1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* 90 * Normally, functions that we'd want to prohibit kprobes in, are marked 91 * __kprobes. But, there are cases where such functions already belong to 92 * a different section (__sched for preempt_schedule) 93 * 94 * For such cases, we now have a blacklist 95 */ 96 static struct kprobe_blackpoint kprobe_blacklist[] = { 97 {"preempt_schedule",}, 98 {"native_get_debugreg",}, 99 {"irq_entries_start",}, 100 {"common_interrupt",}, 101 {"mcount",}, /* mcount can be called from everywhere */ 102 {NULL} /* Terminator */ 103 }; 104 105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 106 /* 107 * kprobe->ainsn.insn points to the copy of the instruction to be 108 * single-stepped. x86_64, POWER4 and above have no-exec support and 109 * stepping on the instruction on a vmalloced/kmalloced/data page 110 * is a recipe for disaster 111 */ 112 struct kprobe_insn_page { 113 struct list_head list; 114 kprobe_opcode_t *insns; /* Page of instruction slots */ 115 int nused; 116 int ngarbage; 117 char slot_used[]; 118 }; 119 120 #define KPROBE_INSN_PAGE_SIZE(slots) \ 121 (offsetof(struct kprobe_insn_page, slot_used) + \ 122 (sizeof(char) * (slots))) 123 124 struct kprobe_insn_cache { 125 struct list_head pages; /* list of kprobe_insn_page */ 126 size_t insn_size; /* size of instruction slot */ 127 int nr_garbage; 128 }; 129 130 static int slots_per_page(struct kprobe_insn_cache *c) 131 { 132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 133 } 134 135 enum kprobe_slot_state { 136 SLOT_CLEAN = 0, 137 SLOT_DIRTY = 1, 138 SLOT_USED = 2, 139 }; 140 141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 142 static struct kprobe_insn_cache kprobe_insn_slots = { 143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 144 .insn_size = MAX_INSN_SIZE, 145 .nr_garbage = 0, 146 }; 147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 148 149 /** 150 * __get_insn_slot() - Find a slot on an executable page for an instruction. 151 * We allocate an executable page if there's no room on existing ones. 152 */ 153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 154 { 155 struct kprobe_insn_page *kip; 156 157 retry: 158 list_for_each_entry(kip, &c->pages, list) { 159 if (kip->nused < slots_per_page(c)) { 160 int i; 161 for (i = 0; i < slots_per_page(c); i++) { 162 if (kip->slot_used[i] == SLOT_CLEAN) { 163 kip->slot_used[i] = SLOT_USED; 164 kip->nused++; 165 return kip->insns + (i * c->insn_size); 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 174 /* If there are any garbage slots, collect it and try again. */ 175 if (c->nr_garbage && collect_garbage_slots(c) == 0) 176 goto retry; 177 178 /* All out of space. Need to allocate a new page. */ 179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 180 if (!kip) 181 return NULL; 182 183 /* 184 * Use module_alloc so this page is within +/- 2GB of where the 185 * kernel image and loaded module images reside. This is required 186 * so x86_64 can correctly handle the %rip-relative fixups. 187 */ 188 kip->insns = module_alloc(PAGE_SIZE); 189 if (!kip->insns) { 190 kfree(kip); 191 return NULL; 192 } 193 INIT_LIST_HEAD(&kip->list); 194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 195 kip->slot_used[0] = SLOT_USED; 196 kip->nused = 1; 197 kip->ngarbage = 0; 198 list_add(&kip->list, &c->pages); 199 return kip->insns; 200 } 201 202 203 kprobe_opcode_t __kprobes *get_insn_slot(void) 204 { 205 kprobe_opcode_t *ret = NULL; 206 207 mutex_lock(&kprobe_insn_mutex); 208 ret = __get_insn_slot(&kprobe_insn_slots); 209 mutex_unlock(&kprobe_insn_mutex); 210 211 return ret; 212 } 213 214 /* Return 1 if all garbages are collected, otherwise 0. */ 215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 216 { 217 kip->slot_used[idx] = SLOT_CLEAN; 218 kip->nused--; 219 if (kip->nused == 0) { 220 /* 221 * Page is no longer in use. Free it unless 222 * it's the last one. We keep the last one 223 * so as not to have to set it up again the 224 * next time somebody inserts a probe. 225 */ 226 if (!list_is_singular(&kip->list)) { 227 list_del(&kip->list); 228 module_free(NULL, kip->insns); 229 kfree(kip); 230 } 231 return 1; 232 } 233 return 0; 234 } 235 236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 237 { 238 struct kprobe_insn_page *kip, *next; 239 240 /* Ensure no-one is interrupted on the garbages */ 241 synchronize_sched(); 242 243 list_for_each_entry_safe(kip, next, &c->pages, list) { 244 int i; 245 if (kip->ngarbage == 0) 246 continue; 247 kip->ngarbage = 0; /* we will collect all garbages */ 248 for (i = 0; i < slots_per_page(c); i++) { 249 if (kip->slot_used[i] == SLOT_DIRTY && 250 collect_one_slot(kip, i)) 251 break; 252 } 253 } 254 c->nr_garbage = 0; 255 return 0; 256 } 257 258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 259 kprobe_opcode_t *slot, int dirty) 260 { 261 struct kprobe_insn_page *kip; 262 263 list_for_each_entry(kip, &c->pages, list) { 264 long idx = ((long)slot - (long)kip->insns) / 265 (c->insn_size * sizeof(kprobe_opcode_t)); 266 if (idx >= 0 && idx < slots_per_page(c)) { 267 WARN_ON(kip->slot_used[idx] != SLOT_USED); 268 if (dirty) { 269 kip->slot_used[idx] = SLOT_DIRTY; 270 kip->ngarbage++; 271 if (++c->nr_garbage > slots_per_page(c)) 272 collect_garbage_slots(c); 273 } else 274 collect_one_slot(kip, idx); 275 return; 276 } 277 } 278 /* Could not free this slot. */ 279 WARN_ON(1); 280 } 281 282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 283 { 284 mutex_lock(&kprobe_insn_mutex); 285 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 286 mutex_unlock(&kprobe_insn_mutex); 287 } 288 #ifdef CONFIG_OPTPROBES 289 /* For optimized_kprobe buffer */ 290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 291 static struct kprobe_insn_cache kprobe_optinsn_slots = { 292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 293 /* .insn_size is initialized later */ 294 .nr_garbage = 0, 295 }; 296 /* Get a slot for optimized_kprobe buffer */ 297 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 298 { 299 kprobe_opcode_t *ret = NULL; 300 301 mutex_lock(&kprobe_optinsn_mutex); 302 ret = __get_insn_slot(&kprobe_optinsn_slots); 303 mutex_unlock(&kprobe_optinsn_mutex); 304 305 return ret; 306 } 307 308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 309 { 310 mutex_lock(&kprobe_optinsn_mutex); 311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 312 mutex_unlock(&kprobe_optinsn_mutex); 313 } 314 #endif 315 #endif 316 317 /* We have preemption disabled.. so it is safe to use __ versions */ 318 static inline void set_kprobe_instance(struct kprobe *kp) 319 { 320 __this_cpu_write(kprobe_instance, kp); 321 } 322 323 static inline void reset_kprobe_instance(void) 324 { 325 __this_cpu_write(kprobe_instance, NULL); 326 } 327 328 /* 329 * This routine is called either: 330 * - under the kprobe_mutex - during kprobe_[un]register() 331 * OR 332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 333 */ 334 struct kprobe __kprobes *get_kprobe(void *addr) 335 { 336 struct hlist_head *head; 337 struct kprobe *p; 338 339 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 340 hlist_for_each_entry_rcu(p, head, hlist) { 341 if (p->addr == addr) 342 return p; 343 } 344 345 return NULL; 346 } 347 348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 349 350 /* Return true if the kprobe is an aggregator */ 351 static inline int kprobe_aggrprobe(struct kprobe *p) 352 { 353 return p->pre_handler == aggr_pre_handler; 354 } 355 356 /* Return true(!0) if the kprobe is unused */ 357 static inline int kprobe_unused(struct kprobe *p) 358 { 359 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 360 list_empty(&p->list); 361 } 362 363 /* 364 * Keep all fields in the kprobe consistent 365 */ 366 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 367 { 368 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 369 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 370 } 371 372 #ifdef CONFIG_OPTPROBES 373 /* NOTE: change this value only with kprobe_mutex held */ 374 static bool kprobes_allow_optimization; 375 376 /* 377 * Call all pre_handler on the list, but ignores its return value. 