xref: /linux/kernel/kprobes.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	int nused;
116 	int ngarbage;
117 	char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots)			\
121 	(offsetof(struct kprobe_insn_page, slot_used) +	\
122 	 (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125 	struct list_head pages;	/* list of kprobe_insn_page */
126 	size_t insn_size;	/* size of instruction slot */
127 	int nr_garbage;
128 };
129 
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136 	SLOT_CLEAN = 0,
137 	SLOT_DIRTY = 1,
138 	SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 	.insn_size = MAX_INSN_SIZE,
145 	.nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 	struct kprobe_insn_page *kip;
156 
157  retry:
158 	list_for_each_entry(kip, &c->pages, list) {
159 		if (kip->nused < slots_per_page(c)) {
160 			int i;
161 			for (i = 0; i < slots_per_page(c); i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * c->insn_size);
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 
174 	/* If there are any garbage slots, collect it and try again. */
175 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 		goto retry;
177 
178 	/* All out of space.  Need to allocate a new page. */
179 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 	if (!kip)
181 		return NULL;
182 
183 	/*
184 	 * Use module_alloc so this page is within +/- 2GB of where the
185 	 * kernel image and loaded module images reside. This is required
186 	 * so x86_64 can correctly handle the %rip-relative fixups.
187 	 */
188 	kip->insns = module_alloc(PAGE_SIZE);
189 	if (!kip->insns) {
190 		kfree(kip);
191 		return NULL;
192 	}
193 	INIT_LIST_HEAD(&kip->list);
194 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	list_add(&kip->list, &c->pages);
199 	return kip->insns;
200 }
201 
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret = NULL;
206 
207 	mutex_lock(&kprobe_insn_mutex);
208 	ret = __get_insn_slot(&kprobe_insn_slots);
209 	mutex_unlock(&kprobe_insn_mutex);
210 
211 	return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 	kip->slot_used[idx] = SLOT_CLEAN;
218 	kip->nused--;
219 	if (kip->nused == 0) {
220 		/*
221 		 * Page is no longer in use.  Free it unless
222 		 * it's the last one.  We keep the last one
223 		 * so as not to have to set it up again the
224 		 * next time somebody inserts a probe.
225 		 */
226 		if (!list_is_singular(&kip->list)) {
227 			list_del(&kip->list);
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 	struct kprobe_insn_page *kip, *next;
239 
240 	/* Ensure no-one is interrupted on the garbages */
241 	synchronize_sched();
242 
243 	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 		int i;
245 		if (kip->ngarbage == 0)
246 			continue;
247 		kip->ngarbage = 0;	/* we will collect all garbages */
248 		for (i = 0; i < slots_per_page(c); i++) {
249 			if (kip->slot_used[i] == SLOT_DIRTY &&
250 			    collect_one_slot(kip, i))
251 				break;
252 		}
253 	}
254 	c->nr_garbage = 0;
255 	return 0;
256 }
257 
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 				       kprobe_opcode_t *slot, int dirty)
260 {
261 	struct kprobe_insn_page *kip;
262 
263 	list_for_each_entry(kip, &c->pages, list) {
264 		long idx = ((long)slot - (long)kip->insns) /
265 				(c->insn_size * sizeof(kprobe_opcode_t));
266 		if (idx >= 0 && idx < slots_per_page(c)) {
267 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 			if (dirty) {
269 				kip->slot_used[idx] = SLOT_DIRTY;
270 				kip->ngarbage++;
271 				if (++c->nr_garbage > slots_per_page(c))
272 					collect_garbage_slots(c);
273 			} else
274 				collect_one_slot(kip, idx);
275 			return;
276 		}
277 	}
278 	/* Could not free this slot. */
279 	WARN_ON(1);
280 }
281 
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 	mutex_lock(&kprobe_insn_mutex);
285 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 	/* .insn_size is initialized later */
294 	.nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 	kprobe_opcode_t *ret = NULL;
300 
301 	mutex_lock(&kprobe_optinsn_mutex);
302 	ret = __get_insn_slot(&kprobe_optinsn_slots);
303 	mutex_unlock(&kprobe_optinsn_mutex);
304 
305 	return ret;
306 }
307 
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 	mutex_lock(&kprobe_optinsn_mutex);
311 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 	mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 	__this_cpu_write(kprobe_instance, kp);
321 }
322 
323 static inline void reset_kprobe_instance(void)
324 {
325 	__this_cpu_write(kprobe_instance, NULL);
326 }
327 
328 /*
329  * This routine is called either:
330  * 	- under the kprobe_mutex - during kprobe_[un]register()
331  * 				OR
332  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 	struct hlist_head *head;
337 	struct kprobe *p;
338 
339 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 	hlist_for_each_entry_rcu(p, head, hlist) {
341 		if (p->addr == addr)
342 			return p;
343 	}
344 
345 	return NULL;
346 }
347 
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349 
350 /* Return true if the kprobe is an aggregator */
351 static inline int kprobe_aggrprobe(struct kprobe *p)
352 {
353 	return p->pre_handler == aggr_pre_handler;
354 }
355 
356 /* Return true(!0) if the kprobe is unused */
357 static inline int kprobe_unused(struct kprobe *p)
358 {
359 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
360 	       list_empty(&p->list);
361 }
362 
363 /*
364  * Keep all fields in the kprobe consistent
365  */
366 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
367 {
368 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
369 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
370 }
371 
372 #ifdef CONFIG_OPTPROBES
373 /* NOTE: change this value only with kprobe_mutex held */
374 static bool kprobes_allow_optimization;
375 
376 /*
377  * Call all pre_handler on the list, but ignores its return value.
378  * This must be called from arch-dep optimized caller.
379  */
380 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
381 {
382 	struct kprobe *kp;
383 
384 	list_for_each_entry_rcu(kp, &p->list, list) {
385 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
386 			set_kprobe_instance(kp);
387 			kp->pre_handler(kp, regs);
388 		}
389 		reset_kprobe_instance();
390 	}
391 }
392 
393 /* Free optimized instructions and optimized_kprobe */
394 static __kprobes void free_aggr_kprobe(struct kprobe *p)
395 {
396 	struct optimized_kprobe *op;
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 	arch_remove_optimized_kprobe(op);
400 	arch_remove_kprobe(p);
401 	kfree(op);
402 }
403 
404 /* Return true(!0) if the kprobe is ready for optimization. */
405 static inline int kprobe_optready(struct kprobe *p)
406 {
407 	struct optimized_kprobe *op;
408 
409 	if (kprobe_aggrprobe(p)) {
410 		op = container_of(p, struct optimized_kprobe, kp);
411 		return arch_prepared_optinsn(&op->optinsn);
412 	}
413 
414 	return 0;
415 }
416 
417 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
418 static inline int kprobe_disarmed(struct kprobe *p)
419 {
420 	struct optimized_kprobe *op;
421 
422 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
423 	if (!kprobe_aggrprobe(p))
424 		return kprobe_disabled(p);
425 
426 	op = container_of(p, struct optimized_kprobe, kp);
427 
428 	return kprobe_disabled(p) && list_empty(&op->list);
429 }
430 
431 /* Return true(!0) if the probe is queued on (un)optimizing lists */
432 static int __kprobes kprobe_queued(struct kprobe *p)
433 {
434 	struct optimized_kprobe *op;
435 
436 	if (kprobe_aggrprobe(p)) {
437 		op = container_of(p, struct optimized_kprobe, kp);
438 		if (!list_empty(&op->list))
439 			return 1;
440 	}
441 	return 0;
442 }
443 
444 /*
445  * Return an optimized kprobe whose optimizing code replaces
446  * instructions including addr (exclude breakpoint).
447  */
448 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
449 {
450 	int i;
451 	struct kprobe *p = NULL;
452 	struct optimized_kprobe *op;
453 
454 	/* Don't check i == 0, since that is a breakpoint case. */
455 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
456 		p = get_kprobe((void *)(addr - i));
457 
458 	if (p && kprobe_optready(p)) {
459 		op = container_of(p, struct optimized_kprobe, kp);
460 		if (arch_within_optimized_kprobe(op, addr))
461 			return p;
462 	}
463 
464 	return NULL;
465 }
466 
467 /* Optimization staging list, protected by kprobe_mutex */
468 static LIST_HEAD(optimizing_list);
469 static LIST_HEAD(unoptimizing_list);
470 
471 static void kprobe_optimizer(struct work_struct *work);
472 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
473 #define OPTIMIZE_DELAY 5
474 
475 /*
476  * Optimize (replace a breakpoint with a jump) kprobes listed on
477  * optimizing_list.
