1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 51 #include <asm-generic/sections.h> 52 #include <asm/cacheflush.h> 53 #include <asm/errno.h> 54 #include <asm/uaccess.h> 55 56 #define KPROBE_HASH_BITS 6 57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 58 59 60 /* 61 * Some oddball architectures like 64bit powerpc have function descriptors 62 * so this must be overridable. 63 */ 64 #ifndef kprobe_lookup_name 65 #define kprobe_lookup_name(name, addr) \ 66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 67 #endif 68 69 static int kprobes_initialized; 70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 72 73 /* NOTE: change this value only with kprobe_mutex held */ 74 static bool kprobes_all_disarmed; 75 76 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 78 static struct { 79 spinlock_t lock ____cacheline_aligned_in_smp; 80 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 81 82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 83 { 84 return &(kretprobe_table_locks[hash].lock); 85 } 86 87 /* 88 * Normally, functions that we'd want to prohibit kprobes in, are marked 89 * __kprobes. But, there are cases where such functions already belong to 90 * a different section (__sched for preempt_schedule) 91 * 92 * For such cases, we now have a blacklist 93 */ 94 static struct kprobe_blackpoint kprobe_blacklist[] = { 95 {"preempt_schedule",}, 96 {"native_get_debugreg",}, 97 {"irq_entries_start",}, 98 {"common_interrupt",}, 99 {"mcount",}, /* mcount can be called from everywhere */ 100 {NULL} /* Terminator */ 101 }; 102 103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 104 /* 105 * kprobe->ainsn.insn points to the copy of the instruction to be 106 * single-stepped. x86_64, POWER4 and above have no-exec support and 107 * stepping on the instruction on a vmalloced/kmalloced/data page 108 * is a recipe for disaster 109 */ 110 struct kprobe_insn_page { 111 struct list_head list; 112 kprobe_opcode_t *insns; /* Page of instruction slots */ 113 int nused; 114 int ngarbage; 115 char slot_used[]; 116 }; 117 118 #define KPROBE_INSN_PAGE_SIZE(slots) \ 119 (offsetof(struct kprobe_insn_page, slot_used) + \ 120 (sizeof(char) * (slots))) 121 122 struct kprobe_insn_cache { 123 struct list_head pages; /* list of kprobe_insn_page */ 124 size_t insn_size; /* size of instruction slot */ 125 int nr_garbage; 126 }; 127 128 static int slots_per_page(struct kprobe_insn_cache *c) 129 { 130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 131 } 132 133 enum kprobe_slot_state { 134 SLOT_CLEAN = 0, 135 SLOT_DIRTY = 1, 136 SLOT_USED = 2, 137 }; 138 139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 140 static struct kprobe_insn_cache kprobe_insn_slots = { 141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 142 .insn_size = MAX_INSN_SIZE, 143 .nr_garbage = 0, 144 }; 145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 146 147 /** 148 * __get_insn_slot() - Find a slot on an executable page for an instruction. 149 * We allocate an executable page if there's no room on existing ones. 150 */ 151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 152 { 153 struct kprobe_insn_page *kip; 154 155 retry: 156 list_for_each_entry(kip, &c->pages, list) { 157 if (kip->nused < slots_per_page(c)) { 158 int i; 159 for (i = 0; i < slots_per_page(c); i++) { 160 if (kip->slot_used[i] == SLOT_CLEAN) { 161 kip->slot_used[i] = SLOT_USED; 162 kip->nused++; 163 return kip->insns + (i * c->insn_size); 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 return NULL; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = module_alloc(PAGE_SIZE); 187 if (!kip->insns) { 188 kfree(kip); 189 return NULL; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 list_add(&kip->list, &c->pages); 197 return kip->insns; 198 } 199 200 201 kprobe_opcode_t __kprobes *get_insn_slot(void) 202 { 203 kprobe_opcode_t *ret = NULL; 204 205 mutex_lock(&kprobe_insn_mutex); 206 ret = __get_insn_slot(&kprobe_insn_slots); 207 mutex_unlock(&kprobe_insn_mutex); 208 209 return ret; 210 } 211 212 /* Return 1 if all garbages are collected, otherwise 0. */ 213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 214 { 215 kip->slot_used[idx] = SLOT_CLEAN; 216 kip->nused--; 217 if (kip->nused == 0) { 218 /* 219 * Page is no longer in use. Free it unless 220 * it's the last one. We keep the last one 221 * so as not to have to set it up again the 222 * next time somebody inserts a probe. 223 */ 224 if (!list_is_singular(&kip->list)) { 225 list_del(&kip->list); 226 module_free(NULL, kip->insns); 227 kfree(kip); 228 } 229 return 1; 230 } 231 return 0; 232 } 233 234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_sched(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 if (kip->ngarbage == 0) 244 continue; 245 kip->ngarbage = 0; /* we will collect all garbages */ 246 for (i = 0; i < slots_per_page(c); i++) { 247 if (kip->slot_used[i] == SLOT_DIRTY && 248 collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 261 list_for_each_entry(kip, &c->pages, list) { 262 long idx = ((long)slot - (long)kip->insns) / 263 (c->insn_size * sizeof(kprobe_opcode_t)); 264 if (idx >= 0 && idx < slots_per_page(c)) { 265 WARN_ON(kip->slot_used[idx] != SLOT_USED); 266 if (dirty) { 267 kip->slot_used[idx] = SLOT_DIRTY; 268 kip->ngarbage++; 269 if (++c->nr_garbage > slots_per_page(c)) 270 collect_garbage_slots(c); 271 } else 272 collect_one_slot(kip, idx); 273 return; 274 } 275 } 276 /* Could not free this slot. */ 277 WARN_ON(1); 278 } 279 280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 281 { 282 mutex_lock(&kprobe_insn_mutex); 283 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 284 mutex_unlock(&kprobe_insn_mutex); 285 } 286 #ifdef CONFIG_OPTPROBES 287 /* For optimized_kprobe buffer */ 288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 289 static struct kprobe_insn_cache kprobe_optinsn_slots = { 290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 291 /* .insn_size is initialized later */ 292 .nr_garbage = 0, 293 }; 294 /* Get a slot for optimized_kprobe buffer */ 295 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 296 { 297 kprobe_opcode_t *ret = NULL; 298 299 mutex_lock(&kprobe_optinsn_mutex); 300 ret = __get_insn_slot(&kprobe_optinsn_slots); 301 mutex_unlock(&kprobe_optinsn_mutex); 302 303 return ret; 304 } 305 306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 307 { 308 mutex_lock(&kprobe_optinsn_mutex); 309 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 310 mutex_unlock(&kprobe_optinsn_mutex); 311 } 312 #endif 313 #endif 314 315 /* We have preemption disabled.. so it is safe to use __ versions */ 316 static inline void set_kprobe_instance(struct kprobe *kp) 317 { 318 __get_cpu_var(kprobe_instance) = kp; 319 } 320 321 static inline void reset_kprobe_instance(void) 322 { 323 __get_cpu_var(kprobe_instance) = NULL; 324 } 325 326 /* 327 * This routine is called either: 328 * - under the kprobe_mutex - during kprobe_[un]register() 329 * OR 330 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 331 */ 332 struct kprobe __kprobes *get_kprobe(void *addr) 333 { 334 struct hlist_head *head; 335 struct hlist_node *node; 336 struct kprobe *p; 337 338 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 339 hlist_for_each_entry_rcu(p, node, head, hlist) { 340 if (p->addr == addr) 341 return p; 342 } 343 344 return NULL; 345 } 346 347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 348 349 /* Return true if the kprobe is an aggregator */ 350 static inline int kprobe_aggrprobe(struct kprobe *p) 351 { 352 return p->pre_handler == aggr_pre_handler; 353 } 354 355 /* 356 * Keep all fields in the kprobe consistent 357 */ 358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 359 { 360 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 361 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 362 } 363 364 #ifdef CONFIG_OPTPROBES 365 /* NOTE: change this value only with kprobe_mutex held */ 366 static bool kprobes_allow_optimization; 367 368 /* 369 * Call all pre_handler on the list, but ignores its return value. 370 * This must be called from arch-dep optimized caller. 371 */ 372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 373 { 374 struct kprobe *kp; 375 376 list_for_each_entry_rcu(kp, &p->list, list) { 377 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 378 set_kprobe_instance(kp); 379 kp->pre_handler(kp, regs); 380 } 381 reset_kprobe_instance(); 382 } 383 } 384 385 /* Return true(!0) if the kprobe is ready for optimization. */ 386 static inline int kprobe_optready(struct kprobe *p) 387 { 388 struct optimized_kprobe *op; 389 390 if (kprobe_aggrprobe(p)) { 391 op = container_of(p, struct optimized_kprobe, kp); 392 return arch_prepared_optinsn(&op->optinsn); 393 } 394 395 return 0; 396 } 397 398 /* 399 * Return an optimized kprobe whose optimizing code replaces 400 * instructions including addr (exclude breakpoint). 401 */ 402 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 403 { 404 int i; 405 struct kprobe *p = NULL; 406 struct optimized_kprobe *op; 407 408 /* Don't check i == 0, since that is a breakpoint case. */ 409 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 410 p = get_kprobe((void *)(addr - i)); 411 412 if (p && kprobe_optready(p)) { 413 op = container_of(p, struct optimized_kprobe, kp); 414 if (arch_within_optimized_kprobe(op, addr)) 415 return p; 416 } 417 418 return NULL; 419 } 420 421 /* Optimization staging list, protected by kprobe_mutex */ 422 static LIST_HEAD(optimizing_list); 423 424 static void kprobe_optimizer(struct work_struct *work); 425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 426 #define OPTIMIZE_DELAY 5 427 428 /* Kprobe jump optimizer */ 429 static __kprobes void kprobe_optimizer(struct work_struct *work) 430 { 431 struct optimized_kprobe *op, *tmp; 432 433 /* Lock modules while optimizing kprobes */ 434 mutex_lock(&module_mutex); 435 mutex_lock(&kprobe_mutex); 436 if (kprobes_all_disarmed || !kprobes_allow_optimization) 437 goto end; 438 439 /* 440 * Wait for quiesence period to ensure all running interrupts 441 * are done. Because optprobe may modify multiple instructions 442 * there is a chance that Nth instruction is interrupted. In that 443 * case, running interrupt can return to 2nd-Nth byte of jump 444 * instruction. This wait is for avoiding it. 445 */ 446 synchronize_sched(); 447 448 /* 449 * The optimization/unoptimization refers online_cpus via 450 * stop_machine() and cpu-hotplug modifies online_cpus. 451 * And same time, text_mutex will be held in cpu-hotplug and here. 452 * This combination can cause a deadlock (cpu-hotplug try to lock 453 * text_mutex but stop_machine can not be done because online_cpus 454 * has been changed) 455 * To avoid this deadlock, we need to call get_online_cpus() 456 * for preventing cpu-hotplug outside of text_mutex locking. 457 */ 458 get_online_cpus(); 459 mutex_lock(&text_mutex); 460 list_for_each_entry_safe(op, tmp, &optimizing_list, list) { 461 WARN_ON(kprobe_disabled(&op->kp)); 462 if (arch_optimize_kprobe(op) < 0) 463 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 464 list_del_init(&op->list); 465 } 466 mutex_unlock(&text_mutex); 467 put_online_cpus(); 468 end: 469 mutex_unlock(&kprobe_mutex); 470 mutex_unlock(&module_mutex); 471 } 472 473 /* Optimize kprobe if p is ready to be optimized */ 474 static __kprobes void optimize_kprobe(struct kprobe *p) 475 { 476 struct optimized_kprobe *op; 477 478 /* Check if the kprobe is disabled or not ready for optimization. */ 479 if (!kprobe_optready(p) || !kprobes_allow_optimization || 480 (kprobe_disabled(p) || kprobes_all_disarmed)) 481 return; 482 483 /* Both of break_handler and post_handler are not supported. */ 484 if (p->break_handler || p->post_handler) 485 return; 486 487 op = container_of(p, struct optimized_kprobe, kp); 488 489 /* Check there is no other kprobes at the optimized instructions */ 490 if (arch_check_optimized_kprobe(op) < 0) 491 return; 492 493 /* Check if it is already optimized. */ 494 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 495 return; 496 497 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 498 list_add(&op->list, &optimizing_list); 499 if (!delayed_work_pending(&optimizing_work)) 500 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 501 } 502 503 /* Unoptimize a kprobe if p is optimized */ 504 static __kprobes void unoptimize_kprobe(struct kprobe *p) 505 { 506 struct optimized_kprobe *op; 507 508 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) { 509 op = container_of(p, struct optimized_kprobe, kp); 510 if (!list_empty(&op->list)) 511 /* Dequeue from the optimization queue */ 512 list_del_init(&op->list); 513 else 514 /* Replace jump with break */ 515 arch_unoptimize_kprobe(op); 516 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 517 } 518 } 519 520 /* Remove optimized instructions */ 521 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 522 { 523 struct optimized_kprobe *op; 524 525 op = container_of(p, struct optimized_kprobe, kp); 526 if (!list_empty(&op->list)) { 527 /* Dequeue from the optimization queue */ 528 list_del_init(&op->list); 529 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 530 } 531 /* Don't unoptimize, because the target code will be freed. */ 532 arch_remove_optimized_kprobe(op); 533 } 534 535 /* Try to prepare optimized instructions */ 536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 