xref: /linux/kernel/kprobes.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/moduleloader.h>
40 #include <asm-generic/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <asm/kdebug.h>
44 
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47 
48 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
49 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
50 
51 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
52 DEFINE_SPINLOCK(kretprobe_lock);	/* Protects kretprobe_inst_table */
53 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
54 
55 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
56 /*
57  * kprobe->ainsn.insn points to the copy of the instruction to be
58  * single-stepped. x86_64, POWER4 and above have no-exec support and
59  * stepping on the instruction on a vmalloced/kmalloced/data page
60  * is a recipe for disaster
61  */
62 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
63 
64 struct kprobe_insn_page {
65 	struct hlist_node hlist;
66 	kprobe_opcode_t *insns;		/* Page of instruction slots */
67 	char slot_used[INSNS_PER_PAGE];
68 	int nused;
69 };
70 
71 static struct hlist_head kprobe_insn_pages;
72 
73 /**
74  * get_insn_slot() - Find a slot on an executable page for an instruction.
75  * We allocate an executable page if there's no room on existing ones.
76  */
77 kprobe_opcode_t __kprobes *get_insn_slot(void)
78 {
79 	struct kprobe_insn_page *kip;
80 	struct hlist_node *pos;
81 
82 	hlist_for_each(pos, &kprobe_insn_pages) {
83 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
84 		if (kip->nused < INSNS_PER_PAGE) {
85 			int i;
86 			for (i = 0; i < INSNS_PER_PAGE; i++) {
87 				if (!kip->slot_used[i]) {
88 					kip->slot_used[i] = 1;
89 					kip->nused++;
90 					return kip->insns + (i * MAX_INSN_SIZE);
91 				}
92 			}
93 			/* Surprise!  No unused slots.  Fix kip->nused. */
94 			kip->nused = INSNS_PER_PAGE;
95 		}
96 	}
97 
98 	/* All out of space.  Need to allocate a new page. Use slot 0.*/
99 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
100 	if (!kip) {
101 		return NULL;
102 	}
103 
104 	/*
105 	 * Use module_alloc so this page is within +/- 2GB of where the
106 	 * kernel image and loaded module images reside. This is required
107 	 * so x86_64 can correctly handle the %rip-relative fixups.
108 	 */
109 	kip->insns = module_alloc(PAGE_SIZE);
110 	if (!kip->insns) {
111 		kfree(kip);
112 		return NULL;
113 	}
114 	INIT_HLIST_NODE(&kip->hlist);
115 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
116 	memset(kip->slot_used, 0, INSNS_PER_PAGE);
117 	kip->slot_used[0] = 1;
118 	kip->nused = 1;
119 	return kip->insns;
120 }
121 
122 void __kprobes free_insn_slot(kprobe_opcode_t *slot)
123 {
124 	struct kprobe_insn_page *kip;
125 	struct hlist_node *pos;
126 
127 	hlist_for_each(pos, &kprobe_insn_pages) {
128 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
129 		if (kip->insns <= slot &&
130 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
131 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
132 			kip->slot_used[i] = 0;
133 			kip->nused--;
134 			if (kip->nused == 0) {
135 				/*
136 				 * Page is no longer in use.  Free it unless
137 				 * it's the last one.  We keep the last one
138 				 * so as not to have to set it up again the
139 				 * next time somebody inserts a probe.
