1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 void __weak *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_sched(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* 487 * The optimization/unoptimization refers online_cpus via 488 * stop_machine() and cpu-hotplug modifies online_cpus. 489 * And same time, text_mutex will be held in cpu-hotplug and here. 490 * This combination can cause a deadlock (cpu-hotplug try to lock 491 * text_mutex but stop_machine can not be done because online_cpus 492 * has been changed) 493 * To avoid this deadlock, caller must have locked cpu hotplug 494 * for preventing cpu-hotplug outside of text_mutex locking. 495 */ 496 lockdep_assert_cpus_held(); 497 498 /* Optimization never be done when disarmed */ 499 if (kprobes_all_disarmed || !kprobes_allow_optimization || 500 list_empty(&optimizing_list)) 501 return; 502 503 mutex_lock(&text_mutex); 504 arch_optimize_kprobes(&optimizing_list); 505 mutex_unlock(&text_mutex); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* See comment in do_optimize_kprobes() */ 517 lockdep_assert_cpus_held(); 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 mutex_lock(&text_mutex); 524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 525 /* Loop free_list for disarming */ 526 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 527 /* Disarm probes if marked disabled */ 528 if (kprobe_disabled(&op->kp)) 529 arch_disarm_kprobe(&op->kp); 530 if (kprobe_unused(&op->kp)) { 531 /* 532 * Remove unused probes from hash list. After waiting 533 * for synchronization, these probes are reclaimed. 534 * (reclaiming is done by do_free_cleaned_kprobes.) 535 */ 536 hlist_del_rcu(&op->kp.hlist); 537 } else 538 list_del_init(&op->list); 539 } 540 mutex_unlock(&text_mutex); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 BUG_ON(!kprobe_unused(&op->kp)); 550 list_del_init(&op->list); 551 free_aggr_kprobe(&op->kp); 552 } 553 } 554 555 /* Start optimizer after OPTIMIZE_DELAY passed */ 556 static void kick_kprobe_optimizer(void) 557 { 558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 559 } 560 561 /* Kprobe jump optimizer */ 562 static void kprobe_optimizer(struct work_struct *work) 563 { 564 mutex_lock(&kprobe_mutex); 565 cpus_read_lock(); 566 /* Lock modules while optimizing kprobes */ 567 mutex_lock(&module_mutex); 568 569 /* 570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 571 * kprobes before waiting for quiesence period. 572 */ 573 do_unoptimize_kprobes(); 574 575 /* 576 * Step 2: Wait for quiesence period to ensure all potentially 577 * preempted tasks to have normally scheduled. Because optprobe 578 * may modify multiple instructions, there is a chance that Nth 579 * instruction is preempted. In that case, such tasks can return 580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 581 * Note that on non-preemptive kernel, this is transparently converted 582 * to synchronoze_sched() to wait for all interrupts to have completed. 583 */ 584 synchronize_rcu_tasks(); 585 586 /* Step 3: Optimize kprobes after quiesence period */ 587 do_optimize_kprobes(); 588 589 /* Step 4: Free cleaned kprobes after quiesence period */ 590 do_free_cleaned_kprobes(); 591 592 mutex_unlock(&module_mutex); 593 cpus_read_unlock(); 594 mutex_unlock(&kprobe_mutex); 595 596 /* Step 5: Kick optimizer again if needed */ 597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 598 kick_kprobe_optimizer(); 599 } 600 601 /* Wait for completing optimization and unoptimization */ 602 void wait_for_kprobe_optimizer(void) 603 { 604 mutex_lock(&kprobe_mutex); 605 606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 607 mutex_unlock(&kprobe_mutex); 608 609 /* this will also make optimizing_work execute immmediately */ 610 flush_delayed_work(&optimizing_work); 611 /* @optimizing_work might not have been queued yet, relax */ 612 cpu_relax(); 613 614 mutex_lock(&kprobe_mutex); 615 } 616 617 mutex_unlock(&kprobe_mutex); 618 } 619 620 /* Optimize kprobe if p is ready to be optimized */ 621 static void optimize_kprobe(struct kprobe *p) 622 { 623 struct optimized_kprobe *op; 624 625 /* Check if the kprobe is disabled or not ready for optimization. */ 626 if (!kprobe_optready(p) || !kprobes_allow_optimization || 627 (kprobe_disabled(p) || kprobes_all_disarmed)) 628 return; 629 630 /* Both of break_handler and post_handler are not supported. */ 631 if (p->break_handler || p->post_handler) 632 return; 633 634 op = container_of(p, struct optimized_kprobe, kp); 635 636 /* Check there is no other kprobes at the optimized instructions */ 637 if (arch_check_optimized_kprobe(op) < 0) 638 return; 639 640 /* Check if it is already optimized. */ 641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 642 return; 643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 644 645 if (!list_empty(&op->list)) 646 /* This is under unoptimizing. Just dequeue the probe */ 647 list_del_init(&op->list); 648 else { 649 list_add(&op->list, &optimizing_list); 650 kick_kprobe_optimizer(); 651 } 652 } 653 654 /* Short cut to direct unoptimizing */ 655 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 656 { 657 lockdep_assert_cpus_held(); 658 arch_unoptimize_kprobe(op); 659 if (kprobe_disabled(&op->kp)) 660 arch_disarm_kprobe(&op->kp); 661 } 662 663 /* Unoptimize a kprobe if p is optimized */ 664 static void unoptimize_kprobe(struct kprobe *p, bool force) 665 { 666 struct optimized_kprobe *op; 667 668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 669 return; /* This is not an optprobe nor optimized */ 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 if (!kprobe_optimized(p)) { 673 /* Unoptimized or unoptimizing case */ 674 if (force && !list_empty(&op->list)) { 675 /* 676 * Only if this is unoptimizing kprobe and forced, 677 * forcibly unoptimize it. (No need to unoptimize 678 * unoptimized kprobe again :) 679 */ 680 list_del_init(&op->list); 681 force_unoptimize_kprobe(op); 682 } 683 return; 684 } 685 686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 687 if (!list_empty(&op->list)) { 688 /* Dequeue from the optimization queue */ 689 list_del_init(&op->list); 690 return; 691 } 692 /* Optimized kprobe case */ 693 if (force) 694 /* Forcibly update the code: this is a special case */ 695 force_unoptimize_kprobe(op); 696 else { 697 list_add(&op->list, &unoptimizing_list); 698 kick_kprobe_optimizer(); 699 } 700 } 701 702 /* Cancel unoptimizing for reusing */ 703 static void reuse_unused_kprobe(struct kprobe *ap) 704 { 705 struct optimized_kprobe *op; 706 707 BUG_ON(!kprobe_unused(ap)); 708 /* 709 * Unused kprobe MUST be on the way of delayed unoptimizing (means 710 * there is still a relative jump) and disabled. 711 */ 712 op = container_of(ap, struct optimized_kprobe, kp); 713 if (unlikely(list_empty(&op->list))) 714 printk(KERN_WARNING "Warning: found a stray unused " 715 "aggrprobe@%p\n", ap->addr); 716 /* Enable the probe again */ 717 ap->flags &= ~KPROBE_FLAG_DISABLED; 718 /* Optimize it again (remove from op->list) */ 719 BUG_ON(!kprobe_optready(ap)); 720 optimize_kprobe(ap); 721 } 722 723 /* Remove optimized instructions */ 724 static void kill_optimized_kprobe(struct kprobe *p) 725 { 726 struct optimized_kprobe *op; 727 728 op = container_of(p, struct optimized_kprobe, kp); 729 if (!list_empty(&op->list)) 730 /* Dequeue from the (un)optimization queue */ 731 list_del_init(&op->list); 732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 733 734 if (kprobe_unused(p)) { 735 /* Enqueue if it is unused */ 736 list_add(&op->list, &freeing_list); 737 /* 738 * Remove unused probes from the hash list. After waiting 739 * for synchronization, this probe is reclaimed. 