some cases, we expect the jobs attach cgroup info of
1484  * original threads instead of that of current thread. This function stores
1485  * original thread's cgroup info in current kthread context for later
1486  * retrieval.
1487  */
1488 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1489 {
1490 	struct kthread *kthread;
1491 
1492 	if (!(current->flags & PF_KTHREAD))
1493 		return;
1494 	kthread = to_kthread(current);
1495 	if (!kthread)
1496 		return;
1497 
1498 	if (kthread->blkcg_css) {
1499 		css_put(kthread->blkcg_css);
1500 		kthread->blkcg_css = NULL;
1501 	}
1502 	if (css) {
1503 		css_get(css);
1504 		kthread->blkcg_css = css;
1505 	}
1506 }
1507 EXPORT_SYMBOL(kthread_associate_blkcg);
1508 
1509 /**
1510  * kthread_blkcg - get associated blkcg css of current kthread
1511  *
1512  * Current thread must be a kthread.
1513  */
1514 struct cgroup_subsys_state *kthread_blkcg(void)
1515 {
1516 	struct kthread *kthread;
1517 
1518 	if (current->flags & PF_KTHREAD) {
1519 		kthread = to_kthread(current);
1520 		if (kthread)
1521 			return kthread->blkcg_css;
1522 	}
1523 	return NULL;
1524 }
1525 #endif
1526