140 				 */
141 				hlist_del(&kip->hlist);
142 				if (hlist_empty(&kprobe_insn_pages)) {
143 					INIT_HLIST_NODE(&kip->hlist);
144 					hlist_add_head(&kip->hlist,
145 						&kprobe_insn_pages);
146 				} else {
147 					module_free(NULL, kip->insns);
148 					kfree(kip);
149 				}
150 			}
151 			return;
152 		}
153 	}
154 }
155 #endif
156 
157 /* We have preemption disabled.. so it is safe to use __ versions */
158 static inline void set_kprobe_instance(struct kprobe *kp)
159 {
160 	__get_cpu_var(kprobe_instance) = kp;
161 }
162 
163 static inline void reset_kprobe_instance(void)
164 {
165 	__get_cpu_var(kprobe_instance) = NULL;
166 }
167 
168 /*
169  * This routine is called either:
170  * 	- under the kprobe_mutex - during kprobe_[un]register()
171  * 				OR
172  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
173  */
174 struct kprobe __kprobes *get_kprobe(void *addr)
175 {
176 	struct hlist_head *head;
177 	struct hlist_node *node;
178 	struct kprobe *p;
179 
180 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
181 	hlist_for_each_entry_rcu(p, node, head, hlist) {
182 		if (p->addr == addr)
183 			return p;
184 	}
185 	return NULL;
186 }
187 
188 /*
189  * Aggregate handlers for multiple kprobes support - these handlers
190  * take care of invoking the individual kprobe handlers on p->list
191  */
192 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
193 {
194 	struct kprobe *kp;
195 
196 	list_for_each_entry_rcu(kp, &p->list, list) {
197 		if (kp->pre_handler) {
198 			set_kprobe_instance(kp);
199 			if (kp->pre_handler(kp, regs))
200 				return 1;
201 		}
202 		reset_kprobe_instance();
203 	}
204 	return 0;
205 }
206 
207 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
208 					unsigned long flags)
209 {
210 	struct kprobe *kp;
211 
212 	list_for_each_entry_rcu(kp, &p->list, list) {
213 		if (kp->post_handler) {
214 			set_kprobe_instance(kp);
215 			kp->post_handler(kp, regs, flags);
216 			reset_kprobe_instance();
217 		}
218 	}
219 	return;
220 }
221 
222 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
223 					int trapnr)
224 {
225 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
226 
227 	/*
228 	 * if we faulted "during" the execution of a user specified
229 	 * probe handler, invoke just that probe's fault handler
230 	 */
231 	if (cur && cur->fault_handler) {
232 		if (cur->fault_handler(cur, regs, trapnr))
233 			return 1;
234 	}
235 	return 0;
236 }
237 
238 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
239 {
240 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
241 	int ret = 0;
242 
243 	if (cur && cur->break_handler) {
244 		if (cur->break_handler(cur, regs))
245 			ret = 1;
246 	}
247 	reset_kprobe_instance();
248 	return ret;
249 }
250 
251 /* Walks the list and increments nmissed count for multiprobe case */
252 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
253 {
254 	struct kprobe *kp;
255 	if (p->pre_handler != aggr_pre_handler) {
256 		p->nmissed++;
257 	} else {
258 		list_for_each_entry_rcu(kp, &p->list, list)
259 			kp->nmissed++;
260 	}
261 	return;
262 }
263 
264 /* Called with kretprobe_lock held */
265 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
266 {
267 	struct hlist_node *node;
268 	struct kretprobe_instance *ri;
269 	hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
270 		return ri;
271 	return NULL;
272 }
273 
274 /* Called with kretprobe_lock held */
275 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
276 							      *rp)
277 {
278 	struct hlist_node *node;
279 	struct kretprobe_instance *ri;
280 	hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
281 		return ri;
282 	return NULL;
283 }
284 
285 /* Called with kretprobe_lock held */
286 void __kprobes add_rp_inst(struct kretprobe_instance *ri)
287 {
288 	/*
289 	 * Remove rp inst off the free list -
290 	 * Add it back when probed function returns
291 	 */
292 	hlist_del(&ri->uflist);
293 
294 	/* Add rp inst onto table */
295 	INIT_HLIST_NODE(&ri->hlist);
296 	hlist_add_head(&ri->hlist,
297 			&kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
298 
299 	/* Also add this rp inst to the used list. */
300 	INIT_HLIST_NODE(&ri->uflist);
301 	hlist_add_head(&ri->uflist, &ri->rp->used_instances);
302 }
303 
304 /* Called with kretprobe_lock held */
305 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri)
306 {
307 	/* remove rp inst off the rprobe_inst_table */
308 	hlist_del(&ri->hlist);
309 	if (ri->rp) {
310 		/* remove rp inst off the used list */
311 		hlist_del(&ri->uflist);
312 		/* put rp inst back onto the free list */
313 		INIT_HLIST_NODE(&ri->uflist);
314 		hlist_add_head(&ri->uflist, &ri->rp->free_instances);
315 	} else
316 		/* Unregistering */
317 		kfree(ri);
318 }
319 
320 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
321 {
322 	return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
323 }
324 
325 /*
326  * This function is called from finish_task_switch when task tk becomes dead,
327  * so that we can recycle any function-return probe instances associated
328  * with this task. These left over instances represent probed functions
329  * that have been called but will never return.
