xref: /linux/kernel/kprobes.c (revision dd5b2498d845f925904cb2afabb6ba11bfc317c5)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_rcu();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		list_del_init(&op->list);
550 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 			/*
552 			 * This must not happen, but if there is a kprobe
553 			 * still in use, keep it on kprobes hash list.
554 			 */
555 			continue;
556 		}
557 		free_aggr_kprobe(&op->kp);
558 	}
559 }
560 
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566 
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 	mutex_lock(&kprobe_mutex);
571 	cpus_read_lock();
572 	/* Lock modules while optimizing kprobes */
573 	mutex_lock(&module_mutex);
574 
575 	/*
576 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577 	 * kprobes before waiting for quiesence period.
578 	 */
579 	do_unoptimize_kprobes();
580 
581 	/*
582 	 * Step 2: Wait for quiesence period to ensure all potentially
583 	 * preempted tasks to have normally scheduled. Because optprobe
584 	 * may modify multiple instructions, there is a chance that Nth
585 	 * instruction is preempted. In that case, such tasks can return
586 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587 	 * Note that on non-preemptive kernel, this is transparently converted
588 	 * to synchronoze_sched() to wait for all interrupts to have completed.
589 	 */
590 	synchronize_rcu_tasks();
591 
592 	/* Step 3: Optimize kprobes after quiesence period */
593 	do_optimize_kprobes();
594 
595 	/* Step 4: Free cleaned kprobes after quiesence period */
596 	do_free_cleaned_kprobes();
597 
598 	mutex_unlock(&module_mutex);
599 	cpus_read_unlock();
600 	mutex_unlock(&kprobe_mutex);
601 
602 	/* Step 5: Kick optimizer again if needed */
603 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 		kick_kprobe_optimizer();
605 }
606 
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610 	mutex_lock(&kprobe_mutex);
611 
612 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 		mutex_unlock(&kprobe_mutex);
614 
615 		/* this will also make optimizing_work execute immmediately */
616 		flush_delayed_work(&optimizing_work);
617 		/* @optimizing_work might not have been queued yet, relax */
618 		cpu_relax();
619 
620 		mutex_lock(&kprobe_mutex);
621 	}
622 
623 	mutex_unlock(&kprobe_mutex);
624 }
625 
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629 	struct optimized_kprobe *op;
630 
631 	/* Check if the kprobe is disabled or not ready for optimization. */
632 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 	    (kprobe_disabled(p) || kprobes_all_disarmed))
634 		return;
635 
636 	/* kprobes with post_handler can not be optimized */
637 	if (p->post_handler)
638 		return;
639 
640 	op = container_of(p, struct optimized_kprobe, kp);
641 
642 	/* Check there is no other kprobes at the optimized instructions */
643 	if (arch_check_optimized_kprobe(op) < 0)
644 		return;
645 
646 	/* Check if it is already optimized. */
647 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 		return;
649 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650 
651 	if (!list_empty(&op->list))
652 		/* This is under unoptimizing. Just dequeue the probe */
653 		list_del_init(&op->list);
654 	else {
655 		list_add(&op->list, &optimizing_list);
656 		kick_kprobe_optimizer();
657 	}
658 }
659 
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663 	lockdep_assert_cpus_held();
664 	arch_unoptimize_kprobe(op);
665 	if (kprobe_disabled(&op->kp))
666 		arch_disarm_kprobe(&op->kp);
667 }
668 
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672 	struct optimized_kprobe *op;
673 
674 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 		return; /* This is not an optprobe nor optimized */
676 
677 	op = container_of(p, struct optimized_kprobe, kp);
678 	if (!kprobe_optimized(p)) {
679 		/* Unoptimized or unoptimizing case */
680 		if (force && !list_empty(&op->list)) {
681 			/*
682 			 * Only if this is unoptimizing kprobe and forced,
683 			 * forcibly unoptimize it. (No need to unoptimize
684 			 * unoptimized kprobe again :)
685 			 */
686 			list_del_init(&op->list);
687 			force_unoptimize_kprobe(op);
688 		}
689 		return;
690 	}
691 
692 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 	if (!list_empty(&op->list)) {
694 		/* Dequeue from the optimization queue */
695 		list_del_init(&op->list);
696 		return;
697 	}
698 	/* Optimized kprobe case */
699 	if (force)
700 		/* Forcibly update the code: this is a special case */
701 		force_unoptimize_kprobe(op);
702 	else {
703 		list_add(&op->list, &unoptimizing_list);
704 		kick_kprobe_optimizer();
705 	}
706 }
707 
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711 	struct optimized_kprobe *op;
712 	int ret;
713 
714 	/*
715 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
716 	 * there is still a relative jump) and disabled.
717 	 */
718 	op = container_of(ap, struct optimized_kprobe, kp);
719 	WARN_ON_ONCE(list_empty(&op->list));
720 	/* Enable the probe again */
721 	ap->flags &= ~KPROBE_FLAG_DISABLED;
722 	/* Optimize it again (remove from op->list) */
723 	ret = kprobe_optready(ap);
724 	if (ret)
725 		return ret;
726 
727 	optimize_kprobe(ap);
728 	return 0;
729 }
730 
731 /* Remove optimized instructions */
732 static void kill_optimized_kprobe(struct kprobe *p)
733 {
734 	struct optimized_kprobe *op;
735 
736 	op = container_of(p, struct optimized_kprobe, kp);
737 	if (!list_empty(&op->list))
738 		/* Dequeue from the (un)optimization queue */
739 		list_del_init(&op->list);
740 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 
742 	if (kprobe_unused(p)) {
743 		/* Enqueue if it is unused */
744 		list_add(&op->list, &freeing_list);
745 		/*
746 		 * Remove unused probes from the hash list. After waiting
747 		 * for synchronization, this probe is reclaimed.
748 		 * (reclaiming is done by do_free_cleaned_kprobes().)