378 * This must be called from arch-dep optimized caller. 379 */ 380 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 381 { 382 struct kprobe *kp; 383 384 list_for_each_entry_rcu(kp, &p->list, list) { 385 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 386 set_kprobe_instance(kp); 387 kp->pre_handler(kp, regs); 388 } 389 reset_kprobe_instance(); 390 } 391 } 392 393 /* Free optimized instructions and optimized_kprobe */ 394 static __kprobes void free_aggr_kprobe(struct kprobe *p) 395 { 396 struct optimized_kprobe *op; 397 398 op = container_of(p, struct optimized_kprobe, kp); 399 arch_remove_optimized_kprobe(op); 400 arch_remove_kprobe(p); 401 kfree(op); 402 } 403 404 /* Return true(!0) if the kprobe is ready for optimization. */ 405 static inline int kprobe_optready(struct kprobe *p) 406 { 407 struct optimized_kprobe *op; 408 409 if (kprobe_aggrprobe(p)) { 410 op = container_of(p, struct optimized_kprobe, kp); 411 return arch_prepared_optinsn(&op->optinsn); 412 } 413 414 return 0; 415 } 416 417 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 418 static inline int kprobe_disarmed(struct kprobe *p) 419 { 420 struct optimized_kprobe *op; 421 422 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 423 if (!kprobe_aggrprobe(p)) 424 return kprobe_disabled(p); 425 426 op = container_of(p, struct optimized_kprobe, kp); 427 428 return kprobe_disabled(p) && list_empty(&op->list); 429 } 430 431 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 432 static int __kprobes kprobe_queued(struct kprobe *p) 433 { 434 struct optimized_kprobe *op; 435 436 if (kprobe_aggrprobe(p)) { 437 op = container_of(p, struct optimized_kprobe, kp); 438 if (!list_empty(&op->list)) 439 return 1; 440 } 441 return 0; 442 } 443 444 /* 445 * Return an optimized kprobe whose optimizing code replaces 446 * instructions including addr (exclude breakpoint). 447 */ 448 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 449 { 450 int i; 451 struct kprobe *p = NULL; 452 struct optimized_kprobe *op; 453 454 /* Don't check i == 0, since that is a breakpoint case. */ 455 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 456 p = get_kprobe((void *)(addr - i)); 457 458 if (p && kprobe_optready(p)) { 459 op = container_of(p, struct optimized_kprobe, kp); 460 if (arch_within_optimized_kprobe(op, addr)) 461 return p; 462 } 463 464 return NULL; 465 } 466 467 /* Optimization staging list, protected by kprobe_mutex */ 468 static LIST_HEAD(optimizing_list); 469 static LIST_HEAD(unoptimizing_list); 470 static LIST_HEAD(freeing_list); 471 472 static void kprobe_optimizer(struct work_struct *work); 473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 474 #define OPTIMIZE_DELAY 5 475 476 /* 477 * Optimize (replace a breakpoint with a jump) kprobes listed on 478 * optimizing_list. 479 */ 480 static __kprobes void do_optimize_kprobes(void) 481 { 482 /* Optimization never be done when disarmed */ 483 if (kprobes_all_disarmed || !kprobes_allow_optimization || 484 list_empty(&optimizing_list)) 485 return; 486 487 /* 488 * The optimization/unoptimization refers online_cpus via 489 * stop_machine() and cpu-hotplug modifies online_cpus. 490 * And same time, text_mutex will be held in cpu-hotplug and here. 491 * This combination can cause a deadlock (cpu-hotplug try to lock 492 * text_mutex but stop_machine can not be done because online_cpus 493 * has been changed) 494 * To avoid this deadlock, we need to call get_online_cpus() 495 * for preventing cpu-hotplug outside of text_mutex locking. 496 */ 497 get_online_cpus(); 498 mutex_lock(&text_mutex); 499 arch_optimize_kprobes(&optimizing_list); 500 mutex_unlock(&text_mutex); 501 put_online_cpus(); 502 } 503 504 /* 505 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 506 * if need) kprobes listed on unoptimizing_list. 507 */ 508 static __kprobes void do_unoptimize_kprobes(void) 509 { 510 struct optimized_kprobe *op, *tmp; 511 512 /* Unoptimization must be done anytime */ 513 if (list_empty(&unoptimizing_list)) 514 return; 515 516 /* Ditto to do_optimize_kprobes */ 517 get_online_cpus(); 518 mutex_lock(&text_mutex); 519 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 520 /* Loop free_list for disarming */ 521 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 522 /* Disarm probes if marked disabled */ 523 if (kprobe_disabled(&op->kp)) 524 arch_disarm_kprobe(&op->kp); 525 if (kprobe_unused(&op->kp)) { 526 /* 527 * Remove unused probes from hash list. After waiting 528 * for synchronization, these probes are reclaimed. 529 * (reclaiming is done by do_free_cleaned_kprobes.) 530 */ 531 hlist_del_rcu(&op->kp.hlist); 532 } else 533 list_del_init(&op->list); 534 } 535 mutex_unlock(&text_mutex); 536 put_online_cpus(); 537 } 538 539 /* Reclaim all kprobes on the free_list */ 540 static __kprobes void do_free_cleaned_kprobes(void) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 545 BUG_ON(!kprobe_unused(&op->kp)); 546 list_del_init(&op->list); 547 free_aggr_kprobe(&op->kp); 548 } 549 } 550 551 /* Start optimizer after OPTIMIZE_DELAY passed */ 552 static __kprobes void kick_kprobe_optimizer(void) 553 { 554 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 555 } 556 557 /* Kprobe jump optimizer */ 558 static __kprobes void kprobe_optimizer(struct work_struct *work) 559 { 560 mutex_lock(&kprobe_mutex); 561 /* Lock modules while optimizing kprobes */ 562 mutex_lock(&module_mutex); 563 564 /* 565 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 566 * kprobes before waiting for quiesence period. 567 */ 568 do_unoptimize_kprobes(); 569 570 /* 571 * Step 2: Wait for quiesence period to ensure all running interrupts 572 * are done. Because optprobe may modify multiple instructions 573 * there is a chance that Nth instruction is interrupted. In that 574 * case, running interrupt can return to 2nd-Nth byte of jump 575 * instruction. This wait is for avoiding it. 576 */ 577 synchronize_sched(); 578 579 /* Step 3: Optimize kprobes after quiesence period */ 580 do_optimize_kprobes(); 581 582 /* Step 4: Free cleaned kprobes after quiesence period */ 583 do_free_cleaned_kprobes(); 584 585 mutex_unlock(&module_mutex); 586 mutex_unlock(&kprobe_mutex); 587 588 /* Step 5: Kick optimizer again if needed */ 589 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 590 kick_kprobe_optimizer(); 591 } 592 593 /* Wait for completing optimization and unoptimization */ 594 static __kprobes void wait_for_kprobe_optimizer(void) 595 { 596 mutex_lock(&kprobe_mutex); 597 598 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 599 mutex_unlock(&kprobe_mutex); 600 601 /* this will also make optimizing_work execute immmediately */ 602 flush_delayed_work(&optimizing_work); 603 /* @optimizing_work might not have been queued yet, relax */ 604 cpu_relax(); 605 606 mutex_lock(&kprobe_mutex); 607 } 608 609 mutex_unlock(&kprobe_mutex); 610 } 611 612 /* Optimize kprobe if p is ready to be optimized */ 613 static __kprobes void optimize_kprobe(struct kprobe *p) 614 { 615 struct optimized_kprobe *op; 616 617 /* Check if the kprobe is disabled or not ready for optimization. */ 618 if (!kprobe_optready(p) || !kprobes_allow_optimization || 619 (kprobe_disabled(p) || kprobes_all_disarmed)) 620 return; 621 622 /* Both of break_handler and post_handler are not supported. */ 623 if (p->break_handler || p->post_handler) 624 return; 625 626 op = container_of(p, struct optimized_kprobe, kp); 627 628 /* Check there is no other kprobes at the optimized instructions */ 629 if (arch_check_optimized_kprobe(op) < 0) 630 return; 631 632 /* Check if it is already optimized. */ 633 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 634 return; 635 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 636 637 if (!list_empty(&op->list)) 638 /* This is under unoptimizing. Just dequeue the probe */ 639 list_del_init(&op->list); 640 else { 641 list_add(&op->list, &optimizing_list); 