478  */
479 static __kprobes void do_optimize_kprobes(void)
480 {
481 	/* Optimization never be done when disarmed */
482 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
483 	    list_empty(&optimizing_list))
484 		return;
485 
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, we need to call get_online_cpus()
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	get_online_cpus();
497 	mutex_lock(&text_mutex);
498 	arch_optimize_kprobes(&optimizing_list);
499 	mutex_unlock(&text_mutex);
500 	put_online_cpus();
501 }
502 
503 /*
504  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
505  * if need) kprobes listed on unoptimizing_list.
506  */
507 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
508 {
509 	struct optimized_kprobe *op, *tmp;
510 
511 	/* Unoptimization must be done anytime */
512 	if (list_empty(&unoptimizing_list))
513 		return;
514 
515 	/* Ditto to do_optimize_kprobes */
516 	get_online_cpus();
517 	mutex_lock(&text_mutex);
518 	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
519 	/* Loop free_list for disarming */
520 	list_for_each_entry_safe(op, tmp, free_list, list) {
521 		/* Disarm probes if marked disabled */
522 		if (kprobe_disabled(&op->kp))
523 			arch_disarm_kprobe(&op->kp);
524 		if (kprobe_unused(&op->kp)) {
525 			/*
526 			 * Remove unused probes from hash list. After waiting
527 			 * for synchronization, these probes are reclaimed.
528 			 * (reclaiming is done by do_free_cleaned_kprobes.)
529 			 */
530 			hlist_del_rcu(&op->kp.hlist);
531 		} else
532 			list_del_init(&op->list);
533 	}
534 	mutex_unlock(&text_mutex);
535 	put_online_cpus();
536 }
537 
538 /* Reclaim all kprobes on the free_list */
539 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
540 {
541 	struct optimized_kprobe *op, *tmp;
542 
543 	list_for_each_entry_safe(op, tmp, free_list, list) {
544 		BUG_ON(!kprobe_unused(&op->kp));
545 		list_del_init(&op->list);
546 		free_aggr_kprobe(&op->kp);
547 	}
548 }
549 
550 /* Start optimizer after OPTIMIZE_DELAY passed */
551 static __kprobes void kick_kprobe_optimizer(void)
552 {
553 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
554 }
555 
556 /* Kprobe jump optimizer */
557 static __kprobes void kprobe_optimizer(struct work_struct *work)
558 {
559 	LIST_HEAD(free_list);
560 
561 	mutex_lock(&kprobe_mutex);
562 	/* Lock modules while optimizing kprobes */
563 	mutex_lock(&module_mutex);
564 
565 	/*
566 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
567 	 * kprobes before waiting for quiesence period.
568 	 */
569 	do_unoptimize_kprobes(&free_list);
570 
571 	/*
572 	 * Step 2: Wait for quiesence period to ensure all running interrupts
573 	 * are done. Because optprobe may modify multiple instructions
574 	 * there is a chance that Nth instruction is interrupted. In that
575 	 * case, running interrupt can return to 2nd-Nth byte of jump
576 	 * instruction. This wait is for avoiding it.
577 	 */
578 	synchronize_sched();
579 
580 	/* Step 3: Optimize kprobes after quiesence period */
581 	do_optimize_kprobes();
582 
583 	/* Step 4: Free cleaned kprobes after quiesence period */
584 	do_free_cleaned_kprobes(&free_list);
585 
586 	mutex_unlock(&module_mutex);
587 	mutex_unlock(&kprobe_mutex);
588 
589 	/* Step 5: Kick optimizer again if needed */
590 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 		kick_kprobe_optimizer();
592 }
593 
594 /* Wait for completing optimization and unoptimization */
595 static __kprobes void wait_for_kprobe_optimizer(void)
596 {
597 	mutex_lock(&kprobe_mutex);
598 
599 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 		mutex_unlock(&kprobe_mutex);
601 
602 		/* this will also make optimizing_work execute immmediately */
603 		flush_delayed_work(&optimizing_work);
604 		/* @optimizing_work might not have been queued yet, relax */
605 		cpu_relax();
606 
607 		mutex_lock(&kprobe_mutex);
608 	}
609 
610 	mutex_unlock(&kprobe_mutex);
611 }
612 
613 /* Optimize kprobe if p is ready to be optimized */
614 static __kprobes void optimize_kprobe(struct kprobe *p)
615 {
616 	struct optimized_kprobe *op;
617 
618 	/* Check if the kprobe is disabled or not ready for optimization. */
619 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 	    (kprobe_disabled(p) || kprobes_all_disarmed))
621 		return;
622 
623 	/* Both of break_handler and post_handler are not supported. */
624 	if (p->break_handler || p->post_handler)
625 		return;
626 
627 	op = container_of(p, struct optimized_kprobe, kp);
628 
629 	/* Check there is no other kprobes at the optimized instructions */
630 	if (arch_check_optimized_kprobe(op) < 0)
631 		return;
632 
633 	/* Check if it is already optimized. */
634 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 		return;
636 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637 
638 	if (!list_empty(&op->list))
639 		/* This is under unoptimizing. Just dequeue the probe */
640 		list_del_init(&op->list);
641 	else {
642 		list_add(&op->list, &optimizing_list);
643 		kick_kprobe_optimizer();
644 	}
645 }
646 
647 /* Short cut to direct unoptimizing */
648 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650 	get_online_cpus();
651 	arch_unoptimize_kprobe(op);
652 	put_online_cpus();
653 	if (kprobe_disabled(&op->kp))
654 		arch_disarm_kprobe(&op->kp);
655 }
656 
657 /* Unoptimize a kprobe if p is optimized */
658 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
659 {
660 	struct optimized_kprobe *op;
661 
662 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
663 		return; /* This is not an optprobe nor optimized */
664 
665 	op = container_of(p, struct optimized_kprobe, kp);
666 	if (!kprobe_optimized(p)) {
667 		/* Unoptimized or unoptimizing case */
668 		if (force && !list_empty(&op->list)) {
669 			/*
670 			 * Only if this is unoptimizing kprobe and forced,
671 			 * forcibly unoptimize it. (No need to unoptimize
672 			 * unoptimized kprobe again :)
673 			 */
674 			list_del_init(&op->list);
675 			force_unoptimize_kprobe(op);
676 		}
677 		return;
678 	}
679 
680 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
681 	if (!list_empty(&op->list)) {
682 		/* Dequeue from the optimization queue */
683 		list_del_init(&op->list);
684 		return;
685 	}
686 	/* Optimized kprobe case */
687 	if (force)
688 		/* Forcibly update the code: this is a special case */
689 		force_unoptimize_kprobe(op);
690 	else {
691 		list_add(&op->list, &unoptimizing_list);
692 		kick_kprobe_optimizer();
693 	}
694 }
695 
696 /* Cancel unoptimizing for reusing */
697 static void reuse_unused_kprobe(struct kprobe *ap)
698 {
699 	struct optimized_kprobe *op;
700 
701 	BUG_ON(!kprobe_unused(ap));
702 	/*
703 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
704 	 * there is still a relative jump) and disabled.
