xref: /linux/kernel/kprobes.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55 
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 
59 
60 /*
61  * Some oddball architectures like 64bit powerpc have function descriptors
62  * so this must be overridable.
63  */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68 
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72 
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75 
76 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79 	spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81 
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84 	return &(kretprobe_table_locks[hash].lock);
85 }
86 
87 /*
88  * Normally, functions that we'd want to prohibit kprobes in, are marked
89  * __kprobes. But, there are cases where such functions already belong to
90  * a different section (__sched for preempt_schedule)
91  *
92  * For such cases, we now have a blacklist
93  */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95 	{"preempt_schedule",},
96 	{"native_get_debugreg",},
97 	{"irq_entries_start",},
98 	{"common_interrupt",},
99 	{"mcount",},	/* mcount can be called from everywhere */
100 	{NULL}    /* Terminator */
101 };
102 
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105  * kprobe->ainsn.insn points to the copy of the instruction to be
106  * single-stepped. x86_64, POWER4 and above have no-exec support and
107  * stepping on the instruction on a vmalloced/kmalloced/data page
108  * is a recipe for disaster
109  */
110 struct kprobe_insn_page {
111 	struct list_head list;
112 	kprobe_opcode_t *insns;		/* Page of instruction slots */
113 	int nused;
114 	int ngarbage;
115 	char slot_used[];
116 };
117 
118 #define KPROBE_INSN_PAGE_SIZE(slots)			\
119 	(offsetof(struct kprobe_insn_page, slot_used) +	\
120 	 (sizeof(char) * (slots)))
121 
122 struct kprobe_insn_cache {
123 	struct list_head pages;	/* list of kprobe_insn_page */
124 	size_t insn_size;	/* size of instruction slot */
125 	int nr_garbage;
126 };
127 
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132 
133 enum kprobe_slot_state {
134 	SLOT_CLEAN = 0,
135 	SLOT_DIRTY = 1,
136 	SLOT_USED = 2,
137 };
138 
139 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 	.insn_size = MAX_INSN_SIZE,
143 	.nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146 
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153 	struct kprobe_insn_page *kip;
154 
155  retry:
156 	list_for_each_entry(kip, &c->pages, list) {
157 		if (kip->nused < slots_per_page(c)) {
158 			int i;
159 			for (i = 0; i < slots_per_page(c); i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					return kip->insns + (i * c->insn_size);
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		return NULL;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = module_alloc(PAGE_SIZE);
187 	if (!kip->insns) {
188 		kfree(kip);
189 		return NULL;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	list_add(&kip->list, &c->pages);
197 	return kip->insns;
198 }
199 
200 
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 	kprobe_opcode_t *ret = NULL;
204 
205 	mutex_lock(&kprobe_insn_mutex);
206 	ret = __get_insn_slot(&kprobe_insn_slots);
207 	mutex_unlock(&kprobe_insn_mutex);
208 
209 	return ret;
210 }
211 
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 	kip->slot_used[idx] = SLOT_CLEAN;
216 	kip->nused--;
217 	if (kip->nused == 0) {
218 		/*
219 		 * Page is no longer in use.  Free it unless
220 		 * it's the last one.  We keep the last one
221 		 * so as not to have to set it up again the
222 		 * next time somebody inserts a probe.
223 		 */
224 		if (!list_is_singular(&kip->list)) {
225 			list_del(&kip->list);
226 			module_free(NULL, kip->insns);
227 			kfree(kip);
228 		}
229 		return 1;
230 	}
231 	return 0;
232 }
233 
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_sched();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 		if (kip->ngarbage == 0)
244 			continue;
245 		kip->ngarbage = 0;	/* we will collect all garbages */
246 		for (i = 0; i < slots_per_page(c); i++) {
247 			if (kip->slot_used[i] == SLOT_DIRTY &&
248 			    collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 				       kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 
261 	list_for_each_entry(kip, &c->pages, list) {
262 		long idx = ((long)slot - (long)kip->insns) /
263 				(c->insn_size * sizeof(kprobe_opcode_t));
264 		if (idx >= 0 && idx < slots_per_page(c)) {
265 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
266 			if (dirty) {
267 				kip->slot_used[idx] = SLOT_DIRTY;
268 				kip->ngarbage++;
269 				if (++c->nr_garbage > slots_per_page(c))
270 					collect_garbage_slots(c);
271 			} else
272 				collect_one_slot(kip, idx);
273 			return;
274 		}
275 	}
276 	/* Could not free this slot. */
277 	WARN_ON(1);
278 }
279 
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281 {
282 	mutex_lock(&kprobe_insn_mutex);
283 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
284 	mutex_unlock(&kprobe_insn_mutex);
285 }
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 	/* .insn_size is initialized later */
292 	.nr_garbage = 0,
293 };
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296 {
297 	kprobe_opcode_t *ret = NULL;
298 
299 	mutex_lock(&kprobe_optinsn_mutex);
300 	ret = __get_insn_slot(&kprobe_optinsn_slots);
301 	mutex_unlock(&kprobe_optinsn_mutex);
302 
303 	return ret;
304 }
305 
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307 {
308 	mutex_lock(&kprobe_optinsn_mutex);
309 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310 	mutex_unlock(&kprobe_optinsn_mutex);
311 }
312 #endif
313 #endif
314 
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
317 {
318 	__get_cpu_var(kprobe_instance) = kp;
319 }
320 
321 static inline void reset_kprobe_instance(void)
322 {
323 	__get_cpu_var(kprobe_instance) = NULL;
324 }
325 
326 /*
327  * This routine is called either:
328  * 	- under the kprobe_mutex - during kprobe_[un]register()
329  * 				OR
330  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
331  */
332 struct kprobe __kprobes *get_kprobe(void *addr)
333 {
334 	struct hlist_head *head;
335 	struct hlist_node *node;
336 	struct kprobe *p;
337 
338 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339 	hlist_for_each_entry_rcu(p, node, head, hlist) {
340 		if (p->addr == addr)
341 			return p;
342 	}
343 
344 	return NULL;
345 }
346 
347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348 
349 /* Return true if the kprobe is an aggregator */
350 static inline int kprobe_aggrprobe(struct kprobe *p)
351 {
352 	return p->pre_handler == aggr_pre_handler;
353 }
354 
355 /*
356  * Keep all fields in the kprobe consistent
357  */
358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359 {
360 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362 }
363 
364 #ifdef CONFIG_OPTPROBES
365 /* NOTE: change this value only with kprobe_mutex held */
366 static bool kprobes_allow_optimization;
367 
368 /*
369  * Call all pre_handler on the list, but ignores its return value.
370  * This must be called from arch-dep optimized caller.
371  */
372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374 	struct kprobe *kp;
375 
376 	list_for_each_entry_rcu(kp, &p->list, list) {
377 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378 			set_kprobe_instance(kp);
379 			kp->pre_handler(kp, regs);
380 		}
381 		reset_kprobe_instance();
382 	}
383 }
384 
385 /* Return true(!0) if the kprobe is ready for optimization. */
386 static inline int kprobe_optready(struct kprobe *p)
387 {
388 	struct optimized_kprobe *op;
389 
390 	if (kprobe_aggrprobe(p)) {
391 		op = container_of(p, struct optimized_kprobe, kp);
392 		return arch_prepared_optinsn(&op->optinsn);
393 	}
394 
395 	return 0;
396 }
397 
398 /*
399  * Return an optimized kprobe whose optimizing code replaces
400  * instructions including addr (exclude breakpoint).