740 * (reclaiming is done by do_free_cleaned_kprobes().) 741 */ 742 hlist_del_rcu(&op->kp.hlist); 743 } 744 745 /* Don't touch the code, because it is already freed. */ 746 arch_remove_optimized_kprobe(op); 747 } 748 749 static inline 750 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 751 { 752 if (!kprobe_ftrace(p)) 753 arch_prepare_optimized_kprobe(op, p); 754 } 755 756 /* Try to prepare optimized instructions */ 757 static void prepare_optimized_kprobe(struct kprobe *p) 758 { 759 struct optimized_kprobe *op; 760 761 op = container_of(p, struct optimized_kprobe, kp); 762 __prepare_optimized_kprobe(op, p); 763 } 764 765 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 766 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 767 { 768 struct optimized_kprobe *op; 769 770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 771 if (!op) 772 return NULL; 773 774 INIT_LIST_HEAD(&op->list); 775 op->kp.addr = p->addr; 776 __prepare_optimized_kprobe(op, p); 777 778 return &op->kp; 779 } 780 781 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 782 783 /* 784 * Prepare an optimized_kprobe and optimize it 785 * NOTE: p must be a normal registered kprobe 786 */ 787 static void try_to_optimize_kprobe(struct kprobe *p) 788 { 789 struct kprobe *ap; 790 struct optimized_kprobe *op; 791 792 /* Impossible to optimize ftrace-based kprobe */ 793 if (kprobe_ftrace(p)) 794 return; 795 796 /* For preparing optimization, jump_label_text_reserved() is called */ 797 cpus_read_lock(); 798 jump_label_lock(); 799 mutex_lock(&text_mutex); 800 801 ap = alloc_aggr_kprobe(p); 802 if (!ap) 803 goto out; 804 805 op = container_of(ap, struct optimized_kprobe, kp); 806 if (!arch_prepared_optinsn(&op->optinsn)) { 807 /* If failed to setup optimizing, fallback to kprobe */ 808 arch_remove_optimized_kprobe(op); 809 kfree(op); 810 goto out; 811 } 812 813 init_aggr_kprobe(ap, p); 814 optimize_kprobe(ap); /* This just kicks optimizer thread */ 815 816 out: 817 mutex_unlock(&text_mutex); 818 jump_label_unlock(); 819 cpus_read_unlock(); 820 } 821 822 #ifdef CONFIG_SYSCTL 823 static void optimize_all_kprobes(void) 824 { 825 struct hlist_head *head; 826 struct kprobe *p; 827 unsigned int i; 828 829 mutex_lock(&kprobe_mutex); 830 /* If optimization is already allowed, just return */ 831 if (kprobes_allow_optimization) 832 goto out; 833 834 cpus_read_lock(); 835 kprobes_allow_optimization = true; 836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 837 head = &kprobe_table[i]; 838 hlist_for_each_entry_rcu(p, head, hlist) 839 if (!kprobe_disabled(p)) 840 optimize_kprobe(p); 841 } 842 cpus_read_unlock(); 843 printk(KERN_INFO "Kprobes globally optimized\n"); 844 out: 845 mutex_unlock(&kprobe_mutex); 846 } 847 848 static void unoptimize_all_kprobes(void) 849 { 850 struct hlist_head *head; 851 struct kprobe *p; 852 unsigned int i; 853 854 mutex_lock(&kprobe_mutex); 855 /* If optimization is already prohibited, just return */ 856 if (!kprobes_allow_optimization) { 857 mutex_unlock(&kprobe_mutex); 858 return; 859 } 860 861 cpus_read_lock(); 862 kprobes_allow_optimization = false; 863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 864 head = &kprobe_table[i]; 865 hlist_for_each_entry_rcu(p, head, hlist) { 866 if (!kprobe_disabled(p)) 867 unoptimize_kprobe(p, false); 868 } 869 } 870 cpus_read_unlock(); 871 mutex_unlock(&kprobe_mutex); 872 873 /* Wait for unoptimizing completion */ 874 wait_for_kprobe_optimizer(); 875 printk(KERN_INFO "Kprobes globally unoptimized\n"); 876 } 877 878 static DEFINE_MUTEX(kprobe_sysctl_mutex); 879 int sysctl_kprobes_optimization; 880 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 881 void __user *buffer, size_t *length, 882 loff_t *ppos) 883 { 884 int ret; 885 886 mutex_lock(&kprobe_sysctl_mutex); 887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 889 890 if (sysctl_kprobes_optimization) 891 optimize_all_kprobes(); 892 else 893 unoptimize_all_kprobes(); 894 mutex_unlock(&kprobe_sysctl_mutex); 895 896 return ret; 897 } 898 #endif /* CONFIG_SYSCTL */ 899 900 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 901 static void __arm_kprobe(struct kprobe *p) 902 { 903 struct kprobe *_p; 904 905 /* Check collision with other optimized kprobes */ 906 _p = get_optimized_kprobe((unsigned long)p->addr); 907 if (unlikely(_p)) 908 /* Fallback to unoptimized kprobe */ 909 unoptimize_kprobe(_p, true); 910 911 arch_arm_kprobe(p); 912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 913 } 914 915 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 916 static void __disarm_kprobe(struct kprobe *p, bool reopt) 917 { 918 struct kprobe *_p; 919 920 /* Try to unoptimize */ 921 unoptimize_kprobe(p, kprobes_all_disarmed); 922 923 if (!kprobe_queued(p)) { 924 arch_disarm_kprobe(p); 925 /* If another kprobe was blocked, optimize it. */ 926 _p = get_optimized_kprobe((unsigned long)p->addr); 927 if (unlikely(_p) && reopt) 928 optimize_kprobe(_p); 929 } 930 /* TODO: reoptimize others after unoptimized this probe */ 931 } 932 933 #else /* !CONFIG_OPTPROBES */ 934 935 #define optimize_kprobe(p) do {} while (0) 936 #define unoptimize_kprobe(p, f) do {} while (0) 937 #define kill_optimized_kprobe(p) do {} while (0) 938 #define prepare_optimized_kprobe(p) do {} while (0) 939 #define try_to_optimize_kprobe(p) do {} while (0) 940 #define __arm_kprobe(p) arch_arm_kprobe(p) 941 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 942 #define kprobe_disarmed(p) kprobe_disabled(p) 943 #define wait_for_kprobe_optimizer() do {} while (0) 944 945 /* There should be no unused kprobes can be reused without optimization */ 946 static void reuse_unused_kprobe(struct kprobe *ap) 947 { 948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 949 BUG_ON(kprobe_unused(ap)); 950 } 951 952 static void free_aggr_kprobe(struct kprobe *p) 953 { 954 arch_remove_kprobe(p); 955 kfree(p); 956 } 957 958 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 959 { 960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 961 } 962 #endif /* CONFIG_OPTPROBES */ 963 964 #ifdef CONFIG_KPROBES_ON_FTRACE 965 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 966 .func = kprobe_ftrace_handler, 967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 968 }; 969 static int kprobe_ftrace_enabled; 970 971 /* Must ensure p->addr is really on ftrace */ 972 static int prepare_kprobe(struct kprobe *p) 973 { 974 if (!kprobe_ftrace(p)) 975 return arch_prepare_kprobe(p); 976 977 return arch_prepare_kprobe_ftrace(p); 978 } 979 980 /* Caller must lock kprobe_mutex */ 981 static void arm_kprobe_ftrace(struct kprobe *p) 982 { 983 int ret; 984 985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 986 (unsigned long)p->addr, 0, 0); 987 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 