xref: /linux/kernel/kprobes.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51 
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54 
55 
56 /*
57  * Some oddball architectures like 64bit powerpc have function descriptors
58  * so this must be overridable.
59  */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64 
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68 
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71 
72 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75 	spinlock_t lock ____cacheline_aligned_in_smp;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77 
78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80 	return &(kretprobe_table_locks[hash].lock);
81 }
82 
83 /*
84  * Normally, functions that we'd want to prohibit kprobes in, are marked
85  * __kprobes. But, there are cases where such functions already belong to
86  * a different section (__sched for preempt_schedule)
87  *
88  * For such cases, we now have a blacklist
89  */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91 	{"preempt_schedule",},
92 	{NULL}    /* Terminator */
93 };
94 
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97  * kprobe->ainsn.insn points to the copy of the instruction to be
98  * single-stepped. x86_64, POWER4 and above have no-exec support and
99  * stepping on the instruction on a vmalloced/kmalloced/data page
100  * is a recipe for disaster
101  */
102 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103 
104 struct kprobe_insn_page {
105 	struct hlist_node hlist;
106 	kprobe_opcode_t *insns;		/* Page of instruction slots */
107 	char slot_used[INSNS_PER_PAGE];
108 	int nused;
109 	int ngarbage;
110 };
111 
112 enum kprobe_slot_state {
113 	SLOT_CLEAN = 0,
114 	SLOT_DIRTY = 1,
115 	SLOT_USED = 2,
116 };
117 
118 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
119 static struct hlist_head kprobe_insn_pages;
120 static int kprobe_garbage_slots;
121 static int collect_garbage_slots(void);
122 
123 static int __kprobes check_safety(void)
124 {
125 	int ret = 0;
126 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
127 	ret = freeze_processes();
128 	if (ret == 0) {
129 		struct task_struct *p, *q;
130 		do_each_thread(p, q) {
131 			if (p != current && p->state == TASK_RUNNING &&
132 			    p->pid != 0) {
133 				printk("Check failed: %s is running\n",p->comm);
134 				ret = -1;
135 				goto loop_end;
136 			}
137 		} while_each_thread(p, q);
138 	}
139 loop_end:
140 	thaw_processes();
141 #else
142 	synchronize_sched();
143 #endif
144 	return ret;
145 }
146 
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
152 {
153 	struct kprobe_insn_page *kip;
154 	struct hlist_node *pos;
155 
156  retry:
157 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
158 		if (kip->nused < INSNS_PER_PAGE) {
159 			int i;
160 			for (i = 0; i < INSNS_PER_PAGE; i++) {
161 				if (kip->slot_used[i] == SLOT_CLEAN) {
162 					kip->slot_used[i] = SLOT_USED;
163 					kip->nused++;
164 					return kip->insns + (i * MAX_INSN_SIZE);
165 				}
166 			}
167 			/* Surprise!  No unused slots.  Fix kip->nused. */
168 			kip->nused = INSNS_PER_PAGE;
169 		}
170 	}
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174 		goto retry;
175 	}
176 	/* All out of space.  Need to allocate a new page. Use slot 0. */
177 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178 	if (!kip)
179 		return NULL;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = module_alloc(PAGE_SIZE);
187 	if (!kip->insns) {
188 		kfree(kip);
189 		return NULL;
190 	}
191 	INIT_HLIST_NODE(&kip->hlist);
192 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
193 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194 	kip->slot_used[0] = SLOT_USED;
195 	kip->nused = 1;
196 	kip->ngarbage = 0;
197 	return kip->insns;
198 }
199 
200 kprobe_opcode_t __kprobes *get_insn_slot(void)
201 {
202 	kprobe_opcode_t *ret;
203 	mutex_lock(&kprobe_insn_mutex);
204 	ret = __get_insn_slot();
205 	mutex_unlock(&kprobe_insn_mutex);
206 	return ret;
207 }
208 
209 /* Return 1 if all garbages are collected, otherwise 0. */
210 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
211 {
212 	kip->slot_used[idx] = SLOT_CLEAN;
213 	kip->nused--;
214 	if (kip->nused == 0) {
215 		/*
216 		 * Page is no longer in use.  Free it unless
217 		 * it's the last one.  We keep the last one
218 		 * so as not to have to set it up again the
219 		 * next time somebody inserts a probe.
