xref: /linux/kernel/kprobes.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91 
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100 	struct list_head list;
101 	kprobe_opcode_t *insns;		/* Page of instruction slots */
102 	struct kprobe_insn_cache *cache;
103 	int nused;
104 	int ngarbage;
105 	char slot_used[];
106 };
107 
108 #define KPROBE_INSN_PAGE_SIZE(slots)			\
109 	(offsetof(struct kprobe_insn_page, slot_used) +	\
110 	 (sizeof(char) * (slots)))
111 
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116 
117 enum kprobe_slot_state {
118 	SLOT_CLEAN = 0,
119 	SLOT_DIRTY = 1,
120 	SLOT_USED = 2,
121 };
122 
123 static void *alloc_insn_page(void)
124 {
125 	return module_alloc(PAGE_SIZE);
126 }
127 
128 static void free_insn_page(void *page)
129 {
130 	module_memfree(page);
131 }
132 
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 	.alloc = alloc_insn_page,
136 	.free = free_insn_page,
137 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 	.insn_size = MAX_INSN_SIZE,
139 	.nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142 
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 	struct kprobe_insn_page *kip;
150 	kprobe_opcode_t *slot = NULL;
151 
152 	mutex_lock(&c->mutex);
153  retry:
154 	list_for_each_entry(kip, &c->pages, list) {
155 		if (kip->nused < slots_per_page(c)) {
156 			int i;
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 		goto retry;
174 
175 	/* All out of space.  Need to allocate a new page. */
176 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 	if (!kip)
178 		goto out;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = c->alloc();
186 	if (!kip->insns) {
187 		kfree(kip);
188 		goto out;
189 	}
190 	INIT_LIST_HEAD(&kip->list);
191 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 	kip->slot_used[0] = SLOT_USED;
193 	kip->nused = 1;
194 	kip->ngarbage = 0;
195 	kip->cache = c;
196 	list_add(&kip->list, &c->pages);
197 	slot = kip->insns;
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			list_del(&kip->list);
217 			kip->cache->free(kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 	struct kprobe_insn_page *kip, *next;
228 
229 	/* Ensure no-one is interrupted on the garbages */
230 	synchronize_sched();
231 
232 	list_for_each_entry_safe(kip, next, &c->pages, list) {
233 		int i;
234 		if (kip->ngarbage == 0)
235 			continue;
236 		kip->ngarbage = 0;	/* we will collect all garbages */
237 		for (i = 0; i < slots_per_page(c); i++) {
238 			if (kip->slot_used[i] == SLOT_DIRTY &&
239 			    collect_one_slot(kip, i))
240 				break;
241 		}
242 	}
243 	c->nr_garbage = 0;
244 	return 0;
245 }
246 
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 		      kprobe_opcode_t *slot, int dirty)
249 {
250 	struct kprobe_insn_page *kip;
251 
252 	mutex_lock(&c->mutex);
253 	list_for_each_entry(kip, &c->pages, list) {
254 		long idx = ((long)slot - (long)kip->insns) /
255 				(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c)) {
257 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 			if (dirty) {
259 				kip->slot_used[idx] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 				if (++c->nr_garbage > slots_per_page(c))
262 					collect_garbage_slots(c);
263 			} else
264 				collect_one_slot(kip, idx);
265 			goto out;
266 		}
267 	}
268 	/* Could not free this slot. */
269 	WARN_ON(1);
270 out:
271 	mutex_unlock(&c->mutex);
272 }
273 
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 	.alloc = alloc_insn_page,
279 	.free = free_insn_page,
280 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 	/* .insn_size is initialized later */
282 	.nr_garbage = 0,
283 };
284 #endif
285 #endif
286 
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 	__this_cpu_write(kprobe_instance, kp);
291 }
292 
293 static inline void reset_kprobe_instance(void)
294 {
295 	__this_cpu_write(kprobe_instance, NULL);
296 }
297 
298 /*
299  * This routine is called either:
300  * 	- under the kprobe_mutex - during kprobe_[un]register()
301  * 				OR
302  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe *get_kprobe(void *addr)
305 {
306 	struct hlist_head *head;
307 	struct kprobe *p;
308 
309 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 	hlist_for_each_entry_rcu(p, head, hlist) {
311 		if (p->addr == addr)
312 			return p;
313 	}
314 
315 	return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318 
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320 
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 	return p->pre_handler == aggr_pre_handler;
325 }
326 
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 	       list_empty(&p->list);
332 }
333 
334 /*
335  * Keep all fields in the kprobe consistent
336  */
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342 
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346 
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 	struct kprobe *kp;
354 
355 	list_for_each_entry_rcu(kp, &p->list, list) {
356 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 			set_kprobe_instance(kp);
358 			kp->pre_handler(kp, regs);
359 		}
360 		reset_kprobe_instance();
361 	}
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364 
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 	struct optimized_kprobe *op;
369 
370 	op = container_of(p, struct optimized_kprobe, kp);
371 	arch_remove_optimized_kprobe(op);
372 	arch_remove_kprobe(p);
373 	kfree(op);
374 }
375 
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 	struct optimized_kprobe *op;
380 
381 	if (kprobe_aggrprobe(p)) {
382 		op = container_of(p, struct optimized_kprobe, kp);
383 		return arch_prepared_optinsn(&op->optinsn);
384 	}
385 
386 	return 0;
387 }
388 
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 	struct optimized_kprobe *op;
393 
394 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 	if (!kprobe_aggrprobe(p))
396 		return kprobe_disabled(p);
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 
400 	return kprobe_disabled(p) && list_empty(&op->list);
401 }
402 
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
405 {
406 	struct optimized_kprobe *op;
407 
408 	if (kprobe_aggrprobe(p)) {
409 		op = container_of(p, struct optimized_kprobe, kp);
410 		if (!list_empty(&op->list))
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 	int i;
423 	struct kprobe *p = NULL;
424 	struct optimized_kprobe *op;
425 
426 	/* Don't check i == 0, since that is a breakpoint case. */
427 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 		p = get_kprobe((void *)(addr - i));
429 
430 	if (p && kprobe_optready(p)) {
431 		op = container_of(p, struct optimized_kprobe, kp);
432 		if (arch_within_optimized_kprobe(op, addr))
433 			return p;
434 	}
435 
436 	return NULL;
437 }
438 
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443 
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447 
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
452 static void do_optimize_kprobes(void)
453 {
454 	/* Optimization never be done when disarmed */
455 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 	    list_empty(&optimizing_list))
457 		return;
458 
459 	/*
460 	 * The optimization/unoptimization refers online_cpus via
461 	 * stop_machine() and cpu-hotplug modifies online_cpus.
462 	 * And same time, text_mutex will be held in cpu-hotplug and here.
463 	 * This combination can cause a deadlock (cpu-hotplug try to lock
464 	 * text_mutex but stop_machine can not be done because online_cpus
465 	 * has been changed)
466 	 * To avoid this deadlock, we need to call get_online_cpus()
467 	 * for preventing cpu-hotplug outside of text_mutex locking.
468 	 */
469 	get_online_cpus();
470 	mutex_lock(&text_mutex);
471 	arch_optimize_kprobes(&optimizing_list);
472 	mutex_unlock(&text_mutex);
473 	put_online_cpus();
474 }
475 
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
480 static void do_unoptimize_kprobes(void)
481 {
482 	struct optimized_kprobe *op, *tmp;
483 
484 	/* Unoptimization must be done anytime */
485 	if (list_empty(&unoptimizing_list))
486 		return;
487 
488 	/* Ditto to do_optimize_kprobes */
489 	get_online_cpus();
490 	mutex_lock(&text_mutex);
491 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 	/* Loop free_list for disarming */
493 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 		/* Disarm probes if marked disabled */
495 		if (kprobe_disabled(&op->kp))
496 			arch_disarm_kprobe(&op->kp);
497 		if (kprobe_unused(&op->kp)) {
498 			/*
499 			 * Remove unused probes from hash list. After waiting
500 			 * for synchronization, these probes are reclaimed.
501 			 * (reclaiming is done by do_free_cleaned_kprobes.)
502 			 */
503 			hlist_del_rcu(&op->kp.hlist);
504 		} else
505 			list_del_init(&op->list);
506 	}
507 	mutex_unlock(&text_mutex);
508 	put_online_cpus();
509 }
510 
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 		BUG_ON(!kprobe_unused(&op->kp));
518 		list_del_init(&op->list);
519 		free_aggr_kprobe(&op->kp);
520 	}
521 }
522 
523 /* Start optimizer after OPTIMIZE_DELAY passed */
524 static void kick_kprobe_optimizer(void)
525 {
526 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527 }
528 
529 /* Kprobe jump optimizer */
530 static void kprobe_optimizer(struct work_struct *work)
531 {
532 	mutex_lock(&kprobe_mutex);
533 	/* Lock modules while optimizing kprobes */
534 	mutex_lock(&module_mutex);
535 
536 	/*
537 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 	 * kprobes before waiting for quiesence period.