537 { 538 struct optimized_kprobe *op; 539 540 op = container_of(p, struct optimized_kprobe, kp); 541 arch_prepare_optimized_kprobe(op); 542 } 543 544 /* Free optimized instructions and optimized_kprobe */ 545 static __kprobes void free_aggr_kprobe(struct kprobe *p) 546 { 547 struct optimized_kprobe *op; 548 549 op = container_of(p, struct optimized_kprobe, kp); 550 arch_remove_optimized_kprobe(op); 551 kfree(op); 552 } 553 554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 556 { 557 struct optimized_kprobe *op; 558 559 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 560 if (!op) 561 return NULL; 562 563 INIT_LIST_HEAD(&op->list); 564 op->kp.addr = p->addr; 565 arch_prepare_optimized_kprobe(op); 566 567 return &op->kp; 568 } 569 570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 571 572 /* 573 * Prepare an optimized_kprobe and optimize it 574 * NOTE: p must be a normal registered kprobe 575 */ 576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 577 { 578 struct kprobe *ap; 579 struct optimized_kprobe *op; 580 581 ap = alloc_aggr_kprobe(p); 582 if (!ap) 583 return; 584 585 op = container_of(ap, struct optimized_kprobe, kp); 586 if (!arch_prepared_optinsn(&op->optinsn)) { 587 /* If failed to setup optimizing, fallback to kprobe */ 588 free_aggr_kprobe(ap); 589 return; 590 } 591 592 init_aggr_kprobe(ap, p); 593 optimize_kprobe(ap); 594 } 595 596 #ifdef CONFIG_SYSCTL 597 static void __kprobes optimize_all_kprobes(void) 598 { 599 struct hlist_head *head; 600 struct hlist_node *node; 601 struct kprobe *p; 602 unsigned int i; 603 604 /* If optimization is already allowed, just return */ 605 if (kprobes_allow_optimization) 606 return; 607 608 kprobes_allow_optimization = true; 609 mutex_lock(&text_mutex); 610 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 611 head = &kprobe_table[i]; 612 hlist_for_each_entry_rcu(p, node, head, hlist) 613 if (!kprobe_disabled(p)) 614 optimize_kprobe(p); 615 } 616 mutex_unlock(&text_mutex); 617 printk(KERN_INFO "Kprobes globally optimized\n"); 618 } 619 620 static void __kprobes unoptimize_all_kprobes(void) 621 { 622 struct hlist_head *head; 623 struct hlist_node *node; 624 struct kprobe *p; 625 unsigned int i; 626 627 /* If optimization is already prohibited, just return */ 628 if (!kprobes_allow_optimization) 629 return; 630 631 kprobes_allow_optimization = false; 632 printk(KERN_INFO "Kprobes globally unoptimized\n"); 633 get_online_cpus(); /* For avoiding text_mutex deadlock */ 634 mutex_lock(&text_mutex); 635 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 636 head = &kprobe_table[i]; 637 hlist_for_each_entry_rcu(p, node, head, hlist) { 638 if (!kprobe_disabled(p)) 639 unoptimize_kprobe(p); 640 } 641 } 642 643 mutex_unlock(&text_mutex); 644 put_online_cpus(); 645 /* Allow all currently running kprobes to complete */ 646 synchronize_sched(); 647 } 648 649 int sysctl_kprobes_optimization; 650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 651 void __user *buffer, size_t *length, 652 loff_t *ppos) 653 { 654 int ret; 655 656 mutex_lock(&kprobe_mutex); 657 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 659 660 if (sysctl_kprobes_optimization) 661 optimize_all_kprobes(); 662 else 663 unoptimize_all_kprobes(); 664 mutex_unlock(&kprobe_mutex); 665 666 return ret; 667 } 668 #endif /* CONFIG_SYSCTL */ 669 670 static void __kprobes __arm_kprobe(struct kprobe *p) 671 { 672 struct kprobe *old_p; 673 674 /* Check collision with other optimized kprobes */ 675 old_p = get_optimized_kprobe((unsigned long)p->addr); 676 if (unlikely(old_p)) 677 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */ 678 679 arch_arm_kprobe(p); 680 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 681 } 682 683 static void __kprobes __disarm_kprobe(struct kprobe *p) 684 { 685 struct kprobe *old_p; 686 687 unoptimize_kprobe(p); /* Try to unoptimize */ 688 arch_disarm_kprobe(p); 689 690 /* If another kprobe was blocked, optimize it. */ 691 old_p = get_optimized_kprobe((unsigned long)p->addr); 692 if (unlikely(old_p)) 693 optimize_kprobe(old_p); 694 } 695 696 #else /* !CONFIG_OPTPROBES */ 697 698 #define optimize_kprobe(p) do {} while (0) 699 #define unoptimize_kprobe(p) do {} while (0) 700 #define kill_optimized_kprobe(p) do {} while (0) 701 #define prepare_optimized_kprobe(p) do {} while (0) 702 #define try_to_optimize_kprobe(p) do {} while (0) 703 #define __arm_kprobe(p) arch_arm_kprobe(p) 704 #define __disarm_kprobe(p) arch_disarm_kprobe(p) 705 706 static __kprobes void free_aggr_kprobe(struct kprobe *p) 707 { 708 kfree(p); 709 } 710 711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 712 { 713 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 714 } 715 #endif /* CONFIG_OPTPROBES */ 716 717 /* Arm a kprobe with text_mutex */ 718 static void __kprobes arm_kprobe(struct kprobe *kp) 719 { 720 /* 721 * Here, since __arm_kprobe() doesn't use stop_machine(), 722 * this doesn't cause deadlock on text_mutex. So, we don't 723 * need get_online_cpus(). 724 */ 725 mutex_lock(&text_mutex); 726 __arm_kprobe(kp); 727 mutex_unlock(&text_mutex); 728 } 729 730 /* Disarm a kprobe with text_mutex */ 731 static void __kprobes disarm_kprobe(struct kprobe *kp) 732 { 733 get_online_cpus(); /* For avoiding text_mutex deadlock */ 734 mutex_lock(&text_mutex); 735 __disarm_kprobe(kp); 736 mutex_unlock(&text_mutex); 737 put_online_cpus(); 738 } 739 740 /* 741 * Aggregate handlers for multiple kprobes support - these handlers 742 * take care of invoking the individual kprobe handlers on p->list 743 */ 744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 745 { 746 struct kprobe *kp; 747 748 list_for_each_entry_rcu(kp, &p->list, list) { 749 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 750 set_kprobe_instance(kp); 751 if (kp->pre_handler(kp, regs)) 752 return 1; 753 } 754 reset_kprobe_instance(); 755 } 756 return 0; 757 } 758 759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 760 unsigned long flags) 761 { 762 struct kprobe *kp; 763 764 list_for_each_entry_rcu(kp, &p->list, list) { 765 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 766 set_kprobe_instance(kp); 767 kp->post_handler(kp, regs, flags); 768 reset_kprobe_instance(); 769 } 770 } 771 } 772 773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 774 int trapnr) 775 { 776 struct kprobe *cur = __get_cpu_var(kprobe_instance); 777 778 /* 779 * if we faulted "during" the execution of a user specified 780 * probe handler, invoke just that probe's fault handler 781 */ 782 if (cur && cur->fault_handler) { 783 if (cur->fault_handler(cur, regs, trapnr)) 784 return 1; 785 } 786 return 0; 787 } 788 789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 