1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 static void *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_sched(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* Optimization never be done when disarmed */ 487 if (kprobes_all_disarmed || !kprobes_allow_optimization || 488 list_empty(&optimizing_list)) 489 return; 490 491 /* 492 * The optimization/unoptimization refers online_cpus via 493 * stop_machine() and cpu-hotplug modifies online_cpus. 494 * And same time, text_mutex will be held in cpu-hotplug and here. 495 * This combination can cause a deadlock (cpu-hotplug try to lock 496 * text_mutex but stop_machine can not be done because online_cpus 497 * has been changed) 498 * To avoid this deadlock, we need to call get_online_cpus() 499 * for preventing cpu-hotplug outside of text_mutex locking. 500 */ 501 get_online_cpus(); 502 mutex_lock(&text_mutex); 503 arch_optimize_kprobes(&optimizing_list); 504 mutex_unlock(&text_mutex); 505 put_online_cpus(); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* Unoptimization must be done anytime */ 517 if (list_empty(&unoptimizing_list)) 518 return; 519 520 /* Ditto to do_optimize_kprobes */ 521 get_online_cpus(); 522 mutex_lock(&text_mutex); 523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 524 /* Loop free_list for disarming */ 525 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 526 /* Disarm probes if marked disabled */ 527 if (kprobe_disabled(&op->kp)) 528 arch_disarm_kprobe(&op->kp); 529 if (kprobe_unused(&op->kp)) { 530 /* 531 * Remove unused probes from hash list. After waiting 532 * for synchronization, these probes are reclaimed. 533 * (reclaiming is done by do_free_cleaned_kprobes.) 534 */ 535 hlist_del_rcu(&op->kp.hlist); 536 } else 537 list_del_init(&op->list); 538 } 539 mutex_unlock(&text_mutex); 540 put_online_cpus(); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 BUG_ON(!kprobe_unused(&op->kp)); 550 list_del_init(&op->list); 551 free_aggr_kprobe(&op->kp); 552 } 553 } 554 555 /* Start optimizer after OPTIMIZE_DELAY passed */ 556 static void kick_kprobe_optimizer(void) 557 { 558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 559 } 560 561 /* Kprobe jump optimizer */ 562 static void kprobe_optimizer(struct work_struct *work) 563 { 564 mutex_lock(&kprobe_mutex); 565 /* Lock modules while optimizing kprobes */ 566 mutex_lock(&module_mutex); 567 568 /* 569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 570 * kprobes before waiting for quiesence period. 571 */ 572 do_unoptimize_kprobes(); 573 574 /* 575 * Step 2: Wait for quiesence period to ensure all running interrupts 576 * are done. Because optprobe may modify multiple instructions 577 * there is a chance that Nth instruction is interrupted. In that 578 * case, running interrupt can return to 2nd-Nth byte of jump 579 * instruction. This wait is for avoiding it. 580 */ 581 synchronize_sched(); 582 583 /* Step 3: Optimize kprobes after quiesence period */ 584 do_optimize_kprobes(); 585 586 /* Step 4: Free cleaned kprobes after quiesence period */ 587 do_free_cleaned_kprobes(); 588 589 mutex_unlock(&module_mutex); 590 mutex_unlock(&kprobe_mutex); 591 592 /* Step 5: Kick optimizer again if needed */ 593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 594 kick_kprobe_optimizer(); 595 } 596 597 /* Wait for completing optimization and unoptimization */ 598 void wait_for_kprobe_optimizer(void) 599 { 600 mutex_lock(&kprobe_mutex); 601 602 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 603 mutex_unlock(&kprobe_mutex); 604 605 /* this will also make optimizing_work execute immmediately */ 606 flush_delayed_work(&optimizing_work); 607 /* @optimizing_work might not have been queued yet, relax */ 608 cpu_relax(); 609 610 mutex_lock(&kprobe_mutex); 611 } 612 613 mutex_unlock(&kprobe_mutex); 614 } 615 616 /* Optimize kprobe if p is ready to be optimized */ 617 static void optimize_kprobe(struct kprobe *p) 618 { 619 struct optimized_kprobe *op; 620 621 /* Check if the kprobe is disabled or not ready for optimization. */ 622 if (!kprobe_optready(p) || !kprobes_allow_optimization || 623 (kprobe_disabled(p) || kprobes_all_disarmed)) 624 return; 625 626 /* Both of break_handler and post_handler are not supported. */ 627 if (p->break_handler || p->post_handler) 628 return; 629 630 op = container_of(p, struct optimized_kprobe, kp); 631 632 /* Check there is no other kprobes at the optimized instructions */ 633 if (arch_check_optimized_kprobe(op) < 0) 634 return; 635 636 /* Check if it is already optimized. */ 637 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 638 return; 639 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 640 641 if (!list_empty(&op->list)) 642 /* This is under unoptimizing. Just dequeue the probe */ 643 list_del_init(&op->list); 644 else { 645 list_add(&op->list, &optimizing_list); 646 kick_kprobe_optimizer(); 647 } 648 } 649 650 /* Short cut to direct unoptimizing */ 651 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 652 { 653 get_online_cpus(); 654 arch_unoptimize_kprobe(op); 655 put_online_cpus(); 656 if (kprobe_disabled(&op->kp)) 657 arch_disarm_kprobe(&op->kp); 658 } 659 660 /* Unoptimize a kprobe if p is optimized */ 661 static void unoptimize_kprobe(struct kprobe *p, bool force) 662 { 663 struct optimized_kprobe *op; 664 665 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 666 return; /* This is not an optprobe nor optimized */ 667 668 op = container_of(p, struct optimized_kprobe, kp); 669 if (!kprobe_optimized(p)) { 670 /* Unoptimized or unoptimizing case */ 671 if (force && !list_empty(&op->list)) { 672 /* 673 * Only if this is unoptimizing kprobe and forced, 674 * forcibly unoptimize it. (No need to unoptimize 675 * unoptimized kprobe again :) 676 */ 677 list_del_init(&op->list); 678 force_unoptimize_kprobe(op); 679 } 680 return; 681 } 682 683 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 684 if (!list_empty(&op->list)) { 685 /* Dequeue from the optimization queue */ 686 list_del_init(&op->list); 687 return; 688 } 689 /* Optimized kprobe case */ 690 if (force) 691 /* Forcibly update the code: this is a special case */ 692 force_unoptimize_kprobe(op); 693 else { 694 list_add(&op->list, &unoptimizing_list); 695 kick_kprobe_optimizer(); 696 } 697 } 698 699 /* Cancel unoptimizing for reusing */ 700 static void reuse_unused_kprobe(struct kprobe *ap) 701 { 702 struct optimized_kprobe *op; 703 704 BUG_ON(!kprobe_unused(ap)); 705 /* 706 * Unused kprobe MUST be on the way of delayed unoptimizing (means 707 * there is still a relative jump) and disabled. 708 */ 709 op = container_of(ap, struct optimized_kprobe, kp); 710 if (unlikely(list_empty(&op->list))) 711 printk(KERN_WARNING "Warning: found a stray unused " 712 "aggrprobe@%p\n", ap->addr); 713 /* Enable the probe again */ 714 ap->flags &= ~KPROBE_FLAG_DISABLED; 715 /* Optimize it again (remove from op->list) */ 716 BUG_ON(!kprobe_optready(ap)); 717 optimize_kprobe(ap); 718 } 719 720 /* Remove optimized instructions */ 721 static void kill_optimized_kprobe(struct kprobe *p) 722 { 723 struct optimized_kprobe *op; 724 725 op = container_of(p, struct optimized_kprobe, kp); 726 if (!list_empty(&op->list)) 727 /* Dequeue from the (un)optimization queue */ 728 list_del_init(&op->list); 729 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 730 731 if (kprobe_unused(p)) { 732 /* Enqueue if it is unused */ 733 list_add(&op->list, &freeing_list); 734 /* 735 * Remove unused probes from the hash list. After waiting 736 * for synchronization, this probe is reclaimed. 