539 	 */
540 	do_unoptimize_kprobes();
541 
542 	/*
543 	 * Step 2: Wait for quiesence period to ensure all running interrupts
544 	 * are done. Because optprobe may modify multiple instructions
545 	 * there is a chance that Nth instruction is interrupted. In that
546 	 * case, running interrupt can return to 2nd-Nth byte of jump
547 	 * instruction. This wait is for avoiding it.
548 	 */
549 	synchronize_sched();
550 
551 	/* Step 3: Optimize kprobes after quiesence period */
552 	do_optimize_kprobes();
553 
554 	/* Step 4: Free cleaned kprobes after quiesence period */
555 	do_free_cleaned_kprobes();
556 
557 	mutex_unlock(&module_mutex);
558 	mutex_unlock(&kprobe_mutex);
559 
560 	/* Step 5: Kick optimizer again if needed */
561 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 		kick_kprobe_optimizer();
563 }
564 
565 /* Wait for completing optimization and unoptimization */
566 static void wait_for_kprobe_optimizer(void)
567 {
568 	mutex_lock(&kprobe_mutex);
569 
570 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 		mutex_unlock(&kprobe_mutex);
572 
573 		/* this will also make optimizing_work execute immmediately */
574 		flush_delayed_work(&optimizing_work);
575 		/* @optimizing_work might not have been queued yet, relax */
576 		cpu_relax();
577 
578 		mutex_lock(&kprobe_mutex);
579 	}
580 
581 	mutex_unlock(&kprobe_mutex);
582 }
583 
584 /* Optimize kprobe if p is ready to be optimized */
585 static void optimize_kprobe(struct kprobe *p)
586 {
587 	struct optimized_kprobe *op;
588 
589 	/* Check if the kprobe is disabled or not ready for optimization. */
590 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 	    (kprobe_disabled(p) || kprobes_all_disarmed))
592 		return;
593 
594 	/* Both of break_handler and post_handler are not supported. */
595 	if (p->break_handler || p->post_handler)
596 		return;
597 
598 	op = container_of(p, struct optimized_kprobe, kp);
599 
600 	/* Check there is no other kprobes at the optimized instructions */
601 	if (arch_check_optimized_kprobe(op) < 0)
602 		return;
603 
604 	/* Check if it is already optimized. */
605 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 		return;
607 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608 
609 	if (!list_empty(&op->list))
610 		/* This is under unoptimizing. Just dequeue the probe */
611 		list_del_init(&op->list);
612 	else {
613 		list_add(&op->list, &optimizing_list);
614 		kick_kprobe_optimizer();
615 	}
616 }
617 
618 /* Short cut to direct unoptimizing */
619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620 {
621 	get_online_cpus();
622 	arch_unoptimize_kprobe(op);
623 	put_online_cpus();
624 	if (kprobe_disabled(&op->kp))
625 		arch_disarm_kprobe(&op->kp);
626 }
627 
628 /* Unoptimize a kprobe if p is optimized */
629 static void unoptimize_kprobe(struct kprobe *p, bool force)
630 {
631 	struct optimized_kprobe *op;
632 
633 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 		return; /* This is not an optprobe nor optimized */
635 
636 	op = container_of(p, struct optimized_kprobe, kp);
637 	if (!kprobe_optimized(p)) {
638 		/* Unoptimized or unoptimizing case */
639 		if (force && !list_empty(&op->list)) {
640 			/*
641 			 * Only if this is unoptimizing kprobe and forced,
642 			 * forcibly unoptimize it. (No need to unoptimize
643 			 * unoptimized kprobe again :)
644 			 */
645 			list_del_init(&op->list);
646 			force_unoptimize_kprobe(op);
647 		}
648 		return;
649 	}
650 
651 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 	if (!list_empty(&op->list)) {
653 		/* Dequeue from the optimization queue */
654 		list_del_init(&op->list);
655 		return;
656 	}
657 	/* Optimized kprobe case */
658 	if (force)
659 		/* Forcibly update the code: this is a special case */
660 		force_unoptimize_kprobe(op);
661 	else {
662 		list_add(&op->list, &unoptimizing_list);
663 		kick_kprobe_optimizer();
664 	}
665 }
666 
667 /* Cancel unoptimizing for reusing */
668 static void reuse_unused_kprobe(struct kprobe *ap)
669 {
670 	struct optimized_kprobe *op;
671 
672 	BUG_ON(!kprobe_unused(ap));
673 	/*
674 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 	 * there is still a relative jump) and disabled.
676 	 */
677 	op = container_of(ap, struct optimized_kprobe, kp);
678 	if (unlikely(list_empty(&op->list)))
679 		printk(KERN_WARNING "Warning: found a stray unused "
680 			"aggrprobe@%p\n", ap->addr);
681 	/* Enable the probe again */
682 	ap->flags &= ~KPROBE_FLAG_DISABLED;
683 	/* Optimize it again (remove from op->list) */
684 	BUG_ON(!kprobe_optready(ap));
685 	optimize_kprobe(ap);
686 }
687 
688 /* Remove optimized instructions */
689 static void kill_optimized_kprobe(struct kprobe *p)
690 {
691 	struct optimized_kprobe *op;
692 
693 	op = container_of(p, struct optimized_kprobe, kp);
694 	if (!list_empty(&op->list))
695 		/* Dequeue from the (un)optimization queue */
696 		list_del_init(&op->list);
697 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698 
699 	if (kprobe_unused(p)) {
700 		/* Enqueue if it is unused */
701 		list_add(&op->list, &freeing_list);
702 		/*
703 		 * Remove unused probes from the hash list. After waiting
704 		 * for synchronization, this probe is reclaimed.
705 		 * (reclaiming is done by do_free_cleaned_kprobes().)
706 		 */
707 		hlist_del_rcu(&op->kp.hlist);
708 	}
709 
710 	/* Don't touch the code, because it is already freed. */
711 	arch_remove_optimized_kprobe(op);
712 }
713 
714 /* Try to prepare optimized instructions */
715 static void prepare_optimized_kprobe(struct kprobe *p)
716 {
717 	struct optimized_kprobe *op;
718 
719 	op = container_of(p, struct optimized_kprobe, kp);
720 	arch_prepare_optimized_kprobe(op, p);
721 }
722 
723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725 {
726 	struct optimized_kprobe *op;
727 
728 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 	if (!op)
730 		return NULL;
731 
732 	INIT_LIST_HEAD(&op->list);
733 	op->kp.addr = p->addr;
734 	arch_prepare_optimized_kprobe(op, p);
735 
736 	return &op->kp;
737 }
738 
739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740 
741 /*
742  * Prepare an optimized_kprobe and optimize it
743  * NOTE: p must be a normal registered kprobe
744  */
745 static void try_to_optimize_kprobe(struct kprobe *p)
746 {
747 	struct kprobe *ap;
748 	struct optimized_kprobe *op;
749 
750 	/* Impossible to optimize ftrace-based kprobe */
751 	if (kprobe_ftrace(p))
752 		return;
753 
754 	/* For preparing optimization, jump_label_text_reserved() is called */
755 	jump_label_lock();
756 	mutex_lock(&text_mutex);
757 
758 	ap = alloc_aggr_kprobe(p);
759 	if (!ap)
760 		goto out;
761 
762 	op = container_of(ap, struct optimized_kprobe, kp);
763 	if (!arch_prepared_optinsn(&op->optinsn)) {
764 		/* If failed to setup optimizing, fallback to kprobe */
765 		arch_remove_optimized_kprobe(op);
766 		kfree(op);
767 		goto out;
768 	}
769 
770 	init_aggr_kprobe(ap, p);
771 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
772 
773 out:
774 	mutex_unlock(&text_mutex);
775 	jump_label_unlock();
776 }
777 
778 #ifdef CONFIG_SYSCTL
779 static void optimize_all_kprobes(void)
780 {
781 	struct hlist_head *head;
782 	struct kprobe *p;
783 	unsigned int i;
784 
785 	mutex_lock(&kprobe_mutex);
786 	/* If optimization is already allowed, just return */
787 	if (kprobes_allow_optimization)
788 		goto out;
789 
790 	kprobes_allow_optimization = true;
791 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 		head = &kprobe_table[i];
793 		hlist_for_each_entry_rcu(p, head, hlist)
794 			if (!kprobe_disabled(p))
795 				optimize_kprobe(p);
796 	}
797 	printk(KERN_INFO "Kprobes globally optimized\n");
798 out:
799 	mutex_unlock(&kprobe_mutex);
800 }
801 
802 static void unoptimize_all_kprobes(void)
803 {
804 	struct hlist_head *head;
805 	struct kprobe *p;
806 	unsigned int i;
807 
808 	mutex_lock(&kprobe_mutex);
809 	/* If optimization is already prohibited, just return */
810 	if (!kprobes_allow_optimization) {
811 		mutex_unlock(&kprobe_mutex);
812 		return;
813 	}
814 
815 	kprobes_allow_optimization = false;
816 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 		head = &kprobe_table[i];
818 		hlist_for_each_entry_rcu(p, head, hlist) {
819 			if (!kprobe_disabled(p))
820 				unoptimize_kprobe(p, false);
821 		}
822 	}
823 	mutex_unlock(&kprobe_mutex);
824 
825 	/* Wait for unoptimizing completion */
826 	wait_for_kprobe_optimizer();
827 	printk(KERN_INFO "Kprobes globally unoptimized\n");
828 }
829 
830 static DEFINE_MUTEX(kprobe_sysctl_mutex);
831 int sysctl_kprobes_optimization;
832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 				      void __user *buffer, size_t *length,
834 				      loff_t *ppos)
835 {
836 	int ret;
837 
838 	mutex_lock(&kprobe_sysctl_mutex);
839 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841 
842 	if (sysctl_kprobes_optimization)
843 		optimize_all_kprobes();
844 	else
845 		unoptimize_all_kprobes();
846 	mutex_unlock(&kprobe_sysctl_mutex);
847 
848 	return ret;
849 }