749 		 */
750 		hlist_del_rcu(&op->kp.hlist);
751 	}
752 
753 	/* Don't touch the code, because it is already freed. */
754 	arch_remove_optimized_kprobe(op);
755 }
756 
757 static inline
758 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
759 {
760 	if (!kprobe_ftrace(p))
761 		arch_prepare_optimized_kprobe(op, p);
762 }
763 
764 /* Try to prepare optimized instructions */
765 static void prepare_optimized_kprobe(struct kprobe *p)
766 {
767 	struct optimized_kprobe *op;
768 
769 	op = container_of(p, struct optimized_kprobe, kp);
770 	__prepare_optimized_kprobe(op, p);
771 }
772 
773 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
774 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
775 {
776 	struct optimized_kprobe *op;
777 
778 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
779 	if (!op)
780 		return NULL;
781 
782 	INIT_LIST_HEAD(&op->list);
783 	op->kp.addr = p->addr;
784 	__prepare_optimized_kprobe(op, p);
785 
786 	return &op->kp;
787 }
788 
789 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
790 
791 /*
792  * Prepare an optimized_kprobe and optimize it
793  * NOTE: p must be a normal registered kprobe
794  */
795 static void try_to_optimize_kprobe(struct kprobe *p)
796 {
797 	struct kprobe *ap;
798 	struct optimized_kprobe *op;
799 
800 	/* Impossible to optimize ftrace-based kprobe */
801 	if (kprobe_ftrace(p))
802 		return;
803 
804 	/* For preparing optimization, jump_label_text_reserved() is called */
805 	cpus_read_lock();
806 	jump_label_lock();
807 	mutex_lock(&text_mutex);
808 
809 	ap = alloc_aggr_kprobe(p);
810 	if (!ap)
811 		goto out;
812 
813 	op = container_of(ap, struct optimized_kprobe, kp);
814 	if (!arch_prepared_optinsn(&op->optinsn)) {
815 		/* If failed to setup optimizing, fallback to kprobe */
816 		arch_remove_optimized_kprobe(op);
817 		kfree(op);
818 		goto out;
819 	}
820 
821 	init_aggr_kprobe(ap, p);
822 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
823 
824 out:
825 	mutex_unlock(&text_mutex);
826 	jump_label_unlock();
827 	cpus_read_unlock();
828 }
829 
830 #ifdef CONFIG_SYSCTL
831 static void optimize_all_kprobes(void)
832 {
833 	struct hlist_head *head;
834 	struct kprobe *p;
835 	unsigned int i;
836 
837 	mutex_lock(&kprobe_mutex);
838 	/* If optimization is already allowed, just return */
839 	if (kprobes_allow_optimization)
840 		goto out;
841 
842 	cpus_read_lock();
843 	kprobes_allow_optimization = true;
844 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845 		head = &kprobe_table[i];
846 		hlist_for_each_entry_rcu(p, head, hlist)
847 			if (!kprobe_disabled(p))
848 				optimize_kprobe(p);
849 	}
850 	cpus_read_unlock();
851 	printk(KERN_INFO "Kprobes globally optimized\n");
852 out:
853 	mutex_unlock(&kprobe_mutex);
854 }
855 
856 static void unoptimize_all_kprobes(void)
857 {
858 	struct hlist_head *head;
859 	struct kprobe *p;
860 	unsigned int i;
861 
862 	mutex_lock(&kprobe_mutex);
863 	/* If optimization is already prohibited, just return */
864 	if (!kprobes_allow_optimization) {
865 		mutex_unlock(&kprobe_mutex);
866 		return;
867 	}
868 
869 	cpus_read_lock();
870 	kprobes_allow_optimization = false;
871 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
872 		head = &kprobe_table[i];
873 		hlist_for_each_entry_rcu(p, head, hlist) {
874 			if (!kprobe_disabled(p))
875 				unoptimize_kprobe(p, false);
876 		}
877 	}
878 	cpus_read_unlock();
879 	mutex_unlock(&kprobe_mutex);
880 
881 	/* Wait for unoptimizing completion */
882 	wait_for_kprobe_optimizer();
883 	printk(KERN_INFO "Kprobes globally unoptimized\n");
884 }
885 
886 static DEFINE_MUTEX(kprobe_sysctl_mutex);
887 int sysctl_kprobes_optimization;
888 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
889 				      void __user *buffer, size_t *length,
890 				      loff_t *ppos)
891 {
892 	int ret;
893 
894 	mutex_lock(&kprobe_sysctl_mutex);
895 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
896 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
897 
898 	if (sysctl_kprobes_optimization)
899 		optimize_all_kprobes();
900 	else
901 		unoptimize_all_kprobes();
902 	mutex_unlock(&kprobe_sysctl_mutex);
903 
904 	return ret;
905 }
906 #endif /* CONFIG_SYSCTL */
907 
908 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
909 static void __arm_kprobe(struct kprobe *p)
910 {
911 	struct kprobe *_p;
912 
913 	/* Check collision with other optimized kprobes */
914 	_p = get_optimized_kprobe((unsigned long)p->addr);
915 	if (unlikely(_p))
916 		/* Fallback to unoptimized kprobe */
917 		unoptimize_kprobe(_p, true);
918 
919 	arch_arm_kprobe(p);
920 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
921 }
922 
923 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
924 static void __disarm_kprobe(struct kprobe *p, bool reopt)
925 {
926 	struct kprobe *_p;
927 
928 	/* Try to unoptimize */
929 	unoptimize_kprobe(p, kprobes_all_disarmed);
930 
931 	if (!kprobe_queued(p)) {
932 		arch_disarm_kprobe(p);
933 		/* If another kprobe was blocked, optimize it. */
934 		_p = get_optimized_kprobe((unsigned long)p->addr);
935 		if (unlikely(_p) && reopt)
936 			optimize_kprobe(_p);
937 	}
938 	/* TODO: reoptimize others after unoptimized this probe */
939 }
940 
941 #else /* !CONFIG_OPTPROBES */
942 
943 #define optimize_kprobe(p)			do {} while (0)
944 #define unoptimize_kprobe(p, f)			do {} while (0)
945 #define kill_optimized_kprobe(p)		do {} while (0)
946 #define prepare_optimized_kprobe(p)		do {} while (0)
947 #define try_to_optimize_kprobe(p)		do {} while (0)
948 #define __arm_kprobe(p)				arch_arm_kprobe(p)
949 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
950 #define kprobe_disarmed(p)			kprobe_disabled(p)
951 #define wait_for_kprobe_optimizer()		do {} while (0)
952 
953 static int reuse_unused_kprobe(struct kprobe *ap)
954 {
955 	/*
956 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
957 	 * released at the same time that the last aggregated kprobe is
958 	 * unregistered.
959 	 * Thus there should be no chance to reuse unused kprobe.
960 	 */
961 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
962 	return -EINVAL;
963 }
964 
965 static void free_aggr_kprobe(struct kprobe *p)
966 {
967 	arch_remove_kprobe(p);
968 	kfree(p);
969 }
970 
971 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
972 {
973 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
974 }
975 #endif /* CONFIG_OPTPROBES */
976 
977 #ifdef CONFIG_KPROBES_ON_FTRACE
978 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
979 	.func = kprobe_ftrace_handler,
980 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
981 };
982 static int kprobe_ftrace_enabled;
983 
984 /* Must ensure p->addr is really on ftrace */
985 static int prepare_kprobe(struct kprobe *p)
986 {
987 	if (!kprobe_ftrace(p))
988 		return arch_prepare_kprobe(p);
989 
990 	return arch_prepare_kprobe_ftrace(p);
991 }
992 
993 /* Caller must lock kprobe_mutex */
994 static int arm_kprobe_ftrace(struct kprobe *p)
995 {
996 	int ret = 0;
997 
998 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
999 				   (unsigned long)p->addr, 0, 0);
1000 	if (ret) {
1001 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1002 			 p->addr, ret);
1003 		return ret;
1004 	}
1005 
1006 	if (kprobe_ftrace_enabled == 0) {
1007 		ret = register_ftrace_function(&kprobe_ftrace_ops);
1008 		if (ret) {
1009 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1010 			goto err_ftrace;
1011 		}
1012 	}
1013 
1014 	kprobe_ftrace_enabled++;
1015 	return ret;
1016 
1017 err_ftrace:
1018 	/*
1019 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1020 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1021 	 * empty filter_hash which would undesirably trace all functions.