988 kprobe_ftrace_enabled++; 989 if (kprobe_ftrace_enabled == 1) { 990 ret = register_ftrace_function(&kprobe_ftrace_ops); 991 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 992 } 993 } 994 995 /* Caller must lock kprobe_mutex */ 996 static void disarm_kprobe_ftrace(struct kprobe *p) 997 { 998 int ret; 999 1000 kprobe_ftrace_enabled--; 1001 if (kprobe_ftrace_enabled == 0) { 1002 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1003 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 1004 } 1005 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1006 (unsigned long)p->addr, 1, 0); 1007 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 1008 } 1009 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1010 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1011 #define arm_kprobe_ftrace(p) do {} while (0) 1012 #define disarm_kprobe_ftrace(p) do {} while (0) 1013 #endif 1014 1015 /* Arm a kprobe with text_mutex */ 1016 static void arm_kprobe(struct kprobe *kp) 1017 { 1018 if (unlikely(kprobe_ftrace(kp))) { 1019 arm_kprobe_ftrace(kp); 1020 return; 1021 } 1022 cpus_read_lock(); 1023 mutex_lock(&text_mutex); 1024 __arm_kprobe(kp); 1025 mutex_unlock(&text_mutex); 1026 cpus_read_unlock(); 1027 } 1028 1029 /* Disarm a kprobe with text_mutex */ 1030 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1031 { 1032 if (unlikely(kprobe_ftrace(kp))) { 1033 disarm_kprobe_ftrace(kp); 1034 return; 1035 } 1036 1037 cpus_read_lock(); 1038 mutex_lock(&text_mutex); 1039 __disarm_kprobe(kp, reopt); 1040 mutex_unlock(&text_mutex); 1041 cpus_read_unlock(); 1042 } 1043 1044 /* 1045 * Aggregate handlers for multiple kprobes support - these handlers 1046 * take care of invoking the individual kprobe handlers on p->list 1047 */ 1048 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1049 { 1050 struct kprobe *kp; 1051 1052 list_for_each_entry_rcu(kp, &p->list, list) { 1053 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1054 set_kprobe_instance(kp); 1055 if (kp->pre_handler(kp, regs)) 1056 return 1; 1057 } 1058 reset_kprobe_instance(); 1059 } 1060 return 0; 1061 } 1062 NOKPROBE_SYMBOL(aggr_pre_handler); 1063 1064 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1065 unsigned long flags) 1066 { 1067 struct kprobe *kp; 1068 1069 list_for_each_entry_rcu(kp, &p->list, list) { 1070 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1071 set_kprobe_instance(kp); 1072 kp->post_handler(kp, regs, flags); 1073 reset_kprobe_instance(); 1074 } 1075 } 1076 } 1077 NOKPROBE_SYMBOL(aggr_post_handler); 1078 1079 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1080 int trapnr) 1081 { 1082 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1083 1084 /* 1085 * if we faulted "during" the execution of a user specified 1086 * probe handler, invoke just that probe's fault handler 1087 */ 1088 if (cur && cur->fault_handler) { 1089 if (cur->fault_handler(cur, regs, trapnr)) 1090 return 1; 1091 } 1092 return 0; 1093 } 1094 NOKPROBE_SYMBOL(aggr_fault_handler); 1095 1096 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1097 { 1098 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1099 int ret = 0; 1100 1101 if (cur && cur->break_handler) { 1102 if (cur->break_handler(cur, regs)) 1103 ret = 1; 1104 } 1105 reset_kprobe_instance(); 1106 return ret; 1107 } 1108 NOKPROBE_SYMBOL(aggr_break_handler); 1109 1110 /* Walks the list and increments nmissed count for multiprobe case */ 1111 void kprobes_inc_nmissed_count(struct kprobe *p) 1112 { 1113 struct kprobe *kp; 1114 if (!kprobe_aggrprobe(p)) { 1115 p->nmissed++; 1116 } else { 1117 list_for_each_entry_rcu(kp, &p->list, list) 1118 kp->nmissed++; 1119 } 1120 return; 1121 } 1122 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1123 1124 void recycle_rp_inst(struct kretprobe_instance *ri, 1125 struct hlist_head *head) 1126 { 1127 struct kretprobe *rp = ri->rp; 1128 1129 /* remove rp inst off the rprobe_inst_table */ 1130 hlist_del(&ri->hlist); 1131 INIT_HLIST_NODE(&ri->hlist); 1132 if (likely(rp)) { 1133 raw_spin_lock(&rp->lock); 1134 hlist_add_head(&ri->hlist, &rp->free_instances); 1135 raw_spin_unlock(&rp->lock); 1136 } else 1137 /* Unregistering */ 1138 hlist_add_head(&ri->hlist, head); 1139 } 1140 NOKPROBE_SYMBOL(recycle_rp_inst); 1141 1142 void kretprobe_hash_lock(struct task_struct *tsk, 1143 struct hlist_head **head, unsigned long *flags) 1144 __acquires(hlist_lock) 1145 { 1146 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1147 raw_spinlock_t *hlist_lock; 1148 1149 *head = &kretprobe_inst_table[hash]; 1150 hlist_lock = kretprobe_table_lock_ptr(hash); 1151 raw_spin_lock_irqsave(hlist_lock, *flags); 1152 } 1153 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1154 1155 static void kretprobe_table_lock(unsigned long hash, 1156 unsigned long *flags) 1157 __acquires(hlist_lock) 1158 { 1159 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1160 raw_spin_lock_irqsave(hlist_lock, *flags); 1161 } 1162 NOKPROBE_SYMBOL(kretprobe_table_lock); 1163 1164 void kretprobe_hash_unlock(struct task_struct *tsk, 1165 unsigned long *flags) 1166 __releases(hlist_lock) 1167 { 1168 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1169 raw_spinlock_t *hlist_lock; 1170 1171 hlist_lock = kretprobe_table_lock_ptr(hash); 1172 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1173 } 1174 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1175 1176 static void kretprobe_table_unlock(unsigned long hash, 1177 unsigned long *flags) 1178 __releases(hlist_lock) 1179 { 1180 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1181 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1182 } 1183 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1184 1185 /* 1186 * This function is called from finish_task_switch when task tk becomes dead, 1187 * so that we can recycle any function-return probe instances associated 1188 * with this task. These left over instances represent probed functions 1189 * that have been called but will never return. 1190 */ 1191 void kprobe_flush_task(struct task_struct *tk) 1192 { 1193 struct kretprobe_instance *ri; 1194 struct hlist_head *head, empty_rp; 1195 struct hlist_node *tmp; 1196 unsigned long hash, flags = 0; 1197 1198 if (unlikely(!kprobes_initialized)) 1199 /* Early boot. kretprobe_table_locks not yet initialized. */ 1200 return; 1201 1202 INIT_HLIST_HEAD(&empty_rp); 1203 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1204 head = &kretprobe_inst_table[hash]; 1205 kretprobe_table_lock(hash, &flags); 1206 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1207 if (ri->task == tk) 1208 recycle_rp_inst(ri, &empty_rp); 1209 } 1210 kretprobe_table_unlock(hash, &flags); 1211 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1212 hlist_del(&ri->hlist); 1213 kfree(ri); 1214 } 1215 } 1216 NOKPROBE_SYMBOL(kprobe_flush_task); 1217 1218 static inline void free_rp_inst(struct kretprobe *rp) 1219 { 1220 struct kretprobe_instance *ri; 1221 struct hlist_node *next; 1222 1223 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1224 hlist_del(&ri->hlist); 1225 kfree(ri); 1226 } 1227 } 1228 1229 static void cleanup_rp_inst(struct kretprobe *rp) 1230 { 1231 unsigned long flags, hash; 1232 struct