790 { 791 struct kprobe *cur = __get_cpu_var(kprobe_instance); 792 int ret = 0; 793 794 if (cur && cur->break_handler) { 795 if (cur->break_handler(cur, regs)) 796 ret = 1; 797 } 798 reset_kprobe_instance(); 799 return ret; 800 } 801 802 /* Walks the list and increments nmissed count for multiprobe case */ 803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 804 { 805 struct kprobe *kp; 806 if (!kprobe_aggrprobe(p)) { 807 p->nmissed++; 808 } else { 809 list_for_each_entry_rcu(kp, &p->list, list) 810 kp->nmissed++; 811 } 812 return; 813 } 814 815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 816 struct hlist_head *head) 817 { 818 struct kretprobe *rp = ri->rp; 819 820 /* remove rp inst off the rprobe_inst_table */ 821 hlist_del(&ri->hlist); 822 INIT_HLIST_NODE(&ri->hlist); 823 if (likely(rp)) { 824 spin_lock(&rp->lock); 825 hlist_add_head(&ri->hlist, &rp->free_instances); 826 spin_unlock(&rp->lock); 827 } else 828 /* Unregistering */ 829 hlist_add_head(&ri->hlist, head); 830 } 831 832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 833 struct hlist_head **head, unsigned long *flags) 834 { 835 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 836 spinlock_t *hlist_lock; 837 838 *head = &kretprobe_inst_table[hash]; 839 hlist_lock = kretprobe_table_lock_ptr(hash); 840 spin_lock_irqsave(hlist_lock, *flags); 841 } 842 843 static void __kprobes kretprobe_table_lock(unsigned long hash, 844 unsigned long *flags) 845 { 846 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 847 spin_lock_irqsave(hlist_lock, *flags); 848 } 849 850 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 851 unsigned long *flags) 852 { 853 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 854 spinlock_t *hlist_lock; 855 856 hlist_lock = kretprobe_table_lock_ptr(hash); 857 spin_unlock_irqrestore(hlist_lock, *flags); 858 } 859 860 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags) 861 { 862 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 863 spin_unlock_irqrestore(hlist_lock, *flags); 864 } 865 866 /* 867 * This function is called from finish_task_switch when task tk becomes dead, 868 * so that we can recycle any function-return probe instances associated 869 * with this task. These left over instances represent probed functions 870 * that have been called but will never return. 871 */ 872 void __kprobes kprobe_flush_task(struct task_struct *tk) 873 { 874 struct kretprobe_instance *ri; 875 struct hlist_head *head, empty_rp; 876 struct hlist_node *node, *tmp; 877 unsigned long hash, flags = 0; 878 879 if (unlikely(!kprobes_initialized)) 880 /* Early boot. kretprobe_table_locks not yet initialized. */ 881 return; 882 883 hash = hash_ptr(tk, KPROBE_HASH_BITS); 884 head = &kretprobe_inst_table[hash]; 885 kretprobe_table_lock(hash, &flags); 886 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 887 if (ri->task == tk) 888 recycle_rp_inst(ri, &empty_rp); 889 } 890 kretprobe_table_unlock(hash, &flags); 891 INIT_HLIST_HEAD(&empty_rp); 892 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 893 hlist_del(&ri->hlist); 894 kfree(ri); 895 } 896 } 897 898 static inline void free_rp_inst(struct kretprobe *rp) 899 { 900 struct kretprobe_instance *ri; 901 struct hlist_node *pos, *next; 902 903 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 904 hlist_del(&ri->hlist); 905 kfree(ri); 906 } 907 } 908 909 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 910 { 911 unsigned long flags, hash; 912 struct kretprobe_instance *ri; 913 struct hlist_node *pos, *next; 914 struct hlist_head *head; 915 916 /* No race here */ 917 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 918 kretprobe_table_lock(hash, &flags); 919 head = &kretprobe_inst_table[hash]; 920 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 921 if (ri->rp == rp) 922 ri->rp = NULL; 923 } 924 kretprobe_table_unlock(hash, &flags); 925 } 926 free_rp_inst(rp); 927 } 928 929 /* 930 * Add the new probe to ap->list. Fail if this is the 931 * second jprobe at the address - two jprobes can't coexist 932 */ 933 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 934 { 935 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 936 937 if (p->break_handler || p->post_handler) 938 unoptimize_kprobe(ap); /* Fall back to normal kprobe */ 939 940 if (p->break_handler) { 941 if (ap->break_handler) 942 return -EEXIST; 943 list_add_tail_rcu(&p->list, &ap->list); 944 ap->break_handler = aggr_break_handler; 945 } else 946 list_add_rcu(&p->list, &ap->list); 947 if (p->post_handler && !ap->post_handler) 948 ap->post_handler = aggr_post_handler; 949 950 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 951 ap->flags &= ~KPROBE_FLAG_DISABLED; 952 if (!kprobes_all_disarmed) 953 /* Arm the breakpoint again. */ 954 __arm_kprobe(ap); 955 } 956 return 0; 957 } 958 959 /* 960 * Fill in the required fields of the "manager kprobe". Replace the 961 * earlier kprobe in the hlist with the manager kprobe 962 */ 963 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 964 { 965 /* Copy p's insn slot to ap */ 966 copy_kprobe(p, ap); 967 flush_insn_slot(ap); 968 ap->addr = p->addr; 969 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 970 ap->pre_handler = aggr_pre_handler; 971 ap->fault_handler = aggr_fault_handler; 972 /* We don't care the kprobe which has gone. */ 973 if (p->post_handler && !kprobe_gone(p)) 974 ap->post_handler = aggr_post_handler; 975 if (p->break_handler && !kprobe_gone(p)) 976 ap->break_handler = aggr_break_handler; 977 978 INIT_LIST_HEAD(&ap->list); 979 INIT_HLIST_NODE(&ap->hlist); 980 981 list_add_rcu(&p->list, &ap->list); 982 hlist_replace_rcu(&p->hlist, &ap->hlist); 983 } 984 985 /* 986 * This is the second or subsequent kprobe at the address - handle 987 * the intricacies 988 */ 989 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 990 struct kprobe *p) 991 { 992 int ret = 0; 993 struct kprobe *ap = old_p; 994 995 if (!kprobe_aggrprobe(old_p)) { 996 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */ 997 ap = alloc_aggr_kprobe(old_p); 998 if (!ap) 999 return -ENOMEM; 1000 init_aggr_kprobe(ap, old_p); 1001 } 1002 1003 if (kprobe_gone(ap)) { 1004 /* 1005 * Attempting to insert new probe at the same location that 1006 * had a probe in the module vaddr area which already 1007 * freed. So, the instruction slot has already been 1008 * released. We need a new slot for the new probe. 1009 */ 1010 ret = arch_prepare_kprobe(ap); 1011 if (ret) 1012 /* 1013 * Even if fail to allocate new slot, don't need to 1014 * free aggr_probe. It will be used next time, or 1015 * freed by unregister_kprobe. 