1022 	 */
1023 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1024 	return ret;
1025 }
1026 
1027 /* Caller must lock kprobe_mutex */
1028 static int disarm_kprobe_ftrace(struct kprobe *p)
1029 {
1030 	int ret = 0;
1031 
1032 	if (kprobe_ftrace_enabled == 1) {
1033 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1034 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1035 			return ret;
1036 	}
1037 
1038 	kprobe_ftrace_enabled--;
1039 
1040 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041 			   (unsigned long)p->addr, 1, 0);
1042 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 		  p->addr, ret);
1044 	return ret;
1045 }
1046 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1047 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1048 #define arm_kprobe_ftrace(p)	(-ENODEV)
1049 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1050 #endif
1051 
1052 /* Arm a kprobe with text_mutex */
1053 static int arm_kprobe(struct kprobe *kp)
1054 {
1055 	if (unlikely(kprobe_ftrace(kp)))
1056 		return arm_kprobe_ftrace(kp);
1057 
1058 	cpus_read_lock();
1059 	mutex_lock(&text_mutex);
1060 	__arm_kprobe(kp);
1061 	mutex_unlock(&text_mutex);
1062 	cpus_read_unlock();
1063 
1064 	return 0;
1065 }
1066 
1067 /* Disarm a kprobe with text_mutex */
1068 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1069 {
1070 	if (unlikely(kprobe_ftrace(kp)))
1071 		return disarm_kprobe_ftrace(kp);
1072 
1073 	cpus_read_lock();
1074 	mutex_lock(&text_mutex);
1075 	__disarm_kprobe(kp, reopt);
1076 	mutex_unlock(&text_mutex);
1077 	cpus_read_unlock();
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Aggregate handlers for multiple kprobes support - these handlers
1084  * take care of invoking the individual kprobe handlers on p->list
1085  */
1086 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1087 {
1088 	struct kprobe *kp;
1089 
1090 	list_for_each_entry_rcu(kp, &p->list, list) {
1091 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1092 			set_kprobe_instance(kp);
1093 			if (kp->pre_handler(kp, regs))
1094 				return 1;
1095 		}
1096 		reset_kprobe_instance();
1097 	}
1098 	return 0;
1099 }
1100 NOKPROBE_SYMBOL(aggr_pre_handler);
1101 
1102 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1103 			      unsigned long flags)
1104 {
1105 	struct kprobe *kp;
1106 
1107 	list_for_each_entry_rcu(kp, &p->list, list) {
1108 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1109 			set_kprobe_instance(kp);
1110 			kp->post_handler(kp, regs, flags);
1111 			reset_kprobe_instance();
1112 		}
1113 	}
1114 }
1115 NOKPROBE_SYMBOL(aggr_post_handler);
1116 
1117 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1118 			      int trapnr)
1119 {
1120 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1121 
1122 	/*
1123 	 * if we faulted "during" the execution of a user specified
1124 	 * probe handler, invoke just that probe's fault handler
1125 	 */
1126 	if (cur && cur->fault_handler) {
1127 		if (cur->fault_handler(cur, regs, trapnr))
1128 			return 1;
1129 	}
1130 	return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_fault_handler);
1133 
1134 /* Walks the list and increments nmissed count for multiprobe case */
1135 void kprobes_inc_nmissed_count(struct kprobe *p)
1136 {
1137 	struct kprobe *kp;
1138 	if (!kprobe_aggrprobe(p)) {
1139 		p->nmissed++;
1140 	} else {
1141 		list_for_each_entry_rcu(kp, &p->list, list)
1142 			kp->nmissed++;
1143 	}
1144 	return;
1145 }
1146 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1147 
1148 void recycle_rp_inst(struct kretprobe_instance *ri,
1149 		     struct hlist_head *head)
1150 {
1151 	struct kretprobe *rp = ri->rp;
1152 
1153 	/* remove rp inst off the rprobe_inst_table */
1154 	hlist_del(&ri->hlist);
1155 	INIT_HLIST_NODE(&ri->hlist);
1156 	if (likely(rp)) {
1157 		raw_spin_lock(&rp->lock);
1158 		hlist_add_head(&ri->hlist, &rp->free_instances);
1159 		raw_spin_unlock(&rp->lock);
1160 	} else
1161 		/* Unregistering */
1162 		hlist_add_head(&ri->hlist, head);
1163 }
1164 NOKPROBE_SYMBOL(recycle_rp_inst);
1165 
1166 void kretprobe_hash_lock(struct task_struct *tsk,
1167 			 struct hlist_head **head, unsigned long *flags)
1168 __acquires(hlist_lock)
1169 {
1170 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1171 	raw_spinlock_t *hlist_lock;
1172 
1173 	*head = &kretprobe_inst_table[hash];
1174 	hlist_lock = kretprobe_table_lock_ptr(hash);
1175 	raw_spin_lock_irqsave(hlist_lock, *flags);
1176 }
1177 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1178 
1179 static void kretprobe_table_lock(unsigned long hash,
1180 				 unsigned long *flags)
1181 __acquires(hlist_lock)
1182 {
1183 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1184 	raw_spin_lock_irqsave(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_table_lock);
1187 
1188 void kretprobe_hash_unlock(struct task_struct *tsk,
1189 			   unsigned long *flags)
1190 __releases(hlist_lock)
1191 {
1192 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1193 	raw_spinlock_t *hlist_lock;
1194 
1195 	hlist_lock = kretprobe_table_lock_ptr(hash);
1196 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1197 }
1198 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1199 
1200 static void kretprobe_table_unlock(unsigned long hash,
1201 				   unsigned long *flags)
1202 __releases(hlist_lock)
1203 {
1204 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1205 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1208 
1209 /*
1210  * This function is called from finish_task_switch when task tk becomes dead,
1211  * so that we can recycle any function-return probe instances associated
1212  * with this task. These left over instances represent probed functions
1213  * that have been called but will never return.
1214  */
1215 void kprobe_flush_task(struct task_struct *tk)
1216 {
1217 	struct kretprobe_instance *ri;
1218 	struct hlist_head *head, empty_rp;
1219 	struct hlist_node *tmp;
1220 	unsigned long hash, flags = 0;
1221 
1222 	if (unlikely(!kprobes_initialized))
1223 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1224 		return;
1225 
1226 	INIT_HLIST_HEAD(&empty_rp);
1227 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1228 	head = &kretprobe_inst_table[hash];
1229 	kretprobe_table_lock(hash, &flags);
1230 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1231 		if (ri->task == tk)
1232 			recycle_rp_inst(ri, &empty_rp);
1233 	}
1234 	kretprobe_table_unlock(hash, &flags);
1235 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1236 		hlist_del(&ri->hlist);
1237 		kfree(ri);
1238 	}
1239 }
1240 NOKPROBE_SYMBOL(kprobe_flush_task);
1241 
1242 static inline void free_rp_inst(struct kretprobe *rp)
1243 {
1244 	struct kretprobe_instance *ri;
1245 	struct hlist_node *next;
1246 
1247 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1248 		hlist_del(&ri->hlist);
1249 		kfree(ri);
1250 	}
1251 }
1252 
1253 static void cleanup_rp_inst(struct kretprobe *rp)
1254 {
1255 	unsigned long flags, hash;
1256 	struct kretprobe_instance *ri;
1257 	struct hlist_node *next;
1258 	struct hlist_head *head;
1259 
1260 	/* No race here */
1261 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1262 		kretprobe_table_lock(hash, &flags);
1263 		head = &kretprobe_inst_table[hash];
1264 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1265 			if (ri->rp == rp)
1266 				ri->rp = NULL;
1267 		}
1268 		kretprobe_table_unlock(hash, &flags);
1269 	}
1270 	free_rp_inst(rp);
1271 }
1272 NOKPROBE_SYMBOL(cleanup_rp_inst);
1273 
1274 /* Add the new probe to ap->list */
1275 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1276 {
1277 	if (p->post_handler)
1278 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1279 
1280 	list_add_rcu(&p->list, &ap->list);
1281 	if (p->post_handler && !ap->post_handler)
1282 		ap->post_handler = aggr_post_handler;
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Fill in the required fields of the "manager kprobe". Replace the
1289  * earlier kprobe in the hlist with the manager kprobe
1290  */
1291 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1292 {
1293 	/* Copy p's insn slot to ap */
1294 	copy_kprobe(p, ap);
1295 	flush_insn_slot(ap);
1296 	ap->addr = p->addr;
1297 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1298 	ap->pre_handler = aggr_pre_handler;
1299 	ap->fault_handler = aggr_fault_handler;
1300 	/* We don't care the kprobe which has gone. */
1301 	if (p->post_handler && !kprobe_gone(p))
1302 		ap->post_handler = aggr_post_handler;
1303 
1304 	INIT_LIST_HEAD(&ap->list);
1305 	INIT_HLIST_NODE(&ap->hlist);
1306 
1307 	list_add_rcu(&p->list, &ap->list);
1308 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1309 }
1310 
1311 /*
1312  * This is the second or subsequent kprobe at the address - handle
1313  * the intricacies
1314  */
1315 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1316 {
1317 	int ret = 0;
1318 	struct kprobe *ap = orig_p;
1319 
1320 	cpus_read_lock();
1321 
1322 	/* For preparing optimization, jump_label_text_reserved() is called */
1323 	jump_label_lock();
1324 	mutex_lock(&text_mutex);
1325 
1326 	if (!kprobe_aggrprobe(orig_p)) {
1327 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1328 		ap = alloc_aggr_kprobe(orig_p);
1329 		if (!ap) {
1330 			ret = -ENOMEM;
1331 			goto out;
1332 		}
1333 		init_aggr_kprobe(ap, orig_p);
1334 	} else if (kprobe_unused(ap)) {
1335 		/* This probe is going to die. Rescue it */
1336 		ret = reuse_unused_kprobe(ap);
1337 		if (ret)
1338 			goto out;
1339 	}
1340 
1341 	if (kprobe_gone(ap)) {
1342 		/*
1343 		 * Attempting to insert new probe at the same location that
1344 		 * had a probe in the module vaddr area which already
1345 		 * freed. So, the instruction slot has already been
1346 		 * released. We need a new slot for the new probe.