850 #endif /* CONFIG_SYSCTL */
851 
852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
853 static void __arm_kprobe(struct kprobe *p)
854 {
855 	struct kprobe *_p;
856 
857 	/* Check collision with other optimized kprobes */
858 	_p = get_optimized_kprobe((unsigned long)p->addr);
859 	if (unlikely(_p))
860 		/* Fallback to unoptimized kprobe */
861 		unoptimize_kprobe(_p, true);
862 
863 	arch_arm_kprobe(p);
864 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
865 }
866 
867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868 static void __disarm_kprobe(struct kprobe *p, bool reopt)
869 {
870 	struct kprobe *_p;
871 
872 	/* Try to unoptimize */
873 	unoptimize_kprobe(p, kprobes_all_disarmed);
874 
875 	if (!kprobe_queued(p)) {
876 		arch_disarm_kprobe(p);
877 		/* If another kprobe was blocked, optimize it. */
878 		_p = get_optimized_kprobe((unsigned long)p->addr);
879 		if (unlikely(_p) && reopt)
880 			optimize_kprobe(_p);
881 	}
882 	/* TODO: reoptimize others after unoptimized this probe */
883 }
884 
885 #else /* !CONFIG_OPTPROBES */
886 
887 #define optimize_kprobe(p)			do {} while (0)
888 #define unoptimize_kprobe(p, f)			do {} while (0)
889 #define kill_optimized_kprobe(p)		do {} while (0)
890 #define prepare_optimized_kprobe(p)		do {} while (0)
891 #define try_to_optimize_kprobe(p)		do {} while (0)
892 #define __arm_kprobe(p)				arch_arm_kprobe(p)
893 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
894 #define kprobe_disarmed(p)			kprobe_disabled(p)
895 #define wait_for_kprobe_optimizer()		do {} while (0)
896 
897 /* There should be no unused kprobes can be reused without optimization */
898 static void reuse_unused_kprobe(struct kprobe *ap)
899 {
900 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
901 	BUG_ON(kprobe_unused(ap));
902 }
903 
904 static void free_aggr_kprobe(struct kprobe *p)
905 {
906 	arch_remove_kprobe(p);
907 	kfree(p);
908 }
909 
910 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
911 {
912 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
913 }
914 #endif /* CONFIG_OPTPROBES */
915 
916 #ifdef CONFIG_KPROBES_ON_FTRACE
917 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
918 	.func = kprobe_ftrace_handler,
919 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
920 };
921 static int kprobe_ftrace_enabled;
922 
923 /* Must ensure p->addr is really on ftrace */
924 static int prepare_kprobe(struct kprobe *p)
925 {
926 	if (!kprobe_ftrace(p))
927 		return arch_prepare_kprobe(p);
928 
929 	return arch_prepare_kprobe_ftrace(p);
930 }
931 
932 /* Caller must lock kprobe_mutex */
933 static void arm_kprobe_ftrace(struct kprobe *p)
934 {
935 	int ret;
936 
937 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
938 				   (unsigned long)p->addr, 0, 0);
939 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
940 	kprobe_ftrace_enabled++;
941 	if (kprobe_ftrace_enabled == 1) {
942 		ret = register_ftrace_function(&kprobe_ftrace_ops);
943 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
944 	}
945 }
946 
947 /* Caller must lock kprobe_mutex */
948 static void disarm_kprobe_ftrace(struct kprobe *p)
949 {
950 	int ret;
951 
952 	kprobe_ftrace_enabled--;
953 	if (kprobe_ftrace_enabled == 0) {
954 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
955 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
956 	}
957 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
958 			   (unsigned long)p->addr, 1, 0);
959 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
960 }
961 #else	/* !CONFIG_KPROBES_ON_FTRACE */
962 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
963 #define arm_kprobe_ftrace(p)	do {} while (0)
964 #define disarm_kprobe_ftrace(p)	do {} while (0)
965 #endif
966 
967 /* Arm a kprobe with text_mutex */
968 static void arm_kprobe(struct kprobe *kp)
969 {
970 	if (unlikely(kprobe_ftrace(kp))) {
971 		arm_kprobe_ftrace(kp);
972 		return;
973 	}
974 	/*
975 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
976 	 * this doesn't cause deadlock on text_mutex. So, we don't
977 	 * need get_online_cpus().
978 	 */
979 	mutex_lock(&text_mutex);
980 	__arm_kprobe(kp);
981 	mutex_unlock(&text_mutex);
982 }
983 
984 /* Disarm a kprobe with text_mutex */
985 static void disarm_kprobe(struct kprobe *kp, bool reopt)
986 {
987 	if (unlikely(kprobe_ftrace(kp))) {
988 		disarm_kprobe_ftrace(kp);
989 		return;
990 	}
991 	/* Ditto */
992 	mutex_lock(&text_mutex);
993 	__disarm_kprobe(kp, reopt);
994 	mutex_unlock(&text_mutex);
995 }
996 
997 /*
998  * Aggregate handlers for multiple kprobes support - these handlers
999  * take care of invoking the individual kprobe handlers on p->list
1000  */
1001 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1002 {
1003 	struct kprobe *kp;
1004 
1005 	list_for_each_entry_rcu(kp, &p->list, list) {
1006 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1007 			set_kprobe_instance(kp);
1008 			if (kp->pre_handler(kp, regs))
1009 				return 1;
1010 		}
1011 		reset_kprobe_instance();
1012 	}
1013 	return 0;
1014 }
1015 NOKPROBE_SYMBOL(aggr_pre_handler);
1016 
1017 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1018 			      unsigned long flags)
1019 {
1020 	struct kprobe *kp;
1021 
1022 	list_for_each_entry_rcu(kp, &p->list, list) {
1023 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1024 			set_kprobe_instance(kp);
1025 			kp->post_handler(kp, regs, flags);
1026 			reset_kprobe_instance();
1027 		}
1028 	}
1029 }
1030 NOKPROBE_SYMBOL(aggr_post_handler);
1031 
1032 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1033 			      int trapnr)
1034 {
1035 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1036 
1037 	/*
1038 	 * if we faulted "during" the execution of a user specified
1039 	 * probe handler, invoke just that probe's fault handler
1040 	 */
1041 	if (cur && cur->fault_handler) {
1042 		if (cur->fault_handler(cur, regs, trapnr))
1043 			return 1;
1044 	}
1045 	return 0;
1046 }
1047 NOKPROBE_SYMBOL(aggr_fault_handler);
1048 
1049 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1050 {
1051 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1052 	int ret = 0;
1053 
1054 	if (cur && cur->break_handler) {
1055 		if (cur->break_handler(cur, regs))
1056 			ret = 1;
1057 	}
1058 	reset_kprobe_instance();
1059 	return ret;
1060 }
1061 NOKPROBE_SYMBOL(aggr_break_handler);
1062 
1063 /* Walks the list and increments nmissed count for multiprobe case */
1064 void kprobes_inc_nmissed_count(struct kprobe *p)
1065 {
1066 	struct kprobe *kp;
1067 	if (!kprobe_aggrprobe(p)) {
1068 		p->nmissed++;
1069 	} else {
1070 		list_for_each_entry_rcu(kp, &p->list, list)
1071 			kp->nmissed++;
1072 	}
1073 	return;
1074 }
1075 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1076 
1077 void recycle_rp_inst(struct kretprobe_instance *ri,
1078 		     struct hlist_head *head)
1079 {
1080 	struct kretprobe *rp = ri->rp;
1081 
1082 	/* remove rp inst off the rprobe_inst_table */
1083 	hlist_del(&ri->hlist);
1084 	INIT_HLIST_NODE(&ri->hlist);
1085 	if (likely(rp)) {
1086 		raw_spin_lock(&rp->lock);
1087 		hlist_add_head(&ri->hlist, &rp->free_instances);
1088 		raw_spin_unlock(&rp->lock);
1089 	} else
1090 		/* Unregistering */
1091 		hlist_add_head(&ri->hlist, head);
1092 }
1093 NOKPROBE_SYMBOL(recycle_rp_inst);
1094 
1095 void kretprobe_hash_lock(struct task_struct *tsk,
1096 			 struct hlist_head **head, unsigned long *flags)
1097 __acquires(hlist_lock)
1098 {
1099 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 	raw_spinlock_t *hlist_lock;
1101 
1102 	*head = &kretprobe_inst_table[hash];
1103 	hlist_lock = kretprobe_table_lock_ptr(hash);
1104 	raw_spin_lock_irqsave(hlist_lock, *flags);
1105 }
1106 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1107 
1108 static void kretprobe_table_lock(unsigned long hash,
1109 				 unsigned long *flags)
1110 __acquires(hlist_lock)
1111 {
1112 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113 	raw_spin_lock_irqsave(hlist_lock, *flags);
1114 }
1115 NOKPROBE_SYMBOL(kretprobe_table_lock);
1116 
1117 void kretprobe_hash_unlock(struct task_struct *tsk,
1118 			   unsigned long *flags)
1119 __releases(hlist_lock)
1120 {
1121 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1122 	raw_spinlock_t *hlist_lock;
1123 
1124 	hlist_lock = kretprobe_table_lock_ptr(hash);
1125 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1126 }
1127 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1128 
1129 static void kretprobe_table_unlock(unsigned long hash,
1130 				   unsigned long *flags)
1131 __releases(hlist_lock)
1132 {
1133 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1134 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135 }
1136 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1137 
1138 /*
1139  * This function is called from finish_task_switch when task tk becomes dead,
1140  * so that we can recycle any function-return probe instances associated
1141  * with this task. These left over instances represent probed functions
1142  * that have been called but will never return.