401  */
402 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403 {
404 	int i;
405 	struct kprobe *p = NULL;
406 	struct optimized_kprobe *op;
407 
408 	/* Don't check i == 0, since that is a breakpoint case. */
409 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410 		p = get_kprobe((void *)(addr - i));
411 
412 	if (p && kprobe_optready(p)) {
413 		op = container_of(p, struct optimized_kprobe, kp);
414 		if (arch_within_optimized_kprobe(op, addr))
415 			return p;
416 	}
417 
418 	return NULL;
419 }
420 
421 /* Optimization staging list, protected by kprobe_mutex */
422 static LIST_HEAD(optimizing_list);
423 
424 static void kprobe_optimizer(struct work_struct *work);
425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426 #define OPTIMIZE_DELAY 5
427 
428 /* Kprobe jump optimizer */
429 static __kprobes void kprobe_optimizer(struct work_struct *work)
430 {
431 	struct optimized_kprobe *op, *tmp;
432 
433 	/* Lock modules while optimizing kprobes */
434 	mutex_lock(&module_mutex);
435 	mutex_lock(&kprobe_mutex);
436 	if (kprobes_all_disarmed || !kprobes_allow_optimization)
437 		goto end;
438 
439 	/*
440 	 * Wait for quiesence period to ensure all running interrupts
441 	 * are done. Because optprobe may modify multiple instructions
442 	 * there is a chance that Nth instruction is interrupted. In that
443 	 * case, running interrupt can return to 2nd-Nth byte of jump
444 	 * instruction. This wait is for avoiding it.
445 	 */
446 	synchronize_sched();
447 
448 	/*
449 	 * The optimization/unoptimization refers online_cpus via
450 	 * stop_machine() and cpu-hotplug modifies online_cpus.
451 	 * And same time, text_mutex will be held in cpu-hotplug and here.
452 	 * This combination can cause a deadlock (cpu-hotplug try to lock
453 	 * text_mutex but stop_machine can not be done because online_cpus
454 	 * has been changed)
455 	 * To avoid this deadlock, we need to call get_online_cpus()
456 	 * for preventing cpu-hotplug outside of text_mutex locking.
457 	 */
458 	get_online_cpus();
459 	mutex_lock(&text_mutex);
460 	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461 		WARN_ON(kprobe_disabled(&op->kp));
462 		if (arch_optimize_kprobe(op) < 0)
463 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464 		list_del_init(&op->list);
465 	}
466 	mutex_unlock(&text_mutex);
467 	put_online_cpus();
468 end:
469 	mutex_unlock(&kprobe_mutex);
470 	mutex_unlock(&module_mutex);
471 }
472 
473 /* Optimize kprobe if p is ready to be optimized */
474 static __kprobes void optimize_kprobe(struct kprobe *p)
475 {
476 	struct optimized_kprobe *op;
477 
478 	/* Check if the kprobe is disabled or not ready for optimization. */
479 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480 	    (kprobe_disabled(p) || kprobes_all_disarmed))
481 		return;
482 
483 	/* Both of break_handler and post_handler are not supported. */
484 	if (p->break_handler || p->post_handler)
485 		return;
486 
487 	op = container_of(p, struct optimized_kprobe, kp);
488 
489 	/* Check there is no other kprobes at the optimized instructions */
490 	if (arch_check_optimized_kprobe(op) < 0)
491 		return;
492 
493 	/* Check if it is already optimized. */
494 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495 		return;
496 
497 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498 	list_add(&op->list, &optimizing_list);
499 	if (!delayed_work_pending(&optimizing_work))
500 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501 }
502 
503 /* Unoptimize a kprobe if p is optimized */
504 static __kprobes void unoptimize_kprobe(struct kprobe *p)
505 {
506 	struct optimized_kprobe *op;
507 
508 	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509 		op = container_of(p, struct optimized_kprobe, kp);
510 		if (!list_empty(&op->list))
511 			/* Dequeue from the optimization queue */
512 			list_del_init(&op->list);
513 		else
514 			/* Replace jump with break */
515 			arch_unoptimize_kprobe(op);
516 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517 	}
518 }
519 
520 /* Remove optimized instructions */
521 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522 {
523 	struct optimized_kprobe *op;
524 
525 	op = container_of(p, struct optimized_kprobe, kp);
526 	if (!list_empty(&op->list)) {
527 		/* Dequeue from the optimization queue */
528 		list_del_init(&op->list);
529 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530 	}
531 	/* Don't unoptimize, because the target code will be freed. */
532 	arch_remove_optimized_kprobe(op);
533 }
534 
535 /* Try to prepare optimized instructions */
536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537 {
538 	struct optimized_kprobe *op;
539 
540 	op = container_of(p, struct optimized_kprobe, kp);
541 	arch_prepare_optimized_kprobe(op);
542 }
543 
544 /* Free optimized instructions and optimized_kprobe */
545 static __kprobes void free_aggr_kprobe(struct kprobe *p)
546 {
547 	struct optimized_kprobe *op;
548 
549 	op = container_of(p, struct optimized_kprobe, kp);
550 	arch_remove_optimized_kprobe(op);
551 	kfree(op);
552 }
553 
554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556 {
557 	struct optimized_kprobe *op;
558 
559 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560 	if (!op)
561 		return NULL;
562 
563 	INIT_LIST_HEAD(&op->list);
564 	op->kp.addr = p->addr;
565 	arch_prepare_optimized_kprobe(op);
566 
567 	return &op->kp;
568 }
569 
570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571 
572 /*
573  * Prepare an optimized_kprobe and optimize it
574  * NOTE: p must be a normal registered kprobe
575  */
576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577 {
578 	struct kprobe *ap;
579 	struct optimized_kprobe *op;
580 
581 	ap = alloc_aggr_kprobe(p);
582 	if (!ap)
583 		return;
584 
585 	op = container_of(ap, struct optimized_kprobe, kp);
586 	if (!arch_prepared_optinsn(&op->optinsn)) {
587 		/* If failed to setup optimizing, fallback to kprobe */
588 		free_aggr_kprobe(ap);
589 		return;
590 	}
591 
592 	init_aggr_kprobe(ap, p);
593 	optimize_kprobe(ap);
594 }
595 
596 #ifdef CONFIG_SYSCTL
597 static void __kprobes optimize_all_kprobes(void)
598 {
599 	struct hlist_head *head;
600 	struct hlist_node *node;
601 	struct kprobe *p;
602 	unsigned int i;
603 
604 	/* If optimization is already allowed, just return */
605 	if (kprobes_allow_optimization)
606 		return;
607 
608 	kprobes_allow_optimization = true;
609 	mutex_lock(&text_mutex);
610 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611 		head = &kprobe_table[i];
612 		hlist_for_each_entry_rcu(p, node, head, hlist)
613 			if (!kprobe_disabled(p))
614 				optimize_kprobe(p);
615 	}
616 	mutex_unlock(&text_mutex);
617 	printk(KERN_INFO "Kprobes globally optimized\n");
618 }
619 
620 static void __kprobes unoptimize_all_kprobes(void)
621 {
622 	struct hlist_head *head;
623 	struct hlist_node *node;
624 	struct kprobe *p;
625 	unsigned int i;
626 
627 	/* If optimization is already prohibited, just return */