1347 		 */
1348 		ret = arch_prepare_kprobe(ap);
1349 		if (ret)
1350 			/*
1351 			 * Even if fail to allocate new slot, don't need to
1352 			 * free aggr_probe. It will be used next time, or
1353 			 * freed by unregister_kprobe.
1354 			 */
1355 			goto out;
1356 
1357 		/* Prepare optimized instructions if possible. */
1358 		prepare_optimized_kprobe(ap);
1359 
1360 		/*
1361 		 * Clear gone flag to prevent allocating new slot again, and
1362 		 * set disabled flag because it is not armed yet.
1363 		 */
1364 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1365 			    | KPROBE_FLAG_DISABLED;
1366 	}
1367 
1368 	/* Copy ap's insn slot to p */
1369 	copy_kprobe(ap, p);
1370 	ret = add_new_kprobe(ap, p);
1371 
1372 out:
1373 	mutex_unlock(&text_mutex);
1374 	jump_label_unlock();
1375 	cpus_read_unlock();
1376 
1377 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1378 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1379 		if (!kprobes_all_disarmed) {
1380 			/* Arm the breakpoint again. */
1381 			ret = arm_kprobe(ap);
1382 			if (ret) {
1383 				ap->flags |= KPROBE_FLAG_DISABLED;
1384 				list_del_rcu(&p->list);
1385 				synchronize_rcu();
1386 			}
1387 		}
1388 	}
1389 	return ret;
1390 }
1391 
1392 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1393 {
1394 	/* The __kprobes marked functions and entry code must not be probed */
1395 	return addr >= (unsigned long)__kprobes_text_start &&
1396 	       addr < (unsigned long)__kprobes_text_end;
1397 }
1398 
1399 static bool __within_kprobe_blacklist(unsigned long addr)
1400 {
1401 	struct kprobe_blacklist_entry *ent;
1402 
1403 	if (arch_within_kprobe_blacklist(addr))
1404 		return true;
1405 	/*
1406 	 * If there exists a kprobe_blacklist, verify and
1407 	 * fail any probe registration in the prohibited area
1408 	 */
1409 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1410 		if (addr >= ent->start_addr && addr < ent->end_addr)
1411 			return true;
1412 	}
1413 	return false;
1414 }
1415 
1416 bool within_kprobe_blacklist(unsigned long addr)
1417 {
1418 	char symname[KSYM_NAME_LEN], *p;
1419 
1420 	if (__within_kprobe_blacklist(addr))
1421 		return true;
1422 
1423 	/* Check if the address is on a suffixed-symbol */
1424 	if (!lookup_symbol_name(addr, symname)) {
1425 		p = strchr(symname, '.');
1426 		if (!p)
1427 			return false;
1428 		*p = '\0';
1429 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1430 		if (addr)
1431 			return __within_kprobe_blacklist(addr);
1432 	}
1433 	return false;
1434 }
1435 
1436 /*
1437  * If we have a symbol_name argument, look it up and add the offset field
1438  * to it. This way, we can specify a relative address to a symbol.
1439  * This returns encoded errors if it fails to look up symbol or invalid
1440  * combination of parameters.
1441  */
1442 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1443 			const char *symbol_name, unsigned int offset)
1444 {
1445 	if ((symbol_name && addr) || (!symbol_name && !addr))
1446 		goto invalid;
1447 
1448 	if (symbol_name) {
1449 		addr = kprobe_lookup_name(symbol_name, offset);
1450 		if (!addr)
1451 			return ERR_PTR(-ENOENT);
1452 	}
1453 
1454 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1455 	if (addr)
1456 		return addr;
1457 
1458 invalid:
1459 	return ERR_PTR(-EINVAL);
1460 }
1461 
1462 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1463 {
1464 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1465 }
1466 
1467 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1468 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1469 {
1470 	struct kprobe *ap, *list_p;
1471 
1472 	ap = get_kprobe(p->addr);
1473 	if (unlikely(!ap))
1474 		return NULL;
1475 
1476 	if (p != ap) {
1477 		list_for_each_entry_rcu(list_p, &ap->list, list)
1478 			if (list_p == p)
1479 			/* kprobe p is a valid probe */
1480 				goto valid;
1481 		return NULL;
1482 	}
1483 valid:
1484 	return ap;
1485 }
1486 
1487 /* Return error if the kprobe is being re-registered */
1488 static inline int check_kprobe_rereg(struct kprobe *p)
1489 {
1490 	int ret = 0;
1491 
1492 	mutex_lock(&kprobe_mutex);
1493 	if (__get_valid_kprobe(p))
1494 		ret = -EINVAL;
1495 	mutex_unlock(&kprobe_mutex);
1496 
1497 	return ret;
1498 }
1499 
1500 int __weak arch_check_ftrace_location(struct kprobe *p)
1501 {
1502 	unsigned long ftrace_addr;
1503 
1504 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1505 	if (ftrace_addr) {
1506 #ifdef CONFIG_KPROBES_ON_FTRACE
1507 		/* Given address is not on the instruction boundary */
1508 		if ((unsigned long)p->addr != ftrace_addr)
1509 			return -EILSEQ;
1510 		p->flags |= KPROBE_FLAG_FTRACE;
1511 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1512 		return -EINVAL;
1513 #endif
1514 	}
1515 	return 0;
1516 }
1517 
1518 static int check_kprobe_address_safe(struct kprobe *p,
1519 				     struct module **probed_mod)
1520 {
1521 	int ret;
1522 
1523 	ret = arch_check_ftrace_location(p);
1524 	if (ret)
1525 		return ret;
1526 	jump_label_lock();
1527 	preempt_disable();
1528 
1529 	/* Ensure it is not in reserved area nor out of text */
1530 	if (!kernel_text_address((unsigned long) p->addr) ||
1531 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1532 	    jump_label_text_reserved(p->addr, p->addr)) {
1533 		ret = -EINVAL;
1534 		goto out;
1535 	}
1536 
1537 	/* Check if are we probing a module */
1538 	*probed_mod = __module_text_address((unsigned long) p->addr);
1539 	if (*probed_mod) {
1540 		/*
1541 		 * We must hold a refcount of the probed module while updating
1542 		 * its code to prohibit unexpected unloading.
1543 		 */
1544 		if (unlikely(!try_module_get(*probed_mod))) {
1545 			ret = -ENOENT;
1546 			goto out;
1547 		}
1548 
1549 		/*
1550 		 * If the module freed .init.text, we couldn't insert
1551 		 * kprobes in there.