kretprobe_instance *ri; 1233 struct hlist_node *next; 1234 struct hlist_head *head; 1235 1236 /* No race here */ 1237 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1238 kretprobe_table_lock(hash, &flags); 1239 head = &kretprobe_inst_table[hash]; 1240 hlist_for_each_entry_safe(ri, next, head, hlist) { 1241 if (ri->rp == rp) 1242 ri->rp = NULL; 1243 } 1244 kretprobe_table_unlock(hash, &flags); 1245 } 1246 free_rp_inst(rp); 1247 } 1248 NOKPROBE_SYMBOL(cleanup_rp_inst); 1249 1250 /* 1251 * Add the new probe to ap->list. Fail if this is the 1252 * second jprobe at the address - two jprobes can't coexist 1253 */ 1254 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1255 { 1256 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1257 1258 if (p->break_handler || p->post_handler) 1259 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1260 1261 if (p->break_handler) { 1262 if (ap->break_handler) 1263 return -EEXIST; 1264 list_add_tail_rcu(&p->list, &ap->list); 1265 ap->break_handler = aggr_break_handler; 1266 } else 1267 list_add_rcu(&p->list, &ap->list); 1268 if (p->post_handler && !ap->post_handler) 1269 ap->post_handler = aggr_post_handler; 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * Fill in the required fields of the "manager kprobe". Replace the 1276 * earlier kprobe in the hlist with the manager kprobe 1277 */ 1278 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1279 { 1280 /* Copy p's insn slot to ap */ 1281 copy_kprobe(p, ap); 1282 flush_insn_slot(ap); 1283 ap->addr = p->addr; 1284 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1285 ap->pre_handler = aggr_pre_handler; 1286 ap->fault_handler = aggr_fault_handler; 1287 /* We don't care the kprobe which has gone. */ 1288 if (p->post_handler && !kprobe_gone(p)) 1289 ap->post_handler = aggr_post_handler; 1290 if (p->break_handler && !kprobe_gone(p)) 1291 ap->break_handler = aggr_break_handler; 1292 1293 INIT_LIST_HEAD(&ap->list); 1294 INIT_HLIST_NODE(&ap->hlist); 1295 1296 list_add_rcu(&p->list, &ap->list); 1297 hlist_replace_rcu(&p->hlist, &ap->hlist); 1298 } 1299 1300 /* 1301 * This is the second or subsequent kprobe at the address - handle 1302 * the intricacies 1303 */ 1304 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1305 { 1306 int ret = 0; 1307 struct kprobe *ap = orig_p; 1308 1309 cpus_read_lock(); 1310 1311 /* For preparing optimization, jump_label_text_reserved() is called */ 1312 jump_label_lock(); 1313 mutex_lock(&text_mutex); 1314 1315 if (!kprobe_aggrprobe(orig_p)) { 1316 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1317 ap = alloc_aggr_kprobe(orig_p); 1318 if (!ap) { 1319 ret = -ENOMEM; 1320 goto out; 1321 } 1322 init_aggr_kprobe(ap, orig_p); 1323 } else if (kprobe_unused(ap)) 1324 /* This probe is going to die. Rescue it */ 1325 reuse_unused_kprobe(ap); 1326 1327 if (kprobe_gone(ap)) { 1328 /* 1329 * Attempting to insert new probe at the same location that 1330 * had a probe in the module vaddr area which already 1331 * freed. So, the instruction slot has already been 1332 * released. We need a new slot for the new probe. 1333 */ 1334 ret = arch_prepare_kprobe(ap); 1335 if (ret) 1336 /* 1337 * Even if fail to allocate new slot, don't need to 1338 * free aggr_probe. It will be used next time, or 1339 * freed by unregister_kprobe. 1340 */ 1341 goto out; 1342 1343 /* Prepare optimized instructions if possible. */ 1344 prepare_optimized_kprobe(ap); 1345 1346 /* 1347 * Clear gone flag to prevent allocating new slot again, and 1348 * set disabled flag because it is not armed yet. 1349 */ 1350 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1351 | KPROBE_FLAG_DISABLED; 1352 } 1353 1354 /* Copy ap's insn slot to p */ 1355 copy_kprobe(ap, p); 1356 ret = add_new_kprobe(ap, p); 1357 1358 out: 1359 mutex_unlock(&text_mutex); 1360 jump_label_unlock(); 1361 cpus_read_unlock(); 1362 1363 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1364 ap->flags &= ~KPROBE_FLAG_DISABLED; 1365 if (!kprobes_all_disarmed) 1366 /* Arm the breakpoint again. */ 1367 arm_kprobe(ap); 1368 } 1369 return ret; 1370 } 1371 1372 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1373 { 1374 /* The __kprobes marked functions and entry code must not be probed */ 1375 return addr >= (unsigned long)__kprobes_text_start && 1376 addr < (unsigned long)__kprobes_text_end; 1377 } 1378 1379 bool within_kprobe_blacklist(unsigned long addr) 1380 { 1381 struct kprobe_blacklist_entry *ent; 1382 1383 if (arch_within_kprobe_blacklist(addr)) 1384 return true; 1385 /* 1386 * If there exists a kprobe_blacklist, verify and 1387 * fail any probe registration in the prohibited area 1388 */ 1389 list_for_each_entry(ent, &kprobe_blacklist, list) { 1390 if (addr >= ent->start_addr && addr < ent->end_addr) 1391 return true; 1392 } 1393 1394 return false; 1395 } 1396 1397 /* 1398 * If we have a symbol_name argument, look it up and add the offset field 1399 * to it. This way, we can specify a relative address to a symbol. 1400 * This returns encoded errors if it fails to look up symbol or invalid 1401 * combination of parameters. 1402 */ 1403 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1404 const char *symbol_name, unsigned int offset) 1405 { 1406 if ((symbol_name && addr) || (!symbol_name && !addr)) 1407 goto invalid; 1408 1409 if (symbol_name) { 1410 addr = kprobe_lookup_name(symbol_name, offset); 1411 if (!addr) 1412 return ERR_PTR(-ENOENT); 1413 } 1414 1415 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1416 if (addr) 1417 return addr; 1418 1419 invalid: 1420 return ERR_PTR(-EINVAL); 1421 } 1422 1423 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1424 { 1425 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1426 } 1427 1428 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1429 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1430 { 1431 struct kprobe *ap, *list_p; 1432 1433 ap = get_kprobe(p->addr); 1434 if (unlikely(!ap)) 1435 return NULL; 1436 1437 if (p != ap) { 1438 list_for_each_entry_rcu(list_p, &ap->list, list) 1439 if (list_p == p) 1440 /* kprobe p is a valid probe */ 1441 goto valid; 1442 return NULL; 1443 } 1444 valid: 1445 return ap; 1446 } 1447 1448 /* Return error if the kprobe is being re-registered */ 1449 static inline int check_kprobe_rereg(struct kprobe *p) 1450 { 1451 int ret = 0; 1452 1453 mutex_lock(&kprobe_mutex); 1454 if (__get_valid_kprobe(p)) 1455 ret = -EINVAL; 1456 mutex_unlock(&kprobe_mutex); 1457 1458 return ret; 1459 } 1460 1461 int __weak arch_check_ftrace_location(struct kprobe *p) 1462 { 1463 unsigned long ftrace_addr; 1464 1465 ftrace_addr = ftrace_location((unsigned long)p->addr); 1466 if (ftrace_addr) { 1467 #ifdef CONFIG_KPROBES_ON_FTRACE 1468 /* Given address is not on the instruction boundary */ 1469 if ((unsigned long)p->addr != ftrace_addr) 1470 return -EILSEQ; 1471 p->flags |= KPROBE_FLAG_FTRACE; 1472 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1473 return -EINVAL; 1474 #endif 1475 } 1476 return 0; 1477 } 1478 1479 static int check_kprobe_address_safe(struct kprobe *p, 1480 struct module **probed_mod) 1481 { 1482 int ret; 1483 1484 ret = arch_check_ftrace_location(p); 1485 if (ret) 1486 return ret; 1487 jump_label_lock(); 1488 preempt_disable(); 1489 1490 /* Ensure it is not in reserved area nor out of text */ 1491 if (!kernel_text_address((unsigned long) p->addr) || 1492 within_kprobe_blacklist((unsigned long) p->addr) || 1493 jump_label_text_reserved(p->addr, p->addr)) { 1494 ret = -EINVAL; 1495 goto out; 1496 } 1497 1498 /* Check if are we probing a module */ 1499 *probed_mod = __module_text_address((unsigned long) p->addr); 1500 if (*probed_mod) { 1501 /* 1502 * We must hold a refcount of the probed module while updating 1503 * its code to prohibit unexpected unloading. 