737 * (reclaiming is done by do_free_cleaned_kprobes().) 738 */ 739 hlist_del_rcu(&op->kp.hlist); 740 } 741 742 /* Don't touch the code, because it is already freed. */ 743 arch_remove_optimized_kprobe(op); 744 } 745 746 static inline 747 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 748 { 749 if (!kprobe_ftrace(p)) 750 arch_prepare_optimized_kprobe(op, p); 751 } 752 753 /* Try to prepare optimized instructions */ 754 static void prepare_optimized_kprobe(struct kprobe *p) 755 { 756 struct optimized_kprobe *op; 757 758 op = container_of(p, struct optimized_kprobe, kp); 759 __prepare_optimized_kprobe(op, p); 760 } 761 762 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 763 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 764 { 765 struct optimized_kprobe *op; 766 767 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 768 if (!op) 769 return NULL; 770 771 INIT_LIST_HEAD(&op->list); 772 op->kp.addr = p->addr; 773 __prepare_optimized_kprobe(op, p); 774 775 return &op->kp; 776 } 777 778 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 779 780 /* 781 * Prepare an optimized_kprobe and optimize it 782 * NOTE: p must be a normal registered kprobe 783 */ 784 static void try_to_optimize_kprobe(struct kprobe *p) 785 { 786 struct kprobe *ap; 787 struct optimized_kprobe *op; 788 789 /* Impossible to optimize ftrace-based kprobe */ 790 if (kprobe_ftrace(p)) 791 return; 792 793 /* For preparing optimization, jump_label_text_reserved() is called */ 794 jump_label_lock(); 795 mutex_lock(&text_mutex); 796 797 ap = alloc_aggr_kprobe(p); 798 if (!ap) 799 goto out; 800 801 op = container_of(ap, struct optimized_kprobe, kp); 802 if (!arch_prepared_optinsn(&op->optinsn)) { 803 /* If failed to setup optimizing, fallback to kprobe */ 804 arch_remove_optimized_kprobe(op); 805 kfree(op); 806 goto out; 807 } 808 809 init_aggr_kprobe(ap, p); 810 optimize_kprobe(ap); /* This just kicks optimizer thread */ 811 812 out: 813 mutex_unlock(&text_mutex); 814 jump_label_unlock(); 815 } 816 817 #ifdef CONFIG_SYSCTL 818 static void optimize_all_kprobes(void) 819 { 820 struct hlist_head *head; 821 struct kprobe *p; 822 unsigned int i; 823 824 mutex_lock(&kprobe_mutex); 825 /* If optimization is already allowed, just return */ 826 if (kprobes_allow_optimization) 827 goto out; 828 829 kprobes_allow_optimization = true; 830 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 831 head = &kprobe_table[i]; 832 hlist_for_each_entry_rcu(p, head, hlist) 833 if (!kprobe_disabled(p)) 834 optimize_kprobe(p); 835 } 836 printk(KERN_INFO "Kprobes globally optimized\n"); 837 out: 838 mutex_unlock(&kprobe_mutex); 839 } 840 841 static void unoptimize_all_kprobes(void) 842 { 843 struct hlist_head *head; 844 struct kprobe *p; 845 unsigned int i; 846 847 mutex_lock(&kprobe_mutex); 848 /* If optimization is already prohibited, just return */ 849 if (!kprobes_allow_optimization) { 850 mutex_unlock(&kprobe_mutex); 851 return; 852 } 853 854 kprobes_allow_optimization = false; 855 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 856 head = &kprobe_table[i]; 857 hlist_for_each_entry_rcu(p, head, hlist) { 858 if (!kprobe_disabled(p)) 859 unoptimize_kprobe(p, false); 860 } 861 } 862 mutex_unlock(&kprobe_mutex); 863 864 /* Wait for unoptimizing completion */ 865 wait_for_kprobe_optimizer(); 866 printk(KERN_INFO "Kprobes globally unoptimized\n"); 867 } 868 869 static DEFINE_MUTEX(kprobe_sysctl_mutex); 870 int sysctl_kprobes_optimization; 871 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 872 void __user *buffer, size_t *length, 873 loff_t *ppos) 874 { 875 int ret; 876 877 mutex_lock(&kprobe_sysctl_mutex); 878 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 879 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 880 881 if (sysctl_kprobes_optimization) 882 optimize_all_kprobes(); 883 else 884 unoptimize_all_kprobes(); 885 mutex_unlock(&kprobe_sysctl_mutex); 886 887 return ret; 888 } 889 #endif /* CONFIG_SYSCTL */ 890 891 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 892 static void __arm_kprobe(struct kprobe *p) 893 { 894 struct kprobe *_p; 895 896 /* Check collision with other optimized kprobes */ 897 _p = get_optimized_kprobe((unsigned long)p->addr); 898 if (unlikely(_p)) 899 /* Fallback to unoptimized kprobe */ 900 unoptimize_kprobe(_p, true); 901 902 arch_arm_kprobe(p); 903 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 904 } 905 906 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 907 static void __disarm_kprobe(struct kprobe *p, bool reopt) 908 { 909 struct kprobe *_p; 910 911 /* Try to unoptimize */ 912 unoptimize_kprobe(p, kprobes_all_disarmed); 913 914 if (!kprobe_queued(p)) { 915 arch_disarm_kprobe(p); 916 /* If another kprobe was blocked, optimize it. */ 917 _p = get_optimized_kprobe((unsigned long)p->addr); 918 if (unlikely(_p) && reopt) 919 optimize_kprobe(_p); 920 } 921 /* TODO: reoptimize others after unoptimized this probe */ 922 } 923 924 #else /* !CONFIG_OPTPROBES */ 925 926 #define optimize_kprobe(p) do {} while (0) 927 #define unoptimize_kprobe(p, f) do {} while (0) 928 #define kill_optimized_kprobe(p) do {} while (0) 929 #define prepare_optimized_kprobe(p) do {} while (0) 930 #define try_to_optimize_kprobe(p) do {} while (0) 931 #define __arm_kprobe(p) arch_arm_kprobe(p) 932 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 933 #define kprobe_disarmed(p) kprobe_disabled(p) 934 #define wait_for_kprobe_optimizer() do {} while (0) 935 936 /* There should be no unused kprobes can be reused without optimization */ 937 static void reuse_unused_kprobe(struct kprobe *ap) 938 { 939 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 940 BUG_ON(kprobe_unused(ap)); 941 } 942 943 static void free_aggr_kprobe(struct kprobe *p) 944 { 945 arch_remove_kprobe(p); 946 kfree(p); 947 } 948 949 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 950 { 951 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 952 } 953 #endif /* CONFIG_OPTPROBES */ 954 955 #ifdef CONFIG_KPROBES_ON_FTRACE 956 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 957 .func = kprobe_ftrace_handler, 958 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 959 }; 960 static int kprobe_ftrace_enabled; 961 962 /* Must ensure p->addr is really on ftrace */ 963 static int prepare_kprobe(struct kprobe *p) 964 { 965 if (!kprobe_ftrace(p)) 966 return arch_prepare_kprobe(p); 967 968 return arch_prepare_kprobe_ftrace(p); 969 } 970 971 /* Caller must lock kprobe_mutex */ 972 static void arm_kprobe_ftrace(struct kprobe *p) 973 { 974 int ret; 975 976 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 977 (unsigned long)p->addr, 0, 0); 978 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 979 kprobe_ftrace_enabled++; 980 if (kprobe_ftrace_enabled == 1) { 981 ret = register_ftrace_function(&kprobe_ftrace_ops); 