220 		 */
221 		hlist_del(&kip->hlist);
222 		if (hlist_empty(&kprobe_insn_pages)) {
223 			INIT_HLIST_NODE(&kip->hlist);
224 			hlist_add_head(&kip->hlist,
225 				       &kprobe_insn_pages);
226 		} else {
227 			module_free(NULL, kip->insns);
228 			kfree(kip);
229 		}
230 		return 1;
231 	}
232 	return 0;
233 }
234 
235 static int __kprobes collect_garbage_slots(void)
236 {
237 	struct kprobe_insn_page *kip;
238 	struct hlist_node *pos, *next;
239 	int safety;
240 
241 	/* Ensure no-one is preepmted on the garbages */
242 	mutex_unlock(&kprobe_insn_mutex);
243 	safety = check_safety();
244 	mutex_lock(&kprobe_insn_mutex);
245 	if (safety != 0)
246 		return -EAGAIN;
247 
248 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
249 		int i;
250 		if (kip->ngarbage == 0)
251 			continue;
252 		kip->ngarbage = 0;	/* we will collect all garbages */
253 		for (i = 0; i < INSNS_PER_PAGE; i++) {
254 			if (kip->slot_used[i] == SLOT_DIRTY &&
255 			    collect_one_slot(kip, i))
256 				break;
257 		}
258 	}
259 	kprobe_garbage_slots = 0;
260 	return 0;
261 }
262 
263 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
264 {
265 	struct kprobe_insn_page *kip;
266 	struct hlist_node *pos;
267 
268 	mutex_lock(&kprobe_insn_mutex);
269 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
270 		if (kip->insns <= slot &&
271 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
272 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
273 			if (dirty) {
274 				kip->slot_used[i] = SLOT_DIRTY;
275 				kip->ngarbage++;
276 			} else {
277 				collect_one_slot(kip, i);
278 			}
279 			break;
280 		}
281 	}
282 
283 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
284 		collect_garbage_slots();
285 
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #endif
289 
290 /* We have preemption disabled.. so it is safe to use __ versions */
291 static inline void set_kprobe_instance(struct kprobe *kp)
292 {
293 	__get_cpu_var(kprobe_instance) = kp;
294 }
295 
296 static inline void reset_kprobe_instance(void)
297 {
298 	__get_cpu_var(kprobe_instance) = NULL;
299 }
300 
301 /*
302  * This routine is called either:
303  * 	- under the kprobe_mutex - during kprobe_[un]register()
304  * 				OR
305  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
306  */
307 struct kprobe __kprobes *get_kprobe(void *addr)
308 {
309 	struct hlist_head *head;
310 	struct hlist_node *node;
311 	struct kprobe *p;
312 
313 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
314 	hlist_for_each_entry_rcu(p, node, head, hlist) {
315 		if (p->addr == addr)
316 			return p;
317 	}
318 	return NULL;
319 }
320 
321 /*
322  * Aggregate handlers for multiple kprobes support - these handlers
323  * take care of invoking the individual kprobe handlers on p->list
324  */
325 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
326 {
327 	struct kprobe *kp;
328 
329 	list_for_each_entry_rcu(kp, &p->list, list) {
330 		if (kp->pre_handler && !kprobe_gone(kp)) {
331 			set_kprobe_instance(kp);
332 			if (kp->pre_handler(kp, regs))
333 				return 1;
334 		}
335 		reset_kprobe_instance();
336 	}
337 	return 0;
338 }
339 
340 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
341 					unsigned long flags)
342 {
343 	struct kprobe *kp;
344 
345 	list_for_each_entry_rcu(kp, &p->list, list) {
346 		if (kp->post_handler && !kprobe_gone(kp)) {
347 			set_kprobe_instance(kp);
348 			kp->post_handler(kp, regs, flags);
349 			reset_kprobe_instance();
350 		}
351 	}
352 }
353 
354 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
355 					int trapnr)
356 {
357 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
358 
359 	/*
360 	 * if we faulted "during" the execution of a user specified
361 	 * probe handler, invoke just that probe's fault handler
362 	 */
363 	if (cur && cur->fault_handler) {
364 		if (cur->fault_handler(cur, regs, trapnr))
365 			return 1;
366 	}
367 	return 0;
368 }
369 
370 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
373 	int ret = 0;
374 
375 	if (cur && cur->break_handler) {
376 		if (cur->break_handler(cur, regs))
377 			ret = 1;
378 	}
379 	reset_kprobe_instance();
380 	return ret;
381 }
382 
383 /* Walks the list and increments nmissed count for multiprobe case */
384 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
385 {
386 	struct kprobe *kp;
387 	if (p->pre_handler != aggr_pre_handler) {
388 		p->nmissed++;
389 	} else {
390 		list_for_each_entry_rcu(kp, &p->list, list)
391 			kp->nmissed++;
392 	}
393 	return;
394 }
395 
396 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
397 				struct hlist_head *head)
398 {
399 	struct kretprobe *rp = ri->rp;
400 
401 	/* remove rp inst off the rprobe_inst_table */
402 	hlist_del(&ri->hlist);
403 	INIT_HLIST_NODE(&ri->hlist);
404 	if (likely(rp)) {
405 		spin_lock(&rp->lock);
406 		hlist_add_head(&ri->hlist, &rp->free_instances);
407 		spin_unlock(&rp->lock);
408 	} else
409 		/* Unregistering */
410 		hlist_add_head(&ri->hlist, head);
411 }
412 
413 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
414 			 struct hlist_head **head, unsigned long *flags)
415 {
416 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
417 	spinlock_t *hlist_lock;
418 
419 	*head = &kretprobe_inst_table[hash];
420 	hlist_lock = kretprobe_table_lock_ptr(hash);
421 	spin_lock_irqsave(hlist_lock, *flags);
422 }
423 
424 static void __kprobes kretprobe_table_lock(unsigned long hash,
425 	unsigned long *flags)
426 {
427 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
428 	spin_lock_irqsave(hlist_lock, *flags);
429 }
430 
431 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
432 	unsigned long *flags)
433 {
434 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
435 	spinlock_t *hlist_lock;
436 
437 	hlist_lock = kretprobe_table_lock_ptr(hash);
438 	spin_unlock_irqrestore(hlist_lock, *flags);
439 }
440 
441 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
442 {
443 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
444 	spin_unlock_irqrestore(hlist_lock, *flags);
445 }
446 
447 /*
448  * This function is called from finish_task_switch when task tk becomes dead,
449  * so that we can recycle any function-return probe instances associated
450  * with this task. These left over instances represent probed functions
451  * that have been called but will never return.