1552 		 */
1553 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1554 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1555 			module_put(*probed_mod);
1556 			*probed_mod = NULL;
1557 			ret = -ENOENT;
1558 		}
1559 	}
1560 out:
1561 	preempt_enable();
1562 	jump_label_unlock();
1563 
1564 	return ret;
1565 }
1566 
1567 int register_kprobe(struct kprobe *p)
1568 {
1569 	int ret;
1570 	struct kprobe *old_p;
1571 	struct module *probed_mod;
1572 	kprobe_opcode_t *addr;
1573 
1574 	/* Adjust probe address from symbol */
1575 	addr = kprobe_addr(p);
1576 	if (IS_ERR(addr))
1577 		return PTR_ERR(addr);
1578 	p->addr = addr;
1579 
1580 	ret = check_kprobe_rereg(p);
1581 	if (ret)
1582 		return ret;
1583 
1584 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1585 	p->flags &= KPROBE_FLAG_DISABLED;
1586 	p->nmissed = 0;
1587 	INIT_LIST_HEAD(&p->list);
1588 
1589 	ret = check_kprobe_address_safe(p, &probed_mod);
1590 	if (ret)
1591 		return ret;
1592 
1593 	mutex_lock(&kprobe_mutex);
1594 
1595 	old_p = get_kprobe(p->addr);
1596 	if (old_p) {
1597 		/* Since this may unoptimize old_p, locking text_mutex. */
1598 		ret = register_aggr_kprobe(old_p, p);
1599 		goto out;
1600 	}
1601 
1602 	cpus_read_lock();
1603 	/* Prevent text modification */
1604 	mutex_lock(&text_mutex);
1605 	ret = prepare_kprobe(p);
1606 	mutex_unlock(&text_mutex);
1607 	cpus_read_unlock();
1608 	if (ret)
1609 		goto out;
1610 
1611 	INIT_HLIST_NODE(&p->hlist);
1612 	hlist_add_head_rcu(&p->hlist,
1613 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1614 
1615 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1616 		ret = arm_kprobe(p);
1617 		if (ret) {
1618 			hlist_del_rcu(&p->hlist);
1619 			synchronize_rcu();
1620 			goto out;
1621 		}
1622 	}
1623 
1624 	/* Try to optimize kprobe */
1625 	try_to_optimize_kprobe(p);
1626 out:
1627 	mutex_unlock(&kprobe_mutex);
1628 
1629 	if (probed_mod)
1630 		module_put(probed_mod);
1631 
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(register_kprobe);
1635 
1636 /* Check if all probes on the aggrprobe are disabled */
1637 static int aggr_kprobe_disabled(struct kprobe *ap)
1638 {
1639 	struct kprobe *kp;
1640 
1641 	list_for_each_entry_rcu(kp, &ap->list, list)
1642 		if (!kprobe_disabled(kp))
1643 			/*
1644 			 * There is an active probe on the list.
1645 			 * We can't disable this ap.
1646 			 */
1647 			return 0;
1648 
1649 	return 1;
1650 }
1651 
1652 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1653 static struct kprobe *__disable_kprobe(struct kprobe *p)
1654 {
1655 	struct kprobe *orig_p;
1656 	int ret;
1657 
1658 	/* Get an original kprobe for return */
1659 	orig_p = __get_valid_kprobe(p);
1660 	if (unlikely(orig_p == NULL))
1661 		return ERR_PTR(-EINVAL);
1662 
1663 	if (!kprobe_disabled(p)) {
1664 		/* Disable probe if it is a child probe */
1665 		if (p != orig_p)
1666 			p->flags |= KPROBE_FLAG_DISABLED;
1667 
1668 		/* Try to disarm and disable this/parent probe */
1669 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1670 			/*
1671 			 * If kprobes_all_disarmed is set, orig_p
1672 			 * should have already been disarmed, so
1673 			 * skip unneed disarming process.
1674 			 */
1675 			if (!kprobes_all_disarmed) {
1676 				ret = disarm_kprobe(orig_p, true);
1677 				if (ret) {
1678 					p->flags &= ~KPROBE_FLAG_DISABLED;
1679 					return ERR_PTR(ret);
1680 				}
1681 			}
1682 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1683 		}
1684 	}
1685 
1686 	return orig_p;
1687 }
1688 
1689 /*
1690  * Unregister a kprobe without a scheduler synchronization.
1691  */
1692 static int __unregister_kprobe_top(struct kprobe *p)
1693 {
1694 	struct kprobe *ap, *list_p;
1695 
1696 	/* Disable kprobe. This will disarm it if needed. */
1697 	ap = __disable_kprobe(p);
1698 	if (IS_ERR(ap))
1699 		return PTR_ERR(ap);
1700 
1701 	if (ap == p)
1702 		/*
1703 		 * This probe is an independent(and non-optimized) kprobe
1704 		 * (not an aggrprobe). Remove from the hash list.
1705 		 */
1706 		goto disarmed;
1707 
1708 	/* Following process expects this probe is an aggrprobe */
1709 	WARN_ON(!kprobe_aggrprobe(ap));
1710 
1711 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1712 		/*
1713 		 * !disarmed could be happen if the probe is under delayed
1714 		 * unoptimizing.
1715 		 */
1716 		goto disarmed;
1717 	else {
1718 		/* If disabling probe has special handlers, update aggrprobe */
1719 		if (p->post_handler && !kprobe_gone(p)) {
1720 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1721 				if ((list_p != p) && (list_p->post_handler))
1722 					goto noclean;
1723 			}
1724 			ap->post_handler = NULL;
1725 		}
1726 noclean:
1727 		/*
1728 		 * Remove from the aggrprobe: this path will do nothing in
1729 		 * __unregister_kprobe_bottom().
1730 		 */
1731 		list_del_rcu(&p->list);
1732 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1733 			/*
1734 			 * Try to optimize this probe again, because post
1735 			 * handler may have been changed.
1736 			 */
1737 			optimize_kprobe(ap);
1738 	}
1739 	return 0;
1740 
1741 disarmed:
1742 	hlist_del_rcu(&ap->hlist);
1743 	return 0;
1744 }
1745 
1746 static void __unregister_kprobe_bottom(struct kprobe *p)
1747 {
1748 	struct kprobe *ap;
1749 
1750 	if (list_empty(&p->list))
1751 		/* This is an independent kprobe */
1752 		arch_remove_kprobe(p);
1753 	else if (list_is_singular(&p->list)) {
1754 		/* This is the last child of an aggrprobe */
1755 		ap = list_entry(p->list.next, struct kprobe, list);
1756 		list_del(&p->list);
1757 		free_aggr_kprobe(ap);
1758 	}
1759 	/* Otherwise, do nothing. */
1760 }
1761 
1762 int register_kprobes(struct kprobe **kps, int num)
1763 {
1764 	int i, ret = 0;
1765 
1766 	if (num <= 0)
1767 		return -EINVAL;
1768 	for (i = 0; i < num; i++) {
1769 		ret = register_kprobe(kps[i]);
1770 		if (ret < 0) {
1771 			if (i > 0)
1772 				unregister_kprobes(kps, i);
1773 			break;
1774 		}
1775 	}
1776 	return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(register_kprobes);
1779 
1780 void unregister_kprobe(struct kprobe *p)
1781 {
1782 	unregister_kprobes(&p, 1);
1783 }
1784 EXPORT_SYMBOL_GPL(unregister_kprobe);
1785 
1786 void unregister_kprobes(struct kprobe **kps, int num)
1787 {
1788 	int i;
1789 
1790 	if (num <= 0)
1791 		return;
1792 	mutex_lock(&kprobe_mutex);
1793 	for (i = 0; i < num; i++)
1794 		if (__unregister_kprobe_top(kps[i]) < 0)
1795 			kps[i]->addr = NULL;
1796 	mutex_unlock(&kprobe_mutex);
1797 
1798 	synchronize_rcu();
1799 	for (i = 0; i < num; i++)
1800 		if (kps[i]->addr)
1801 			__unregister_kprobe_bottom(kps[i]);
1802 }
1803 EXPORT_SYMBOL_GPL(unregister_kprobes);
1804 
1805 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1806 					unsigned long val, void *data)
1807 {
1808 	return NOTIFY_DONE;
1809 }
1810 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1811 
1812 static struct notifier_block kprobe_exceptions_nb = {
1813 	.notifier_call = kprobe_exceptions_notify,
1814 	.priority = 0x7fffffff /* we need to be notified first */
1815 };
1816 
1817 unsigned long __weak arch_deref_entry_point(void *entry)
1818 {
1819 	return (unsigned long)entry;
1820 }
1821 
1822 #ifdef CONFIG_KRETPROBES
1823 /*
1824  * This kprobe pre_handler is registered with every kretprobe. When probe
1825  * hits it will set up the return probe.