982 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 983 } 984 } 985 986 /* Caller must lock kprobe_mutex */ 987 static void disarm_kprobe_ftrace(struct kprobe *p) 988 { 989 int ret; 990 991 kprobe_ftrace_enabled--; 992 if (kprobe_ftrace_enabled == 0) { 993 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 994 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 995 } 996 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 997 (unsigned long)p->addr, 1, 0); 998 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 999 } 1000 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1001 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1002 #define arm_kprobe_ftrace(p) do {} while (0) 1003 #define disarm_kprobe_ftrace(p) do {} while (0) 1004 #endif 1005 1006 /* Arm a kprobe with text_mutex */ 1007 static void arm_kprobe(struct kprobe *kp) 1008 { 1009 if (unlikely(kprobe_ftrace(kp))) { 1010 arm_kprobe_ftrace(kp); 1011 return; 1012 } 1013 /* 1014 * Here, since __arm_kprobe() doesn't use stop_machine(), 1015 * this doesn't cause deadlock on text_mutex. So, we don't 1016 * need get_online_cpus(). 1017 */ 1018 mutex_lock(&text_mutex); 1019 __arm_kprobe(kp); 1020 mutex_unlock(&text_mutex); 1021 } 1022 1023 /* Disarm a kprobe with text_mutex */ 1024 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1025 { 1026 if (unlikely(kprobe_ftrace(kp))) { 1027 disarm_kprobe_ftrace(kp); 1028 return; 1029 } 1030 /* Ditto */ 1031 mutex_lock(&text_mutex); 1032 __disarm_kprobe(kp, reopt); 1033 mutex_unlock(&text_mutex); 1034 } 1035 1036 /* 1037 * Aggregate handlers for multiple kprobes support - these handlers 1038 * take care of invoking the individual kprobe handlers on p->list 1039 */ 1040 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1041 { 1042 struct kprobe *kp; 1043 1044 list_for_each_entry_rcu(kp, &p->list, list) { 1045 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1046 set_kprobe_instance(kp); 1047 if (kp->pre_handler(kp, regs)) 1048 return 1; 1049 } 1050 reset_kprobe_instance(); 1051 } 1052 return 0; 1053 } 1054 NOKPROBE_SYMBOL(aggr_pre_handler); 1055 1056 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1057 unsigned long flags) 1058 { 1059 struct kprobe *kp; 1060 1061 list_for_each_entry_rcu(kp, &p->list, list) { 1062 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1063 set_kprobe_instance(kp); 1064 kp->post_handler(kp, regs, flags); 1065 reset_kprobe_instance(); 1066 } 1067 } 1068 } 1069 NOKPROBE_SYMBOL(aggr_post_handler); 1070 1071 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1072 int trapnr) 1073 { 1074 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1075 1076 /* 1077 * if we faulted "during" the execution of a user specified 1078 * probe handler, invoke just that probe's fault handler 1079 */ 1080 if (cur && cur->fault_handler) { 1081 if (cur->fault_handler(cur, regs, trapnr)) 1082 return 1; 1083 } 1084 return 0; 1085 } 1086 NOKPROBE_SYMBOL(aggr_fault_handler); 1087 1088 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1089 { 1090 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1091 int ret = 0; 1092 1093 if (cur && cur->break_handler) { 1094 if (cur->break_handler(cur, regs)) 1095 ret = 1; 1096 } 1097 reset_kprobe_instance(); 1098 return ret; 1099 } 1100 NOKPROBE_SYMBOL(aggr_break_handler); 1101 1102 /* Walks the list and increments nmissed count for multiprobe case */ 1103 void kprobes_inc_nmissed_count(struct kprobe *p) 1104 { 1105 struct kprobe *kp; 1106 if (!kprobe_aggrprobe(p)) { 1107 p->nmissed++; 1108 } else { 1109 list_for_each_entry_rcu(kp, &p->list, list) 1110 kp->nmissed++; 1111 } 1112 return; 1113 } 1114 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1115 1116 void recycle_rp_inst(struct kretprobe_instance *ri, 1117 struct hlist_head *head) 1118 { 1119 struct kretprobe *rp = ri->rp; 1120 1121 /* remove rp inst off the rprobe_inst_table */ 1122 hlist_del(&ri->hlist); 1123 INIT_HLIST_NODE(&ri->hlist); 1124 if (likely(rp)) { 1125 raw_spin_lock(&rp->lock); 1126 hlist_add_head(&ri->hlist, &rp->free_instances); 1127 raw_spin_unlock(&rp->lock); 1128 } else 1129 /* Unregistering */ 1130 hlist_add_head(&ri->hlist, head); 1131 } 1132 NOKPROBE_SYMBOL(recycle_rp_inst); 1133 1134 void kretprobe_hash_lock(struct task_struct *tsk, 1135 struct hlist_head **head, unsigned long *flags) 1136 __acquires(hlist_lock) 1137 { 1138 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1139 raw_spinlock_t *hlist_lock; 1140 1141 *head = &kretprobe_inst_table[hash]; 1142 hlist_lock = kretprobe_table_lock_ptr(hash); 1143 raw_spin_lock_irqsave(hlist_lock, *flags); 1144 } 1145 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1146 1147 static void kretprobe_table_lock(unsigned long hash, 1148 unsigned long *flags) 1149 __acquires(hlist_lock) 1150 { 1151 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1152 raw_spin_lock_irqsave(hlist_lock, *flags); 1153 } 1154 NOKPROBE_SYMBOL(kretprobe_table_lock); 1155 1156 void kretprobe_hash_unlock(struct task_struct *tsk, 1157 unsigned long *flags) 1158 __releases(hlist_lock) 1159 { 1160 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1161 raw_spinlock_t *hlist_lock; 1162 1163 hlist_lock = kretprobe_table_lock_ptr(hash); 1164 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1165 } 1166 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1167 1168 static void kretprobe_table_unlock(unsigned long hash, 1169 unsigned long *flags) 1170 __releases(hlist_lock) 1171 { 1172 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1173 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1174 } 1175 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1176 1177 /* 1178 * This function is called from finish_task_switch when task tk becomes dead, 1179 * so that we can recycle any function-return probe instances associated 1180 * with this task. These left over instances represent probed functions 1181 * that have been called but will never return. 1182 */ 1183 void kprobe_flush_task(struct task_struct *tk) 1184 { 1185 struct kretprobe_instance *ri; 1186 struct hlist_head *head, empty_rp; 1187 struct hlist_node *tmp; 1188 unsigned long hash, flags = 0; 1189 1190 if (unlikely(!kprobes_initialized)) 1191 /* Early boot. kretprobe_table_locks not yet initialized. */ 1192 return; 1193 1194 INIT_HLIST_HEAD(&empty_rp); 1195 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1196 head = &kretprobe_inst_table[hash]; 1197 kretprobe_table_lock(hash, &flags); 1198 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1199 if (ri->task == tk) 1200 recycle_rp_inst(ri, &empty_rp); 1201 } 1202 kretprobe_table_unlock(hash, &flags); 1203 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1204 hlist_del(&ri->hlist); 1205 kfree(ri); 1206 } 1207 } 1208 NOKPROBE_SYMBOL(kprobe_flush_task); 1209 1210 static inline void free_rp_inst(struct kretprobe *rp) 1211 { 1212 struct kretprobe_instance *ri; 1213 struct hlist_node *next; 1214 1215 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1216 hlist_del(&ri->hlist); 1217 kfree(ri); 1218 } 1219 } 1220 1221 static void cleanup_rp_inst(struct kretprobe *rp) 1222 { 1223 unsigned long flags, hash; 1224 struct kretprobe_instance *ri; 1225 