452  */
453 void __kprobes kprobe_flush_task(struct task_struct *tk)
454 {
455 	struct kretprobe_instance *ri;
456 	struct hlist_head *head, empty_rp;
457 	struct hlist_node *node, *tmp;
458 	unsigned long hash, flags = 0;
459 
460 	if (unlikely(!kprobes_initialized))
461 		/* Early boot.  kretprobe_table_locks not yet initialized. */
462 		return;
463 
464 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
465 	head = &kretprobe_inst_table[hash];
466 	kretprobe_table_lock(hash, &flags);
467 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
468 		if (ri->task == tk)
469 			recycle_rp_inst(ri, &empty_rp);
470 	}
471 	kretprobe_table_unlock(hash, &flags);
472 	INIT_HLIST_HEAD(&empty_rp);
473 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
474 		hlist_del(&ri->hlist);
475 		kfree(ri);
476 	}
477 }
478 
479 static inline void free_rp_inst(struct kretprobe *rp)
480 {
481 	struct kretprobe_instance *ri;
482 	struct hlist_node *pos, *next;
483 
484 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
485 		hlist_del(&ri->hlist);
486 		kfree(ri);
487 	}
488 }
489 
490 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
491 {
492 	unsigned long flags, hash;
493 	struct kretprobe_instance *ri;
494 	struct hlist_node *pos, *next;
495 	struct hlist_head *head;
496 
497 	/* No race here */
498 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
499 		kretprobe_table_lock(hash, &flags);
500 		head = &kretprobe_inst_table[hash];
501 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
502 			if (ri->rp == rp)
503 				ri->rp = NULL;
504 		}
505 		kretprobe_table_unlock(hash, &flags);
506 	}
507 	free_rp_inst(rp);
508 }
509 
510 /*
511  * Keep all fields in the kprobe consistent
512  */
513 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
514 {
515 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
516 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
517 }
518 
519 /*
520 * Add the new probe to old_p->list. Fail if this is the
521 * second jprobe at the address - two jprobes can't coexist
522 */
523 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
524 {
525 	if (p->break_handler) {
526 		if (old_p->break_handler)
527 			return -EEXIST;
528 		list_add_tail_rcu(&p->list, &old_p->list);
529 		old_p->break_handler = aggr_break_handler;
530 	} else
531 		list_add_rcu(&p->list, &old_p->list);
532 	if (p->post_handler && !old_p->post_handler)
533 		old_p->post_handler = aggr_post_handler;
534 	return 0;
535 }
536 
537 /*
538  * Fill in the required fields of the "manager kprobe". Replace the
539  * earlier kprobe in the hlist with the manager kprobe
540  */
541 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
542 {
543 	copy_kprobe(p, ap);
544 	flush_insn_slot(ap);
545 	ap->addr = p->addr;
546 	ap->pre_handler = aggr_pre_handler;
547 	ap->fault_handler = aggr_fault_handler;
548 	/* We don't care the kprobe which has gone. */
549 	if (p->post_handler && !kprobe_gone(p))
550 		ap->post_handler = aggr_post_handler;
551 	if (p->break_handler && !kprobe_gone(p))
552 		ap->break_handler = aggr_break_handler;
553 
554 	INIT_LIST_HEAD(&ap->list);
555 	list_add_rcu(&p->list, &ap->list);
556 
557 	hlist_replace_rcu(&p->hlist, &ap->hlist);
558 }
559 
560 /*
561  * This is the second or subsequent kprobe at the address - handle
562  * the intricacies
563  */
564 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
565 					  struct kprobe *p)
566 {
567 	int ret = 0;
568 	struct kprobe *ap;
569 
570 	if (kprobe_gone(old_p)) {
571 		/*
572 		 * Attempting to insert new probe at the same location that
573 		 * had a probe in the module vaddr area which already
574 		 * freed. So, the instruction slot has already been
575 		 * released. We need a new slot for the new probe.
576 		 */
577 		ret = arch_prepare_kprobe(old_p);
578 		if (ret)
579 			return ret;
580 	}
581 	if (old_p->pre_handler == aggr_pre_handler) {
582 		copy_kprobe(old_p, p);
583 		ret = add_new_kprobe(old_p, p);
584 		ap = old_p;
585 	} else {
586 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587 		if (!ap) {
588 			if (kprobe_gone(old_p))
589 				arch_remove_kprobe(old_p);
590 			return -ENOMEM;
591 		}
592 		add_aggr_kprobe(ap, old_p);
593 		copy_kprobe(ap, p);
594 		ret = add_new_kprobe(ap, p);
595 	}
596 	if (kprobe_gone(old_p)) {
597 		/*
598 		 * If the old_p has gone, its breakpoint has been disarmed.
599 		 * We have to arm it again after preparing real kprobes.