1016 */ 1017 return ret; 1018 1019 /* Prepare optimized instructions if possible. */ 1020 prepare_optimized_kprobe(ap); 1021 1022 /* 1023 * Clear gone flag to prevent allocating new slot again, and 1024 * set disabled flag because it is not armed yet. 1025 */ 1026 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1027 | KPROBE_FLAG_DISABLED; 1028 } 1029 1030 /* Copy ap's insn slot to p */ 1031 copy_kprobe(ap, p); 1032 return add_new_kprobe(ap, p); 1033 } 1034 1035 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/ 1036 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p) 1037 { 1038 struct kprobe *kp; 1039 1040 list_for_each_entry_rcu(kp, &p->list, list) { 1041 if (!kprobe_disabled(kp)) 1042 /* 1043 * There is an active probe on the list. 1044 * We can't disable aggr_kprobe. 1045 */ 1046 return 0; 1047 } 1048 p->flags |= KPROBE_FLAG_DISABLED; 1049 return 1; 1050 } 1051 1052 static int __kprobes in_kprobes_functions(unsigned long addr) 1053 { 1054 struct kprobe_blackpoint *kb; 1055 1056 if (addr >= (unsigned long)__kprobes_text_start && 1057 addr < (unsigned long)__kprobes_text_end) 1058 return -EINVAL; 1059 /* 1060 * If there exists a kprobe_blacklist, verify and 1061 * fail any probe registration in the prohibited area 1062 */ 1063 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1064 if (kb->start_addr) { 1065 if (addr >= kb->start_addr && 1066 addr < (kb->start_addr + kb->range)) 1067 return -EINVAL; 1068 } 1069 } 1070 return 0; 1071 } 1072 1073 /* 1074 * If we have a symbol_name argument, look it up and add the offset field 1075 * to it. This way, we can specify a relative address to a symbol. 1076 */ 1077 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1078 { 1079 kprobe_opcode_t *addr = p->addr; 1080 if (p->symbol_name) { 1081 if (addr) 1082 return NULL; 1083 kprobe_lookup_name(p->symbol_name, addr); 1084 } 1085 1086 if (!addr) 1087 return NULL; 1088 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 1089 } 1090 1091 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1092 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1093 { 1094 struct kprobe *old_p, *list_p; 1095 1096 old_p = get_kprobe(p->addr); 1097 if (unlikely(!old_p)) 1098 return NULL; 1099 1100 if (p != old_p) { 1101 list_for_each_entry_rcu(list_p, &old_p->list, list) 1102 if (list_p == p) 1103 /* kprobe p is a valid probe */ 1104 goto valid; 1105 return NULL; 1106 } 1107 valid: 1108 return old_p; 1109 } 1110 1111 /* Return error if the kprobe is being re-registered */ 1112 static inline int check_kprobe_rereg(struct kprobe *p) 1113 { 1114 int ret = 0; 1115 struct kprobe *old_p; 1116 1117 mutex_lock(&kprobe_mutex); 1118 old_p = __get_valid_kprobe(p); 1119 if (old_p) 1120 ret = -EINVAL; 1121 mutex_unlock(&kprobe_mutex); 1122 return ret; 1123 } 1124 1125 int __kprobes register_kprobe(struct kprobe *p) 1126 { 1127 int ret = 0; 1128 struct kprobe *old_p; 1129 struct module *probed_mod; 1130 kprobe_opcode_t *addr; 1131 1132 addr = kprobe_addr(p); 1133 if (!addr) 1134 return -EINVAL; 1135 p->addr = addr; 1136 1137 ret = check_kprobe_rereg(p); 1138 if (ret) 1139 return ret; 1140 1141 preempt_disable(); 1142 if (!kernel_text_address((unsigned long) p->addr) || 1143 in_kprobes_functions((unsigned long) p->addr) || 1144 ftrace_text_reserved(p->addr, p->addr)) { 1145 preempt_enable(); 1146 return -EINVAL; 1147 } 1148 1149 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1150 p->flags &= KPROBE_FLAG_DISABLED; 1151 1152 /* 1153 * Check if are we probing a module. 1154 */ 1155 probed_mod = __module_text_address((unsigned long) p->addr); 1156 if (probed_mod) { 1157 /* 1158 * We must hold a refcount of the probed module while updating 1159 * its code to prohibit unexpected unloading. 1160 */ 1161 if (unlikely(!try_module_get(probed_mod))) { 1162 preempt_enable(); 1163 return -EINVAL; 1164 } 1165 /* 1166 * If the module freed .init.text, we couldn't insert 1167 * kprobes in there. 1168 */ 1169 if (within_module_init((unsigned long)p->addr, probed_mod) && 1170 probed_mod->state != MODULE_STATE_COMING) { 1171 module_put(probed_mod); 1172 preempt_enable(); 1173 return -EINVAL; 1174 } 1175 } 1176 preempt_enable(); 1177 1178 p->nmissed = 0; 1179 INIT_LIST_HEAD(&p->list); 1180 mutex_lock(&kprobe_mutex); 1181 1182 get_online_cpus(); /* For avoiding text_mutex deadlock. */ 1183 mutex_lock(&text_mutex); 1184 1185 old_p = get_kprobe(p->addr); 1186 if (old_p) { 1187 /* Since this may unoptimize old_p, locking text_mutex. */ 1188 ret = register_aggr_kprobe(old_p, p); 1189 goto out; 1190 } 1191 1192 ret = arch_prepare_kprobe(p); 1193 if (ret) 1194 goto out; 1195 1196 INIT_HLIST_NODE(&p->hlist); 1197 hlist_add_head_rcu(&p->hlist, 1198 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1199 1200 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1201 __arm_kprobe(p); 1202 1203 /* Try to optimize kprobe */ 1204 try_to_optimize_kprobe(p); 1205 1206 out: 1207 mutex_unlock(&text_mutex); 1208 put_online_cpus(); 1209 mutex_unlock(&kprobe_mutex); 1210 1211 if (probed_mod) 1212 module_put(probed_mod); 1213 1214 return ret; 1215 } 1216 EXPORT_SYMBOL_GPL(register_kprobe); 1217 1218 /* 1219 * Unregister a kprobe without a scheduler synchronization. 1220 */ 1221 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1222 { 1223 struct kprobe *old_p, *list_p; 1224 1225 old_p = __get_valid_kprobe(p); 1226 if (old_p == NULL) 1227 return -EINVAL; 1228 1229 if (old_p == p || 1230 (kprobe_aggrprobe(old_p) && 1231 list_is_singular(&old_p->list))) { 1232 /* 1233 * Only probe on the hash list. Disarm only if kprobes are 1234 * enabled and not gone - otherwise, the breakpoint would 1235 * already have been removed. We save on flushing icache. 1236 */ 1237 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) 1238 disarm_kprobe(old_p); 1239 hlist_del_rcu(&old_p->hlist); 1240 } else { 1241 if (p->break_handler && !kprobe_gone(p)) 1242 old_p->break_handler = NULL; 1243 if (p->post_handler && !kprobe_gone(p)) { 1244 list_for_each_entry_rcu(list_p, &old_p->list, list) { 1245 if ((list_p != p) && (list_p->post_handler)) 1246 goto noclean; 1247 } 1248 old_p->post_handler = NULL; 1249 } 1250 noclean: 1251 list_del_rcu(&p->list); 1252 if (!kprobe_disabled(old_p)) { 1253 try_to_disable_aggr_kprobe(old_p); 1254 if (!kprobes_all_disarmed) { 1255 if (kprobe_disabled(old_p)) 1256 disarm_kprobe(old_p); 1257 else 1258 /* Try to optimize this probe again */ 1259 optimize_kprobe(old_p); 1260 } 1261 } 1262 } 1263 return 0; 1264 } 1265 1266 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1267 { 1268 struct kprobe *old_p; 1269 1270 if (list_empty(&p->list)) 1271 arch_remove_kprobe(p); 1272 else if (list_is_singular(&p->list)) { 1273 /* "p" is the last child of an aggr_kprobe */ 1274 old_p = list_entry(p->list.next, struct