1143  */
1144 void kprobe_flush_task(struct task_struct *tk)
1145 {
1146 	struct kretprobe_instance *ri;
1147 	struct hlist_head *head, empty_rp;
1148 	struct hlist_node *tmp;
1149 	unsigned long hash, flags = 0;
1150 
1151 	if (unlikely(!kprobes_initialized))
1152 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1153 		return;
1154 
1155 	INIT_HLIST_HEAD(&empty_rp);
1156 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 	head = &kretprobe_inst_table[hash];
1158 	kretprobe_table_lock(hash, &flags);
1159 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 		if (ri->task == tk)
1161 			recycle_rp_inst(ri, &empty_rp);
1162 	}
1163 	kretprobe_table_unlock(hash, &flags);
1164 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 		hlist_del(&ri->hlist);
1166 		kfree(ri);
1167 	}
1168 }
1169 NOKPROBE_SYMBOL(kprobe_flush_task);
1170 
1171 static inline void free_rp_inst(struct kretprobe *rp)
1172 {
1173 	struct kretprobe_instance *ri;
1174 	struct hlist_node *next;
1175 
1176 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1177 		hlist_del(&ri->hlist);
1178 		kfree(ri);
1179 	}
1180 }
1181 
1182 static void cleanup_rp_inst(struct kretprobe *rp)
1183 {
1184 	unsigned long flags, hash;
1185 	struct kretprobe_instance *ri;
1186 	struct hlist_node *next;
1187 	struct hlist_head *head;
1188 
1189 	/* No race here */
1190 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1191 		kretprobe_table_lock(hash, &flags);
1192 		head = &kretprobe_inst_table[hash];
1193 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1194 			if (ri->rp == rp)
1195 				ri->rp = NULL;
1196 		}
1197 		kretprobe_table_unlock(hash, &flags);
1198 	}
1199 	free_rp_inst(rp);
1200 }
1201 NOKPROBE_SYMBOL(cleanup_rp_inst);
1202 
1203 /*
1204 * Add the new probe to ap->list. Fail if this is the
1205 * second jprobe at the address - two jprobes can't coexist
1206 */
1207 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1208 {
1209 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1210 
1211 	if (p->break_handler || p->post_handler)
1212 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1213 
1214 	if (p->break_handler) {
1215 		if (ap->break_handler)
1216 			return -EEXIST;
1217 		list_add_tail_rcu(&p->list, &ap->list);
1218 		ap->break_handler = aggr_break_handler;
1219 	} else
1220 		list_add_rcu(&p->list, &ap->list);
1221 	if (p->post_handler && !ap->post_handler)
1222 		ap->post_handler = aggr_post_handler;
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Fill in the required fields of the "manager kprobe". Replace the
1229  * earlier kprobe in the hlist with the manager kprobe
1230  */
1231 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1232 {
1233 	/* Copy p's insn slot to ap */
1234 	copy_kprobe(p, ap);
1235 	flush_insn_slot(ap);
1236 	ap->addr = p->addr;
1237 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1238 	ap->pre_handler = aggr_pre_handler;
1239 	ap->fault_handler = aggr_fault_handler;
1240 	/* We don't care the kprobe which has gone. */
1241 	if (p->post_handler && !kprobe_gone(p))
1242 		ap->post_handler = aggr_post_handler;
1243 	if (p->break_handler && !kprobe_gone(p))
1244 		ap->break_handler = aggr_break_handler;
1245 
1246 	INIT_LIST_HEAD(&ap->list);
1247 	INIT_HLIST_NODE(&ap->hlist);
1248 
1249 	list_add_rcu(&p->list, &ap->list);
1250 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1251 }
1252 
1253 /*
1254  * This is the second or subsequent kprobe at the address - handle
1255  * the intricacies
1256  */
1257 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1258 {
1259 	int ret = 0;
1260 	struct kprobe *ap = orig_p;
1261 
1262 	/* For preparing optimization, jump_label_text_reserved() is called */
1263 	jump_label_lock();
1264 	/*
1265 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1266 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1267 	 */
1268 	get_online_cpus();
1269 	mutex_lock(&text_mutex);
1270 
1271 	if (!kprobe_aggrprobe(orig_p)) {
1272 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1273 		ap = alloc_aggr_kprobe(orig_p);
1274 		if (!ap) {
1275 			ret = -ENOMEM;
1276 			goto out;
1277 		}
1278 		init_aggr_kprobe(ap, orig_p);
1279 	} else if (kprobe_unused(ap))
1280 		/* This probe is going to die. Rescue it */
1281 		reuse_unused_kprobe(ap);
1282 
1283 	if (kprobe_gone(ap)) {
1284 		/*
1285 		 * Attempting to insert new probe at the same location that
1286 		 * had a probe in the module vaddr area which already
1287 		 * freed. So, the instruction slot has already been
1288 		 * released. We need a new slot for the new probe.
1289 		 */
1290 		ret = arch_prepare_kprobe(ap);
1291 		if (ret)
1292 			/*
1293 			 * Even if fail to allocate new slot, don't need to
1294 			 * free aggr_probe. It will be used next time, or
1295 			 * freed by unregister_kprobe.
1296 			 */
1297 			goto out;
1298 
1299 		/* Prepare optimized instructions if possible. */
1300 		prepare_optimized_kprobe(ap);
1301 
1302 		/*
1303 		 * Clear gone flag to prevent allocating new slot again, and
1304 		 * set disabled flag because it is not armed yet.
1305 		 */
1306 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1307 			    | KPROBE_FLAG_DISABLED;
1308 	}
1309 
1310 	/* Copy ap's insn slot to p */
1311 	copy_kprobe(ap, p);
1312 	ret = add_new_kprobe(ap, p);
1313 
1314 out:
1315 	mutex_unlock(&text_mutex);
1316 	put_online_cpus();
1317 	jump_label_unlock();
1318 
1319 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1320 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1321 		if (!kprobes_all_disarmed)
1322 			/* Arm the breakpoint again. */
1323 			arm_kprobe(ap);
1324 	}
1325 	return ret;
1326 }
1327 
1328 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1329 {
1330 	/* The __kprobes marked functions and entry code must not be probed */
1331 	return addr >= (unsigned long)__kprobes_text_start &&
1332 	       addr < (unsigned long)__kprobes_text_end;
1333 }
1334 
1335 bool within_kprobe_blacklist(unsigned long addr)
1336 {
1337 	struct kprobe_blacklist_entry *ent;
1338 
1339 	if (arch_within_kprobe_blacklist(addr))
1340 		return true;
1341 	/*
1342 	 * If there exists a kprobe_blacklist, verify and
1343 	 * fail any probe registration in the prohibited area
1344 	 */
1345 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1346 		if (addr >= ent->start_addr && addr < ent->end_addr)
1347 			return true;
1348 	}
1349 
1350 	return false;
1351 }
1352 
1353 /*
1354  * If we have a symbol_name argument, look it up and add the offset field
1355  * to it. This way, we can specify a relative address to a symbol.
1356  * This returns encoded errors if it fails to look up symbol or invalid
1357  * combination of parameters.