600 		 */
601 		ap->flags &= ~KPROBE_FLAG_GONE;
602 		if (kprobe_enabled)
603 			arch_arm_kprobe(ap);
604 	}
605 	return ret;
606 }
607 
608 static int __kprobes in_kprobes_functions(unsigned long addr)
609 {
610 	struct kprobe_blackpoint *kb;
611 
612 	if (addr >= (unsigned long)__kprobes_text_start &&
613 	    addr < (unsigned long)__kprobes_text_end)
614 		return -EINVAL;
615 	/*
616 	 * If there exists a kprobe_blacklist, verify and
617 	 * fail any probe registration in the prohibited area
618 	 */
619 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
620 		if (kb->start_addr) {
621 			if (addr >= kb->start_addr &&
622 			    addr < (kb->start_addr + kb->range))
623 				return -EINVAL;
624 		}
625 	}
626 	return 0;
627 }
628 
629 /*
630  * If we have a symbol_name argument, look it up and add the offset field
631  * to it. This way, we can specify a relative address to a symbol.
632  */
633 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
634 {
635 	kprobe_opcode_t *addr = p->addr;
636 	if (p->symbol_name) {
637 		if (addr)
638 			return NULL;
639 		kprobe_lookup_name(p->symbol_name, addr);
640 	}
641 
642 	if (!addr)
643 		return NULL;
644 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
645 }
646 
647 int __kprobes register_kprobe(struct kprobe *p)
648 {
649 	int ret = 0;
650 	struct kprobe *old_p;
651 	struct module *probed_mod;
652 	kprobe_opcode_t *addr;
653 
654 	addr = kprobe_addr(p);
655 	if (!addr)
656 		return -EINVAL;
657 	p->addr = addr;
658 
659 	preempt_disable();
660 	if (!__kernel_text_address((unsigned long) p->addr) ||
661 	    in_kprobes_functions((unsigned long) p->addr)) {
662 		preempt_enable();
663 		return -EINVAL;
664 	}
665 
666 	p->flags = 0;
667 	/*
668 	 * Check if are we probing a module.
669 	 */
670 	probed_mod = __module_text_address((unsigned long) p->addr);
671 	if (probed_mod) {
672 		/*
673 		 * We must hold a refcount of the probed module while updating
674 		 * its code to prohibit unexpected unloading.
675 		 */
676 		if (unlikely(!try_module_get(probed_mod))) {
677 			preempt_enable();
678 			return -EINVAL;
679 		}
680 		/*
681 		 * If the module freed .init.text, we couldn't insert
682 		 * kprobes in there.
683 		 */
684 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
685 		    probed_mod->state != MODULE_STATE_COMING) {
686 			module_put(probed_mod);
687 			preempt_enable();
688 			return -EINVAL;
689 		}
690 	}
691 	preempt_enable();
692 
693 	p->nmissed = 0;
694 	INIT_LIST_HEAD(&p->list);
695 	mutex_lock(&kprobe_mutex);
696 	old_p = get_kprobe(p->addr);
697 	if (old_p) {
698 		ret = register_aggr_kprobe(old_p, p);
699 		goto out;
700 	}
701 
702 	ret = arch_prepare_kprobe(p);
703 	if (ret)
704 		goto out;
705 
706 	INIT_HLIST_NODE(&p->hlist);
707 	hlist_add_head_rcu(&p->hlist,
708 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
709 
710 	if (kprobe_enabled)
711 		arch_arm_kprobe(p);
712 
713 out:
714 	mutex_unlock(&kprobe_mutex);
715 
716 	if (probed_mod)
717 		module_put(probed_mod);
718 
719 	return ret;
720 }
721 
722 /*
723  * Unregister a kprobe without a scheduler synchronization.
724  */
725 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
726 {
727 	struct kprobe *old_p, *list_p;
728 
729 	old_p = get_kprobe(p->addr);
730 	if (unlikely(!old_p))
731 		return -EINVAL;
732 
733 	if (p != old_p) {
734 		list_for_each_entry_rcu(list_p, &old_p->list, list)
735 			if (list_p == p)
736 			/* kprobe p is a valid probe */
737 				goto valid_p;
738 		return -EINVAL;
739 	}
740 valid_p:
741 	if (old_p == p ||
742 	    (old_p->pre_handler == aggr_pre_handler &&
743 	     list_is_singular(&old_p->list))) {
744 		/*
745 		 * Only probe on the hash list. Disarm only if kprobes are
746 		 * enabled and not gone - otherwise, the breakpoint would
747 		 * already have been removed. We save on flushing icache.