705 	 */
706 	op = container_of(ap, struct optimized_kprobe, kp);
707 	if (unlikely(list_empty(&op->list)))
708 		printk(KERN_WARNING "Warning: found a stray unused "
709 			"aggrprobe@%p\n", ap->addr);
710 	/* Enable the probe again */
711 	ap->flags &= ~KPROBE_FLAG_DISABLED;
712 	/* Optimize it again (remove from op->list) */
713 	BUG_ON(!kprobe_optready(ap));
714 	optimize_kprobe(ap);
715 }
716 
717 /* Remove optimized instructions */
718 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
719 {
720 	struct optimized_kprobe *op;
721 
722 	op = container_of(p, struct optimized_kprobe, kp);
723 	if (!list_empty(&op->list))
724 		/* Dequeue from the (un)optimization queue */
725 		list_del_init(&op->list);
726 
727 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
728 	/* Don't touch the code, because it is already freed. */
729 	arch_remove_optimized_kprobe(op);
730 }
731 
732 /* Try to prepare optimized instructions */
733 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
734 {
735 	struct optimized_kprobe *op;
736 
737 	op = container_of(p, struct optimized_kprobe, kp);
738 	arch_prepare_optimized_kprobe(op);
739 }
740 
741 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
742 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
743 {
744 	struct optimized_kprobe *op;
745 
746 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
747 	if (!op)
748 		return NULL;
749 
750 	INIT_LIST_HEAD(&op->list);
751 	op->kp.addr = p->addr;
752 	arch_prepare_optimized_kprobe(op);
753 
754 	return &op->kp;
755 }
756 
757 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
758 
759 /*
760  * Prepare an optimized_kprobe and optimize it
761  * NOTE: p must be a normal registered kprobe
762  */
763 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
764 {
765 	struct kprobe *ap;
766 	struct optimized_kprobe *op;
767 
768 	/* Impossible to optimize ftrace-based kprobe */
769 	if (kprobe_ftrace(p))
770 		return;
771 
772 	/* For preparing optimization, jump_label_text_reserved() is called */
773 	jump_label_lock();
774 	mutex_lock(&text_mutex);
775 
776 	ap = alloc_aggr_kprobe(p);
777 	if (!ap)
778 		goto out;
779 
780 	op = container_of(ap, struct optimized_kprobe, kp);
781 	if (!arch_prepared_optinsn(&op->optinsn)) {
782 		/* If failed to setup optimizing, fallback to kprobe */
783 		arch_remove_optimized_kprobe(op);
784 		kfree(op);
785 		goto out;
786 	}
787 
788 	init_aggr_kprobe(ap, p);
789 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
790 
791 out:
792 	mutex_unlock(&text_mutex);
793 	jump_label_unlock();
794 }
795 
796 #ifdef CONFIG_SYSCTL
797 static void __kprobes optimize_all_kprobes(void)
798 {
799 	struct hlist_head *head;
800 	struct kprobe *p;
801 	unsigned int i;
802 
803 	mutex_lock(&kprobe_mutex);
804 	/* If optimization is already allowed, just return */
805 	if (kprobes_allow_optimization)
806 		goto out;
807 
808 	kprobes_allow_optimization = true;
809 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
810 		head = &kprobe_table[i];
811 		hlist_for_each_entry_rcu(p, head, hlist)
812 			if (!kprobe_disabled(p))
813 				optimize_kprobe(p);
814 	}
815 	printk(KERN_INFO "Kprobes globally optimized\n");
816 out:
817 	mutex_unlock(&kprobe_mutex);
818 }
819 
820 static void __kprobes unoptimize_all_kprobes(void)
821 {
822 	struct hlist_head *head;
823 	struct kprobe *p;
824 	unsigned int i;
825 
826 	mutex_lock(&kprobe_mutex);
827 	/* If optimization is already prohibited, just return */
828 	if (!kprobes_allow_optimization) {
829 		mutex_unlock(&kprobe_mutex);
830 		return;
831 	}
832 
833 	kprobes_allow_optimization = false;
834 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835 		head = &kprobe_table[i];
836 		hlist_for_each_entry_rcu(p, head, hlist) {
837 			if (!kprobe_disabled(p))
838 				unoptimize_kprobe(p, false);
839 		}
840 	}
841 	mutex_unlock(&kprobe_mutex);
842 
843 	/* Wait for unoptimizing completion */
844 	wait_for_kprobe_optimizer();
845 	printk(KERN_INFO "Kprobes globally unoptimized\n");
846 }
847 
848 static DEFINE_MUTEX(kprobe_sysctl_mutex);
849 int sysctl_kprobes_optimization;
850 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
851 				      void __user *buffer, size_t *length,
852 				      loff_t *ppos)
853 {
854 	int ret;
855 
856 	mutex_lock(&kprobe_sysctl_mutex);
857 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
858 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
859 
860 	if (sysctl_kprobes_optimization)
861 		optimize_all_kprobes();
862 	else
863 		unoptimize_all_kprobes();
864 	mutex_unlock(&kprobe_sysctl_mutex);
865 
866 	return ret;
867 }
868 #endif /* CONFIG_SYSCTL */
869 
870 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
871 static void __kprobes __arm_kprobe(struct kprobe *p)
872 {
873 	struct kprobe *_p;
874 
875 	/* Check collision with other optimized kprobes */
876 	_p = get_optimized_kprobe((unsigned long)p->addr);
877 	if (unlikely(_p))
878 		/* Fallback to unoptimized kprobe */
879 		unoptimize_kprobe(_p, true);
880 
881 	arch_arm_kprobe(p);
882 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
883 }
884 
885 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
886 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
887 {
888 	struct kprobe *_p;
889 
890 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
891 
892 	if (!kprobe_queued(p)) {
893 		arch_disarm_kprobe(p);
894 		/* If another kprobe was blocked, optimize it. */
895 		_p = get_optimized_kprobe((unsigned long)p->addr);
896 		if (unlikely(_p) && reopt)
897 			optimize_kprobe(_p);
898 	}
899 	/* TODO: reoptimize others after unoptimized this probe */
900 }
901 
902 #else /* !CONFIG_OPTPROBES */
903 
904 #define optimize_kprobe(p)			do {} while (0)
905 #define unoptimize_kprobe(p, f)			do {} while (0)
906 #define kill_optimized_kprobe(p)		do {} while (0)
907 #define prepare_optimized_kprobe(p)		do {} while (0)
908 #define try_to_optimize_kprobe(p)		do {} while (0)
909 #define __arm_kprobe(p)				arch_arm_kprobe(p)
910 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
911 #define kprobe_disarmed(p)			kprobe_disabled(p)
912 #define wait_for_kprobe_optimizer()		do {} while (0)
913 
914 /* There should be no unused kprobes can be reused without optimization */
915 static void reuse_unused_kprobe(struct kprobe *ap)
916 {
917 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
918 	BUG_ON(kprobe_unused(ap));
919 }
920 
921 static __kprobes void free_aggr_kprobe(struct kprobe *p)
922 {
923 	arch_remove_kprobe(p);
924 	kfree(p);
925 }
926 
927 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
928 {
929 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
930 }
931 #endif /* CONFIG_OPTPROBES */
932 
933 #ifdef CONFIG_KPROBES_ON_FTRACE
934 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
935 	.func = kprobe_ftrace_handler,
936 	.flags = FTRACE_OPS_FL_SAVE_REGS,
937 };
938 static int kprobe_ftrace_enabled;
939 
940 /* Must ensure p->addr is really on ftrace */
941 static int __kprobes prepare_kprobe(struct kprobe *p)
942 {
943 	if (!kprobe_ftrace(p))
944 		return arch_prepare_kprobe(p);
945 
946 	return arch_prepare_kprobe_ftrace(p);
947 }
948 
949 /* Caller must lock kprobe_mutex */
950 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
951 {
952 	int ret;
953 
954 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
955 				   (unsigned long)p->addr, 0, 0);
956 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
957 	kprobe_ftrace_enabled++;
958 	if (kprobe_ftrace_enabled == 1) {
959 		ret = register_ftrace_function(&kprobe_ftrace_ops);
960 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
961 	}
962 }
963 
964 /* Caller must lock kprobe_mutex */
965 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
966 {
967 	int ret;
968 
969 	kprobe_ftrace_enabled--;
970 	if (kprobe_ftrace_enabled == 0) {
971 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
972 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
973 	}
974 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
975 			   (unsigned long)p->addr, 1, 0);
976 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
977 }
978 #else	/* !CONFIG_KPROBES_ON_FTRACE */
979 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
980 #define arm_kprobe_ftrace(p)	do {} while (0)
981 #define disarm_kprobe_ftrace(p)	do {} while (0)
982 #endif
983 
984 /* Arm a kprobe with text_mutex */
985 static void __kprobes arm_kprobe(struct kprobe *kp)
986 {
987 	if (unlikely(kprobe_ftrace(kp))) {
988 		arm_kprobe_ftrace(kp);
989 		return;
990 	}
991 	/*
992 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
993 	 * this doesn't cause deadlock on text_mutex. So, we don't
994 	 * need get_online_cpus().