1826  */
1827 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1828 {
1829 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1830 	unsigned long hash, flags = 0;
1831 	struct kretprobe_instance *ri;
1832 
1833 	/*
1834 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1835 	 * just skip the probe and increase the (inexact) 'nmissed'
1836 	 * statistical counter, so that the user is informed that
1837 	 * something happened:
1838 	 */
1839 	if (unlikely(in_nmi())) {
1840 		rp->nmissed++;
1841 		return 0;
1842 	}
1843 
1844 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1845 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1846 	raw_spin_lock_irqsave(&rp->lock, flags);
1847 	if (!hlist_empty(&rp->free_instances)) {
1848 		ri = hlist_entry(rp->free_instances.first,
1849 				struct kretprobe_instance, hlist);
1850 		hlist_del(&ri->hlist);
1851 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1852 
1853 		ri->rp = rp;
1854 		ri->task = current;
1855 
1856 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1857 			raw_spin_lock_irqsave(&rp->lock, flags);
1858 			hlist_add_head(&ri->hlist, &rp->free_instances);
1859 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1860 			return 0;
1861 		}
1862 
1863 		arch_prepare_kretprobe(ri, regs);
1864 
1865 		/* XXX(hch): why is there no hlist_move_head? */
1866 		INIT_HLIST_NODE(&ri->hlist);
1867 		kretprobe_table_lock(hash, &flags);
1868 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1869 		kretprobe_table_unlock(hash, &flags);
1870 	} else {
1871 		rp->nmissed++;
1872 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1873 	}
1874 	return 0;
1875 }
1876 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1877 
1878 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1879 {
1880 	return !offset;
1881 }
1882 
1883 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1884 {
1885 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1886 
1887 	if (IS_ERR(kp_addr))
1888 		return false;
1889 
1890 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1891 						!arch_kprobe_on_func_entry(offset))
1892 		return false;
1893 
1894 	return true;
1895 }
1896 
1897 int register_kretprobe(struct kretprobe *rp)
1898 {
1899 	int ret = 0;
1900 	struct kretprobe_instance *inst;
1901 	int i;
1902 	void *addr;
1903 
1904 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1905 		return -EINVAL;
1906 
1907 	if (kretprobe_blacklist_size) {
1908 		addr = kprobe_addr(&rp->kp);
1909 		if (IS_ERR(addr))
1910 			return PTR_ERR(addr);
1911 
1912 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1913 			if (kretprobe_blacklist[i].addr == addr)
1914 				return -EINVAL;
1915 		}
1916 	}
1917 
1918 	rp->kp.pre_handler = pre_handler_kretprobe;
1919 	rp->kp.post_handler = NULL;
1920 	rp->kp.fault_handler = NULL;
1921 
1922 	/* Pre-allocate memory for max kretprobe instances */
1923 	if (rp->maxactive <= 0) {
1924 #ifdef CONFIG_PREEMPT
1925 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1926 #else
1927 		rp->maxactive = num_possible_cpus();
1928 #endif
1929 	}
1930 	raw_spin_lock_init(&rp->lock);
1931 	INIT_HLIST_HEAD(&rp->free_instances);
1932 	for (i = 0; i < rp->maxactive; i++) {
1933 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1934 			       rp->data_size, GFP_KERNEL);
1935 		if (inst == NULL) {
1936 			free_rp_inst(rp);
1937 			return -ENOMEM;
1938 		}
1939 		INIT_HLIST_NODE(&inst->hlist);
1940 		hlist_add_head(&inst->hlist, &rp->free_instances);
1941 	}
1942 
1943 	rp->nmissed = 0;
1944 	/* Establish function entry probe point */
1945 	ret = register_kprobe(&rp->kp);
1946 	if (ret != 0)
1947 		free_rp_inst(rp);
1948 	return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(register_kretprobe);
1951 
1952 int register_kretprobes(struct kretprobe **rps, int num)
1953 {
1954 	int ret = 0, i;
1955 
1956 	if (num <= 0)
1957 		return -EINVAL;
1958 	for (i = 0; i < num; i++) {
1959 		ret = register_kretprobe(rps[i]);
1960 		if (ret < 0) {
1961 			if (i > 0)
1962 				unregister_kretprobes(rps, i);
1963 			break;
1964 		}
1965 	}
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(register_kretprobes);
1969 
1970 void unregister_kretprobe(struct kretprobe *rp)
1971 {
1972 	unregister_kretprobes(&rp, 1);
1973 }
1974 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1975 
1976 void unregister_kretprobes(struct kretprobe **rps, int num)
1977 {
1978 	int i;
1979 
1980 	if (num <= 0)
1981 		return;
1982 	mutex_lock(&kprobe_mutex);
1983 	for (i = 0; i < num; i++)
1984 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1985 			rps[i]->kp.addr = NULL;
1986 	mutex_unlock(&kprobe_mutex);
1987 
1988 	synchronize_rcu();
1989 	for (i = 0; i < num; i++) {
1990 		if (rps[i]->kp.addr) {
1991 			__unregister_kprobe_bottom(&rps[i]->kp);
1992 			cleanup_rp_inst(rps[i]);
1993 		}
1994 	}
1995 }
1996 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1997 
1998 #else /* CONFIG_KRETPROBES */
1999 int register_kretprobe(struct kretprobe *rp)
2000 {
2001 	return -ENOSYS;
2002 }
2003 EXPORT_SYMBOL_GPL(register_kretprobe);
2004 
2005 int register_kretprobes(struct kretprobe **rps, int num)
2006 {
2007 	return -ENOSYS;
2008 }
2009 EXPORT_SYMBOL_GPL(register_kretprobes);
2010 
2011 void unregister_kretprobe(struct kretprobe *rp)
2012 {
2013 }
2014 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2015 
2016 void unregister_kretprobes(struct kretprobe **rps, int num)
2017 {
2018 }
2019 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2020 
2021 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2022 {
2023 	return 0;
2024 }
2025 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2026 
2027 #endif /* CONFIG_KRETPROBES */
2028 
2029 /* Set the kprobe gone and remove its instruction buffer. */
2030 static void kill_kprobe(struct kprobe *p)
2031 {
2032 	struct kprobe *kp;
2033 
2034 	p->flags |= KPROBE_FLAG_GONE;
2035 	if (kprobe_aggrprobe(p)) {
2036 		/*
2037 		 * If this is an aggr_kprobe, we have to list all the
2038 		 * chained probes and mark them GONE.
2039 		 */
2040 		list_for_each_entry_rcu(kp, &p->list, list)
2041 			kp->flags |= KPROBE_FLAG_GONE;
2042 		p->post_handler = NULL;
2043 		kill_optimized_kprobe(p);
2044 	}
2045 	/*
2046 	 * Here, we can remove insn_slot safely, because no thread calls
2047 	 * the original probed function (which will be freed soon) any more.
2048 	 */
2049 	arch_remove_kprobe(p);
2050 }
2051 
2052 /* Disable one kprobe */
2053 int disable_kprobe(struct kprobe *kp)
2054 {
2055 	int ret = 0;
2056 	struct kprobe *p;
2057 
2058 	mutex_lock(&kprobe_mutex);
2059 
2060 	/* Disable this kprobe */
2061 	p = __disable_kprobe(kp);
2062 	if (IS_ERR(p))
2063 		ret = PTR_ERR(p);
2064 
2065 	mutex_unlock(&kprobe_mutex);
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(disable_kprobe);
2069 
2070 /* Enable one kprobe */
2071 int enable_kprobe(struct kprobe *kp)
2072 {
2073 	int ret = 0;
2074 	struct kprobe *p;
2075 
2076 	mutex_lock(&kprobe_mutex);
2077 
2078 	/* Check whether specified probe is valid. */
2079 	p = __get_valid_kprobe(kp);
2080 	if (unlikely(p == NULL)) {
2081 		ret = -EINVAL;
2082 		goto out;
2083 	}
2084 
2085 	if (kprobe_gone(kp)) {
2086 		/* This kprobe has gone, we couldn't enable it. */
2087 		ret = -EINVAL;
2088 		goto out;
2089 	}
2090 
2091 	if (p != kp)
2092 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2093 
2094 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2095 		p->flags &= ~KPROBE_FLAG_DISABLED;
2096 		ret = arm_kprobe(p);
2097 		if (ret)
2098 			p->flags |= KPROBE_FLAG_DISABLED;
2099 	}
2100 out:
2101 	mutex_unlock(&kprobe_mutex);
2102 	return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(enable_kprobe);
2105 
2106 /* Caller must NOT call this in usual path. This is only for critical case */
2107 void dump_kprobe(struct kprobe *kp)
2108 {
2109 	pr_err("Dumping kprobe:\n");
2110 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2111 	       kp->symbol_name, kp->offset, kp->addr);
2112 }
2113 NOKPROBE_SYMBOL(dump_kprobe);
2114 
2115 int kprobe_add_ksym_blacklist(unsigned long entry)
2116 {
2117 	struct kprobe_blacklist_entry *ent;
2118 	unsigned long offset = 0, size = 0;
2119 
2120 	if (!kernel_text_address(entry) ||
2121 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2122 		return -EINVAL;
2123 
2124 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2125 	if (!ent)
2126 		return -ENOMEM;
2127 	ent->start_addr = entry;
2128 	ent->end_addr = entry + size;
2129 	INIT_LIST_HEAD(&ent->list);
2130 	list_add_tail(&ent->list, &kprobe_blacklist);
2131 
2132 	return (int)size;
2133 }
2134 
2135 /* Add all symbols in given area into kprobe blacklist */
2136 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2137 {
2138 	unsigned long entry;
2139 	int ret = 0;
2140 
2141 	for (entry = start; entry < end; entry += ret) {
2142 		ret = kprobe_add_ksym_blacklist(entry);
2143 		if (ret < 0)
2144 			return ret;
2145 		if (ret == 0)	/* In case of alias symbol */
2146 			ret = 1;
2147 	}
2148 	return 0;
2149 }
2150 
2151 int __init __weak arch_populate_kprobe_blacklist(void)
2152 {
2153 	return 0;
2154 }
2155 
2156 /*
2157  * Lookup and populate the kprobe_blacklist.