1504 */ 1505 if (unlikely(!try_module_get(*probed_mod))) { 1506 ret = -ENOENT; 1507 goto out; 1508 } 1509 1510 /* 1511 * If the module freed .init.text, we couldn't insert 1512 * kprobes in there. 1513 */ 1514 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1515 (*probed_mod)->state != MODULE_STATE_COMING) { 1516 module_put(*probed_mod); 1517 *probed_mod = NULL; 1518 ret = -ENOENT; 1519 } 1520 } 1521 out: 1522 preempt_enable(); 1523 jump_label_unlock(); 1524 1525 return ret; 1526 } 1527 1528 int register_kprobe(struct kprobe *p) 1529 { 1530 int ret; 1531 struct kprobe *old_p; 1532 struct module *probed_mod; 1533 kprobe_opcode_t *addr; 1534 1535 /* Adjust probe address from symbol */ 1536 addr = kprobe_addr(p); 1537 if (IS_ERR(addr)) 1538 return PTR_ERR(addr); 1539 p->addr = addr; 1540 1541 ret = check_kprobe_rereg(p); 1542 if (ret) 1543 return ret; 1544 1545 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1546 p->flags &= KPROBE_FLAG_DISABLED; 1547 p->nmissed = 0; 1548 INIT_LIST_HEAD(&p->list); 1549 1550 ret = check_kprobe_address_safe(p, &probed_mod); 1551 if (ret) 1552 return ret; 1553 1554 mutex_lock(&kprobe_mutex); 1555 1556 old_p = get_kprobe(p->addr); 1557 if (old_p) { 1558 /* Since this may unoptimize old_p, locking text_mutex. */ 1559 ret = register_aggr_kprobe(old_p, p); 1560 goto out; 1561 } 1562 1563 cpus_read_lock(); 1564 /* Prevent text modification */ 1565 mutex_lock(&text_mutex); 1566 ret = prepare_kprobe(p); 1567 mutex_unlock(&text_mutex); 1568 cpus_read_unlock(); 1569 if (ret) 1570 goto out; 1571 1572 INIT_HLIST_NODE(&p->hlist); 1573 hlist_add_head_rcu(&p->hlist, 1574 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1575 1576 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1577 arm_kprobe(p); 1578 1579 /* Try to optimize kprobe */ 1580 try_to_optimize_kprobe(p); 1581 out: 1582 mutex_unlock(&kprobe_mutex); 1583 1584 if (probed_mod) 1585 module_put(probed_mod); 1586 1587 return ret; 1588 } 1589 EXPORT_SYMBOL_GPL(register_kprobe); 1590 1591 /* Check if all probes on the aggrprobe are disabled */ 1592 static int aggr_kprobe_disabled(struct kprobe *ap) 1593 { 1594 struct kprobe *kp; 1595 1596 list_for_each_entry_rcu(kp, &ap->list, list) 1597 if (!kprobe_disabled(kp)) 1598 /* 1599 * There is an active probe on the list. 1600 * We can't disable this ap. 1601 */ 1602 return 0; 1603 1604 return 1; 1605 } 1606 1607 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1608 static struct kprobe *__disable_kprobe(struct kprobe *p) 1609 { 1610 struct kprobe *orig_p; 1611 1612 /* Get an original kprobe for return */ 1613 orig_p = __get_valid_kprobe(p); 1614 if (unlikely(orig_p == NULL)) 1615 return NULL; 1616 1617 if (!kprobe_disabled(p)) { 1618 /* Disable probe if it is a child probe */ 1619 if (p != orig_p) 1620 p->flags |= KPROBE_FLAG_DISABLED; 1621 1622 /* Try to disarm and disable this/parent probe */ 1623 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1624 /* 1625 * If kprobes_all_disarmed is set, orig_p 1626 * should have already been disarmed, so 1627 * skip unneed disarming process. 1628 */ 1629 if (!kprobes_all_disarmed) 1630 disarm_kprobe(orig_p, true); 1631 orig_p->flags |= KPROBE_FLAG_DISABLED; 1632 } 1633 } 1634 1635 return orig_p; 1636 } 1637 1638 /* 1639 * Unregister a kprobe without a scheduler synchronization. 1640 */ 1641 static int __unregister_kprobe_top(struct kprobe *p) 1642 { 1643 struct kprobe *ap, *list_p; 1644 1645 /* Disable kprobe. This will disarm it if needed. */ 1646 ap = __disable_kprobe(p); 1647 if (ap == NULL) 1648 return -EINVAL; 1649 1650 if (ap == p) 1651 /* 1652 * This probe is an independent(and non-optimized) kprobe 1653 * (not an aggrprobe). Remove from the hash list. 1654 */ 1655 goto disarmed; 1656 1657 /* Following process expects this probe is an aggrprobe */ 1658 WARN_ON(!kprobe_aggrprobe(ap)); 1659 1660 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1661 /* 1662 * !disarmed could be happen if the probe is under delayed 1663 * unoptimizing. 1664 */ 1665 goto disarmed; 1666 else { 1667 /* If disabling probe has special handlers, update aggrprobe */ 1668 if (p->break_handler && !kprobe_gone(p)) 1669 ap->break_handler = NULL; 1670 if (p->post_handler && !kprobe_gone(p)) { 1671 list_for_each_entry_rcu(list_p, &ap->list, list) { 1672 if ((list_p != p) && (list_p->post_handler)) 1673 goto noclean; 1674 } 1675 ap->post_handler = NULL; 1676 } 1677 noclean: 1678 /* 1679 * Remove from the aggrprobe: this path will do nothing in 1680 * __unregister_kprobe_bottom(). 1681 */ 1682 list_del_rcu(&p->list); 1683 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1684 /* 1685 * Try to optimize this probe again, because post 1686 * handler may have been changed. 1687 */ 1688 optimize_kprobe(ap); 1689 } 1690 return 0; 1691 1692 disarmed: 1693 BUG_ON(!kprobe_disarmed(ap)); 1694 hlist_del_rcu(&ap->hlist); 1695 return 0; 1696 } 1697 1698 static void __unregister_kprobe_bottom(struct kprobe *p) 1699 { 1700 struct kprobe *ap; 1701 1702 if (list_empty(&p->list)) 1703 /* This is an independent kprobe */ 1704 arch_remove_kprobe(p); 1705 else if (list_is_singular(&p->list)) { 1706 /* This is the last child of an aggrprobe */ 1707 ap = list_entry(p->list.next, struct kprobe, list); 1708 list_del(&p->list); 1709 free_aggr_kprobe(ap); 1710 } 1711 /* Otherwise, do nothing. */ 1712 } 1713 1714 int register_kprobes(struct kprobe **kps, int num) 1715 { 1716 int i, ret = 0; 1717 1718 if (num <= 0) 1719 return -EINVAL; 1720 for (i = 0; i < num; i++) { 1721 ret = register_kprobe(kps[i]); 1722 if (ret < 0) { 1723 if (i > 0) 1724 unregister_kprobes(kps, i); 1725 break; 1726 } 1727 } 1728 return ret; 1729 } 1730 EXPORT_SYMBOL_GPL(register_kprobes); 1731 1732 void unregister_kprobe(struct kprobe *p) 1733 { 1734 unregister_kprobes(&p, 1); 1735 } 1736 EXPORT_SYMBOL_GPL(unregister_kprobe); 1737 1738 void unregister_kprobes(struct kprobe **kps, int num) 1739 { 1740 int i; 1741 1742 if (num <= 0) 1743 return; 1744 mutex_lock(&kprobe_mutex); 1745 for (i = 0; i < num; i++) 1746 if (__unregister_kprobe_top(kps[i]) < 0) 1747 kps[i]->addr = NULL; 1748 mutex_unlock(&kprobe_mutex); 1749 1750 synchronize_sched(); 1751 for (i = 0; i < num; i++) 1752 if (kps[i]->addr) 1753 __unregister_kprobe_bottom(kps[i]); 1754 } 1755 EXPORT_SYMBOL_GPL(unregister_kprobes); 1756 1757 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1758 unsigned long val, void *data) 1759 { 1760 return NOTIFY_DONE; 1761 } 1762 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1763 1764 static struct notifier_block kprobe_exceptions_nb = { 1765 .notifier_call = kprobe_exceptions_notify, 1766 .priority = 0x7fffffff /* we need to be notified first */ 1767 }; 1768 1769 unsigned long __weak arch_deref_entry_point(void *entry) 1770 { 1771 return (unsigned long)entry; 1772 } 1773 1774 #if 0 1775 int register_jprobes(struct jprobe **jps, int num) 1776 { 1777 int ret = 0, i; 1778 1779 if (num <= 0) 1780 return -EINVAL; 1781 1782 for (i = 0; i < num; i++) { 1783 ret = register_jprobe(jps[i]); 1784 1785 if (ret < 0) { 1786 if (i > 0) 1787 unregister_jprobes(jps, i); 1788 break; 1789 } 1790 } 1791 1792 return ret; 1793 } 1794 EXPORT_SYMBOL_GPL(register_jprobes); 1795 1796 int register_jprobe(struct jprobe *jp) 1797 { 1798 unsigned long addr, offset; 1799 struct kprobe *kp = &jp->kp; 1800 1801 /* 1802 * Verify probepoint as well as the jprobe handler are 1803 * valid function entry points. 