1358  */
1359 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1360 {
1361 	kprobe_opcode_t *addr = p->addr;
1362 
1363 	if ((p->symbol_name && p->addr) ||
1364 	    (!p->symbol_name && !p->addr))
1365 		goto invalid;
1366 
1367 	if (p->symbol_name) {
1368 		kprobe_lookup_name(p->symbol_name, addr);
1369 		if (!addr)
1370 			return ERR_PTR(-ENOENT);
1371 	}
1372 
1373 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1374 	if (addr)
1375 		return addr;
1376 
1377 invalid:
1378 	return ERR_PTR(-EINVAL);
1379 }
1380 
1381 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1382 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1383 {
1384 	struct kprobe *ap, *list_p;
1385 
1386 	ap = get_kprobe(p->addr);
1387 	if (unlikely(!ap))
1388 		return NULL;
1389 
1390 	if (p != ap) {
1391 		list_for_each_entry_rcu(list_p, &ap->list, list)
1392 			if (list_p == p)
1393 			/* kprobe p is a valid probe */
1394 				goto valid;
1395 		return NULL;
1396 	}
1397 valid:
1398 	return ap;
1399 }
1400 
1401 /* Return error if the kprobe is being re-registered */
1402 static inline int check_kprobe_rereg(struct kprobe *p)
1403 {
1404 	int ret = 0;
1405 
1406 	mutex_lock(&kprobe_mutex);
1407 	if (__get_valid_kprobe(p))
1408 		ret = -EINVAL;
1409 	mutex_unlock(&kprobe_mutex);
1410 
1411 	return ret;
1412 }
1413 
1414 int __weak arch_check_ftrace_location(struct kprobe *p)
1415 {
1416 	unsigned long ftrace_addr;
1417 
1418 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1419 	if (ftrace_addr) {
1420 #ifdef CONFIG_KPROBES_ON_FTRACE
1421 		/* Given address is not on the instruction boundary */
1422 		if ((unsigned long)p->addr != ftrace_addr)
1423 			return -EILSEQ;
1424 		p->flags |= KPROBE_FLAG_FTRACE;
1425 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1426 		return -EINVAL;
1427 #endif
1428 	}
1429 	return 0;
1430 }
1431 
1432 static int check_kprobe_address_safe(struct kprobe *p,
1433 				     struct module **probed_mod)
1434 {
1435 	int ret;
1436 
1437 	ret = arch_check_ftrace_location(p);
1438 	if (ret)
1439 		return ret;
1440 	jump_label_lock();
1441 	preempt_disable();
1442 
1443 	/* Ensure it is not in reserved area nor out of text */
1444 	if (!kernel_text_address((unsigned long) p->addr) ||
1445 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1446 	    jump_label_text_reserved(p->addr, p->addr)) {
1447 		ret = -EINVAL;
1448 		goto out;
1449 	}
1450 
1451 	/* Check if are we probing a module */
1452 	*probed_mod = __module_text_address((unsigned long) p->addr);
1453 	if (*probed_mod) {
1454 		/*
1455 		 * We must hold a refcount of the probed module while updating
1456 		 * its code to prohibit unexpected unloading.
1457 		 */
1458 		if (unlikely(!try_module_get(*probed_mod))) {
1459 			ret = -ENOENT;
1460 			goto out;
1461 		}
1462 
1463 		/*
1464 		 * If the module freed .init.text, we couldn't insert
1465 		 * kprobes in there.
1466 		 */
1467 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1468 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1469 			module_put(*probed_mod);
1470 			*probed_mod = NULL;
1471 			ret = -ENOENT;
1472 		}
1473 	}
1474 out:
1475 	preempt_enable();
1476 	jump_label_unlock();
1477 
1478 	return ret;
1479 }
1480 
1481 int register_kprobe(struct kprobe *p)
1482 {
1483 	int ret;
1484 	struct kprobe *old_p;
1485 	struct module *probed_mod;
1486 	kprobe_opcode_t *addr;
1487 
1488 	/* Adjust probe address from symbol */
1489 	addr = kprobe_addr(p);
1490 	if (IS_ERR(addr))
1491 		return PTR_ERR(addr);
1492 	p->addr = addr;
1493 
1494 	ret = check_kprobe_rereg(p);
1495 	if (ret)
1496 		return ret;
1497 
1498 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1499 	p->flags &= KPROBE_FLAG_DISABLED;
1500 	p->nmissed = 0;
1501 	INIT_LIST_HEAD(&p->list);
1502 
1503 	ret = check_kprobe_address_safe(p, &probed_mod);
1504 	if (ret)
1505 		return ret;
1506 
1507 	mutex_lock(&kprobe_mutex);
1508 
1509 	old_p = get_kprobe(p->addr);
1510 	if (old_p) {
1511 		/* Since this may unoptimize old_p, locking text_mutex. */
1512 		ret = register_aggr_kprobe(old_p, p);
1513 		goto out;
1514 	}
1515 
1516 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1517 	ret = prepare_kprobe(p);
1518 	mutex_unlock(&text_mutex);
1519 	if (ret)
1520 		goto out;
1521 
1522 	INIT_HLIST_NODE(&p->hlist);
1523 	hlist_add_head_rcu(&p->hlist,
1524 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1525 
1526 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1527 		arm_kprobe(p);
1528 
1529 	/* Try to optimize kprobe */
1530 	try_to_optimize_kprobe(p);
1531 
1532 out:
1533 	mutex_unlock(&kprobe_mutex);
1534 
1535 	if (probed_mod)
1536 		module_put(probed_mod);
1537 
1538 	return ret;
1539 }
1540 EXPORT_SYMBOL_GPL(register_kprobe);
1541 
1542 /* Check if all probes on the aggrprobe are disabled */
1543 static int aggr_kprobe_disabled(struct kprobe *ap)
1544 {
1545 	struct kprobe *kp;
1546 
1547 	list_for_each_entry_rcu(kp, &ap->list, list)
1548 		if (!kprobe_disabled(kp))
1549 			/*
1550 			 * There is an active probe on the list.
1551 			 * We can't disable this ap.
1552 			 */
1553 			return 0;
1554 
1555 	return 1;
1556 }
1557 
1558 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1559 static struct kprobe *__disable_kprobe(struct kprobe *p)
1560 {
1561 	struct kprobe *orig_p;
1562 
1563 	/* Get an original kprobe for return */
1564 	orig_p = __get_valid_kprobe(p);
1565 	if (unlikely(orig_p == NULL))
1566 		return NULL;
1567 
1568 	if (!kprobe_disabled(p)) {
1569 		/* Disable probe if it is a child probe */
1570 		if (p != orig_p)
1571 			p->flags |= KPROBE_FLAG_DISABLED;
1572 
1573 		/* Try to disarm and disable this/parent probe */
1574 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1575 			/*
1576 			 * If kprobes_all_disarmed is set, orig_p
1577 			 * should have already been disarmed, so
1578 			 * skip unneed disarming process.
1579 			 */
1580 			if (!kprobes_all_disarmed)
1581 				disarm_kprobe(orig_p, true);
1582 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1583 		}
1584 	}
1585 
1586 	return orig_p;
1587 }
1588 
1589 /*
1590  * Unregister a kprobe without a scheduler synchronization.
1591  */
1592 static int __unregister_kprobe_top(struct kprobe *p)
1593 {
1594 	struct kprobe *ap, *list_p;
1595 
1596 	/* Disable kprobe. This will disarm it if needed. */
1597 	ap = __disable_kprobe(p);
1598 	if (ap == NULL)
1599 		return -EINVAL;
1600 
1601 	if (ap == p)
1602 		/*
1603 		 * This probe is an independent(and non-optimized) kprobe
1604 		 * (not an aggrprobe). Remove from the hash list.
1605 		 */
1606 		goto disarmed;
1607 
1608 	/* Following process expects this probe is an aggrprobe */
1609 	WARN_ON(!kprobe_aggrprobe(ap));
1610 
1611 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1612 		/*
1613 		 * !disarmed could be happen if the probe is under delayed
1614 		 * unoptimizing.
1615 		 */
1616 		goto disarmed;
1617 	else {
1618 		/* If disabling probe has special handlers, update aggrprobe */
1619 		if (p->break_handler && !kprobe_gone(p))
1620 			ap->break_handler = NULL;
1621 		if (p->post_handler && !kprobe_gone(p)) {
1622 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1623 				if ((list_p != p) && (list_p->post_handler))
1624 					goto noclean;
1625 			}
1626 			ap->post_handler = NULL;
1627 		}
1628 noclean:
1629 		/*
1630 		 * Remove from the aggrprobe: this path will do nothing in
1631 		 * __unregister_kprobe_bottom().
1632 		 */
1633 		list_del_rcu(&p->list);
1634 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1635 			/*
1636 			 * Try to optimize this probe again, because post
1637 			 * handler may have been changed.