kprobe, list); 1275 list_del(&p->list); 1276 arch_remove_kprobe(old_p); 1277 free_aggr_kprobe(old_p); 1278 } 1279 } 1280 1281 int __kprobes register_kprobes(struct kprobe **kps, int num) 1282 { 1283 int i, ret = 0; 1284 1285 if (num <= 0) 1286 return -EINVAL; 1287 for (i = 0; i < num; i++) { 1288 ret = register_kprobe(kps[i]); 1289 if (ret < 0) { 1290 if (i > 0) 1291 unregister_kprobes(kps, i); 1292 break; 1293 } 1294 } 1295 return ret; 1296 } 1297 EXPORT_SYMBOL_GPL(register_kprobes); 1298 1299 void __kprobes unregister_kprobe(struct kprobe *p) 1300 { 1301 unregister_kprobes(&p, 1); 1302 } 1303 EXPORT_SYMBOL_GPL(unregister_kprobe); 1304 1305 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1306 { 1307 int i; 1308 1309 if (num <= 0) 1310 return; 1311 mutex_lock(&kprobe_mutex); 1312 for (i = 0; i < num; i++) 1313 if (__unregister_kprobe_top(kps[i]) < 0) 1314 kps[i]->addr = NULL; 1315 mutex_unlock(&kprobe_mutex); 1316 1317 synchronize_sched(); 1318 for (i = 0; i < num; i++) 1319 if (kps[i]->addr) 1320 __unregister_kprobe_bottom(kps[i]); 1321 } 1322 EXPORT_SYMBOL_GPL(unregister_kprobes); 1323 1324 static struct notifier_block kprobe_exceptions_nb = { 1325 .notifier_call = kprobe_exceptions_notify, 1326 .priority = 0x7fffffff /* we need to be notified first */ 1327 }; 1328 1329 unsigned long __weak arch_deref_entry_point(void *entry) 1330 { 1331 return (unsigned long)entry; 1332 } 1333 1334 int __kprobes register_jprobes(struct jprobe **jps, int num) 1335 { 1336 struct jprobe *jp; 1337 int ret = 0, i; 1338 1339 if (num <= 0) 1340 return -EINVAL; 1341 for (i = 0; i < num; i++) { 1342 unsigned long addr; 1343 jp = jps[i]; 1344 addr = arch_deref_entry_point(jp->entry); 1345 1346 if (!kernel_text_address(addr)) 1347 ret = -EINVAL; 1348 else { 1349 /* Todo: Verify probepoint is a function entry point */ 1350 jp->kp.pre_handler = setjmp_pre_handler; 1351 jp->kp.break_handler = longjmp_break_handler; 1352 ret = register_kprobe(&jp->kp); 1353 } 1354 if (ret < 0) { 1355 if (i > 0) 1356 unregister_jprobes(jps, i); 1357 break; 1358 } 1359 } 1360 return ret; 1361 } 1362 EXPORT_SYMBOL_GPL(register_jprobes); 1363 1364 int __kprobes register_jprobe(struct jprobe *jp) 1365 { 1366 return register_jprobes(&jp, 1); 1367 } 1368 EXPORT_SYMBOL_GPL(register_jprobe); 1369 1370 void __kprobes unregister_jprobe(struct jprobe *jp) 1371 { 1372 unregister_jprobes(&jp, 1); 1373 } 1374 EXPORT_SYMBOL_GPL(unregister_jprobe); 1375 1376 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1377 { 1378 int i; 1379 1380 if (num <= 0) 1381 return; 1382 mutex_lock(&kprobe_mutex); 1383 for (i = 0; i < num; i++) 1384 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1385 jps[i]->kp.addr = NULL; 1386 mutex_unlock(&kprobe_mutex); 1387 1388 synchronize_sched(); 1389 for (i = 0; i < num; i++) { 1390 if (jps[i]->kp.addr) 1391 __unregister_kprobe_bottom(&jps[i]->kp); 1392 } 1393 } 1394 EXPORT_SYMBOL_GPL(unregister_jprobes); 1395 1396 #ifdef CONFIG_KRETPROBES 1397 /* 1398 * This kprobe pre_handler is registered with every kretprobe. When probe 1399 * hits it will set up the return probe. 1400 */ 1401 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1402 struct pt_regs *regs) 1403 { 1404 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1405 unsigned long hash, flags = 0; 1406 struct kretprobe_instance *ri; 1407 1408 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1409 hash = hash_ptr(current, KPROBE_HASH_BITS); 1410 spin_lock_irqsave(&rp->lock, flags); 1411 if (!hlist_empty(&rp->free_instances)) { 1412 ri = hlist_entry(rp->free_instances.first, 1413 struct kretprobe_instance, hlist); 1414 hlist_del(&ri->hlist); 1415 spin_unlock_irqrestore(&rp->lock, flags); 1416 1417 ri->rp = rp; 1418 ri->task = current; 1419 1420 if (rp->entry_handler && rp->entry_handler(ri, regs)) 1421 return 0; 1422 1423 arch_prepare_kretprobe(ri, regs); 1424 1425 /* XXX(hch): why is there no hlist_move_head? */ 1426 INIT_HLIST_NODE(&ri->hlist); 1427 kretprobe_table_lock(hash, &flags); 1428 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1429 kretprobe_table_unlock(hash, &flags); 1430 } else { 1431 rp->nmissed++; 1432 spin_unlock_irqrestore(&rp->lock, flags); 1433 } 1434 return 0; 1435 } 1436 1437 int __kprobes register_kretprobe(struct kretprobe *rp) 1438 { 1439 int ret = 0; 1440 struct kretprobe_instance *inst; 1441 int i; 1442 void *addr; 1443 1444 if (kretprobe_blacklist_size) { 1445 addr = kprobe_addr(&rp->kp); 1446 if (!addr) 1447 return -EINVAL; 1448 1449 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1450 if (kretprobe_blacklist[i].addr == addr) 1451 return -EINVAL; 1452 } 1453 } 1454 1455 rp->kp.pre_handler = pre_handler_kretprobe; 1456 rp->kp.post_handler = NULL; 1457 rp->kp.fault_handler = NULL; 1458 rp->kp.break_handler = NULL; 1459 1460 /* Pre-allocate memory for max kretprobe instances */ 1461 if (rp->maxactive <= 0) { 1462 #ifdef CONFIG_PREEMPT 1463 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1464 #else 1465 rp->maxactive = num_possible_cpus(); 1466 #endif 1467 } 1468 spin_lock_init(&rp->lock); 1469 INIT_HLIST_HEAD(&rp->free_instances); 1470 for (i = 0; i < rp->maxactive; i++) { 1471 inst = kmalloc(sizeof(struct kretprobe_instance) + 1472 rp->data_size, GFP_KERNEL); 1473 if (inst == NULL) { 1474 free_rp_inst(rp); 1475 return -ENOMEM; 1476 } 1477 INIT_HLIST_NODE(&inst->hlist); 1478 hlist_add_head(&inst->hlist, &rp->free_instances); 1479 } 1480 1481 rp->nmissed = 0; 1482 /* Establish function entry probe point */ 1483 ret = register_kprobe(&rp->kp); 1484 if (ret != 0) 1485 free_rp_inst(rp); 1486 return ret; 1487 } 1488 EXPORT_SYMBOL_GPL(register_kretprobe); 1489 1490 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1491 { 1492 int ret = 0, i; 1493 1494 if (num <= 0) 1495 return -EINVAL; 1496 for (i = 0; i < num; i++) { 1497 ret = register_kretprobe(rps[i]); 1498 if (ret < 0) { 1499 if (i > 0) 1500 unregister_kretprobes(rps, i); 1501 break; 1502 } 1503 } 1504 return ret; 1505 } 1506 EXPORT_SYMBOL_GPL(register_kretprobes); 1507 1508 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1509 { 1510 unregister_kretprobes(&rp, 1); 1511 } 1512 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1513 1514 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1515 { 1516 int i; 1517 1518 if (num <= 0) 1519 return; 1520 mutex_lock(&kprobe_mutex); 1521 for (i = 0; i < num; i++) 1522 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1523 rps[i]->kp.addr = NULL; 1524 mutex_unlock(&kprobe_mutex); 1525 1526 synchronize_sched(); 1527 for (i = 0; i < num; i++) { 1528 if (rps[i]->kp.addr) { 1529 __unregister_kprobe_bottom(&rps[i]->kp); 1530 cleanup_rp_inst(rps[i]); 1531 } 1532 } 1533 } 1534 