1804 */ 1805 addr = arch_deref_entry_point(jp->entry); 1806 1807 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 && 1808 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) { 1809 kp->pre_handler = setjmp_pre_handler; 1810 kp->break_handler = longjmp_break_handler; 1811 return register_kprobe(kp); 1812 } 1813 1814 return -EINVAL; 1815 } 1816 EXPORT_SYMBOL_GPL(register_jprobe); 1817 1818 void unregister_jprobe(struct jprobe *jp) 1819 { 1820 unregister_jprobes(&jp, 1); 1821 } 1822 EXPORT_SYMBOL_GPL(unregister_jprobe); 1823 1824 void unregister_jprobes(struct jprobe **jps, int num) 1825 { 1826 int i; 1827 1828 if (num <= 0) 1829 return; 1830 mutex_lock(&kprobe_mutex); 1831 for (i = 0; i < num; i++) 1832 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1833 jps[i]->kp.addr = NULL; 1834 mutex_unlock(&kprobe_mutex); 1835 1836 synchronize_sched(); 1837 for (i = 0; i < num; i++) { 1838 if (jps[i]->kp.addr) 1839 __unregister_kprobe_bottom(&jps[i]->kp); 1840 } 1841 } 1842 EXPORT_SYMBOL_GPL(unregister_jprobes); 1843 #endif 1844 1845 #ifdef CONFIG_KRETPROBES 1846 /* 1847 * This kprobe pre_handler is registered with every kretprobe. When probe 1848 * hits it will set up the return probe. 1849 */ 1850 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1851 { 1852 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1853 unsigned long hash, flags = 0; 1854 struct kretprobe_instance *ri; 1855 1856 /* 1857 * To avoid deadlocks, prohibit return probing in NMI contexts, 1858 * just skip the probe and increase the (inexact) 'nmissed' 1859 * statistical counter, so that the user is informed that 1860 * something happened: 1861 */ 1862 if (unlikely(in_nmi())) { 1863 rp->nmissed++; 1864 return 0; 1865 } 1866 1867 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1868 hash = hash_ptr(current, KPROBE_HASH_BITS); 1869 raw_spin_lock_irqsave(&rp->lock, flags); 1870 if (!hlist_empty(&rp->free_instances)) { 1871 ri = hlist_entry(rp->free_instances.first, 1872 struct kretprobe_instance, hlist); 1873 hlist_del(&ri->hlist); 1874 raw_spin_unlock_irqrestore(&rp->lock, flags); 1875 1876 ri->rp = rp; 1877 ri->task = current; 1878 1879 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1880 raw_spin_lock_irqsave(&rp->lock, flags); 1881 hlist_add_head(&ri->hlist, &rp->free_instances); 1882 raw_spin_unlock_irqrestore(&rp->lock, flags); 1883 return 0; 1884 } 1885 1886 arch_prepare_kretprobe(ri, regs); 1887 1888 /* XXX(hch): why is there no hlist_move_head? */ 1889 INIT_HLIST_NODE(&ri->hlist); 1890 kretprobe_table_lock(hash, &flags); 1891 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1892 kretprobe_table_unlock(hash, &flags); 1893 } else { 1894 rp->nmissed++; 1895 raw_spin_unlock_irqrestore(&rp->lock, flags); 1896 } 1897 return 0; 1898 } 1899 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1900 1901 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1902 { 1903 return !offset; 1904 } 1905 1906 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1907 { 1908 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1909 1910 if (IS_ERR(kp_addr)) 1911 return false; 1912 1913 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1914 !arch_kprobe_on_func_entry(offset)) 1915 return false; 1916 1917 return true; 1918 } 1919 1920 int register_kretprobe(struct kretprobe *rp) 1921 { 1922 int ret = 0; 1923 struct kretprobe_instance *inst; 1924 int i; 1925 void *addr; 1926 1927 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1928 return -EINVAL; 1929 1930 if (kretprobe_blacklist_size) { 1931 addr = kprobe_addr(&rp->kp); 1932 if (IS_ERR(addr)) 1933 return PTR_ERR(addr); 1934 1935 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1936 if (kretprobe_blacklist[i].addr == addr) 1937 return -EINVAL; 1938 } 1939 } 1940 1941 rp->kp.pre_handler = pre_handler_kretprobe; 1942 rp->kp.post_handler = NULL; 1943 rp->kp.fault_handler = NULL; 1944 rp->kp.break_handler = NULL; 1945 1946 /* Pre-allocate memory for max kretprobe instances */ 1947 if (rp->maxactive <= 0) { 1948 #ifdef CONFIG_PREEMPT 1949 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1950 #else 1951 rp->maxactive = num_possible_cpus(); 1952 #endif 1953 } 1954 raw_spin_lock_init(&rp->lock); 1955 INIT_HLIST_HEAD(&rp->free_instances); 1956 for (i = 0; i < rp->maxactive; i++) { 1957 inst = kmalloc(sizeof(struct kretprobe_instance) + 1958 rp->data_size, GFP_KERNEL); 1959 if (inst == NULL) { 1960 free_rp_inst(rp); 1961 return -ENOMEM; 1962 } 1963 INIT_HLIST_NODE(&inst->hlist); 1964 hlist_add_head(&inst->hlist, &rp->free_instances); 1965 } 1966 1967 rp->nmissed = 0; 1968 /* Establish function entry probe point */ 1969 ret = register_kprobe(&rp->kp); 1970 if (ret != 0) 1971 free_rp_inst(rp); 1972 return ret; 1973 } 1974 EXPORT_SYMBOL_GPL(register_kretprobe); 1975 1976 int register_kretprobes(struct kretprobe **rps, int num) 1977 { 1978 int ret = 0, i; 1979 1980 if (num <= 0) 1981 return -EINVAL; 1982 for (i = 0; i < num; i++) { 1983 ret = register_kretprobe(rps[i]); 1984 if (ret < 0) { 1985 if (i > 0) 1986 unregister_kretprobes(rps, i); 1987 break; 1988 } 1989 } 1990 return ret; 1991 } 1992 EXPORT_SYMBOL_GPL(register_kretprobes); 1993 1994 void unregister_kretprobe(struct kretprobe *rp) 1995 { 1996 unregister_kretprobes(&rp, 1); 1997 } 1998 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1999 2000 void unregister_kretprobes(struct kretprobe **rps, int num) 2001 { 2002 int i; 2003 2004 if (num <= 0) 2005 return; 2006 mutex_lock(&kprobe_mutex); 2007 for (i = 0; i < num; i++) 2008 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2009 rps[i]->kp.addr = NULL; 2010 mutex_unlock(&kprobe_mutex); 2011 2012 synchronize_sched(); 2013 for (i = 0; i < num; i++) { 2014 if (rps[i]->kp.addr) { 2015 __unregister_kprobe_bottom(&rps[i]->kp); 2016 cleanup_rp_inst(rps[i]); 2017 } 2018 } 2019 } 2020 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2021 2022 #else /* CONFIG_KRETPROBES */ 2023 int register_kretprobe(struct kretprobe *rp) 2024 { 2025 return -ENOSYS; 2026 } 2027 EXPORT_SYMBOL_GPL(register_kretprobe); 2028 2029 int register_kretprobes(struct kretprobe **rps, int num) 2030 { 2031 return -ENOSYS; 2032 } 2033 EXPORT_SYMBOL_GPL(register_kretprobes); 2034 2035 void unregister_kretprobe(struct kretprobe *rp) 2036 { 2037 } 2038 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2039 2040 void unregister_kretprobes(struct kretprobe **rps, int num) 2041 { 2042 } 2043 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2044 