748 		 */
749 		if (kprobe_enabled && !kprobe_gone(old_p))
750 			arch_disarm_kprobe(p);
751 		hlist_del_rcu(&old_p->hlist);
752 	} else {
753 		if (p->break_handler && !kprobe_gone(p))
754 			old_p->break_handler = NULL;
755 		if (p->post_handler && !kprobe_gone(p)) {
756 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
757 				if ((list_p != p) && (list_p->post_handler))
758 					goto noclean;
759 			}
760 			old_p->post_handler = NULL;
761 		}
762 noclean:
763 		list_del_rcu(&p->list);
764 	}
765 	return 0;
766 }
767 
768 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
769 {
770 	struct kprobe *old_p;
771 
772 	if (list_empty(&p->list))
773 		arch_remove_kprobe(p);
774 	else if (list_is_singular(&p->list)) {
775 		/* "p" is the last child of an aggr_kprobe */
776 		old_p = list_entry(p->list.next, struct kprobe, list);
777 		list_del(&p->list);
778 		arch_remove_kprobe(old_p);
779 		kfree(old_p);
780 	}
781 }
782 
783 int __kprobes register_kprobes(struct kprobe **kps, int num)
784 {
785 	int i, ret = 0;
786 
787 	if (num <= 0)
788 		return -EINVAL;
789 	for (i = 0; i < num; i++) {
790 		ret = register_kprobe(kps[i]);
791 		if (ret < 0) {
792 			if (i > 0)
793 				unregister_kprobes(kps, i);
794 			break;
795 		}
796 	}
797 	return ret;
798 }
799 
800 void __kprobes unregister_kprobe(struct kprobe *p)
801 {
802 	unregister_kprobes(&p, 1);
803 }
804 
805 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
806 {
807 	int i;
808 
809 	if (num <= 0)
810 		return;
811 	mutex_lock(&kprobe_mutex);
812 	for (i = 0; i < num; i++)
813 		if (__unregister_kprobe_top(kps[i]) < 0)
814 			kps[i]->addr = NULL;
815 	mutex_unlock(&kprobe_mutex);
816 
817 	synchronize_sched();
818 	for (i = 0; i < num; i++)
819 		if (kps[i]->addr)
820 			__unregister_kprobe_bottom(kps[i]);
821 }
822 
823 static struct notifier_block kprobe_exceptions_nb = {
824 	.notifier_call = kprobe_exceptions_notify,
825 	.priority = 0x7fffffff /* we need to be notified first */
826 };
827 
828 unsigned long __weak arch_deref_entry_point(void *entry)
829 {
830 	return (unsigned long)entry;
831 }
832 
833 int __kprobes register_jprobes(struct jprobe **jps, int num)
834 {
835 	struct jprobe *jp;
836 	int ret = 0, i;
837 
838 	if (num <= 0)
839 		return -EINVAL;
840 	for (i = 0; i < num; i++) {
841 		unsigned long addr;
842 		jp = jps[i];
843 		addr = arch_deref_entry_point(jp->entry);
844 
845 		if (!kernel_text_address(addr))
846 			ret = -EINVAL;
847 		else {
848 			/* Todo: Verify probepoint is a function entry point */
849 			jp->kp.pre_handler = setjmp_pre_handler;
850 			jp->kp.break_handler = longjmp_break_handler;
851 			ret = register_kprobe(&jp->kp);
852 		}
853 		if (ret < 0) {
854 			if (i > 0)
855 				unregister_jprobes(jps, i);
856 			break;
857 		}
858 	}
859 	return ret;
860 }
861 
862 int __kprobes register_jprobe(struct jprobe *jp)
863 {
864 	return register_jprobes(&jp, 1);
865 }
866 
867 void __kprobes unregister_jprobe(struct jprobe *jp)
868 {
869 	unregister_jprobes(&jp, 1);
870 }
871 
872 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
873 {
874 	int i;
875 
876 	if (num <= 0)
877 		return;
878 	mutex_lock(&kprobe_mutex);
879 	for (i = 0; i < num; i++)
880 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
881 			jps[i]->kp.addr = NULL;
882 	mutex_unlock(&kprobe_mutex);
883 
884 	synchronize_sched();
885 	for (i = 0; i < num; i++) {
886 		if (jps[i]->kp.addr)
887 			__unregister_kprobe_bottom(&jps[i]->kp);
888 	}
889 }
890 
891 #ifdef CONFIG_KRETPROBES
892 /*
893  * This kprobe pre_handler is registered with every kretprobe. When probe
894  * hits it will set up the return probe.
895  */
896 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
897 					   struct pt_regs *regs)
898 {
899 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
900 	unsigned long hash, flags = 0;
901 	struct kretprobe_instance *ri;
902 
903 	/*TODO: consider to only swap the RA after the last pre_handler fired */
904 	hash = hash_ptr(current, KPROBE_HASH_BITS);
905 	spin_lock_irqsave(&rp->lock, flags);
906 	if (!hlist_empty(&rp->free_instances)) {
907 		ri = hlist_entry(rp->free_instances.first,
908 				struct kretprobe_instance, hlist);
909 		hlist_del(&ri->hlist);
910 		spin_unlock_irqrestore(&rp->lock, flags);
911 
912 		ri->rp = rp;
913 		ri->task = current;
914 
915 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
916 			spin_unlock_irqrestore(&rp->lock, flags);
917 			return 0;
918 		}
919 
920 		arch_prepare_kretprobe(ri, regs);
921 
922 		/* XXX(hch): why is there no hlist_move_head? */
923 		INIT_HLIST_NODE(&ri->hlist);
924 		kretprobe_table_lock(hash, &flags);
925 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
926 		kretprobe_table_unlock(hash, &flags);
927 	} else {
928 		rp->nmissed++;
929 		spin_unlock_irqrestore(&rp->lock, flags);
930 	}
931 	return 0;
932 }
933 