1638 			 */
1639 			optimize_kprobe(ap);
1640 	}
1641 	return 0;
1642 
1643 disarmed:
1644 	BUG_ON(!kprobe_disarmed(ap));
1645 	hlist_del_rcu(&ap->hlist);
1646 	return 0;
1647 }
1648 
1649 static void __unregister_kprobe_bottom(struct kprobe *p)
1650 {
1651 	struct kprobe *ap;
1652 
1653 	if (list_empty(&p->list))
1654 		/* This is an independent kprobe */
1655 		arch_remove_kprobe(p);
1656 	else if (list_is_singular(&p->list)) {
1657 		/* This is the last child of an aggrprobe */
1658 		ap = list_entry(p->list.next, struct kprobe, list);
1659 		list_del(&p->list);
1660 		free_aggr_kprobe(ap);
1661 	}
1662 	/* Otherwise, do nothing. */
1663 }
1664 
1665 int register_kprobes(struct kprobe **kps, int num)
1666 {
1667 	int i, ret = 0;
1668 
1669 	if (num <= 0)
1670 		return -EINVAL;
1671 	for (i = 0; i < num; i++) {
1672 		ret = register_kprobe(kps[i]);
1673 		if (ret < 0) {
1674 			if (i > 0)
1675 				unregister_kprobes(kps, i);
1676 			break;
1677 		}
1678 	}
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(register_kprobes);
1682 
1683 void unregister_kprobe(struct kprobe *p)
1684 {
1685 	unregister_kprobes(&p, 1);
1686 }
1687 EXPORT_SYMBOL_GPL(unregister_kprobe);
1688 
1689 void unregister_kprobes(struct kprobe **kps, int num)
1690 {
1691 	int i;
1692 
1693 	if (num <= 0)
1694 		return;
1695 	mutex_lock(&kprobe_mutex);
1696 	for (i = 0; i < num; i++)
1697 		if (__unregister_kprobe_top(kps[i]) < 0)
1698 			kps[i]->addr = NULL;
1699 	mutex_unlock(&kprobe_mutex);
1700 
1701 	synchronize_sched();
1702 	for (i = 0; i < num; i++)
1703 		if (kps[i]->addr)
1704 			__unregister_kprobe_bottom(kps[i]);
1705 }
1706 EXPORT_SYMBOL_GPL(unregister_kprobes);
1707 
1708 static struct notifier_block kprobe_exceptions_nb = {
1709 	.notifier_call = kprobe_exceptions_notify,
1710 	.priority = 0x7fffffff /* we need to be notified first */
1711 };
1712 
1713 unsigned long __weak arch_deref_entry_point(void *entry)
1714 {
1715 	return (unsigned long)entry;
1716 }
1717 
1718 int register_jprobes(struct jprobe **jps, int num)
1719 {
1720 	struct jprobe *jp;
1721 	int ret = 0, i;
1722 
1723 	if (num <= 0)
1724 		return -EINVAL;
1725 	for (i = 0; i < num; i++) {
1726 		unsigned long addr, offset;
1727 		jp = jps[i];
1728 		addr = arch_deref_entry_point(jp->entry);
1729 
1730 		/* Verify probepoint is a function entry point */
1731 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1732 		    offset == 0) {
1733 			jp->kp.pre_handler = setjmp_pre_handler;
1734 			jp->kp.break_handler = longjmp_break_handler;
1735 			ret = register_kprobe(&jp->kp);
1736 		} else
1737 			ret = -EINVAL;
1738 
1739 		if (ret < 0) {
1740 			if (i > 0)
1741 				unregister_jprobes(jps, i);
1742 			break;
1743 		}
1744 	}
1745 	return ret;
1746 }
1747 EXPORT_SYMBOL_GPL(register_jprobes);
1748 
1749 int register_jprobe(struct jprobe *jp)
1750 {
1751 	return register_jprobes(&jp, 1);
1752 }
1753 EXPORT_SYMBOL_GPL(register_jprobe);
1754 
1755 void unregister_jprobe(struct jprobe *jp)
1756 {
1757 	unregister_jprobes(&jp, 1);
1758 }
1759 EXPORT_SYMBOL_GPL(unregister_jprobe);
1760 
1761 void unregister_jprobes(struct jprobe **jps, int num)
1762 {
1763 	int i;
1764 
1765 	if (num <= 0)
1766 		return;
1767 	mutex_lock(&kprobe_mutex);
1768 	for (i = 0; i < num; i++)
1769 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1770 			jps[i]->kp.addr = NULL;
1771 	mutex_unlock(&kprobe_mutex);
1772 
1773 	synchronize_sched();
1774 	for (i = 0; i < num; i++) {
1775 		if (jps[i]->kp.addr)
1776 			__unregister_kprobe_bottom(&jps[i]->kp);
1777 	}
1778 }
1779 EXPORT_SYMBOL_GPL(unregister_jprobes);
1780 
1781 #ifdef CONFIG_KRETPROBES
1782 /*
1783  * This kprobe pre_handler is registered with every kretprobe. When probe
1784  * hits it will set up the return probe.
1785  */
1786 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1787 {
1788 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1789 	unsigned long hash, flags = 0;
1790 	struct kretprobe_instance *ri;
1791 
1792 	/*
1793 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1794 	 * just skip the probe and increase the (inexact) 'nmissed'
1795 	 * statistical counter, so that the user is informed that
1796 	 * something happened:
1797 	 */
1798 	if (unlikely(in_nmi())) {
1799 		rp->nmissed++;
1800 		return 0;
1801 	}
1802 
1803 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1804 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1805 	raw_spin_lock_irqsave(&rp->lock, flags);
1806 	if (!hlist_empty(&rp->free_instances)) {
1807 		ri = hlist_entry(rp->free_instances.first,
1808 				struct kretprobe_instance, hlist);
1809 		hlist_del(&ri->hlist);
1810 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1811 
1812 		ri->rp = rp;
1813 		ri->task = current;
1814 
1815 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1816 			raw_spin_lock_irqsave(&rp->lock, flags);
1817 			hlist_add_head(&ri->hlist, &rp->free_instances);
1818 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1819 			return 0;
1820 		}
1821 
1822 		arch_prepare_kretprobe(ri, regs);
1823 
1824 		/* XXX(hch): why is there no hlist_move_head? */
1825 		INIT_HLIST_NODE(&ri->hlist);
1826 		kretprobe_table_lock(hash, &flags);
1827 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1828 		kretprobe_table_unlock(hash, &flags);
1829 	} else {
1830 		rp->nmissed++;
1831 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1832 	}
1833 	return 0;
1834 }
1835 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1836 
1837 int register_kretprobe(struct kretprobe *rp)
1838 {
1839 	int ret = 0;
1840 	struct kretprobe_instance *inst;
1841 	int i;
1842 	void *addr;
1843 
1844 	if (kretprobe_blacklist_size) {
1845 		addr = kprobe_addr(&rp->kp);
1846 		if (IS_ERR(addr))
1847 			return PTR_ERR(addr);
1848 
1849 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1850 			if (kretprobe_blacklist[i].addr == addr)
1851 				return -EINVAL;
1852 		}
1853 	}
1854 
1855 	rp->kp.pre_handler = pre_handler_kretprobe;
1856 	rp->kp.post_handler = NULL;
1857 	rp->kp.fault_handler = NULL;
1858 	rp->kp.break_handler = NULL;
1859 
1860 	/* Pre-allocate memory for max kretprobe instances */
1861 	if (rp->maxactive <= 0) {
1862 #ifdef CONFIG_PREEMPT
1863 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1864 #else
1865 		rp->maxactive = num_possible_cpus();
1866 #endif
1867 	}
1868 	raw_spin_lock_init(&rp->lock);
1869 	INIT_HLIST_HEAD(&rp->free_instances);
1870 	for (i = 0; i < rp->maxactive; i++) {
1871 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1872 			       rp->data_size, GFP_KERNEL);
1873 		if (inst == NULL) {
1874 			free_rp_inst(rp);
1875 			return -ENOMEM;
1876 		}
1877 		INIT_HLIST_NODE(&inst->hlist);
1878 		hlist_add_head(&inst->hlist, &rp->free_instances);
1879 	}
1880 
1881 	rp->nmissed = 0;
1882 	/* Establish function entry probe point */
1883 	ret = register_kprobe(&rp->kp);
1884 	if (ret != 0)
1885 		free_rp_inst(rp);
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(register_kretprobe);
1889 
1890 int register_kretprobes(struct kretprobe **rps, int num)
1891 {
1892 	int ret = 0, i;
1893 
1894 	if (num <= 0)
1895 		return -EINVAL;
1896 	for (i = 0; i < num; i++) {
1897 		ret = register_kretprobe(rps[i]);
1898 		if (ret < 0) {
1899 			if (i > 0)
1900 				unregister_kretprobes(rps, i);
1901 			break;
1902 		}
1903 	}
1904 	return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(register_kretprobes);
1907 
1908 void unregister_kretprobe(struct kretprobe *rp)
1909 {
1910 	unregister_kretprobes(&rp, 1);
1911 }
1912 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1913 
1914 void unregister_kretprobes(struct kretprobe **rps, int num)
1915 {
1916 	int i;
1917 
1918 	if (num <= 0)
1919 		return;
1920 	mutex_lock(&kprobe_mutex);
1921 	for (i = 0; i < num; i++)
1922 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1923 			rps[i]->kp.addr = NULL;
1924 	mutex_unlock(&kprobe_mutex);
1925 
1926 	synchronize_sched();
1927 	for (i = 0; i < num; i++) {
1928 		if (rps[i]->kp.addr) {
1929 			__unregister_kprobe_bottom(&rps[i]->kp);
1930 			cleanup_rp_inst(rps[i]);
1931 		}
1932 	}
1933 }
1934 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935 
1936 #else /* CONFIG_KRETPROBES */
1937 int register_kretprobe(struct kretprobe *rp)
1938 {
1939 	return -ENOSYS;
1940 }
1941 EXPORT_SYMBOL_GPL(register_kretprobe);
1942 
1943 int register_kretprobes(struct kretprobe **rps, int num)
1944 {
1945 	return -ENOSYS;
1946 }
1947 EXPORT_SYMBOL_GPL(register_kretprobes);
1948 
1949 void unregister_kretprobe(struct kretprobe *rp)
1950 {
1951 }
1952 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1953 
1954 void unregister_kretprobes(struct kretprobe **rps, int num)
1955 {
1956 }
1957 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1958 
1959 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1960 {
1961 	return 0;
1962 }
1963 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964 
1965 #endif /* CONFIG_KRETPROBES */
1966 
1967 /* Set the kprobe gone and remove its instruction buffer. */
1968 static void kill_kprobe(struct kprobe *p)
1969 {
1970 	struct kprobe *kp;
1971 
1972 	p->flags |= KPROBE_FLAG_GONE;
1973 	if (kprobe_aggrprobe(p)) {
1974 		/*
1975 		 * If this is an aggr_kprobe, we have to list all the
1976 		 * chained probes and mark them GONE.