2158  *
2159  * Unlike the kretprobe blacklist, we'll need to determine
2160  * the range of addresses that belong to the said functions,
2161  * since a kprobe need not necessarily be at the beginning
2162  * of a function.
2163  */
2164 static int __init populate_kprobe_blacklist(unsigned long *start,
2165 					     unsigned long *end)
2166 {
2167 	unsigned long entry;
2168 	unsigned long *iter;
2169 	int ret;
2170 
2171 	for (iter = start; iter < end; iter++) {
2172 		entry = arch_deref_entry_point((void *)*iter);
2173 		ret = kprobe_add_ksym_blacklist(entry);
2174 		if (ret == -EINVAL)
2175 			continue;
2176 		if (ret < 0)
2177 			return ret;
2178 	}
2179 
2180 	/* Symbols in __kprobes_text are blacklisted */
2181 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2182 					(unsigned long)__kprobes_text_end);
2183 
2184 	return ret ? : arch_populate_kprobe_blacklist();
2185 }
2186 
2187 /* Module notifier call back, checking kprobes on the module */
2188 static int kprobes_module_callback(struct notifier_block *nb,
2189 				   unsigned long val, void *data)
2190 {
2191 	struct module *mod = data;
2192 	struct hlist_head *head;
2193 	struct kprobe *p;
2194 	unsigned int i;
2195 	int checkcore = (val == MODULE_STATE_GOING);
2196 
2197 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2198 		return NOTIFY_DONE;
2199 
2200 	/*
2201 	 * When MODULE_STATE_GOING was notified, both of module .text and
2202 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2203 	 * notified, only .init.text section would be freed. We need to
2204 	 * disable kprobes which have been inserted in the sections.
2205 	 */
2206 	mutex_lock(&kprobe_mutex);
2207 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2208 		head = &kprobe_table[i];
2209 		hlist_for_each_entry_rcu(p, head, hlist)
2210 			if (within_module_init((unsigned long)p->addr, mod) ||
2211 			    (checkcore &&
2212 			     within_module_core((unsigned long)p->addr, mod))) {
2213 				/*
2214 				 * The vaddr this probe is installed will soon
2215 				 * be vfreed buy not synced to disk. Hence,
2216 				 * disarming the breakpoint isn't needed.
2217 				 *
2218 				 * Note, this will also move any optimized probes
2219 				 * that are pending to be removed from their
2220 				 * corresponding lists to the freeing_list and
2221 				 * will not be touched by the delayed
2222 				 * kprobe_optimizer work handler.
2223 				 */
2224 				kill_kprobe(p);
2225 			}
2226 	}
2227 	mutex_unlock(&kprobe_mutex);
2228 	return NOTIFY_DONE;
2229 }
2230 
2231 static struct notifier_block kprobe_module_nb = {
2232 	.notifier_call = kprobes_module_callback,
2233 	.priority = 0
2234 };
2235 
2236 /* Markers of _kprobe_blacklist section */
2237 extern unsigned long __start_kprobe_blacklist[];
2238 extern unsigned long __stop_kprobe_blacklist[];
2239 
2240 static int __init init_kprobes(void)
2241 {
2242 	int i, err = 0;
2243 
2244 	/* FIXME allocate the probe table, currently defined statically */
2245 	/* initialize all list heads */
2246 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2247 		INIT_HLIST_HEAD(&kprobe_table[i]);
2248 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2249 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2250 	}
2251 
2252 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2253 					__stop_kprobe_blacklist);
2254 	if (err) {
2255 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2256 		pr_err("Please take care of using kprobes.\n");
2257 	}
2258 
2259 	if (kretprobe_blacklist_size) {
2260 		/* lookup the function address from its name */
2261 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2262 			kretprobe_blacklist[i].addr =
2263 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2264 			if (!kretprobe_blacklist[i].addr)
2265 				printk("kretprobe: lookup failed: %s\n",
2266 				       kretprobe_blacklist[i].name);
2267 		}
2268 	}
2269 
2270 #if defined(CONFIG_OPTPROBES)
2271 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2272 	/* Init kprobe_optinsn_slots */
2273 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2274 #endif
2275 	/* By default, kprobes can be optimized */
2276 	kprobes_allow_optimization = true;
2277 #endif
2278 
2279 	/* By default, kprobes are armed */
2280 	kprobes_all_disarmed = false;
2281 
2282 	err = arch_init_kprobes();
2283 	if (!err)
2284 		err = register_die_notifier(&kprobe_exceptions_nb);
2285 	if (!err)
2286 		err = register_module_notifier(&kprobe_module_nb);
2287 
2288 	kprobes_initialized = (err == 0);
2289 
2290 	if (!err)
2291 		init_test_probes();
2292 	return err;
2293 }
2294 
2295 #ifdef CONFIG_DEBUG_FS
2296 static void report_probe(struct seq_file *pi, struct kprobe *p,
2297 		const char *sym, int offset, char *modname, struct kprobe *pp)
2298 {
2299 	char *kprobe_type;
2300 	void *addr = p->addr;
2301 
2302 	if (p->pre_handler == pre_handler_kretprobe)
2303 		kprobe_type = "r";
2304 	else
2305 		kprobe_type = "k";
2306 
2307 	if (!kallsyms_show_value())
2308 		addr = NULL;
2309 
2310 	if (sym)
2311 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2312 			addr, kprobe_type, sym, offset,
2313 			(modname ? modname : " "));
2314 	else	/* try to use %pS */
2315 		seq_printf(pi, "%px  %s  %pS ",
2316 			addr, kprobe_type, p->addr);
2317 
2318 	if (!pp)
2319 		pp = p;
2320 	seq_printf(pi, "%s%s%s%s\n",
2321 		(kprobe_gone(p) ? "[GONE]" : ""),
2322 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2323 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2324 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2325 }
2326 
2327 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2328 {
2329 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2330 }
2331 
2332 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2333 {
2334 	(*pos)++;
2335 	if (*pos >= KPROBE_TABLE_SIZE)
2336 		return NULL;
2337 	return pos;
2338 }
2339 
2340 static void kprobe_seq_stop(struct seq_file *f, void *v)
2341 {
2342 	/* Nothing to do */
2343 }
2344 
2345 static int show_kprobe_addr(struct seq_file *pi, void *v)
2346 {
2347 	struct hlist_head *head;
2348 	struct kprobe *p, *kp;
2349 	const char *sym = NULL;
2350 	unsigned int i = *(loff_t *) v;
2351 	unsigned long offset = 0;
2352 	char *modname, namebuf[KSYM_NAME_LEN];
2353 
2354 	head = &kprobe_table[i];
2355 	preempt_disable();
2356 	hlist_for_each_entry_rcu(p, head, hlist) {
2357 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2358 					&offset, &modname, namebuf);
2359 		if (kprobe_aggrprobe(p)) {
2360 			list_for_each_entry_rcu(kp, &p->list, list)
2361 				report_probe(pi, kp, sym, offset, modname, p);
2362 		} else
2363 			report_probe(pi, p, sym, offset, modname, NULL);
2364 	}
2365 	preempt_enable();
2366 	return 0;
2367 }
2368 
2369 static const struct seq_operations kprobes_seq_ops = {
2370 	.start = kprobe_seq_start,
2371 	.next  = kprobe_seq_next,
2372 	.stop  = kprobe_seq_stop,
2373 	.show  = show_kprobe_addr
2374 };
2375 
2376 static int kprobes_open(struct inode *inode, struct file *filp)
2377 {
2378 	return seq_open(filp, &kprobes_seq_ops);
2379 }
2380 
2381 static const struct file_operations debugfs_kprobes_operations = {
2382 	.open           = kprobes_open,
2383 	.read           = seq_read,
2384 	.llseek         = seq_lseek,
2385 	.release        = seq_release,
2386 };
2387 
2388 /* kprobes/blacklist -- shows which functions can not be probed */
2389 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2390 {
2391 	return seq_list_start(&kprobe_blacklist, *pos);
2392 }
2393 
2394 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2395 {
2396 	return seq_list_next(v, &kprobe_blacklist, pos);
2397 }
2398 
2399 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2400 {
2401 	struct kprobe_blacklist_entry *ent =
2402 		list_entry(v, struct kprobe_blacklist_entry, list);
2403 
2404 	/*
2405 	 * If /proc/kallsyms is not showing kernel address, we won't
2406 	 * show them here either.