2045 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2046 { 2047 return 0; 2048 } 2049 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2050 2051 #endif /* CONFIG_KRETPROBES */ 2052 2053 /* Set the kprobe gone and remove its instruction buffer. */ 2054 static void kill_kprobe(struct kprobe *p) 2055 { 2056 struct kprobe *kp; 2057 2058 p->flags |= KPROBE_FLAG_GONE; 2059 if (kprobe_aggrprobe(p)) { 2060 /* 2061 * If this is an aggr_kprobe, we have to list all the 2062 * chained probes and mark them GONE. 2063 */ 2064 list_for_each_entry_rcu(kp, &p->list, list) 2065 kp->flags |= KPROBE_FLAG_GONE; 2066 p->post_handler = NULL; 2067 p->break_handler = NULL; 2068 kill_optimized_kprobe(p); 2069 } 2070 /* 2071 * Here, we can remove insn_slot safely, because no thread calls 2072 * the original probed function (which will be freed soon) any more. 2073 */ 2074 arch_remove_kprobe(p); 2075 } 2076 2077 /* Disable one kprobe */ 2078 int disable_kprobe(struct kprobe *kp) 2079 { 2080 int ret = 0; 2081 2082 mutex_lock(&kprobe_mutex); 2083 2084 /* Disable this kprobe */ 2085 if (__disable_kprobe(kp) == NULL) 2086 ret = -EINVAL; 2087 2088 mutex_unlock(&kprobe_mutex); 2089 return ret; 2090 } 2091 EXPORT_SYMBOL_GPL(disable_kprobe); 2092 2093 /* Enable one kprobe */ 2094 int enable_kprobe(struct kprobe *kp) 2095 { 2096 int ret = 0; 2097 struct kprobe *p; 2098 2099 mutex_lock(&kprobe_mutex); 2100 2101 /* Check whether specified probe is valid. */ 2102 p = __get_valid_kprobe(kp); 2103 if (unlikely(p == NULL)) { 2104 ret = -EINVAL; 2105 goto out; 2106 } 2107 2108 if (kprobe_gone(kp)) { 2109 /* This kprobe has gone, we couldn't enable it. */ 2110 ret = -EINVAL; 2111 goto out; 2112 } 2113 2114 if (p != kp) 2115 kp->flags &= ~KPROBE_FLAG_DISABLED; 2116 2117 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2118 p->flags &= ~KPROBE_FLAG_DISABLED; 2119 arm_kprobe(p); 2120 } 2121 out: 2122 mutex_unlock(&kprobe_mutex); 2123 return ret; 2124 } 2125 EXPORT_SYMBOL_GPL(enable_kprobe); 2126 2127 void dump_kprobe(struct kprobe *kp) 2128 { 2129 printk(KERN_WARNING "Dumping kprobe:\n"); 2130 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2131 kp->symbol_name, kp->addr, kp->offset); 2132 } 2133 NOKPROBE_SYMBOL(dump_kprobe); 2134 2135 /* 2136 * Lookup and populate the kprobe_blacklist. 2137 * 2138 * Unlike the kretprobe blacklist, we'll need to determine 2139 * the range of addresses that belong to the said functions, 2140 * since a kprobe need not necessarily be at the beginning 2141 * of a function. 2142 */ 2143 static int __init populate_kprobe_blacklist(unsigned long *start, 2144 unsigned long *end) 2145 { 2146 unsigned long *iter; 2147 struct kprobe_blacklist_entry *ent; 2148 unsigned long entry, offset = 0, size = 0; 2149 2150 for (iter = start; iter < end; iter++) { 2151 entry = arch_deref_entry_point((void *)*iter); 2152 2153 if (!kernel_text_address(entry) || 2154 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2155 pr_err("Failed to find blacklist at %p\n", 2156 (void *)entry); 2157 continue; 2158 } 2159 2160 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2161 if (!ent) 2162 return -ENOMEM; 2163 ent->start_addr = entry; 2164 ent->end_addr = entry + size; 2165 INIT_LIST_HEAD(&ent->list); 2166 list_add_tail(&ent->list, &kprobe_blacklist); 2167 } 2168 return 0; 2169 } 2170 2171 /* Module notifier call back, checking kprobes on the module */ 2172 static int kprobes_module_callback(struct notifier_block *nb, 2173 unsigned long val, void *data) 2174 { 2175 struct module *mod = data; 2176 struct hlist_head *head; 2177 struct kprobe *p; 2178 unsigned int i; 2179 int checkcore = (val == MODULE_STATE_GOING); 2180 2181 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2182 return NOTIFY_DONE; 2183 2184 /* 2185 * When MODULE_STATE_GOING was notified, both of module .text and 2186 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2187 * notified, only .init.text section would be freed. We need to 2188 * disable kprobes which have been inserted in the sections. 2189 */ 2190 mutex_lock(&kprobe_mutex); 2191 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2192 head = &kprobe_table[i]; 2193 hlist_for_each_entry_rcu(p, head, hlist) 2194 if (within_module_init((unsigned long)p->addr, mod) || 2195 (checkcore && 2196 within_module_core((unsigned long)p->addr, mod))) { 2197 /* 2198 * The vaddr this probe is installed will soon 2199 * be vfreed buy not synced to disk. Hence, 2200 * disarming the breakpoint isn't needed. 2201 * 2202 * Note, this will also move any optimized probes 2203 * that are pending to be removed from their 2204 * corresponding lists to the freeing_list and 2205 * will not be touched by the delayed 2206 * kprobe_optimizer work handler. 2207 */ 2208 kill_kprobe(p); 2209 } 2210 } 2211 mutex_unlock(&kprobe_mutex); 2212 return NOTIFY_DONE; 2213 } 2214 2215 static struct notifier_block kprobe_module_nb = { 2216 .notifier_call = kprobes_module_callback, 2217 .priority = 0 2218 }; 2219 2220 /* Markers of _kprobe_blacklist section */ 2221 extern unsigned long __start_kprobe_blacklist[]; 2222 extern unsigned long __stop_kprobe_blacklist[]; 2223 2224 static int __init init_kprobes(void) 2225 { 2226 int i, err = 0; 2227 2228 /* FIXME allocate the probe table, currently defined statically */ 2229 /* initialize all list heads */ 2230 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2231 INIT_HLIST_HEAD(&kprobe_table[i]); 2232 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2233 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2234 } 2235 2236 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2237 __stop_kprobe_blacklist); 2238 if (err) { 2239 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2240 pr_err("Please take care of using kprobes.\n"); 2241 } 2242 2243 if (kretprobe_blacklist_size) { 2244 /* lookup the function address from its name */ 2245 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2246 kretprobe_blacklist[i].addr = 2247 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2248 if (!kretprobe_blacklist[i].addr) 2249 printk("kretprobe: lookup failed: %s\n", 2250 kretprobe_blacklist[i].name); 2251 } 2252 } 2253 2254 #if defined(CONFIG_OPTPROBES) 2255 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2256 /* Init kprobe_optinsn_slots */ 2257 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2258 #endif 2259 /* By default, kprobes can be optimized */ 2260 kprobes_allow_optimization = true; 2261 #endif 2262 2263 /* By default, kprobes are armed */ 2264 kprobes_all_disarmed = false; 2265 2266 err = arch_init_kprobes(); 2267 if (!err) 2268 err = register_die_notifier(&kprobe_exceptions_nb); 2269 if (!err) 2270 err = register_module_notifier(&kprobe_module_nb); 2271 2272 kprobes_initialized = (err == 0); 2273 2274 if (!err) 2275 init_test_probes(); 2276 return err; 2277 } 2278 2279 #ifdef CONFIG_DEBUG_FS 2280 static void report_probe(struct seq_file *pi, struct kprobe *p, 2281 const char *sym, int offset, char *modname, struct kprobe *pp) 2282 { 2283 char *kprobe_type; 2284 2285 if (p->pre_handler == pre_handler_kretprobe) 2286 kprobe_type = "r"; 2287 else if (p->pre_handler == setjmp_pre_handler) 2288 kprobe_type = "j"; 