1977 		 */
1978 		list_for_each_entry_rcu(kp, &p->list, list)
1979 			kp->flags |= KPROBE_FLAG_GONE;
1980 		p->post_handler = NULL;
1981 		p->break_handler = NULL;
1982 		kill_optimized_kprobe(p);
1983 	}
1984 	/*
1985 	 * Here, we can remove insn_slot safely, because no thread calls
1986 	 * the original probed function (which will be freed soon) any more.
1987 	 */
1988 	arch_remove_kprobe(p);
1989 }
1990 
1991 /* Disable one kprobe */
1992 int disable_kprobe(struct kprobe *kp)
1993 {
1994 	int ret = 0;
1995 
1996 	mutex_lock(&kprobe_mutex);
1997 
1998 	/* Disable this kprobe */
1999 	if (__disable_kprobe(kp) == NULL)
2000 		ret = -EINVAL;
2001 
2002 	mutex_unlock(&kprobe_mutex);
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(disable_kprobe);
2006 
2007 /* Enable one kprobe */
2008 int enable_kprobe(struct kprobe *kp)
2009 {
2010 	int ret = 0;
2011 	struct kprobe *p;
2012 
2013 	mutex_lock(&kprobe_mutex);
2014 
2015 	/* Check whether specified probe is valid. */
2016 	p = __get_valid_kprobe(kp);
2017 	if (unlikely(p == NULL)) {
2018 		ret = -EINVAL;
2019 		goto out;
2020 	}
2021 
2022 	if (kprobe_gone(kp)) {
2023 		/* This kprobe has gone, we couldn't enable it. */
2024 		ret = -EINVAL;
2025 		goto out;
2026 	}
2027 
2028 	if (p != kp)
2029 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2030 
2031 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2032 		p->flags &= ~KPROBE_FLAG_DISABLED;
2033 		arm_kprobe(p);
2034 	}
2035 out:
2036 	mutex_unlock(&kprobe_mutex);
2037 	return ret;
2038 }
2039 EXPORT_SYMBOL_GPL(enable_kprobe);
2040 
2041 void dump_kprobe(struct kprobe *kp)
2042 {
2043 	printk(KERN_WARNING "Dumping kprobe:\n");
2044 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2045 	       kp->symbol_name, kp->addr, kp->offset);
2046 }
2047 NOKPROBE_SYMBOL(dump_kprobe);
2048 
2049 /*
2050  * Lookup and populate the kprobe_blacklist.
2051  *
2052  * Unlike the kretprobe blacklist, we'll need to determine
2053  * the range of addresses that belong to the said functions,
2054  * since a kprobe need not necessarily be at the beginning
2055  * of a function.
2056  */
2057 static int __init populate_kprobe_blacklist(unsigned long *start,
2058 					     unsigned long *end)
2059 {
2060 	unsigned long *iter;
2061 	struct kprobe_blacklist_entry *ent;
2062 	unsigned long entry, offset = 0, size = 0;
2063 
2064 	for (iter = start; iter < end; iter++) {
2065 		entry = arch_deref_entry_point((void *)*iter);
2066 
2067 		if (!kernel_text_address(entry) ||
2068 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2069 			pr_err("Failed to find blacklist at %p\n",
2070 				(void *)entry);
2071 			continue;
2072 		}
2073 
2074 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2075 		if (!ent)
2076 			return -ENOMEM;
2077 		ent->start_addr = entry;
2078 		ent->end_addr = entry + size;
2079 		INIT_LIST_HEAD(&ent->list);
2080 		list_add_tail(&ent->list, &kprobe_blacklist);
2081 	}
2082 	return 0;
2083 }
2084 
2085 /* Module notifier call back, checking kprobes on the module */
2086 static int kprobes_module_callback(struct notifier_block *nb,
2087 				   unsigned long val, void *data)
2088 {
2089 	struct module *mod = data;
2090 	struct hlist_head *head;
2091 	struct kprobe *p;
2092 	unsigned int i;
2093 	int checkcore = (val == MODULE_STATE_GOING);
2094 
2095 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2096 		return NOTIFY_DONE;
2097 
2098 	/*
2099 	 * When MODULE_STATE_GOING was notified, both of module .text and
2100 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2101 	 * notified, only .init.text section would be freed. We need to
2102 	 * disable kprobes which have been inserted in the sections.
2103 	 */
2104 	mutex_lock(&kprobe_mutex);
2105 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2106 		head = &kprobe_table[i];
2107 		hlist_for_each_entry_rcu(p, head, hlist)
2108 			if (within_module_init((unsigned long)p->addr, mod) ||
2109 			    (checkcore &&
2110 			     within_module_core((unsigned long)p->addr, mod))) {
2111 				/*
2112 				 * The vaddr this probe is installed will soon
2113 				 * be vfreed buy not synced to disk. Hence,
2114 				 * disarming the breakpoint isn't needed.