642 kick_kprobe_optimizer(); 643 } 644 } 645 646 /* Short cut to direct unoptimizing */ 647 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op) 648 { 649 get_online_cpus(); 650 arch_unoptimize_kprobe(op); 651 put_online_cpus(); 652 if (kprobe_disabled(&op->kp)) 653 arch_disarm_kprobe(&op->kp); 654 } 655 656 /* Unoptimize a kprobe if p is optimized */ 657 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force) 658 { 659 struct optimized_kprobe *op; 660 661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 662 return; /* This is not an optprobe nor optimized */ 663 664 op = container_of(p, struct optimized_kprobe, kp); 665 if (!kprobe_optimized(p)) { 666 /* Unoptimized or unoptimizing case */ 667 if (force && !list_empty(&op->list)) { 668 /* 669 * Only if this is unoptimizing kprobe and forced, 670 * forcibly unoptimize it. (No need to unoptimize 671 * unoptimized kprobe again :) 672 */ 673 list_del_init(&op->list); 674 force_unoptimize_kprobe(op); 675 } 676 return; 677 } 678 679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 680 if (!list_empty(&op->list)) { 681 /* Dequeue from the optimization queue */ 682 list_del_init(&op->list); 683 return; 684 } 685 /* Optimized kprobe case */ 686 if (force) 687 /* Forcibly update the code: this is a special case */ 688 force_unoptimize_kprobe(op); 689 else { 690 list_add(&op->list, &unoptimizing_list); 691 kick_kprobe_optimizer(); 692 } 693 } 694 695 /* Cancel unoptimizing for reusing */ 696 static void reuse_unused_kprobe(struct kprobe *ap) 697 { 698 struct optimized_kprobe *op; 699 700 BUG_ON(!kprobe_unused(ap)); 701 /* 702 * Unused kprobe MUST be on the way of delayed unoptimizing (means 703 * there is still a relative jump) and disabled. 704 */ 705 op = container_of(ap, struct optimized_kprobe, kp); 706 if (unlikely(list_empty(&op->list))) 707 printk(KERN_WARNING "Warning: found a stray unused " 708 "aggrprobe@%p\n", ap->addr); 709 /* Enable the probe again */ 710 ap->flags &= ~KPROBE_FLAG_DISABLED; 711 /* Optimize it again (remove from op->list) */ 712 BUG_ON(!kprobe_optready(ap)); 713 optimize_kprobe(ap); 714 } 715 716 /* Remove optimized instructions */ 717 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 718 { 719 struct optimized_kprobe *op; 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!list_empty(&op->list)) 723 /* Dequeue from the (un)optimization queue */ 724 list_del_init(&op->list); 725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 726 727 if (kprobe_unused(p)) { 728 /* Enqueue if it is unused */ 729 list_add(&op->list, &freeing_list); 730 /* 731 * Remove unused probes from the hash list. After waiting 732 * for synchronization, this probe is reclaimed. 733 * (reclaiming is done by do_free_cleaned_kprobes().) 734 */ 735 hlist_del_rcu(&op->kp.hlist); 736 } 737 738 /* Don't touch the code, because it is already freed. */ 739 arch_remove_optimized_kprobe(op); 740 } 741 742 /* Try to prepare optimized instructions */ 743 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 744 { 745 struct optimized_kprobe *op; 746 747 op = container_of(p, struct optimized_kprobe, kp); 748 arch_prepare_optimized_kprobe(op); 749 } 750 751 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 752 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 753 { 754 struct optimized_kprobe *op; 755 756 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 757 if (!op) 758 return NULL; 759 760 INIT_LIST_HEAD(&op->list); 761 op->kp.addr = p->addr; 762 arch_prepare_optimized_kprobe(op); 763 764 return &op->kp; 765 } 766 767 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 768 769 /* 770 * Prepare an optimized_kprobe and optimize it 771 * NOTE: p must be a normal registered kprobe 772 */ 773 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 774 { 775 struct kprobe *ap; 776 struct optimized_kprobe *op; 777 778 /* Impossible to optimize ftrace-based kprobe */ 779 if (kprobe_ftrace(p)) 780 return; 781 782 /* For preparing optimization, jump_label_text_reserved() is called */ 783 jump_label_lock(); 784 mutex_lock(&text_mutex); 785 786 ap = alloc_aggr_kprobe(p); 787 if (!ap) 788 goto out; 789 790 op = container_of(ap, struct optimized_kprobe, kp); 791 if (!arch_prepared_optinsn(&op->optinsn)) { 792 /* If failed to setup optimizing, fallback to kprobe */ 793 arch_remove_optimized_kprobe(op); 794 kfree(op); 795 goto out; 796 } 797 798 init_aggr_kprobe(ap, p); 799 optimize_kprobe(ap); /* This just kicks optimizer thread */ 800 801 out: 802 mutex_unlock(&text_mutex); 803 jump_label_unlock(); 804 } 805 806 #ifdef CONFIG_SYSCTL 807 static void __kprobes optimize_all_kprobes(void) 808 { 809 struct hlist_head *head; 810 struct kprobe *p; 811 unsigned int i; 812 813 mutex_lock(&kprobe_mutex); 814 /* If optimization is already allowed, just return */ 815 if (kprobes_allow_optimization) 816 goto out; 817 818 kprobes_allow_optimization = true; 819 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 820 head = &kprobe_table[i]; 821 hlist_for_each_entry_rcu(p, head, hlist) 822 if (!kprobe_disabled(p)) 823 optimize_kprobe(p); 824 } 825 printk(KERN_INFO "Kprobes globally optimized\n"); 826 out: 827 mutex_unlock(&kprobe_mutex); 828 } 829 830 static void __kprobes unoptimize_all_kprobes(void) 831 { 832 struct hlist_head *head; 833 struct kprobe *p; 834 unsigned int i; 835 836 mutex_lock(&kprobe_mutex); 837 /* If optimization is already prohibited, just return */ 838 if (!kprobes_allow_optimization) { 839 mutex_unlock(&kprobe_mutex); 840 return; 841 } 842 843 kprobes_allow_optimization = false; 844 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 845 head = &kprobe_table[i]; 846 hlist_for_each_entry_rcu(p, head, hlist) { 847 if (!kprobe_disabled(p)) 848 unoptimize_kprobe(p, false); 849 } 850 } 851 mutex_unlock(&kprobe_mutex); 852 853 /* Wait for unoptimizing completion */ 854 wait_for_kprobe_optimizer(); 855 printk(KERN_INFO "Kprobes globally unoptimized\n"); 856 } 857 858 static DEFINE_MUTEX(kprobe_sysctl_mutex); 859 int sysctl_kprobes_optimization; 860 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 861 void __user *buffer, size_t *length, 862 loff_t *ppos) 863 { 864 int ret; 865 866 mutex_lock(&kprobe_sysctl_mutex); 867 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 868 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 869 870 if (sysctl_kprobes_optimization) 871 optimize_all_kprobes(); 872 else 873 unoptimize_all_kprobes(); 874 mutex_unlock(&kprobe_sysctl_mutex); 875 876 return ret; 877 } 878 #endif /* CONFIG_SYSCTL */ 879 880 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 881 static void __kprobes __arm_kprobe(struct kprobe *p) 882 { 883 struct kprobe *_p; 884 885 /* Check collision with other optimized kprobes */ 886 _p = get_optimized_kprobe((unsigned long)p->addr); 887 if (unlikely(_p)) 888 /* Fallback to unoptimized kprobe */ 889 unoptimize_kprobe(_p, true); 890 891 arch_arm_kprobe(p); 892 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 893 } 894 895 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 896 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt) 897 { 898 struct kprobe *_p; 899 900 unoptimize_kprobe(p, false); /* Try to unoptimize */ 901 902 if (!kprobe_queued(p)) { 903 arch_disarm_kprobe(p); 904 /* If another kprobe was blocked, optimize it. */ 905 _p = get_optimized_kprobe((unsigned long)p->addr); 906 if (unlikely(_p) && reopt) 907 optimize_kprobe(_p); 908 } 909 /* TODO: reoptimize others after unoptimized this probe */ 910 } 911 912 #else /* !CONFIG_OPTPROBES */ 913 914 #define optimize_kprobe(p) do {} while (0) 915 #define unoptimize_kprobe(p, f) do {} while (0) 916 #define kill_optimized_kprobe(p) do {} while (0) 917 #define prepare_optimized_kprobe(p) do {} while (0) 918 #define try_to_optimize_kprobe(p) do {} while (0) 919 #define __arm_kprobe(p) arch_arm_kprobe(p) 920 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 921 #define kprobe_disarmed(p) kprobe_disabled(p) 922 #define wait_for_kprobe_optimizer() do {} while (0) 923 924 /* There should be no unused kprobes can be reused without optimization */ 925 static void reuse_unused_kprobe(struct kprobe *ap) 926 { 927 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 928 BUG_ON(kprobe_unused(ap)); 929 } 930 931 static __kprobes void free_aggr_kprobe(struct kprobe *p) 932 { 933 arch_remove_kprobe(p); 934 kfree(p); 935 } 936 937 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 938 { 939 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 940 } 941 #endif /* CONFIG_OPTPROBES */ 942 943 #ifdef CONFIG_KPROBES_ON_FTRACE 944 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 945 .func = kprobe_ftrace_handler, 946 .flags = FTRACE_OPS_FL_SAVE_REGS, 947 }; 948 static int kprobe_ftrace_enabled; 949 950 /* Must ensure p->addr is really on ftrace */ 951 static int __kprobes prepare_kprobe(struct kprobe *p) 952 { 953 if (!kprobe_ftrace(p)) 954 return arch_prepare_kprobe(p); 955 956 return arch_prepare_kprobe_ftrace(p); 957 } 958 959 /* Caller must lock kprobe_mutex */ 960 static void __kprobes arm_kprobe_ftrace(struct kprobe *p) 961 { 962 int ret; 963 964 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 965 (unsigned long)p->addr, 0, 0); 966 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 967 kprobe_ftrace_enabled++; 968 if (kprobe_ftrace_enabled == 1) { 969 ret = register_ftrace_function(&kprobe_ftrace_ops); 970 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 971 } 972 } 973 974 /* Caller must lock kprobe_mutex */ 975 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p) 976 { 977 int ret; 978 979 kprobe_ftrace_enabled--; 980 if (kprobe_ftrace_enabled == 0) { 981 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 982 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 983 } 984 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 985 (unsigned long)p->addr, 1, 0); 986 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 987 } 988 #else /* !CONFIG_KPROBES_ON_FTRACE */ 989 #define prepare_kprobe(p) arch_prepare_kprobe(p) 990 #define arm_kprobe_ftrace(p) do {} while (0) 991 #define disarm_kprobe_ftrace(p) do {} while (0) 992 #endif 993 994 /* Arm a kprobe with text_mutex */ 995 static void __kprobes arm_kprobe(struct kprobe *kp) 996 { 997 if (unlikely(kprobe_ftrace(kp))) { 998 arm_kprobe_ftrace(kp); 999 return; 1000 } 1001 /* 1002 * Here, since __arm_kprobe() doesn't use stop_machine(), 1003 * this doesn't cause deadlock on text_mutex. So, we don't 1004 * need get_online_cpus(). 1005 */ 1006 mutex_lock(&text_mutex); 1007 __arm_kprobe(kp); 1008 mutex_unlock(&text_mutex); 1009 } 1010 1011 /* Disarm a kprobe with text_mutex */ 1012 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt) 1013 { 1014 if (unlikely(kprobe_ftrace(kp))) { 1015 disarm_kprobe_ftrace(kp); 1016 return; 1017 } 1018 /* Ditto */ 1019 mutex_lock(&text_mutex); 1020 __disarm_kprobe(kp, reopt); 1021 mutex_unlock(&text_mutex); 1022 } 1023 1024 /* 1025 * Aggregate handlers for multiple kprobes support - these handlers 1026 * take care of invoking the individual kprobe handlers on p->list 1027 */ 1028 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1029 { 1030 struct kprobe *kp; 1031 1032 list_for_each_entry_rcu(kp, &p->list, list) { 1033 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1034 set_kprobe_instance(kp); 1035 if (kp->pre_handler(kp, regs)) 1036 return 1; 1037 } 1038 reset_kprobe_instance(); 1039 } 1040 return 0; 1041 } 1042 1043 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1044 unsigned long flags) 1045 { 1046 struct kprobe *kp; 1047 1048 list_for_each_entry_rcu(kp, &p->list, list) { 1049 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1050 set_kprobe_instance(kp); 1051 kp->post_handler(kp, regs, flags); 1052 reset_kprobe_instance(); 1053 } 1054 } 1055 } 1056 1057 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1058 int trapnr) 1059 { 1060 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1061 1062 /* 1063 * if we faulted "during" the execution of a user specified 1064 * probe handler, invoke just that probe's fault handler 1065 */ 1066 if (cur && cur->fault_handler) { 1067 if (cur->fault_handler(cur, regs, trapnr)) 1068 return 1; 1069 } 1070 return 0; 1071 } 1072 1073 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1074 { 1075 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1076 int ret = 0; 1077 1078 if (cur && cur->break_handler) { 1079 if (cur->break_handler(cur, regs)) 1080 ret = 1; 1081 } 1082 reset_kprobe_instance(); 1083 return ret; 1084 } 1085 1086 /* Walks the list and increments nmissed count for multiprobe case */ 1087 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 1088 { 1089 struct kprobe *kp; 1090 if (!kprobe_aggrprobe(p)) { 1091 p->nmissed++; 1092 } else { 1093 list_for_each_entry_rcu(kp, &p->list, list) 1094 kp->nmissed++; 1095 } 1096 return; 1097 } 1098 1099 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 1100 struct hlist_head *head) 1101 { 1102 struct kretprobe *rp = ri->rp; 1103 1104 /* remove rp inst off the rprobe_inst_table */ 1105 hlist_del(&ri->hlist); 1106 INIT_HLIST_NODE(&ri->hlist); 1107 if (likely(rp)) { 1108 raw_spin_lock(&rp->lock); 1109 hlist_add_head(&ri->hlist, &rp->free_instances); 1110 raw_spin_unlock(&rp->lock); 1111 } else 1112 /* Unregistering */ 1113 hlist_add_head(&ri->hlist, head); 1114 } 1115 1116 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 1117 struct hlist_head **head, unsigned long *flags) 1118 __acquires(hlist_lock) 1119 { 1120 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1121 raw_spinlock_t *hlist_lock; 1122 1123 *head = &kretprobe_inst_table[hash]; 1124 hlist_lock = kretprobe_table_lock_ptr(hash); 1125 raw_spin_lock_irqsave(hlist_lock, *flags); 1126 } 1127 1128 static void __kprobes kretprobe_table_lock(unsigned long hash, 1129 unsigned long *flags) 1130 __acquires(hlist_lock) 1131 { 1132 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1133 raw_spin_lock_irqsave(hlist_lock, *flags); 1134 } 1135 1136 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 1137 unsigned long *flags) 1138 __releases(hlist_lock) 1139 { 1140 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1141 raw_spinlock_t *hlist_lock; 1142 1143 hlist_lock = kretprobe_table_lock_ptr(hash); 1144 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1145 } 1146 1147 static void __kprobes kretprobe_table_unlock(unsigned long hash, 1148 unsigned long *flags) 1149 __releases(hlist_lock) 1150 { 1151 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1152 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1153 } 1154 1155 /* 1156 * This function is called from finish_task_switch when task tk becomes dead, 1157 * so that we can recycle any function-return probe instances associated 1158 * with this task. These left over instances represent probed functions 1159 * that have been called but will never return. 