995 	 */
996 	mutex_lock(&text_mutex);
997 	__arm_kprobe(kp);
998 	mutex_unlock(&text_mutex);
999 }
1000 
1001 /* Disarm a kprobe with text_mutex */
1002 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1003 {
1004 	if (unlikely(kprobe_ftrace(kp))) {
1005 		disarm_kprobe_ftrace(kp);
1006 		return;
1007 	}
1008 	/* Ditto */
1009 	mutex_lock(&text_mutex);
1010 	__disarm_kprobe(kp, reopt);
1011 	mutex_unlock(&text_mutex);
1012 }
1013 
1014 /*
1015  * Aggregate handlers for multiple kprobes support - these handlers
1016  * take care of invoking the individual kprobe handlers on p->list
1017  */
1018 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1019 {
1020 	struct kprobe *kp;
1021 
1022 	list_for_each_entry_rcu(kp, &p->list, list) {
1023 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1024 			set_kprobe_instance(kp);
1025 			if (kp->pre_handler(kp, regs))
1026 				return 1;
1027 		}
1028 		reset_kprobe_instance();
1029 	}
1030 	return 0;
1031 }
1032 
1033 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1034 					unsigned long flags)
1035 {
1036 	struct kprobe *kp;
1037 
1038 	list_for_each_entry_rcu(kp, &p->list, list) {
1039 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1040 			set_kprobe_instance(kp);
1041 			kp->post_handler(kp, regs, flags);
1042 			reset_kprobe_instance();
1043 		}
1044 	}
1045 }
1046 
1047 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1048 					int trapnr)
1049 {
1050 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051 
1052 	/*
1053 	 * if we faulted "during" the execution of a user specified
1054 	 * probe handler, invoke just that probe's fault handler
1055 	 */
1056 	if (cur && cur->fault_handler) {
1057 		if (cur->fault_handler(cur, regs, trapnr))
1058 			return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1064 {
1065 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1066 	int ret = 0;
1067 
1068 	if (cur && cur->break_handler) {
1069 		if (cur->break_handler(cur, regs))
1070 			ret = 1;
1071 	}
1072 	reset_kprobe_instance();
1073 	return ret;
1074 }
1075 
1076 /* Walks the list and increments nmissed count for multiprobe case */
1077 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1078 {
1079 	struct kprobe *kp;
1080 	if (!kprobe_aggrprobe(p)) {
1081 		p->nmissed++;
1082 	} else {
1083 		list_for_each_entry_rcu(kp, &p->list, list)
1084 			kp->nmissed++;
1085 	}
1086 	return;
1087 }
1088 
1089 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1090 				struct hlist_head *head)
1091 {
1092 	struct kretprobe *rp = ri->rp;
1093 
1094 	/* remove rp inst off the rprobe_inst_table */
1095 	hlist_del(&ri->hlist);
1096 	INIT_HLIST_NODE(&ri->hlist);
1097 	if (likely(rp)) {
1098 		raw_spin_lock(&rp->lock);
1099 		hlist_add_head(&ri->hlist, &rp->free_instances);
1100 		raw_spin_unlock(&rp->lock);
1101 	} else
1102 		/* Unregistering */
1103 		hlist_add_head(&ri->hlist, head);
1104 }
1105 
1106 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1107 			 struct hlist_head **head, unsigned long *flags)
1108 __acquires(hlist_lock)
1109 {
1110 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1111 	raw_spinlock_t *hlist_lock;
1112 
1113 	*head = &kretprobe_inst_table[hash];
1114 	hlist_lock = kretprobe_table_lock_ptr(hash);
1115 	raw_spin_lock_irqsave(hlist_lock, *flags);
1116 }
1117 
1118 static void __kprobes kretprobe_table_lock(unsigned long hash,
1119 	unsigned long *flags)
1120 __acquires(hlist_lock)
1121 {
1122 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1123 	raw_spin_lock_irqsave(hlist_lock, *flags);
1124 }
1125 
1126 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1127 	unsigned long *flags)
1128 __releases(hlist_lock)
1129 {
1130 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1131 	raw_spinlock_t *hlist_lock;
1132 
1133 	hlist_lock = kretprobe_table_lock_ptr(hash);
1134 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135 }
1136 
1137 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1138        unsigned long *flags)
1139 __releases(hlist_lock)
1140 {
1141 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1142 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1143 }
1144 
1145 /*
1146  * This function is called from finish_task_switch when task tk becomes dead,
1147  * so that we can recycle any function-return probe instances associated
1148  * with this task. These left over instances represent probed functions
1149  * that have been called but will never return.
1150  */
1151 void __kprobes kprobe_flush_task(struct task_struct *tk)
1152 {
1153 	struct kretprobe_instance *ri;
1154 	struct hlist_head *head, empty_rp;
1155 	struct hlist_node *tmp;
1156 	unsigned long hash, flags = 0;
1157 
1158 	if (unlikely(!kprobes_initialized))
1159 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1160 		return;
1161 
1162 	INIT_HLIST_HEAD(&empty_rp);
1163 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1164 	head = &kretprobe_inst_table[hash];
1165 	kretprobe_table_lock(hash, &flags);
1166 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1167 		if (ri->task == tk)
1168 			recycle_rp_inst(ri, &empty_rp);
1169 	}
1170 	kretprobe_table_unlock(hash, &flags);
1171 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1172 		hlist_del(&ri->hlist);
1173 		kfree(ri);
1174 	}
1175 }
1176 
1177 static inline void free_rp_inst(struct kretprobe *rp)
1178 {
1179 	struct kretprobe_instance *ri;
1180 	struct hlist_node *next;
1181 
1182 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1183 		hlist_del(&ri->hlist);
1184 		kfree(ri);
1185 	}
1186 }
1187 
1188 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1189 {
1190 	unsigned long flags, hash;
1191 	struct kretprobe_instance *ri;
1192 	struct hlist_node *next;
1193 	struct hlist_head *head;
1194 
1195 	/* No race here */
1196 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1197 		kretprobe_table_lock(hash, &flags);
1198 		head = &kretprobe_inst_table[hash];
1199 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1200 			if (ri->rp == rp)
1201 				ri->rp = NULL;
1202 		}
1203 		kretprobe_table_unlock(hash, &flags);
1204 	}
1205 	free_rp_inst(rp);
1206 }
1207 
1208 /*
1209 * Add the new probe to ap->list. Fail if this is the
1210 * second jprobe at the address - two jprobes can't coexist
1211 */
1212 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1213 {
1214 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1215 
1216 	if (p->break_handler || p->post_handler)
1217 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1218 
1219 	if (p->break_handler) {
1220 		if (ap->break_handler)
1221 			return -EEXIST;
1222 		list_add_tail_rcu(&p->list, &ap->list);
1223 		ap->break_handler = aggr_break_handler;
1224 	} else
1225 		list_add_rcu(&p->list, &ap->list);
1226 	if (p->post_handler && !ap->post_handler)
1227 		ap->post_handler = aggr_post_handler;
1228 
1229 	return 0;
1230 }
1231 
1232 /*
1233  * Fill in the required fields of the "manager kprobe". Replace the
1234  * earlier kprobe in the hlist with the manager kprobe
1235  */
1236 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1237 {
1238 	/* Copy p's insn slot to ap */
1239 	copy_kprobe(p, ap);
1240 	flush_insn_slot(ap);
1241 	ap->addr = p->addr;
1242 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1243 	ap->pre_handler = aggr_pre_handler;
1244 	ap->fault_handler = aggr_fault_handler;
1245 	/* We don't care the kprobe which has gone. */
1246 	if (p->post_handler && !kprobe_gone(p))
1247 		ap->post_handler = aggr_post_handler;
1248 	if (p->break_handler && !kprobe_gone(p))
1249 		ap->break_handler = aggr_break_handler;
1250 
1251 	INIT_LIST_HEAD(&ap->list);
1252 	INIT_HLIST_NODE(&ap->hlist);
1253 
1254 	list_add_rcu(&p->list, &ap->list);
1255 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1256 }
1257 
1258 /*
1259  * This is the second or subsequent kprobe at the address - handle
1260  * the intricacies
1261  */
1262 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1263 					  struct kprobe *p)
1264 {
1265 	int ret = 0;
1266 	struct kprobe *ap = orig_p;
1267 
1268 	/* For preparing optimization, jump_label_text_reserved() is called */
1269 	jump_label_lock();
1270 	/*
1271 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1272 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1273 	 */
1274 	get_online_cpus();
1275 	mutex_lock(&text_mutex);
1276 
1277 	if (!kprobe_aggrprobe(orig_p)) {
1278 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1279 		ap = alloc_aggr_kprobe(orig_p);
1280 		if (!ap) {
1281 			ret = -ENOMEM;
1282 			goto out;
1283 		}
1284 		init_aggr_kprobe(ap, orig_p);
1285 	} else if (kprobe_unused(ap))
1286 		/* This probe is going to die. Rescue it */
1287 		reuse_unused_kprobe(ap);
1288 
1289 	if (kprobe_gone(ap)) {
1290 		/*
1291 		 * Attempting to insert new probe at the same location that
1292 		 * had a probe in the module vaddr area which already
1293 		 * freed. So, the instruction slot has already been
1294 		 * released. We need a new slot for the new probe.
1295 		 */
1296 		ret = arch_prepare_kprobe(ap);
1297 		if (ret)
1298 			/*
1299 			 * Even if fail to allocate new slot, don't need to
1300 			 * free aggr_probe. It will be used next time, or
1301 			 * freed by unregister_kprobe.