2115 				 */
2116 				kill_kprobe(p);
2117 			}
2118 	}
2119 	mutex_unlock(&kprobe_mutex);
2120 	return NOTIFY_DONE;
2121 }
2122 
2123 static struct notifier_block kprobe_module_nb = {
2124 	.notifier_call = kprobes_module_callback,
2125 	.priority = 0
2126 };
2127 
2128 /* Markers of _kprobe_blacklist section */
2129 extern unsigned long __start_kprobe_blacklist[];
2130 extern unsigned long __stop_kprobe_blacklist[];
2131 
2132 static int __init init_kprobes(void)
2133 {
2134 	int i, err = 0;
2135 
2136 	/* FIXME allocate the probe table, currently defined statically */
2137 	/* initialize all list heads */
2138 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2139 		INIT_HLIST_HEAD(&kprobe_table[i]);
2140 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2141 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2142 	}
2143 
2144 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2145 					__stop_kprobe_blacklist);
2146 	if (err) {
2147 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2148 		pr_err("Please take care of using kprobes.\n");
2149 	}
2150 
2151 	if (kretprobe_blacklist_size) {
2152 		/* lookup the function address from its name */
2153 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2154 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2155 					   kretprobe_blacklist[i].addr);
2156 			if (!kretprobe_blacklist[i].addr)
2157 				printk("kretprobe: lookup failed: %s\n",
2158 				       kretprobe_blacklist[i].name);
2159 		}
2160 	}
2161 
2162 #if defined(CONFIG_OPTPROBES)
2163 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2164 	/* Init kprobe_optinsn_slots */
2165 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2166 #endif
2167 	/* By default, kprobes can be optimized */
2168 	kprobes_allow_optimization = true;
2169 #endif
2170 
2171 	/* By default, kprobes are armed */
2172 	kprobes_all_disarmed = false;
2173 
2174 	err = arch_init_kprobes();
2175 	if (!err)
2176 		err = register_die_notifier(&kprobe_exceptions_nb);
2177 	if (!err)
2178 		err = register_module_notifier(&kprobe_module_nb);
2179 
2180 	kprobes_initialized = (err == 0);
2181 
2182 	if (!err)
2183 		init_test_probes();
2184 	return err;
2185 }
2186 
2187 #ifdef CONFIG_DEBUG_FS
2188 static void report_probe(struct seq_file *pi, struct kprobe *p,
2189 		const char *sym, int offset, char *modname, struct kprobe *pp)
2190 {
2191 	char *kprobe_type;
2192 
2193 	if (p->pre_handler == pre_handler_kretprobe)
2194 		kprobe_type = "r";
2195 	else if (p->pre_handler == setjmp_pre_handler)
2196 		kprobe_type = "j";
2197 	else
2198 		kprobe_type = "k";
2199 
2200 	if (sym)
2201 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2202 			p->addr, kprobe_type, sym, offset,
2203 			(modname ? modname : " "));
2204 	else
2205 		seq_printf(pi, "%p  %s  %p ",
2206 			p->addr, kprobe_type, p->addr);
2207 
2208 	if (!pp)
2209 		pp = p;
2210 	seq_printf(pi, "%s%s%s%s\n",
2211 		(kprobe_gone(p) ? "[GONE]" : ""),
2212 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2213 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2214 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2215 }
2216 
2217 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2218 {
2219 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2220 }
2221 
2222 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2223 {
2224 	(*pos)++;
2225 	if (*pos >= KPROBE_TABLE_SIZE)
2226 		return NULL;
2227 	return pos;
2228 }
2229 
2230 static void kprobe_seq_stop(struct seq_file *f, void *v)
2231 {
2232 	/* Nothing to do */
2233 }
2234 
2235 static int show_kprobe_addr(struct seq_file *pi, void *v)
2236 {
2237 	struct hlist_head *head;
2238 	struct kprobe *p, *kp;
2239 	const char *sym = NULL;
2240 	unsigned int i = *(loff_t *) v;
2241 	unsigned long offset = 0;
2242 	char *modname, namebuf[KSYM_NAME_LEN];
2243 
2244 	head = &kprobe_table[i];
2245 	preempt_disable();
2246 	hlist_for_each_entry_rcu(p, head, hlist) {
2247 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2248 					&offset, &modname, namebuf);
2249 		if (kprobe_aggrprobe(p)) {
2250 			list_for_each_entry_rcu(kp, &p->list, list)
2251 				report_probe(pi, kp, sym, offset, modname, p);
2252 		} else
2253 			report_probe(pi, p, sym, offset, modname, NULL);
2254 	}
2255 	preempt_enable();
2256 	return 0;
2257 }
2258 
2259 static const struct seq_operations kprobes_seq_ops = {
2260 	.start = kprobe_seq_start,
2261 	.next  = kprobe_seq_next,
2262 	.stop  = kprobe_seq_stop,
2263 	.show  = show_kprobe_addr
2264 };
2265 
2266 static int kprobes_open(struct inode *inode, struct file *filp)
2267 {
2268 	return seq_open(filp, &kprobes_seq_ops);
2269 }
2270 
2271 static const struct file_operations debugfs_kprobes_operations = {
2272 	.open           = kprobes_open,
2273 	.read           = seq_read,
2274 	.llseek         = seq_lseek,
2275 	.release        = seq_release,
2276 };
2277 
2278 /* kprobes/blacklist -- shows which functions can not be probed */
2279 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2280 {
2281 	return seq_list_start(&kprobe_blacklist, *pos);
2282 }
2283 
2284 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2285 {
2286 	return seq_list_next(v, &kprobe_blacklist, pos);
2287 }
2288 
2289 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2290 {
2291 	struct kprobe_blacklist_entry *ent =
2292 		list_entry(v, struct kprobe_blacklist_entry, list);
2293 
2294 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2295 		   (void *)ent->end_addr, (void *)ent->start_addr);
2296 	return 0;
2297 }
2298 
2299 static const struct seq_operations kprobe_blacklist_seq_ops = {
2300 	.start = kprobe_blacklist_seq_start,
2301 	.next  = kprobe_blacklist_seq_next,
2302 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2303 	.show  = kprobe_blacklist_seq_show,
2304 };
2305 
2306 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2307 {
2308 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2309 }
2310 
2311 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2312 	.open           = kprobe_blacklist_open,
2313 	.read           = seq_read,
2314 	.llseek         = seq_lseek,
2315 	.release        = seq_release,
2316 };
2317 
2318 static void arm_all_kprobes(void)
2319 {
2320 	struct hlist_head *head;
2321 	struct kprobe *p;
2322 	unsigned int i;
2323 
2324 	mutex_lock(&kprobe_mutex);
2325 
2326 	/* If kprobes are armed, just return */
2327 	if (!kprobes_all_disarmed)
2328 		goto already_enabled;
2329 
2330 	/*
2331 	 * optimize_kprobe() called by arm_kprobe() checks
2332 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2333 	 * arm_kprobe.
2334 	 */
2335 	kprobes_all_disarmed = false;
2336 	/* Arming kprobes doesn't optimize kprobe itself */
2337 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2338 		head = &kprobe_table[i];
2339 		hlist_for_each_entry_rcu(p, head, hlist)
2340 			if (!kprobe_disabled(p))
2341 				arm_kprobe(p);
2342 	}
2343 
2344 	printk(KERN_INFO "Kprobes globally enabled\n");
2345 
2346 already_enabled:
2347 	mutex_unlock(&kprobe_mutex);
2348 	return;
2349 }
2350 
2351 static void disarm_all_kprobes(void)
2352 {
2353 	struct hlist_head *head;
2354 	struct kprobe *p;
2355 	unsigned int i;
2356 
2357 	mutex_lock(&kprobe_mutex);
2358 
2359 	/* If kprobes are already disarmed, just return */
2360 	if (kprobes_all_disarmed) {
2361 		mutex_unlock(&kprobe_mutex);
2362 		return;
2363 	}
2364 
2365 	kprobes_all_disarmed = true;
2366 	printk(KERN_INFO "Kprobes globally disabled\n");
2367 
2368 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2369 		head = &kprobe_table[i];
2370 		hlist_for_each_entry_rcu(p, head, hlist) {
2371 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2372 				disarm_kprobe(p, false);
2373 		}
2374 	}
2375 	mutex_unlock(&kprobe_mutex);
2376 
2377 	/* Wait for disarming all kprobes by optimizer */
2378 	wait_for_kprobe_optimizer();
2379 }
2380 
2381 /*
2382  * XXX: The debugfs bool file interface doesn't allow for callbacks
2383  * when the bool state is switched. We can reuse that facility when
2384  * available
2385  */
2386 static ssize_t read_enabled_file_bool(struct file *file,
2387 	       char __user *user_buf, size_t count, loff_t *ppos)
2388 {
2389 	char buf[3];
2390 
2391 	if (!kprobes_all_disarmed)
2392 		buf[0] = '1';
2393 	else
2394 		buf[0] = '0';
2395 	buf[1] = '\n';
2396 	buf[2] = 0x00;
2397 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2398 }
2399 
2400 static ssize_t write_enabled_file_bool(struct file *file,
2401 	       const char __user *user_buf, size_t count, loff_t *ppos)
2402 {
2403 	char buf[32];
2404 	size_t buf_size;
2405 
2406 	buf_size = min(count, (sizeof(buf)-1));
2407 	if (copy_from_user(buf, user_buf, buf_size))
2408 		return -EFAULT;
2409 
2410 	buf[buf_size] = '\0';
2411 	switch (buf[0]) {
2412 	case 'y':
2413 	case 'Y':
2414 	case '1':
2415 		arm_all_kprobes();
2416 		break;
2417 	case 'n':
2418 	case 'N':
2419 	case '0':
2420 		disarm_all_kprobes();
2421 		break;
2422 	default:
2423 		return -EINVAL;
2424 	}
2425 
2426 	return count;
2427 }
2428 
2429 static const struct file_operations fops_kp = {
2430 	.read =         read_enabled_file_bool,
2431 	.write =        write_enabled_file_bool,
2432 	.llseek =	default_llseek,
2433 };
2434 
2435 static int __init debugfs_kprobe_init(void)
2436 {
2437 	struct dentry *dir, *file;
2438 	unsigned int value = 1;
2439 
2440 	dir = debugfs_create_dir("kprobes", NULL);
2441 	if (!dir)
2442 		return -ENOMEM;
2443 
2444 	file = debugfs_create_file("list", 0444, dir, NULL,
2445 				&debugfs_kprobes_operations);
2446 	if (!file)
2447 		goto error;
2448 
2449 	file = debugfs_create_file("enabled", 0600, dir,
2450 					&value, &fops_kp);
2451 	if (!file)
2452 		goto error;
2453 
2454 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2455 				&debugfs_kprobe_blacklist_ops);
2456 	if (!file)
2457 		goto error;
2458 
2459 	return 0;
2460 
2461 error:
2462 	debugfs_remove(dir);
2463 	return -ENOMEM;
2464 }
2465 
2466 late_initcall(debugfs_kprobe_init);
2467 #endif /* CONFIG_DEBUG_FS */
2468 
2469 module_init(init_kprobes);
2470 
2471 /* defined in arch/.../kernel/kprobes.c */
2472 EXPORT_SYMBOL_GPL(jprobe_return);
2473