1160 */ 1161 void __kprobes kprobe_flush_task(struct task_struct *tk) 1162 { 1163 struct kretprobe_instance *ri; 1164 struct hlist_head *head, empty_rp; 1165 struct hlist_node *tmp; 1166 unsigned long hash, flags = 0; 1167 1168 if (unlikely(!kprobes_initialized)) 1169 /* Early boot. kretprobe_table_locks not yet initialized. */ 1170 return; 1171 1172 INIT_HLIST_HEAD(&empty_rp); 1173 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1174 head = &kretprobe_inst_table[hash]; 1175 kretprobe_table_lock(hash, &flags); 1176 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1177 if (ri->task == tk) 1178 recycle_rp_inst(ri, &empty_rp); 1179 } 1180 kretprobe_table_unlock(hash, &flags); 1181 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1182 hlist_del(&ri->hlist); 1183 kfree(ri); 1184 } 1185 } 1186 1187 static inline void free_rp_inst(struct kretprobe *rp) 1188 { 1189 struct kretprobe_instance *ri; 1190 struct hlist_node *next; 1191 1192 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1193 hlist_del(&ri->hlist); 1194 kfree(ri); 1195 } 1196 } 1197 1198 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 1199 { 1200 unsigned long flags, hash; 1201 struct kretprobe_instance *ri; 1202 struct hlist_node *next; 1203 struct hlist_head *head; 1204 1205 /* No race here */ 1206 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1207 kretprobe_table_lock(hash, &flags); 1208 head = &kretprobe_inst_table[hash]; 1209 hlist_for_each_entry_safe(ri, next, head, hlist) { 1210 if (ri->rp == rp) 1211 ri->rp = NULL; 1212 } 1213 kretprobe_table_unlock(hash, &flags); 1214 } 1215 free_rp_inst(rp); 1216 } 1217 1218 /* 1219 * Add the new probe to ap->list. Fail if this is the 1220 * second jprobe at the address - two jprobes can't coexist 1221 */ 1222 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1223 { 1224 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1225 1226 if (p->break_handler || p->post_handler) 1227 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1228 1229 if (p->break_handler) { 1230 if (ap->break_handler) 1231 return -EEXIST; 1232 list_add_tail_rcu(&p->list, &ap->list); 1233 ap->break_handler = aggr_break_handler; 1234 } else 1235 list_add_rcu(&p->list, &ap->list); 1236 if (p->post_handler && !ap->post_handler) 1237 ap->post_handler = aggr_post_handler; 1238 1239 return 0; 1240 } 1241 1242 /* 1243 * Fill in the required fields of the "manager kprobe". Replace the 1244 * earlier kprobe in the hlist with the manager kprobe 1245 */ 1246 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1247 { 1248 /* Copy p's insn slot to ap */ 1249 copy_kprobe(p, ap); 1250 flush_insn_slot(ap); 1251 ap->addr = p->addr; 1252 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1253 ap->pre_handler = aggr_pre_handler; 1254 ap->fault_handler = aggr_fault_handler; 1255 /* We don't care the kprobe which has gone. */ 1256 if (p->post_handler && !kprobe_gone(p)) 1257 ap->post_handler = aggr_post_handler; 1258 if (p->break_handler && !kprobe_gone(p)) 1259 ap->break_handler = aggr_break_handler; 1260 1261 INIT_LIST_HEAD(&ap->list); 1262 INIT_HLIST_NODE(&ap->hlist); 1263 1264 list_add_rcu(&p->list, &ap->list); 1265 hlist_replace_rcu(&p->hlist, &ap->hlist); 1266 } 1267 1268 /* 1269 * This is the second or subsequent kprobe at the address - handle 1270 * the intricacies 1271 */ 1272 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p, 1273 struct kprobe *p) 1274 { 1275 int ret = 0; 1276 struct kprobe *ap = orig_p; 1277 1278 /* For preparing optimization, jump_label_text_reserved() is called */ 1279 jump_label_lock(); 1280 /* 1281 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1282 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1283 */ 1284 get_online_cpus(); 1285 mutex_lock(&text_mutex); 1286 1287 if (!kprobe_aggrprobe(orig_p)) { 1288 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1289 ap = alloc_aggr_kprobe(orig_p); 1290 if (!ap) { 1291 ret = -ENOMEM; 1292 goto out; 1293 } 1294 init_aggr_kprobe(ap, orig_p); 1295 } else if (kprobe_unused(ap)) 1296 /* This probe is going to die. Rescue it */ 1297 reuse_unused_kprobe(ap); 1298 1299 if (kprobe_gone(ap)) { 1300 /* 1301 * Attempting to insert new probe at the same location that 1302 * had a probe in the module vaddr area which already 1303 * freed. So, the instruction slot has already been 1304 * released. We need a new slot for the new probe. 1305 */ 1306 ret = arch_prepare_kprobe(ap); 1307 if (ret) 1308 /* 1309 * Even if fail to allocate new slot, don't need to 1310 * free aggr_probe. It will be used next time, or 1311 * freed by unregister_kprobe. 1312 */ 1313 goto out; 1314 1315 /* Prepare optimized instructions if possible. */ 1316 prepare_optimized_kprobe(ap); 1317 1318 /* 1319 * Clear gone flag to prevent allocating new slot again, and 1320 * set disabled flag because it is not armed yet. 1321 */ 1322 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1323 | KPROBE_FLAG_DISABLED; 1324 } 1325 1326 /* Copy ap's insn slot to p */ 1327 copy_kprobe(ap, p); 1328 ret = add_new_kprobe(ap, p); 1329 1330 out: 1331 mutex_unlock(&text_mutex); 1332 put_online_cpus(); 1333 jump_label_unlock(); 1334 1335 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1336 ap->flags &= ~KPROBE_FLAG_DISABLED; 1337 if (!kprobes_all_disarmed) 1338 /* Arm the breakpoint again. */ 1339 arm_kprobe(ap); 1340 } 1341 return ret; 1342 } 1343 1344 static int __kprobes in_kprobes_functions(unsigned long addr) 1345 { 1346 struct kprobe_blackpoint *kb; 1347 1348 if (addr >= (unsigned long)__kprobes_text_start && 1349 addr < (unsigned long)__kprobes_text_end) 1350 return -EINVAL; 1351 /* 1352 * If there exists a kprobe_blacklist, verify and 1353 * fail any probe registration in the prohibited area 1354 */ 1355 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1356 if (kb->start_addr) { 1357 if (addr >= kb->start_addr && 1358 addr < (kb->start_addr + kb->range)) 1359 return -EINVAL; 1360 } 1361 } 1362 return 0; 1363 } 1364 1365 /* 1366 * If we have a symbol_name argument, look it up and add the offset field 1367 * to it. This way, we can specify a relative address to a symbol. 1368 * This returns encoded errors if it fails to look up symbol or invalid 1369 * combination of parameters. 1370 */ 1371 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1372 { 1373 kprobe_opcode_t *addr = p->addr; 1374 1375 if ((p->symbol_name && p->addr) || 1376 (!p->symbol_name && !p->addr)) 1377 goto invalid; 1378 1379 if (p->symbol_name) { 1380 kprobe_lookup_name(p->symbol_name, addr); 1381 if (!addr) 1382 return ERR_PTR(-ENOENT); 1383 } 1384 1385 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1386 if (addr) 1387 return addr; 1388 1389 invalid: 1390 return ERR_PTR(-EINVAL); 1391 } 1392 1393 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1394 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1395 { 1396 struct kprobe *ap, *list_p; 1397 1398 ap = get_kprobe(p->addr); 1399 if (unlikely(!ap)) 1400 return NULL; 1401 1402 if (p != ap) { 1403 list_for_each_entry_rcu(list_p, &ap->list, list) 1404 if (list_p == p) 1405 /* kprobe p is a valid probe */ 1406 goto valid; 1407 return NULL; 1408 } 1409 valid: 1410 return ap; 1411 } 1412 1413 /* Return error if the kprobe is being re-registered */ 1414 static inline int check_kprobe_rereg(struct kprobe *p) 1415 { 1416 int ret = 0; 1417 1418 mutex_lock(&kprobe_mutex); 1419 if (__get_valid_kprobe(p)) 1420 ret = -EINVAL; 1421 mutex_unlock(&kprobe_mutex); 1422 1423 return ret; 1424 } 1425 1426 static __kprobes int check_kprobe_address_safe(struct kprobe *p, 1427 struct module **probed_mod) 1428 { 1429 int ret = 0; 1430 unsigned long ftrace_addr; 1431 1432 /* 1433 * If the address is located on a ftrace nop, set the 1434 * breakpoint to the following instruction. 1435 */ 1436 ftrace_addr = ftrace_location((unsigned long)p->addr); 1437 if (ftrace_addr) { 1438 #ifdef CONFIG_KPROBES_ON_FTRACE 1439 /* Given address is not on the instruction boundary */ 1440 if ((unsigned long)p->addr != ftrace_addr) 1441 return -EILSEQ; 1442 p->flags |= KPROBE_FLAG_FTRACE; 1443 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1444 return -EINVAL; 1445 #endif 1446 } 1447 1448 jump_label_lock(); 1449 preempt_disable(); 1450 1451 /* Ensure it is not in reserved area nor out of text */ 1452 if (!kernel_text_address((unsigned long) p->addr) || 1453 in_kprobes_functions((unsigned long) p->addr) || 1454 jump_label_text_reserved(p->addr, p->addr)) { 1455 ret = -EINVAL; 1456 goto out; 1457 } 1458 1459 /* Check if are we probing a module */ 1460 *probed_mod = __module_text_address((unsigned long) p->addr); 1461 if (*probed_mod) { 1462 /* 1463 * We must hold a refcount of the probed module while updating 1464 * its code to prohibit unexpected unloading. 1465 */ 1466 if (unlikely(!try_module_get(*probed_mod))) { 1467 ret = -ENOENT; 1468 goto out; 1469 } 1470 1471 /* 1472 * If the module freed .init.text, we couldn't insert 1473 * kprobes in there. 