1302 			 */
1303 			goto out;
1304 
1305 		/* Prepare optimized instructions if possible. */
1306 		prepare_optimized_kprobe(ap);
1307 
1308 		/*
1309 		 * Clear gone flag to prevent allocating new slot again, and
1310 		 * set disabled flag because it is not armed yet.
1311 		 */
1312 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1313 			    | KPROBE_FLAG_DISABLED;
1314 	}
1315 
1316 	/* Copy ap's insn slot to p */
1317 	copy_kprobe(ap, p);
1318 	ret = add_new_kprobe(ap, p);
1319 
1320 out:
1321 	mutex_unlock(&text_mutex);
1322 	put_online_cpus();
1323 	jump_label_unlock();
1324 
1325 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1326 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1327 		if (!kprobes_all_disarmed)
1328 			/* Arm the breakpoint again. */
1329 			arm_kprobe(ap);
1330 	}
1331 	return ret;
1332 }
1333 
1334 static int __kprobes in_kprobes_functions(unsigned long addr)
1335 {
1336 	struct kprobe_blackpoint *kb;
1337 
1338 	if (addr >= (unsigned long)__kprobes_text_start &&
1339 	    addr < (unsigned long)__kprobes_text_end)
1340 		return -EINVAL;
1341 	/*
1342 	 * If there exists a kprobe_blacklist, verify and
1343 	 * fail any probe registration in the prohibited area
1344 	 */
1345 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1346 		if (kb->start_addr) {
1347 			if (addr >= kb->start_addr &&
1348 			    addr < (kb->start_addr + kb->range))
1349 				return -EINVAL;
1350 		}
1351 	}
1352 	return 0;
1353 }
1354 
1355 /*
1356  * If we have a symbol_name argument, look it up and add the offset field
1357  * to it. This way, we can specify a relative address to a symbol.
1358  * This returns encoded errors if it fails to look up symbol or invalid
1359  * combination of parameters.
1360  */
1361 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1362 {
1363 	kprobe_opcode_t *addr = p->addr;
1364 
1365 	if ((p->symbol_name && p->addr) ||
1366 	    (!p->symbol_name && !p->addr))
1367 		goto invalid;
1368 
1369 	if (p->symbol_name) {
1370 		kprobe_lookup_name(p->symbol_name, addr);
1371 		if (!addr)
1372 			return ERR_PTR(-ENOENT);
1373 	}
1374 
1375 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1376 	if (addr)
1377 		return addr;
1378 
1379 invalid:
1380 	return ERR_PTR(-EINVAL);
1381 }
1382 
1383 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1384 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1385 {
1386 	struct kprobe *ap, *list_p;
1387 
1388 	ap = get_kprobe(p->addr);
1389 	if (unlikely(!ap))
1390 		return NULL;
1391 
1392 	if (p != ap) {
1393 		list_for_each_entry_rcu(list_p, &ap->list, list)
1394 			if (list_p == p)
1395 			/* kprobe p is a valid probe */
1396 				goto valid;
1397 		return NULL;
1398 	}
1399 valid:
1400 	return ap;
1401 }
1402 
1403 /* Return error if the kprobe is being re-registered */
1404 static inline int check_kprobe_rereg(struct kprobe *p)
1405 {
1406 	int ret = 0;
1407 
1408 	mutex_lock(&kprobe_mutex);
1409 	if (__get_valid_kprobe(p))
1410 		ret = -EINVAL;
1411 	mutex_unlock(&kprobe_mutex);
1412 
1413 	return ret;
1414 }
1415 
1416 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1417 					       struct module **probed_mod)
1418 {
1419 	int ret = 0;
1420 	unsigned long ftrace_addr;
1421 
1422 	/*
1423 	 * If the address is located on a ftrace nop, set the
1424 	 * breakpoint to the following instruction.
1425 	 */
1426 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1427 	if (ftrace_addr) {
1428 #ifdef CONFIG_KPROBES_ON_FTRACE
1429 		/* Given address is not on the instruction boundary */
1430 		if ((unsigned long)p->addr != ftrace_addr)
1431 			return -EILSEQ;
1432 		p->flags |= KPROBE_FLAG_FTRACE;
1433 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1434 		return -EINVAL;
1435 #endif
1436 	}
1437 
1438 	jump_label_lock();
1439 	preempt_disable();
1440 
1441 	/* Ensure it is not in reserved area nor out of text */
1442 	if (!kernel_text_address((unsigned long) p->addr) ||
1443 	    in_kprobes_functions((unsigned long) p->addr) ||
1444 	    jump_label_text_reserved(p->addr, p->addr)) {
1445 		ret = -EINVAL;
1446 		goto out;
1447 	}
1448 
1449 	/* Check if are we probing a module */
1450 	*probed_mod = __module_text_address((unsigned long) p->addr);
1451 	if (*probed_mod) {
1452 		/*
1453 		 * We must hold a refcount of the probed module while updating
1454 		 * its code to prohibit unexpected unloading.
1455 		 */
1456 		if (unlikely(!try_module_get(*probed_mod))) {
1457 			ret = -ENOENT;
1458 			goto out;
1459 		}
1460 
1461 		/*
1462 		 * If the module freed .init.text, we couldn't insert
1463 		 * kprobes in there.
1464 		 */
1465 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1466 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1467 			module_put(*probed_mod);
1468 			*probed_mod = NULL;
1469 			ret = -ENOENT;
1470 		}
1471 	}
1472 out:
1473 	preempt_enable();
1474 	jump_label_unlock();
1475 
1476 	return ret;
1477 }
1478 
1479 int __kprobes register_kprobe(struct kprobe *p)
1480 {
1481 	int ret;
1482 	struct kprobe *old_p;
1483 	struct module *probed_mod;
1484 	kprobe_opcode_t *addr;
1485 
1486 	/* Adjust probe address from symbol */
1487 	addr = kprobe_addr(p);
1488 	if (IS_ERR(addr))
1489 		return PTR_ERR(addr);
1490 	p->addr = addr;
1491 
1492 	ret = check_kprobe_rereg(p);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1497 	p->flags &= KPROBE_FLAG_DISABLED;
1498 	p->nmissed = 0;
1499 	INIT_LIST_HEAD(&p->list);
1500 
1501 	ret = check_kprobe_address_safe(p, &probed_mod);
1502 	if (ret)
1503 		return ret;
1504 
1505 	mutex_lock(&kprobe_mutex);
1506 
1507 	old_p = get_kprobe(p->addr);
1508 	if (old_p) {
1509 		/* Since this may unoptimize old_p, locking text_mutex. */
1510 		ret = register_aggr_kprobe(old_p, p);
1511 		goto out;
1512 	}
1513 
1514 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1515 	ret = prepare_kprobe(p);
1516 	mutex_unlock(&text_mutex);
1517 	if (ret)
1518 		goto out;
1519 
1520 	INIT_HLIST_NODE(&p->hlist);
1521 	hlist_add_head_rcu(&p->hlist,
1522 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1523 
1524 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1525 		arm_kprobe(p);
1526 
1527 	/* Try to optimize kprobe */
1528 	try_to_optimize_kprobe(p);
1529 
1530 out:
1531 	mutex_unlock(&kprobe_mutex);
1532 
1533 	if (probed_mod)
1534 		module_put(probed_mod);
1535 
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(register_kprobe);
1539 
1540 /* Check if all probes on the aggrprobe are disabled */
1541 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1542 {
1543 	struct kprobe *kp;
1544 
1545 	list_for_each_entry_rcu(kp, &ap->list, list)
1546 		if (!kprobe_disabled(kp))
1547 			/*
1548 			 * There is an active probe on the list.
1549 			 * We can't disable this ap.
1550 			 */
1551 			return 0;
1552 
1553 	return 1;
1554 }
1555 
1556 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1557 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1558 {
1559 	struct kprobe *orig_p;
1560 
1561 	/* Get an original kprobe for return */
1562 	orig_p = __get_valid_kprobe(p);
1563 	if (unlikely(orig_p == NULL))
1564 		return NULL;
1565 
1566 	if (!kprobe_disabled(p)) {
1567 		/* Disable probe if it is a child probe */
1568 		if (p != orig_p)
1569 			p->flags |= KPROBE_FLAG_DISABLED;
1570 
1571 		/* Try to disarm and disable this/parent probe */
1572 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1573 			disarm_kprobe(orig_p, true);
1574 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1575 		}
1576 	}
1577 
1578 	return orig_p;
1579 }
1580 
1581 /*
1582  * Unregister a kprobe without a scheduler synchronization.