934 int __kprobes register_kretprobe(struct kretprobe *rp)
935 {
936 	int ret = 0;
937 	struct kretprobe_instance *inst;
938 	int i;
939 	void *addr;
940 
941 	if (kretprobe_blacklist_size) {
942 		addr = kprobe_addr(&rp->kp);
943 		if (!addr)
944 			return -EINVAL;
945 
946 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
947 			if (kretprobe_blacklist[i].addr == addr)
948 				return -EINVAL;
949 		}
950 	}
951 
952 	rp->kp.pre_handler = pre_handler_kretprobe;
953 	rp->kp.post_handler = NULL;
954 	rp->kp.fault_handler = NULL;
955 	rp->kp.break_handler = NULL;
956 
957 	/* Pre-allocate memory for max kretprobe instances */
958 	if (rp->maxactive <= 0) {
959 #ifdef CONFIG_PREEMPT
960 		rp->maxactive = max(10, 2 * NR_CPUS);
961 #else
962 		rp->maxactive = NR_CPUS;
963 #endif
964 	}
965 	spin_lock_init(&rp->lock);
966 	INIT_HLIST_HEAD(&rp->free_instances);
967 	for (i = 0; i < rp->maxactive; i++) {
968 		inst = kmalloc(sizeof(struct kretprobe_instance) +
969 			       rp->data_size, GFP_KERNEL);
970 		if (inst == NULL) {
971 			free_rp_inst(rp);
972 			return -ENOMEM;
973 		}
974 		INIT_HLIST_NODE(&inst->hlist);
975 		hlist_add_head(&inst->hlist, &rp->free_instances);
976 	}
977 
978 	rp->nmissed = 0;
979 	/* Establish function entry probe point */
980 	ret = register_kprobe(&rp->kp);
981 	if (ret != 0)
982 		free_rp_inst(rp);
983 	return ret;
984 }
985 
986 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
987 {
988 	int ret = 0, i;
989 
990 	if (num <= 0)
991 		return -EINVAL;
992 	for (i = 0; i < num; i++) {
993 		ret = register_kretprobe(rps[i]);
994 		if (ret < 0) {
995 			if (i > 0)
996 				unregister_kretprobes(rps, i);
997 			break;
998 		}
999 	}
1000 	return ret;
1001 }
1002 
1003 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1004 {
1005 	unregister_kretprobes(&rp, 1);
1006 }
1007 
1008 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1009 {
1010 	int i;
1011 
1012 	if (num <= 0)
1013 		return;
1014 	mutex_lock(&kprobe_mutex);
1015 	for (i = 0; i < num; i++)
1016 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1017 			rps[i]->kp.addr = NULL;
1018 	mutex_unlock(&kprobe_mutex);
1019 
1020 	synchronize_sched();
1021 	for (i = 0; i < num; i++) {
1022 		if (rps[i]->kp.addr) {
1023 			__unregister_kprobe_bottom(&rps[i]->kp);
1024 			cleanup_rp_inst(rps[i]);
1025 		}
1026 	}
1027 }
1028 
1029 #else /* CONFIG_KRETPROBES */
1030 int __kprobes register_kretprobe(struct kretprobe *rp)
1031 {
1032 	return -ENOSYS;
1033 }
1034 
1035 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1036 {
1037 	return -ENOSYS;
1038 }
1039 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1040 {
1041 }
1042 
1043 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1044 {
1045 }
1046 
1047 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1048 					   struct pt_regs *regs)
1049 {
1050 	return 0;
1051 }
1052 
1053 #endif /* CONFIG_KRETPROBES */
1054 
1055 /* Set the kprobe gone and remove its instruction buffer. */
1056 static void __kprobes kill_kprobe(struct kprobe *p)
1057 {
1058 	struct kprobe *kp;
1059 	p->flags |= KPROBE_FLAG_GONE;
1060 	if (p->pre_handler == aggr_pre_handler) {
1061 		/*
1062 		 * If this is an aggr_kprobe, we have to list all the
1063 		 * chained probes and mark them GONE.
1064 		 */
1065 		list_for_each_entry_rcu(kp, &p->list, list)
1066 			kp->flags |= KPROBE_FLAG_GONE;
1067 		p->post_handler = NULL;
1068 		p->break_handler = NULL;
1069 	}
1070 	/*
1071 	 * Here, we can remove insn_slot safely, because no thread calls
1072 	 * the original probed function (which will be freed soon) any more.
1073 	 */
1074 	arch_remove_kprobe(p);
1075 }
1076 
1077 /* Module notifier call back, checking kprobes on the module */
1078 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1079 					     unsigned long val, void *data)
1080 {
1081 	struct module *mod = data;
1082 	struct hlist_head *head;
1083 	struct hlist_node *node;
1084 	struct kprobe *p;
1085 	unsigned int i;
1086 	int checkcore = (val == MODULE_STATE_GOING);
1087 
1088 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1089 		return NOTIFY_DONE;
1090 
1091 	/*
1092 	 * When MODULE_STATE_GOING was notified, both of module .text and
1093 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1094 	 * notified, only .init.text section would be freed. We need to
1095 	 * disable kprobes which have been inserted in the sections.
1096 	 */
1097 	mutex_lock(&kprobe_mutex);
1098 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1099 		head = &kprobe_table[i];
1100 		hlist_for_each_entry_rcu(p, node, head, hlist)
1101 			if (within_module_init((unsigned long)p->addr, mod) ||
1102 			    (checkcore &&
1103 			     within_module_core((unsigned long)p->addr, mod))) {
1104 				/*
1105 				 * The vaddr this probe is installed will soon
1106 				 * be vfreed buy not synced to disk. Hence,
1107 				 * disarming the breakpoint isn't needed.