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1535 1536 #else /* CONFIG_KRETPROBES */ 1537 int __kprobes register_kretprobe(struct kretprobe *rp) 1538 { 1539 return -ENOSYS; 1540 } 1541 EXPORT_SYMBOL_GPL(register_kretprobe); 1542 1543 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1544 { 1545 return -ENOSYS; 1546 } 1547 EXPORT_SYMBOL_GPL(register_kretprobes); 1548 1549 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1550 { 1551 } 1552 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1553 1554 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1555 { 1556 } 1557 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1558 1559 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1560 struct pt_regs *regs) 1561 { 1562 return 0; 1563 } 1564 1565 #endif /* CONFIG_KRETPROBES */ 1566 1567 /* Set the kprobe gone and remove its instruction buffer. */ 1568 static void __kprobes kill_kprobe(struct kprobe *p) 1569 { 1570 struct kprobe *kp; 1571 1572 p->flags |= KPROBE_FLAG_GONE; 1573 if (kprobe_aggrprobe(p)) { 1574 /* 1575 * If this is an aggr_kprobe, we have to list all the 1576 * chained probes and mark them GONE. 1577 */ 1578 list_for_each_entry_rcu(kp, &p->list, list) 1579 kp->flags |= KPROBE_FLAG_GONE; 1580 p->post_handler = NULL; 1581 p->break_handler = NULL; 1582 kill_optimized_kprobe(p); 1583 } 1584 /* 1585 * Here, we can remove insn_slot safely, because no thread calls 1586 * the original probed function (which will be freed soon) any more. 1587 */ 1588 arch_remove_kprobe(p); 1589 } 1590 1591 /* Disable one kprobe */ 1592 int __kprobes disable_kprobe(struct kprobe *kp) 1593 { 1594 int ret = 0; 1595 struct kprobe *p; 1596 1597 mutex_lock(&kprobe_mutex); 1598 1599 /* Check whether specified probe is valid. */ 1600 p = __get_valid_kprobe(kp); 1601 if (unlikely(p == NULL)) { 1602 ret = -EINVAL; 1603 goto out; 1604 } 1605 1606 /* If the probe is already disabled (or gone), just return */ 1607 if (kprobe_disabled(kp)) 1608 goto out; 1609 1610 kp->flags |= KPROBE_FLAG_DISABLED; 1611 if (p != kp) 1612 /* When kp != p, p is always enabled. */ 1613 try_to_disable_aggr_kprobe(p); 1614 1615 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1616 disarm_kprobe(p); 1617 out: 1618 mutex_unlock(&kprobe_mutex); 1619 return ret; 1620 } 1621 EXPORT_SYMBOL_GPL(disable_kprobe); 1622 1623 /* Enable one kprobe */ 1624 int __kprobes enable_kprobe(struct kprobe *kp) 1625 { 1626 int ret = 0; 1627 struct kprobe *p; 1628 1629 mutex_lock(&kprobe_mutex); 1630 1631 /* Check whether specified probe is valid. */ 1632 p = __get_valid_kprobe(kp); 1633 if (unlikely(p == NULL)) { 1634 ret = -EINVAL; 1635 goto out; 1636 } 1637 1638 if (kprobe_gone(kp)) { 1639 /* This kprobe has gone, we couldn't enable it. */ 1640 ret = -EINVAL; 1641 goto out; 1642 } 1643 1644 if (p != kp) 1645 kp->flags &= ~KPROBE_FLAG_DISABLED; 1646 1647 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 1648 p->flags &= ~KPROBE_FLAG_DISABLED; 1649 arm_kprobe(p); 1650 } 1651 out: 1652 mutex_unlock(&kprobe_mutex); 1653 return ret; 1654 } 1655 EXPORT_SYMBOL_GPL(enable_kprobe); 1656 1657 void __kprobes dump_kprobe(struct kprobe *kp) 1658 { 1659 printk(KERN_WARNING "Dumping kprobe:\n"); 1660 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 1661 kp->symbol_name, kp->addr, kp->offset); 1662 } 1663 1664 /* Module notifier call back, checking kprobes on the module */ 1665 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1666 unsigned long val, void *data) 1667 { 1668 struct module *mod = data; 1669 struct hlist_head *head; 1670 struct hlist_node *node; 1671 struct kprobe *p; 1672 unsigned int i; 1673 int checkcore = (val == MODULE_STATE_GOING); 1674 1675 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1676 return NOTIFY_DONE; 1677 1678 /* 1679 * When MODULE_STATE_GOING was notified, both of module .text and 1680 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1681 * notified, only .init.text section would be freed. We need to 1682 * disable kprobes which have been inserted in the sections. 1683 */ 1684 mutex_lock(&kprobe_mutex); 1685 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1686 head = &kprobe_table[i]; 1687 hlist_for_each_entry_rcu(p, node, head, hlist) 1688 if (within_module_init((unsigned long)p->addr, mod) || 1689 (checkcore && 1690 within_module_core((unsigned long)p->addr, mod))) { 1691 /* 1692 * The vaddr this probe is installed will soon 1693 * be vfreed buy not synced to disk. Hence, 1694 * disarming the breakpoint isn't needed. 1695 */ 1696 kill_kprobe(p); 1697 } 1698 } 1699 mutex_unlock(&kprobe_mutex); 1700 return NOTIFY_DONE; 1701 } 1702 1703 static struct notifier_block kprobe_module_nb = { 1704 .notifier_call = kprobes_module_callback, 1705 .priority = 0 1706 }; 1707 1708 static int __init init_kprobes(void) 1709 { 1710 int i, err = 0; 1711 unsigned long offset = 0, size = 0; 1712 char *modname, namebuf[128]; 1713 const char *symbol_name; 1714 void *addr; 1715 struct kprobe_blackpoint *kb; 1716 1717 /* FIXME allocate the probe table, currently defined statically */ 1718 /* initialize all list heads */ 1719 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1720 INIT_HLIST_HEAD(&kprobe_table[i]); 1721 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1722 spin_lock_init(&(kretprobe_table_locks[i].lock)); 1723 } 1724 1725 /* 1726 * Lookup and populate the kprobe_blacklist. 1727 * 1728 * Unlike the kretprobe blacklist, we'll need to determine 1729 * the range of addresses that belong to the said functions, 1730 * since a kprobe need not necessarily be at the beginning 1731 * of a function. 1732 */ 1733 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1734 kprobe_lookup_name(kb->name, addr); 1735 if (!addr) 1736 continue; 1737 1738 kb->start_addr = (unsigned long)addr; 1739 symbol_name = kallsyms_lookup(kb->start_addr, 1740 &size, &offset, &modname, namebuf); 1741 if (!symbol_name) 1742 kb->range = 0; 1743 else 1744 kb->range = size; 1745 } 1746 1747 if (kretprobe_blacklist_size) { 1748 /* lookup the function address from its name */ 1749 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1750 kprobe_lookup_name(kretprobe_blacklist[i].name, 1751 kretprobe_blacklist[i].addr); 1752 if (!kretprobe_blacklist[i].addr) 1753 printk("kretprobe: lookup failed: %s\n", 1754 kretprobe_blacklist[i].name); 1755 } 1756 } 1757 1758 #if defined(CONFIG_OPTPROBES) 1759 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 1760 /* Init kprobe_optinsn_slots */ 1761 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 1762 #endif 1763 /* By default, kprobes can be optimized */ 1764 kprobes_allow_optimization = true; 1765 #endif 1766 1767 /* By default, kprobes are armed */ 1768 kprobes_all_disarmed = false; 1769 1770 err = arch_init_kprobes(); 1771 if (!err) 1772 err = register_die_notifier(&kprobe_exceptions_nb); 1773 if (!err) 1774 err = register_module_notifier(&kprobe_module_nb); 1775 1776 kprobes_initialized = (err == 0); 1777 1778 if (!err) 1779 init_test_probes(); 1780 return err; 1781 } 1782 1783 #ifdef CONFIG_DEBUG_FS 1784 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1785 const char *sym, int offset, char *modname, struct kprobe *pp) 1786 { 1787 char *kprobe_type; 1788 1789 if (p->pre_handler == pre_handler_kretprobe) 1790 kprobe_type = "r"; 1791 else if (p->pre_handler == setjmp_pre_handler) 1792 kprobe_type = "j"; 1793 else 1794 kprobe_type = "k"; 1795 1796 if (sym) 1797 seq_printf(pi, "%p %s %s+0x%x %s ", 1798 p->addr, kprobe_type, sym, offset, 1799 (modname ? modname : " ")); 1800 else 1801 seq_printf(pi, "%p %s %p ", 1802 p->addr, kprobe_type, p->addr); 1803 1804 if (!pp) 1805 pp = p; 1806 seq_printf(pi, "%s%s%s\n", 1807 (kprobe_gone(p) ? "[GONE]" : ""), 1808 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 1809 (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); 1810 } 1811 1812 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1813 { 1814 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1815 } 1816 1817 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1818 { 1819 (*pos)++; 1820 if (*pos >= KPROBE_TABLE_SIZE) 1821 return NULL; 1822 return pos; 1823 } 1824 1825 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1826 { 1827 /* Nothing to do */ 1828 } 1829 1830 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1831 { 1832 struct hlist_head *head; 1833 struct hlist_node *node; 1834 struct kprobe *p, *kp; 1835 const char *sym = NULL; 1836 unsigned int i = *(loff_t *) v; 1837 unsigned long offset = 0; 1838 char *modname, namebuf[128]; 1839 1840 head = &kprobe_table[i]; 1841 preempt_disable(); 1842 hlist_for_each_entry_rcu(p, node, head, hlist) { 1843 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1844 &offset, &modname, namebuf); 1845 if (kprobe_aggrprobe(p)) { 1846 list_for_each_entry_rcu(kp, &p->list, list) 1847 report_probe(pi, kp, sym, offset, modname, p); 1848 } else 1849 report_probe(pi, p, sym, offset, modname, NULL); 1850 } 1851 preempt_enable(); 1852 return 0; 1853 } 1854 1855 static const struct seq_operations kprobes_seq_ops = { 1856 .start = kprobe_seq_start, 1857 .next = kprobe_seq_next, 1858 .stop = kprobe_seq_stop, 1859 .show = show_kprobe_addr 1860 }; 1861 1862 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1863 { 1864 return seq_open(filp, &kprobes_seq_ops); 1865 } 1866 1867 static const struct file_operations debugfs_kprobes_operations = { 1868 .open = kprobes_open, 1869 .read = seq_read, 1870 .llseek = seq_lseek, 1871 .release = seq_release, 1872 }; 1873 1874 static void __kprobes arm_all_kprobes(void) 1875 { 1876 struct hlist_head *head; 1877 struct hlist_node *node; 1878 struct kprobe *p; 1879 unsigned int i; 1880 1881 mutex_lock(&kprobe_mutex); 1882 1883 /* If kprobes are armed, just return */ 1884 if (!kprobes_all_disarmed) 1885 goto already_enabled; 1886 1887 /* Arming kprobes doesn't optimize kprobe itself */ 1888 mutex_lock(&text_mutex); 1889 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1890 head = &kprobe_table[i]; 1891 hlist_for_each_entry_rcu(p, node, head, hlist) 1892 if (!kprobe_disabled(p)) 1893 __arm_kprobe(p); 1894 } 1895 mutex_unlock(&text_mutex); 1896 1897 kprobes_all_disarmed = false; 1898 printk(KERN_INFO "Kprobes globally enabled\n"); 1899 1900 already_enabled: 1901 mutex_unlock(&kprobe_mutex); 1902 return; 1903 } 1904 1905 static void __kprobes disarm_all_kprobes(void) 1906 { 1907 struct hlist_head *head; 1908 struct hlist_node *node; 1909 struct kprobe *p; 1910 unsigned int i; 1911 1912 mutex_lock(&kprobe_mutex); 1913 1914 /* If kprobes are already disarmed, just return */ 1915 if (kprobes_all_disarmed) 1916 goto already_disabled; 1917 1918 kprobes_all_disarmed = true; 1919 printk(KERN_INFO "Kprobes globally disabled\n"); 1920 1921 /* 1922 * Here we call get_online_cpus() for avoiding text_mutex deadlock, 1923 * because disarming may also unoptimize kprobes. 1924 */ 1925 get_online_cpus(); 1926 mutex_lock(&text_mutex); 1927 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1928 head = &kprobe_table[i]; 1929 hlist_for_each_entry_rcu(p, node, head, hlist) { 1930 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 1931 __disarm_kprobe(p); 1932 } 1933 } 1934 1935 mutex_unlock(&text_mutex); 1936 put_online_cpus(); 1937 mutex_unlock(&kprobe_mutex); 1938 /* Allow all currently running kprobes to complete */ 1939 synchronize_sched(); 1940 return; 1941 1942 already_disabled: 1943 mutex_unlock(&kprobe_mutex); 1944 return; 1945 } 1946 1947 /* 1948 * XXX: The debugfs bool file interface doesn't allow for callbacks 1949 * when the bool state is switched. We can reuse that facility when 1950 * available 1951 */ 1952 static ssize_t read_enabled_file_bool(struct file *file, 1953 char __user *user_buf, size_t count, loff_t *ppos) 1954 { 1955 char buf[3]; 1956 1957 if (!kprobes_all_disarmed) 1958 buf[0] = '1'; 1959 else 1960 buf[0] = '0'; 1961 buf[1] = '\n'; 1962 buf[2] = 0x00; 1963 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1964 } 1965 1966 static ssize_t write_enabled_file_bool(struct file *file, 1967 const char __user *user_buf, size_t count, loff_t *ppos) 1968 { 1969 char buf[32]; 1970 int buf_size; 1971 1972 buf_size = min(count, (sizeof(buf)-1)); 1973 if (copy_from_user(buf, user_buf, buf_size)) 1974 return -EFAULT; 1975 1976 switch (buf[0]) { 1977 case 'y': 1978 case 'Y': 1979 case '1': 1980 arm_all_kprobes(); 1981 break; 1982 case 'n': 1983 case 'N': 1984 case '0': 1985 disarm_all_kprobes(); 1986 break; 1987 } 1988 1989 return count; 1990 } 1991 1992 static const struct file_operations fops_kp = { 1993 .read = read_enabled_file_bool, 1994 .write = write_enabled_file_bool, 1995 }; 1996 1997 static int __kprobes debugfs_kprobe_init(void) 1998 { 1999 struct dentry *dir, *file; 2000 unsigned int value = 1; 2001 2002 dir = debugfs_create_dir("kprobes", NULL); 2003 if (!dir) 2004 return -ENOMEM; 2005 2006 file = debugfs_create_file("list", 0444, dir, NULL, 2007 &debugfs_kprobes_operations); 2008 if (!file) { 2009 debugfs_remove(dir); 2010 return -ENOMEM; 2011 } 2012 2013 file = debugfs_create_file("enabled", 0600, dir, 2014 &value, &fops_kp); 2015 if (!file) { 2016 debugfs_remove(dir); 2017 return -ENOMEM; 2018 } 2019 2020 return 0; 2021 } 2022 2023 late_initcall(debugfs_kprobe_init); 2024 #endif /* CONFIG_DEBUG_FS */ 2025 2026 module_init(init_kprobes); 2027 2028 /* defined in arch/.../kernel/kprobes.c */ 2029 EXPORT_SYMBOL_GPL(jprobe_return); 2030