1583  */
1584 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1585 {
1586 	struct kprobe *ap, *list_p;
1587 
1588 	/* Disable kprobe. This will disarm it if needed. */
1589 	ap = __disable_kprobe(p);
1590 	if (ap == NULL)
1591 		return -EINVAL;
1592 
1593 	if (ap == p)
1594 		/*
1595 		 * This probe is an independent(and non-optimized) kprobe
1596 		 * (not an aggrprobe). Remove from the hash list.
1597 		 */
1598 		goto disarmed;
1599 
1600 	/* Following process expects this probe is an aggrprobe */
1601 	WARN_ON(!kprobe_aggrprobe(ap));
1602 
1603 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1604 		/*
1605 		 * !disarmed could be happen if the probe is under delayed
1606 		 * unoptimizing.
1607 		 */
1608 		goto disarmed;
1609 	else {
1610 		/* If disabling probe has special handlers, update aggrprobe */
1611 		if (p->break_handler && !kprobe_gone(p))
1612 			ap->break_handler = NULL;
1613 		if (p->post_handler && !kprobe_gone(p)) {
1614 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1615 				if ((list_p != p) && (list_p->post_handler))
1616 					goto noclean;
1617 			}
1618 			ap->post_handler = NULL;
1619 		}
1620 noclean:
1621 		/*
1622 		 * Remove from the aggrprobe: this path will do nothing in
1623 		 * __unregister_kprobe_bottom().
1624 		 */
1625 		list_del_rcu(&p->list);
1626 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1627 			/*
1628 			 * Try to optimize this probe again, because post
1629 			 * handler may have been changed.
1630 			 */
1631 			optimize_kprobe(ap);
1632 	}
1633 	return 0;
1634 
1635 disarmed:
1636 	BUG_ON(!kprobe_disarmed(ap));
1637 	hlist_del_rcu(&ap->hlist);
1638 	return 0;
1639 }
1640 
1641 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1642 {
1643 	struct kprobe *ap;
1644 
1645 	if (list_empty(&p->list))
1646 		/* This is an independent kprobe */
1647 		arch_remove_kprobe(p);
1648 	else if (list_is_singular(&p->list)) {
1649 		/* This is the last child of an aggrprobe */
1650 		ap = list_entry(p->list.next, struct kprobe, list);
1651 		list_del(&p->list);
1652 		free_aggr_kprobe(ap);
1653 	}
1654 	/* Otherwise, do nothing. */
1655 }
1656 
1657 int __kprobes register_kprobes(struct kprobe **kps, int num)
1658 {
1659 	int i, ret = 0;
1660 
1661 	if (num <= 0)
1662 		return -EINVAL;
1663 	for (i = 0; i < num; i++) {
1664 		ret = register_kprobe(kps[i]);
1665 		if (ret < 0) {
1666 			if (i > 0)
1667 				unregister_kprobes(kps, i);
1668 			break;
1669 		}
1670 	}
1671 	return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(register_kprobes);
1674 
1675 void __kprobes unregister_kprobe(struct kprobe *p)
1676 {
1677 	unregister_kprobes(&p, 1);
1678 }
1679 EXPORT_SYMBOL_GPL(unregister_kprobe);
1680 
1681 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1682 {
1683 	int i;
1684 
1685 	if (num <= 0)
1686 		return;
1687 	mutex_lock(&kprobe_mutex);
1688 	for (i = 0; i < num; i++)
1689 		if (__unregister_kprobe_top(kps[i]) < 0)
1690 			kps[i]->addr = NULL;
1691 	mutex_unlock(&kprobe_mutex);
1692 
1693 	synchronize_sched();
1694 	for (i = 0; i < num; i++)
1695 		if (kps[i]->addr)
1696 			__unregister_kprobe_bottom(kps[i]);
1697 }
1698 EXPORT_SYMBOL_GPL(unregister_kprobes);
1699 
1700 static struct notifier_block kprobe_exceptions_nb = {
1701 	.notifier_call = kprobe_exceptions_notify,
1702 	.priority = 0x7fffffff /* we need to be notified first */
1703 };
1704 
1705 unsigned long __weak arch_deref_entry_point(void *entry)
1706 {
1707 	return (unsigned long)entry;
1708 }
1709 
1710 int __kprobes register_jprobes(struct jprobe **jps, int num)
1711 {
1712 	struct jprobe *jp;
1713 	int ret = 0, i;
1714 
1715 	if (num <= 0)
1716 		return -EINVAL;
1717 	for (i = 0; i < num; i++) {
1718 		unsigned long addr, offset;
1719 		jp = jps[i];
1720 		addr = arch_deref_entry_point(jp->entry);
1721 
1722 		/* Verify probepoint is a function entry point */
1723 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1724 		    offset == 0) {
1725 			jp->kp.pre_handler = setjmp_pre_handler;
1726 			jp->kp.break_handler = longjmp_break_handler;
1727 			ret = register_kprobe(&jp->kp);
1728 		} else
1729 			ret = -EINVAL;
1730 
1731 		if (ret < 0) {
1732 			if (i > 0)
1733 				unregister_jprobes(jps, i);
1734 			break;
1735 		}
1736 	}
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(register_jprobes);
1740 
1741 int __kprobes register_jprobe(struct jprobe *jp)
1742 {
1743 	return register_jprobes(&jp, 1);
1744 }
1745 EXPORT_SYMBOL_GPL(register_jprobe);
1746 
1747 void __kprobes unregister_jprobe(struct jprobe *jp)
1748 {
1749 	unregister_jprobes(&jp, 1);
1750 }
1751 EXPORT_SYMBOL_GPL(unregister_jprobe);
1752 
1753 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1754 {
1755 	int i;
1756 
1757 	if (num <= 0)
1758 		return;
1759 	mutex_lock(&kprobe_mutex);
1760 	for (i = 0; i < num; i++)
1761 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1762 			jps[i]->kp.addr = NULL;
1763 	mutex_unlock(&kprobe_mutex);
1764 
1765 	synchronize_sched();
1766 	for (i = 0; i < num; i++) {
1767 		if (jps[i]->kp.addr)
1768 			__unregister_kprobe_bottom(&jps[i]->kp);
1769 	}
1770 }
1771 EXPORT_SYMBOL_GPL(unregister_jprobes);
1772 
1773 #ifdef CONFIG_KRETPROBES
1774 /*
1775  * This kprobe pre_handler is registered with every kretprobe. When probe
1776  * hits it will set up the return probe.