1108 				 */
1109 				kill_kprobe(p);
1110 			}
1111 	}
1112 	mutex_unlock(&kprobe_mutex);
1113 	return NOTIFY_DONE;
1114 }
1115 
1116 static struct notifier_block kprobe_module_nb = {
1117 	.notifier_call = kprobes_module_callback,
1118 	.priority = 0
1119 };
1120 
1121 static int __init init_kprobes(void)
1122 {
1123 	int i, err = 0;
1124 	unsigned long offset = 0, size = 0;
1125 	char *modname, namebuf[128];
1126 	const char *symbol_name;
1127 	void *addr;
1128 	struct kprobe_blackpoint *kb;
1129 
1130 	/* FIXME allocate the probe table, currently defined statically */
1131 	/* initialize all list heads */
1132 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1133 		INIT_HLIST_HEAD(&kprobe_table[i]);
1134 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1135 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1136 	}
1137 
1138 	/*
1139 	 * Lookup and populate the kprobe_blacklist.
1140 	 *
1141 	 * Unlike the kretprobe blacklist, we'll need to determine
1142 	 * the range of addresses that belong to the said functions,
1143 	 * since a kprobe need not necessarily be at the beginning
1144 	 * of a function.
1145 	 */
1146 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1147 		kprobe_lookup_name(kb->name, addr);
1148 		if (!addr)
1149 			continue;
1150 
1151 		kb->start_addr = (unsigned long)addr;
1152 		symbol_name = kallsyms_lookup(kb->start_addr,
1153 				&size, &offset, &modname, namebuf);
1154 		if (!symbol_name)
1155 			kb->range = 0;
1156 		else
1157 			kb->range = size;
1158 	}
1159 
1160 	if (kretprobe_blacklist_size) {
1161 		/* lookup the function address from its name */
1162 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1163 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1164 					   kretprobe_blacklist[i].addr);
1165 			if (!kretprobe_blacklist[i].addr)
1166 				printk("kretprobe: lookup failed: %s\n",
1167 				       kretprobe_blacklist[i].name);
1168 		}
1169 	}
1170 
1171 	/* By default, kprobes are enabled */
1172 	kprobe_enabled = true;
1173 
1174 	err = arch_init_kprobes();
1175 	if (!err)
1176 		err = register_die_notifier(&kprobe_exceptions_nb);
1177 	if (!err)
1178 		err = register_module_notifier(&kprobe_module_nb);
1179 
1180 	kprobes_initialized = (err == 0);
1181 
1182 	if (!err)
1183 		init_test_probes();
1184 	return err;
1185 }
1186 
1187 #ifdef CONFIG_DEBUG_FS
1188 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1189 		const char *sym, int offset,char *modname)
1190 {
1191 	char *kprobe_type;
1192 
1193 	if (p->pre_handler == pre_handler_kretprobe)
1194 		kprobe_type = "r";
1195 	else if (p->pre_handler == setjmp_pre_handler)
1196 		kprobe_type = "j";
1197 	else
1198 		kprobe_type = "k";
1199 	if (sym)
1200 		seq_printf(pi, "%p  %s  %s+0x%x  %s %s\n", p->addr, kprobe_type,
1201 			sym, offset, (modname ? modname : " "),
1202 			(kprobe_gone(p) ? "[GONE]" : ""));
1203 	else
1204 		seq_printf(pi, "%p  %s  %p %s\n", p->addr, kprobe_type, p->addr,
1205 			(kprobe_gone(p) ? "[GONE]" : ""));
1206 }
1207 
1208 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1209 {
1210 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1211 }
1212 
1213 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1214 {
1215 	(*pos)++;
1216 	if (*pos >= KPROBE_TABLE_SIZE)
1217 		return NULL;
1218 	return pos;
1219 }
1220 
1221 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1222 {
1223 	/* Nothing to do */
1224 }
1225 
1226 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1227 {
1228 	struct hlist_head *head;
1229 	struct hlist_node *node;
1230 	struct kprobe *p, *kp;
1231 	const char *sym = NULL;
1232 	unsigned int i = *(loff_t *) v;
1233 	unsigned long offset = 0;
1234 	char *modname, namebuf[128];
1235 
1236 	head = &kprobe_table[i];
1237 	preempt_disable();
1238 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1239 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1240 					&offset, &modname, namebuf);
1241 		if (p->pre_handler == aggr_pre_handler) {
1242 			list_for_each_entry_rcu(kp, &p->list, list)
1243 				report_probe(pi, kp, sym, offset, modname);
1244 		} else
1245 			report_probe(pi, p, sym, offset, modname);
1246 	}
1247 	preempt_enable();
1248 	return 0;
1249 }
1250 
1251 static struct seq_operations kprobes_seq_ops = {
1252 	.start = kprobe_seq_start,
1253 	.next  = kprobe_seq_next,
1254 	.stop  = kprobe_seq_stop,
1255 	.show  = show_kprobe_addr
1256 };
1257 
1258 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1259 {