330  */
331 void __kprobes kprobe_flush_task(struct task_struct *tk)
332 {
333         struct kretprobe_instance *ri;
334         struct hlist_head *head;
335 	struct hlist_node *node, *tmp;
336 	unsigned long flags = 0;
337 
338 	spin_lock_irqsave(&kretprobe_lock, flags);
339         head = kretprobe_inst_table_head(tk);
340         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
341                 if (ri->task == tk)
342                         recycle_rp_inst(ri);
343         }
344 	spin_unlock_irqrestore(&kretprobe_lock, flags);
345 }
346 
347 static inline void free_rp_inst(struct kretprobe *rp)
348 {
349 	struct kretprobe_instance *ri;
350 	while ((ri = get_free_rp_inst(rp)) != NULL) {
351 		hlist_del(&ri->uflist);
352 		kfree(ri);
353 	}
354 }
355 
356 /*
357  * Keep all fields in the kprobe consistent
358  */
359 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
360 {
361 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
362 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
363 }
364 
365 /*
366 * Add the new probe to old_p->list. Fail if this is the
367 * second jprobe at the address - two jprobes can't coexist
368 */
369 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
370 {
371         struct kprobe *kp;
372 
373 	if (p->break_handler) {
374 		list_for_each_entry_rcu(kp, &old_p->list, list) {
375 			if (kp->break_handler)
376 				return -EEXIST;
377 		}
378 		list_add_tail_rcu(&p->list, &old_p->list);
379 	} else
380 		list_add_rcu(&p->list, &old_p->list);
381 	return 0;
382 }
383 
384 /*
385  * Fill in the required fields of the "manager kprobe". Replace the
386  * earlier kprobe in the hlist with the manager kprobe
387  */
388 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
389 {
390 	copy_kprobe(p, ap);
391 	ap->addr = p->addr;
392 	ap->pre_handler = aggr_pre_handler;
393 	ap->post_handler = aggr_post_handler;
394 	ap->fault_handler = aggr_fault_handler;
395 	ap->break_handler = aggr_break_handler;
396 
397 	INIT_LIST_HEAD(&ap->list);
398 	list_add_rcu(&p->list, &ap->list);
399 
400 	hlist_replace_rcu(&p->hlist, &ap->hlist);
401 }
402 
403 /*
404  * This is the second or subsequent kprobe at the address - handle
405  * the intricacies
406  */
407 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
408 					  struct kprobe *p)
409 {
410 	int ret = 0;
411 	struct kprobe *ap;
412 
413 	if (old_p->pre_handler == aggr_pre_handler) {
414 		copy_kprobe(old_p, p);
415 		ret = add_new_kprobe(old_p, p);
416 	} else {
417 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
418 		if (!ap)
419 			return -ENOMEM;
420 		add_aggr_kprobe(ap, old_p);
421 		copy_kprobe(ap, p);
422 		ret = add_new_kprobe(ap, p);
423 	}
424 	return ret;
425 }
426 
427 static int __kprobes in_kprobes_functions(unsigned long addr)
428 {
429 	if (addr >= (unsigned long)__kprobes_text_start
430 		&& addr < (unsigned long)__kprobes_text_end)
431 		return -EINVAL;
432 	return 0;
433 }
434 
435 static int __kprobes __register_kprobe(struct kprobe *p,
436 	unsigned long called_from)
437 {
438 	int ret = 0;
439 	struct kprobe *old_p;
440 	struct module *probed_mod;
441 
442 	if ((!kernel_text_address((unsigned long) p->addr)) ||
443 		in_kprobes_functions((unsigned long) p->addr))
444 		return -EINVAL;
445 
446 	p->mod_refcounted = 0;
447 	/* Check are we probing a module */
448 	if ((probed_mod = module_text_address((unsigned long) p->addr))) {
449 		struct module *calling_mod = module_text_address(called_from);
450 		/* We must allow modules to probe themself and
451 		 * in this case avoid incrementing the module refcount,
452 		 * so as to allow unloading of self probing modules.