628 	if (!kprobes_allow_optimization)
629 		return;
630 
631 	kprobes_allow_optimization = false;
632 	printk(KERN_INFO "Kprobes globally unoptimized\n");
633 	get_online_cpus();	/* For avoiding text_mutex deadlock */
634 	mutex_lock(&text_mutex);
635 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636 		head = &kprobe_table[i];
637 		hlist_for_each_entry_rcu(p, node, head, hlist) {
638 			if (!kprobe_disabled(p))
639 				unoptimize_kprobe(p);
640 		}
641 	}
642 
643 	mutex_unlock(&text_mutex);
644 	put_online_cpus();
645 	/* Allow all currently running kprobes to complete */
646 	synchronize_sched();
647 }
648 
649 int sysctl_kprobes_optimization;
650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651 				      void __user *buffer, size_t *length,
652 				      loff_t *ppos)
653 {
654 	int ret;
655 
656 	mutex_lock(&kprobe_mutex);
657 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659 
660 	if (sysctl_kprobes_optimization)
661 		optimize_all_kprobes();
662 	else
663 		unoptimize_all_kprobes();
664 	mutex_unlock(&kprobe_mutex);
665 
666 	return ret;
667 }
668 #endif /* CONFIG_SYSCTL */
669 
670 static void __kprobes __arm_kprobe(struct kprobe *p)
671 {
672 	struct kprobe *old_p;
673 
674 	/* Check collision with other optimized kprobes */
675 	old_p = get_optimized_kprobe((unsigned long)p->addr);
676 	if (unlikely(old_p))
677 		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678 
679 	arch_arm_kprobe(p);
680 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
681 }
682 
683 static void __kprobes __disarm_kprobe(struct kprobe *p)
684 {
685 	struct kprobe *old_p;
686 
687 	unoptimize_kprobe(p);	/* Try to unoptimize */
688 	arch_disarm_kprobe(p);
689 
690 	/* If another kprobe was blocked, optimize it. */
691 	old_p = get_optimized_kprobe((unsigned long)p->addr);
692 	if (unlikely(old_p))
693 		optimize_kprobe(old_p);
694 }
695 
696 #else /* !CONFIG_OPTPROBES */
697 
698 #define optimize_kprobe(p)			do {} while (0)
699 #define unoptimize_kprobe(p)			do {} while (0)
700 #define kill_optimized_kprobe(p)		do {} while (0)
701 #define prepare_optimized_kprobe(p)		do {} while (0)
702 #define try_to_optimize_kprobe(p)		do {} while (0)
703 #define __arm_kprobe(p)				arch_arm_kprobe(p)
704 #define __disarm_kprobe(p)			arch_disarm_kprobe(p)
705 
706 static __kprobes void free_aggr_kprobe(struct kprobe *p)
707 {
708 	kfree(p);
709 }
710 
711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712 {
713 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714 }
715 #endif /* CONFIG_OPTPROBES */
716 
717 /* Arm a kprobe with text_mutex */
718 static void __kprobes arm_kprobe(struct kprobe *kp)
719 {
720 	/*
721 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
722 	 * this doesn't cause deadlock on text_mutex. So, we don't
723 	 * need get_online_cpus().
724 	 */
725 	mutex_lock(&text_mutex);
726 	__arm_kprobe(kp);
727 	mutex_unlock(&text_mutex);
728 }
729 
730 /* Disarm a kprobe with text_mutex */
731 static void __kprobes disarm_kprobe(struct kprobe *kp)
732 {
733 	get_online_cpus();	/* For avoiding text_mutex deadlock */
734 	mutex_lock(&text_mutex);
735 	__disarm_kprobe(kp);
736 	mutex_unlock(&text_mutex);
737 	put_online_cpus();
738 }
739 
740 /*
741  * Aggregate handlers for multiple kprobes support - these handlers
742  * take care of invoking the individual kprobe handlers on p->list
743  */
744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745 {
746 	struct kprobe *kp;
747 
748 	list_for_each_entry_rcu(kp, &p->list, list) {
749 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750 			set_kprobe_instance(kp);
751 			if (kp->pre_handler(kp, regs))
752 				return 1;
753 		}
754 		reset_kprobe_instance();
755 	}
756 	return 0;
757 }
758 
759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760 					unsigned long flags)
761 {
762 	struct kprobe *kp;
763 
764 	list_for_each_entry_rcu(kp, &p->list, list) {
765 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766 			set_kprobe_instance(kp);
767 			kp->post_handler(kp, regs, flags);
768 			reset_kprobe_instance();
769 		}
770 	}
771 }
772 
773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774 					int trapnr)
775 {
776 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
777 
778 	/*
779 	 * if we faulted "during" the execution of a user specified
780 	 * probe handler, invoke just that probe's fault handler
781 	 */
782 	if (cur && cur->fault_handler) {
783 		if (cur->fault_handler(cur, regs, trapnr))
784 			return 1;
785 	}
786 	return 0;
787 }
788 
789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790 {
791 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
792 	int ret = 0;
793 
794 	if (cur && cur->break_handler) {
795 		if (cur->break_handler(cur, regs))
796 			ret = 1;
797 	}
798 	reset_kprobe_instance();
799 	return ret;
800 }
801 
802 /* Walks the list and increments nmissed count for multiprobe case */
803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804 {
805 	struct kprobe *kp;
806 	if (!kprobe_aggrprobe(p)) {
807 		p->nmissed++;
808 	} else {
809 		list_for_each_entry_rcu(kp, &p->list, list)
810 			kp->nmissed++;
811 	}
812 	return;
813 }
814 
815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816 				struct hlist_head *head)
817 {
818 	struct kretprobe *rp = ri->rp;
819 
820 	/* remove rp inst off the rprobe_inst_table */
821 	hlist_del(&ri->hlist);
822 	INIT_HLIST_NODE(&ri->hlist);
823 	if (likely(rp)) {
824 		spin_lock(&rp->lock);
825 		hlist_add_head(&ri->hlist, &rp->free_instances);
826 		spin_unlock(&rp->lock);
827 	} else
828 		/* Unregistering */
829 		hlist_add_head(&ri->hlist, head);
830 }
831 
832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833 			 struct hlist_head **head, unsigned long *flags)
834 {
835 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
836 	spinlock_t *hlist_lock;
837 
838 	*head = &kretprobe_inst_table[hash];
839 	hlist_lock = kretprobe_table_lock_ptr(hash);
840 	spin_lock_irqsave(hlist_lock, *flags);
841 }
842 
843 static void __kprobes kretprobe_table_lock(unsigned long hash,
844 	unsigned long *flags)
845 {
846 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
847 	spin_lock_irqsave(hlist_lock, *flags);
848 }
849 
850 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
851 	unsigned long *flags)
852 {
853 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
854 	spinlock_t *hlist_lock;
855 
856 	hlist_lock = kretprobe_table_lock_ptr(hash);
857 	spin_unlock_irqrestore(hlist_lock, *flags);
858 }
859 
860 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
861 {
862 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
863 	spin_unlock_irqrestore(hlist_lock, *flags);
864 }
865 
866 /*
867  * This function is called from finish_task_switch when task tk becomes dead,
868  * so that we can recycle any function-return probe instances associated
869  * with this task. These left over instances represent probed functions
870  * that have been called but will never return.