1474 */ 1475 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1476 (*probed_mod)->state != MODULE_STATE_COMING) { 1477 module_put(*probed_mod); 1478 *probed_mod = NULL; 1479 ret = -ENOENT; 1480 } 1481 } 1482 out: 1483 preempt_enable(); 1484 jump_label_unlock(); 1485 1486 return ret; 1487 } 1488 1489 int __kprobes register_kprobe(struct kprobe *p) 1490 { 1491 int ret; 1492 struct kprobe *old_p; 1493 struct module *probed_mod; 1494 kprobe_opcode_t *addr; 1495 1496 /* Adjust probe address from symbol */ 1497 addr = kprobe_addr(p); 1498 if (IS_ERR(addr)) 1499 return PTR_ERR(addr); 1500 p->addr = addr; 1501 1502 ret = check_kprobe_rereg(p); 1503 if (ret) 1504 return ret; 1505 1506 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1507 p->flags &= KPROBE_FLAG_DISABLED; 1508 p->nmissed = 0; 1509 INIT_LIST_HEAD(&p->list); 1510 1511 ret = check_kprobe_address_safe(p, &probed_mod); 1512 if (ret) 1513 return ret; 1514 1515 mutex_lock(&kprobe_mutex); 1516 1517 old_p = get_kprobe(p->addr); 1518 if (old_p) { 1519 /* Since this may unoptimize old_p, locking text_mutex. */ 1520 ret = register_aggr_kprobe(old_p, p); 1521 goto out; 1522 } 1523 1524 mutex_lock(&text_mutex); /* Avoiding text modification */ 1525 ret = prepare_kprobe(p); 1526 mutex_unlock(&text_mutex); 1527 if (ret) 1528 goto out; 1529 1530 INIT_HLIST_NODE(&p->hlist); 1531 hlist_add_head_rcu(&p->hlist, 1532 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1533 1534 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1535 arm_kprobe(p); 1536 1537 /* Try to optimize kprobe */ 1538 try_to_optimize_kprobe(p); 1539 1540 out: 1541 mutex_unlock(&kprobe_mutex); 1542 1543 if (probed_mod) 1544 module_put(probed_mod); 1545 1546 return ret; 1547 } 1548 EXPORT_SYMBOL_GPL(register_kprobe); 1549 1550 /* Check if all probes on the aggrprobe are disabled */ 1551 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap) 1552 { 1553 struct kprobe *kp; 1554 1555 list_for_each_entry_rcu(kp, &ap->list, list) 1556 if (!kprobe_disabled(kp)) 1557 /* 1558 * There is an active probe on the list. 1559 * We can't disable this ap. 1560 */ 1561 return 0; 1562 1563 return 1; 1564 } 1565 1566 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1567 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p) 1568 { 1569 struct kprobe *orig_p; 1570 1571 /* Get an original kprobe for return */ 1572 orig_p = __get_valid_kprobe(p); 1573 if (unlikely(orig_p == NULL)) 1574 return NULL; 1575 1576 if (!kprobe_disabled(p)) { 1577 /* Disable probe if it is a child probe */ 1578 if (p != orig_p) 1579 p->flags |= KPROBE_FLAG_DISABLED; 1580 1581 /* Try to disarm and disable this/parent probe */ 1582 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1583 disarm_kprobe(orig_p, true); 1584 orig_p->flags |= KPROBE_FLAG_DISABLED; 1585 } 1586 } 1587 1588 return orig_p; 1589 } 1590 1591 /* 1592 * Unregister a kprobe without a scheduler synchronization. 1593 */ 1594 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1595 { 1596 struct kprobe *ap, *list_p; 1597 1598 /* Disable kprobe. This will disarm it if needed. */ 1599 ap = __disable_kprobe(p); 1600 if (ap == NULL) 1601 return -EINVAL; 1602 1603 if (ap == p) 1604 /* 1605 * This probe is an independent(and non-optimized) kprobe 1606 * (not an aggrprobe). Remove from the hash list. 1607 */ 1608 goto disarmed; 1609 1610 /* Following process expects this probe is an aggrprobe */ 1611 WARN_ON(!kprobe_aggrprobe(ap)); 1612 1613 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1614 /* 1615 * !disarmed could be happen if the probe is under delayed 1616 * unoptimizing. 1617 */ 1618 goto disarmed; 1619 else { 1620 /* If disabling probe has special handlers, update aggrprobe */ 1621 if (p->break_handler && !kprobe_gone(p)) 1622 ap->break_handler = NULL; 1623 if (p->post_handler && !kprobe_gone(p)) { 1624 list_for_each_entry_rcu(list_p, &ap->list, list) { 1625 if ((list_p != p) && (list_p->post_handler)) 1626 goto noclean; 1627 } 1628 ap->post_handler = NULL; 1629 } 1630 noclean: 1631 /* 1632 * Remove from the aggrprobe: this path will do nothing in 1633 * __unregister_kprobe_bottom(). 1634 */ 1635 list_del_rcu(&p->list); 1636 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1637 /* 1638 * Try to optimize this probe again, because post 1639 * handler may have been changed. 1640 */ 1641 optimize_kprobe(ap); 1642 } 1643 return 0; 1644 1645 disarmed: 1646 BUG_ON(!kprobe_disarmed(ap)); 1647 hlist_del_rcu(&ap->hlist); 1648 return 0; 1649 } 1650 1651 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1652 { 1653 struct kprobe *ap; 1654 1655 if (list_empty(&p->list)) 1656 /* This is an independent kprobe */ 1657 arch_remove_kprobe(p); 1658 else if (list_is_singular(&p->list)) { 1659 /* This is the last child of an aggrprobe */ 1660 ap = list_entry(p->list.next, struct kprobe, list); 1661 list_del(&p->list); 1662 free_aggr_kprobe(ap); 1663 } 1664 /* Otherwise, do nothing. */ 1665 } 1666 1667 int __kprobes register_kprobes(struct kprobe **kps, int num) 1668 { 1669 int i, ret = 0; 1670 1671 if (num <= 0) 1672 return -EINVAL; 1673 for (i = 0; i < num; i++) { 1674 ret = register_kprobe(kps[i]); 1675 if (ret < 0) { 1676 if (i > 0) 1677 unregister_kprobes(kps, i); 1678 break; 1679 } 1680 } 1681 return ret; 1682 } 1683 EXPORT_SYMBOL_GPL(register_kprobes); 1684 1685 void __kprobes unregister_kprobe(struct kprobe *p) 1686 { 1687 unregister_kprobes(&p, 1); 1688 } 1689 EXPORT_SYMBOL_GPL(unregister_kprobe); 1690 1691 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1692 { 1693 int i; 1694 1695 if (num <= 0) 1696 return; 1697 mutex_lock(&kprobe_mutex); 1698 for (i = 0; i < num; i++) 1699 if (__unregister_kprobe_top(kps[i]) < 0) 1700 kps[i]->addr = NULL; 1701 mutex_unlock(&kprobe_mutex); 1702 1703 synchronize_sched(); 1704 for (i = 0; i < num; i++) 1705 if (kps[i]->addr) 1706 __unregister_kprobe_bottom(kps[i]); 1707 } 1708 EXPORT_SYMBOL_GPL(unregister_kprobes); 1709 1710 static struct notifier_block kprobe_exceptions_nb = { 1711 .notifier_call = kprobe_exceptions_notify, 1712 .priority = 0x7fffffff /* we need to be notified first */ 1713 }; 1714 1715 unsigned long __weak arch_deref_entry_point(void *entry) 1716 { 1717 return (unsigned long)entry; 1718 } 1719 1720 int __kprobes register_jprobes(struct jprobe **jps, int num) 1721 { 1722 struct jprobe *jp; 1723 int ret = 0, i; 1724 1725 if (num <= 0) 1726 return -EINVAL; 1727 for (i = 0; i < num; i++) { 1728 unsigned long addr, offset; 1729 jp = jps[i]; 1730 addr = arch_deref_entry_point(jp->entry); 1731 1732 /* Verify probepoint is a function entry point */ 1733 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1734 offset == 0) { 1735 jp->kp.pre_handler = setjmp_pre_handler; 1736 jp->kp.break_handler = longjmp_break_handler; 1737 ret = register_kprobe(&jp->kp); 1738 } else 1739 ret = -EINVAL; 1740 1741 if (ret < 0) { 1742 if (i > 0) 1743 unregister_jprobes(jps, i); 1744 break; 1745 } 1746 } 1747 return ret; 1748 } 1749 EXPORT_SYMBOL_GPL(register_jprobes); 1750 1751 int __kprobes register_jprobe(struct jprobe *jp) 1752 { 1753 return register_jprobes(&jp, 1); 1754 } 1755 EXPORT_SYMBOL_GPL(register_jprobe); 1756 1757 void __kprobes unregister_jprobe(struct jprobe *jp) 1758 { 1759 unregister_jprobes(&jp, 1); 1760 } 1761 EXPORT_SYMBOL_GPL(unregister_jprobe); 1762 1763 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1764 { 1765 int i; 1766 1767 if (num <= 0) 1768 return; 1769 mutex_lock(&kprobe_mutex); 1770 for (i = 0; i < num; i++) 1771 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1772 jps[i]->kp.addr = NULL; 1773 mutex_unlock(&kprobe_mutex); 1774 1775 synchronize_sched(); 1776 for (i = 0; i < num; i++) { 1777 if (jps[i]->kp.addr) 1778 __unregister_kprobe_bottom(&jps[i]->kp); 1779 } 1780 } 1781 EXPORT_SYMBOL_GPL(unregister_jprobes); 1782 1783 #ifdef CONFIG_KRETPROBES 1784 /* 1785 * This kprobe pre_handler is registered with every kretprobe. When probe 1786 * hits it will set up the return probe. 