struct hlist_node *next; 1226 struct hlist_head *head; 1227 1228 /* No race here */ 1229 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1230 kretprobe_table_lock(hash, &flags); 1231 head = &kretprobe_inst_table[hash]; 1232 hlist_for_each_entry_safe(ri, next, head, hlist) { 1233 if (ri->rp == rp) 1234 ri->rp = NULL; 1235 } 1236 kretprobe_table_unlock(hash, &flags); 1237 } 1238 free_rp_inst(rp); 1239 } 1240 NOKPROBE_SYMBOL(cleanup_rp_inst); 1241 1242 /* 1243 * Add the new probe to ap->list. Fail if this is the 1244 * second jprobe at the address - two jprobes can't coexist 1245 */ 1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1247 { 1248 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1249 1250 if (p->break_handler || p->post_handler) 1251 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1252 1253 if (p->break_handler) { 1254 if (ap->break_handler) 1255 return -EEXIST; 1256 list_add_tail_rcu(&p->list, &ap->list); 1257 ap->break_handler = aggr_break_handler; 1258 } else 1259 list_add_rcu(&p->list, &ap->list); 1260 if (p->post_handler && !ap->post_handler) 1261 ap->post_handler = aggr_post_handler; 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Fill in the required fields of the "manager kprobe". Replace the 1268 * earlier kprobe in the hlist with the manager kprobe 1269 */ 1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1271 { 1272 /* Copy p's insn slot to ap */ 1273 copy_kprobe(p, ap); 1274 flush_insn_slot(ap); 1275 ap->addr = p->addr; 1276 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1277 ap->pre_handler = aggr_pre_handler; 1278 ap->fault_handler = aggr_fault_handler; 1279 /* We don't care the kprobe which has gone. */ 1280 if (p->post_handler && !kprobe_gone(p)) 1281 ap->post_handler = aggr_post_handler; 1282 if (p->break_handler && !kprobe_gone(p)) 1283 ap->break_handler = aggr_break_handler; 1284 1285 INIT_LIST_HEAD(&ap->list); 1286 INIT_HLIST_NODE(&ap->hlist); 1287 1288 list_add_rcu(&p->list, &ap->list); 1289 hlist_replace_rcu(&p->hlist, &ap->hlist); 1290 } 1291 1292 /* 1293 * This is the second or subsequent kprobe at the address - handle 1294 * the intricacies 1295 */ 1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1297 { 1298 int ret = 0; 1299 struct kprobe *ap = orig_p; 1300 1301 /* For preparing optimization, jump_label_text_reserved() is called */ 1302 jump_label_lock(); 1303 /* 1304 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1305 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1306 */ 1307 get_online_cpus(); 1308 mutex_lock(&text_mutex); 1309 1310 if (!kprobe_aggrprobe(orig_p)) { 1311 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1312 ap = alloc_aggr_kprobe(orig_p); 1313 if (!ap) { 1314 ret = -ENOMEM; 1315 goto out; 1316 } 1317 init_aggr_kprobe(ap, orig_p); 1318 } else if (kprobe_unused(ap)) 1319 /* This probe is going to die. Rescue it */ 1320 reuse_unused_kprobe(ap); 1321 1322 if (kprobe_gone(ap)) { 1323 /* 1324 * Attempting to insert new probe at the same location that 1325 * had a probe in the module vaddr area which already 1326 * freed. So, the instruction slot has already been 1327 * released. We need a new slot for the new probe. 1328 */ 1329 ret = arch_prepare_kprobe(ap); 1330 if (ret) 1331 /* 1332 * Even if fail to allocate new slot, don't need to 1333 * free aggr_probe. It will be used next time, or 1334 * freed by unregister_kprobe. 1335 */ 1336 goto out; 1337 1338 /* Prepare optimized instructions if possible. */ 1339 prepare_optimized_kprobe(ap); 1340 1341 /* 1342 * Clear gone flag to prevent allocating new slot again, and 1343 * set disabled flag because it is not armed yet. 1344 */ 1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1346 | KPROBE_FLAG_DISABLED; 1347 } 1348 1349 /* Copy ap's insn slot to p */ 1350 copy_kprobe(ap, p); 1351 ret = add_new_kprobe(ap, p); 1352 1353 out: 1354 mutex_unlock(&text_mutex); 1355 put_online_cpus(); 1356 jump_label_unlock(); 1357 1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1359 ap->flags &= ~KPROBE_FLAG_DISABLED; 1360 if (!kprobes_all_disarmed) 1361 /* Arm the breakpoint again. */ 1362 arm_kprobe(ap); 1363 } 1364 return ret; 1365 } 1366 1367 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1368 { 1369 /* The __kprobes marked functions and entry code must not be probed */ 1370 return addr >= (unsigned long)__kprobes_text_start && 1371 addr < (unsigned long)__kprobes_text_end; 1372 } 1373 1374 bool within_kprobe_blacklist(unsigned long addr) 1375 { 1376 struct kprobe_blacklist_entry *ent; 1377 1378 if (arch_within_kprobe_blacklist(addr)) 1379 return true; 1380 /* 1381 * If there exists a kprobe_blacklist, verify and 1382 * fail any probe registration in the prohibited area 1383 */ 1384 list_for_each_entry(ent, &kprobe_blacklist, list) { 1385 if (addr >= ent->start_addr && addr < ent->end_addr) 1386 return true; 1387 } 1388 1389 return false; 1390 } 1391 1392 /* 1393 * If we have a symbol_name argument, look it up and add the offset field 1394 * to it. This way, we can specify a relative address to a symbol. 1395 * This returns encoded errors if it fails to look up symbol or invalid 1396 * combination of parameters. 1397 */ 1398 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1399 const char *symbol_name, unsigned int offset) 1400 { 1401 if ((symbol_name && addr) || (!symbol_name && !addr)) 1402 goto invalid; 1403 1404 if (symbol_name) { 1405 addr = kprobe_lookup_name(symbol_name, offset); 1406 if (!addr) 1407 return ERR_PTR(-ENOENT); 1408 } 1409 1410 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1411 if (addr) 1412 return addr; 1413 1414 invalid: 1415 return ERR_PTR(-EINVAL); 1416 } 1417 1418 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1419 { 1420 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1421 } 1422 1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1425 { 1426 struct kprobe *ap, *list_p; 1427 1428 ap = get_kprobe(p->addr); 1429 if (unlikely(!ap)) 1430 return NULL; 1431 1432 if (p != ap) { 1433 list_for_each_entry_rcu(list_p, &ap->list, list) 1434 if (list_p == p) 1435 /* kprobe p is a valid probe */ 1436 goto valid; 1437 return NULL; 1438 } 1439 valid: 1440 return ap; 1441 } 1442 1443 /* Return error if the kprobe is being re-registered */ 1444 static inline int check_kprobe_rereg(struct kprobe *p) 1445 { 1446 int ret = 0; 1447 1448 mutex_lock(&kprobe_mutex); 1449 if (__get_valid_kprobe(p)) 1450 ret = -EINVAL; 1451 mutex_unlock(&kprobe_mutex); 1452 1453 return ret; 1454 } 1455 1456 int __weak arch_check_ftrace_location(struct kprobe *p) 1457 { 1458 unsigned long ftrace_addr; 1459 1460 ftrace_addr = ftrace_location((unsigned long)p->addr); 1461 if (ftrace_addr) { 1462 #ifdef CONFIG_KPROBES_ON_FTRACE 1463 /* Given address is not on the instruction boundary */ 1464 if ((unsigned long)p->addr != ftrace_addr) 1465 return -EILSEQ; 1466 p->flags |= KPROBE_FLAG_FTRACE; 1467 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1468 return -EINVAL; 1469 #endif 1470 } 1471 return 0; 1472 } 1473 1474 static int check_kprobe_address_safe(struct kprobe *p, 1475 struct module **probed_mod) 1476 { 1477 int ret; 1478 1479 ret = arch_check_ftrace_location(p); 1480 if (ret) 1481 return ret; 1482 jump_label_lock(); 1483 preempt_disable(); 1484 1485 /* Ensure it is not in reserved area nor out of text */ 1486 if (!kernel_text_address((unsigned long) p->addr) || 1487 within_kprobe_blacklist((unsigned long) p->addr) || 1488 jump_label_text_reserved(p->addr, p->addr)) { 1489 ret = -EINVAL; 1490 goto out; 1491 } 1492 1493 /* Check if are we probing a module */ 1494 *probed_mod = __module_text_address((unsigned long) p->addr); 1495 if (*probed_mod) { 1496 /* 1497 * We must hold a refcount of the probed module while updating 1498 * its code to prohibit unexpected unloading. 