871  */
872 void __kprobes kprobe_flush_task(struct task_struct *tk)
873 {
874 	struct kretprobe_instance *ri;
875 	struct hlist_head *head, empty_rp;
876 	struct hlist_node *node, *tmp;
877 	unsigned long hash, flags = 0;
878 
879 	if (unlikely(!kprobes_initialized))
880 		/* Early boot.  kretprobe_table_locks not yet initialized. */
881 		return;
882 
883 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
884 	head = &kretprobe_inst_table[hash];
885 	kretprobe_table_lock(hash, &flags);
886 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
887 		if (ri->task == tk)
888 			recycle_rp_inst(ri, &empty_rp);
889 	}
890 	kretprobe_table_unlock(hash, &flags);
891 	INIT_HLIST_HEAD(&empty_rp);
892 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
893 		hlist_del(&ri->hlist);
894 		kfree(ri);
895 	}
896 }
897 
898 static inline void free_rp_inst(struct kretprobe *rp)
899 {
900 	struct kretprobe_instance *ri;
901 	struct hlist_node *pos, *next;
902 
903 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
904 		hlist_del(&ri->hlist);
905 		kfree(ri);
906 	}
907 }
908 
909 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
910 {
911 	unsigned long flags, hash;
912 	struct kretprobe_instance *ri;
913 	struct hlist_node *pos, *next;
914 	struct hlist_head *head;
915 
916 	/* No race here */
917 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
918 		kretprobe_table_lock(hash, &flags);
919 		head = &kretprobe_inst_table[hash];
920 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
921 			if (ri->rp == rp)
922 				ri->rp = NULL;
923 		}
924 		kretprobe_table_unlock(hash, &flags);
925 	}
926 	free_rp_inst(rp);
927 }
928 
929 /*
930 * Add the new probe to ap->list. Fail if this is the
931 * second jprobe at the address - two jprobes can't coexist
932 */
933 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
934 {
935 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
936 
937 	if (p->break_handler || p->post_handler)
938 		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
939 
940 	if (p->break_handler) {
941 		if (ap->break_handler)
942 			return -EEXIST;
943 		list_add_tail_rcu(&p->list, &ap->list);
944 		ap->break_handler = aggr_break_handler;
945 	} else
946 		list_add_rcu(&p->list, &ap->list);
947 	if (p->post_handler && !ap->post_handler)
948 		ap->post_handler = aggr_post_handler;
949 
950 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
951 		ap->flags &= ~KPROBE_FLAG_DISABLED;
952 		if (!kprobes_all_disarmed)
953 			/* Arm the breakpoint again. */
954 			__arm_kprobe(ap);
955 	}
956 	return 0;
957 }
958 
959 /*
960  * Fill in the required fields of the "manager kprobe". Replace the
961  * earlier kprobe in the hlist with the manager kprobe
962  */
963 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
964 {
965 	/* Copy p's insn slot to ap */
966 	copy_kprobe(p, ap);
967 	flush_insn_slot(ap);
968 	ap->addr = p->addr;
969 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
970 	ap->pre_handler = aggr_pre_handler;
971 	ap->fault_handler = aggr_fault_handler;
972 	/* We don't care the kprobe which has gone. */
973 	if (p->post_handler && !kprobe_gone(p))
974 		ap->post_handler = aggr_post_handler;
975 	if (p->break_handler && !kprobe_gone(p))
976 		ap->break_handler = aggr_break_handler;
977 
978 	INIT_LIST_HEAD(&ap->list);
979 	INIT_HLIST_NODE(&ap->hlist);
980 
981 	list_add_rcu(&p->list, &ap->list);
982 	hlist_replace_rcu(&p->hlist, &ap->hlist);
983 }
984 
985 /*
986  * This is the second or subsequent kprobe at the address - handle
987  * the intricacies
988  */
989 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
990 					  struct kprobe *p)
991 {
992 	int ret = 0;
993 	struct kprobe *ap = old_p;
994 
995 	if (!kprobe_aggrprobe(old_p)) {
996 		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
997 		ap = alloc_aggr_kprobe(old_p);
998 		if (!ap)
999 			return -ENOMEM;
1000 		init_aggr_kprobe(ap, old_p);
1001 	}
1002 
1003 	if (kprobe_gone(ap)) {
1004 		/*
1005 		 * Attempting to insert new probe at the same location that
1006 		 * had a probe in the module vaddr area which already
1007 		 * freed. So, the instruction slot has already been
1008 		 * released. We need a new slot for the new probe.
1009 		 */
1010 		ret = arch_prepare_kprobe(ap);
1011 		if (ret)
1012 			/*
1013 			 * Even if fail to allocate new slot, don't need to
1014 			 * free aggr_probe. It will be used next time, or
1015 			 * freed by unregister_kprobe.
1016 			 */
1017 			return ret;
1018 
1019 		/* Prepare optimized instructions if possible. */
1020 		prepare_optimized_kprobe(ap);
1021 
1022 		/*
1023 		 * Clear gone flag to prevent allocating new slot again, and
1024 		 * set disabled flag because it is not armed yet.
1025 		 */
1026 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1027 			    | KPROBE_FLAG_DISABLED;
1028 	}
1029 
1030 	/* Copy ap's insn slot to p */
1031 	copy_kprobe(ap, p);
1032 	return add_new_kprobe(ap, p);
1033 }
1034 
1035 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1036 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1037 {
1038 	struct kprobe *kp;
1039 
1040 	list_for_each_entry_rcu(kp, &p->list, list) {
1041 		if (!kprobe_disabled(kp))
1042 			/*
1043 			 * There is an active probe on the list.
1044 			 * We can't disable aggr_kprobe.
1045 			 */
1046 			return 0;
1047 	}
1048 	p->flags |= KPROBE_FLAG_DISABLED;
1049 	return 1;
1050 }
1051 
1052 static int __kprobes in_kprobes_functions(unsigned long addr)
1053 {
1054 	struct kprobe_blackpoint *kb;
1055 
1056 	if (addr >= (unsigned long)__kprobes_text_start &&
1057 	    addr < (unsigned long)__kprobes_text_end)
1058 		return -EINVAL;
1059 	/*
1060 	 * If there exists a kprobe_blacklist, verify and
1061 	 * fail any probe registration in the prohibited area
1062 	 */
1063 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1064 		if (kb->start_addr) {
1065 			if (addr >= kb->start_addr &&
1066 			    addr < (kb->start_addr + kb->range))
1067 				return -EINVAL;
1068 		}
1069 	}
1070 	return 0;
1071 }
1072 
1073 /*
1074  * If we have a symbol_name argument, look it up and add the offset field
1075  * to it. This way, we can specify a relative address to a symbol.