1787 */ 1788 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1789 struct pt_regs *regs) 1790 { 1791 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1792 unsigned long hash, flags = 0; 1793 struct kretprobe_instance *ri; 1794 1795 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1796 hash = hash_ptr(current, KPROBE_HASH_BITS); 1797 raw_spin_lock_irqsave(&rp->lock, flags); 1798 if (!hlist_empty(&rp->free_instances)) { 1799 ri = hlist_entry(rp->free_instances.first, 1800 struct kretprobe_instance, hlist); 1801 hlist_del(&ri->hlist); 1802 raw_spin_unlock_irqrestore(&rp->lock, flags); 1803 1804 ri->rp = rp; 1805 ri->task = current; 1806 1807 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1808 raw_spin_lock_irqsave(&rp->lock, flags); 1809 hlist_add_head(&ri->hlist, &rp->free_instances); 1810 raw_spin_unlock_irqrestore(&rp->lock, flags); 1811 return 0; 1812 } 1813 1814 arch_prepare_kretprobe(ri, regs); 1815 1816 /* XXX(hch): why is there no hlist_move_head? */ 1817 INIT_HLIST_NODE(&ri->hlist); 1818 kretprobe_table_lock(hash, &flags); 1819 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1820 kretprobe_table_unlock(hash, &flags); 1821 } else { 1822 rp->nmissed++; 1823 raw_spin_unlock_irqrestore(&rp->lock, flags); 1824 } 1825 return 0; 1826 } 1827 1828 int __kprobes register_kretprobe(struct kretprobe *rp) 1829 { 1830 int ret = 0; 1831 struct kretprobe_instance *inst; 1832 int i; 1833 void *addr; 1834 1835 if (kretprobe_blacklist_size) { 1836 addr = kprobe_addr(&rp->kp); 1837 if (IS_ERR(addr)) 1838 return PTR_ERR(addr); 1839 1840 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1841 if (kretprobe_blacklist[i].addr == addr) 1842 return -EINVAL; 1843 } 1844 } 1845 1846 rp->kp.pre_handler = pre_handler_kretprobe; 1847 rp->kp.post_handler = NULL; 1848 rp->kp.fault_handler = NULL; 1849 rp->kp.break_handler = NULL; 1850 1851 /* Pre-allocate memory for max kretprobe instances */ 1852 if (rp->maxactive <= 0) { 1853 #ifdef CONFIG_PREEMPT 1854 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1855 #else 1856 rp->maxactive = num_possible_cpus(); 1857 #endif 1858 } 1859 raw_spin_lock_init(&rp->lock); 1860 INIT_HLIST_HEAD(&rp->free_instances); 1861 for (i = 0; i < rp->maxactive; i++) { 1862 inst = kmalloc(sizeof(struct kretprobe_instance) + 1863 rp->data_size, GFP_KERNEL); 1864 if (inst == NULL) { 1865 free_rp_inst(rp); 1866 return -ENOMEM; 1867 } 1868 INIT_HLIST_NODE(&inst->hlist); 1869 hlist_add_head(&inst->hlist, &rp->free_instances); 1870 } 1871 1872 rp->nmissed = 0; 1873 /* Establish function entry probe point */ 1874 ret = register_kprobe(&rp->kp); 1875 if (ret != 0) 1876 free_rp_inst(rp); 1877 return ret; 1878 } 1879 EXPORT_SYMBOL_GPL(register_kretprobe); 1880 1881 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1882 { 1883 int ret = 0, i; 1884 1885 if (num <= 0) 1886 return -EINVAL; 1887 for (i = 0; i < num; i++) { 1888 ret = register_kretprobe(rps[i]); 1889 if (ret < 0) { 1890 if (i > 0) 1891 unregister_kretprobes(rps, i); 1892 break; 1893 } 1894 } 1895 return ret; 1896 } 1897 EXPORT_SYMBOL_GPL(register_kretprobes); 1898 1899 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1900 { 1901 unregister_kretprobes(&rp, 1); 1902 } 1903 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1904 1905 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1906 { 1907 int i; 1908 1909 if (num <= 0) 1910 return; 1911 mutex_lock(&kprobe_mutex); 1912 for (i = 0; i < num; i++) 1913 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1914 rps[i]->kp.addr = NULL; 1915 mutex_unlock(&kprobe_mutex); 1916 1917 synchronize_sched(); 1918 for (i = 0; i < num; i++) { 1919 if (rps[i]->kp.addr) { 1920 __unregister_kprobe_bottom(&rps[i]->kp); 1921 cleanup_rp_inst(rps[i]); 1922 } 1923 } 1924 } 1925 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1926 1927 #else /* CONFIG_KRETPROBES */ 1928 int __kprobes register_kretprobe(struct kretprobe *rp) 1929 { 1930 return -ENOSYS; 1931 } 1932 EXPORT_SYMBOL_GPL(register_kretprobe); 1933 1934 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1935 { 1936 return -ENOSYS; 1937 } 1938 EXPORT_SYMBOL_GPL(register_kretprobes); 1939 1940 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1941 { 1942 } 1943 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1944 1945 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1946 { 1947 } 1948 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1949 1950 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1951 struct pt_regs *regs) 1952 { 1953 return 0; 1954 } 1955 1956 #endif /* CONFIG_KRETPROBES */ 1957 1958 /* Set the kprobe gone and remove its instruction buffer. */ 1959 static void __kprobes kill_kprobe(struct kprobe *p) 1960 { 1961 struct kprobe *kp; 1962 1963 p->flags |= KPROBE_FLAG_GONE; 1964 if (kprobe_aggrprobe(p)) { 1965 /* 1966 * If this is an aggr_kprobe, we have to list all the 1967 * chained probes and mark them GONE. 1968 */ 1969 list_for_each_entry_rcu(kp, &p->list, list) 1970 kp->flags |= KPROBE_FLAG_GONE; 1971 p->post_handler = NULL; 1972 p->break_handler = NULL; 1973 kill_optimized_kprobe(p); 1974 } 1975 /* 1976 * Here, we can remove insn_slot safely, because no thread calls 1977 * the original probed function (which will be freed soon) any more. 1978 */ 1979 arch_remove_kprobe(p); 1980 } 1981 1982 /* Disable one kprobe */ 1983 int __kprobes disable_kprobe(struct kprobe *kp) 1984 { 1985 int ret = 0; 1986 1987 mutex_lock(&kprobe_mutex); 1988 1989 /* Disable this kprobe */ 1990 if (__disable_kprobe(kp) == NULL) 1991 ret = -EINVAL; 1992 1993 mutex_unlock(&kprobe_mutex); 1994 return ret; 1995 } 1996 EXPORT_SYMBOL_GPL(disable_kprobe); 1997 1998 /* Enable one kprobe */ 1999 int __kprobes enable_kprobe(struct kprobe *kp) 2000 { 2001 int ret = 0; 2002 struct kprobe *p; 2003 2004 mutex_lock(&kprobe_mutex); 2005 2006 /* Check whether specified probe is valid. */ 2007 p = __get_valid_kprobe(kp); 2008 if (unlikely(p == NULL)) { 2009 ret = -EINVAL; 2010 goto out; 2011 } 2012 2013 if (kprobe_gone(kp)) { 2014 /* This kprobe has gone, we couldn't enable it. */ 2015 ret = -EINVAL; 2016 goto out; 2017 } 2018 2019 if (p != kp) 2020 kp->flags &= ~KPROBE_FLAG_DISABLED; 2021 2022 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2023 p->flags &= ~KPROBE_FLAG_DISABLED; 2024 arm_kprobe(p); 2025 } 2026 out: 2027 mutex_unlock(&kprobe_mutex); 2028 return ret; 2029 } 2030 EXPORT_SYMBOL_GPL(enable_kprobe); 2031 2032 void __kprobes dump_kprobe(struct kprobe *kp) 2033 { 2034 printk(KERN_WARNING "Dumping kprobe:\n"); 2035 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2036 kp->symbol_name, kp->addr, kp->offset); 2037 } 2038 2039 /* Module notifier call back, checking kprobes on the module */ 2040 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 2041 unsigned long val, void *data) 2042 { 2043 struct module *mod = data; 2044 struct hlist_head *head; 2045 struct kprobe *p; 2046 unsigned int i; 2047 int checkcore = (val == MODULE_STATE_GOING); 2048 2049 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2050 return NOTIFY_DONE; 2051 2052 /* 2053 * When MODULE_STATE_GOING was notified, both of module .text and 2054 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2055 * notified, only .init.text section would be freed. We need to 2056 * disable kprobes which have been inserted in the sections. 2057 */ 2058 mutex_lock(&kprobe_mutex); 2059 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2060 head = &kprobe_table[i]; 2061 hlist_for_each_entry_rcu(p, head, hlist) 2062 if (within_module_init((unsigned long)p->addr, mod) || 2063 (checkcore && 2064 within_module_core((unsigned long)p->addr, mod))) { 2065 /* 2066 * The vaddr this probe is installed will soon 2067 * be vfreed buy not synced to disk. Hence, 2068 * disarming the breakpoint isn't needed. 2069 */ 2070 kill_kprobe(p); 2071 } 2072 } 2073 mutex_unlock(&kprobe_mutex); 2074 return NOTIFY_DONE; 2075 } 2076 2077 static struct notifier_block kprobe_module_nb = { 2078 .notifier_call = kprobes_module_callback, 2079 .priority = 0 2080 }; 2081 2082 static int __init init_kprobes(void) 2083 { 2084 int i, err = 0; 2085 unsigned long offset = 0, size = 0; 2086 char *modname, namebuf[128]; 2087 const char *symbol_name; 2088 void *addr; 2089 struct kprobe_blackpoint *kb; 2090 2091 /* FIXME allocate the probe table, currently defined statically */ 2092 /* initialize all list heads */ 2093 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2094 INIT_HLIST_HEAD(&kprobe_table[i]); 2095 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2096 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2097 } 2098 2099 /* 2100 * Lookup and populate the kprobe_blacklist. 