1260 	return seq_open(filp, &kprobes_seq_ops);
1261 }
1262 
1263 static struct file_operations debugfs_kprobes_operations = {
1264 	.open           = kprobes_open,
1265 	.read           = seq_read,
1266 	.llseek         = seq_lseek,
1267 	.release        = seq_release,
1268 };
1269 
1270 static void __kprobes enable_all_kprobes(void)
1271 {
1272 	struct hlist_head *head;
1273 	struct hlist_node *node;
1274 	struct kprobe *p;
1275 	unsigned int i;
1276 
1277 	mutex_lock(&kprobe_mutex);
1278 
1279 	/* If kprobes are already enabled, just return */
1280 	if (kprobe_enabled)
1281 		goto already_enabled;
1282 
1283 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1284 		head = &kprobe_table[i];
1285 		hlist_for_each_entry_rcu(p, node, head, hlist)
1286 			if (!kprobe_gone(p))
1287 				arch_arm_kprobe(p);
1288 	}
1289 
1290 	kprobe_enabled = true;
1291 	printk(KERN_INFO "Kprobes globally enabled\n");
1292 
1293 already_enabled:
1294 	mutex_unlock(&kprobe_mutex);
1295 	return;
1296 }
1297 
1298 static void __kprobes disable_all_kprobes(void)
1299 {
1300 	struct hlist_head *head;
1301 	struct hlist_node *node;
1302 	struct kprobe *p;
1303 	unsigned int i;
1304 
1305 	mutex_lock(&kprobe_mutex);
1306 
1307 	/* If kprobes are already disabled, just return */
1308 	if (!kprobe_enabled)
1309 		goto already_disabled;
1310 
1311 	kprobe_enabled = false;
1312 	printk(KERN_INFO "Kprobes globally disabled\n");
1313 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1314 		head = &kprobe_table[i];
1315 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1316 			if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1317 				arch_disarm_kprobe(p);
1318 		}
1319 	}
1320 
1321 	mutex_unlock(&kprobe_mutex);
1322 	/* Allow all currently running kprobes to complete */
1323 	synchronize_sched();
1324 	return;
1325 
1326 already_disabled:
1327 	mutex_unlock(&kprobe_mutex);
1328 	return;
1329 }
1330 
1331 /*
1332  * XXX: The debugfs bool file interface doesn't allow for callbacks
1333  * when the bool state is switched. We can reuse that facility when
1334  * available
1335  */
1336 static ssize_t read_enabled_file_bool(struct file *file,
1337 	       char __user *user_buf, size_t count, loff_t *ppos)
1338 {
1339 	char buf[3];
1340 
1341 	if (kprobe_enabled)
1342 		buf[0] = '1';
1343 	else
1344 		buf[0] = '0';
1345 	buf[1] = '\n';
1346 	buf[2] = 0x00;
1347 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1348 }
1349 
1350 static ssize_t write_enabled_file_bool(struct file *file,
1351 	       const char __user *user_buf, size_t count, loff_t *ppos)
1352 {
1353 	char buf[32];
1354 	int buf_size;
1355 
1356 	buf_size = min(count, (sizeof(buf)-1));
1357 	if (copy_from_user(buf, user_buf, buf_size))
1358 		return -EFAULT;
1359 
1360 	switch (buf[0]) {
1361 	case 'y':
1362 	case 'Y':
1363 	case '1':
1364 		enable_all_kprobes();
1365 		break;
1366 	case 'n':
1367 	case 'N':
1368 	case '0':
1369 		disable_all_kprobes();
1370 		break;
1371 	}
1372 
1373 	return count;
1374 }
1375 
1376 static struct file_operations fops_kp = {
1377 	.read =         read_enabled_file_bool,
1378 	.write =        write_enabled_file_bool,
1379 };
1380 
1381 static int __kprobes debugfs_kprobe_init(void)
1382 {
1383 	struct dentry *dir, *file;
1384 	unsigned int value = 1;
1385 
1386 	dir = debugfs_create_dir("kprobes", NULL);
1387 	if (!dir)
1388 		return -ENOMEM;
1389 
1390 	file = debugfs_create_file("list", 0444, dir, NULL,
1391 				&debugfs_kprobes_operations);
1392 	if (!file) {
1393 		debugfs_remove(dir);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	file = debugfs_create_file("enabled", 0600, dir,
1398 					&value, &fops_kp);
1399 	if (!file) {
1400 		debugfs_remove(dir);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 late_initcall(debugfs_kprobe_init);
1408 #endif /* CONFIG_DEBUG_FS */
1409 
1410 module_init(init_kprobes);
1411 
1412 EXPORT_SYMBOL_GPL(register_kprobe);
1413 EXPORT_SYMBOL_GPL(unregister_kprobe);
1414 EXPORT_SYMBOL_GPL(register_kprobes);
1415 EXPORT_SYMBOL_GPL(unregister_kprobes);
1416 EXPORT_SYMBOL_GPL(register_jprobe);
1417 EXPORT_SYMBOL_GPL(unregister_jprobe);
1418 EXPORT_SYMBOL_GPL(register_jprobes);
1419 EXPORT_SYMBOL_GPL(unregister_jprobes);
1420 EXPORT_SYMBOL_GPL(jprobe_return);
1421 EXPORT_SYMBOL_GPL(register_kretprobe);
1422 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1423 EXPORT_SYMBOL_GPL(register_kretprobes);
1424 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1425