1076  */
1077 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1078 {
1079 	kprobe_opcode_t *addr = p->addr;
1080 	if (p->symbol_name) {
1081 		if (addr)
1082 			return NULL;
1083 		kprobe_lookup_name(p->symbol_name, addr);
1084 	}
1085 
1086 	if (!addr)
1087 		return NULL;
1088 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1089 }
1090 
1091 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1092 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1093 {
1094 	struct kprobe *old_p, *list_p;
1095 
1096 	old_p = get_kprobe(p->addr);
1097 	if (unlikely(!old_p))
1098 		return NULL;
1099 
1100 	if (p != old_p) {
1101 		list_for_each_entry_rcu(list_p, &old_p->list, list)
1102 			if (list_p == p)
1103 			/* kprobe p is a valid probe */
1104 				goto valid;
1105 		return NULL;
1106 	}
1107 valid:
1108 	return old_p;
1109 }
1110 
1111 /* Return error if the kprobe is being re-registered */
1112 static inline int check_kprobe_rereg(struct kprobe *p)
1113 {
1114 	int ret = 0;
1115 	struct kprobe *old_p;
1116 
1117 	mutex_lock(&kprobe_mutex);
1118 	old_p = __get_valid_kprobe(p);
1119 	if (old_p)
1120 		ret = -EINVAL;
1121 	mutex_unlock(&kprobe_mutex);
1122 	return ret;
1123 }
1124 
1125 int __kprobes register_kprobe(struct kprobe *p)
1126 {
1127 	int ret = 0;
1128 	struct kprobe *old_p;
1129 	struct module *probed_mod;
1130 	kprobe_opcode_t *addr;
1131 
1132 	addr = kprobe_addr(p);
1133 	if (!addr)
1134 		return -EINVAL;
1135 	p->addr = addr;
1136 
1137 	ret = check_kprobe_rereg(p);
1138 	if (ret)
1139 		return ret;
1140 
1141 	preempt_disable();
1142 	if (!kernel_text_address((unsigned long) p->addr) ||
1143 	    in_kprobes_functions((unsigned long) p->addr) ||
1144 	    ftrace_text_reserved(p->addr, p->addr)) {
1145 		preempt_enable();
1146 		return -EINVAL;
1147 	}
1148 
1149 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1150 	p->flags &= KPROBE_FLAG_DISABLED;
1151 
1152 	/*
1153 	 * Check if are we probing a module.
1154 	 */
1155 	probed_mod = __module_text_address((unsigned long) p->addr);
1156 	if (probed_mod) {
1157 		/*
1158 		 * We must hold a refcount of the probed module while updating
1159 		 * its code to prohibit unexpected unloading.
1160 		 */
1161 		if (unlikely(!try_module_get(probed_mod))) {
1162 			preempt_enable();
1163 			return -EINVAL;
1164 		}
1165 		/*
1166 		 * If the module freed .init.text, we couldn't insert
1167 		 * kprobes in there.
1168 		 */
1169 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1170 		    probed_mod->state != MODULE_STATE_COMING) {
1171 			module_put(probed_mod);
1172 			preempt_enable();
1173 			return -EINVAL;
1174 		}
1175 	}
1176 	preempt_enable();
1177 
1178 	p->nmissed = 0;
1179 	INIT_LIST_HEAD(&p->list);
1180 	mutex_lock(&kprobe_mutex);
1181 
1182 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1183 	mutex_lock(&text_mutex);
1184 
1185 	old_p = get_kprobe(p->addr);
1186 	if (old_p) {
1187 		/* Since this may unoptimize old_p, locking text_mutex. */
1188 		ret = register_aggr_kprobe(old_p, p);
1189 		goto out;
1190 	}
1191 
1192 	ret = arch_prepare_kprobe(p);
1193 	if (ret)
1194 		goto out;
1195 
1196 	INIT_HLIST_NODE(&p->hlist);
1197 	hlist_add_head_rcu(&p->hlist,
1198 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1199 
1200 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1201 		__arm_kprobe(p);
1202 
1203 	/* Try to optimize kprobe */
1204 	try_to_optimize_kprobe(p);
1205 
1206 out:
1207 	mutex_unlock(&text_mutex);
1208 	put_online_cpus();
1209 	mutex_unlock(&kprobe_mutex);
1210 
1211 	if (probed_mod)
1212 		module_put(probed_mod);
1213 
1214 	return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(register_kprobe);
1217 
1218 /*
1219  * Unregister a kprobe without a scheduler synchronization.
1220  */
1221 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1222 {
1223 	struct kprobe *old_p, *list_p;
1224 
1225 	old_p = __get_valid_kprobe(p);
1226 	if (old_p == NULL)
1227 		return -EINVAL;
1228 
1229 	if (old_p == p ||
1230 	    (kprobe_aggrprobe(old_p) &&
1231 	     list_is_singular(&old_p->list))) {
1232 		/*
1233 		 * Only probe on the hash list. Disarm only if kprobes are
1234 		 * enabled and not gone - otherwise, the breakpoint would
1235 		 * already have been removed. We save on flushing icache.
1236 		 */
1237 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1238 			disarm_kprobe(old_p);
1239 		hlist_del_rcu(&old_p->hlist);
1240 	} else {
1241 		if (p->break_handler && !kprobe_gone(p))
1242 			old_p->break_handler = NULL;
1243 		if (p->post_handler && !kprobe_gone(p)) {
1244 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1245 				if ((list_p != p) && (list_p->post_handler))
1246 					goto noclean;
1247 			}
1248 			old_p->post_handler = NULL;
1249 		}
1250 noclean:
1251 		list_del_rcu(&p->list);
1252 		if (!kprobe_disabled(old_p)) {
1253 			try_to_disable_aggr_kprobe(old_p);
1254 			if (!kprobes_all_disarmed) {
1255 				if (kprobe_disabled(old_p))
1256 					disarm_kprobe(old_p);
1257 				else
1258 					/* Try to optimize this probe again */
1259 					optimize_kprobe(old_p);
1260 			}
1261 		}
1262 	}
1263 	return 0;
1264 }
1265 
1266 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1267 {
1268 	struct kprobe *old_p;
1269 
1270 	if (list_empty(&p->list))
1271 		arch_remove_kprobe(p);
1272 	else if (list_is_singular(&p->list)) {
1273 		/* "p" is the last child of an aggr_kprobe */
1274 		old_p = list_entry(p->list.next, struct kprobe, list);
1275 		list_del(&p->list);
1276 		arch_remove_kprobe(old_p);
1277 		free_aggr_kprobe(old_p);
1278 	}
1279 }
1280 
1281 int __kprobes register_kprobes(struct kprobe **kps, int num)
1282 {
1283 	int i, ret = 0;
1284 
1285 	if (num <= 0)
1286 		return -EINVAL;
1287 	for (i = 0; i < num; i++) {
1288 		ret = register_kprobe(kps[i]);
1289 		if (ret < 0) {
1290 			if (i > 0)
1291 				unregister_kprobes(kps, i);
1292 			break;
1293 		}
1294 	}
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(register_kprobes);
1298 
1299 void __kprobes unregister_kprobe(struct kprobe *p)
1300 {
1301 	unregister_kprobes(&p, 1);
1302 }
1303 EXPORT_SYMBOL_GPL(unregister_kprobe);
1304 
1305 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1306 {
1307 	int i;
1308 
1309 	if (num <= 0)
1310 		return;
1311 	mutex_lock(&kprobe_mutex);
1312 	for (i = 0; i < num; i++)
1313 		if (__unregister_kprobe_top(kps[i]) < 0)
1314 			kps[i]->addr = NULL;
1315 	mutex_unlock(&kprobe_mutex);
1316 
1317 	synchronize_sched();
1318 	for (i = 0; i < num; i++)
1319 		if (kps[i]->addr)
1320 			__unregister_kprobe_bottom(kps[i]);
1321 }
1322 EXPORT_SYMBOL_GPL(unregister_kprobes);
1323 
1324 static struct notifier_block kprobe_exceptions_nb = {
1325 	.notifier_call = kprobe_exceptions_notify,
1326 	.priority = 0x7fffffff /* we need to be notified first */
1327 };
1328 