453 		 */
454 		if (calling_mod && (calling_mod != probed_mod)) {
455 			if (unlikely(!try_module_get(probed_mod)))
456 				return -EINVAL;
457 			p->mod_refcounted = 1;
458 		} else
459 			probed_mod = NULL;
460 	}
461 
462 	p->nmissed = 0;
463 	mutex_lock(&kprobe_mutex);
464 	old_p = get_kprobe(p->addr);
465 	if (old_p) {
466 		ret = register_aggr_kprobe(old_p, p);
467 		goto out;
468 	}
469 
470 	if ((ret = arch_prepare_kprobe(p)) != 0)
471 		goto out;
472 
473 	INIT_HLIST_NODE(&p->hlist);
474 	hlist_add_head_rcu(&p->hlist,
475 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
476 
477   	arch_arm_kprobe(p);
478 
479 out:
480 	mutex_unlock(&kprobe_mutex);
481 
482 	if (ret && probed_mod)
483 		module_put(probed_mod);
484 	return ret;
485 }
486 
487 int __kprobes register_kprobe(struct kprobe *p)
488 {
489 	return __register_kprobe(p,
490 		(unsigned long)__builtin_return_address(0));
491 }
492 
493 void __kprobes unregister_kprobe(struct kprobe *p)
494 {
495 	struct module *mod;
496 	struct kprobe *old_p, *list_p;
497 	int cleanup_p;
498 
499 	mutex_lock(&kprobe_mutex);
500 	old_p = get_kprobe(p->addr);
501 	if (unlikely(!old_p)) {
502 		mutex_unlock(&kprobe_mutex);
503 		return;
504 	}
505 	if (p != old_p) {
506 		list_for_each_entry_rcu(list_p, &old_p->list, list)
507 			if (list_p == p)
508 			/* kprobe p is a valid probe */
509 				goto valid_p;
510 		mutex_unlock(&kprobe_mutex);
511 		return;
512 	}
513 valid_p:
514 	if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) &&
515 		(p->list.next == &old_p->list) &&
516 		(p->list.prev == &old_p->list))) {
517 		/* Only probe on the hash list */
518 		arch_disarm_kprobe(p);
519 		hlist_del_rcu(&old_p->hlist);
520 		cleanup_p = 1;
521 	} else {
522 		list_del_rcu(&p->list);
523 		cleanup_p = 0;
524 	}
525 
526 	mutex_unlock(&kprobe_mutex);
527 
528 	synchronize_sched();
529 	if (p->mod_refcounted &&
530 	    (mod = module_text_address((unsigned long)p->addr)))
531 		module_put(mod);
532 
533 	if (cleanup_p) {
534 		if (p != old_p) {
535 			list_del_rcu(&p->list);
536 			kfree(old_p);
537 		}
538 		arch_remove_kprobe(p);
539 	}
540 }
541 
542 static struct notifier_block kprobe_exceptions_nb = {
543 	.notifier_call = kprobe_exceptions_notify,
544 	.priority = 0x7fffffff /* we need to notified first */
545 };
546 
547 int __kprobes register_jprobe(struct jprobe *jp)
548 {
549 	/* Todo: Verify probepoint is a function entry point */
550 	jp->kp.pre_handler = setjmp_pre_handler;
551 	jp->kp.break_handler = longjmp_break_handler;
552 
553 	return __register_kprobe(&jp->kp,
554 		(unsigned long)__builtin_return_address(0));
555 }
556 
557 void __kprobes unregister_jprobe(struct jprobe *jp)
558 {
559 	unregister_kprobe(&jp->kp);
560 }
561 
562 #ifdef ARCH_SUPPORTS_KRETPROBES
563 
564 /*
565  * This kprobe pre_handler is registered with every kretprobe. When probe
566  * hits it will set up the return probe.