1499 */ 1500 if (unlikely(!try_module_get(*probed_mod))) { 1501 ret = -ENOENT; 1502 goto out; 1503 } 1504 1505 /* 1506 * If the module freed .init.text, we couldn't insert 1507 * kprobes in there. 1508 */ 1509 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1510 (*probed_mod)->state != MODULE_STATE_COMING) { 1511 module_put(*probed_mod); 1512 *probed_mod = NULL; 1513 ret = -ENOENT; 1514 } 1515 } 1516 out: 1517 preempt_enable(); 1518 jump_label_unlock(); 1519 1520 return ret; 1521 } 1522 1523 int register_kprobe(struct kprobe *p) 1524 { 1525 int ret; 1526 struct kprobe *old_p; 1527 struct module *probed_mod; 1528 kprobe_opcode_t *addr; 1529 1530 /* Adjust probe address from symbol */ 1531 addr = kprobe_addr(p); 1532 if (IS_ERR(addr)) 1533 return PTR_ERR(addr); 1534 p->addr = addr; 1535 1536 ret = check_kprobe_rereg(p); 1537 if (ret) 1538 return ret; 1539 1540 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1541 p->flags &= KPROBE_FLAG_DISABLED; 1542 p->nmissed = 0; 1543 INIT_LIST_HEAD(&p->list); 1544 1545 ret = check_kprobe_address_safe(p, &probed_mod); 1546 if (ret) 1547 return ret; 1548 1549 mutex_lock(&kprobe_mutex); 1550 1551 old_p = get_kprobe(p->addr); 1552 if (old_p) { 1553 /* Since this may unoptimize old_p, locking text_mutex. */ 1554 ret = register_aggr_kprobe(old_p, p); 1555 goto out; 1556 } 1557 1558 mutex_lock(&text_mutex); /* Avoiding text modification */ 1559 ret = prepare_kprobe(p); 1560 mutex_unlock(&text_mutex); 1561 if (ret) 1562 goto out; 1563 1564 INIT_HLIST_NODE(&p->hlist); 1565 hlist_add_head_rcu(&p->hlist, 1566 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1567 1568 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1569 arm_kprobe(p); 1570 1571 /* Try to optimize kprobe */ 1572 try_to_optimize_kprobe(p); 1573 1574 out: 1575 mutex_unlock(&kprobe_mutex); 1576 1577 if (probed_mod) 1578 module_put(probed_mod); 1579 1580 return ret; 1581 } 1582 EXPORT_SYMBOL_GPL(register_kprobe); 1583 1584 /* Check if all probes on the aggrprobe are disabled */ 1585 static int aggr_kprobe_disabled(struct kprobe *ap) 1586 { 1587 struct kprobe *kp; 1588 1589 list_for_each_entry_rcu(kp, &ap->list, list) 1590 if (!kprobe_disabled(kp)) 1591 /* 1592 * There is an active probe on the list. 1593 * We can't disable this ap. 1594 */ 1595 return 0; 1596 1597 return 1; 1598 } 1599 1600 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1601 static struct kprobe *__disable_kprobe(struct kprobe *p) 1602 { 1603 struct kprobe *orig_p; 1604 1605 /* Get an original kprobe for return */ 1606 orig_p = __get_valid_kprobe(p); 1607 if (unlikely(orig_p == NULL)) 1608 return NULL; 1609 1610 if (!kprobe_disabled(p)) { 1611 /* Disable probe if it is a child probe */ 1612 if (p != orig_p) 1613 p->flags |= KPROBE_FLAG_DISABLED; 1614 1615 /* Try to disarm and disable this/parent probe */ 1616 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1617 /* 1618 * If kprobes_all_disarmed is set, orig_p 1619 * should have already been disarmed, so 1620 * skip unneed disarming process. 1621 */ 1622 if (!kprobes_all_disarmed) 1623 disarm_kprobe(orig_p, true); 1624 orig_p->flags |= KPROBE_FLAG_DISABLED; 1625 } 1626 } 1627 1628 return orig_p; 1629 } 1630 1631 /* 1632 * Unregister a kprobe without a scheduler synchronization. 1633 */ 1634 static int __unregister_kprobe_top(struct kprobe *p) 1635 { 1636 struct kprobe *ap, *list_p; 1637 1638 /* Disable kprobe. This will disarm it if needed. */ 1639 ap = __disable_kprobe(p); 1640 if (ap == NULL) 1641 return -EINVAL; 1642 1643 if (ap == p) 1644 /* 1645 * This probe is an independent(and non-optimized) kprobe 1646 * (not an aggrprobe). Remove from the hash list. 1647 */ 1648 goto disarmed; 1649 1650 /* Following process expects this probe is an aggrprobe */ 1651 WARN_ON(!kprobe_aggrprobe(ap)); 1652 1653 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1654 /* 1655 * !disarmed could be happen if the probe is under delayed 1656 * unoptimizing. 1657 */ 1658 goto disarmed; 1659 else { 1660 /* If disabling probe has special handlers, update aggrprobe */ 1661 if (p->break_handler && !kprobe_gone(p)) 1662 ap->break_handler = NULL; 1663 if (p->post_handler && !kprobe_gone(p)) { 1664 list_for_each_entry_rcu(list_p, &ap->list, list) { 1665 if ((list_p != p) && (list_p->post_handler)) 1666 goto noclean; 1667 } 1668 ap->post_handler = NULL; 1669 } 1670 noclean: 1671 /* 1672 * Remove from the aggrprobe: this path will do nothing in 1673 * __unregister_kprobe_bottom(). 1674 */ 1675 list_del_rcu(&p->list); 1676 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1677 /* 1678 * Try to optimize this probe again, because post 1679 * handler may have been changed. 1680 */ 1681 optimize_kprobe(ap); 1682 } 1683 return 0; 1684 1685 disarmed: 1686 BUG_ON(!kprobe_disarmed(ap)); 1687 hlist_del_rcu(&ap->hlist); 1688 return 0; 1689 } 1690 1691 static void __unregister_kprobe_bottom(struct kprobe *p) 1692 { 1693 struct kprobe *ap; 1694 1695 if (list_empty(&p->list)) 1696 /* This is an independent kprobe */ 1697 arch_remove_kprobe(p); 1698 else if (list_is_singular(&p->list)) { 1699 /* This is the last child of an aggrprobe */ 1700 ap = list_entry(p->list.next, struct kprobe, list); 1701 list_del(&p->list); 1702 free_aggr_kprobe(ap); 1703 } 1704 /* Otherwise, do nothing. */ 1705 } 1706 1707 int register_kprobes(struct kprobe **kps, int num) 1708 { 1709 int i, ret = 0; 1710 1711 if (num <= 0) 1712 return -EINVAL; 1713 for (i = 0; i < num; i++) { 1714 ret = register_kprobe(kps[i]); 1715 if (ret < 0) { 1716 if (i > 0) 1717 unregister_kprobes(kps, i); 1718 break; 1719 } 1720 } 1721 return ret; 1722 } 1723 EXPORT_SYMBOL_GPL(register_kprobes); 1724 1725 void unregister_kprobe(struct kprobe *p) 1726 { 1727 unregister_kprobes(&p, 1); 1728 } 1729 EXPORT_SYMBOL_GPL(unregister_kprobe); 1730 1731 void unregister_kprobes(struct kprobe **kps, int num) 1732 { 1733 int i; 1734 1735 if (num <= 0) 1736 return; 1737 mutex_lock(&kprobe_mutex); 1738 for (i = 0; i < num; i++) 1739 if (__unregister_kprobe_top(kps[i]) < 0) 1740 kps[i]->addr = NULL; 1741 mutex_unlock(&kprobe_mutex); 1742 1743 synchronize_sched(); 1744 for (i = 0; i < num; i++) 1745 if (kps[i]->addr) 1746 __unregister_kprobe_bottom(kps[i]); 1747 } 1748 EXPORT_SYMBOL_GPL(unregister_kprobes); 1749 1750 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1751 unsigned long val, void *data) 1752 { 1753 return NOTIFY_DONE; 1754 } 1755 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1756 1757 static struct notifier_block kprobe_exceptions_nb = { 1758 .notifier_call = kprobe_exceptions_notify, 1759 .priority = 0x7fffffff /* we need to be notified first */ 1760 }; 1761 1762 unsigned long __weak arch_deref_entry_point(void *entry) 1763 { 1764 return (unsigned long)entry; 1765 } 1766 1767 int register_jprobes(struct jprobe **jps, int num) 1768 { 1769 struct jprobe *jp; 1770 int ret = 0, i; 1771 1772 if (num <= 0) 1773 return -EINVAL; 1774 for (i = 0; i < num; i++) { 1775 unsigned long addr, offset; 1776 jp = jps[i]; 1777 addr = arch_deref_entry_point(jp->entry); 1778 1779 /* Verify probepoint is a function entry point */ 1780 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1781 offset == 0) { 1782 jp->kp.pre_handler = setjmp_pre_handler; 1783 jp->kp.break_handler = longjmp_break_handler; 1784 ret = register_kprobe(&jp->kp); 1785 } else 1786 ret = -EINVAL; 1787 1788 if (ret < 0) { 1789 if (i > 0) 1790 unregister_jprobes(jps, i); 1791 break; 1792 } 1793 } 1794 return ret; 1795 } 1796 EXPORT_SYMBOL_GPL(register_jprobes); 1797 1798 int register_jprobe(struct jprobe *jp) 1799 { 1800 return register_jprobes(&jp, 1); 1801 } 1802 EXPORT_SYMBOL_GPL(register_jprobe); 1803 1804 void unregister_jprobe(struct jprobe *jp) 1805 { 1806 unregister_jprobes(&jp, 1); 1807 } 1808 EXPORT_SYMBOL_GPL(unregister_jprobe); 1809 1810 void unregister_jprobes(struct jprobe **jps, int num) 1811 { 1812 int i; 1813 1814 if (num <= 0) 1815 return; 1816 mutex_lock(&kprobe_mutex); 1817 for (i = 0; i < num; i++) 1818 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1819 jps[i]->kp.addr = NULL; 1820 mutex_unlock(&kprobe_mutex); 1821 1822 synchronize_sched(); 1823 for (i = 0; i < num; i++) { 1824 if (jps[i]->kp.addr) 1825 __unregister_kprobe_bottom(&jps[i]->kp); 1826 } 1827 } 1828 EXPORT_SYMBOL_GPL(unregister_jprobes); 1829 1830 #ifdef CONFIG_KRETPROBES 1831 /* 1832 * This kprobe pre_handler is registered with every kretprobe. When probe 1833 * hits it will set up the return probe. 1834 */ 1835 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1836 { 1837 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1838 unsigned long hash, flags = 0; 1839 struct kretprobe_instance *ri; 1840 1841 /* 1842 * To avoid deadlocks, prohibit return probing in NMI contexts, 1843 * just skip the probe and increase the (inexact) 'nmissed' 1844 * statistical counter, so that the user is informed that 1845 * something happened: 1846 */ 1847 if (unlikely(in_nmi())) { 1848 rp->nmissed++; 1849 return 0; 1850 } 1851 1852 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1853 hash = hash_ptr(current, KPROBE_HASH_BITS); 1854 raw_spin_lock_irqsave(&rp->lock, flags); 1855 if (!hlist_empty(&rp->free_instances)) { 1856 ri = hlist_entry(rp->free_instances.first, 1857 struct kretprobe_instance, hlist); 1858 hlist_del(&ri->hlist); 1859 raw_spin_unlock_irqrestore(&rp->lock, flags); 1860 1861 ri->rp = rp; 1862 ri->task = current; 1863 1864 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1865 raw_spin_lock_irqsave(&rp->lock, flags); 1866 hlist_add_head(&ri->hlist, &rp->free_instances); 1867 raw_spin_unlock_irqrestore(&rp->lock, flags); 1868 return 0; 1869 } 1870 1871 arch_prepare_kretprobe(ri, regs); 1872 1873 /* XXX(hch): why is there no hlist_move_head? */ 1874 INIT_HLIST_NODE(&ri->hlist); 1875 kretprobe_table_lock(hash, &flags); 1876 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1877 kretprobe_table_unlock(hash, &flags); 1878 } else { 1879 rp->nmissed++; 1880 raw_spin_unlock_irqrestore(&rp->lock, flags); 1881 } 1882 return 0; 1883 } 1884 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1885 1886 bool __weak arch_function_offset_within_entry(unsigned long offset) 1887 { 1888 return !offset; 1889 } 1890 1891 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1892 { 1893 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1894 1895 if (IS_ERR(kp_addr)) 1896 return false; 1897 1898 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1899 !arch_function_offset_within_entry(offset)) 1900 return false; 1901 1902 return true; 1903 } 1904 1905 int register_kretprobe(struct kretprobe *rp) 1906 { 1907 int ret = 0; 1908 struct kretprobe_instance *inst; 1909 int i; 1910 void *addr; 1911 1912 if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1913 return -EINVAL; 1914 1915 if (kretprobe_blacklist_size) { 1916 addr = kprobe_addr(&rp->kp); 1917 if (IS_ERR(addr)) 1918 return PTR_ERR(addr); 1919 1920 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1921 if (kretprobe_blacklist[i].addr == addr) 1922 return -EINVAL; 1923 } 1924 } 1925 1926 rp->kp.pre_handler = pre_handler_kretprobe; 1927 rp->kp.post_handler = NULL; 1928 rp->kp.fault_handler = NULL; 1929 rp->kp.break_handler = NULL; 1930 1931 /* Pre-allocate memory for max kretprobe instances */ 1932 if (rp->maxactive <= 0) { 1933 #ifdef CONFIG_PREEMPT 1934 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1935 #else 1936 rp->maxactive = num_possible_cpus(); 1937 #endif 1938 } 1939 raw_spin_lock_init(&rp->lock); 1940 INIT_HLIST_HEAD(&rp->free_instances); 1941 for (i = 0; i < rp->maxactive; i++) { 1942 inst = kmalloc(sizeof(struct kretprobe_instance) + 1943 rp->data_size, GFP_KERNEL); 1944 if (inst == NULL) { 1945 free_rp_inst(rp); 1946 return -ENOMEM; 1947 } 1948 INIT_HLIST_NODE(&inst->hlist); 1949 hlist_add_head(&inst->hlist, &rp->free_instances); 1950 } 1951 1952 rp->nmissed = 0; 1953 /* Establish function entry probe point */ 1954 ret = register_kprobe(&rp->kp); 1955 if (ret != 0) 1956 free_rp_inst(rp); 1957 return ret; 1958 } 1959 EXPORT_SYMBOL_GPL(register_kretprobe); 1960 1961 int register_kretprobes(struct kretprobe **rps, int num) 1962 { 1963 int ret = 0, i; 1964 1965 if (num <= 0) 1966 return -EINVAL; 1967 for (i = 0; i < num; i++) { 1968 ret = register_kretprobe(rps[i]); 1969 if (ret < 0) { 1970 if (i > 0) 1971 unregister_kretprobes(rps, i); 1972 break; 1973 } 1974 } 1975 return ret; 1976 } 1977 EXPORT_SYMBOL_GPL(register_kretprobes); 1978 1979 void unregister_kretprobe(struct kretprobe *rp) 1980 { 1981 unregister_kretprobes(&rp, 1); 1982 } 1983 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1984 1985 void unregister_kretprobes(struct kretprobe **rps, int num) 1986 { 1987 int i; 1988 1989 if (num <= 0) 1990 return; 1991 mutex_lock(&kprobe_mutex); 1992 for (i = 0; i < num; i++) 1993 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1994 rps[i]->kp.addr = NULL; 1995 mutex_unlock(&kprobe_mutex); 1996 1997 synchronize_sched(); 1998 for (i = 0; i < num; i++) { 1999 if (rps[i]->kp.addr) { 2000 __unregister_kprobe_bottom(&rps[i]->kp); 2001 cleanup_rp_inst(rps[i]); 2002 } 2003 } 2004 } 2005 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2006 2007 #else /* CONFIG_KRETPROBES */ 2008 int register_kretprobe(struct kretprobe *rp) 2009 { 2010 return -ENOSYS; 2011 } 2012 EXPORT_SYMBOL_GPL(register_kretprobe); 2013 2014 int register_kretprobes(struct kretprobe **rps, int num) 2015 { 2016 return -ENOSYS; 2017 } 2018 EXPORT_SYMBOL_GPL(register_kretprobes); 2019 2020 void unregister_kretprobe(struct kretprobe *rp) 2021 { 2022 } 2023 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2024 2025 void unregister_kretprobes(struct kretprobe **rps, int num) 2026 { 2027 } 2028 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2029 2030 