1329 unsigned long __weak arch_deref_entry_point(void *entry)
1330 {
1331 	return (unsigned long)entry;
1332 }
1333 
1334 int __kprobes register_jprobes(struct jprobe **jps, int num)
1335 {
1336 	struct jprobe *jp;
1337 	int ret = 0, i;
1338 
1339 	if (num <= 0)
1340 		return -EINVAL;
1341 	for (i = 0; i < num; i++) {
1342 		unsigned long addr;
1343 		jp = jps[i];
1344 		addr = arch_deref_entry_point(jp->entry);
1345 
1346 		if (!kernel_text_address(addr))
1347 			ret = -EINVAL;
1348 		else {
1349 			/* Todo: Verify probepoint is a function entry point */
1350 			jp->kp.pre_handler = setjmp_pre_handler;
1351 			jp->kp.break_handler = longjmp_break_handler;
1352 			ret = register_kprobe(&jp->kp);
1353 		}
1354 		if (ret < 0) {
1355 			if (i > 0)
1356 				unregister_jprobes(jps, i);
1357 			break;
1358 		}
1359 	}
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(register_jprobes);
1363 
1364 int __kprobes register_jprobe(struct jprobe *jp)
1365 {
1366 	return register_jprobes(&jp, 1);
1367 }
1368 EXPORT_SYMBOL_GPL(register_jprobe);
1369 
1370 void __kprobes unregister_jprobe(struct jprobe *jp)
1371 {
1372 	unregister_jprobes(&jp, 1);
1373 }
1374 EXPORT_SYMBOL_GPL(unregister_jprobe);
1375 
1376 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1377 {
1378 	int i;
1379 
1380 	if (num <= 0)
1381 		return;
1382 	mutex_lock(&kprobe_mutex);
1383 	for (i = 0; i < num; i++)
1384 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1385 			jps[i]->kp.addr = NULL;
1386 	mutex_unlock(&kprobe_mutex);
1387 
1388 	synchronize_sched();
1389 	for (i = 0; i < num; i++) {
1390 		if (jps[i]->kp.addr)
1391 			__unregister_kprobe_bottom(&jps[i]->kp);
1392 	}
1393 }
1394 EXPORT_SYMBOL_GPL(unregister_jprobes);
1395 
1396 #ifdef CONFIG_KRETPROBES
1397 /*
1398  * This kprobe pre_handler is registered with every kretprobe. When probe
1399  * hits it will set up the return probe.
1400  */
1401 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1402 					   struct pt_regs *regs)
1403 {
1404 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1405 	unsigned long hash, flags = 0;
1406 	struct kretprobe_instance *ri;
1407 
1408 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1409 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1410 	spin_lock_irqsave(&rp->lock, flags);
1411 	if (!hlist_empty(&rp->free_instances)) {
1412 		ri = hlist_entry(rp->free_instances.first,
1413 				struct kretprobe_instance, hlist);
1414 		hlist_del(&ri->hlist);
1415 		spin_unlock_irqrestore(&rp->lock, flags);
1416 
1417 		ri->rp = rp;
1418 		ri->task = current;
1419 
1420 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1421 			return 0;
1422 
1423 		arch_prepare_kretprobe(ri, regs);
1424 
1425 		/* XXX(hch): why is there no hlist_move_head? */
1426 		INIT_HLIST_NODE(&ri->hlist);
1427 		kretprobe_table_lock(hash, &flags);
1428 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1429 		kretprobe_table_unlock(hash, &flags);
1430 	} else {
1431 		rp->nmissed++;
1432 		spin_unlock_irqrestore(&rp->lock, flags);
1433 	}
1434 	return 0;
1435 }
1436 
1437 int __kprobes register_kretprobe(struct kretprobe *rp)
1438 {
1439 	int ret = 0;
1440 	struct kretprobe_instance *inst;
1441 	int i;
1442 	void *addr;
1443 
1444 	if (kretprobe_blacklist_size) {
1445 		addr = kprobe_addr(&rp->kp);
1446 		if (!addr)
1447 			return -EINVAL;
1448 
1449 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1450 			if (kretprobe_blacklist[i].addr == addr)
1451 				return -EINVAL;
1452 		}
1453 	}
1454 
1455 	rp->kp.pre_handler = pre_handler_kretprobe;
1456 	rp->kp.post_handler = NULL;
1457 	rp->kp.fault_handler = NULL;
1458 	rp->kp.break_handler = NULL;
1459 
1460 	/* Pre-allocate memory for max kretprobe instances */
1461 	if (rp->maxactive <= 0) {
1462 #ifdef CONFIG_PREEMPT
1463 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1464 #else
1465 		rp->maxactive = num_possible_cpus();
1466 #endif
1467 	}
1468 	spin_lock_init(&rp->lock);
1469 	INIT_HLIST_HEAD(&rp->free_instances);
1470 	for (i = 0; i < rp->maxactive; i++) {
1471 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1472 			       rp->data_size, GFP_KERNEL);
1473 		if (inst == NULL) {
1474 			free_rp_inst(rp);
1475 			return -ENOMEM;
1476 		}
1477 		INIT_HLIST_NODE(&inst->hlist);
1478 		hlist_add_head(&inst->hlist, &rp->free_instances);
1479 	}
1480 
1481 	rp->nmissed = 0;
1482 	/* Establish function entry probe point */
1483 	ret = register_kprobe(&rp->kp);
1484 	if (ret != 0)
1485 		free_rp_inst(rp);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(register_kretprobe);
1489 
1490 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1491 {
1492 	int ret = 0, i;
1493 
1494 	if (num <= 0)
1495 		return -EINVAL;
1496 	for (i = 0; i < num; i++) {
1497 		ret = register_kretprobe(rps[i]);
1498 		if (ret < 0) {
1499 			if (i > 0)
1500 				unregister_kretprobes(rps, i);
1501 			break;
1502 		}
1503 	}
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL_GPL(register_kretprobes);
1507 
1508 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1509 {
1510 	unregister_kretprobes(&rp, 1);
1511 }
1512 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1513 
1514 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1515 {
1516 	int i;
1517 
1518 	if (num <= 0)
1519 		return;
1520 	mutex_lock(&kprobe_mutex);
1521 	for (i = 0; i < num; i++)
1522 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1523 			rps[i]->kp.addr = NULL;
1524 	mutex_unlock(&kprobe_mutex);
1525 
1526 	synchronize_sched();
1527 	for (i = 0; i < num; i++) {
1528 		if (rps[i]->kp.addr) {
1529 			__unregister_kprobe_bottom(&rps[i]->kp);
1530 			cleanup_rp_inst(rps[i]);
1531 		}
1532 	}
1533 }
1534 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1535 
1536 #else /* CONFIG_KRETPROBES */
1537 int __kprobes register_kretprobe(struct kretprobe *rp)
1538 {
1539 	return -ENOSYS;
1540 }
1541 EXPORT_SYMBOL_GPL(register_kretprobe);
1542 
1543 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1544 {
1545 	return -ENOSYS;
1546 }
1547 EXPORT_SYMBOL_GPL(register_kretprobes);
1548 
1549 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1550 {
1551 }
1552 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1553 
1554 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1555 {
1556 }
1557 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1558 
1559 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1560 					   struct pt_regs *regs)
1561 {
1562 	return 0;
1563 }
1564 
1565 #endif /* CONFIG_KRETPROBES */
1566 
1567 /* Set the kprobe gone and remove its instruction buffer. */
1568 static void __kprobes kill_kprobe(struct kprobe *p)
1569 {
1570 	struct kprobe *kp;
1571 
1572 	p->flags |= KPROBE_FLAG_GONE;
1573 	if (kprobe_aggrprobe(p)) {
1574 		/*
1575 		 * If this is an aggr_kprobe, we have to list all the
1576 		 * chained probes and mark them GONE.