1777  */
1778 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1779 					   struct pt_regs *regs)
1780 {
1781 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1782 	unsigned long hash, flags = 0;
1783 	struct kretprobe_instance *ri;
1784 
1785 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1786 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1787 	raw_spin_lock_irqsave(&rp->lock, flags);
1788 	if (!hlist_empty(&rp->free_instances)) {
1789 		ri = hlist_entry(rp->free_instances.first,
1790 				struct kretprobe_instance, hlist);
1791 		hlist_del(&ri->hlist);
1792 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1793 
1794 		ri->rp = rp;
1795 		ri->task = current;
1796 
1797 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1798 			raw_spin_lock_irqsave(&rp->lock, flags);
1799 			hlist_add_head(&ri->hlist, &rp->free_instances);
1800 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1801 			return 0;
1802 		}
1803 
1804 		arch_prepare_kretprobe(ri, regs);
1805 
1806 		/* XXX(hch): why is there no hlist_move_head? */
1807 		INIT_HLIST_NODE(&ri->hlist);
1808 		kretprobe_table_lock(hash, &flags);
1809 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1810 		kretprobe_table_unlock(hash, &flags);
1811 	} else {
1812 		rp->nmissed++;
1813 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1814 	}
1815 	return 0;
1816 }
1817 
1818 int __kprobes register_kretprobe(struct kretprobe *rp)
1819 {
1820 	int ret = 0;
1821 	struct kretprobe_instance *inst;
1822 	int i;
1823 	void *addr;
1824 
1825 	if (kretprobe_blacklist_size) {
1826 		addr = kprobe_addr(&rp->kp);
1827 		if (IS_ERR(addr))
1828 			return PTR_ERR(addr);
1829 
1830 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1831 			if (kretprobe_blacklist[i].addr == addr)
1832 				return -EINVAL;
1833 		}
1834 	}
1835 
1836 	rp->kp.pre_handler = pre_handler_kretprobe;
1837 	rp->kp.post_handler = NULL;
1838 	rp->kp.fault_handler = NULL;
1839 	rp->kp.break_handler = NULL;
1840 
1841 	/* Pre-allocate memory for max kretprobe instances */
1842 	if (rp->maxactive <= 0) {
1843 #ifdef CONFIG_PREEMPT
1844 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1845 #else
1846 		rp->maxactive = num_possible_cpus();
1847 #endif
1848 	}
1849 	raw_spin_lock_init(&rp->lock);
1850 	INIT_HLIST_HEAD(&rp->free_instances);
1851 	for (i = 0; i < rp->maxactive; i++) {
1852 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1853 			       rp->data_size, GFP_KERNEL);
1854 		if (inst == NULL) {
1855 			free_rp_inst(rp);
1856 			return -ENOMEM;
1857 		}
1858 		INIT_HLIST_NODE(&inst->hlist);
1859 		hlist_add_head(&inst->hlist, &rp->free_instances);
1860 	}
1861 
1862 	rp->nmissed = 0;
1863 	/* Establish function entry probe point */
1864 	ret = register_kprobe(&rp->kp);
1865 	if (ret != 0)
1866 		free_rp_inst(rp);
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(register_kretprobe);
1870 
1871 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1872 {
1873 	int ret = 0, i;
1874 
1875 	if (num <= 0)
1876 		return -EINVAL;
1877 	for (i = 0; i < num; i++) {
1878 		ret = register_kretprobe(rps[i]);
1879 		if (ret < 0) {
1880 			if (i > 0)
1881 				unregister_kretprobes(rps, i);
1882 			break;
1883 		}
1884 	}
1885 	return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(register_kretprobes);
1888 
1889 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1890 {
1891 	unregister_kretprobes(&rp, 1);
1892 }
1893 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1894 
1895 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1896 {
1897 	int i;
1898 
1899 	if (num <= 0)
1900 		return;
1901 	mutex_lock(&kprobe_mutex);
1902 	for (i = 0; i < num; i++)
1903 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1904 			rps[i]->kp.addr = NULL;
1905 	mutex_unlock(&kprobe_mutex);
1906 
1907 	synchronize_sched();
1908 	for (i = 0; i < num; i++) {
1909 		if (rps[i]->kp.addr) {
1910 			__unregister_kprobe_bottom(&rps[i]->kp);
1911 			cleanup_rp_inst(rps[i]);
1912 		}
1913 	}
1914 }
1915 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1916 
1917 #else /* CONFIG_KRETPROBES */
1918 int __kprobes register_kretprobe(struct kretprobe *rp)
1919 {
1920 	return -ENOSYS;
1921 }
1922 EXPORT_SYMBOL_GPL(register_kretprobe);
1923 
1924 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1925 {
1926 	return -ENOSYS;
1927 }
1928 EXPORT_SYMBOL_GPL(register_kretprobes);
1929 
1930 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1931 {
1932 }
1933 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1934 
1935 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1936 {
1937 }
1938 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1939 
1940 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1941 					   struct pt_regs *regs)
1942 {
1943 	return 0;
1944 }
1945 
1946 #endif /* CONFIG_KRETPROBES */
1947 
1948 /* Set the kprobe gone and remove its instruction buffer. */
1949 static void __kprobes kill_kprobe(struct kprobe *p)
1950 {
1951 	struct kprobe *kp;
1952 
1953 	p->flags |= KPROBE_FLAG_GONE;
1954 	if (kprobe_aggrprobe(p)) {
1955 		/*
1956 		 * If this is an aggr_kprobe, we have to list all the
1957 		 * chained probes and mark them GONE.
1958 		 */
1959 		list_for_each_entry_rcu(kp, &p->list, list)
1960 			kp->flags |= KPROBE_FLAG_GONE;
1961 		p->post_handler = NULL;
1962 		p->break_handler = NULL;
1963 		kill_optimized_kprobe(p);
1964 	}
1965 	/*
1966 	 * Here, we can remove insn_slot safely, because no thread calls
1967 	 * the original probed function (which will be freed soon) any more.
1968 	 */
1969 	arch_remove_kprobe(p);
1970 }
1971 
1972 /* Disable one kprobe */
1973 int __kprobes disable_kprobe(struct kprobe *kp)
1974 {
1975 	int ret = 0;
1976 
1977 	mutex_lock(&kprobe_mutex);
1978 
1979 	/* Disable this kprobe */
1980 	if (__disable_kprobe(kp) == NULL)
1981 		ret = -EINVAL;
1982 
1983 	mutex_unlock(&kprobe_mutex);
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(disable_kprobe);
1987 
1988 /* Enable one kprobe */
1989 int __kprobes enable_kprobe(struct kprobe *kp)
1990 {
1991 	int ret = 0;
1992 	struct kprobe *p;
1993 
1994 	mutex_lock(&kprobe_mutex);
1995 
1996 	/* Check whether specified probe is valid. */
1997 	p = __get_valid_kprobe(kp);
1998 	if (unlikely(p == NULL)) {
1999 		ret = -EINVAL;
2000 		goto out;
2001 	}
2002 
2003 	if (kprobe_gone(kp)) {
2004 		/* This kprobe has gone, we couldn't enable it. */
2005 		ret = -EINVAL;
2006 		goto out;
2007 	}
2008 
2009 	if (p != kp)
2010 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2011 
2012 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2013 		p->flags &= ~KPROBE_FLAG_DISABLED;
2014 		arm_kprobe(p);
2015 	}
2016 out:
2017 	mutex_unlock(&kprobe_mutex);
2018 	return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(enable_kprobe);
2021 
2022 void __kprobes dump_kprobe(struct kprobe *kp)
2023 {
2024 	printk(KERN_WARNING "Dumping kprobe:\n");
2025 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2026 	       kp->symbol_name, kp->addr, kp->offset);
2027 }
2028 
2029 /* Module notifier call back, checking kprobes on the module */
2030 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2031 					     unsigned long val, void *data)
2032 {
2033 	struct module *mod = data;
2034 	struct hlist_head *head;
2035 	struct kprobe *p;
2036 	unsigned int i;
2037 	int checkcore = (val == MODULE_STATE_GOING);
2038 
2039 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2040 		return NOTIFY_DONE;
2041 
2042 	/*
2043 	 * When MODULE_STATE_GOING was notified, both of module .text and
2044 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2045 	 * notified, only .init.text section would be freed. We need to
2046 	 * disable kprobes which have been inserted in the sections.
2047 	 */
2048 	mutex_lock(&kprobe_mutex);
2049 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2050 		head = &kprobe_table[i];
2051 		hlist_for_each_entry_rcu(p, head, hlist)
2052 			if (within_module_init((unsigned long)p->addr, mod) ||
2053 			    (checkcore &&
2054 			     within_module_core((unsigned long)p->addr, mod))) {
2055 				/*
2056 				 * The vaddr this probe is installed will soon
2057 				 * be vfreed buy not synced to disk. Hence,
2058 				 * disarming the breakpoint isn't needed.
2059 				 */
2060 				kill_kprobe(p);
2061 			}
2062 	}
2063 	mutex_unlock(&kprobe_mutex);
2064 	return NOTIFY_DONE;
2065 }
2066 
2067 static struct notifier_block kprobe_module_nb = {
2068 	.notifier_call = kprobes_module_callback,
2069 	.priority = 0
2070 };
2071 
2072 static int __init init_kprobes(void)
2073 {
2074 	int i, err = 0;
2075 	unsigned long offset = 0, size = 0;
2076 	char *modname, namebuf[128];
2077 	const char *symbol_name;
2078 	void *addr;
2079 	struct kprobe_blackpoint *kb;
2080 
2081 	/* FIXME allocate the probe table, currently defined statically */
2082 	/* initialize all list heads */
2083 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2084 		INIT_HLIST_HEAD(&kprobe_table[i]);
2085 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2086 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2087 	}
2088 
2089 	/*
2090 	 * Lookup and populate the kprobe_blacklist.
2091 	 *
2092 	 * Unlike the kretprobe blacklist, we'll need to determine
2093 	 * the range of addresses that belong to the said functions,
2094 	 * since a kprobe need not necessarily be at the beginning
2095 	 * of a function.