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2031 { 2032 return 0; 2033 } 2034 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2035 2036 #endif /* CONFIG_KRETPROBES */ 2037 2038 /* Set the kprobe gone and remove its instruction buffer. */ 2039 static void kill_kprobe(struct kprobe *p) 2040 { 2041 struct kprobe *kp; 2042 2043 p->flags |= KPROBE_FLAG_GONE; 2044 if (kprobe_aggrprobe(p)) { 2045 /* 2046 * If this is an aggr_kprobe, we have to list all the 2047 * chained probes and mark them GONE. 2048 */ 2049 list_for_each_entry_rcu(kp, &p->list, list) 2050 kp->flags |= KPROBE_FLAG_GONE; 2051 p->post_handler = NULL; 2052 p->break_handler = NULL; 2053 kill_optimized_kprobe(p); 2054 } 2055 /* 2056 * Here, we can remove insn_slot safely, because no thread calls 2057 * the original probed function (which will be freed soon) any more. 2058 */ 2059 arch_remove_kprobe(p); 2060 } 2061 2062 /* Disable one kprobe */ 2063 int disable_kprobe(struct kprobe *kp) 2064 { 2065 int ret = 0; 2066 2067 mutex_lock(&kprobe_mutex); 2068 2069 /* Disable this kprobe */ 2070 if (__disable_kprobe(kp) == NULL) 2071 ret = -EINVAL; 2072 2073 mutex_unlock(&kprobe_mutex); 2074 return ret; 2075 } 2076 EXPORT_SYMBOL_GPL(disable_kprobe); 2077 2078 /* Enable one kprobe */ 2079 int enable_kprobe(struct kprobe *kp) 2080 { 2081 int ret = 0; 2082 struct kprobe *p; 2083 2084 mutex_lock(&kprobe_mutex); 2085 2086 /* Check whether specified probe is valid. */ 2087 p = __get_valid_kprobe(kp); 2088 if (unlikely(p == NULL)) { 2089 ret = -EINVAL; 2090 goto out; 2091 } 2092 2093 if (kprobe_gone(kp)) { 2094 /* This kprobe has gone, we couldn't enable it. */ 2095 ret = -EINVAL; 2096 goto out; 2097 } 2098 2099 if (p != kp) 2100 kp->flags &= ~KPROBE_FLAG_DISABLED; 2101 2102 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2103 p->flags &= ~KPROBE_FLAG_DISABLED; 2104 arm_kprobe(p); 2105 } 2106 out: 2107 mutex_unlock(&kprobe_mutex); 2108 return ret; 2109 } 2110 EXPORT_SYMBOL_GPL(enable_kprobe); 2111 2112 void dump_kprobe(struct kprobe *kp) 2113 { 2114 printk(KERN_WARNING "Dumping kprobe:\n"); 2115 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2116 kp->symbol_name, kp->addr, kp->offset); 2117 } 2118 NOKPROBE_SYMBOL(dump_kprobe); 2119 2120 /* 2121 * Lookup and populate the kprobe_blacklist. 2122 * 2123 * Unlike the kretprobe blacklist, we'll need to determine 2124 * the range of addresses that belong to the said functions, 2125 * since a kprobe need not necessarily be at the beginning 2126 * of a function. 2127 */ 2128 static int __init populate_kprobe_blacklist(unsigned long *start, 2129 unsigned long *end) 2130 { 2131 unsigned long *iter; 2132 struct kprobe_blacklist_entry *ent; 2133 unsigned long entry, offset = 0, size = 0; 2134 2135 for (iter = start; iter < end; iter++) { 2136 entry = arch_deref_entry_point((void *)*iter); 2137 2138 if (!kernel_text_address(entry) || 2139 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2140 pr_err("Failed to find blacklist at %p\n", 2141 (void *)entry); 2142 continue; 2143 } 2144 2145 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2146 if (!ent) 2147 return -ENOMEM; 2148 ent->start_addr = entry; 2149 ent->end_addr = entry + size; 2150 INIT_LIST_HEAD(&ent->list); 2151 list_add_tail(&ent->list, &kprobe_blacklist); 2152 } 2153 return 0; 2154 } 2155 2156 /* Module notifier call back, checking kprobes on the module */ 2157 static int kprobes_module_callback(struct notifier_block *nb, 2158 unsigned long val, void *data) 2159 { 2160 struct module *mod = data; 2161 struct hlist_head *head; 2162 struct kprobe *p; 2163 unsigned int i; 2164 int checkcore = (val == MODULE_STATE_GOING); 2165 2166 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2167 return NOTIFY_DONE; 2168 2169 /* 2170 * When MODULE_STATE_GOING was notified, both of module .text and 2171 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2172 * notified, only .init.text section would be freed. We need to 2173 * disable kprobes which have been inserted in the sections. 2174 */ 2175 mutex_lock(&kprobe_mutex); 2176 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2177 head = &kprobe_table[i]; 2178 hlist_for_each_entry_rcu(p, head, hlist) 2179 if (within_module_init((unsigned long)p->addr, mod) || 2180 (checkcore && 2181 within_module_core((unsigned long)p->addr, mod))) { 2182 /* 2183 * The vaddr this probe is installed will soon 2184 * be vfreed buy not synced to disk. Hence, 2185 * disarming the breakpoint isn't needed. 2186 * 2187 * Note, this will also move any optimized probes 2188 * that are pending to be removed from their 2189 * corresponding lists to the freeing_list and 2190 * will not be touched by the delayed 2191 * kprobe_optimizer work handler. 2192 */ 2193 kill_kprobe(p); 2194 } 2195 } 2196 mutex_unlock(&kprobe_mutex); 2197 return NOTIFY_DONE; 2198 } 2199 2200 static struct notifier_block kprobe_module_nb = { 2201 .notifier_call = kprobes_module_callback, 2202 .priority = 0 2203 }; 2204 2205 /* Markers of _kprobe_blacklist section */ 2206 extern unsigned long __start_kprobe_blacklist[]; 2207 extern unsigned long __stop_kprobe_blacklist[]; 2208 2209 static int __init init_kprobes(void) 2210 { 2211 int i, err = 0; 2212 2213 /* FIXME allocate the probe table, currently defined statically */ 2214 /* initialize all list heads */ 2215 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2216 INIT_HLIST_HEAD(&kprobe_table[i]); 2217 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2218 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2219 } 2220 2221 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2222 __stop_kprobe_blacklist); 2223 if (err) { 2224 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2225 pr_err("Please take care of using kprobes.\n"); 2226 } 2227 2228 if (kretprobe_blacklist_size) { 2229 /* lookup the function address from its name */ 2230 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2231 kretprobe_blacklist[i].addr = 2232 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2233 if (!kretprobe_blacklist[i].addr) 2234 printk("kretprobe: lookup failed: %s\n", 2235 kretprobe_blacklist[i].name); 2236 } 2237 } 2238 2239 #if defined(CONFIG_OPTPROBES) 2240 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2241 /* Init kprobe_optinsn_slots */ 2242 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2243 #endif 2244 /* By default, kprobes can be optimized */ 2245 kprobes_allow_optimization = true; 2246 #endif 2247 2248 /* By default, kprobes are armed */ 2249 kprobes_all_disarmed = false; 2250 2251 err = arch_init_kprobes(); 2252 if (!err) 2253 err = register_die_notifier(&kprobe_exceptions_nb); 2254 if (!err) 2255 err = register_module_notifier(&kprobe_module_nb); 2256 2257 kprobes_initialized = (err == 0); 2258 2259 if (!err) 2260 init_test_probes(); 2261 return err; 2262 } 2263 2264 #ifdef CONFIG_DEBUG_FS 2265 static void report_probe(struct seq_file *pi, struct kprobe *p, 2266 const char *sym, int offset, char *modname, struct kprobe *pp) 2267 { 2268 char *kprobe_type; 2269 2270 if (p->pre_handler == pre_handler_kretprobe) 2271 kprobe_type = "r"; 2272 else if (p->pre_handler == setjmp_pre_handler) 2273 kprobe_type = "j"; 2274 else 2275 kprobe_type = "k"; 2276 2277 if (sym) 2278 seq_printf(pi, "%p %s %s+0x%x %s ", 2279 p->addr, kprobe_type, sym, offset, 2280 (modname ? modname : " ")); 2281 else 2282 seq_printf(pi, "%p %s %p ", 2283 p->addr, kprobe_type, p->addr); 2284 2285 if (!pp) 2286 pp = p; 2287 seq_printf(pi, "%s%s%s%s\n", 2288 (kprobe_gone(p) ? "[GONE]" : ""), 2289 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2290 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2291 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2292 } 2293 2294 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2295 { 2296 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2297 } 2298 2299 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2300 { 2301 (*pos)++; 2302 if (*pos >= KPROBE_TABLE_SIZE) 2303 return NULL; 2304 return pos; 2305 } 2306 2307 static void kprobe_seq_stop(struct seq_file *f, void *v) 2308 { 2309 /* Nothing to do */ 2310 } 2311 2312 static int show_kprobe_addr(struct seq_file *pi, void *v) 2313 { 2314 struct hlist_head *head; 2315 struct kprobe *p, *kp; 2316 const char *sym = NULL; 2317 unsigned int i = *(loff_t *) v; 2318 unsigned long offset = 0; 2319 char *modname, namebuf[KSYM_NAME_LEN]; 2320 2321 head = &kprobe_table[i]; 2322 preempt_disable(); 2323 hlist_for_each_entry_rcu(p, head, hlist) { 2324 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2325 &offset, &modname, namebuf); 2326 if (kprobe_aggrprobe(p)) { 2327 list_for_each_entry_rcu(kp, &p->list, list) 2328 report_probe(pi, kp, sym, offset, modname, p); 2329 } else 2330 report_probe(pi, p, sym, offset, modname, NULL); 2331 } 2332 preempt_enable(); 2333 return 0; 2334 } 2335 2336 static const struct seq_operations kprobes_seq_ops = { 2337 .start = kprobe_seq_start, 2338 .next = kprobe_seq_next, 2339 .stop = kprobe_seq_stop, 2340 .show = show_kprobe_addr 2341 }; 2342 2343 static int kprobes_open(struct inode *inode, struct file *filp) 2344 { 2345 return seq_open(filp, &kprobes_seq_ops); 2346 } 2347 2348 static const struct file_operations debugfs_kprobes_operations = { 2349 .open = kprobes_open, 2350 .read = seq_read, 2351 .llseek = seq_lseek, 2352 .release = seq_release, 2353 }; 2354 2355 /* kprobes/blacklist -- shows which functions can not be probed */ 2356 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2357 { 2358 return seq_list_start(&kprobe_blacklist, *pos); 2359 } 2360 2361 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2362 { 2363 return seq_list_next(v, &kprobe_blacklist, pos); 2364 } 2365 2366 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2367 { 2368 struct kprobe_blacklist_entry *ent = 2369 list_entry(v, struct kprobe_blacklist_entry, list); 2370 2371 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2372 (void *)ent->end_addr, (void *)ent->start_addr); 2373 return 0; 2374 } 2375 2376 static const struct seq_operations kprobe_blacklist_seq_ops = { 2377 .start = kprobe_blacklist_seq_start, 2378 .next = kprobe_blacklist_seq_next, 2379 .stop = kprobe_seq_stop, /* Reuse void function */ 2380 .show = kprobe_blacklist_seq_show, 2381 }; 2382 2383 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2384 { 2385 return seq_open(filp, &kprobe_blacklist_seq_ops); 2386 } 2387 2388 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2389 .open = kprobe_blacklist_open, 2390 .read = seq_read, 2391 .llseek = seq_lseek, 2392 .release = seq_release, 2393 }; 2394 2395 static void arm_all_kprobes(void) 2396 { 2397 struct hlist_head *head; 2398 struct kprobe *p; 2399 unsigned int i; 2400 2401 mutex_lock(&kprobe_mutex); 2402 2403 /* If kprobes are armed, just return */ 2404 if (!kprobes_all_disarmed) 2405 goto already_enabled; 2406 2407 /* 2408 * optimize_kprobe() called by arm_kprobe() checks 2409 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2410 * arm_kprobe. 2411 */ 2412 kprobes_all_disarmed = false; 2413 /* Arming kprobes doesn't optimize kprobe itself */ 2414 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2415 head = &kprobe_table[i]; 2416 hlist_for_each_entry_rcu(p, head, hlist) 2417 if (!kprobe_disabled(p)) 2418 arm_kprobe(p); 2419 } 2420 2421 printk(KERN_INFO "Kprobes globally enabled\n"); 2422 2423 already_enabled: 2424 mutex_unlock(&kprobe_mutex); 2425 return; 2426 } 2427 2428 static void disarm_all_kprobes(void) 2429 { 2430 struct hlist_head *head; 2431 struct kprobe *p; 2432 unsigned int i; 2433 2434 mutex_lock(&kprobe_mutex); 2435 2436 /* If kprobes are already disarmed, just return */ 2437 if (kprobes_all_disarmed) { 2438 mutex_unlock(&kprobe_mutex); 2439 return; 2440 } 2441 2442 kprobes_all_disarmed = true; 2443 printk(KERN_INFO "Kprobes globally disabled\n"); 2444 2445 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2446 head = &kprobe_table[i]; 2447 hlist_for_each_entry_rcu(p, head, hlist) { 2448 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2449 disarm_kprobe(p, false); 2450 } 2451 } 2452 mutex_unlock(&kprobe_mutex); 2453 2454 /* Wait for disarming all kprobes by optimizer */ 2455 wait_for_kprobe_optimizer(); 2456 } 2457 2458 /* 2459 * XXX: The debugfs bool file interface doesn't allow for callbacks 2460 * when the bool state is switched. We can reuse that facility when 2461 * available 2462 */ 2463 static ssize_t read_enabled_file_bool(struct file *file, 2464 char __user *user_buf, size_t count, loff_t *ppos) 2465 { 2466 char buf[3]; 2467 2468 if (!kprobes_all_disarmed) 2469 buf[0] = '1'; 2470 else 2471 buf[0] = '0'; 2472 buf[1] = '\n'; 2473 buf[2] = 0x00; 2474 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2475 } 2476 2477 static ssize_t write_enabled_file_bool(struct file *file, 2478 const char __user *user_buf, size_t count, loff_t *ppos) 2479 { 2480 char buf[32]; 2481 size_t buf_size; 2482 2483 buf_size = min(count, (sizeof(buf)-1)); 2484 if (copy_from_user(buf, user_buf, buf_size)) 2485 return -EFAULT; 2486 2487 buf[buf_size] = '\0'; 2488 switch (buf[0]) { 2489 case 'y': 2490 case 'Y': 2491 case '1': 2492 arm_all_kprobes(); 2493 break; 2494 case 'n': 2495 case 'N': 2496 case '0': 2497 disarm_all_kprobes(); 2498 break; 2499 default: 2500 return -EINVAL; 2501 } 2502 2503 return count; 2504 } 2505 2506 static const struct file_operations fops_kp = { 2507 .read = read_enabled_file_bool, 2508 .write = write_enabled_file_bool, 2509 .llseek = default_llseek, 2510 }; 2511 2512 static int __init debugfs_kprobe_init(void) 2513 { 2514 struct dentry *dir, *file; 2515 unsigned int value = 1; 2516 2517 dir = debugfs_create_dir("kprobes", NULL); 2518 if (!dir) 2519 return -ENOMEM; 2520 2521 file = debugfs_create_file("list", 0444, dir, NULL, 2522 &debugfs_kprobes_operations); 2523 if (!file) 2524 goto error; 2525 2526 file = debugfs_create_file("enabled", 0600, dir, 2527 &value, &fops_kp); 2528 if (!file) 2529 goto error; 2530 2531 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2532 &debugfs_kprobe_blacklist_ops); 2533 if (!file) 2534 goto error; 2535 2536 return 0; 2537 2538 error: 2539 debugfs_remove(dir); 2540 return -ENOMEM; 2541 } 2542 2543 late_initcall(debugfs_kprobe_init); 2544 #endif /* CONFIG_DEBUG_FS */ 2545 2546 module_init(init_kprobes); 2547 2548 /* defined in arch/.../kernel/kprobes.c */ 2549 EXPORT_SYMBOL_GPL(jprobe_return); 2550