1577 		 */
1578 		list_for_each_entry_rcu(kp, &p->list, list)
1579 			kp->flags |= KPROBE_FLAG_GONE;
1580 		p->post_handler = NULL;
1581 		p->break_handler = NULL;
1582 		kill_optimized_kprobe(p);
1583 	}
1584 	/*
1585 	 * Here, we can remove insn_slot safely, because no thread calls
1586 	 * the original probed function (which will be freed soon) any more.
1587 	 */
1588 	arch_remove_kprobe(p);
1589 }
1590 
1591 /* Disable one kprobe */
1592 int __kprobes disable_kprobe(struct kprobe *kp)
1593 {
1594 	int ret = 0;
1595 	struct kprobe *p;
1596 
1597 	mutex_lock(&kprobe_mutex);
1598 
1599 	/* Check whether specified probe is valid. */
1600 	p = __get_valid_kprobe(kp);
1601 	if (unlikely(p == NULL)) {
1602 		ret = -EINVAL;
1603 		goto out;
1604 	}
1605 
1606 	/* If the probe is already disabled (or gone), just return */
1607 	if (kprobe_disabled(kp))
1608 		goto out;
1609 
1610 	kp->flags |= KPROBE_FLAG_DISABLED;
1611 	if (p != kp)
1612 		/* When kp != p, p is always enabled. */
1613 		try_to_disable_aggr_kprobe(p);
1614 
1615 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1616 		disarm_kprobe(p);
1617 out:
1618 	mutex_unlock(&kprobe_mutex);
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(disable_kprobe);
1622 
1623 /* Enable one kprobe */
1624 int __kprobes enable_kprobe(struct kprobe *kp)
1625 {
1626 	int ret = 0;
1627 	struct kprobe *p;
1628 
1629 	mutex_lock(&kprobe_mutex);
1630 
1631 	/* Check whether specified probe is valid. */
1632 	p = __get_valid_kprobe(kp);
1633 	if (unlikely(p == NULL)) {
1634 		ret = -EINVAL;
1635 		goto out;
1636 	}
1637 
1638 	if (kprobe_gone(kp)) {
1639 		/* This kprobe has gone, we couldn't enable it. */
1640 		ret = -EINVAL;
1641 		goto out;
1642 	}
1643 
1644 	if (p != kp)
1645 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1646 
1647 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1648 		p->flags &= ~KPROBE_FLAG_DISABLED;
1649 		arm_kprobe(p);
1650 	}
1651 out:
1652 	mutex_unlock(&kprobe_mutex);
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(enable_kprobe);
1656 
1657 void __kprobes dump_kprobe(struct kprobe *kp)
1658 {
1659 	printk(KERN_WARNING "Dumping kprobe:\n");
1660 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1661 	       kp->symbol_name, kp->addr, kp->offset);
1662 }
1663 
1664 /* Module notifier call back, checking kprobes on the module */
1665 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1666 					     unsigned long val, void *data)
1667 {
1668 	struct module *mod = data;
1669 	struct hlist_head *head;
1670 	struct hlist_node *node;
1671 	struct kprobe *p;
1672 	unsigned int i;
1673 	int checkcore = (val == MODULE_STATE_GOING);
1674 
1675 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1676 		return NOTIFY_DONE;
1677 
1678 	/*
1679 	 * When MODULE_STATE_GOING was notified, both of module .text and
1680 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1681 	 * notified, only .init.text section would be freed. We need to
1682 	 * disable kprobes which have been inserted in the sections.
1683 	 */
1684 	mutex_lock(&kprobe_mutex);
1685 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1686 		head = &kprobe_table[i];
1687 		hlist_for_each_entry_rcu(p, node, head, hlist)
1688 			if (within_module_init((unsigned long)p->addr, mod) ||
1689 			    (checkcore &&
1690 			     within_module_core((unsigned long)p->addr, mod))) {
1691 				/*
1692 				 * The vaddr this probe is installed will soon
1693 				 * be vfreed buy not synced to disk. Hence,
1694 				 * disarming the breakpoint isn't needed.
1695 				 */
1696 				kill_kprobe(p);
1697 			}
1698 	}
1699 	mutex_unlock(&kprobe_mutex);
1700 	return NOTIFY_DONE;
1701 }
1702 
1703 static struct notifier_block kprobe_module_nb = {
1704 	.notifier_call = kprobes_module_callback,
1705 	.priority = 0
1706 };
1707 
1708 static int __init init_kprobes(void)
1709 {
1710 	int i, err = 0;
1711 	unsigned long offset = 0, size = 0;
1712 	char *modname, namebuf[128];
1713 	const char *symbol_name;
1714 	void *addr;
1715 	struct kprobe_blackpoint *kb;
1716 
1717 	/* FIXME allocate the probe table, currently defined statically */
1718 	/* initialize all list heads */
1719 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1720 		INIT_HLIST_HEAD(&kprobe_table[i]);
1721 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1722 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1723 	}
1724 
1725 	/*
1726 	 * Lookup and populate the kprobe_blacklist.
1727 	 *
1728 	 * Unlike the kretprobe blacklist, we'll need to determine
1729 	 * the range of addresses that belong to the said functions,
1730 	 * since a kprobe need not necessarily be at the beginning
1731 	 * of a function.