2096 	 */
2097 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2098 		kprobe_lookup_name(kb->name, addr);
2099 		if (!addr)
2100 			continue;
2101 
2102 		kb->start_addr = (unsigned long)addr;
2103 		symbol_name = kallsyms_lookup(kb->start_addr,
2104 				&size, &offset, &modname, namebuf);
2105 		if (!symbol_name)
2106 			kb->range = 0;
2107 		else
2108 			kb->range = size;
2109 	}
2110 
2111 	if (kretprobe_blacklist_size) {
2112 		/* lookup the function address from its name */
2113 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2114 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2115 					   kretprobe_blacklist[i].addr);
2116 			if (!kretprobe_blacklist[i].addr)
2117 				printk("kretprobe: lookup failed: %s\n",
2118 				       kretprobe_blacklist[i].name);
2119 		}
2120 	}
2121 
2122 #if defined(CONFIG_OPTPROBES)
2123 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2124 	/* Init kprobe_optinsn_slots */
2125 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2126 #endif
2127 	/* By default, kprobes can be optimized */
2128 	kprobes_allow_optimization = true;
2129 #endif
2130 
2131 	/* By default, kprobes are armed */
2132 	kprobes_all_disarmed = false;
2133 
2134 	err = arch_init_kprobes();
2135 	if (!err)
2136 		err = register_die_notifier(&kprobe_exceptions_nb);
2137 	if (!err)
2138 		err = register_module_notifier(&kprobe_module_nb);
2139 
2140 	kprobes_initialized = (err == 0);
2141 
2142 	if (!err)
2143 		init_test_probes();
2144 	return err;
2145 }
2146 
2147 #ifdef CONFIG_DEBUG_FS
2148 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2149 		const char *sym, int offset, char *modname, struct kprobe *pp)
2150 {
2151 	char *kprobe_type;
2152 
2153 	if (p->pre_handler == pre_handler_kretprobe)
2154 		kprobe_type = "r";
2155 	else if (p->pre_handler == setjmp_pre_handler)
2156 		kprobe_type = "j";
2157 	else
2158 		kprobe_type = "k";
2159 
2160 	if (sym)
2161 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2162 			p->addr, kprobe_type, sym, offset,
2163 			(modname ? modname : " "));
2164 	else
2165 		seq_printf(pi, "%p  %s  %p ",
2166 			p->addr, kprobe_type, p->addr);
2167 
2168 	if (!pp)
2169 		pp = p;
2170 	seq_printf(pi, "%s%s%s%s\n",
2171 		(kprobe_gone(p) ? "[GONE]" : ""),
2172 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2173 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2174 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2175 }
2176 
2177 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2178 {
2179 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2180 }
2181 
2182 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2183 {
2184 	(*pos)++;
2185 	if (*pos >= KPROBE_TABLE_SIZE)
2186 		return NULL;
2187 	return pos;
2188 }
2189 
2190 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2191 {
2192 	/* Nothing to do */
2193 }
2194 
2195 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2196 {
2197 	struct hlist_head *head;
2198 	struct kprobe *p, *kp;
2199 	const char *sym = NULL;
2200 	unsigned int i = *(loff_t *) v;
2201 	unsigned long offset = 0;
2202 	char *modname, namebuf[128];
2203 
2204 	head = &kprobe_table[i];
2205 	preempt_disable();
2206 	hlist_for_each_entry_rcu(p, head, hlist) {
2207 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2208 					&offset, &modname, namebuf);
2209 		if (kprobe_aggrprobe(p)) {
2210 			list_for_each_entry_rcu(kp, &p->list, list)
2211 				report_probe(pi, kp, sym, offset, modname, p);
2212 		} else
2213 			report_probe(pi, p, sym, offset, modname, NULL);
2214 	}
2215 	preempt_enable();
2216 	return 0;
2217 }
2218 
2219 static const struct seq_operations kprobes_seq_ops = {
2220 	.start = kprobe_seq_start,
2221 	.next  = kprobe_seq_next,
2222 	.stop  = kprobe_seq_stop,
2223 	.show  = show_kprobe_addr
2224 };
2225 
2226 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2227 {
2228 	return seq_open(filp, &kprobes_seq_ops);
2229 }
2230 
2231 static const struct file_operations debugfs_kprobes_operations = {
2232 	.open           = kprobes_open,
2233 	.read           = seq_read,
2234 	.llseek         = seq_lseek,
2235 	.release        = seq_release,
2236 };
2237 
2238 static void __kprobes arm_all_kprobes(void)
2239 {
2240 	struct hlist_head *head;
2241 	struct kprobe *p;
2242 	unsigned int i;
2243 
2244 	mutex_lock(&kprobe_mutex);
2245 
2246 	/* If kprobes are armed, just return */
2247 	if (!kprobes_all_disarmed)
2248 		goto already_enabled;
2249 
2250 	/* Arming kprobes doesn't optimize kprobe itself */
2251 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2252 		head = &kprobe_table[i];
2253 		hlist_for_each_entry_rcu(p, head, hlist)
2254 			if (!kprobe_disabled(p))
2255 				arm_kprobe(p);
2256 	}
2257 
2258 	kprobes_all_disarmed = false;
2259 	printk(KERN_INFO "Kprobes globally enabled\n");
2260 
2261 already_enabled:
2262 	mutex_unlock(&kprobe_mutex);
2263 	return;
2264 }
2265 
2266 static void __kprobes disarm_all_kprobes(void)
2267 {
2268 	struct hlist_head *head;
2269 	struct kprobe *p;
2270 	unsigned int i;
2271 
2272 	mutex_lock(&kprobe_mutex);
2273 
2274 	/* If kprobes are already disarmed, just return */
2275 	if (kprobes_all_disarmed) {
2276 		mutex_unlock(&kprobe_mutex);
2277 		return;
2278 	}
2279 
2280 	kprobes_all_disarmed = true;
2281 	printk(KERN_INFO "Kprobes globally disabled\n");
2282 
2283 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2284 		head = &kprobe_table[i];
2285 		hlist_for_each_entry_rcu(p, head, hlist) {
2286 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2287 				disarm_kprobe(p, false);
2288 		}
2289 	}
2290 	mutex_unlock(&kprobe_mutex);
2291 
2292 	/* Wait for disarming all kprobes by optimizer */
2293 	wait_for_kprobe_optimizer();
2294 }
2295 
2296 /*
2297  * XXX: The debugfs bool file interface doesn't allow for callbacks
2298  * when the bool state is switched. We can reuse that facility when
2299  * available
2300  */
2301 static ssize_t read_enabled_file_bool(struct file *file,
2302 	       char __user *user_buf, size_t count, loff_t *ppos)
2303 {
2304 	char buf[3];
2305 
2306 	if (!kprobes_all_disarmed)
2307 		buf[0] = '1';
2308 	else
2309 		buf[0] = '0';
2310 	buf[1] = '\n';
2311 	buf[2] = 0x00;
2312 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2313 }
2314 
2315 static ssize_t write_enabled_file_bool(struct file *file,
2316 	       const char __user *user_buf, size_t count, loff_t *ppos)
2317 {
2318 	char buf[32];
2319 	size_t buf_size;
2320 
2321 	buf_size = min(count, (sizeof(buf)-1));
2322 	if (copy_from_user(buf, user_buf, buf_size))
2323 		return -EFAULT;
2324 
2325 	switch (buf[0]) {
2326 	case 'y':
2327 	case 'Y':
2328 	case '1':
2329 		arm_all_kprobes();
2330 		break;
2331 	case 'n':
2332 	case 'N':
2333 	case '0':
2334 		disarm_all_kprobes();
2335 		break;
2336 	}
2337 
2338 	return count;
2339 }
2340 
2341 static const struct file_operations fops_kp = {
2342 	.read =         read_enabled_file_bool,
2343 	.write =        write_enabled_file_bool,
2344 	.llseek =	default_llseek,
2345 };
2346 
2347 static int __kprobes debugfs_kprobe_init(void)
2348 {
2349 	struct dentry *dir, *file;
2350 	unsigned int value = 1;
2351 
2352 	dir = debugfs_create_dir("kprobes", NULL);
2353 	if (!dir)
2354 		return -ENOMEM;
2355 
2356 	file = debugfs_create_file("list", 0444, dir, NULL,
2357 				&debugfs_kprobes_operations);
2358 	if (!file) {
2359 		debugfs_remove(dir);
2360 		return -ENOMEM;
2361 	}
2362 
2363 	file = debugfs_create_file("enabled", 0600, dir,
2364 					&value, &fops_kp);
2365 	if (!file) {
2366 		debugfs_remove(dir);
2367 		return -ENOMEM;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 late_initcall(debugfs_kprobe_init);
2374 #endif /* CONFIG_DEBUG_FS */
2375 
2376 module_init(init_kprobes);
2377 
2378 /* defined in arch/.../kernel/kprobes.c */
2379 EXPORT_SYMBOL_GPL(jprobe_return);
2380