2289 else 2290 kprobe_type = "k"; 2291 2292 if (sym) 2293 seq_printf(pi, "%p %s %s+0x%x %s ", 2294 p->addr, kprobe_type, sym, offset, 2295 (modname ? modname : " ")); 2296 else 2297 seq_printf(pi, "%p %s %p ", 2298 p->addr, kprobe_type, p->addr); 2299 2300 if (!pp) 2301 pp = p; 2302 seq_printf(pi, "%s%s%s%s\n", 2303 (kprobe_gone(p) ? "[GONE]" : ""), 2304 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2305 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2306 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2307 } 2308 2309 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2310 { 2311 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2312 } 2313 2314 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2315 { 2316 (*pos)++; 2317 if (*pos >= KPROBE_TABLE_SIZE) 2318 return NULL; 2319 return pos; 2320 } 2321 2322 static void kprobe_seq_stop(struct seq_file *f, void *v) 2323 { 2324 /* Nothing to do */ 2325 } 2326 2327 static int show_kprobe_addr(struct seq_file *pi, void *v) 2328 { 2329 struct hlist_head *head; 2330 struct kprobe *p, *kp; 2331 const char *sym = NULL; 2332 unsigned int i = *(loff_t *) v; 2333 unsigned long offset = 0; 2334 char *modname, namebuf[KSYM_NAME_LEN]; 2335 2336 head = &kprobe_table[i]; 2337 preempt_disable(); 2338 hlist_for_each_entry_rcu(p, head, hlist) { 2339 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2340 &offset, &modname, namebuf); 2341 if (kprobe_aggrprobe(p)) { 2342 list_for_each_entry_rcu(kp, &p->list, list) 2343 report_probe(pi, kp, sym, offset, modname, p); 2344 } else 2345 report_probe(pi, p, sym, offset, modname, NULL); 2346 } 2347 preempt_enable(); 2348 return 0; 2349 } 2350 2351 static const struct seq_operations kprobes_seq_ops = { 2352 .start = kprobe_seq_start, 2353 .next = kprobe_seq_next, 2354 .stop = kprobe_seq_stop, 2355 .show = show_kprobe_addr 2356 }; 2357 2358 static int kprobes_open(struct inode *inode, struct file *filp) 2359 { 2360 return seq_open(filp, &kprobes_seq_ops); 2361 } 2362 2363 static const struct file_operations debugfs_kprobes_operations = { 2364 .open = kprobes_open, 2365 .read = seq_read, 2366 .llseek = seq_lseek, 2367 .release = seq_release, 2368 }; 2369 2370 /* kprobes/blacklist -- shows which functions can not be probed */ 2371 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2372 { 2373 return seq_list_start(&kprobe_blacklist, *pos); 2374 } 2375 2376 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2377 { 2378 return seq_list_next(v, &kprobe_blacklist, pos); 2379 } 2380 2381 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2382 { 2383 struct kprobe_blacklist_entry *ent = 2384 list_entry(v, struct kprobe_blacklist_entry, list); 2385 2386 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2387 (void *)ent->end_addr, (void *)ent->start_addr); 2388 return 0; 2389 } 2390 2391 static const struct seq_operations kprobe_blacklist_seq_ops = { 2392 .start = kprobe_blacklist_seq_start, 2393 .next = kprobe_blacklist_seq_next, 2394 .stop = kprobe_seq_stop, /* Reuse void function */ 2395 .show = kprobe_blacklist_seq_show, 2396 }; 2397 2398 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2399 { 2400 return seq_open(filp, &kprobe_blacklist_seq_ops); 2401 } 2402 2403 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2404 .open = kprobe_blacklist_open, 2405 .read = seq_read, 2406 .llseek = seq_lseek, 2407 .release = seq_release, 2408 }; 2409 2410 static void arm_all_kprobes(void) 2411 { 2412 struct hlist_head *head; 2413 struct kprobe *p; 2414 unsigned int i; 2415 2416 mutex_lock(&kprobe_mutex); 2417 2418 /* If kprobes are armed, just return */ 2419 if (!kprobes_all_disarmed) 2420 goto already_enabled; 2421 2422 /* 2423 * optimize_kprobe() called by arm_kprobe() checks 2424 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2425 * arm_kprobe. 2426 */ 2427 kprobes_all_disarmed = false; 2428 /* Arming kprobes doesn't optimize kprobe itself */ 2429 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2430 head = &kprobe_table[i]; 2431 hlist_for_each_entry_rcu(p, head, hlist) 2432 if (!kprobe_disabled(p)) 2433 arm_kprobe(p); 2434 } 2435 2436 printk(KERN_INFO "Kprobes globally enabled\n"); 2437 2438 already_enabled: 2439 mutex_unlock(&kprobe_mutex); 2440 return; 2441 } 2442 2443 static void disarm_all_kprobes(void) 2444 { 2445 struct hlist_head *head; 2446 struct kprobe *p; 2447 unsigned int i; 2448 2449 mutex_lock(&kprobe_mutex); 2450 2451 /* If kprobes are already disarmed, just return */ 2452 if (kprobes_all_disarmed) { 2453 mutex_unlock(&kprobe_mutex); 2454 return; 2455 } 2456 2457 kprobes_all_disarmed = true; 2458 printk(KERN_INFO "Kprobes globally disabled\n"); 2459 2460 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2461 head = &kprobe_table[i]; 2462 hlist_for_each_entry_rcu(p, head, hlist) { 2463 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2464 disarm_kprobe(p, false); 2465 } 2466 } 2467 mutex_unlock(&kprobe_mutex); 2468 2469 /* Wait for disarming all kprobes by optimizer */ 2470 wait_for_kprobe_optimizer(); 2471 } 2472 2473 /* 2474 * XXX: The debugfs bool file interface doesn't allow for callbacks 2475 * when the bool state is switched. We can reuse that facility when 2476 * available 2477 */ 2478 static ssize_t read_enabled_file_bool(struct file *file, 2479 char __user *user_buf, size_t count, loff_t *ppos) 2480 { 2481 char buf[3]; 2482 2483 if (!kprobes_all_disarmed) 2484 buf[0] = '1'; 2485 else 2486 buf[0] = '0'; 2487 buf[1] = '\n'; 2488 buf[2] = 0x00; 2489 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2490 } 2491 2492 static ssize_t write_enabled_file_bool(struct file *file, 2493 const char __user *user_buf, size_t count, loff_t *ppos) 2494 { 2495 char buf[32]; 2496 size_t buf_size; 2497 2498 buf_size = min(count, (sizeof(buf)-1)); 2499 if (copy_from_user(buf, user_buf, buf_size)) 2500 return -EFAULT; 2501 2502 buf[buf_size] = '\0'; 2503 switch (buf[0]) { 2504 case 'y': 2505 case 'Y': 2506 case '1': 2507 arm_all_kprobes(); 2508 break; 2509 case 'n': 2510 case 'N': 2511 case '0': 2512 disarm_all_kprobes(); 2513 break; 2514 default: 2515 return -EINVAL; 2516 } 2517 2518 return count; 2519 } 2520 2521 static const struct file_operations fops_kp = { 2522 .read = read_enabled_file_bool, 2523 .write = write_enabled_file_bool, 2524 .llseek = default_llseek, 2525 }; 2526 2527 static int __init debugfs_kprobe_init(void) 2528 { 2529 struct dentry *dir, *file; 2530 unsigned int value = 1; 2531 2532 dir = debugfs_create_dir("kprobes", NULL); 2533 if (!dir) 2534 return -ENOMEM; 2535 2536 file = debugfs_create_file("list", 0444, dir, NULL, 2537 &debugfs_kprobes_operations); 2538 if (!file) 2539 goto error; 2540 2541 file = debugfs_create_file("enabled", 0600, dir, 2542 &value, &fops_kp); 2543 if (!file) 2544 goto error; 2545 2546 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2547 &debugfs_kprobe_blacklist_ops); 2548 if (!file) 2549 goto error; 2550 2551 return 0; 2552 2553 error: 2554 debugfs_remove(dir); 2555 return -ENOMEM; 2556 } 2557 2558 late_initcall(debugfs_kprobe_init); 2559 #endif /* CONFIG_DEBUG_FS */ 2560 2561 module_init(init_kprobes); 2562 2563 /* defined in arch/.../kernel/kprobes.c */ 2564 EXPORT_SYMBOL_GPL(jprobe_return); 2565