1732 	 */
1733 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1734 		kprobe_lookup_name(kb->name, addr);
1735 		if (!addr)
1736 			continue;
1737 
1738 		kb->start_addr = (unsigned long)addr;
1739 		symbol_name = kallsyms_lookup(kb->start_addr,
1740 				&size, &offset, &modname, namebuf);
1741 		if (!symbol_name)
1742 			kb->range = 0;
1743 		else
1744 			kb->range = size;
1745 	}
1746 
1747 	if (kretprobe_blacklist_size) {
1748 		/* lookup the function address from its name */
1749 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1750 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1751 					   kretprobe_blacklist[i].addr);
1752 			if (!kretprobe_blacklist[i].addr)
1753 				printk("kretprobe: lookup failed: %s\n",
1754 				       kretprobe_blacklist[i].name);
1755 		}
1756 	}
1757 
1758 #if defined(CONFIG_OPTPROBES)
1759 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1760 	/* Init kprobe_optinsn_slots */
1761 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1762 #endif
1763 	/* By default, kprobes can be optimized */
1764 	kprobes_allow_optimization = true;
1765 #endif
1766 
1767 	/* By default, kprobes are armed */
1768 	kprobes_all_disarmed = false;
1769 
1770 	err = arch_init_kprobes();
1771 	if (!err)
1772 		err = register_die_notifier(&kprobe_exceptions_nb);
1773 	if (!err)
1774 		err = register_module_notifier(&kprobe_module_nb);
1775 
1776 	kprobes_initialized = (err == 0);
1777 
1778 	if (!err)
1779 		init_test_probes();
1780 	return err;
1781 }
1782 
1783 #ifdef CONFIG_DEBUG_FS
1784 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1785 		const char *sym, int offset, char *modname, struct kprobe *pp)
1786 {
1787 	char *kprobe_type;
1788 
1789 	if (p->pre_handler == pre_handler_kretprobe)
1790 		kprobe_type = "r";
1791 	else if (p->pre_handler == setjmp_pre_handler)
1792 		kprobe_type = "j";
1793 	else
1794 		kprobe_type = "k";
1795 
1796 	if (sym)
1797 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1798 			p->addr, kprobe_type, sym, offset,
1799 			(modname ? modname : " "));
1800 	else
1801 		seq_printf(pi, "%p  %s  %p ",
1802 			p->addr, kprobe_type, p->addr);
1803 
1804 	if (!pp)
1805 		pp = p;
1806 	seq_printf(pi, "%s%s%s\n",
1807 		(kprobe_gone(p) ? "[GONE]" : ""),
1808 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1809 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1810 }
1811 
1812 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1813 {
1814 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1815 }
1816 
1817 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1818 {
1819 	(*pos)++;
1820 	if (*pos >= KPROBE_TABLE_SIZE)
1821 		return NULL;
1822 	return pos;
1823 }
1824 
1825 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1826 {
1827 	/* Nothing to do */
1828 }
1829 
1830 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1831 {
1832 	struct hlist_head *head;
1833 	struct hlist_node *node;
1834 	struct kprobe *p, *kp;
1835 	const char *sym = NULL;
1836 	unsigned int i = *(loff_t *) v;
1837 	unsigned long offset = 0;
1838 	char *modname, namebuf[128];
1839 
1840 	head = &kprobe_table[i];
1841 	preempt_disable();
1842 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1843 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1844 					&offset, &modname, namebuf);
1845 		if (kprobe_aggrprobe(p)) {
1846 			list_for_each_entry_rcu(kp, &p->list, list)
1847 				report_probe(pi, kp, sym, offset, modname, p);
1848 		} else
1849 			report_probe(pi, p, sym, offset, modname, NULL);
1850 	}
1851 	preempt_enable();
1852 	return 0;
1853 }
1854 
1855 static const struct seq_operations kprobes_seq_ops = {
1856 	.start = kprobe_seq_start,
1857 	.next  = kprobe_seq_next,
1858 	.stop  = kprobe_seq_stop,
1859 	.show  = show_kprobe_addr
1860 };
1861 
1862 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1863 {
1864 	return seq_open(filp, &kprobes_seq_ops);
1865 }
1866 
1867 static const struct file_operations debugfs_kprobes_operations = {
1868 	.open           = kprobes_open,
1869 	.read           = seq_read,
1870 	.llseek         = seq_lseek,
1871 	.release        = seq_release,
1872 };
1873 
1874 static void __kprobes arm_all_kprobes(void)
1875 {
1876 	struct hlist_head *head;
1877 	struct hlist_node *node;
1878 	struct kprobe *p;
1879 	unsigned int i;
1880 
1881 	mutex_lock(&kprobe_mutex);
1882 
1883 	/* If kprobes are armed, just return */
1884 	if (!kprobes_all_disarmed)
1885 		goto already_enabled;
1886 
1887 	/* Arming kprobes doesn't optimize kprobe itself */
1888 	mutex_lock(&text_mutex);
1889 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1890 		head = &kprobe_table[i];
1891 		hlist_for_each_entry_rcu(p, node, head, hlist)
1892 			if (!kprobe_disabled(p))
1893 				__arm_kprobe(p);
1894 	}
1895 	mutex_unlock(&text_mutex);
1896 
1897 	kprobes_all_disarmed = false;
1898 	printk(KERN_INFO "Kprobes globally enabled\n");
1899 
1900 already_enabled:
1901 	mutex_unlock(&kprobe_mutex);
1902 	return;
1903 }
1904 
1905 static void __kprobes disarm_all_kprobes(void)
1906 {
1907 	struct hlist_head *head;
1908 	struct hlist_node *node;
1909 	struct kprobe *p;
1910 	unsigned int i;
1911 
1912 	mutex_lock(&kprobe_mutex);
1913 
1914 	/* If kprobes are already disarmed, just return */
1915 	if (kprobes_all_disarmed)
1916 		goto already_disabled;
1917 
1918 	kprobes_all_disarmed = true;
1919 	printk(KERN_INFO "Kprobes globally disabled\n");
1920 
1921 	/*
1922 	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1923 	 * because disarming may also unoptimize kprobes.
1924 	 */
1925 	get_online_cpus();
1926 	mutex_lock(&text_mutex);
1927 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1928 		head = &kprobe_table[i];
1929 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1930 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1931 				__disarm_kprobe(p);
1932 		}
1933 	}
1934 
1935 	mutex_unlock(&text_mutex);
1936 	put_online_cpus();
1937 	mutex_unlock(&kprobe_mutex);
1938 	/* Allow all currently running kprobes to complete */
1939 	synchronize_sched();
1940 	return;
1941 
1942 already_disabled:
1943 	mutex_unlock(&kprobe_mutex);
1944 	return;
1945 }
1946 
1947 /*
1948  * XXX: The debugfs bool file interface doesn't allow for callbacks
1949  * when the bool state is switched. We can reuse that facility when
1950  * available
1951  */
1952 static ssize_t read_enabled_file_bool(struct file *file,
1953 	       char __user *user_buf, size_t count, loff_t *ppos)
1954 {
1955 	char buf[3];
1956 
1957 	if (!kprobes_all_disarmed)
1958 		buf[0] = '1';
1959 	else
1960 		buf[0] = '0';
1961 	buf[1] = '\n';
1962 	buf[2] = 0x00;
1963 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1964 }
1965 
1966 static ssize_t write_enabled_file_bool(struct file *file,
1967 	       const char __user *user_buf, size_t count, loff_t *ppos)
1968 {
1969 	char buf[32];
1970 	int buf_size;
1971 
1972 	buf_size = min(count, (sizeof(buf)-1));
1973 	if (copy_from_user(buf, user_buf, buf_size))
1974 		return -EFAULT;
1975 
1976 	switch (buf[0]) {
1977 	case 'y':
1978 	case 'Y':
1979 	case '1':
1980 		arm_all_kprobes();
1981 		break;
1982 	case 'n':
1983 	case 'N':
1984 	case '0':
1985 		disarm_all_kprobes();
1986 		break;
1987 	}
1988 
1989 	return count;
1990 }
1991 
1992 static const struct file_operations fops_kp = {
1993 	.read =         read_enabled_file_bool,
1994 	.write =        write_enabled_file_bool,
1995 };
1996 
1997 static int __kprobes debugfs_kprobe_init(void)
1998 {
1999 	struct dentry *dir, *file;
2000 	unsigned int value = 1;
2001 
2002 	dir = debugfs_create_dir("kprobes", NULL);
2003 	if (!dir)
2004 		return -ENOMEM;
2005 
2006 	file = debugfs_create_file("list", 0444, dir, NULL,
2007 				&debugfs_kprobes_operations);
2008 	if (!file) {
2009 		debugfs_remove(dir);
2010 		return -ENOMEM;
2011 	}
2012 
2013 	file = debugfs_create_file("enabled", 0600, dir,
2014 					&value, &fops_kp);
2015 	if (!file) {
2016 		debugfs_remove(dir);
2017 		return -ENOMEM;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 late_initcall(debugfs_kprobe_init);
2024 #endif /* CONFIG_DEBUG_FS */
2025 
2026 module_init(init_kprobes);
2027 
2028 /* defined in arch/.../kernel/kprobes.c */
2029 EXPORT_SYMBOL_GPL(jprobe_return);
2030