2101 * 2102 * Unlike the kretprobe blacklist, we'll need to determine 2103 * the range of addresses that belong to the said functions, 2104 * since a kprobe need not necessarily be at the beginning 2105 * of a function. 2106 */ 2107 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 2108 kprobe_lookup_name(kb->name, addr); 2109 if (!addr) 2110 continue; 2111 2112 kb->start_addr = (unsigned long)addr; 2113 symbol_name = kallsyms_lookup(kb->start_addr, 2114 &size, &offset, &modname, namebuf); 2115 if (!symbol_name) 2116 kb->range = 0; 2117 else 2118 kb->range = size; 2119 } 2120 2121 if (kretprobe_blacklist_size) { 2122 /* lookup the function address from its name */ 2123 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2124 kprobe_lookup_name(kretprobe_blacklist[i].name, 2125 kretprobe_blacklist[i].addr); 2126 if (!kretprobe_blacklist[i].addr) 2127 printk("kretprobe: lookup failed: %s\n", 2128 kretprobe_blacklist[i].name); 2129 } 2130 } 2131 2132 #if defined(CONFIG_OPTPROBES) 2133 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2134 /* Init kprobe_optinsn_slots */ 2135 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2136 #endif 2137 /* By default, kprobes can be optimized */ 2138 kprobes_allow_optimization = true; 2139 #endif 2140 2141 /* By default, kprobes are armed */ 2142 kprobes_all_disarmed = false; 2143 2144 err = arch_init_kprobes(); 2145 if (!err) 2146 err = register_die_notifier(&kprobe_exceptions_nb); 2147 if (!err) 2148 err = register_module_notifier(&kprobe_module_nb); 2149 2150 kprobes_initialized = (err == 0); 2151 2152 if (!err) 2153 init_test_probes(); 2154 return err; 2155 } 2156 2157 #ifdef CONFIG_DEBUG_FS 2158 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 2159 const char *sym, int offset, char *modname, struct kprobe *pp) 2160 { 2161 char *kprobe_type; 2162 2163 if (p->pre_handler == pre_handler_kretprobe) 2164 kprobe_type = "r"; 2165 else if (p->pre_handler == setjmp_pre_handler) 2166 kprobe_type = "j"; 2167 else 2168 kprobe_type = "k"; 2169 2170 if (sym) 2171 seq_printf(pi, "%p %s %s+0x%x %s ", 2172 p->addr, kprobe_type, sym, offset, 2173 (modname ? modname : " ")); 2174 else 2175 seq_printf(pi, "%p %s %p ", 2176 p->addr, kprobe_type, p->addr); 2177 2178 if (!pp) 2179 pp = p; 2180 seq_printf(pi, "%s%s%s%s\n", 2181 (kprobe_gone(p) ? "[GONE]" : ""), 2182 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2183 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2184 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2185 } 2186 2187 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2188 { 2189 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2190 } 2191 2192 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2193 { 2194 (*pos)++; 2195 if (*pos >= KPROBE_TABLE_SIZE) 2196 return NULL; 2197 return pos; 2198 } 2199 2200 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 2201 { 2202 /* Nothing to do */ 2203 } 2204 2205 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 2206 { 2207 struct hlist_head *head; 2208 struct kprobe *p, *kp; 2209 const char *sym = NULL; 2210 unsigned int i = *(loff_t *) v; 2211 unsigned long offset = 0; 2212 char *modname, namebuf[128]; 2213 2214 head = &kprobe_table[i]; 2215 preempt_disable(); 2216 hlist_for_each_entry_rcu(p, head, hlist) { 2217 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2218 &offset, &modname, namebuf); 2219 if (kprobe_aggrprobe(p)) { 2220 list_for_each_entry_rcu(kp, &p->list, list) 2221 report_probe(pi, kp, sym, offset, modname, p); 2222 } else 2223 report_probe(pi, p, sym, offset, modname, NULL); 2224 } 2225 preempt_enable(); 2226 return 0; 2227 } 2228 2229 static const struct seq_operations kprobes_seq_ops = { 2230 .start = kprobe_seq_start, 2231 .next = kprobe_seq_next, 2232 .stop = kprobe_seq_stop, 2233 .show = show_kprobe_addr 2234 }; 2235 2236 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 2237 { 2238 return seq_open(filp, &kprobes_seq_ops); 2239 } 2240 2241 static const struct file_operations debugfs_kprobes_operations = { 2242 .open = kprobes_open, 2243 .read = seq_read, 2244 .llseek = seq_lseek, 2245 .release = seq_release, 2246 }; 2247 2248 static void __kprobes arm_all_kprobes(void) 2249 { 2250 struct hlist_head *head; 2251 struct kprobe *p; 2252 unsigned int i; 2253 2254 mutex_lock(&kprobe_mutex); 2255 2256 /* If kprobes are armed, just return */ 2257 if (!kprobes_all_disarmed) 2258 goto already_enabled; 2259 2260 /* Arming kprobes doesn't optimize kprobe itself */ 2261 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2262 head = &kprobe_table[i]; 2263 hlist_for_each_entry_rcu(p, head, hlist) 2264 if (!kprobe_disabled(p)) 2265 arm_kprobe(p); 2266 } 2267 2268 kprobes_all_disarmed = false; 2269 printk(KERN_INFO "Kprobes globally enabled\n"); 2270 2271 already_enabled: 2272 mutex_unlock(&kprobe_mutex); 2273 return; 2274 } 2275 2276 static void __kprobes disarm_all_kprobes(void) 2277 { 2278 struct hlist_head *head; 2279 struct kprobe *p; 2280 unsigned int i; 2281 2282 mutex_lock(&kprobe_mutex); 2283 2284 /* If kprobes are already disarmed, just return */ 2285 if (kprobes_all_disarmed) { 2286 mutex_unlock(&kprobe_mutex); 2287 return; 2288 } 2289 2290 kprobes_all_disarmed = true; 2291 printk(KERN_INFO "Kprobes globally disabled\n"); 2292 2293 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2294 head = &kprobe_table[i]; 2295 hlist_for_each_entry_rcu(p, head, hlist) { 2296 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2297 disarm_kprobe(p, false); 2298 } 2299 } 2300 mutex_unlock(&kprobe_mutex); 2301 2302 /* Wait for disarming all kprobes by optimizer */ 2303 wait_for_kprobe_optimizer(); 2304 } 2305 2306 /* 2307 * XXX: The debugfs bool file interface doesn't allow for callbacks 2308 * when the bool state is switched. We can reuse that facility when 2309 * available 2310 */ 2311 static ssize_t read_enabled_file_bool(struct file *file, 2312 char __user *user_buf, size_t count, loff_t *ppos) 2313 { 2314 char buf[3]; 2315 2316 if (!kprobes_all_disarmed) 2317 buf[0] = '1'; 2318 else 2319 buf[0] = '0'; 2320 buf[1] = '\n'; 2321 buf[2] = 0x00; 2322 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2323 } 2324 2325 static ssize_t write_enabled_file_bool(struct file *file, 2326 const char __user *user_buf, size_t count, loff_t *ppos) 2327 { 2328 char buf[32]; 2329 size_t buf_size; 2330 2331 buf_size = min(count, (sizeof(buf)-1)); 2332 if (copy_from_user(buf, user_buf, buf_size)) 2333 return -EFAULT; 2334 2335 buf[buf_size] = '\0'; 2336 switch (buf[0]) { 2337 case 'y': 2338 case 'Y': 2339 case '1': 2340 arm_all_kprobes(); 2341 break; 2342 case 'n': 2343 case 'N': 2344 case '0': 2345 disarm_all_kprobes(); 2346 break; 2347 default: 2348 return -EINVAL; 2349 } 2350 2351 return count; 2352 } 2353 2354 static const struct file_operations fops_kp = { 2355 .read = read_enabled_file_bool, 2356 .write = write_enabled_file_bool, 2357 .llseek = default_llseek, 2358 }; 2359 2360 static int __kprobes debugfs_kprobe_init(void) 2361 { 2362 struct dentry *dir, *file; 2363 unsigned int value = 1; 2364 2365 dir = debugfs_create_dir("kprobes", NULL); 2366 if (!dir) 2367 return -ENOMEM; 2368 2369 file = debugfs_create_file("list", 0444, dir, NULL, 2370 &debugfs_kprobes_operations); 2371 if (!file) { 2372 debugfs_remove(dir); 2373 return -ENOMEM; 2374 } 2375 2376 file = debugfs_create_file("enabled", 0600, dir, 2377 &value, &fops_kp); 2378 if (!file) { 2379 debugfs_remove(dir); 2380 return -ENOMEM; 2381 } 2382 2383 return 0; 2384 } 2385 2386 late_initcall(debugfs_kprobe_init); 2387 #endif /* CONFIG_DEBUG_FS */ 2388 2389 module_init(init_kprobes); 2390 2391 /* defined in arch/.../kernel/kprobes.c */ 2392 EXPORT_SYMBOL_GPL(jprobe_return); 2393