2407 	 */
2408 	if (!kallsyms_show_value())
2409 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2410 			   (void *)ent->start_addr);
2411 	else
2412 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2413 			   (void *)ent->end_addr, (void *)ent->start_addr);
2414 	return 0;
2415 }
2416 
2417 static const struct seq_operations kprobe_blacklist_seq_ops = {
2418 	.start = kprobe_blacklist_seq_start,
2419 	.next  = kprobe_blacklist_seq_next,
2420 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2421 	.show  = kprobe_blacklist_seq_show,
2422 };
2423 
2424 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2425 {
2426 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2427 }
2428 
2429 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2430 	.open           = kprobe_blacklist_open,
2431 	.read           = seq_read,
2432 	.llseek         = seq_lseek,
2433 	.release        = seq_release,
2434 };
2435 
2436 static int arm_all_kprobes(void)
2437 {
2438 	struct hlist_head *head;
2439 	struct kprobe *p;
2440 	unsigned int i, total = 0, errors = 0;
2441 	int err, ret = 0;
2442 
2443 	mutex_lock(&kprobe_mutex);
2444 
2445 	/* If kprobes are armed, just return */
2446 	if (!kprobes_all_disarmed)
2447 		goto already_enabled;
2448 
2449 	/*
2450 	 * optimize_kprobe() called by arm_kprobe() checks
2451 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2452 	 * arm_kprobe.
2453 	 */
2454 	kprobes_all_disarmed = false;
2455 	/* Arming kprobes doesn't optimize kprobe itself */
2456 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457 		head = &kprobe_table[i];
2458 		/* Arm all kprobes on a best-effort basis */
2459 		hlist_for_each_entry_rcu(p, head, hlist) {
2460 			if (!kprobe_disabled(p)) {
2461 				err = arm_kprobe(p);
2462 				if (err)  {
2463 					errors++;
2464 					ret = err;
2465 				}
2466 				total++;
2467 			}
2468 		}
2469 	}
2470 
2471 	if (errors)
2472 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2473 			errors, total);
2474 	else
2475 		pr_info("Kprobes globally enabled\n");
2476 
2477 already_enabled:
2478 	mutex_unlock(&kprobe_mutex);
2479 	return ret;
2480 }
2481 
2482 static int disarm_all_kprobes(void)
2483 {
2484 	struct hlist_head *head;
2485 	struct kprobe *p;
2486 	unsigned int i, total = 0, errors = 0;
2487 	int err, ret = 0;
2488 
2489 	mutex_lock(&kprobe_mutex);
2490 
2491 	/* If kprobes are already disarmed, just return */
2492 	if (kprobes_all_disarmed) {
2493 		mutex_unlock(&kprobe_mutex);
2494 		return 0;
2495 	}
2496 
2497 	kprobes_all_disarmed = true;
2498 
2499 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2500 		head = &kprobe_table[i];
2501 		/* Disarm all kprobes on a best-effort basis */
2502 		hlist_for_each_entry_rcu(p, head, hlist) {
2503 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2504 				err = disarm_kprobe(p, false);
2505 				if (err) {
2506 					errors++;
2507 					ret = err;
2508 				}
2509 				total++;
2510 			}
2511 		}
2512 	}
2513 
2514 	if (errors)
2515 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2516 			errors, total);
2517 	else
2518 		pr_info("Kprobes globally disabled\n");
2519 
2520 	mutex_unlock(&kprobe_mutex);
2521 
2522 	/* Wait for disarming all kprobes by optimizer */
2523 	wait_for_kprobe_optimizer();
2524 
2525 	return ret;
2526 }
2527 
2528 /*
2529  * XXX: The debugfs bool file interface doesn't allow for callbacks
2530  * when the bool state is switched. We can reuse that facility when
2531  * available
2532  */
2533 static ssize_t read_enabled_file_bool(struct file *file,
2534 	       char __user *user_buf, size_t count, loff_t *ppos)
2535 {
2536 	char buf[3];
2537 
2538 	if (!kprobes_all_disarmed)
2539 		buf[0] = '1';
2540 	else
2541 		buf[0] = '0';
2542 	buf[1] = '\n';
2543 	buf[2] = 0x00;
2544 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2545 }
2546 
2547 static ssize_t write_enabled_file_bool(struct file *file,
2548 	       const char __user *user_buf, size_t count, loff_t *ppos)
2549 {
2550 	char buf[32];
2551 	size_t buf_size;
2552 	int ret = 0;
2553 
2554 	buf_size = min(count, (sizeof(buf)-1));
2555 	if (copy_from_user(buf, user_buf, buf_size))
2556 		return -EFAULT;
2557 
2558 	buf[buf_size] = '\0';
2559 	switch (buf[0]) {
2560 	case 'y':
2561 	case 'Y':
2562 	case '1':
2563 		ret = arm_all_kprobes();
2564 		break;
2565 	case 'n':
2566 	case 'N':
2567 	case '0':
2568 		ret = disarm_all_kprobes();
2569 		break;
2570 	default:
2571 		return -EINVAL;
2572 	}
2573 
2574 	if (ret)
2575 		return ret;
2576 
2577 	return count;
2578 }
2579 
2580 static const struct file_operations fops_kp = {
2581 	.read =         read_enabled_file_bool,
2582 	.write =        write_enabled_file_bool,
2583 	.llseek =	default_llseek,
2584 };
2585 
2586 static int __init debugfs_kprobe_init(void)
2587 {
2588 	struct dentry *dir, *file;
2589 	unsigned int value = 1;
2590 
2591 	dir = debugfs_create_dir("kprobes", NULL);
2592 	if (!dir)
2593 		return -ENOMEM;
2594 
2595 	file = debugfs_create_file("list", 0400, dir, NULL,
2596 				&debugfs_kprobes_operations);
2597 	if (!file)
2598 		goto error;
2599 
2600 	file = debugfs_create_file("enabled", 0600, dir,
2601 					&value, &fops_kp);
2602 	if (!file)
2603 		goto error;
2604 
2605 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2606 				&debugfs_kprobe_blacklist_ops);
2607 	if (!file)
2608 		goto error;
2609 
2610 	return 0;
2611 
2612 error:
2613 	debugfs_remove(dir);
2614 	return -ENOMEM;
2615 }
2616 
2617 late_initcall(debugfs_kprobe_init);
2618 #endif /* CONFIG_DEBUG_FS */
2619 
2620 module_init(init_kprobes);
2621