567  */
568 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
569 					   struct pt_regs *regs)
570 {
571 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
572 	unsigned long flags = 0;
573 
574 	/*TODO: consider to only swap the RA after the last pre_handler fired */
575 	spin_lock_irqsave(&kretprobe_lock, flags);
576 	arch_prepare_kretprobe(rp, regs);
577 	spin_unlock_irqrestore(&kretprobe_lock, flags);
578 	return 0;
579 }
580 
581 int __kprobes register_kretprobe(struct kretprobe *rp)
582 {
583 	int ret = 0;
584 	struct kretprobe_instance *inst;
585 	int i;
586 
587 	rp->kp.pre_handler = pre_handler_kretprobe;
588 	rp->kp.post_handler = NULL;
589 	rp->kp.fault_handler = NULL;
590 	rp->kp.break_handler = NULL;
591 
592 	/* Pre-allocate memory for max kretprobe instances */
593 	if (rp->maxactive <= 0) {
594 #ifdef CONFIG_PREEMPT
595 		rp->maxactive = max(10, 2 * NR_CPUS);
596 #else
597 		rp->maxactive = NR_CPUS;
598 #endif
599 	}
600 	INIT_HLIST_HEAD(&rp->used_instances);
601 	INIT_HLIST_HEAD(&rp->free_instances);
602 	for (i = 0; i < rp->maxactive; i++) {
603 		inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
604 		if (inst == NULL) {
605 			free_rp_inst(rp);
606 			return -ENOMEM;
607 		}
608 		INIT_HLIST_NODE(&inst->uflist);
609 		hlist_add_head(&inst->uflist, &rp->free_instances);
610 	}
611 
612 	rp->nmissed = 0;
613 	/* Establish function entry probe point */
614 	if ((ret = __register_kprobe(&rp->kp,
615 		(unsigned long)__builtin_return_address(0))) != 0)
616 		free_rp_inst(rp);
617 	return ret;
618 }
619 
620 #else /* ARCH_SUPPORTS_KRETPROBES */
621 
622 int __kprobes register_kretprobe(struct kretprobe *rp)
623 {
624 	return -ENOSYS;
625 }
626 
627 #endif /* ARCH_SUPPORTS_KRETPROBES */
628 
629 void __kprobes unregister_kretprobe(struct kretprobe *rp)
630 {
631 	unsigned long flags;
632 	struct kretprobe_instance *ri;
633 
634 	unregister_kprobe(&rp->kp);
635 	/* No race here */
636 	spin_lock_irqsave(&kretprobe_lock, flags);
637 	while ((ri = get_used_rp_inst(rp)) != NULL) {
638 		ri->rp = NULL;
639 		hlist_del(&ri->uflist);
640 	}
641 	spin_unlock_irqrestore(&kretprobe_lock, flags);
642 	free_rp_inst(rp);
643 }
644 
645 static int __init init_kprobes(void)
646 {
647 	int i, err = 0;
648 
649 	/* FIXME allocate the probe table, currently defined statically */
650 	/* initialize all list heads */
651 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
652 		INIT_HLIST_HEAD(&kprobe_table[i]);
653 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
654 	}
655 
656 	err = arch_init_kprobes();
657 	if (!err)
658 		err = register_die_notifier(&kprobe_exceptions_nb);
659 
660 	return err;
661 }
662 
663 __initcall(init_kprobes);
664 
665 EXPORT_SYMBOL_GPL(register_kprobe);
666 EXPORT_SYMBOL_GPL(unregister_kprobe);
667 EXPORT_SYMBOL_GPL(register_jprobe);
668 EXPORT_SYMBOL_GPL(unregister_jprobe);
669 EXPORT_SYMBOL_GPL(jprobe_return);
670 EXPORT_SYMBOL_GPL(register_kretprobe);
671 EXPORT_SYMBOL_GPL(unregister_kretprobe);
672 
673